
Problem Map: A Framework for Investigating the Role of Problem Formulation

in Creative Design

by

Mahmoud Dinar

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved July 2015 by the

Graduate Supervisory Committee:

Jami Shah, Chair

Pat Langley

Joseph Davidson

Micah Lande

Yi Ren

ARIZONA STATE UNIVERSITY

August 2015

 i

ABSTRACT

Design problem formulation is believed to influence creativity, yet it has received

only modest attention in the research community. Past studies of problem formulation are

scarce and often have small sample sizes. The main objective of this research is to

understand how problem formulation affects creative outcome. Three research areas are

investigated: development of a model which facilitates capturing the differences among

designers' problem formulation; representation and implication of those differences; the

relation between problem formulation and creativity.

This dissertation proposes the Problem Map (P-maps) ontological framework. P-

maps represent designers' problem formulation in terms of six groups of entities

(requirement, use scenario, function, artifact, behavior, and issue). Entities have

hierarchies within each group and links among groups. Variables extracted from P-maps

characterize problem formulation.

Three experiments were conducted. The first experiment was to study the

similarities and differences between novice and expert designers. Results show that

experts use more abstraction than novices do and novices are more likely to add entities

in a specific order. Experts also discover more issues.

The second experiment was to see how problem formulation relates to creativity.

Ideation metrics were used to characterize creative outcome. Results include but are not

limited to a positive correlation between adding more issues in an unorganized way with

quantity and variety, more use scenarios and functions with novelty, more behaviors and

conflicts identified with quality, and depth-first exploration with all ideation metrics.

 ii

Fewer hierarchies in use scenarios lower novelty and fewer links to requirements and

issues lower quality of ideas.

The third experiment was to see if problem formulation can predict creative

outcome. Models based on one problem were used to predict the creativity of another.

Predicted scores were compared to assessments of independent judges. Quality and

novelty are predicted more accurately than variety, and quantity. Backward elimination

improves model fit, though reduces prediction accuracy.

P-maps provide a theoretical framework for formalizing, tracing, and quantifying

conceptual design strategies. Other potential applications are developing a test of

problem formulation skill, tracking students' learning of formulation skills in a course,

and reproducing other researchers’ observations about designer thinking.

 iii

DEDICATION

To my parents and my sister Sana.

 iv

ACKNOWLEDGMENTS

This dissertation was written in the department of Mechanical and Aerospace

Engineering at Arizona State University in Tempe Arizona throughout the spring of

2015. It was written under the supervision of my esteemed adviser Professor Jami Shah. I

wish to express my deepest gratitude for all of his help, advice, and encouragement

during the years I studied and did research in the Design Automation Lab. Along the

way, he involved me in discussions around a variety of other projects, publications, and

proposals which taught me many great lessons about competence, merit, ethics, and

ambition in an academic life. His direct, yet humble and honest approach in

communicating with students is a character which I wish to emulate in my future career,

if I can. It has been a great honor for me to have the privilege to work with him and I will

forever be indebted to him.

I cannot thank enough my adviser and friend, Professor Pat Langley. His meticulous

knowledge of a variety of subjects and his sharp attention to details have surprised me in

many occasions about how easily I might make mistakes if I express an idea carelessly.

His passionate arguments during many of our conversations have kept me enthusiastic

about what I do. His curiosity has taught me that life is about learning. He will forever be

an inspiration.

I should thank my other committee members, Professor Joseph Davidson, Dr. Micah

Lande, and Dr. Yi Ren for their support and advice in preparing this dissertation. I should

extend my gratitude to Professor George Runger, Dr. Kenneth Huebner, and Dr. Winslow

 v

Burleson who were on my committee when I first proposed my thesis prospectus. I also

thank Dr. Ellen Campana who was a part of our project in its earlier days.

My research was supported by the National Science Foundation, grant number

1002910. I thank the NSF for providing this opportunity for me to be part of a group of

scientists who contributed to my understanding of some of the fundamental blocks of

conceptual design thinking.

I should also thank all of my friends here in Arizona State University for their help,

support, and friendship throughout these years, especially Chris Maclellan, Andreea

Danielescu, Glen Hunt, Prashant Mohan, Shahrouz Sharifi, Benyamin Gholami, Nathan

Kalish, Garen Minassians, and all my colleagues at the Design Automation Lab.

Finally, I should thank my family for being there for me and supporting me every step

of the way throughout my life. My elderly parents never stopped encouraging me to cease

the opportunities I had even though it meant being apart from them for many years. There

is a person that has a special place in my heart, my wise and wonderful sister Sana.

Without her, I would have never become the man I am today. Thank you my dear.

Mahmoud Dinar

Tempe, Arizona

July 2015

 vi

TABLE OF CONTENTS

 Page

LIST OF TABLES .. x

LIST OF FIGURES ... xii

CHAPTER

1 INTRODUCTION 1

1.1 Motivation .. 1

1.2 Research Questions and Hypotheses ... 3

1.3 Research Tasks ... 5

1.4 Guide to the Dissertation ... 6

2 LITERATURE REVIEW 9

2.1 The Process of Problem Formulation in Design 11

2.1.1 Processes, Methods and Best Practices.............................. 11

2.1.2 Strategies ... 14

2.1.3 Differences between Novices and Experts 16

2.2 Representation frameworks and formalisms 16

2.2.1 Design Representations .. 17

2.2.2 Ontologies ... 25

2.2.3 Computer Formalisms .. 27

3 TOWARDS A STRUCTURED REPRESENTATION .. 31

3.1 Initial Modeling Structure .. 32

3.2 Modified Modeling Structure .. 40

3.3 Synthesizing the Models from the Exploratory Studies 47

 vii

CHAPTER Page

3.4 Specifications of the Modeling Framework 50

4 THE PROBLEM MAP ONTOLOGICAL FRAMEWORK 55

4.1 Initial Data Model .. 55

4.2 Improved Data Model .. 57

4.3 Model Validation ... 63

5 THE PROBLEM FORMULATOR TESTBED .. 70

5.1 System Architecture ... 70

5.2 Graphical User Interface .. 73

5.3 Test and User Studies... 75

5.4 Improvements and Added Features ... 78

6 EMPIRICAL STUDIES - PRELIMINARIES .. 86

6.1 Characteristics of Design Problems... 87

6.2 Characteristics of Participating Designers .. 91

6.3 Characteristics of Problem Formulation ... 94

6.3.1 State Characteristics ... 94

6.3.2 Examples of state Characteristics 97

6.3.3 Process Characteristics (Strategies) 100

6.3.4 Examples of Strategies ... 103

6.4 Characteristics of Creative Outcome ... 106

6.5 Design of Experiments ... 110

7 EXPERIMENT I: DIFFERENCES IN EXPERTS AND NOVICES 114

7.1 Collected Data .. 115

 viii

CHAPTER Page

7.2 Analysis Method .. 117

7.3 Results and Conclusions .. 119

7.3.1 Representing Differences within Experts 119

7.3.2 Representing Differences within Novices 122

7.3.3 Testing Differences between Experts and Novices 126

8 EXPERIMENT II: RELATING FORMULATION TO CREATIVITY 130

8.1 Collected Data .. 131

8.2 Analysis Method .. 132

8.3 Results and Conclusions .. 137

8.3.1 Correlation Analysis ... 137

8.3.2 Regression Analysis ... 141

8.3.3 Improving Model Fit with Backward Elimination 144

8.3.4 Classification with Decision Trees 146

8.3.5 Examining Progress in Creativity 154

9 EXPERIMENT III: PREDICTING CREATIVITY FROM FORMULATION .. 159

9.1 Collected Data .. 159

9.2 Analysis Method .. 160

9.3 Results and Conclusions .. 161

10 POTENTIAL APPLICATIONS .. 170

10.1 Applied Test of Problem Formulation Skill 170

10.1.1 Identification of Subskills .. 171

10.1.2 Associating P-maps Measures with Sub-skills 174

 ix

CHAPTER Page

10.1.3 Candidate Test Items .. 176

10.2 Objective Evaluation of Students’ Problem Formulation 177

10.3 A Vehicle for Reproducing Previous Studies 182

11 CONCLUDING REMARKS 184

11.1 Research Questions Revisited ... 184

11.2 Limitations ... 189

11.2.1 Limitations of the Exploratory Studies 189

11.2.2 Limitations of the Experimental Studies 192

11.3 Future Work ... 194

11.4 Original Contributions ... 196

11.5 Publications .. 198

REFERENCES... 201

APPENDIX

A DESIGNERS’ FORMULATION SHOWN IN SNAPSHOTS 210

B ASP ENCODINGS OF STRATEGIES ... 214

C EXCERTPS OF A CODED PROTOCOL (DP_1) .. 225

D REGRESSORS OF STATE COUNTS MODELS .. 233

E REGRESSORS AFTER BACKWARD ELIMINATION 236

F HISTOGRAMS OF PREDICTION RESIDUALS .. 240

x

LIST OF TABLES

Table Page

 3.1 Coded Segments from the First Protocol Analysis... 35

 3.2 Coded Segments from the First Protocol Analysis (from [81]) 44

 3.3 Specifications of a Framework for Problem Formulation .. 52

 3.4 Measures of Goodness for the Tentative Framework .. 54

 4.1. Comparison of Different Modeling Frameworks to P-Maps 64

 4.2 A Protocol Coded in F-B-S [35] Compared to P-Maps (from [2]) 66

 5.1 Results of a User Study on the First Problem formulator .. 77

 6.1 Summary of the Design of Experiments ... 87

 6.2 Distribution of Participants’ Divergent Thinking Test [6] Scores 93

 6.3 Examples of P-Maps State Characteristics ... 95

 6.4 An Example of State Counts for a P-Map .. 100

 6.5 List of formalized Problem Formulation Strategies ... 102

 6.6 A Sample Concept inventory for the Gopher Problem (DP_3) 110

 6.7 The Design of Experiments ... 113

 7.1 Change in Novices’ Time of Discovering Issues Through Practice 124

 7.2 Change in the % of Issues Novices Discover Through Practice 124

 7.3 Frequent Sub-Sequences with a Support Higher Than 50% 126

 7.4 Variations in Adopting Two Strategies Among Students and Experts 127

 7.5 Differences Between Experts and Novices in the Amount of Issues..................... 127

 7.6 Differences Between Experts and Novices in the Time of adding Issues 128

 8.1 Correlations Between DT Test and P-Maps for Experts (from [108]) 139

xi

Table Page

 8.2 Significant Formulation-Ideation Correlations for Students 140

 8.3 Regressors of P-Maps Strategies Counts Models for Two Problems 142

 8.4 Test of Model Fit with 𝑅2 ... 143

 8.5 Improvements in Model Fit after Backward Elimination 146

 8.6 Comparison of Decision Trees Built for Quantity ... 149

 8.7 Comparison of Decision Trees Built for Variety ... 151

 8.8 Comparison of Decision Trees Built for Novelty ... 152

 8.9 Comparison of Decision Trees Built for Quality ... 153

 8.10 Changes in Ideation Metrics for a Class as a Whole .. 155

 8.11 Changes in individuals’ Ideation Metrics for a Class ... 156

 9.1 Accuracy of Predicting Dp_5 Ideation with Dp_4 Regression Models 162

 9.2 Accuracy of Predicting Ideation after Backward Elimination 163

 9.3 Differences of actual and Predicted Ideation; Mean Row 1; P Value Row 2 168

 10.1 P-Maps Measures for PF Subskills ... 172

 10.2 Examples of Implicit And Fictitious Requirements inventory 175

 10.3 Examples of Key and Irrelevant Issues inventory .. 177

 10.4 A Rubric for Evaluating Students’ PF in a Design Task 178

 10.5 The Scoring Scheme for Evaluating Students’ PF in a Design Task................... 179

 10.6 Test of Changes in Individuals’ Problem Formulation Sub-Skills 181

xii

LIST OF FIGURES

Figure Page

2.1 A Simplistic Model of Design (Adapted from [14] ... 10

 2.2 A Model of Activities in Design in the F-B-S Framework (from [48]) 19

 2.3 Function-Behavior-State Diagram (from [55]) ... 21

 2.4 The Four-Box Diagram (from [59]) .. 22

 2.5 An Example of Evaluating A BID Analogue in The Four-Box (from [59]) 23

 2.6 A Concept Map of Formulating a Design Problem .. 29

 3.1 The Design Task of The First Exploratory Protocol Study 33

 3.2 The Problem Formulation Ontology from the First Exploratory Study 37

 3.3 A Snapshot of the Novices Halfway Through Their Session (from [77]) 39

 3.4 A Snapshot of the Novices at the End of Their Session (from [77]) 39

 3.5 A Snapshot of the Expert at the End of His Design Session (from [77]) 40

 3.6 Expert’s Formulation after 8 (A) And 13 (B) Minutes (from [81]) 45

 3.7 Novice’s Formulation after 11 (A) And 17 (B) Minutes (from [81]) 46

 3.8 A Collection of Entities from Brainstorming .. 48

 3.9 Merging Entities in Multiple Steps .. 50

 4.1 The First Structured P-Maps Framework .. 56

 4.2 The Data Model for the Updated P-Maps Ontology ... 58

 5.1 The System Architecture of the Problem Formulator (from [95]) 72

 5.2 Database Schema for the Problem Formulator (from [95]) 73

 5.3 The Main GUI of the Problem Formulator ... 75

xiii

 Figure Page

 5.4 The First GUI for Problem Formulator ... 76

 5.5 Problem Formulator Enhancements - Tree View ... 79

 5.6 Problem Formulator Enhancements – Collapsing Nodes 80

 5.7 Problem Formulator Enhancements – Network View 80

 5.8 Problem Formulator Enhancements – Objective Tree input 81

 5.9 Problem Formulator Enhancements – Objective Tree Output 82

 5.10 The Depth Exploration Approach ... 83

 5.11 The Breadth Exploration Approach .. 84

 5.12 Problem Formulator Enhancements – Retrospective Module 85

 6.1 Problem Statement for Water Sampler (DP_1)... 88

 6.2 Problem Statement for Can Crusher (DP_2) ... 89

 6.3. The Settings for the Goofy Gopher Problem (DP_3) 89

 6.4. The Settings for the Shot Buddy Problem (DP_4)... 90

 6.5. The Settings for the Autonomous Surveillance Problem (DP_5) 91

 6.6 A Historic Sample of the Divergent Thinking Test Scores (from [99]) 94

 6.7 A Snapshot of a P-Map for the State Counts Example 98

 6.8 Tree View for the State Counts Example .. 99

 6.9 Network View of the State Counts Example .. 99

 6.10 ASP Encoding of the Forward Order Strategy ... 106

 6.11 A Sketch of a Concept Solution for the Goofy Gopher Problem (DP_3) 110

 7.1 Time Series Plots of Entities for Two Experts (from [108]) 120

 7.2 Comparison of Iterations among Entities for Two Experts (from [108]) 121

xiv

 Figure Page

 7.3 Comparing Trends in Using Abstraction for Two Classes of Students 123

 7.4 Trends in Using Entity-Depth-Prevalence for Two Groups of Students 123

 7.5 An Example of a P-Maps Sequence .. 126

 8.1 Selected Decision Tree for Quantity ... 150

 8.2 Selected Decision Tree for Variety ... 151

 8.3 Selected Decision Tree for Novelty .. 153

 8.4 Selected Decision Tree for Quality ... 154

 9.1 Predicted Quantity in Backward Elimination for DP_4 Models 163

 9.2 Predicted Quantity in Backward Elimination for DP_5 Models 164

 9.3 Predicted Quality in Backward Elimination for DP_5 Models 164

 9.4 Prediction Residuals for Different DP_4 Models of Quantity 165

 9.5 Prediction Residuals for Different DP_4 Models of Quality.......................... 166

 9.6 Prediction Residuals for Different DP_5 Models of Variety.......................... 166

 10.1 Distribution of Students’ Grades of PF Skills for a Design Task 179

 10.2 Changes in Students’ Problem Formulation Characteristics 181

 11.1 Decreasing Variation in Variety (DP_4 To DP_5) 193

 11.2 Decreasing Mean and Variability of Average Novelty (DP_4 To DP_5) ... 194

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Problem formulation is an important step in the early stages of conceptual design

which is believed to influence creative outcome, though it is an understudied subject [1].

A survey of the literature on empirical studies of designer thinking suggests that

researchers have devoted considerable attention to ideation (generation of ideas or

concept solutions), but not the pre-ideation stage (problem formulation) in conceptual

design [2]. It should be noted that it is difficult to draw a clear line between problem

formulation and ideation, as studies have shown that problem and solution co-evolve [3,

4]. However, it is not only useful to make a distinction between the two steps, but the

effect of problem formulation on ideation should also be considered. As Harfield [1] put

it:

“50 people starting from the same problem statement, come up with not 50

solutions to the same problem but 50 solutions to 50 different problems.”

In studying the effect of problem formulation on ideation, two key factors which

differentiate designers are expertise and creativity. Many studies focus on the role of

expertise, often in the form of comparing novices and experts [2]. Expertise is an

apparent and explicit characteristic of a designer and can be directly queried, e.g. by

counting years of experience in a field. Creativity, on the other hand, can be known

indirectly. To determine whether a process is creative or not, it is appropriate to evaluate

the outcome of the process with respect to a defined measure of creative outcome [5, 6].

2

Therefore, understanding creative problem formulation means to find out how differences

among designers’ problem formulations are related to their creative ideation. To reiterate,

the following assumptions lead to the statement in the previous sentence:

a) Creativity plays a central role in successful engineering design.

b) Creativity can be evaluated by a measure of [ideation] outcome.

c) Ideation might be affected by problem formulation.

d) Problem formulation is an important yet understudied subject in design.

The main objective of this research becomes to find differences in designers’ problem

formulation. To that end, a model or structure is needed to see differences in

characteristics of how different designers formulate design problems. One inspiring

model which represents thinking about problems in a general way is Newell and Simon’s

Human Problem Solving [7]. However, the problems that they cover are well-defined

problems such as chess or algebra. Chandrasekaran [8] performed a task analysis for

design problem solving. He developed a list of subtasks and potential methods for each

subtask to come up with a task structure. He considered design as a knowledge-based

problem solving activity where designing is a search in a space of devices or components

to a space of design specifications. Design problems are different from non-design

problems, and the methods used and the results found for the latter cannot be generalized

to the former. Goel and Pirolli [9] describe some of those differences. Even though

Simon argues the possibility of finding structure in ill-structured problems [10], Dorst

cautions about extending problem solving behavior of well-defined problems to ill-

structured problems [11]. Design problems have other characteristics which must be

considered in choosing an appropriate model for representing differences in designers’

3

problem formulation. In addition to being ill-structured (with conflicting goals, evident or

explicit dependencies), design problems are ill-defined (with vague or incomplete goals),

and dynamic (with changing requirements). Therefore, a representation of design

problems in early stages of conceptual design, when the problem is formulated, should

accommodate incomplete, conflicting, and changing problem definitions. At this stage,

designers often reframe the problem space [12] and construct multiple representations of

the problem [13]. Furthermore, a representation of problem definition should include

elements of the solution space, since the problem and solution spaces co-evolve during

design [3, 4].

Studies of problem formulation in design are scarce. More specifically, studies whose

main objective is to understand and characterize problem formulation are rare and what

are found in the literature are observations from studies with other objectives, often

modeling the conceptual design process. These reasons motivate a dedicated study of

understanding problem formulation with a higher level of detail, and an appropriate

model which helps in showing the differences among designers in how they formulate

design problems. Let us turn to the research questions which underlie this thesis.

1.2 Research questions and hypotheses

The main question to be investigated is that problem formulation plays a key role in

creative design, and this role is not well understood, since dedicated studies to problem

formulation in design are scarce and lack detail. There is a need for a structure or model

to represent how designers formulate problems. A modeling framework based on a

4

predefined ontology is needed to represent problem formulation and study its relation to

creative outcome. The main research questions then become as follows:

1. What model can be used to capture a designer’s understanding of a design

problem, and show individual differences in problem formulation?

2. How do more creative and/or experienced designers formulate design problems

differently from less creative and/or novice designers? How can the differences

be captured within the framework?

3. Can creative outcome be predicted from the way designers formulate

problems?

The answer to the first question is required in order to reach the answer to the second

research question which is to compare designers’ formulations. The answer to the second

research question is the models of the relations between problem formulation and

ideation which provide the answer to the third research question.

The central hypothesis of this study is that problem formulation significantly affects

creativity in design outcome, and creative and experienced designers formulate problems

differently from non-creative and inexperienced designers do. A corollary to this

hypothesis is that problem formulation characteristics which lead to more creative design

can be taught to novices and the creative outcome can be predicted from problem

formulation behavior. In addition, a few hypotheses can be formed based on observations

from exploratory studies. Therefore, the following hypotheses will be tested:

H1_a) Novice designers follow a systematic order in expressing problem

formulation while experts have a more opportunistic behavior.

5

H1_b) Experts find key issues early on during problem formulation while novices

find more issues and later in the formulation process.

H2_a) Depth-first exploration of problem formulation entities leads to more

creativity.

H2_b) Creativity can be improved in novice designers by teaching them

characteristics of good problem formulation.

H3) Creativity in design outcome can be predicted with an acceptable degree of

confidence from problem formulation behavior.

Hypotheses H1_a and H1_b are tested in an experiment which seeks the differences

between experts and novices in problem formulation. Hypotheses H2_a and H2_b belong

to an experiment which is about understanding the relation between problem formulation

and creative outcome. Testing hypothesis H3 can be carried out with an experiment that

examines if a model of the relation between problem formulation and creativity is

generalizable.

1.3 Research tasks

To answer the research questions, three major tasks should be carried out:

1. Developing a modeling framework suitable for studying problem formulation.

2. Designing the experiments for the empirical study and collecting data.

3. Analyzing the data to test the hypotheses and propose new findings.

Each of these tasks includes a few steps. To achieve the first task an exploratory study

can be conducted to observe how different designers formulate problems in a setting

close to working on a real world design problem. The literature can also be reviewed on

6

the problem formulation process. Another step for developing the model is to choose an

appropriate representation for modelling the process of problem formulation.

The second task involves recruiting participants with an appropriate representation of

differences with regard to levels of experience and creativity, and choosing appropriate

design problems which lead to variability in responses. Preparing the participants and

controlling factors in the environment such as allowed response time are also parts of the

second task.

The third task can be broken down into extracting information (intrinsic measures)

from the data models, choosing an appropriate measure of creativity (extrinsic), and

searching for patterns that reveal differences between more creative and less creative

designers. Besides testing the stated hypotheses, new findings can be formed into new

proposed hypotheses, and recommendations for problem formulation practices which

lead designers to become more creative.

1.4 Guide to the dissertation

Throughout this research a broad range of the literature was surveyed in research in

designer thinking. The fundamental themes were to learn about differences in the way

designers approached design problems in early conceptual design, as well as pertinent

representations and formalisms which facilitated modelling designer thinking. Chapter 2

covers the surveyed. This was a part of the first research task. Chapter 3 describes the

steps taken towards developing a framework for representing problem formulation in

design. It includes two exploratory studies for finding an appropriate structure to show

differences in problem formulation data, and the desired specifications of a tentative

7

framework. Chapter 4 introduces the Problem Map (P-maps) ontological framework and

the gaps in existing frameworks which necessitated the introduction of P-maps. The

entities, relations and attributes of the P-maps modeling framework are explained.

Pertinent modeling frameworks are compared to P-maps with respect to the stated

specifications for a framework modeling problem formulation. Chapter 5 describes the

Problem Formulation testbed which is built based on P-maps ontology to expedites data

collection and analysis. Chapter 6 lays out the preliminaries of the conducted empirical

study. It describes how the design problems and participants were selected for the study.

Two types pf problem formulation characteristics are defined. P-maps state measures are

counts of entities or links at a certain time. Problem formulation strategies are defined as

changes in an interval with certain conditions. Ideation metrics are explained as

characteristics of creative outcome. The chapter ends with a summary of the design of

experiments.

The following three chapters explain each of the three conducted experiments in

detail. This includes the objective of each experiment in relation to the research questions

and stated hypotheses, the collected data, the analysis methods used, and results and

conclusions. Chapter 7 explains the first experiment which is to show differences

between and within experts and novices. Chapter 8 describes the models of ideation with

respect to problem formulation. 8.3.4 shows how the models found in the second

experiment are used to predict creative outcome from problem formulation for other

problems.

The level of detail which P-maps provide in characterizing problem formulation raises

a few opportunities. Chapter 10 describes three potential application of P-maps. They are

8

creating a test of design problem formulation skills, objective assessment of students’

conceptual design skills throughout an engineering design course, and examining

findings of previous researchers.

 Chapter 11 concludes this dissertation by revisiting the research questions and

hypotheses to examine how the findings answered them. Limitations of the study are

discussed. Potentials for future research are also discussed including testing new

hypotheses, creating a coaching system that aids novices in improving their problem

formulation skills, and suggestions for overcoming some of the limitations faced during

this research. The dissertation concludes with a list of original contributions and

publications based on this research.

9

CHAPTER 2

LITERATURE REVIEW

In this chapter, relevant literature of conceptual design is reviewed. The main

objective of this research is to understand the relation between problem formulation and

creativity. Towards that goal, a model which is able to explain the relation needs to be

created. A simplistic model of design is that a designer applies design knowledge

(acquired internally or externally) to a design problem, following a process to come up

with design solutions, see Figure 2.1. Different models of the design process add details

to this simple version. Different studies focus on each of the elements in the simplistic

model. Knowledge models and cognitive models focus on the designer. Expertise models

focus on domain knowledge. Design theories, decision theories, and optimization models

focus on the process. Artifact models, behavior models, and architecture models focus on

design solutions. Affordances and emotional engineering attempt at modeling the user.

Models can have different levels of abstraction. Design representations and how they

transform are used in building models of the design process and solutions.

This view of design models can shape a basis for reviewing the literature on problem

formulation as a part of the conceptual design process (which in turn is a step or sub-

process of design). Three points can be taken from the simplistic model. One is that

modeling design problems has received less attention in the literature. The other is that

design representations are used in modeling both the design process and the design

outcome. The third point is that the design process is a link between design problems and

solutions; in other words models of the design process (formulation) and outcome may be

worked backward to a model of the problem. I shall also add that the widely accepted

10

notion of the co-evolutions of problem and solution spaces [3, 4] suggest that creating a

model of design problems cannot be done without considering elements of design

solutions.

Design

Representation

Design

Representation

User

Desigenr

Design

process

Design

problem

Domain

knowledge

Design

solution

Expertise

models

Knowledge

models

Cognitive

models

Affordances
Emotional

engineering

Design

theories

Decision

theories

Optimization

models

Artifact

models

Behavior

models

Architecture

models

Figure 2.1 A simplistic model of design (adapted from [14])

For these reasons I will review two major themes in the literature. One is about the

formulation process, and the other is about representation models. More specifically, one

focuses on the literature around how [differently] designers think during conceptual

design, i.e., how they approach a design problem, frame and reframe the problem, and

attempt to solve the problem by generating ideas. The other major theme in the literature

11

review will be on relevant representation models of designer thinking which underlies the

methodology pertinent to what is proposed in this thesis: the application of an ontological

framework for an empirical study of designers’ problem formulation. The literature is

searched for similar frameworks and ontologies that have been implemented in design

studies, relevant representations in design, as well as inspiring formalisms in other

research areas such as knowledge representation in education.

2.1 The process of problem formulation in design

Little research has been conducted to understand how problem formulation affects

creative outcome in engineering design. Review of the design literature reveals a few

studies that have focused on representing the problem and the solution spaces, as well as

some on the process of problem formulation. This section starts with a review of problem

formulation in design to highlight the types of data fragments that are present in

designers’ problem formulation, and the differences that should be looked for among

designers. Creative and experienced designers approach design problems differently and

adopt different strategies from non-creative and novice designers. Therefore, the

literature in this section is centered on three close threads: a) processes, methods and best

practices; b) strategies; and c) differences between novices and experts.

2.1.1 Processes, methods and best practices

Two of the earliest studies of mechanical designers are Ullman et al. [33] and Waldron

and Waldron [16]. Both studies were interested in developing a general model of the

mechanical design process, and quantifiable measures for its assessment. Ullman et al.

asked individuals to work on two simple problems while Waldron and Waldron asked

12

design teams to work on a vehicle with complex mechanisms. Ullman et al. [33]

defined the Task-Episode-Accumulation descriptive model. They broke down the

transcript into units that could be classified as operations which alter the design state.

This state-operator modeling will be discussed more extensively in the next section on

representations and formalisms. Waldron and Waldron [16] discovered extensive use of

biological analogies, experts’ bias towards first concepts, and experts’ opportunistic

approach of quickly identifying and devoting initial focus towards the most critical parts

of a design.

Protocol studies focusing on the conceptual design process has shown a few

characteristics of problem formulation. Designers prefer to treat problems as ill-defined

[17, 18]. Atman et al [15] state that senior undergrad design students produce higher

quality designs by gathering more information early, considering more alternative

solutions, and moving more frequently between design steps. Eisentraut [20], however,

maintains that such behavior relates to different styles of problem solving, which are

independent of the situation of the design task at hand.

Unlike well-defined problems, design problems continue to evolve throughout the

problem solving process. It is suggested that recognition of partial structures in the

problem space, shape the structure of the solution space [3, 4]. Cross and Cross [18]

claim that creative designers, holding experience of previous solutions at the back of their

minds, use first principles as stimuli to build bridges between problem and solution space

through key concepts. Harfield [1] claims that designers need ’proto-solutions’ to

compare the goal and the problem state, and that naive designers make fixed assumptions

while creative designers question requirements.

13

A major line of investigation is related to blocks and resolution of impasses in design

creativity [10, 16–18, 26]. Dorst et al. [4] has studied how co-evolution of the problem

and the solution affects creativity. This aspect has also been corroborated by Kim and

Maher [26] and Lemons et al. [27]. Gero et al. [28] has studied the effect of

“structuredness” of three ideation methods on design cognition to find that the more

structured a method is, the more designers tend to focus on design goals and

requirements. Similarly, Valkenburg and Dorst [12] suggest that a more successful design

team frames a design problem more frequently than an unsuccessful one. Christiaans and

Dorst [29] have shown that designers who spend more time on problem definition are

more likely to come up with better designs. They also have found that more successful

designers concentrate on progressing to solution generation and building up an image of

the problem. Fricke [30] suggests that successful designers ask sets of questions related to

problem structure, and clarify requirements, functions, and technical characteristics

representing the problem structure.

In addition to the observations that describe the design process, there are some

prescriptive models of engineering design that offer different methods and checklists for

every step of the design process. The Association of German Engineers (VDI)

systematized engineering design through a series of guidelines, of which VDI 2220 and

VDI 2221 relate to the earlier stages of design. More notably, the systematic approach of

Pahl and Beitz [31] introduced a checklist for developing requirements with a list of

examples for geometry, material, ergonomics, assembly, etc., spanning the product life-

cycle. Requirements are not only specified individually, but also lead to other

14

requirements, often in a parent-child relation. Developing an objective tree is a common

method of eliciting new requirements and determining how they should be synthesized.

Another well-established aspect of problem formulation is the development of

function decompositions. Similar to objective trees, function trees are developed to find

out what different parts of the design should do to achieve its main purpose. Functions

are decomposed into sub-functions until referring to a specific solution becomes

inevitable, and no more abstract functions can be defined. Otto and Wood recommend

functional decomposition as a useful method in product design [32]. They have created a

collection of function decompositions by reverse engineering some consumer products.

This raises the question that if the method is only appropriate for redesigns and not

coming up with novel designs. Creating alternatives (disjunctive decompositions) may

resolve this shortcoming.

There are other methods which have been used in early stages of design for problem

definition. The QFD method [33] relates and quantifies customer needs in relation to

design parameters. However, prior knowledge about those parameters is central to the

application of these methods. Such knowledge is often absent in the fuzzy front end of

formulating design problems which involve new and novel products. Therefore, a well-

established method such as QFD which deals with evolutionary development processes

of mature products is not applicable.

2.1.2 Strategies

Besides studies of processes in a general way, more specific strategies that are adopted

in problem formulation should also be considered. Some of these studies define strategies

15

in a broad way. Kruger and Cross [34] categorize designers into problem-driven and

solution-driven. Gero and Mc Neill [35] classify the different strategies that designers

adopt into micro strategies (analysis, proposition, and making explicit references), and

macro strategies (top-down, bottom-up, decomposition, opportunistic, and backtracking).

As stated in the previous chapter, an influencing strategic behavior in conceptual design

is abstraction. Ward, Patterson, and Sifonis [21] have conducted experiments to

investigate the role of abstraction in creative ideation. By actively instructing the

participants to formulate the given task in either very specific or more abstract ways, they

have found that the latter instructions led to more novel ideas. Ball, Ormerod, and Morley

[16] have found that experts lean on experiential abstract knowledge while novices rely

on case-driven analogies, mainly driven by surface-level cues.

Problem decomposition is another designerly behavior that can affect the outcome of

conceptual design. Liikanen and Perttula [14] have analyzed the prevalence of explicit

and implicit problem decomposition modes through a protocol study involving 16 senior

students of mechanical engineering. In this context, explicit decomposition means

deliberate creation of a decomposition, e.g., creating a function structure as some design

textbooks advocate. They have found that the subjects implicitly employ top–down

problem decomposition while explicit decomposition is rarely used and often does not

foster creativity. In contrast, Ho [14] have found that expert designers are more likely to

utilize explicit problem decomposition, leading to more creative ideas. One can infer a

depth-first exploration from this observation, though Ho’s study involves one sophomore

industrial design student as the novice and one graduate with half a year of professional

experience as the expert. Contrarily, Ball et al. [12] have conducted a protocol study

16

where they have observed experts use more breadth-first search while novices use depth-

first search in ideation. However, they also report that experts utilize a strategic

knowledge about how to conduct the design process effectively when they face impasses,

by switching from a predominantly breadth-first mode of problem solving to an

opportunistic depth-first mode. In another protocol study with three subjects Cai, Do,

and Zimring [13] have found no relation between creative outcome and depth vs. breadth

exploration of the design space.

2.1.3 Differences between novices and experts

In addition to general observations about designers, protocol analysis has led to

observations about major differences between novice and expert designers and/or more

successful and less successful designers. Kavakli et al. [42] have found that experts’

cognitive actions are organized while novices have many concurrent actions that a re

hard to categorize. Ahmed and Christensen state that experts tend to use analogies

for predicting component behaviors and problem identification whereas novices tend

to transfer geometric properties with evaluating the appropriateness of analogies

[43]. Comparing freshman and senior engineering design students, Atman et al. [44]

have found that seniors produce higher quality solutions, spend more time solving the

problem, consider more alternative solutions and make more transitions between design

steps than the freshmen.

2.2 Representation frameworks and formalisms

This section of the literature review focuses on pertinent frameworks and

representations in design and other inspiring fields of research such as knowledge

17

representation in education. Frameworks which provide a computational means for

contrasting characteristics of different designers are of interest, but ones that are

appropriate in conceptual design. Therefore, conventional CAD models which represent

models of detailed embodiments are not in the scope of this review. Three threads are

looked into: a) design representations, b) ontologies, and c) computer formalisms.

2.2.1 Design representations

A few researchers have developed models for representing the structure of design

problems. Maher et al. [3] have linked problem definition states to solutions in an abstract

way. Goldschmidt [45] has attempted capturing the indeterministic nature of design by

providing multiple representations of figural-conceptual modes—with their equivalent

external representations, i.e., sketches and verbalizations. In her node-link representation,

she equates states and operators in problem solving with nodes, and their sequences with

links. Later Goldschmidt and Tatsa [46], use linkographs to show that intensive

interlinking breeds more creative designs.

Cai, Do, and Zimring [41] have developed an extension of linkography in addition to a

distance graph to investigate design patterns among designers of different expertise levels

and exposure to different stimuli. They modify the definition of links based on lateral

transformation and vertical transformation to represent both the breadth and the depth of

the problem space explored in design. In lateral transformation the movement is from one

idea to an alternative. In a vertical transformation the move is from one idea to a more

detailed or elaborated version of the same idea. They report that the more creative the

18

design is, the higher number of alternatives and the more chunks and webs are displayed

in their representation, the more extended the linkograph.

In a different application of linkography in finding patterns in conceptual design, Kan

and Gero [47] conduct protocol studies to acquire information from linkographs. They

define two methods to abstract information from the linkographs: one based on

clustering, and one based on Shannon's entropy measure. They state that cluster analysis

is able to group the linkographs into meaningful clusters, while entropy measures the

opportunities for idea development.

In characterizing the differences between design and non-design problems, Goel and

Pirolli [9] have come up with a Task-Operator-Phase model, inspired by information-

processing theory of human problem solving [7]. Similarly, the Task-Episode-

Accumulation (TEA) model of Ullman et al. [33] has been one of the pioneers not

only in adopting protocol analysis for studying conceptual design, but also in

describing the design process through a state-operator model. The TEA model

defines the design process as applying a sequence of operators (such as select, simulate,

compare, reject, refine) during episodes (such as plan, specify, verify) to achieve a goal

in a design task (such as conceptual or detail design).

Some studies have proposed and utilized specific modeling frameworks similarly to

the general approach taken to this thesis, though the motivation for a new framework has

been highlighted in Chapter 1. An established framework in representing design thinking

is Gero’s Function-Behavior-Structure [48]. Gero [48] has defined activities in the design

process in terms of transformations from one of the three domains of Function, Behavior,

or Structure to another, considering a difference between expected and actual behavior,

19

see Figure 2.2. In this model, the purpose of designing is to transform function (F) into a

design description (D), though this cannot be done directly without other transformations.

For example, inferring expected behaviors from functions is considered formulation

(process 1). Three processes are described as reformulation of structure (process 6),

expected behavior (process 7), and function (process 8). All three reformulations are

transformations from structure which represents artifacts and their relationships.

Figure 2.2 A model of activities in design in the F-B-S framework (from [48])

Gero and Kannengieser [49] have taken into account the dynamic character of design

by considering the notion of situatedness. F-B-S has been used in modeling the design

process [48], as a coding schema in protocol analysis [35, 50], and for design automation

[51]. Even though F-B-S has been used as a predefined coding schema in protocol

analysis [50], it has not been used as a computational framework for searching for

strategies because, as Gero and Kannengieser contend [52], F-B-S is a high-level model.

There are similar models to F-B-S, which have been developed independently and

with different purposes. Prior to Gero, Chandrasekaran had proposed Functional

Representation (FR), initially as a knowledge representation for an expert system which

20

generated relationships (in addition to compiling stored relations) between functions and

structures (Sembugamoorthy and Chandrasekaran [53]). FR was a language which

described the function of an artifact in terms of causal processes in order to simulate,

diagnose or explain how the artifact works. A retrospective account of FR and its

applications can be found in [54].

Umeda et al. [55] proposed the Function behavior-state diagram; see Figure 2.3. Their

main goal was to clarify the definitions of function and behavior, and to incorporate a

hierarchical structure for functions. They substitute structure with state (as a state of a

structure in an instant) and argue that the distinction between the two depends on time

which is irrelevant to an instantaneous representation. They define function as an image

of a behavior abstracted by humans. Therefore, functions and their relations to behaviors

are considered subjective elements of a design object while behaviors and states are

objective or physical. The function hierarchy is separate from the representation of

behaviors and states. Only functions can form hierarchies and each function can be

related to a Behavior-State description. Umeda et al. have used their model in developing

the FBS modeler computer tool to support functional design [56] and a method for

extending the life-cycle of products by finding possible changes to functions that can be

adapted to with minimal structural changes [57].

21

Figure 2.3 Function-behavior-state diagram (from [55])

Goel, Rugaber, and Vattam [58] have developed the Structure-Behavior- Function (S-

B-F) modeling language for a teleological description of complex systems. In this

language, structure, behavior, and function are represented in terms of components and

their connections, transitions among a sequence of states, and pre- and post-conditions

respectively. The syntax is similar to notations that are used to represent production rules.

The model is a top-down description scheme, in which each fragment of the model is

defined by a lower level fragment. At the top, there is an instance of S-B-F, while at the

bottom there are building block fragments such as strings and integers. For example, an

element (a component in a structure model) is defined by an integer Id, a string name, a

string description, an optional set (can have zero number of fragments) of property, and

22

an integer subelement Id. The different variants of the F-B-S family seem to have a

common objective which is modeling existing designs. In a broad sense, they are mainly

product models.

More recently, Helms and Goel [59] have proposed the Four-Box method with the

objective of helping students to formulate problems and evaluate analogies inspired by

biological analogues. Using grounded theory methodology, they have created a structured

representation for biologically-inspired design (BID) which has served as a coding

schema for mapping problem specifications to BID analogues; Figure 2.4 shows the

Four-box diagram.

Operational

Environment

Function

Specifications Performance

Criteria

Figure 2.4 The Four-Box diagram (from [59])

They propose four entities to describe a problem in a way that can be searched for and

compared to a database of existing biological analogous defined along the four entities

with varying degrees of similarity (defined as ‘same’, ‘similar’, and ‘different’). They are

Function, Operational environment, Constraints/specifications, and Performance

criteria. For example, in designing a light post, a Saguaro Cactus as the chosen analogue

has the following characteristics in common with the light post: ‘outdoors’ as the ‘same’

operational environment, ‘collect light’ as a ‘similar’ function to ‘project light’ in a light

post, ‘bright’ as a specification of a light post ‘different’ from the analogue, and

23

‘withstand 70 mph’ as a ‘similar’ performance criteria to the analogue, see Figure 2.5 for

a detailed comparison.

Figure 2.5 An example of evaluating a BID analogue in the Four-Box (from [59])

Though the proposed structure is useful in describing a problem in such a way that can

facilitate a search for BID analogues, it arguably has overlaps in the definition of

specifications and performance criteria. In addition, it still is based on human judgment

for determining the relevance of an attribute in the description of a problem to the

predefined analogues. A compounding problem is that the database of existing biological

24

analogues has been also developed based on human judgment. It should be noted that the

empirical study conducted by Helms and Goel [59] has shown around 80% accuracy in

generating a problem definition (compared to normative problem definitions created by

the authors for 15 design problems) among about 50 students of a BID course with

diverse backgrounds. However, it is not clear how the norms are generated to establish

the accuracy measure. The evaluation method is also based on a protocol analysis where

the students’ code their concepts post-generation to one of the four entity types which is

compared to a judge’s coding. There is not a clear connection between the level of

agreement between the two coders and the definition of accuracy:

“The concepts are also assigned a code based on the section in which it was

placed by the student. The rater-assigned code concept is compared to the

student-assigned code, and is evaluated in as either “agrees” or “disagrees.” The

degree to which, for any category the two codes agree may be expressed as a

percentage of total concepts in agreement over the total concepts encoded.

Accuracy is compared between-groups for differences among: gender, major,

year (2011 or 2012). Accuracy differences are also compared among the four

conceptual types.”

Besides developing modeling frameworks that can be used commonly in studying

different aspects of design cognition, others have tried to employ standard modeling

languages. Wölkl and Shea [60] have used SysML in modeling conceptual design. They

follow the prescribed systematic engineering approach by Pahl and Beitz [31] and the

German standard VDI 2221. They propose creating new specification with Requirement

diagram, describing functions with Use Case diagram and Activity diagram, and

25

allocating working principles with Block diagram. Using such a standard language makes

it easier to integrate the often non-geometrical data of conceptual design with later stages

of product development. However, Wölkl and Shea [60] concede that the representation

is not compact from usability viewpoint, and multiple (and separate) diagrams are

required to represent different aspects of the designs. This makes it less likely to see the

problem in context, or boost creative ideas which often arise from seeing the inter-

connections of concepts [6].

2.2.2 Ontologies

A different approach towards implementing design representations is to go beyond

how the structures of the representations look and focus on what the meanings are within

a structure. That is to understand the role and the application of ontologies in design.

There is not a clear definition of what on ontology is in a design research, since

historically it has been a concept in philosophy. Ontologies are pertinent to problem

definition because they intimately involve language (textual/verbal mode/representation).

Conceptual design does not merely involve form which is supposed to be more

effectively expressed by sketches [61]. In early stages of problem formulation, prior to

expressing any forms or embodiments, words can have a higher efficiency of describing

abstract design thoughts [62, 63].

Another issue that involves ontologies is search through words. Regardless of growing

computing power, search results can become overwhelming for the user to filter through

when employing knowledge bases without a proper structure that maps onto the domain

at hand. Most knowledge bases such as WordNet [64] have ontologies more suited

26

towards common sense knowledge, not design or engineering. There is a need for an

ontology specific to design but also not limited to technical terms which can be found in

some design repositories such as Bohm et al. [65], since the fuzzy front end of the early

stages of conceptual design, especially for novel designs, is often described in a less

formal language.

A conventional definition of an ontology is a taxonomy plus inter-category relations,

i.e., a taxonomic structure that represents knowledge with defined relation types among

the categories of the taxonomy. Uschold [66] defines an ontology in the following:

“An ONTOLOGY may take a variety of forms, but necessarily it will include a

vocabulary of terms, and some specification of their meaning. This includes

definitions and an indication of how concepts are inter-related which

collectively impose a structure on the DOMAIN and constrain the possible

interpretations of terms.”

In engineering design research, different ontologies have been proposed with either

generic or specific scopes of applications. Sim and Duffy [67] have defined a generic

ontology of engineering design activities by creating a structure for a set of steps in a

general design process, and for design generation, evaluation, and management activities.

Each step includes four elements which may be related in a specific way: the goal of the

design activity (Gd), the input knowledge (Ik), the output knowledge (Ok), and the

knowledge change. For example, for the design activity of abstracting, the four

mentioned are as the following respectively: to simplify the complexity of the design

object (Gd); types of abstraction (Ik); appropriate abstractions of design object, e.g.,

sketches (Ok); and knowledge abstractions that depict useful relationships of the evolving

27

design concept. The objective of such ontology is creating a coherent interpretation of

definitions of the activities in order to have more effective design support.

A less generic (in terms of structure rather than content) ontology is the application of

the SAPPhIRE model by Srinivasan and Chakrabarti [68] which has been developed to

explain the knowledge of biological and artificial systems in design problems with a

generic causal behavioral model. The entities in SAPPhIRE are State (S), Action (A),

Part (P), physical Phenomena (Ph), Input (I), oRgan (R), and Effect (E). Based on this

representation, Srinivasan et al. [69] have developed an ontology by building clusters of

nouns, verbs, adjectives, adverbs and mathematical equations from earlier work with the

SAPPhIRE model. They have also compared their ontology to others.

Another specific ontology is the reconciled function basis by Hirtz et al. [70] where

different researchers from academia and NIST contributed to a vocabulary of abstract

sub-functions, in order to make functional decomposition more methodical. The objective

was to form a set of functions that would ideally lead to a minimal set of terms that did

not overlap, and yet provided complete coverage of designed products. Different function

bases were combined to reach a unified vocabulary for a standardized development of

function trees.

2.2.3 Computer formalisms

So far, the review of the literature on representation models has focused on

engineering design. There are inspiring formalisms in software engineering and computer

science that should be mentioned for two reasons: such formalisms have been used for

representing knowledge, and thus [design] thinking (representation aspect); they will be

28

pertinent to automating analyses of design thinking data (computation aspect). UML

models (which are the basis for SysML) are good at representing a specific class of

problems, often related to a specific class of artifacts or systems. Since sub-classes inherit

the attributes and the functions of their super-classes, UML models excel at compactly

defining classes of objects because they avoid redundancies. Database models such as

Entity Relationship Diagrams (ERD) are one means to organize data and are more

concerned about compact relations in order to respond quickly to queries. In this

research, expressiveness is a more important objective than compactness, while ERD’s

are concerned with the latter.

Concept map [71] is another representations that has been used in education as means

of providing students with an easy and intuitive way to document and explain taught

lessons. This provides concept maps with insight into the systems they design [72].

Novak and Cañas [73] have proposed the use of concept maps to identify changes in

students’ understanding over time. Additionally, concept maps have been used to

understand the differences between the knowledge of experts and novices. The main

advantage is the ability to accommodate fine levels of granularity. Even though concept

maps have nodes and labeled links, and can represent hierarchies, they are still relatively

unstructured. There is no standard way or ontology and one can label data fragments in

any way. This becomes a major shortcoming, especially when one wants to compare

different instances of the problem formulation over time or to compare models of

different designers. Figure 2.6 exemplifies a concept map of a problem formulation

process of designing a water sampling device.

29

Concept maps have been used with some modifications in research in design. One

example is Oxman’s Think maps [72]. Differently from what will be shown in the next

chapter, the medium in Think maps is a non-hierarchical concept map, and the objective

for the ontology is teaching domain knowledge (comparison of a student's map to that of

a teacher or norm). The similarities to the P-maps ontology are using a computational

framework (method), and educating students by comparing them to a normative

knowledge structure (application).

Figure 2.6 A concept map of formulating a design problem

Semantic networks [74] are a type of graphical network that relate conceptual nodes

with binary links. They have been used to represent the meaning of sentences in natural

language processing. Nodes are used for representing concepts and links for the types of

relationships among them. This is a graphical representation of some static situation, e.g.,

a person's mental state. Concepts are usually organized in a taxonomic hierarchy and

30

often rely on the use of inheritance [75]. Semantic networks struggle to represent

disjunction [75], which is important in representing design problem formulation.

There have also been efforts in combining the different representations and search

methods that were described above. An example is Hao et al. [76] where they extend

previous research on concept map assessment, to develop an evaluation metric in order to

predict individuals' problem-solving performance. They propose their EntropyAvg

novelty metric based on Shannon’s entropy in information theory. They have conducted a

controlled experiment where they find a strong correlation between individuals' problem-

solving performance and their EntropyAvg measure.

To summarize, the literature review covered previous studies in understanding

problem formulation, in addition to some of the representations that have been developed

for studying design thinking and modeling design processes. A few formalisms that

might be used in representing or building a computational model of design thinking were

also described. Studies of problem formulation have been fragmented, and representation

models that have been proposed in studying design cognition, though have led to

interesting findings, do not have the necessary level of detail for studying problem

formulation. Therefore, there was a need for a new modeling framework that was fine-

grained, and incorporated formalisms that facilitated showing differences among

designers’ problem formulation. The next chapter explains the process of getting to that

new modeling framework.

31

CHAPTER 3

TOWARDS A STRUCTURED REPRESENTATION

The main motivation behind this research is to discover the influence of design

problem formulation on creative outcome. To study problem formulation in design, there

is a need for a structure to represent how designers formulate problems. Review of the

literature showed pertinent representations, ontologies, and modeling frameworks but it

also discussed the need for a new framework. This chapter describes how this framework

was created.

Development of the framework required three steps. First, two exploratory studies

using protocol analysis were conducted to find problem formulation entities and an

appropriate way to represent them. The second step involved expanding the search in the

literature to create an exhaustive list of relevant problem formulation entities. In the last

step, the entities were synthesized into a smaller set. Similar entities were combined, and

the definition of the finally selected entities was broadened to cover similar entities as

much as possible. I should add that exploration, refinement and synthesis were not

entirely separate. This process was carried out spirally and on a micro-level throughout

the development of the framework.

The reason why similar entities were combined was that the target ontology should be

easy to learn and remember for prospective users of the ontological framework.

Therefore, compactness is a desired feature for the ontological framework. Other

specifications of an appropriate framework arose during the exploratory studies. They

will be discussed in the last section of this chapter.

32

3.1 Initial modeling structure

The first exploratory study was carried out to identify problem definition terminology,

and also as a first attempt to come up with a structure for representing problem

formulation data. To meet this objective protocols collected from two groups of

undergraduate designers and an expert were analyzed [77]. This section describes this

exploratory study including the design task, the data collection settings, the protocol

coding process, and the modeling structure that emerged.

The task was designing a remotely-controlled model plane for a multi-objective

competition where speed of the plane and its load carrying capacity would be tested with

different scoring weights for each mission. The route followed an oval course with a 360

degree loop as seen in Figure 3.1. The problem was taken from the AIAA
1

Design/Build/Fly annual competition. The problem statement had restrictions on

materials, motors, and propellers that could be used. There were also other constraints:

the plane had to be hand launched, battery powered, and self-landing.

Protocols were collected from an expert designer with more than 16 years of

experience in building about 100 model planes, and two groups of 4 senior undergrad

students. Design sessions were recorded by two video cameras. The participants were

told that they had an hour to work on the problem, though there was no pressure on

keeping the duration exact. One group sat about forty minutes while the other group

stayed about an hour and a half. They were asked to verbalize their thoughts without

considering whether what they were saying would make sense to someone else. They

1
 The American Institute of Aeronautics and Astronautics

33

were allowed to write and/or sketch as desired. Throughout the session an experimenter

was present in the room but out of the participant’s sight. The experimenter’s role was to

ensure that the session was recorded and to prompt the participant if they fell silent.

Audio and video of the session was collected and later transcribed.

Figure 3.1 The design task of the first exploratory protocol study

The coding process was as follows:

1- The protocols were divided into short segments in such a way that each segment

would be an answer to one of three high level questions:

a. What does the designer discover?

b. What does the designer exploit?

c. How does the designer treat or approach the problem?

2- Each segment would then be given a more specific label (an entity or class) such

as rule, or insight.

34

3- If a segment could be labeled with one of the existing labels it would be given that

label, otherwise a new label would be created.

This coding process might seem to be arbitrary but it is common in protocol analysis

to develop the coding schema as one goes through the data. Using predefined coding

schemas are the exception, not the norm. One example of using a predefined coding

schema is done by Pourmohamadi [50] using Gero’s F-B-S. There are no standard ways

of coding protocols [2].

The results of the initial coding are exemplified in Table 3.1. As I explained in the

introduction of this chapter, exploring the literature and refining the ontology was an

ongoing process in developing the framework. Some of the initial entities shown in

Table 3.1 were dropped, new entities were added, and a new structure was adopted to

represent the relations among the entities. There were two reasons behind this

restructuring: the focus should be on formulation, not idea generation; a representation

that showed a state at a moment rather than a process was preferred (a process would be

represented by a set of states or snapshots). Thus an entity such as decision was removed.

Decisions could be shown by comparing two snapshots of the process at different times.

Entities which seemed redundant or vague were also eliminated; a perception would be

implied in other entities.

35

Table 3.1 Coded segments from the first protocol analysis

Question Entity Example of a segment

What the

designer

discovers

Function

Constraint

System hierarchy

Parameter

“...it has to land, it can’t sustain too much damage...”

“...at what velocity it needs to get in the air... if

somebody can throw it like that...”

“...we need to get a basic design of the whole thing...”

“...its called the aspect ratio, 0.4 is a good number...”

What the

designer

exploits

Domain

knowledge

Physical rules of

behavior

Relations

Insights

“...that’s why you throw it up... so the acceleration back

down gives us a boost...”

“...the smaller surface areas at the front, the better for

the aircraft to fly; there is minimum drag...”

“...what’s affecting you the most is surface area, and

that’s for drag...”

“...maybe our plane doesn’t fly that high and this

[variable] in the formula could be one...”

How the

designer treats

the problem

Priorities

Perceptions

Decisions

“...that's a good goal, with the weights that we have and

the power system [selected] well be able to determine the

velocity required to get the lift needed...”

“... we can have two pieces of fuselage if we want...”

“... we have to decide for pusher or puller...”

The updated ontology and the modeling structure that emerged from the restructuring

can be seen in Figure 3.2. Three groups were similar to the Function-Behavior-Structure

36

model of Gero [48]. The group Structure defined the solution structure in a hierarchical

system with entities component and parameter corresponding to different levels of detail.

The trade-off entity set relationships among parameters, often when having opposite

effects. The group Usage had entities which determined what constraints should be

considered in realizing the problem. This was not limited to the constraints that were

directly imposed by the design brief but also what the use environment required. The

group Concerns related to the questions that were raised, issues that were deemed to be

pivotal in the feasibility of the solution and the priorities that were set during designing.

This group could represent why decisions were made and what insights occurred to the

designer; decisions and insights were omitted from the initial model. Finally, the group

Knowledge corresponded to the application knowledge [34] in design problem solving. It

referred to what was required in domain knowledge or what inferences were made from

experiential knowledge. Relations which were found among segments in the protocol are

shown with the lines in Figure 3.2.

The coded segments were assigned new labels based on the new ontology. I give

examples from one novice group and the expert, since the novices had fairly similar

problem formulations. The novice group considered the trade-off between the weight and

the speed and recognized how different functions (thrust and lift) and their behaviors

were related through a physical rule (the Bernoulli rule); they said “… with the weights

that we have and the power system [selected] we’ll be able to determine the velocity

required to get the lift needed …”.

37

Concern

Function

Usage

Structure

Behavior

Function Sys. Arch.

Component

Parameter
Trade-offs

Knowledge

Physic. Rules

Issues

Priorities

Questions

Behavior

Proto Solution

Constraint

Use Envir.

Figure 3.2 The problem formulation ontology from the first exploratory study

Knowledge about key rules differentiated the expert in implicitly drawing relations

among many entities. He quickly pointed out that “… the ratio of the wing surface to

plane speed should be in this area …” referring to a ‘load-speed’ chart in aircraft design.

Such insights prompted issues which were mostly neglected by the novice group. For

example the expert mentioned that “… very rarely is it possible to design an aircraft

whose payload is equal or greater than its weight …” and concluded that “… we’re gonna

have to design for high lift …”.

The next step was to create a representation which would make it easier to highlight

the differences between the expert and the novice group and changes in problem

formulation in time. Once the segments were assigned to one of the entities in the

38

ontology, they were given a distinct name or short phrase and put in a box under the

entity. For example the segment “… at what velocity it needs to get in the air… if

somebody can throw it like that …” was given the name “Hand-launch” and put under

issues. Relations were drawn similarly. The segment “… with the weights that we have

and the power system [selected] we’ll be able to determine the velocity required to get

the lift needed …” implied relations among parameters “battery weight” and “wing

weight”, the physical rule “½v
2
+ρgh=c”, and the function “lift”.

To show change, different snapshots could be created were each snapshot had all the

coded segments up to the time of the snapshot. Figure 3.3, Figure 3.4, and Figure 3.5

show three snapshots respectively: the novice group halfway through their session; the

novices at the end of the second; and the expert at the end of the design session. For

simplicity and easier comparison all segments are not shown. The ones which are shown

in the snapshots were selected based on what was similar between the novice group and

the expert. Segments which were discovered by the novice group at the end of the session

are highlighted and the relations are marked by dashed lines in Figure 3.4. Segments

which were elaborated by the expert are also highlighted against what was found by the

novices. The additional relations are also marked by dash-dotted lines. Neither of the

designers elaborated on a hierarchical structure of components except for the ‘landing

gear’ which was decomposed into a ‘beam’ and ‘wheels’. Therefore the group Structure

was similar to the class component and for simplicity, it is left blank.

39

Thrust
Lift
Contain
Land

Function
Structure

Component

Propeller
Battery
Wing
Fuselage
Beam
Wheel

Parameter

P. Dia.
Bat. Power
Bat. Wgt.
W. span
W. area
W. wgt.
Fus. Vol.

Trade-offs

Wgt.-speed

Physic. Rules
Issues

Priorities

Packaging
Fuselage geom.

Questions

· Constraint
imposed by
‘brief’?

Behavior

Thrust
Lift

Proto Solution

Vessel

Constraint

Volume
Use Envir.

Ball packing

Figure 3.3 A snapshot of the novices halfway through their session (from [77])

Thrust
Lift
Contain
Land

Function
Structure

Component

Propeller
Battery
Wing
Fuselage
Beam
Wheel

Parameter

P. Dia.
Bat. Power
Bat. Wgt.
W. span
W. area
W. wgt.
Fus. Vol.

Trade-offs

Wgt.-speed

Physic. Rules

½v²+ρgh=c

Issues

Hand-launch
Push vs. Pull

Priorities

Packaging
Fuselage geom.

Questions

· Constraint
imposed by
‘brief’?

Behavior

Thrust
Lift

Proto Solution

Vessel

Constraint

Volume
Use Envir.

Payload/Wgt.

Ball packing

Figure 3.4 A snapshot of the novices at the end of their session (from [77])

40

Thrust
Lift
Contain
Land
Maneuver

Function
Structure

Component

Propeller
Battery
Wing
Fuselage
Beam
Wheel
Ctrl indicator

Parameter

P. Dia.
Bat. Power
Bat. Wgt.
W. span
W. area
W. wgt.
Fus. Vol.
Signal Freq.

Trade-offs

Power-wgt.
Wgt.-speed

Physic. Rules

½v²+ρgh=c

Load-speed chart

Issues

Speed for hi-lift
Hand-launch
of motors
Push vs. Pull
Shape of wing
Pilot view

Priorities

Packaging
Fuselage geom.
High-lift design
Remote Ctrl

Questions

· Constraint
imposed by
‘brief’?

· Constraint
imposed by
physical laws?

Behavior

Thrust
Lift
Maneuver

Proto Solution

Telescope cyl.
Vessel

Constraint

Volume

Remote Ctrl

Use Envir.
Payload/Wgt.

Ball packing

Figure 3.5 A snapshot of the expert at the end of his design session (from [77])

The initial ontology and structure of the representation were derived from the first

exploratory study. The structured representation provided a way to capture and compare

the problem formulation of an expert and a group of novices. The richness of the relations

captured, by the expert, among different segments of different entities, in addition to

some segments disconnected from other in the novices’ formulation could be shown.

There was still a need to see if this framework could be used to represent problem

formulation for a different problem among new participants. Therefore, a second

exploratory study was conducted.

3.2 Modified modeling structure

The objective of the second exploratory study was to check if the ontology and

structured representation could be generalized to a different problem and designers, and

what modifications were required. The initial framework had several groups associated

with ontologies (mainly Function-Behavior-Structure) found in the literature [35, 78, 79].

41

The observations in the collected protocols did not exactly follow relations suggested in

those ontologies. For example, Gero et al. [78] define behavior as a link between function

and structure. But the coded segments assigned to parameters (under group behavior)

belonged to components that were not always related to a function through a behavior.

Thus, the grouping was abandoned in the modified model.

There were also changes in the new framework partly in accordance with new

observations and partly for simplification. System architecture was removed; the

hierarchy could be shown with explicit relations among components. Tradeoff and

Priority were also removed. The former was merged with issue. The latter was a process

entity that could be represented in changes through time. Understanding the importance

of analogies in creative problem formulation [80], a new entity named Analogy was

added. Constraint was substituted with a more general entity Requirement. Another

modification to the model was to distinguish different types of relations among the

entities. Four types were identified: covariation, when changes in a segment (within an

entity or among entities) affects another segment; option, when new ideas emerge for

similar concepts; instantiation, when a segment is added off of a previous segment; and

substitution, when a new segment is added as a substitute for a previous segment.

The task for the second exploratory study was to design a mechanical device deployed

from a row boat for taking water samples from a lake up to a depth of 500 meters. The

data collection settings were similar to the first exploratory study. Data was analyzed for

one expert and one novice student. Segmentation and coding was done similarly to the

coding process described in the previous section. However, the coding schema was

42

predefined, i.e., a segment was given one of the entities or relations types which were

already defined.

Table 3.2 shows a few examples of the coded segments corresponding to the

predefined entities, taken from the expert’s protocol. The first column shows the order of

occurrence of each utterance. The second column is the corresponding entity. The third

column is the extracted quote from the protocol. The next column is the label assigned to

the segment which is used in a structured representation. The last column shows related

observations. The total number of utterances for the design session was 108. The selected

observations are taken from the first 13 minutes of the session which lasted 52.

Relations were also coded. An example of covariation was the relation between

rupture pressure, depth, and the triggering function. In utterances 29 and 38, the wire was

used in one design with a valve and in another design with a rod which showed option. A

component in utterance 13 was immediately added as an instantiate of a proto-solution in

the previous utterance. The proto-solution in utterance 7 was a substitute of the proto-

solution in utterance 4.

Exploring the literature to find appropriate representations for showing problem

formulation data continued in this study with a focus on relations. There were a few

inspiring representations: parent-child relations in ERD diagrams (e.g., between Physical

system architecture and Component); class structure relations in UML models (e.g.,

between Physical system architecture and Function); or optional attribute relations in

EXPRESS-G models (e.g., between Use environment and Priority). However the

relations which were observed in the protocols would not entirely fit either of the

mentioned representations. For example, in a class structure of a UML model, Function

43

would actually be a mechanism of a class of a Physical system architecture or

Component object. Therefore, the final representation was similar to that of the first

exploratory study where segments took a distinct label and put in a box under the

corresponding entity.

Similarly to the first study, representation models were drawn to show each designer’s

change in problem definition. Figure 3.6 and Figure 3.7 show two snapshots for each of

the expert and novice problem formulations respectively (for a clearer example of

showing evolution of a designer’s problem formulation in time, see Appendix A). For

each designer, about a quarter of their session is represented. When both designers refer

to similar ideas in a segment, the same name is given for both designers to make

comparison easier. There are a few entities that are not present in these snapshots for one

designer (e.g., Requirements for the expert and Physical rules for the novice), or for both

designers (e.g. neither of the designers have an example of the entity Question). The

absence is due to the fact that the instances occurred in later stages of the design session.

The expert designer revisited the requirements after about 19 minutes and raised a

question after about 33 minutes.

44

Table 3.2 Coded segments from the first protocol analysis (from [81])

Entity Observation Label Relate

2 Function it just needs to ascend and descend F: Descending

F: Ascending

4 Proto-sol. [concept] B is some sort of depth indicator PS: Depth

indicator

7 Proto-sol. So [concept] B is some sort of depth transducer PS: Depth

transducer

4

12 Proto-sol. then the other main subsystem is the sampling chamber PS: Sampling

chamber

13 Comp. there is a hollow cylinder and one end is capped and there is

a piston
C: Cylinder 12

14 Behavior

Parameter

and this piston since this is filled with atmospheric air on the

backside of the piston, atmosphere, atmospheric pressure

you will pre-determine how far this piston travels which will

determine the depth

B: Cylinder-

pressure

P: Piston-

displace.

2

15 Physic.

rule

we know that about 34 feet of freshwater is one atmosphere

so you can determine how many atmospheres of compression

that you want the system to move before you trigger

Ph: Depth-

pressure

14

17 Function it tells the sampling to go ahead and take the sampling F: Triggering

F: Sampling

16

19 Comp

Function

Parameter

it has a diaphragm that ruptures at a specific pressure C: Diaphragm

P: Rupture-

pressure

15,17,1

8

20 Parameter that diaphragm ruptures when it gets down to a pre-

determined depth
P: Depth 19

24 Physic.

rule

Usage

Issue

500 meters is about 1500 feet so that is well beyond the

limits of normal air and nitrogen mixture they will have

nitrogen narcosis

Ph: Air-mix-

depth

U: Diving-

depth

I: Nitrogen-

narc.

23

26 Proto-sol. So the tethering can obviously be, it can be electronic 3,8

27 Comp

Function

it could have some sort of encoder that meters out the cable

and some sort of motor
C: Encoder

C: Cable

C: Motor

F: Metering

26

28 Behavior

Parameter

keeps track of the amount of cable that is extended B: Track-cable

P: Cable-

length

27

29 Function

Comp

Parameter

And then when the sampling device gets to a certain depth it

can have a wire that is wound into the cable that opens the

sampling and can have a saw that opens the sampling uh,

sampling valve

C: Sampler

C: Wire

C: Valve

P: Saw-form

17

38 Function

Behavior

Parameter

So when the device is going down the last 10 feet of the cable

is a steel rod, perhaps and then it transitions, the cable

transitions into the rod for some period of distance. And

then the sampling device uses the angle between the rod and

the sampling device to open a valve

C: Rod

P: Rod-angle

27,29,3

7

45

Descending
Ascending
Triggering
Sampling

Function Component

Cylinder
Trigger
Diaphragm

Parameter

Piston-displace.
Rupture-pressure
Rupture-depth

Analogy

Submarine
Scuba-diving

Physic. Rules

Depth-pressure

Air-mix-depth
Issue

Expensive & complex
Nitrogen-narcosis

Behavior

Cylinder-pressure

Proto Solution

Tether
Depth indicator
Depth transducer
Electronic
Pumping out water
Sampling chamber
Crushable
Scuba-diving

Usage

No positioning

Not self-contained

Diving-depth limit

Covariation/Option

Instantiation/Substitution

(a)

Descending
Ascending
Triggering
Sampling
Metering

Function Component

Cylinder
Trigger
Diaphragm
Encoder
Cable
Motor
Sampler
Wire
Valve
Worm-gear
Worm-wheel
Hub
Depth-gage
Rod

Parameter

Piston-displace.
Rupture-pressure
Depth
Cable-length
Saw-form
Encoder-loc
Buoyancy-cen
Vein-state
Rod-angle

Analogy
Submarine
Scuba-diving
Rocket-shape

Physic. Rules

Depth-pressure

Air-mix-depth

Issue

Expensive & complex
Nitrogen-narcosis

Behavior

Cylinder-pressure
Track-cable
Flip-flop-mech

Proto Solution

Tether
Depth indicator
Depth transducer
Electronic
Pumping out water
Sampling chamber
Crushable
Scuba-diving
Encoding
Tapered-finned
Gravity-device

Usage

No positioning

Not self-contained

Diving-depth limit

(b)

Figure 3.6 Expert’sformulationafter8(a)and13(b)minutes(from[81])

46

Descending
Ascending
Sampling
Adjusting

Function Parameter

Depth
Size
Weight

Analogy

Ocean profiler

Issue

Depth accuracy
High pressure
Power access

Behavior

Adjusting depth

Proto Solution

Adjusting depth
Pressure vessel
Buoyancy control
Add-remove weights
Inflatable bladder
Mechanical

Usage

Single user

Requirement
Rowboat deployable

500 meter range

10 meter accuracy

Covariation/Option

Instantiation/Substitution

(a)

Descending
Ascending
Sampling
Adjusting
Releasing
Triggering

Function Component

Cylinder
Spring
Pump

Parameter

Depth
Size
Weight
Buoyancy

Analogy

Ocean profiler
Syringe

Issue

Depth accuracy
High pressure
Power access
Complex design

Behavior
Adjusting depth
Adjusting buoyancy

Proto Solution

Adjusting depth
Pressure vessel
Buoyancy control
Add-remove weights
Inflatable bladder
Mechanical
Oil-filled bladder
Suction tube
Evacuated chamber

Usage

Single user

Requirement
Rowboat deployable

500 meter range

10 meter accuracy
(b)

Figure 3.7 Novice’sformulationafter11 (a) and 17 (b) minutes (from [81])

47

The second exploratory study showed that it was possible to use the structure created

in the first exploratory study (with slight modifications) for a different problem and

participants. The representation demonstrated the richness of the expert’s problem

formulation compared to that of the novice, in terms of more expressed entities and

relations. The two modeling framework from the exploratory studies were based on data

collected for two problems and a few designers. Though the relatively similar structures

showed potential for generalizing the framework to other problems, there was still a need

for studying other possible entities that could go into a representation of problem

definition, missing from the two specific examples in the exploratory studies.

3.3 Synthesizing the models from the exploratory studies

The final step towards creating a framework for representing designers’ problem

formulation was to synthesize the entities, relations, and representation structures which

were explored in the previous steps. To ensure that the search for relevant elements of the

framework was not limited to the observations of the two protocol studies, additional

entities were added through brainstorming. A few researchers in the brainstorming

sessions brought in their experience from years of studying or teaching engineering

design. I had specifically studied several design textbooks such as Ulrich and Eppinger

[82], Dieter and Schmidt [83], Pahl and Beitz [31], and Norman [84]. Entity names were

written on sticky notes and put on a wall, see Figure 3.8.

48

Figure 3.8 A collection of entities from brainstorming

The collection of entities was synthesized using the affinity method, i.e., by merging

similar entities iteratively to reach consolidated groups. Definitions of entities were

discussed to merge close entities. An example is merging the following entities into

requirement: requirement, specification, goal, constraint, objective, [customer] need,

wish, and demand. Each of these entities has slightly different definitions. However, there

is not a single definition for each entity and different textbooks might use common terms

to refer to slightly different things or vice versa. Ulrich and Eppinger [82] define need as

what the customer wants independent of any particular product that will be designer,

while specifications depend on the selected concept. They state that they do not make a

distinction between want and need. They also mention that attributes and requirements

are also common terms used in practice to refer to need. Pahl and Beitz [31] divide

requirements into demands and wishes. Demands are requirements that if not fulfilled

49

render the design unacceptable. Wishes are requirements that should be considered when

possible. They also state that a requirement can be either quantitative or qualitative while

Ulrich and Eppinger [82] attribute quantification only to specifications. There is a

tradeoff between having more entities to express things more distinctly, and making it

easier to learn, remember, and use them in expressing things. It is also possible to use

common entities for close things but assign attributes such as subtype to have the desired

distinction. Through multiple group discussions, the entities were narrowed down; see

Figure 3.9.

In addition to merging similar entities, a common structure for relations was also laid

out. In the final analysis, the similar relations were those of inter-entity or intra-entity.

Inter-entity relations can be considered as parent-child or hierarchical relations. Intra-

entity relations can be considered links or have particular names. Reaching this common

structure was not entirely driven by trying to merge similar entities or relations. During

the development of the framework, some specifications of a desired modeling framework

for representing differences in designers’ problem formulation were derived. They are

discussed in the next section.

50

Figure 3.9 Merging entities in multiple steps

3.4 Specifications of the modeling framework

The objectives which were set out at the beginning of the process of creating a

modeling framework for problem formulation were at a high level. Basically there was a

need for a structure which facilitated showing differences in how designers formulate

problems. Discovering the specifications of the tentative framework was part of the

51

process which I discussed in previous sections, i.e., exploration, refining, and

synthesizing entities. These specifications are shown in Table 3.3. They are described

here:

1- The problem and solution spaces co-evolve in design [4], therefore, the

framework should be able to model artifacts, and behaviors (solution-oriented

concepts in designing), in addition to requirements and functions (problem-

oriented concepts).

2- Another desired feature is representing hierarchal structure, since designers

divide problems and solutions into sub-problems, and sub-solutions, in order to

cope with complexity and evolution (change in sub-systems) in design [85].

3- Designers can divide problems in multiple alternatives ways, and combine

different sub-problem and sub-solutions, thus the framework should allow

multiple and disjunctive compositions.

4- In relation to compositions, one also should be able to model sequences within

the framework. In functional decomposition, different choices of sequences of

common functions lead to different designs. For example, in designing an

automatic brake, the sequence of the sensing and the braking functions have

significant consequences to the safety of the brake.

5- Designers link different fragments during problem formulation. Identifying

links among design entities relates to creativity [46, 86]. Therefore, the

framework should enable linking entities of different types.

6- The framework should be domain independent. The scope of the examples in

this research is mostly the design of mechanical products with focus on the

52

conceptual design of new products, and not variants. However, most product

designs have electrical and electronic elements and it is difficult to separate

domains in an actual design process. It should be possible within the framework

to express problem formulation of a combustion engine with its known

behaviors, or an engine with an abstract function of providing power, including

but not limited to a solar-powered motor.

Table 3.3. Specifications of a framework for problem formulation

Specifications Justification

Problem and

solution

oriented

Co-evolution of problem and solution spaces during problem

formulation

Hierarchal Describing compositions and levels of abstraction

Disjunctive Considering alternatives with common or independent fragments

Sequential Showing precedence in one level of abstraction

Linked Showing relations among different types of entities

Domain-

independent

Describing problems with generalized categories common to

different engineering domains

Besides the listed specifications, the tentative framework can be examined with

respect to a few measures of goodness. If the specifications are characteristics which the

framework should have, measures of goodness are characteristics which the framework

should be better at compared to other frameworks. Three measures are proposed with

potential methods of evaluating them (see Table 3.4): expressiveness evaluated with

coverage; compactness evaluated with entropy; unambiguousness evaluated with inter-

rater agreement.

53

1- Expressiveness: In order to show how differently designers of different levels

of creativity and experience formulate problems, the framework should

represent enough level of detail to enable such comparisons. The resulting data

models should be easily created and translated, but should also not lose

valuable information that uncovers patterns of successful or weak formulations.

2- Compactness: This is a relative measure but it provides hints to including some

entities with similar properties in the same group or class. For example, one

may consider safety and ergonomics as different sources of defining

requirements. A long-term objective of this research is to analyze data,

collected from a large number of participants. A more compact yet fine-grained

model makes automated analysis with computers faster, as well as easily

exchangeable among different software tools. In addition, it is easier for a

designer to learn the elements of a more compact data model in order to

categories one’s thoughts with respect to the framework.

3- Unambiguousness: This has two implications. First, if the framework is used as

a coding schema to represent protocol data, different coders should have a close

agreement in coding the same fragments (inter-coder reliability). Second, if a

user is directly asked to categorize his or her thoughts within the framework,

the chosen categories should not be very different from what a coder would

interpret of those thoughts.

To a degree, these measures are related to each other. There is a balance between

expressiveness and unambiguity based on the level of granularity determined in the

framework which affects compactness. Unfortunately, except for inter-rater agreement,

54

the proposed evaluation methods are not common in design research. For this reason,

only measuring inter-rater agreement was pursued in evaluating the proposed framework.

This will be discussed in the next chapter with the introduction of the Problem-Map

framework.

Table 3.4 Measures of goodness for the tentative framework

Measure of

goodness

Potential evaluation method

Expressiveness Coverage of coded fragments (ratio of coded to total)

Compactness Information content (entropy) of coded fragments

Unambiguousness Inter-rater agreement

55

CHAPTER 4

THE PROBLEM MAP ONTOLOGICAL FRAMEWORK

The previous chapter discussed the process which led to the creation of a modeling

framework for representing problem formulation. This chapter describes the result: the

Problem-Map (P-maps) ontological framework. The data model of the framework is

described in addition to some changes to improve it based on initial applications. P-maps

are compared to a few pertinent modelling frameworks with respect to the specifications

described in the previous chapter. This is to validate the need for a new framework. Once

P-maps are validated, they can be used in the experimental studies to test the research

hypotheses. The exploratory models described in the previous chapter could not be used

for that purpose.

4.1 Initial data model

The data model of the P-maps framework has evolved through the process which was

described in the previous chapter. It started from a simple set of entities to a few groups

of entities, attributes for each entity, and with a common structure including hierarchical

within-group relations and inter-group relations. Each group consisted of entities whose

instances could also be a part of disjunctive hierarchies.

The initial model incorporated five types of entities: Requirement, Function, Artifact,

Behavior, and Issue. All groups were inter-related with bidirectional relations. Figure 4.1

shows the structure for this version of the P-maps data model. For the sake of

simplification, only one direction is shown (which can be read as an active verb) in each

56

of the relations, e.g., it is shown that an artifact “realizes” a function while the relation

that states a function “is realized by” an artifact is not shown.

Requirement Function

BehaviorArtifact

Relates

Relates Relates

Relates

Satisfies

F
u

lf
ill

s

Parameterizes

 C

o
n

tr
o

le
s

Issue

 Manages Realiz
es

Figure 4.1 The first structured P-maps framework

This version of P-maps served the main objective of the research, i.e., showing

differences in designers’ problem formulation. Some of the experimental studies which

will be described in Chapter 7 and Chapter 8 use this version. However, the model was

too abstract and a finer level of granularity was needed. This was mainly because of not

fully exploiting attributes as intended. Attributes were supposed to provide more details

to entities. Through the refinement and synthesis process described in Chapter 3, it was

suggested that similar entities that were combined into one entity could be distinguished

by a ‘subtype’ attribute, therefore details could still be added. A specification with a

certain level (e.g., payload of 1000 pounds) could be defined as a requirement with a

‘subtype’ attribute named specification and a ‘level’ attribute with a value of 1000

pounds. The problem of not using attributes was more apparent during experimental

studies when designers were asked to express problem formulation as fragments within

57

the ontology compared to when designers freely expressed their thoughts and researchers

coded them. Therefore, the model was updated.

4.2 Improved data model

To address the problems described above, the first version of P-maps was updated

with adding a new group of entity, Use scenarios, more details about entity subtypes, and

by specifying a few attributes for each entity. The need for including Use scenarios in the

data model was based on the importance of two notions in the conceptual design process:

situatedness [87], or how the environment affects the design; affordances [84], or how

users interact with the design.

Some of the changes were motivated by the methods found in design textbooks. Ulrich

and Eppinger state that in order to identify customer needs, the designer should

experience the use environment of the product [82] which is another reason for adding

use scenarios. Some of these methods propose a formal output. Examples are objective

trees, spec sheets [31, 82], and function trees [32] which were described in section 2.1.

Figure 4.2 depicts the updated data model for the P-maps ontological framework. The

attributes shown for each entity are examples and are optional. Other attributes can be

added if necessary. The names given to the relations between any pair of entities might be

overwhelming; with the addition of the Use scenarios, the number of inter-group relations

increased from 7 to 11 relations. One option is to name the relation by combining names

of the pairs, e.g., requirement-function. The definitions of the entity subtypes are

described below. For each entity, there is a subtype with the same name as the entity.

58

This is to include a general definition of that entity for cases other than the other defined

subtypes.

Figure 4.2 The data model for the updated P-maps ontology

As discussed in section 3.3, there are no standard terms used in textbooks for these

entities. Although some terms such as objective, spec, or requirement are used

interchangeably in the literature, particular definitions are given to the entities in this

research. In P-maps, requirements are the entities that describe what the design should

achieve. A design problem is usually given as a design brief or problem statement. The

design problem is formulated with additional requirements elicited by the designer. A

naming convention to follow is to start the phrase with imperative modal verbs such as

“should”, “must”, or “has to”. There are a variety of terminologies in defining

requirements including objectives, targets, constraints, specifications, and requirements.

In P-maps one of the following categories should be chosen:

Requirement

Requirement

Stakeholder

Artifact

Solution principle

Source

Physical embodiment

Embodiment parameter

Function

Function

Basis

Behavior

Parametric relation

Statement

Issue

Issue

Importance

Objective

Weight

Specification

Value

Parameter

Value

Use scenario

Use scenario

Description

User

Profile

Environment

Condition

Question

Info source

Conflict

Cause

Satisfies

Relates Relates

Relates Relates
R

e
la

te
s

ParametrizesRealizes

Fulfills

Situates

Contextualizes

Controls

Affords

Artifact

Form

Behavior

Abstraction

59

· Objectives [“obj”]
2
: a measure of goodness or fit that can be used as a

criterion for assessing different designs in comparison to each other. Preferred

designs are ones that have better outcomes with respect to the objectives of

higher importance. An example of an objective is a lower cost or longer life-

cycle. The objectives can be structured in a hierarchy which enables the

designer to create an objective tree in the web tool.

· Specifications [“spec”]: design attributes that specify a level of desired

performance. An example of a spec is a payload of 5000 kg, or a speed of 100

miles per hour. In P-maps there is no separate subtype for constraints and the

designer may specify constraints with specific target ranges or double bounds

as specs (e.g., available power 10±2 KW, available gear ratios 3:1, 9:2, and

5:1, or use 110V AC) and constraints with single bounds as objectives (e.g.,

cost<$100). It is also possible to simply not choose any subtype in which case

the general category of requirements is selected.

· Requirements [“req”]: any other desired attributes e.g., legal requirements,

material requirements, etc. or what the designer cannot put under objectives or

specs as defined above can go under requirements.

2
 The highlighted abbreviations are optional tags which help to specify the subtypes in

each entity group. Users of the web-based tool associated with the ontology are

encouraged to use these tags and the described naming conventions to make evaluation of

the data (either by a human judge or an automated text processing program) easier.

60

Use scenarios describe how and where the design is used; in other words, the users

who will be using the design outcome and where and under what conditions the design

will be used. More specific subtypes can be expressed as:

· Users [“user”]: who is the design for. This may include demographics of the

target users such as age and gender; whether they have special needs because

of disability; how users interact with the design and the human sensory

receptors involved.

· Environment [“env”]: where and under what condition is the design used. This

may include geographic information about the target customer base, e.g., the

level of humidity that may cause rusting; other environment variables, e.g., the

change in temperature at the altitudes where an airplane cruises.

· Use scenario [“use”]: any general description of a possible scenario of using

the design.

Functions refer to what the design does and the actions that the design will execute. A

naming convention to follow is to use verbs or verb noun combinations e.g., sink, move,

rupture disk, carry passenger, or amplify torque. The hierarchy represents functional

decompositions [88]. P-maps incorporate disjunctive composition, making it possible to

have multiple functional decompositions using common sub-functions. There are no

subtypes under this category.

Artifacts describe what is created or used to realize the functions of the design. They

include the physical embodiments (physical systems, parts, or of-the-shelf components)

or the solution principles that the design may be using. P-maps allow compositions of

61

solution principles and physical embodiments. The hierarchy resembles a product

architecture.

· Solution principle ["sl"]: analogies, e.g. submarine for a sinking object with

reservoir; principles such as lever, or nesting tubes (one of the 40 TRIZ

principles [89]).

· Physical embodiment ["em"]: off-the-shelf part or component e.g. gear,

motor.

· Artifacts [“art”]: any general description of a system that is used to achieve

the design requirements, use scenarios, or realize the functions.

Behaviors are the physical properties and laws that govern the design. These entities

include parameters (design variables), and parametric relations (known relations among

variables expressed in mathematical equations, or qualitative relations that the designer

knows among parameters). Behaviors may be expressed by parametric relations, which

are composed of sets of parameters.

· Parameter ["par"]: design variables, e.g., pressure, speed, motor rpm.

· Parametric relation ["eq"]: known mathematical expressions e.g., Sigma =

F/A, or Newton's first law; relations expressed qualitatively, e.g., hydrostatic

pressure is related to depth.

· Behavior [“beh”]: any general description that is not defined using a

parametric relation.

An issue is a point that the designer believes to be pivotal or problematic in achieving

a design objective. An issue can arise in realizing a function with a specific artifact or

behavior, in realizing conflicting design goals such as lower weight and strength of a

62

structure or in accommodating different components in a product architecture due to

incompatible interfaces to name a few. The designer gains insight in the discovery of key

issues in the design and the areas of the design that should be prioritized.

· Conflict ["conf"]: e.g. a conflict between minimizing weight and maximizing

strength.

· Question ["q"]: feasibility questions from self or an expert e.g., is a flying

device an option given the limited power sources; missing information

questions from client or user e.g., what surface will the device move on or how

many motions can a user simultaneously control with two hands.

· Issue [“iss”]: any other issues.

Hierarchies and partial orderings manifest intra-group relations. Inter-group relations

are also defined; an underlying property of ontology. This leads to a model that can show

how different designers see the relations among different aspects of a problem and the

alternative ways they relate. For example, alternative conceptual designs with common

components or different function decompositions can be shown with different branches

of an artifact or function hierarchy with nodes that have the same name for the common

components or functions respectively. A specific name is assigned to the relation between

any of the two entity groups. For example, an artifact realizes a function, and a behavior

manages a requirement. The P-maps model does not make a distinction between

explicitly known relations (e.g. when a designer knows that the power equation of an

electric motor manages the desired torque), and implicit or qualitative guesses (e.g., when

a designer knows that a parameter manages a specific goal but does not yet know how

exactly). Having hierarchical and linked structures were two of the specifications desired

63

for a framework developed for this research. P-maps can be validated with respect to

those specifications in comparison to other modeling frameworks.

4.3 Model validation

In research, validity generally refers to whether the methods used or conclusions

drawn in a study are relatively accurate and correspond to the subject phenomena [90].

The motivation behind creating the P-maps framework was that existing frameworks

could not serve the objectives of this research. To validate P-maps, it should be

demonstrated that other frameworks cannot provide an enough accurate representation of

problem formulation. Specifications of a framework for studying problem formulation

were discussed in section 3.4. In this section, a few frameworks which were reviewed

in Chapter 2 are compared to P-maps with respect to the aforementioned specifications.

The specifications were that the framework should accommodate problem and

solutions elements, hierarchical structure with sequences and disjunctive branches in

addition to links between different types of entities. Table 4.1 compares P-maps to

relevant modeling frameworks with respect to the specs. These frameworks were chosen

because they have been highly used in research in conceptual design (F-B-S and

Linkographs), or in representing problems (Four-box and SysML). Concept Maps have

all the desired representation characteristics but are for general purpose knowledge

representation. All frameworks can model links among entities, thus this spec is omitted.

In section 3.4 three measures of goodness were also specified: expressiveness,

compactness, and unambiguity. In order to objectively compare P-maps to other relevant

representation frameworks there are two possibilities. One is to give a piece of protocol

64

to an independent coder (or coders), i.e., a coder who has not participated in developing

neither P-maps nor the other ontologies, teach them the two coding schemas to be

compared, and ask them to code the protocol. The other is to ask two researchers who

have contributed to the two ontologies to work together and code a protocol in each

ontology. The coded protocols can then be evaluated with respect to the measures

proposed in Table 3.4. It was not possible to conduct a comprehensive comparison with

an independent coder or with coders involved in the other ontologies, though this can be a

part of future work. Yet, examining how a protocol already coded in another ontology

can be coded in P-maps is useful to show its representation power.

Table 4.1. Comparison of different modeling frameworks to P-maps

 Spec

Framework

Problem and

solution oriented
Hierarchal Disjunctive Sequential

F-B-S Problem & solution No No No

Four-box Problem & solution No Implicit No

Linkograph Solution-oriented No Explicit Yes

SysML Problem & solution Yes Implicit Yes

Concept map n/a Yes Explicit Yes

P-maps Problem & solution Yes Explicit Yes

Consider the piece of protocol transcript in Table 4.2 which is coded within Function-

Behavior-Structure and P-maps (the comparison is taken from [2]). The protocol and its

F-B-S encoding was done by Gero and Mc Neill [35]. In the second column, apart from

coding segments as F, B or S, the requirements are also coded as R and the level of

abstraction is also identified (0 - System, 1 - Input Block, 2 - PAL Block, 3 - Output

Block). The fragments encoded within P-maps are shown is Prolog logic predicates as the

65

formalism provides simple readability (it will be shown that the formalism is used in

formalizing and tracing strategies; here, they are chosen out of convenience, otherwise

they could have the coded segments could be shown differently e.g., for the first segment

‘solution principle: input_block’). The protocol is coded into 6 fragments within F-B-S

but there are 22 P-maps fragments where:

· 6 fragments represent inter-entity links (encodings with the heads: connects,

realizes, fulfills, and manages).

· 2 fragments represent a 2 level deep hierarchy (output_block is the parent of

dalington_driver which is the parent of optical_dalington).

· 2 fragments represent 2 disjunctive branches (input_block is the parent of

opto_couplers in one segment and the parent of external_pull_ups in another

segment).

· 1 fragment represents an attribute specifying another fragment (goal target for

number of outputs is 8, i.e., number of outputs should be more than 8).

66

Table 4.2 A protocol coded in F-B-S [35] compared to P-maps (from [2])

Fragment F-B-S P-maps

what we need is some sort of

input block there. The PAL, there

might be one or two other bits

around it, I don't know, and the

output block. And that's the

fundamental picture of what we're

going to have to do.

0S solution_principle(input_block)

physical_embodiment(PAL)

solution_principle(output_block)

connects(input_block,PAL)

connects(PAL,input_block)

parameter(number_of_bits_around_PAL)

darlington driver if at all possible,

an optical darlington driver,

3S parent_of(output_block,dalington_driver)

parent_of(dalington_driver,optical_dalington)

The input block is...really fairly

straight forward...opto couplers

1S parent_of(input_block,opto_couplers)

With of course external pull-ups I

guess so that we can operate on

any voltage.

R1S solution_principle(external_pull_ups)

parent_of(input_block,external_pull_ups)

function(operate_on_voltage)

realizes(input_block,operate_on_voltage)

requirement(flexible_input_voltage)

fulfills(external_pull_ups,

flexible_input_voltage)

That's one of the ideas of putting

that input block onto'?'?'?'? not

only the safety side but the

flexibility side as well. That's the

other reason of course for opticals

on that side.

R1F parameter(location_of_input_block)

requirement(safety)

manages(location_of_input_block,safety)

manages(location_of_input_block,flexible_in

put_voltage)

My minimum requirement would

be for 8 inputs minimum...8

inputs sorry 8 outputs minimum

R2S goal(number_of_outputs)

goal_target(number_of_outputs,more_than,8)

67

To know the degree to which human interpretation affects understanding of a coding

schema, it is common to find the inter-rater agreement, i.e., to examine how different

raters agree on coding a corpus with regard to the ontology. In this context, the ontology

is P-maps (as a coding schema) and the corpus is coded protocols. Two statistical

measures of agreement in assigning categorical ratings are Cohen’s kappa [91] and

Fleiss’ kappa [92]. Both measures take into account agreement occurring by chance.

They range from zero to one, zero representing no agreement, one representing perfect

agreement. Cohen’s kappa is used for two raters while Fleiss’s kappa is for any fixed

number of raters.

To measure the inter-rater agreement in coding protocols with P-maps, segments of

code were given to trained raters. Raters assigned each segment to one of the categories

{requirement, function, artifact, behavior, issue, hierarchy, inter-group} in P-maps. The

equation for Cohen’s kappa is:

𝜅 =
P(𝑎) − P(𝑒)

1 − P(𝑒)

where P(a) is the relative observed agreement and P(e) is the probability of agreement

by chance. Fleiss’s kappa is computed similarly and P(a) and P(e) are found from:

𝑃(𝑎) =
1

𝑁𝑛(𝑛 − 1)
∑∑𝑛𝑖𝑗

2 − 𝑁𝑛

𝑘

𝑗=1

𝑁

𝑖=1

𝑃(𝑒) =∑𝑝𝑗
2

𝑘

𝑗=1

𝑝𝑗 =
1

𝑁𝑛
∑𝑛𝑖𝑗

𝑁

𝑖=1

68

where N is the number of coded segments, n is the number of raters, k is the number of

categories, and 𝑛𝑖𝑗 is the number of the raters who assigned the i-th segment to the j-th

category.

To determine the inter-rater agreement 6 segments were chosen from protocols

collected from eight designers working on one problem (total of 48). Number of

segments was based on Gwet [93] for an expected agreement of 70% among the coders,

and an expected 20% error in coding for each rater. Six segments were found using

systematic sampling. The total number of segments in each of the eight protocols was

divided by six to find the interval for systematic sampling. Then the first segment would

be at a random location between the start of the protocol and the length of the interval.

The other five segments were found by adding the length of the intervals to the starting

segment.

Three coders were familiarized with the ontology. Fleiss's Kappa for the three raters

was 0.35, which is fair-moderate agreement [94]. A pairwise comparison with Cohen's

Kappa, resulted in 0.41, 0.36, and 0.28 agreements between the pairs. Coding the

relations was inherently more difficult because relations were vaguer to describe verbally

and often related to entities which happened distant to each other temporally. After

removing {hierarchy, inter-group} from the choices, the agreement would become

higher: Fleiss's Kappa 0.48 for the 3 raters; Cohen's Kappa, 0.56, 0.47, and 0.43.

In addition to these three coders, inter-rater agreement was also measured between two

of the researchers who were intimately involved in this study (throughout the

development and application of the ontology). They were more familiar with the coding

schema and not surprisingly, inter-rater agreement between them was higher. Cohen’s

69

kappa for these two researchers, including the hierarchies and inter-group relations, was

0.64 which is substantial [95]. Excluding the relationships, the agreement would be 0.75.

This chapter described the detailed data model of the P-maps ontological framework.

The model was compared to a few pertinent frameworks with respect to previously

identified specifications. A thorough and unbiased comparison requires additional work

in collaboration with researchers or communities who have created or contributed to

those frameworks. However, it is still possible to show through examples how P-maps

are more expressive in capturing different types of relations, specifying attributes for

entities, and representing alternatives. Inter-rater agreement was found by asking raters to

segment and code protocols collected from a few designers. Instead of asking raters to

code a designer’ thoughts on formulating a problem, an alternative way is to ask

designers to code their thoughts within the P-maps ontology. Designers can express their

thoughts within P-maps on paper. However, the process can be improved by using a

computer tool, given the structured data model and representation of P-maps. This tool

was created for P-maps. It is presented in the next chapter.

70

CHAPTER 5

THE PROBLEM FORMULATOR TESTBED

The main objective of this research is to learn what designers think about when they

formulate problems. Review of the literature showed how few dedicated studies of

problem formulation were. A survey of studies of designer thinking also showed that in

general, empirical studies are based on few observation with few participants [2]. This is

because a majority of empirical studies of designer thinking use the protocol analysis

method which is resource-intensive. To collect and analyze data on a large scale in a

shorter amount of time an alternative data collection method was needed. Since P-maps

benefit from a structured data model and representation, using a computerized data

collection testbed was feasible and promising. This chapter briefly explains the process of

creating the Problem Formulator testbed and its features.
3

5.1 System architecture

The Problem Formulator testbed is the means for collecting problem formulation data

structured within the P-maps ontological framework. The testbed supports designers in

constructing problem formulations with its interactive design assistant and additional

features, e.g., generating reports. Nevertheless, the main purpose it serves is in speeding

up data collection and analysis. The tool focuses on the early stages of the design process

and lets the designer easily input information about their conceptual designs, store this

3
 Though I have contributed to the design of the database and user interface, the

implementation was done by Glen Hunt, Chris Maclellan, and Pradeep Mani.

71

content for later review, and display it for the user’s inspection. Based on the modeling

specification described earlier, a number of components were considered for the tool:

· An internal representation for encoding problem formulations.

· A graphical or textual notation for displaying a given problem formulation to the

user.

· Operations for creating problem formulation entities.

· Operations for creating hierarchies within a type of entity.

· Operations for linking pairs of entities.

· Operations for editing and deleting entities and links.

The Problem Formulator was implemented in a manner that lets users access it from

the World Wide Web. There were two reasons for this choice. First, making the software

available on the Web makes it more accessible; users can run it from any location and on

any device that operates with a modern Web browser (no additional software needs to be

installed on the user’s computer). Second, all entities and links that the user enters are

stored in the cloud, where they are backed up and easily retrieved for future use,

regardless of location or device.

To provide Problem Formulator with these features, CakePHP (a model-view-

controller framework) was utilized along with a combination of PHP, JavaScript,

MYSQL, HTML, and CSS. CakePHP was chosen because the MVC framework makes

the software more modular and easier to develop and maintain. Figure 5.1 shows the four

components that make up Problem Formulator: the stored problem formulation, the

controller, the view, and the inference backend. The system encodes problem

formulations internally in the problem map ontology, which consists of different entities

72

and relations among them. Problem Formulator stores this content in the relational

database structure shown in Figure 5.2.

Figure 5.1 The system architecture of the Problem Formulator (from [96])

The view determines how Problem Formulator displays information stored in the

problem map to the user. There are views for all basic functions, such as adding and

deleting entities and links, as well as ones for the user’s active projects. The controller

determines what information from the problem map is available in each view. There are

controllers for creating and manipulating problem formulations, entities, and links; these

provide a layer of abstraction between the problem map model and the view that ensures

data integrity. Finally, the inference backend incorporates reasoning methods that lets

Problem Formulator trace certain formulation characteristics (more specifically, these are

formulation strategies which will be described in section 6.3). The designer connects to

73

the Problem Formulator through a Web browser, which displays their problem maps.

When a user takes action in their browser, the changes to the problem map are sent to the

server where they are stored in the database. Meanwhile, the interface is dynamically

updated using Javascript, so the user never has to refresh their browser. If the Problem

Formulator generates any feedback for the user, then it is sent to the web browser, which

dynamically updates the problem map with the feedback.

Figure 5.2 Database schema for the Problem formulator (from [96])

5.2 Graphical user interface

The tool stores problem formulation data in a relational database that reflects the

problem map ontology. Once the system has stored this information, the graphical

interface displays it to the user. To distinguish among the entity types, Problem

Formulator presents them in separate columns. Figure 5.3 displays the main page of the

graphical user interface (GUI) of the interactive testbed where formulation data is

entered. At the top of the page, there are links to other views which have additional

functionalities to be explained in section 5.4.

74

Representing individual entities is fairly trivial; the real power comes from the ability

to relate these entities. Intra-group or hierarchical relations consist of alternative sets of

parent-child links between entities of the same type that specify different ways to refine

the parent. Inter-group relations or links consist of links between pairs of entities with

different types that describe how they interact. Parent-child relations are created by drag

and dropping one entity on another within the same column. Parent-child relations are

shown similarly to a nested folder structure. The parent has a folder icon. The child has a

file icon (if it is not a parent itself), is displayed below its parent, and is slightly indented.

Alternatives (disjunctive parent-child relations) can be created by closing an existing

branch and dropping the new child under the existing parent. The number of disjunctive

branches is displayed above the folder.

Links are created by drag and dropping one entity on an entity in a different column.

Problem Formulator’s GUI displays these links by highlighting entities. When the

designer mouses over an entity, the system highlights both it and all other entities that are

connected to it, as Figure 5.3 illustrates.

75

Figure 5.3 The main GUI of the Problem Formulator

5.3 Test and user studies

The design of the interface for Problem Formulator has gone through some changes

throughout its development. The major change in the GUI was to move from a central

node-link view (as seen in Figure 5.4) to the current multicolumn folder list view. The

current version has auxiliary views as additional features which will be described in the

next section. However, the main page for users to enter the data was changed to the

current form.

Changes to the tool were based on a pilot user study with 11 participants. Participants

were given a demo on how the tool worked with a working example. They were asked to

work on a practice problem. This was followed by a survey. The survey consisted of a

76

few statements and the participants were asked to specify their agreement with the

statement on a scale of 1 to 10 (1 strongly disagree, 10 strongly disagree). When asked if

the participant had experience with a similar tool, one participant mentioned

FunctionCAD [97] and DANE [98] while another mentioned Concept maps [71]. The

statements and responses are given in Table 5.1.

Figure 5.4 The first GUI for Problem Formulator

Though the number of participants was small, a few lessons were drawn from the

responses of the survey. A demo of the tool could be helpful but the definitions for the

vocabulary given in the ontology required more clarifications and examples. Most users

preferred a graphical representation over a textual one for data entry. The users had a

neutral opinion on whether the effort was worth the trouble which meant a more user

friendly interface could win them over. They also found the tool somewhat distracting,

though this was mostly because of the glitches and delays due to technical problems with

77

the tool. This was consistent with some of the comments which the participants

additionally provided.

Table 5.1 Results of a user study on the first Problem Formulator

Survey statement Avg. Response range

The demo was helpful in instructing me on how to

use the problem map tool.

6

The vocabulary used in the tool (e.g. function,

physical embodiment, realizes, etc.) was clear to

me.

5.6

The textual display was more helpful than the

graphical display.

4

What I was able to produce was worth the effort I

had to exert to produce it.

5

I was able to be very expressive and creative while

doing the activity.

4.4

My attention was fully turned to the activity, and I

forgot about the system/tool that I was using.

4.3

When the participants were asked ‘Please tell us what you liked about this tool.’ the

majority mentioned the ability to organize their thoughts within specific categories. Other

remarks included visualization, easy rewriting and editing compared to pen and paper,

and complementing text and graphics. When they were asked ‘Please tell us what you did

not like about this tool.’ they mentioned: having little instruction on the tool; lack of

tutorials; unreadable text in the nodes when zooming; difficulty in creating links through

a drop-down list. The participants were also asked ‘What functionality do you think was

78

missing in this tool?’. Most respondents mentioned they favor an adviser or a feedback

system that helped them in exploring possible designs or telling them whether they were

correct. Other suggestions included: auto arranging the nodes to avoid clutter; automatic

linking of entities (if entity A is linked to entity B, linking a new entity C to B should

invoke an automatic link between C and A); and printing the map. The feedback from the

survey participants led to changes in the GUI. The effect of some of these changes was

shown in describing the main page of the existing GUI in the previous section; the

multicolumn folder list, and highlighted linked nodes is in response to user complaints

about clutter and confusing display of relations. The feedback from the survey also led to

other improvements which are explained in the next section.

5.4 Improvements and added features

The user study conducted on the first version of Problem Formulator laid a roadmap

towards making enhancements to the GUI and including additional features. Some of the

complaints which the users have made throughout the development of different versoins

of Problem Formulator relate to the tool being slow. This is an technical difficulty which

requires improving the code; it is out of the scope of this discussion. Four features were

added which are in the latest version of Problem Formulator. They are: additional views

for relatoins, outputs for documentaing and communicating one’s formulation, step-by-

step tutorial wizards, and a retrospctive module. It should be noted that these features

impoved Problem Formulator as a conceptual design support tool, not a data collection

testbed. No claims are made about the effect of the tool on creativity.

79

In order to see the relations among entities more clearly, two new views were added.

One is a tree view to display hierarchies and disjunctive branches more effectively. The

main GUI had a similar view to a tree with files branching out of folders but disjunctive

branches could not be shown. This confused the users too. On option was to show

disjunctions as layers but this was technically challenging to implement. Instead, a new

auxiliary view was added. In the new tree view the user can see one or more entity type

by collapsing or expanding the layout accordingly, see Figure 5.5.

Figure 5.5 Problem Formulator enhancements - Tree view

In addition, within each group, the branches of the tree can be collapsed or expanded

at every node level by clicking on the node. The conjunctions and disjunctions are

distinguished by different line styles. Red dashed lines denote disjunctions (OR relation)

and solid lines denote conjunctions (AND relation), see Figure 5.6. The second additional

view shows the links among all entities placed around a circle, see Figure 5.7.

80

Figure 5.6 Problem Formulator enhancements – Collapsing nodes

Figure 5.7 Problem Formulator enhancements – Network view

One of the drawbacks of the early versions of Problem Formulator was lack of a

formal output from the tool. Users complained that the tool would be more attractive if

they could save or print outputs for their own documentation or communicating their

formulation with others. One common output relate to problem formulation is objective

tree. To create an objective tree in Problem Formulator, first they should be specified as

81

subtypes within the requirements group. The objective tree structure should then be

created as usual. The next step is to assign weights to the branches of each node. The

weights are assigned to each node such that the sum of the weights of all children in one

conjunctive branch equal to 1, see Figure 5.8. The output will be similar to Figure 5.9.

Figure 5.8 Problem Formulator enhancements – Objective tree input

82

Figure 5.9 Problem Formulator enhancements – Objective tree output

The majority of the participants in the user study pointed to little instructions they

received about using the tool even though they found a demo useful. They also wanted a

feedback system in the tool that told them if they were correct in their formulation. In

order to minimize bias towards a specific way of formulating problems, participants

throughout this research have been familiarized with the definitions of the P-maps

83

ontology but told that they can add and edit entities and relations anyway they want.

Nevertheless, users needed more instructions before they became competent in using

Problem Formulator, especially help integrated within the tool. Therefore, two tutorial

wizards were incorporated in Problem Formulator following two different ways of

formulating problems. The two approaches have a particular process which makes them

easy to follow. However, they are two out of many possibilities and it is emphasized to

the participants that the wizards only show the users how to work with the tool not how

to formulate problems.

The first approach is called depth expansion. The depth expansion approach tells the

users to expand entities in details at lower levels as much as possible before moving to

the next entity type, see Figure 5.10. The second approach is called breadth expansion. It

tells the users to describe all the aspects at an abstract level in each entity before going

into the details, see Figure 5.11. The wizard can be turned off once the user becomes

more confident in working on his own.

Figure 5.10 The depth exploration approach

84

Figure 5.11 The breadth exploration approach

The last feature that has been added to Problem Formulator is a module to support

retrospection. Formulating a problem in the tool is done by taking several steps such as

adding an entity or linking two entities. One criticism of studying design thinking with a

testbed that lacks intervention by a researcher is that the rational of the designers’ moves

might not come to light. On the other hand, intervention by a researcher who asks

questions about the designers’ rationale might interfere with the assigned task. Even if

there are no interventions by others, designers might forget to explain what they do. A

solution to the dilemma cause by the tradeoff of intervention to get rationale and

forgetting to express rationale is to use strength of two approaches: not to intervene while

the designer is formulating the problem, and save the sequence of his moves and replay it

later so he does not forget what he did. The retrospective module is shown in Figure 5.12.

The designer can replay his formulation and see all the steps taken at each point. The

designer can provide a response on why he took the step either from an existing list of

responses or by adding a new response. This feature of Problem Formulator facilitates a

new method towards research in design thinking. Since it has been added recently, it is a

part of future work and therefore excluded from this dissertation.

85

Figure 5.12 Problem Formulator enhancements – Retrospective module

Problem Formulator and its features can help designers in formulating problems.

However, the main objective of creating the tool was for it to serve as a testbed; the

means of easier data collection and analysis on a larger scale. Empirical studies could

now be planned and executed. Preliminaries of the empirical studies are described in the

next chapter.

86

CHAPTER 6

EMPIRICAL STUDIES-PRELIMINARIES

The previous two chapters explained the P-maps ontological framework, and the

Problem Formulator testbed. Armed with the framework and the testbed, experimental

studies can be conducted to answer the other research questions about differences in

designers’ problem formulation and its relation to creative outcome. Three experiments

were carried out. The objective of the first experiment set was to show differences

between experts and novices in problem formulation. The second experiment set

examined the relation between problem formulation and creativity. The third experiment

set tested if creativity can be predicted from problem formulation. In other words,

whether the results of the second experiment could be generalized was examined. Each of

the experiments is described separately in the following three chapters. A few

preliminaries underlie the experiments. This chapter describes them. They are design

problems or tasks, participants, and the collected data from the participants on the

assigned tasks.

The collected data is on problem formulation and creativity. Problem formulation data

consists of P-maps taken from coded protocols or entered in Problem Formulator.

Creativity data comes from two essentially different assessment methods. One is an

apriori test of creativity, i.e., it is not an assessment of one of the assigned design tasks in

this study. The other is an assessment of the outcome of the design tasks at the end of the

conceptual design phase.

The creativity test provides an assessment of a person’s creativity within the scope of

the test. Though it can show the test taker’s potential creativity, it does not necessarily

87

reflect on the test taker’s creative outcome on a design task. It is possible to score high on

the test but have a poor outcome on the design task. Therefore, there is a need to separate

the two assessment methods. The creativity test measures can be used as an initial

evaluation of the distribution of participants within study samples with respect to

conceptual design skills. They support the argument whether the participants in the

sample represent a larger population of designers. Shah et al.’s [99] Divergent Thinking

test has been used for this purpose. Shah et al.’s [24] ideation metrics, on the other hand,

have been used to evaluate the creativity in conceptual design outcome. The experiments

are summarized in Table 6.1.

Table 6.1 Summary of the design of experiments

 Experiment I Experiment II Experiment III

Objective Showing differences

within and between

experts and novices

Understanding the relation

between problem formulation

and creativity

Predicting creativity

from problem

formulation

Input Problem formulation

characteristics

Problem formulation

characteristics

Ideation metrics

Formulation-ideation

models

Ideation metrics

Output Differences in

formulation

characteristics

Models of ideation vs.

formulation

Differences in ideation metrics

Differences between

predicted and actual

ideation

6.1 Characteristics of design problems

There are a few criteria for choosing an appropriate design problem for this study. One

is that the problem should not be too technical for the subject designers, i.e., it should not

require extensive domain knowledge to understand the problem and come up with a

design solution. Second, the problem should lead to diverse solutions. The level of

88

difficulty should be in such a way that different designers propose a variety of solutions.

This affects the range of outcome ideation metrics as the dependent variable in the second

and third experiments. Third, the problem should have some conflicting requirements and

key challenges similar to many real-life design problems. These criteria are similar to

what Dixon et al. [100] refer to as a novel problem. Most of the selected problems come

from engineering design course books.

Five design problems were used in this research. To avoid repeating their names or

descriptions in each experiment, they are described here but will be referred to with a

code from DP_1 to DP_5. The first design problem (DP_1), the water sampler, is about

designing a water collection device for taking fresh water samples from lakes. The

problem is taken from Pahl and Beitz [31]. The given problem statement is in Figure 6.1.

The second design problem (DP_2), the can crusher, is about designing a device that

discards aluminum cans. The problem statement is given in Figure 6.2.

Figure 6.1 Problemstatementfor‘watersampler’(DP_1)

Design a mechanical device to be used from a rowboat by a researcher who

wishes to collect samples of water from fresh- water lakes (e.g., Lake Tahoe) at

known depths down to a maximum of 500 m. After release, the device must not

be attached to the boat and must descend to within 10 m of an easily adjustable

pre-determined depth. It must return to the surface with a 0.5-liter sample of

water from that depth and then float on the surface until picked up. The device

should be reliable, easy to use, reusable, and inexpensive.

89

Figure 6.2 Problemstatementfor‘cancrusher’(DP_2)

The third problem (DP_3), the goofy gopher, is to design a device that collects more

golf balls than an opponent's device and stores them in the respective silos. Balls of

different color have different points, see Figure 6.3. Stealing balls from the opponents

and interfering with the operation of their devices is allowed.

Figure 6.3. The settings for the ‘goofy gopher’ problem (DP_3)

Design a machine to accept and store used aluminum drink cans for

subsequent recycling. The device is to be located in busy public areas and is to

accept cans one at a time from an individual and pay out a coin as a reward. To

reduce storage space, the can is to be crushed to a height of approximately 15

mm. The maximum crushing force required is 2 kN. The original height of a can

lies between 115 and 155 mm, a typical diameter is 65 mm and the average can

mass is 0.02 kg.

90

The fourth problem used in this research (DP_4) is to design the shot buddy (taken

from [76]); a device which returns shot basketballs to the shooter, whether the basket was

made or missed, see Figure 6.4. The problem statement also says that the device must be

able to automatically adjust the return angle based on the position of the shooter when the

ball is shot. It must also accurately and quickly return balls to the shooter and not block

the shooters access to the basket. Ideally, the return speed would be adjustable to

accommodate different skill levels. The device should be user friendly for kids ages 10-

18, easy to setup and applicable to a wide variety of basket types. The device should be

affordable for the average family.

The last design problem (DP_5) is to design an autonomous surveillance vehicle to

automatically and periodically tour the perimeter of two structures, stopping as close as

possible to the start point, see Figure 6.5.

Figure 6.4. The settings for the ‘shot buddy’ problem (DP_4)

91

Figure 6.5. The settings for the ‘autonomous surveillance’ problem (DP_5)

6.2 Characteristics of participating designers

To meet the objectives of the three designed experiments, two characteristics of the

participating designers in this research should be taken into account. One is expertise and

the other is creativity in conceptual design. There are two levels of expertise considered

in this research: expert or novice. This is a common consideration in research in designer

thinking [2]. Many studies of designer thinking compare experts to novices; they do not

define expertise with years of experience as a numerical variable (neither does this

study). Unlike expertise, the second characteristic (creativity) is defined with a set of

numerical metrics. As explained in the introduction of this chapter, there are two

measures of creativity: apriori Divergent Thinking test scores, and aposteriori ideation

metrics. The following discussion about the type of variable holds true for both

characterizations of creativity.

Both measures characterize a participating designer’s creativity. The main intention

behind separating the two is that the former is a potential measure which can be used for

selecting the appropriate participants for the designed experiment. On the other hand,

ideation metrics are characterizations of the designers’ actual outcome. It is possible to

92

treat creativity as a class variable by setting a threshold value above which the designer is

considered creative. Except for a few classifier models (for aposteriori ideation metrics)

discussed for experiment II, creativity is characterized as a numerical variable. There are

two reasons. One is that both the test and the outcome consist of several independent

measures. It is less likely to find one designer who excels on all measures to label him or

her creative, much less many designers. The other reason is the limited resources for the

experiments with regard to recruiting participants. The creativity test scores could not be

used to screen creative and non-creative participants from a larger pool. There were not

many participants to recruit, and conducting the apriori test for a large pool would be

resource consuming. Instead, the creativity test scores serve two purposes. First, they

provide a basis for determining how well the recruited participants represent the

population of designers. This can be done by comparing participants’ test scores to a

large historic sample. Second, they can be used for tracking participants’ evolution in

becoming more creative. This can be achieved by following the change from participants’

potential creativity determined by the test to the actual creativity determined by the

ideation metrics on the outcome of assigned design tasks.

The Divergent Thinking test [99] has four direct and four indirect measures. The four

direct measures are fluency, flexibility, originality, and quality. The indirect measures

relate more to cognitive processes. Therefore they are not considered here. The direct

measures on the other hand relate more to outcome. They correspond to the ideation

metrics defined in [24]. Fluency, flexibility, originality, and quality correspond to

quantity, variety, novelty, and quality of ideas respectively.

93

For the three experiments in this research, four groups of designers participated in the

study from the fall of 2011 through fall of 2014. There was one group of experts and 3

groups of novice students. The first group from fall of 2011 (labeled F11E) consisted of

eight expert designers from the industry (a consumer electronics company). The second

group of participants was about sixty students of an undergrad mechanical design course.

The third and the fourth group of participants were mechanical engineering graduate

students of an advanced product design course during the fall of 2013 (F13G) and 2014

(F14G). The apriori assessment of the participants’ creativity (with the Divergent

Thinking test [99]) was done for all groups except the undergrad students (F12U);

conducting and scoring the test was unfeasible for the sixty undergrad participants. In

addition, the sample was large enough to ensure having a normal distribution in the

sample (more than 30 participants). The results of the Divergent Thinking test scores are

shown in Table 6.2. Except for max originality, the experts had a slightly higher score

compared to the students (though with a narrower distribution with a 0.59 STD). Overall,

the scores of originality and quality are closer to a historic sample compared to fluency

and flexibility; see Figure 6.6.

Table 6.2. Distribution of Participants’Divergent Thinking test [6] scores

Test

component

Mean STD Min-Max

F11E F13G F14G F11E F13G F14G F11E F13G F14G

Fluency 5.9 3.2 3.3 1.13 0.78 1.07 4.5-7.5 2-5 1.5-5.5

Flexibility 5.5 3.7 3.6 0.7 0.92 1.01 4.4-6.8 2.5-6 2-6.3

Originality 5.2 4.3 4.2 0.8 0.77 0.74 4-6.3 2.4-5.5 3-5.6

Max orig. 7.5 7.1 7.4 0.59 1.4 1.45 6.4-8.1 4.1-9.8 4.2-9.9

Quality 6.6 5.2 5.2 1.66 1.46 1.58 4.3-9.3 2.4-8 2-8

94

Figure 6.6 A historic sample of the Divergent Thinking test scores (from [99])

6.3 Characteristics of problem formulation

The characteristics of problem formulation are defined based on the P-maps ontology.

Different variables can be extracted from P-maps. There are two different ways to define

characteristics of problem definition expressed in P-maps. One is to define characteristics

of a state, and one is to define that of changes across states obeying certain conditions.

6.3.1 State characteristics

State characteristics can be defined as characteristics of accumulated data fragments

over a time period up to a point, the state. Therefore, the characteristic can be computed

by looking at that state alone, regardless of previous states. A simple example is the

number of instances of an entity such as requirements. To find this characteristic, one

does not need to know how the process was, e.g., whether most of the requirements were

95

added earlier in the process or if they were connected to other entities. Examples of

different state characteristics are given in Table 6.3.

Simple counts determine the number of instances of one type of entity such as

functions. The proportion characteristic is a normalized version of the simple counts and

can be useful in removing the effect of the design problem which often leads to different

numbers of expressed entities when the same designers work on different problems.

Another characteristic, isolated entities such as isolated artifacts, is the count of entities

which are not a part of any hierarchy within each group. This characteristic may refer to

unrelated fragments or ones which are independent of each other at a high level of

abstraction within an aspect of the problem since they are not further decomposed.

Table 6.3 Examples of P-maps state characteristics

Characteristic Description

Simple count Total instances of one entity

Proportion Proportion of instances of one entity to total instances

Isolated entities The number of entities in each category that are orphan, i.e.,

entities with no parents and children within a group

Disconnected

entities

The number of entities without any relation to entities in other

categories

Inter-group links The number of links between any two types of entities

Intergroup

alternatives

The sum of all alternatives for all the nodes in an entity

Hierarchy depth Maximum number of levels of hierarchy for each entity

Deepest entity The entity with the maximum hierarchy depth

Average

alternatives

The average number of alternatives (disjunctive branches) under

a node

96

Number of disconnected entities, e.g., disconnected functions, is the number of entities

within each category which are not related to other categories. Such a characteristic can

relate to the inability in understanding the relationships among different aspect of the

problem formulation. A designer may consider different environmental or usability

factors that affect a given design problem (high number of use scenarios), but fail to

identify how these factors situate the requirements or what interactions (affordances) are

at play in the proposed artifacts. On the other hand, the number of inter-group links and

intergroup alternatives highlight the relationships that the designer finds among different

categories, and the different number of ways problem formulation fragments relate

respectively. Hierarchy depth and the deepest entity characteristics give an idea about

what aspects of the problem formulation the designer focuses on at a state in time.

The proposed characteristics may seem to correlate or co-vary which one should take

into account when studying them in relation to other dependent variables. However, the

characteristics by definition are not correlated. For example, one might suggest that the

number of disconnected entities co-vary with the number of inter-group links. This is not

always true. For example, there can be a few requirements that are disconnected but the

number of links is high between requirements and functions and few or non-existent

between requirements and the other five categories. Another example is hierarchy depth

and the deepest entity characteristics. In comparing two different designers at the same

state (after the same amount of time spent or after the same number of actions taken), one

might find that both have decomposed the functions to four levels but the deepest entity

for one is functions while the other has expanded the requirements entity the furthest.

97

Finally, the average alternative characteristic can show the number of proposed

alternatives per node in any category.

6.3.2 Examples of state characteristics

To show how these characteristics can be computed let us consider an example of a P-

map of a problem where one should design a human-operated device which collects scrap

from a field. Since the Problem Formulator testbed provides multiple views of the data, it

is convenient to describe the example through those views. Figure 6.7 shows a snapshot

of a P-map state taken from the main GUI of the testbed. The tree view in Figure 6.8

provides a clearer way to show the disjunctions. Inter-group links are easier to count in

the network view of Figure 6.9. With these views, some state characteristics for this

example can be counted. The main GUI snapshot shows the total number of requirements

to be 6. There are 3 requirements which are not in relation to other requirements, hence

isolated. The number of disconnected requirements (with no links to other entity types)

can be found from the network view; it is 3.

It can be seen that the number of isolated and disconnected entities are not related to

each other. The requirement “should collect scrap” is both isolated and disconnected;

“should avoid obstacles” is isolated but not disconnected from other entities (it is related

to an issue); “obj: max points” is not isolated but disconnected. Figure 6.9 also shows that

there are two links between the requirement and the function categories, one of which is

highlighted in the figure. from the first snapshot it is easy to find that use scenarios have a

hierarchy depth of 3 while functions are the deepest entity. To compute the average

number of proposed alternative function decompositions at the second level of the

98

function hierarchy one can see Figure 6.8 where there are 6 disjunctive branches under

the 4 nodes. A summary of some characteristics is in Table 6.4.

Figure 6.7 A snapshot of a P-map for the state counts example

99

Figure 6.8 Tree view for the state counts example

Requirement

Issue

Use scenario

Function

Artifact

Behavior

Figure 6.9 Network view of the state counts example

100

Table 6.4 An example of state counts for a P-map

Characteristic Example Value

Simple count Requirements 6

Isolated entities Isolated requirements 3

Isolated entities Isolated functions 0

Disconnected

entities

Disconnected requirements 3

Disconnected

entities

Disconnected functions 3

Hierarchy depth Use scenario depth 3

Deepest entity Deepest entity function

Inter-group links Requirement-Function links 2

Average alternatives Average alternative functions (at the second level) 6/4

6.3.3 Process characteristics (strategies)

The second type of characteristic deals with specific changes across states,

representing a pattern often corresponding to a strategic move. The emphasis on the

specificity of the changes is because one can in a way define the state characteristics

which were presented in the previous chapter as process characteristics too, though

between a blank start state and the state which is being measured. The number of

functions as a state characteristic can be assumed as the changes in the number of

functions from the start state. There are also characteristics that relate to changes in time

but are not necessarily representing a strategy. Consider a sequence of different entity

types added in a P-map, e.g., ‘requirement, function, requirement, artifact, function,

function’ and a timestamp assigned to them based on the order of addition, i.e., 1 through

6. A variable can be defined as the median of occurrences of an entity. In the given

101

sequence, requirements are added at times 1 and 3, and functions are added at times 2, 5,

and6, thus the median of occurrences of requirements and functions are 2 and 5

respectively; there are even number of requirements and odd number of functions,

therefore, median of 1 and 3 is 2, and median of 2, 5, and 6 is 5. This is a process

characteristic which does not represent a specific strategy.

Number of occurrences of a strategy is a characteristic of problem formulation. P-

maps can be used to represent and formalize strategies that designers adopt. A general

description of a formalized strategy is defined by a set of conditions that occur across

states during the development of P-maps. The strategies which are looked for are chosen

based on the hypotheses that will be examined in the experiments. They are identified in

the literature relating to creativity or expertise. One strategy is abstraction in problem

definition. When defining a problem, a designer can add more detail to a fragment or

entity, or generalize it. The ability to abstract concepts is considered a key in creative

design [21]. To see whether a designer has employed an abstraction strategy during an

interval, one can state the conditions as the changes within the interval. For the

abstraction strategy, the conditions can be stated as if: a) entity E1 added at time T1, b)

entity E2 added at time T2, c) E2 is a child of E1, and d) E1 is added after E1 or T1>T2.

Other strategies relate to: exploring entities in depth rather than breadth [39]; following a

systematic order in decomposing different aspects of the problem either as it is observed

in practice [38] or as prescribed in design textbooks [31]; identifying conflicts and

tradeoffs [77]. These strategies are defined in Table 6.5. The two strategies order req_use

and order req_fun are similar to the forward order but at a micro-level. They are

considered specifically because they focus on problem-oriented aspects of P-maps

102

entities. Strategies order req_use, order req_fun, and forward order relate to testing

hypothesis H1_a which compares experts to novices in exploring problem definition;

novices are expected to be systematic while experts are expected to be opportunistic. The

entity depth prevalence relates to testing hypothesis H2_a which states that depth-first

exploration leads to more creativity. It should also be noted that problem formulation

strategies are not limited to the ones identified so far. There can be many other strategies.

Search, proposition, and formalization of new strategies is a part of future work which

will be discussed in section 11.3.

Table 6.5 List of formalized problem formulation strategies

Strategy Definition Conditions
Abstraction The designer refers

to a more general

aspect at a higher

level

Entity parent added at time t1

Entity child added at time t2

t1>t2

Entity depth

prevalence

The designer

develops details of

an aspect in depth

before relating it to

other categories

Entity parent of type A added at time t1

Entity child of type A added at time t2

Entity of type B added at time t3

Entity of type B related to parent entity of type A at time t4

t4>t2

Forward order The designer follows

a specific order from

requirements to

issues

Any subset of entities requirement, use scenario, function,

artifact, behavior, issue are added at time t1 through t6

Any pair of added entities is linked at time t7, t8, etc.

t1<t2…<t6

t6<t7<t8…

Order req_use The designer follows

a specific order

adding use scenarios

after all related

requirements

A requirement is added at time t1

A use scenario is related to the requirement at time t2

Entity of other type added at time t3 and related to the

requirement at time t4

t2<t3<t4

Order req_fun The designer follows

a specific order

adding functions

after all related

requirements

A requirement is added at time t1

A function is related to the requirement at time t2

Entity of other type added at time t3 and related to the

requirement at time t4

t2<t3<t4

Conflict

identification

The designer

identifies an issue

about conflicting

requirements

Requirement R1 is added at time t1

Requirement R2 is added at time t2

Issue I1 is added at time t3

I1 is related to R1 and R2

103

6.3.4 Examples of strategies

To clarify how these strategies are found in P-maps the mechanism of tracing their

occurrences should be explained. To trace occurrences of strategies, first P-maps

fragments are written as predicates (logic statements). Second, the strategy is formally

declared as a set of logical statements that has certain conditions. Third, an Answer Set

Programming (ASP) [101, 102] grounder/solver is used to trace occurrences of strategies

by finding matches for the conditions among the P-maps predicates. The reasons for

choosing ASP are:

· Ease of analysis in a declarative syntax compared to procedural programming.

· Simplicity of the logical formalism that makes encoded fragments easily

readable and close to natural language.

· Ease of performing automated reasoning over the P-maps predicates.

· Easy conversion of P-maps data from a conventional database to an ASP

representation.

Answer set programs consist of two main components: facts, which are the ground

literals over which the system reasons, and rules, which are used to perform logical

reasoning over the facts. Predicates are represented with a name followed by braces

which contain the values of the attributes that define the predicate. P-maps data fragments

can be easily represented as predicates. The requirement ‘should collect scrap’ in the P-

maps shown in Figure 6.7 can be represented as the predicate

requirement(should_collect_scrap,1) where 1 shows the time when the requirement was

added.

104

To explain the tracing mechanism let us introduce a definition of states in the P-maps

framework. The definition may seem to be arbitrary considering the fact that it is difficult

to clearly define boundaries of mental states for human subjects. Consider the simple case

where any change such as the addition of a new instance of an entity, specifying an

attribute of an existing entity, or relating two instances is an operator that alters the

current state into a new state. Strategies can be traced by comparing two states in an

interval during which one expects the strategy to be employed. Going back to the

example of the abstraction strategy, one can look for the states that include parent-child

relations. The states that contain the parent, the child, and the parent-child relation are

located. If the state that has the parent occurs after the state that has the child, it indicates

that the designer followed an abstraction strategy. The representation of each state as a

predicate will be:

State at T1: requirement(rq1,t1).

State at T2: requirement(rq2,t2).

State at T3: parent_child(rq2,rq1,hy1).

where T1<T2 or t1<t2. Instances of strategies are traced using an ASP solver program.

The Potassco ASP solver [103] is used in this work. In most ASP solvers, a predicate that

ends with a dot represents a fact, the head of a rule is separated from the body by colon

and dash, and variables are capitalized while instances are in lower case. The abstraction

strategy that was previously illustrated can be traced by using an ASP solver and

applying the following rule to all the predicates (facts) that are derived from a P-map:

105

strategy(abstraction,Entity_parent):- entity(Entity_parent,T_parent),

entity(Entity_child,T_child),

parent_of(Entity_parent,Entity_child,T_parent_of), T_parent>T_child.

The rule matches against a parent entity whose creation is later than that of its child.

For any entity that matches against the rule, an answer is generated with a predicate

“strategy(abstraction,Entity_parent)”. Tracing the forward order strategy requires a more

complex set of rules. To formally state the strategy with respect to P-maps one should

look at each requirement to see if it is situated by a use scenario before being related to

other entities. One should include all possible combinations of relations for this strategy

(depending on what relations exist between a requirement and other entities). Two

possible combinations are shown in Figure 6.10.

The ASP rules for all the strategies of Table 6.5 can be found in the appendices

(Appendix B). The number of occurrences of each of the defined strategies provides a set

of P-maps variables. Earlier in this section, state counts were defined. The two types of

characteristics identified in this section, i.e., state counts and counts of occurrences of

strategies are the problem formulation characteristics which will be used as the input

variables to the experiments. The next section describes the characteristics of creative.

106

Figure 6.10 ASP encoding of the forward order strategy

6.4 Characteristics of creative outcome

The last part to define before describing the design of experiments is the

characteristics of creative outcome. Earlier in this chapter a distinction was made

between two sources of creativity data: the apriori Divergent Thinking test scores, the

aposteriori ideation metrics. This section describes how the ideation metrics are found in

the data as a characteristic of creative outcome. Before explaining this process it is

necessary to provide an operational definition of creativity to justify the methods of

creativity assessment used in this research. First, most definitions of creativity are related

to creative outcome. As it was explained in chapter 1, it has been an accepted notion to

evaluate a person’s creativity by evaluating a measure of outcome. Amabile [5]

introduced consensual assessment as an appropriate way of measuring creativity. She

strategy(forward_order,Requirement):-

situates(Usescenario,Requirement,T_situates),

satisfies(Function,Requirement,T_satisfies),

fulfills(Artifact,Requirement,T_fulfills),

manages(Behavior,Requirement,T_manages),

relates(Issue,Requirement,T_related),

T_situates <T_satisfies , T_situates<T_fulfills,

T_situates<T_manages, T_situates<T_related.

strategy(forward_order,Requirement):-

situates(Usescenario,Requirement,T_situates),

fulfills(Artifact,Requirement,T_fulfills),

manages(Behavior,Requirement,T_manages),

T_situates<T_fulfills, T_situates<T_manages.

107

argued that an aggregate of several judges’ subjective assessment can be used to measure

creativity. Second, the majority of definitions of creativity deem an idea creative if it is

both novel and feasible; if an idea is novel but impractical it cannot be considered

creative, nor is it creative if it can be carried out but lacks originality. However,

originality can be framed in reference to the person or to history. Boden [6] called it

Psychological creativity if a person comes up with an idea that is new to the person

regardless of how many people have had that idea before. Historical creativity on the

other hand happens when a person comes up with an idea that is globally unprecedented.

Third, according to Csikszentmihalyi [104], creativity should be recognized and validated

by different experts within a domain as a culture with symbolic rules. Finally, Ward et al.

[105] describe creativity as a continuum not a discrete event. Creativity does not stop

with one idea, and thus cannot be measured without considering the different ideas that a

person thinks about and expresses in solving a problem. Considering these points, the

following is my operational definition of creativity:

“Creativity in design relates to the ability of the designer to come up with as many

ideas as possible that are not similar to each other, are new to the person and the

surrounding community, are feasible, and are recognized as such by more than one

expert.”

The ideation metrics of Shah et al. [10] are well-established in design research which

underlie the definition of creativity provided above. They consist of quantity, variety,

novelty, and quality. Quantity measures the total number of generated ideas. Generated

ideas, especially when the problem is decomposed into multiple sub-problems might have

overlaps and duplicates for some sub-problems. Variety takes into account similarity of

108

generated ideas. Novelty is a measure of how rare generated ideas are. It is measured in

comparison to ideas generated by others in the same study sample or in a historic pool.

Quality measures whether an idea is feasible or if it meets the design requirements.

To calculate these measures, the design is decomposed into its desired key functions.

Weights can be assigned to each function. Every generated idea is evaluated with respect

to the key functions and the solution for each function is described. If the solution for a

function is similar to a previously identified idea, the same description or name is used.

The collection of all the ideas gathered in this manner from all participants creates an

inventory of solutions for key functions. Quantity will be the total number of ideas for all

functions found by a participant. Variety will be the total number of unique ideas for all

functions found by a participant. To find novelty, first all unique ideas found by each

participant for each function are counted. Then the number of participants who specified

a solution for a function is counted. A novelty score for each function is found by

determining how rare the idea is, i.e., if all participants have the idea, the novelty score

for that idea is the lowest; if only one participants has the idea, the novelty score for that

idea is the highest. The novelty score for a design is the sum or weighted sum of the

novelty scores of all functions. The novelty score of the participant is the average of

novelty scores of all generated ideas by the participant. Quality can be assessed by a

panel of expert judges who assign a score to each idea generated for each function. The

quality score for a design is the sum or weighted sum of the quality scores of all

functions. The final quality score of a participant is the average of quality scores of all

ideas.

109

The described procedure was done for the experiments II and III involving finding

creative outcome characteristics. Since the same procedure was used in the related design

problems an example is provided in this section to avoid repeating the same procedure in

both experiments (each of which involving several design problems). The example is for

the goofy gopher problem (DP_3) introduced in section 6.1. In this study, the data for

calculating ideation metrics came from sketches collected for each problem. A sample

sketch for DP_3 can be seen in Figure 6.11. A panel of three judges chose the desired key

functions as follows with the corresponding weights: move 0.2, aim 0.2, collect 0.4, store

0.05, score 0.1, and interfere or block 0.05. Four wheels, single collection and continuous

dumping, scoop, platform, high ramp, and using suction to hold the opponent are the

descriptions given for each of the aforementioned functions found in the sketch in

Figure 6.11.

Inventories of concepts were created for each problem from a union of the solutions

found from participant’s sketches as explained above. Table 6.6 shows a sample from the

inventory for the DP_3. In this sample inventory for two participants, it can be seen that

both have ‘scoop’ as a solution for collect. This means that this idea has the lowest

novelty score. In contrast, participant B has two unique ideas (vacuum and gripper).

Since collect has the highest weight, the novelty score for each of the two ideas and in

turn the final novelty score for participant B will be higher. Quantity and variety can also

be found for each participant. Participant A has a total of 11 ideas for the 6 functions, 10

of which are unique. Participant B has a total of 25 ideas, 15 of which are unique. All

scores are normalized on a scale of 1-10. Therefore, for the given inventory, quantity and

variety scores are 4.4 and 10 for participant A, and are 10 and 6.6 for participant B.

110

Figure 6.11 A sketch of a concept solution for the goofy gopher problem (DP_3)

Table 6.6. A sample concept inventory for the Gopher problem (DP_3)

Partic. Move Aim Collect Store Score Interfere/block

A 4

wheels

Single collection

continuous score

Scoop Platform High ramp Suction holds

opponent

A Tracks Single collect and

score

Vacuum Platform Conveyor -

B 4

wheels

Single collect and

score

Gripper Platform Elevator -

B 4

wheels

Single collect and

score

Scoop - Catapult -

B 4

wheels

Single collection

continuous score

Scoop Platform High ramp Suction holds

opponent

B - Multi collect and

score

Sweeper Box Blow Blow balls away

from opponent

6.5 Design of experiments

In search for answers to the research questions a few hypotheses were stated. To test

the stated hypotheses three sets of experiments were designed. Before explaining the

design of experiments let us review the stated hypotheses:

111

H1_a) Novice designers follow a systematic order in expressing problem

formulation while experts have a more opportunistic behavior.

H1_b) Experts find key issues early on during problem formulation while novices

find more issues and later in the formulation process.

H2_a) Depth-first exploration of problem formulation entities leads to more

creativity.

H2_b) Creativity can be improved in novice designers by teaching them

characteristics of good problem formulation.

H3) Creativity in design outcome can be predicted with an acceptable degree of

confidence from problem formulation behavior.

Each of the experiments examines one or two of the hypotheses. The objective of the

first experiment is to show differences within and between novices and experts in

problem formulation. Hypotheses H1_a and H1_b specifically state differences between

novices and experts. 2-sample t-test can be used to test differences of means of problem

formulation characteristics. Descriptive statistics can show other differences among

participants and possibly lead to proposing new hypotheses. Unsupervised data mining

methods such as sequence mining can reveal patterns within participants which may lead

to generating other hypotheses.

The second experiment is about understanding the relation between problem

formulation and ideation. This provides the answer to the main research question and also

facilitates testing hypotheses H2_a and H2_b. The experiment involves finding

correlations between pairs of problem formulation characteristics and ideation metrics. It

also includes building regression and classifier models with formulation characteristics as

112

the independent variables and ideation metrics as the dependent variables. Testing

hypothesis H2_b requires examining whether creativity is improving along a timeline

which involves formulating several problems. Test of differences in means of ideation

metrics for those problems facilitates testing hypothesis H2_b.

The third experiment examines if creativity can be predicted from problem

formulation, testing hypothesis H3. The results of the second experiment provide models

of ideation metrics with respect to problem formulation characteristics. The models built

based on one problem can be used to predict the creativity metrics for another problem.

The differences between actual and predicted scores can be examined with paired t-test.

The differences are expected to be zero. This can be tested with certain degree of

confidence. The details of testing the hypotheses and whether they are proven or rejected

will be described for each experiment in the following three chapters. The design of the

experiment is summarized in Table 6.7. It should be stated that although it would be

preferable to give different groups of designers the same design problems (block the

design of the experiment against the “design problem” factor and considering it as a noise

variable), especially in comparing experts and novices, this was not possible because of

familiarity of some participating designers with design problems. The DP_1 problem

assigned to the experts (F11E) was in a design textbook and given as a project to some of

the participants in F12U. Additionally, there was some material about DP_1 available

online when initial results of this research was published. Familiarity of the participants

with the design task would have been a far more serious flaw in the design of the

experiments compared to differences in problems. Finding problems that are similar with

113

respect to the characteristics discussed in section 6.1 is one of the challenges in this study

which is also explained in section 11.2.

Table 6.7 The design of experiments

 Experiment I Experiment II Experiment III

Objective Showing differences

within and between

experts and novices

Understanding the

relation between

problem formulation

and creativity

Predicting

creativity from

problem

formulation

Input Problem formulation

characteristics

Problem formulation

characteristics

Ideation metrics

Formulation-

ideation models

Ideation metrics

Collected

data

Protocol P-maps

Testbed P-maps

DT test scores

Protocol P-maps

Testbed P-maps

Sketches

Testbed P-maps

Paper sketches

Design

problems

DP_1, DP_2, DP_3,

DP_4, DP_5

DP_1, DP_3, DP_4,

DP_5

DP_4, DP_5

Participants F11E, F12U, F13G,

F14G

F11E, F14G F14G

Analysis

methods

Descriptive statistics

Test of differences (2-

sample t-test)

Unsupervised data

mining

Correlation analysis

Regression analysis

Supervised data

mining

Test of differences

Regression analysis

Test of differences

(Paired t-test)

Descriptive

statistics

Output Differences in

formulation

characteristics

Models of ideation

vs. formulation

Differences in

ideation metrics

Differences

between predicted

and actual ideation

Hypotheses

tested

H1_a, H1_b H2_a, H2_b H3

114

CHAPTER 7

EXPERIMENT I: DIFFERENCES IN EXPERTS AND NOVICES

One of the fundamental research questions in this study is to understand how different

designers formulate problems. Several characteristics might differentiate designers from

each other. One characteristic is the level of expertise. Many studies of designer thinking

are about differences between experts and novices [2]. Learning these differences can

lead to recommendations for successful designing. The objective of the first experiment

is to understand how experts formulate problems differently from novices. To know if

such differences are due to level of expertise, it is useful to learn if differences in problem

formulation occur also within each of the expert or novice groups. In addition, problem

formulation is an understudied subject and learning about how any of expert or novice

groups perform adds to our knowledge of the phenomenon. Therefore, in addition to

testing hypotheses, additional findings in this experiment can be considered a part of an

exploratory study. Representing differences within each of the expert and novice groups

also leads to such findings. Observations will be reported about trends in each group and

significant differences between groups, but two specific hypotheses will also be tested.

These two hypotheses are based on an earlier exploratory study [77] which was explained

in section 3.1. They are:

H1_a) Novices follow a systematic order in expressing problem formulation while

experts have a more opportunistic behavior.

H1_b) Experts find key issues early on during problem formulation while novices

find more issues and later in the formulation process.

115

Trends in problem formulation characteristics will also be shown within novices. If

there is a positive correlation between a problem formulation characteristic and a

creativity measure in different problems, and if there is a positive trend in both the

problem formulation characteristic and the creativity measure, then it can be inferred that

problem formulation can be improved with practice in novices. Finding the relation

between problem formulation characteristics and creativity is done in Experiment II.

Therefore, the trends found in this experiment will be used in examining if creativity can

be improved among novices with practice (H2_b in Experiment II). In order to achieve

the objectives of Experiment I, data was collected from experts and novices, problem

formulation characteristic were extracted, and differences between and within the two

groups were represented.

7.1 Collected data

To find the differences between and within experts and novices problem formulation

data was collected from four groups of participants. The first group, F11E, consisted of

eight expert designers in a consumer electronics company. They were asked to think

aloud while they worked on the water sampler problem (DP_1) in an hour-long session.

They were videotaped and their notes and sketches were also collected. The second group

of participants, F12U, was about sixty undergrad students. They were asked to work on

the can crusher problem (DP_2) in the Problem Formulator testbed. The third and the

fourth group of participants were mechanical engineering graduate students (F13G and

F14G). The F13G group worked on the goofy gopher (DP_3) and the autonomous

116

surveillance vehicle (DP_5) in the Formulator. The F14G group worked on DP_3 and

DP_5 in addition to the shot buddy problem (DP_4) in the Formulator.

For this experiment, problem formulation characteristics were analyzed. While the

data collected from the students in the Formulator was readily described in the P-maps

ontology, the protocols collected from the experts had to be encoded into P-maps.

Transcription, segmentation, and coding of protocols into P-maps were carried out

similarly to the protocol analysis process described in sections 3.1 and 3.2 with one

difference. There was a predefined coding schema: the P-maps ontology. While the

protocol analysis method described in Chapter 3 led to the development of P-maps

ontology, protocol analysis for this experiment led to coded data within the P-maps

ontological framework. Using a predefined coding schema is not common when using

protocol analysis, but it is not unprecedented; an example is Pourmohamadi and Gero

[50] who used F-B-S [48] as a coding schema. Protocols of the eight experts were coded

into P-maps through a process of arbitration between two expert researchers. A sample

protocol with coding is given in Appendix C.

The problem formulation characteristics which were analyzed in this experiment were

some state counts and a few strategies. Three of the state counts were considered:

· The counts of each entity (e.g., total number of requirements).

· Percentages of entities (e.g., total number of issues divided by total number of

all entities).

· Median occurrence of entities (e.g., the relative position where half of the

issues were added if the position of the first and last entities were considered 0

and 1 respectively).

117

Besides the state counts, occurrences of three strategies were traced and counted. They

were abstraction, forward order, and entity depth prevalence. It should be noted that the

data collected from groups F11E and F12U was based on an earlier version of the

ontology which did not have the Use scenarios entity. Therefore, all strategies and all

state counts were not considered in examining the differences between and within experts

and novices. It was still possible to use the problem formulation characteristics which

were considered to test the hypotheses stated for this experiment. Some of the problem

formulation characteristics which were chosen specifically relate to testing hypotheses

H1_a and H1_b. The forward order strategy is used in testing H1_a. The percentage of

issues and median occurrence of issues are used in testing H1_b.

7.2 Analysis method

To show the differences within each group of participants and between experts and

novices, the collected data was analyzed in two ways. One was to use simple data

visualization and descriptive statistics. Three types of plots were mostly used in

describing differences among designers. They are time series plot, run chart (also known

as sequence plot), and Boxplot. Time series plots are mainly used to show how many

entities of different types designers add during formulating a problem. Sequence plots or

run charts are similar to time series plots with a slight difference. While in time series

plots the Y axis is a numerical variable (e.g., count of added variables up to the time on

the X axis), in the sequence plot the Y axis is a set of nominal variables (e.g., name of the

entity types). Sequence plots can show the duration of attention paid to a specific entity

and the frequency of shift in attention to different entities. Boxplots are another

118

descriptive statistics tool to show differences among designers or groups of designers.

Boxplots provide a compact representation of the tendency (median) and the dispersion

(range and interquartile range) in the data.

The other method of analysis that was used was test of means with 2-sample t-test. In

order to understand if the differences between two groups of designers are statistically

significant, a hypothesis test of differences between the means of specific variables

should be done. The stated hypotheses described earlier should be translated into formal

hypotheses of differences in means accordingly. For example, hypothesis H3 states that

experts find issues earlier than novices and novices add more issues. This can be restated

as the difference between two means for variables explained in the previous section: total

number of issues, and median occurrence of issues. T-test is used for hypotheses test on

the difference in means of two samples when their variances are unknown. There are two

cases. When the unknown variances are considered equal, t-statistic with 𝑛1 + 𝑛2 − 2

degrees of freedom is used. When variances cannot be considered equal, an approximate

t-statistic and degree of freedom are used:

𝑇0
∗ =

𝑋1̅̅̅̅ −𝑋2̅̅̅̅ −∆0

√
𝑆1
2

𝑛1
+
𝑆2
2

𝑛2

 , and 𝑣 =
(
𝑆1
2

𝑛1
+
𝑆2
2

𝑛2
)

2

(

 𝑠1
2

𝑛1
⁄

)

2

𝑛1−1
+
(

 𝑠2
2

𝑛2
⁄

)

2

𝑛2−1

where 𝑋1̅̅ ̅ and 𝑋2̅̅ ̅ are sample means and 𝑆1
2 and 𝑆2

2 are sample variances. The null

hypothesis that is tested assumes that the difference in the means is equal to an amount

∆0 (which is often assumed zero), i.e., 𝐻0:𝜇1 − 𝜇2 = ∆0. One benefit of t-tests in test of

differences of means is that they are often valid even when the populations moderately

119

deviate from normality [106]. Confidence intervals are also found using the 𝑇0
∗

approximation. An approximate 100(1 − 𝛼)% confidence interval on the difference in

means 𝜇1 − 𝜇2 is found from:

𝑥1̅̅̅ −𝑥2̅̅ ̅ ± 𝑡𝛼 2⁄ ,𝑣
√
𝑠1
2

𝑛1
+
𝑠2
2

𝑛2

In addition to testing specific hypotheses and searching for differences within of

participants, search for similarities and patterns can lead to new observations and

generating new hypotheses. Once a large number of P-maps are collected, data mining

can be used to search for patterns. One method that was used with P-maps is sequence

mining. P-maps can be written as a sequence of the entities, attributes, and links that a

designer adds in the order of creation. The sequences can be searched for frequent sub-

sequences with high measure of support; that is to see how frequently a partial order of

the entities appeared among different designers [107]. Sequence mining could be used to

test hypothesis H1_a which stated that novices follow a systematic order in expressing

problem formulation. However, occurrences of strategies relating to specific orders were

better characteristics for testing H1_a. Sequence mining among novices revealed another

pattern.

7.3 Results and conclusions

7.3.1 Representing differences within experts

To demonstrate the differences in problem formulation within experts, the coded

protocols of the eight expert designers (F11E) working on the water sampling problem

(DP_1) were analyzed. The P-maps data model for this data set does not include Use

120

scenarios. The overall number of entities within the five entity types were plotted over a

normalized timescale to eliminate differences in the length of the design sessions. Each

coded predicate equaled one time step. Figure 7.1 shows the normalized time series plot

for two experts. One expert specified more problem-related entities of the design by

continuously adding new requirements and functions. Contrastingly, the other expert

focused on solution-related entities, especially by specifying more behaviors. The

designer that defined requirements throughout the design process was atypical and in

fact, the other designers specified requirements towards the beginning of their sessions.

Figure 7.1 Time series plots of entities for two experts (from [108])

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Time (% of the design session)

N
o

.
o

f
e
n

ti
ti

e
s

Requirements

Functions

Artifacts

Behaviors

Issues

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Time (% of the design session)

N
o

.
o

f
e
n

ti
ti

e
s

Requirements

Functions

Artifacts

Behaviors

Issues

121

Although designers have different styles of problem solving that are not dependent on

the solution [20], there are some similarities in the ways in which they move among the

five groups of entities. To see whether or not the designers formulated the problem in a

similar order, run charts were used. Figure 7.2 compares how two designers (different

from those compared in Figure 7.1) moved among the five groups of entities. The

iterations show that the process of defining artifacts, behaviors, and functions was

strongly intertwined. However, one designer (the top graph) develops an entity type

before moving to another entity type of the problem, while the other designer (the bottom

graph) quickly shifts attention to different entities.

Figure 7.2 Comparison of iterations among entities for two experts (from [108])

In general, the eight experts often went back and forth quickly between defining their

artifacts and their functions. For those who also spent substantial effort identifying

0 10 20 30 40 50 60 70 80 90 100

Requirements

Functions

Artifacts

Behaviors

Issues

0 10 20 30 40 50 60 70 80 90 100

Requirements

Functions

Artifacts

Behaviors

Issues

122

behaviors, the behaviors were often intertwined with functions and artifacts. Another

interpretation of the drawn run charts is to characterize designers’ attention with the

duration of micro-level intervals of staying on one type of entity during problem

formulation. While the top graph shows attention intervals of a relatively equal length

throughout problem formulation, the bottom graph shows a change from long attention to

an entity type to short attention spans to an entity. This suggests that in addition to

characterizing designers with depth-first vs. breadth-first exploration of entities, it is

possible that different combinations of both exploration strategies are present among

designers.

7.3.2 Representing differences within novices

Data has been collected from three groups of novices; one group of undergrads and

two groups of grad students. This provides an opportunity to look into difference within

novices in more than one way. First, the two groups of grad students (F13G and F14G)

were compared. Both groups had taken the same course and had worked on three design

problems in similar situations. It was possible to look at changes in problem formulation

characteristics along the course timeline and for the two years. The rates of occurrences

of two problem formulation strategies were compared.

Figure 7.3 and Figure 7.4 show the changes in the number of times the students

adopted the abstraction and entity depth prevalence strategies in the two groups for three

design problems. It can be seen that in both groups, there was a rise in the adoption of the

strategies throughout the course, even though there was a wider distribution among

students of 2013.

123

Figure 7.3 Comparing trends in using abstraction for two classes of students

Figure 7.4 Trends in using entity-depth-prevalence for two groups of students

DP_5DP_4DP_3

12

10

8

6

4

2

0

DP_5DP_4DP_3

F13G

Problem

N
u

m
b
e
r

o
f

ti
m

e
s

u
se

d
F14G

Trend in using abstraction

DP_5DP_4DP_3

30

25

20

15

10

5

0

DP_5DP_4DP_3

F13G

Problem

N
u

m
b
e
r

o
f

ti
m

e
s

u
se

d

F14G

Trend in using entity depth prevalence

124

Examining the changes over time for one group of participants is another way of

finding differences within novices. This is done specifically in relation to hypothesis

H1_b. It states that experts find key issues early while novices find more issues and later

in the formulation process. Comparison of novice and experts will be shown later in this

section. Here, changes in percentage of issues (total number of issues divided by total

number of entities) and the time of adding issues across multiple problems can be

examined. The results of test of differences in means with two-sample t-test for one

group of students (F14G) are shown in Table 7.1 and Table 7.2. Participants worked on

problems DP_3, DP_4, and DP_5 in weeks 2, 6, and 10 of their design course.

Table 7.1 Changeinnovices’timeofdiscoveringissuesthrough practice

 Difference (normed median) 95% CI P-value

DP_3 – DP_4 -0.0246 (-0.1729, 0.1236) 0.734

DP_4 – DP_5 0.2008 (0.0600, 0.3415) 0.006

Table 7.2 Change in the % of issues novices discover through practice

 Difference % 95% CI P-value

DP_3 – DP_4 -0.02335 (-0.04296, -0.00375) 0.021

DP_4 – DP_5 0.0003 (-0.0202, 0.0208) 0.978

Toward the end of a semester-long course, problem after problem, the students

discovered issues earlier in formulating a design problem. The variable for which the

difference of means is tested is the median occurrence of issues. It specifies (on an

interval scale of 0-1) when half of the issues were added. The difference between DP_3

and DP_4 is insignificant but the median occurrences of issues shifts 0.2 of the duration

125

of the problem formulation to the beginning from DP_4 to DP_5 (median occurrence of

DP_4 is larger than DP_5, i.e., issues are added later in DP_4). In other words, the

students learn with practice to discover issues earlier. The students also learned to

identify more issues. Table 7.2 shows the differences in means with two-sample t-test for

the issues as a percentage of all entities. The results show that there was an increase of

about 2% in issues as a percentage of all entities from DP_3 to DP_4. There were no

significant changes between the last two problems.

In addition to showing differences within novices, search for patterns was conducted

using sequence mining. The largest data set for which sequence mining was done belongs

to the F12U group (about 60 undergrad students) working on the DP_2 problem.

Figure 7.5 shows a sequence collected from one of the students. Table 7.3 shows results

of the frequent sub-sequences with a support measure more than 0.5, indicating that they

occurred among more than half of the students. Not surprisingly, the common patterns

among the students are those of specifying a few requirements or functions in a row,

following a requirement with a function, and developing a hierarchy of requirements and

functions. None of the frequent sub-sequences have any of the other entities in the

ontology or linking entities after adding them. This may suggest that students are

problem-oriented rather than solution-oriented [34].

126

Figure 7.5 An example of a P-maps sequence

Table 7.3 Frequent sub-sequences with a support higher than 50%

Sequence Support

['requirement', 'function'] 0.59

['function', 'function', 'function'] 0.59

['requirement', 'requirement', 'requirement'] 0.62

['requirement', 'parent_of_requirement', 'requirement'] 0.51

['parent_of_requirement', 'requirement', 'requirement',

'parent_of_requirement', 'parent_of_requirement', 'requirement',

'requirement', 'parent_of_requirement']

0.54

['parent_of_function', 'function', 'function', 'parent_of_function',

'parent_of_function', 'function', 'function', 'parent_of_function']

0.57

7.3.3 Testing differences between experts and novices

The last part of Experiment II is to find differences between experts and novices.

Similarly to the search for differences between the two grad student groups, the first

comparison was made in the rate of adopting two strategies: abstraction and forward

order. The results are shown in Table 7.4. They suggest two things. One is that experts

‘requirement’, ‘function’, ‘requirement’, ‘parent_of_requirement’, ‘requirement’,

‘requirement’, ‘requirement’, ‘requirement’, ‘parent_of_requirement’, ‘requirement’,

‘parent_of_requirement’, ‘parent_of_requirement’, ‘requirement’, ‘requirement’,

‘parent_of_requirement’, ‘requirement’, ‘parent_of_requirement’, ‘function’,

‘function’, ‘function’, ‘parent_of_function’, ‘function’, ‘function’, ‘requirement’,

‘requirement’, ‘parent_of_requirement’, ‘requirement’, ‘requirement’,

‘parent_of_requirement’, ‘requirement’, ‘requirement’, ‘satisfies’, ‘satisfies’

127

use more abstraction than novices do. The difference in the means of occurrences of the

abstraction strategy are statistically significant (𝑇0
∗ =1.8416, 𝑣 ≅ 8, 𝜇1 − 𝜇2 =3.2, p =

0.041, and 95% CI [0.16,6.24]). The other is that novices are more likely to follow a

specific order, which in this context means that the designer adds entities in an order from

requirements to issues. The difference in the means of occurrences of the forward order

strategy are statistically significant (𝑇0
∗ =2.8466, 𝑣 ≅ 67, 𝜇1 − 𝜇2 =0.97, p = 0.006, and

95% CI [0.29,1.65]).

Table 7.4 Variations in adopting two strategies among students and experts

 Students (n=62) Experts (n=8)

 Abstraction Forward order Abstraction Forward order

Mean 2.9 1.1 6.1 0.13

Median 3 0 4.5 0

STD 2.7 2.5 3.6 0.35

To complete the test of hypothesis H1_b, the percentage of issues and the median

occurrences of issues were compared between novices and experts. The results are shown

in Table 7.5 and Table 7.6. The results suggest that the students discover fewer issues

compared to the experts (about 3% on their first problem). They also suggest that there is

no significant difference between students and experts in the time of discovering issues.

Table 7.5 Differences between experts and novices in the amount of issues

Novice (F14G) – Expert (F11E) Difference % 95% CI P-value

DP_3 – DP_1 -0.03612 (-0.05562, -0.01663) 0.001

DP_4 – DP_1 -0.01277 (-0.03139, 0.00585) 0.169

DP_5 – DP_1 -0.01305 (-0.03337, 0.00726) 0.199

128

Table 7.6 Differences between experts and novices in the time of adding issues

Novice (F14G) – Expert (F11E) Difference 95% CI P-value

DP_3 – DP_1 0.0541 (-0.1004, 0.2086) 0.470

DP_4 – DP_1 0.0788 (-0.0543, 0.2118) 0.230

DP_5 – DP_1 -0.1220 (-0.2689, 0.0249) 0.100

To summarize, the following conclusions can be made based on the inferences from

the collected data for Experiment I:

· Hypothesis H1_a stated that novice designers follow a systematic order in

expressing problem formulation while experts have a more opportunistic

behavior. The results of comparing the rate of adoption of the forward order

strategy (Table 7.4) showed that novices were more likely to follow adding

entities in the specific order from requirements to functions, artifacts,

behaviors, and issues. Hypothesis H1_a is therefore proven.

· Hypothesis H1_b stated that experts find key issues early on during problem

formulation while novices find more issues and later. Results of the test of

differences of means (Table 7.5 and Table 7.6) showed that novices discovered

fewer issues compared to experts, but there was no significant difference

between novices and experts in the time of discovering issues. Hypothesis

H1_b is therefore rejected.

In addition to testing hypotheses H1_a and H1_b, Experiment I also led to the

following findings:

· Experts use abstraction more than novices do (see Table 7.4).

129

· Based on novices’ frequent sub-sequences (in Table 7.3), a new hypothesis can

be proposed which states that novices are problem oriented.

· The experts’ run charts (Figure 7.2) suggest that at the micro-level, designers’

span of attention changes during problem formulation. While some designers

have a relatively constant attention span for each entity type, others may have

changing attention spans during problem formulation (e.g., from long focus on

an entity to quick shifts of attention across entities).

130

CHAPTER 8

EXPERIMENT II: RELATING FORMULATION TO CREATIVITY

The central hypothesis of this thesis is that problem formulation influences creativity.

To support this hypothesis, the relation between problem formulation and creativity

should be understood. The objective of the second experiment is to model this relation.

To build models of creative problem formulation, characteristics of problem formulation

and creativity should be defined. P-maps variables characterize problem formulation.

Divergent Thinking test scores [99] and ideation metrics [24] are apriori and aposteriori

characteristics of creativity. Understanding the relation between problem formulation and

creativity is the key to examining two of the stated hypotheses:

H2_a) Depth-first exploration of problem formulation entities leads to more

creativity.

H2_b) Creativity can be improved in novice designers by teaching them

characteristics of good problem formulation.

Examining hypothesis H2_a is about determining whether there is a significant

correlation between a specific strategy and creativity measures. Examining hypothesis

H2_b requires measuring the change in creativity across several problems. In the

previous experiment, there were observations of changes in problem formulation

characteristics. Progress in problem formulation that leads to improved creativity can be

evaluated with test of differences in means of ideation metrics across multiple problems

for the group as a whole (2-sample t-test), or for individuals (paired t-test). P-maps have

several characteristics of problem formulation. There are opportunities in finding other

131

significant relations in models of problem formulation characteristics with respect to

creativity measures.

8.1 Collected data

To understand the relationship between problem formulation and creativity and

progress in a course, two data sets were investigated. The first was the P-maps from

encoded protocols of the eight experts of F11E group working on problem DP_1, in

addition to their Divergent Thinking test scores. The second data set was the Formulator

testbed P-maps and concept sketches collected from the graduate students of F14G group.

They worked on problems DP_3, DP_4, and DP_5. Different problems are used for a few

reasons. One is to collect more data and have a larger sample. The other is to see if there

are trends that are common across different problems. Some analyses e.g., correlation are

less sensitive to the magnitude of the variables. When two sets of variables (a problem

formulation characteristics and an ideation metric) are examined for correlation, the

magnitude of scale for each variable does not affect the coefficient. In fact, the Pearson

correlation coefficient is invariant to separate linear transformations in each variable.

However, it should be noted that problem formulation characteristics in one problem are

not a linear transformation of the same characteristics in another problem. This is a

limitation in using more than one problem which will be discussed further in section 11.2.

Yet, insensitivity of the correlation analysis to variable scale, and discretization for

building classifiers are two remedies in dealing with this limitation. The problem

formulation characteristics which were analyzed in this experiment were:

· The counts of each entity (e.g., total number of requirements).

132

· The counts of each isolated entity (e.g., total number of functions which are

not in a hierarchy, i.e., they are neither a parent nor a child node).

· The counts of each disconnected entity (e.g., total number of requirements

which are not linked to any other entity type).

· The counts of occurrences of all strategies except forward order (it had no

occurrences for any of the problems).

Due to limited availability of the experts, they were not asked to continue their design

process from problem formulation to ideation. Therefore, ideation metrics could not be

used for them. Instead, their Divergent Thinking test scores were used as an apriori

measure of creativity. For the students, concept sketches were collected for each problem

and ideation metrics (quantity, variety, novelty, and quality) were found; the process was

described in 6.4. For some of the analyses, the best novel idea and the idea with the

highest quality were also considered. In those analyses, there are separate labels for

average and max novelty and quality. This takes into account that some designers might

generate many mediocre or good ideas but some designers come up with a few novel

ideas.

8.2 Analysis method

To model the relation between formulation and creativity four analysis methods are

applied. They are correlation analysis, multiple linear regression, decision trees, and test

of differences of means. Correlation analysis is an extension of linear regression except

that both variables of interest are jointly distributed random variables [106]. To determine

the significance of a correlation the appropriate statistic is:

133

𝑇0 =
𝑅√𝑛 − 2

√1 − 𝑅2

where 𝑅 is the correlation coefficient (square root of the coefficient of determination

which is found from the ratio of the sum of squares of regression 𝑆𝑆𝑅 to total sum of

squares 𝑆𝑆𝑇). 𝑇0 has a t distribution with 𝑛 − 2 degrees of freedom. Based on the value

of the t distribution for a desired 𝛼, values for statistically significant correlation

coefficients can be found.

While correlation analysis determines the relation between two variables, a multiple

linear regression model finds the relation between multiple independent variables and a

dependent variable. The general equation for a linear regression model with 𝑘

independent regressors is:

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 + 𝜖

where 𝛽𝑗 is the regression coefficient, which is the expected change in response 𝑌 per

unit change in 𝑥𝑗 when other regressors are held constant [106]. Regression coefficients

are estimated with the least square method. A few statistics are used to test the

significance of the model. One is to conduct analysis of variance. The 𝐹 statistic is used.

For a model built from 𝑛 observations

𝐹0 =
𝑀𝑆𝑅
𝑀𝑆𝐸

=

𝑆𝑆𝑅
𝑘⁄

𝑆𝑆𝐸
(𝑛 − 𝑝)⁄

where 𝑀𝑆𝑅 and 𝑀𝑆𝐸 are mean square of the regression and the residual error, and

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑅 (𝑝 = 𝑘 + 1, since 𝛽0 is the constant). The mean sums of square are

chi-square random variables, thus the regression is considered statistically significant

134

when 𝐹0 is larger than 𝑓𝛼,𝑘,𝑛−𝑝. Two other metrics for determining the significance of the

model are the coefficient of determination 𝑅2 and the adjusted coefficient 𝑅𝑎𝑑𝑗
2 . 𝑅2 can

be misleading as it is inflated with a large of number of regressors in the model. 𝑅𝑎𝑑𝑗
2

takes the number of regressors into account since:

𝑅𝑎𝑑𝑗
2 = 1 −

𝑆𝑆𝐸
(𝑛 − 𝑝)⁄

𝑆𝑆𝑇
(𝑛 − 1)⁄

In addition to testing the significance of the model, each regressor can be tested

individually. The t statistic is used and when |𝑇0| > 𝑡𝛼 2⁄ ,𝑛−𝑝 the regressor is statistically

significant at the specified 𝛼 level.

The correlation analysis and multiple linear regression find the relation between

numerical variables (nominal variables can be included in a multiple linear regression

model as independent variables, but they are not discussed here). To build a classifier (a

model for nominal dependent variables), supervised data mining methods should be used.

The reason why a classifier is used in parallel with linear regression is to mitigate

sensitivity to scales for both the problem formulation characteristics and the ideation

metrics. Amabile [5] states that tests of creativity with a numerical score are sensitivity to

differences among individuals. Though the ideation metrics are aposteriori measures of

creativity, not tests, it may be helpful to suspend the assumption that creativity can be

measured on a continuous numerical scale. In addition, the problem formulation

characteristics that are defined so far are not established as metrics and might be sensitive

to scale. Therefore, differences in individuals with respect to each formulation

characteristic should be looked at in comparison to the other participants in the sample.

135

Instead of considering raw counts, the participant’s measure of a characteristic is reported

e.g., as low, medium, and high in the sample. Another reason why it was more

appropriate to turn some problem formulation characteristics into nominal variables was

to reduce sparseness in the space of the variables which had an uneven distribution. Most

of the problem formulation strategies had zero occurrence in half of the participants while

there were also a wide range of occurrences among others. Finally, turning the quantities

into nominal variables also makes it possible to combine data form different problems

and also lessen the effect of the design problem.

The ideation metrics are discretized into nominal variables to build classifiers with

problem formulation characteristics as the attributes. Though the correlation and linear

regression models provide a mathematical equation of the studied relations, they are built

on the assumption that the variables are continuous and numerical. With classifier

models, it is likely that patterns are found in problem formulation that lead to being more

creative or less creative (or have high, medium, and low creative outcome). To build

classifiers of creativity with respect to problem formulation characteristics decision trees

are used. It is because they are easy to construct, easy to interpret (for small-sized trees),

and they are accurate compared to other classification methods [107].

To evaluate the performance of decision trees for comparing different models several

metrics can be used. A simple metric is accuracy which is the percentage of correctly

classified instances. This measure is more appropriate when instances per class are not

too different (e.g., there are as many instances in the data labeled more creative as labeled

less creative). Two other measures that take into account the balance in the number of

instances per class are precision and recall. Precision is the number of true positives (i.e.,

136

the number of instances correctly labeled as belonging to the positive class) divided by

the sum of true positives and false positives (i.e., the number of instances incorrectly

labeled as belonging to the positive class). Recall is the number of true positives divided

by the sum of true positives and false negatives (i.e., the number of instances incorrectly

labeled as belonging to the negative class). While precision shows how many classified

instances are correctly assigned to a label in the class, recall shows how many instances

that belong to a label are found. The three metrics described evaluate the performance of

a model. To compare the performance of competing models when building a classifier,

the appropriate metric is the Receiver Operator Characteristic (ROC) curve. ROC curves

plot true positives (TP) against false positives (FP). The ideal case is that all models

correctly classify all instances, i.e., TP=1 and FP=0. If the TP-FP values for the

classifiers lie on the line between TP=0 and FP=0 (every instance classified as the

negative class) and TP=1 and FP=1 (every instance classified as the positive class) the

models are randomly guessing. The area under the ROC curve is 1 for the idea case and is

0.5 for random guesses.

There are several algorithms used for building decision trees, but here the common

C4.5 algorithm [109] is used in the Weka data mining software [110]. The last method of

analysis applied in Experiment II is the test of differences in means (two-sample t and

paired t tests). This is specifically pertinent to testing hypothesis 2 which examines if

creativity is improving after formulating several problems during a course.

137

8.3 Results and conclusions

8.3.1 Correlation analysis

Correlation analysis was conducted for two data sets in this research. The first one

involved the experts’ protocol data (F11E) to find the correlation between a few P-maps

variables and the Divergent Thinking test [99] scores of the participants as an apriori

measure of creativity. The results are shown in Table 8.1. For eight participants,

significant correlations should be above 0.62 with p<0.1 (italic text), and 0.71 with

p<0.05 (bold text) respectively. The following P-map variables were measured:

· Total number of overall entities.

· Total number of links between entities.

· Average number of vertices; a measure of connectedness of entities.

· Total number of each entity (requirements, functions, artifacts, behaviors, and

issues)

· Total number of parent-child relationships; the intra-group relationship

specifying hierarchical information in the P-maps.

The results suggest that an overall increase in the total number of expressed entities is

more likely to have occurred among designers with better divergent thinking skills. More

specific correlations were also present. Number of specified behavior entities strongly

correlated with the overall creativity level of the designers, as well as the ability to

generate more ideas (fluency) and the ability to have concepts with higher quality. This

can be expressed by having better domain knowledge since behaviors are expressions of

technical knowledge. Quality of ideas also was correlated to more number of issues

138

identified. Quality of an idea relates to its feasibility and identifying design issues is a

part of feasibility analysis. The elaboration in building a hierarchical structure (the

number of parent-child relations) correlated with the designer’s ability to come up with

novel ideas (originality and max originality). This might be explained by Koestler’s

bisociation theory in creativity [111] which states creativity arises from combinations in

structured thought.

It should be mentioned that there were a few correlations within each sets of variables.

Within P-maps characteristics, besides an expected correlation between the number of

entities and links (0.93, p<0.001), there is a significant correlation between the number of

functions and artifacts (0.95, p<0.000), and issues and behaviors (0.68, p<0.066). Within

DT test scores, there is a correlation between fluency and flexibility (0.65, p<0.083),

originality and abstractability (-0.7, p<0.052), and quality and abstractability (0.73,

p<0.041). Although the correlation between fluency and flexibility has been reported in

the development of the DT test [99], the correlations which abstractability has to

originality and quality are unusual. This may relate to the small sample size and similar

background of the experts who were not randomly chosen from a larger pool.

In addition, decomplexability was inversely correlated with the average number of

vertices. This may point to more creative designers expanding the design space in one

direction rather than thinking of many alternatives or decompositions, though further

investigation is needed. Finally, the total number of functions specified during the session

was inversely correlated with abstractability among the expert participants. These

correlations did not provide any definitive answers regarding the role of creativity in

139

problem formulation, though they inspired a novel way of exploring this interaction

among more participants.

Table 8.1 Correlations between DT test and P-maps for experts (from [108])

Divergent

thinking test score

#
 o

f en
tities

#
 o

f lin
k
s

A
v
g
.

v
ertices

#
 o

f p
aren

t-

ch
ild

T
o
tal req

.

T
o
tal fu

n

T
o
tal art.

T
o
tal b

eh
.

T
o
tal issu

e

Overall score 0.63 0.6 0.06 0.46 -0.31 0.16 0.25 0.87 0.68

Fluency 0.54 0.4 -0.3 0.29 0.14 0.16 0.17 0.71 0.4

Flexibility 0.49 0.43 -0.01 0.4 -0.08 0.4 0.36 0.39 0.17

Avg. originality 0.44 0.43 0.1 0.77 -0.53 0.7 0.69 -0.02 0.01

Max originality 0.62 0.68 0.29 0.72 -0.62 0.62 0.61 0.42 0.36

Quality 0.26 0.36 0.26 0.04 -0.32 -0.34 -0.17 0.82 0.78

Decomplexability -0.12 -0.45 -0.88 0.07 0.56 -0.26 -0.11 -0.11 -0.17

Detailability 0.13 -0.12 -0.59 0.33 0.44 0.44 0.36 -0.37 -0.51

Abstractability -0.14 -0.1 0.06 -0.49 0.05 -0.72 -0.61 0.59 0.53

Afixability 0.19 0.01 -0.5 0.37 0.14 0.55 0.49 -0.33 -0.53

The second correlation study was conducted for the participants in the F14G group for

the shot buddy (DP_4) and autonomous surveillance vehicle (DP_5) problems. For the

twenty five participants in this group, correlation coefficients of magnitude 0.34 (less

than -0.34 and more than 0.34) were statistically significant, with 95% confidence. The

significant correlations between problem formulation characteristics and ideation metrics

for the DP_4 and DP_5 problems are shown in Table 8.2. Similar correlations in both

problems are in bold.

The results for problem DP_4 show a positive correlation between quantity and the

number of raised issues, isolated artifacts, and isolated issues. One can infer that leaving

140

artifacts and issues in a flat list, i.e., not focusing on the architecture of the final product

or organizing the issues lead to generating more ideas. There is also a high correlation

between all five strategies except for entity depth prevalence and quantity; breadth

expansion breeds quantity.

Table 8.2 Significant formulation-ideation correlations for students

Ideation metric DP_4 DP_5

Quantity Issues 0.45

Isolated issues 0.45

Order req_use 0.67

Order req_fun 0.67
Isolated artifacts 0.34

Abstraction 0.40

Conflict identification 0.43

Issues 0.36

Isolated issues 0.36

Order req_use 0.64

Order req_fun 0.57

Function 0.38

Disconnected artifact -0.40

Entity depth prevalence 0.53

Variety Issues 0.40

Isolated issues 0.40

Abstraction 0.40

Conflict identification 0.42

Issues 0.43

Isolated issues 0.43

Order req_use 0.35

Avg. novelty Isolated use scenarios -0.35

Entity depth prevalence 0.42
Isolated use scenarios -0.37

Disconnected function -0.41

Conflict identification 0.42

Max novelty Isolated use scenario -0.35

Entity depth prevalence 0.40

Disconnected function -0.38

Disconnected artifact -0.37

Avg. quality Disconnected issues -0.35 Behavior 0.38

Isolated use scenario -0.35

Max quality Disconnected requirements -0.48

Conflict identification 0.40

Having more issues in a flat list has a moderate positive correlation with variety as

well. In addition, the more abstraction and conflict identification happened, the more

likely it was for the students to come up with different types of concept solutions.

Correlation results for both average and max novelty show that the more the use

scenarios were left unorganized, the less the possibility of having original ideas.

Additionally, higher rates of entity depth expansion led to more novel ideas; in other

words, the more the students developed an entity before searching for (or being reminded

141

of) related entities in other categories, the more likely it was to propose novel solutions.

Finally, students came up with solutions of higher quality when they did consider the

relations between issues and other entity types. Best quality of solutions occurred when

students did not fail in recognizing the relations between elicited requirements and other

entity types, and when they identified conflicting requirements.

The results for the DP_5 problem show a few different significant correlations. The

total number of identified functions has a moderate positive correlation with variety. The

degree to which students made abstractions and found conflicts also have substantial

correlations to variety too. An interesting difference between the correlations for the two

problems is that entity depth prevalence is positively correlated with average and max

novelty. As it will be discussed later, the progression of class over time, and the more

constrained nature of the second problem resulted in an overall lower variability in the

novelty of the students. It is plausible to infer that a more constrained problem requires

more focus on each category of entities prior to the designer’s shifting attention towards a

different category, i.e., within-group depth exploration breeds novelty in more

constrained problems. However, this does not contradict with the observation that the

more the students failed in organizing the entities within each category and recognizing

the relations to entities in other categories, the worse their ideas were in terms of novelty

and quality.

8.3.2 Regression analysis

To have an understanding of how different variables in the problem formulation

influence ideation metrics together, linear regression analysis was conducted for the data

142

set collected from the participants in F14G. Models were built for two problems: DP_4

and DP_5. First, a model was built with P-map state variables as the input variables, and

each of the corresponding ideation metrics as the output. Separately, a model was built

for the number of times different strategies were utilized during problem formulation

with respect to the ideation results. The complete table of regressors for the state counts

models can be found in Appendix D. Table 8.3 shows the coefficients of regression for

the counts of occurrences of strategies (the column with the ‘Cons’ label shows the

constant or the intercept). Significant regressors are shown in bold.

Table 8.3 Regressors of P-maps strategies counts models for two problems

Variable Const Abstraction
Entity depth

prevalence

Order

req_use

Order

req_fun

Conflict

identification

DP_4 quantity 2.31 0.73 0.18 3.67 -1.65 -0.82

DP_5 quantity 3.38 0.04 0.14 -0.2 1.46
*
 -2.06

DP_4 variety 3.03 0.8 0.31 4.66 -2.42 -1.02

DP_5 variety 5.7 -0.09 0.1 -1.67 1.70
*
 -1.23

DP_4 avg. novelty 4.42 -0.02 0.38 1.06 -0.67 -0.74

DP_5 avg. novelty 3.47 -0.02 0.1 -0.81 0.48 -2.29

DP_4 max novelty 5.62 0.26 0.47 1.77 -1.05 -0.94

DP_5 max novelty 5.04 -0.06 0.14 -0.87 0.23 -2.8

DP_4 avg. quality 5.02 -0.05 0.05 0.49
*
 -0.25 0.04

DP_5 avg. quality 4.23 0.11
*
 0.01 -0.26 0.55 0.25

DP_4 max quality 6.08 0.14 0.12
*
 0.62 -0.31 -0.23

DP_5 max quality 5.87 0.09 -0.04 0.4 -0.23 1.15
*

Since regression analysis with this level of detail was unprecedented in a design

thinking study, the criterion for choosing significant regressors was set not to be too

strict. For P-map state counts, a p value below 0.2 was considered significant; for P-map

143

strategies counts, the bound was set at 0.1. If there were no p values below the set limit,

the lowest p value was considered significant (those regressors are starred in the tables).

Additionally, regressors that have the same sign in the models for the two problems are

italicized. This comparison shows if both problems provide models that can have the

same sense with respect to some variables, i.e., if some parts of the models are

generalizable and insensitive to the problem. Among the P-map state counts models,

average quality has the highest number of variables with similar signs for DP_4 and

DP_5 (13) while max quality and variety have 4 and 5 variables with the same sign. One

might infer that average quality is easier to predict for new problems.

In order to inspect how reliable the results were for the regression models, the

coefficient of determination 𝑅2 was used to check model fit. Table 8.4 shows the R-

squared values for each of the regression models which were derived for the six

corresponding ideation metrics. The test of significance of the model fit suggested that

the P-maps state count model was more reliable than the strategies counts model. The

results also suggested that average novelty and max quality had more reliable models in

both problems.

Table 8.4 Test of model fit with 𝑹𝟐

Predicted

variable

State counts Strategies counts

DP_4 DP_5 DP_4 DP_5

Quantity 65% 75% 64% 33%

Variety 56% 57% 32% 8%

Avg. novelty 78% 65% 30% 25%

Max novelty 66% 72% 24% 35%

Avg. quality 72% 62% 7% 9%

Max quality 87% 71% 19% 7%

144

8.3.3 Improving model fit with backward elimination

The fit of the regression models is affected by the number of predictor variables in the

model. Since all the variables in a linear regression model often do not significantly

contribute to the variations in the dependent variable, the excessive independent variables

should be removed from the regression model. It was described earlier how the adjusted

coefficient of determination (𝑅𝑎𝑑𝑗
2) takes into account the number of variables in the

model. R-squared is an inflated measure, i.e., the more the variables in the model, the

higher R-squared is, even if most variables are not significantly contributing to the

variations in the dependent variable. It can become misleading since fewer variables in

the model lead to a drop in R-squared. Therefore, the R-squared adjusted statistic should

also be considered for the large number of variables (compared to the number of data

points) in the regression models. To improve model fit an iterative backward elimination

process was adopted. The steps are as follows:

1. Build a regression model including all the input variables.

2. Find the regressor (input variable) with the highest p-value (least contribution

to variability in the model).

3. Remove the least contributing regressor and build a new regression model.

4. Continue until 𝑅𝑎𝑑𝑗
2 no longer increases.

The backward elimination process was carried out with the state and strategies

variables combined to find a single model with a better model fit. The initial combined

model had 23 variables (18 state counts and 5 strategies counts). The coefficients of the

regression for the final models (with the highest 𝑅𝑎𝑑𝑗
2) are listed in Appendix E. The

145

number of regressors common in models of both problems (DP_4 and DP_5) varies from

8 in the models of variety, and 13 in models of quantity and max quality. Models of

variety have the least common regressors with the same sign (only 2), while models of

average quality have 8 out of 12 regressors with the same sign for both problems with the

same sign. For each ideation metric the average of the regressors that have the same sign

in both problems can be used to create the model of creativity with respect to problem

formulation characteristics. These models are as follows:

𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 2.3 + 1.1 ∗ 𝑖𝑠𝑠𝑢𝑒 − 0.9 ∗ 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑢𝑠𝑒𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 + 0.1

∗ 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 − 0.9 ∗ 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑖𝑠𝑠𝑢𝑒 + 0.8

∗ 𝑜𝑟𝑑𝑒𝑟𝑟𝑒𝑞𝑢𝑠𝑒 − 11.3 ∗ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑟𝑖𝑒𝑡𝑦 = 2.6 + 1.8 ∗ 𝑖𝑠𝑠𝑢𝑒 − 0.3 ∗ 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑛𝑜𝑣𝑒𝑙𝑡𝑦 = 3.8 + 0.3 ∗ 𝑢𝑠𝑒𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 0.4 ∗ 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑢𝑠𝑒𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 2.4

∗ 𝑜𝑟𝑑𝑒𝑟𝑟𝑒𝑞𝑢𝑠𝑒 + 1.8 ∗ 𝑜𝑟𝑑𝑒𝑟𝑟𝑒𝑞𝑓𝑢𝑛 − 2.9

∗ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 5.7 − 0.4 ∗ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 + 0.1 ∗ 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 + 0.4

∗ 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 − 0.2 ∗ 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 − 0.8

∗ 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑖𝑠𝑠𝑢𝑒 − 4.1 ∗ 𝑜𝑟𝑑𝑒𝑟𝑟𝑒𝑞𝑢𝑠𝑒 + 5.4 ∗ 𝑜𝑟𝑑𝑒𝑟𝑟𝑒𝑞𝑓𝑢𝑛

− 11.2 ∗ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

146

Though the number of variables with the same sign is lower compared to the initial

state and strategies models shown earlier, the models are less complex (have fewer

variables), have more statistically significant regressors, and have an improved model fit.

The improved model fit after backward elimination can be seen in Table 8.5. The results

show a large gain in R-squared adjusted in all models at no more than a 7% drop in R-

squared (in the model of variety for DP_4). The smallest improvement occurs for the

models of max quality which has an initial high predictability. The largest improvements

occur for the models of variety and max novelty in DP_4. It should be noted that good

model fit does not guarantee accurate prediction of new observations [106]. Measuring

accuracy in predicting new observations is a part of Experiment III which will be

discussed in the next chapter.

Table 8.5 Improvements in model fit after backward elimination

Predicted

variable

DP_4 DP_5

Initial

𝑅2

Final

𝑅2

Initial

𝑅𝑎𝑑𝑗
2

Final

𝑅𝑎𝑑𝑗
2

Initial

𝑅2

Final

𝑅2

Initial

𝑅𝑎𝑑𝑗
2

Final

𝑅𝑎𝑑𝑗
2

Quantity 91% 88% -9% 69% 98% 97% 70% 87%

Variety 75% 68% -201% 31% 93% 92% 17% 72%

Avg.novelty 86% 87% -37% 62% 90% 87% -19% 70%

Maxnovelty 79% 72% -150% 38% 88% 87% -43% 54%

Avg.quality 96% 93% 48% 83% 84% 79% -96% 30%

Maxquality 100% 99% 95% 97% 88% 87% -43% 60%

8.3.4 Classification with decision trees

Decision trees drew patterns of problem formulation characteristic attributes in

relation to classes of ideation metrics. They were drawn for data collected from F14G

(same data which used for multiple linear regression). To find general patterns, and

147

because of the small number of participants the data from the three problems were

combined into one set.

The numerical ideation metrics were discretized into nominal class variables in two

ways: equal width binning, equal frequency binning. With equal width binning, the range

in the data was divided into three equal intervals; the bottom, middle, and top third were

labeled low, medium, high creativity respectively. With equal frequency binning, the bins

were set in such a way that the number of instances in each bin were nearly the same.

Decision trees are not expressive enough for modeling continuous variables, therefore,

the attributes (independent variables) were also discretized (equal width binning). The

occurrences of the strategies for many the participants were zero; instead of partitioning

the range into three equal width bins, they were coded into Yes or No. Discretization was

done for data on each problem separately to control for the effect of the problem.

Two other options were considered in building the classifiers. One option related to

testing the classifier. Two choices were decided upon: use the complete dataset as the

training set; use five-fold cross validation. The classifiers with no test data are less

reliable but more accurate. This increases the chance of finding patterns. Since the

subject of this research is understudied the more patterns that are found have the benefit

of generating new hypotheses.

The second option considered in building the classifiers was to choose the minimum

number of instances per leaf node. The more the number of the instances per leaf nodes

results in less forested (less complex) trees which are easier to interpret. The downside is

having an under-fitting model and losing information. Similar to the justification for

including classifiers with no test data, a higher number of instances per leaf node is

148

preferred. The classifiers were built with three choices of instances per leaf node: 3, 4,

and 5. The resulting decision trees with the described options for the four ideation metrics

are in Table 8.6 through Table 8.9. The two numbers in each leaf node are the number of

correctly and incorrectly classified instances.

For each ideation metric, one of the trees was chosen based on the classification

performance metrics described in the previous section. In data mining, different

evaluation metrics are proposed for comparing different classifiers. However, there are

no definitive rules for determining which classifier is superior, since often there is a

trade-off among the tree performance criteria. The performance metrics of the chosen

trees are italicized. For all ideation metrics, the models with no test set (training set only)

are chosen since they have significantly higher accuracy. The low accuracy for the trees

built with cross validation imply that they will not perform well for unseen instances

(new observations) and are not reliable for testing new data. At this stage of the research

the main priority is to build an accurate model of the existing observations that can also

be interpreted. Therefore, another factor in determining which tree to choose is

simplicity, i.e., having fewer leaves. In summary, selecting the tree was based on the

following rules:

1. If the difference between the accuracies of two trees is less than 10%, choose

the one with fewer leaves. If the difference is more than 10%, choose the one

with more leaves as long as the tree is not twice as large.

2. If accuracies and number of leaves are close (5% and 3), choose the tree that

has higher number of min instances per leave nodes.

3. Disregard trees with fewer than 5 nodes and an accuracy less than 60%.

149

For trees with relatively similar number of leaves, the other metrics (accuracy,

precision, and ROC area) are taken into account. The selected trees for the four ideation

metrics are represented in Figure 8.1 through Figure 8.4. An interpretation of the quantity

decision tree is that participants who did not link most of the functions had low or

medium quantity. This implies that participants who only thought about what the design

should do (function) without considering why it should be done (relation to

requirements), how it functions when used (relation to use scenarios), and what possible

solutions exist (relation to artifacts) to carry out the function did not come up with many

ideas. If all functions were linked to other entities, participants who did not abstract had

lower quantity. One participant with high a quantity score linked most of the functions

(low disconnected function) and had all requirements hierarchically organized.

Table 8.6 Comparison of decision trees built for quantity

Class

binning

Model

characteristic

5 fold cross validation (left) vs. no test (right)

3 (min inst./leave) 4 (min inst./leave) 5 (min inst./leave)

Equal

width

Leaves 8 8 7 7 7 7

Accuracy 45% 64% 47% 62% 48% 62%

Precision 0.432 0.701 0.414 0.689 0.432 0.689

Recall 0.452 0.644 0.438 0.616 0.479 0.616

ROC area 0.521 0.746 0.538 0.721 0.562 0.721

Equal

frequency

Leaves 24 24 6 6 6 6

Accuracy 36% 73% 33% 55% 30% 55%

Precision 0.362 0.752 0.326 0.563 0.293 0.563

Recall 0.356 0.707 0.329 0.534 0.301 0.548

ROC area 0.562 0.89 0.514 0.7 0.505 0.7

150

Figure 8.1 Selected decision tree for quantity

The variety decision tree suggests that designers who did not specify use scenarios or

added too many of them were average in coming up with various ideas. Most variety of

ideas occurred for participants with few use scenarios and requirements, or medium

number of use scenarios but high number of issues. Having few issues led to low variety.

The selected novelty decision tree is more difficult to interpret since it is deeper and

has more leaves compared to the quantity and variety trees. One observation is that

participants who did not follow a breadth expansion order between requirements and use

scenarios, had low number of functions and requirements, and had connected all or most

of the issues had a high novelty. Having average number of functions and organized

behaviors increases novelty. Having more functions with no breadth expansion between

requirements and use scenarios also leads to high novelty.

151

Table 8.7 Comparison of decision trees built for variety

Class

binning

Model

characteristic

5 fold cross validation vs. training set

3 (min inst./leave) 4 (min inst./leave) 5 (min inst./leave)

Equal

width

Leaves 14 14 17 17 11 11

Accuracy 32% 67% 36% 68% 38% 63%

Precision 0.314 0.68 0.349 0.69 0.369 0.648

Recall 0.315 0.671 0.356 0.685 0.384 0.63

ROC area 0.444 0.812 0.456 0.844 0.467 0.783

Equal

frequency

Leaves 18 18 18 18 9 9

Accuracy 41% 74% 38% 74% 38% 63%

Precision 0.423 0.768 0.39 0.757 0.388 0.634

Recall 0.411 0.74 0.384 0.74 0.384 0.63

ROC area 0.53 0.892 0.507 0.89 0.509 0.789

Figure 8.2 Selected decision tree for variety

In building the decision tree for quality, the low variability in the metric led to a

disproportionate number of participants with a high score. Even when the width (range of

scores) was divided into two bins there were still only 6 low instances compared to 67

participants with a high quality score. The classifier could not be built; Table 8.9 shows

that for the equal width binning, all models have 1 leaf. Therefore, the tree was chosen

152

from after the data was discretized into three bins with equal instances per class. The

selected tree can be seen in Figure 8.4. The tree structure suggests that participants who

had few functions and did not expand entities in depth had a higher quality score. Having

a medium number of functions but not many artifacts leads to low quality scores.

Table 8.8 Comparison of decision trees built for novelty

Class

binning

Model

characteristic

5 fold cross validation vs. training set

3 (min inst./leave) 4 (min inst./leave) 5 (min inst./leave)

Equal

width

Leaves 13 13 13 13 2 2

Accuracy 58% 84% 56% 84% 53% 67%

Precision 0.55 0.839 0.537 0.839 0.475 0.695

Recall 0.575 0.836 0.562 0.836 0.534 0.671

ROC area 0.508 0.894 0.52 0.894 0.454 0.585

Equal

frequency

Leaves 18 18 9 9 5 5

Accuracy 42% 77% 43% 60% 40% 52%

Precision 0.439 0.808 0.433 0.662 0.394 0.581

Recall 0.425 0.767 0.425 0.603 0.397 0.521

ROC area 0.57 0.906 0.59 0.779 0.578 0.683

153

Figure 8.3 Selected decision tree for novelty

Table 8.9 Comparison of decision trees built for quality

Class

binning

Model

characteristic

5 fold cross validation vs. training set

3 (min inst./leave) 4 (min inst./leave) 5 (min inst./leave)

Equal

width

Leaves 1 1 1 1 1 1

Accuracy - - - - - -

Precision - - - - - -

Recall - - - - - -

ROC area - - - - - -

Equal

frequency

Leaves 17 17 11 11 11 11

Accuracy 41% 78% 40% 68% 40% 68%

Precision 0.406 0.785 0.394 0.683 0.401 0.683

Recall 0.411 0.782 0.397 0.685 0.397 0.685

ROC area 0.554 0.909 0.541 0.836 0.544 0.836

order_req_use = No

| function = low

| | requirement = low

| | | disconnected issue = none: high (10.0/1.0)

| | | disconnected issue = medium: medium (7.0/1.0)

| | | disconnected issue = low: high (9.0/2.0)

| | | disconnected issue = high: high (2.0/1.0)

| | requirement = medium: high (8.0)

| | requirement = high: medium (1.0)

| function = medium

| | isolated behavior = none: medium (5.0/2.0)

| | isolated behavior = medium: high (4.0/1.0)

| | isolated behavior = low: high (14.0/4.0)

| | isolated behavior = high: medium (4.0)

| function = high: high (4.0)

| function = none: medium (1.0)

order_req_use = Yes: medium (4.0)

154

Figure 8.4 Selected decision tree for quality

8.3.5 Examining progress in creativity

The second hypothesis (H2_b) states that novices can be taught how to formulate

problems in a way that leads to improved creativity. The models which have been

presented so far demonstrate the relationship between problem formulation

characteristics and creativity. They suggest how problem formulation characteristics

increase or decrease creativity. They do not show if changes in the way several problems

were formulated in a chronological order led to improved creativity. To test progress in

creativity, the differences in the ideation metrics should be examined across problems

assigned to the students in a chronological order. This is done for the participants in

group F14G for changes from problems DP_3 to DP_4 and from DP_4 to DP_5.

Problems DP_3, DP_4, and DP_5 were assigned to the participants in weeks 2, 6, and 10

function = low

| entity_depth_prevalence = No: high (22.0/6.0)

| entity_depth_prevalence = Yes

| | usescenario = none: high (1.0)

| | usescenario = medium: medium (7.0/3.0)

| | usescenario = low: low (7.0/3.0)

| | usescenario = high: medium (0.0)

function = medium

| artifact = none: medium (2.0/1.0)

| artifact = medium: low (10.0/5.0)

| artifact = high: medium (4.0/1.0)

| artifact = low: low (14.0/2.0)

function = high: medium (5.0/2.0)

function = none: medium (1.0)

155

of their design course. The differences can be measured in two ways. One is to test the

differences for the participants as a whole. The other way is to test the differences for the

individuals. This is done with paired t test. While the first method assumes that the two

samples are independent, the second method assumes that they are collected in pairs. The

reason why both methods are of interest here is because two different assumptions can be

equally valid. It can be assumed that participant’s conceptual design behavior changes in

time. It is difficult to control for human factor; people change [90]. Therefore, it is not

incorrect to consider that problem formulation and ideation characteristics in the three

problems are independent samples. On the other hand, it can be argued that conceptual

design behavior is an individual characteristic [20, 34]. Therefore, it is reasonable to

consider that the results of the three problems are paired and changes are due to other

factors, e.g., effectiveness in learning problem formulation. The results of both analyses

are shown in Table 8.10 and Table 8.11. They suggest that quantity and variety increased

from the second to the third problem though variety was lower in the second problem

compared to the first.

Table 8.10 Changes in ideation metrics for a class as a whole

Ideation

metric

DP_4 – DP_3 DP_5 – DP_4

Difference 95% CI P-value Difference 95% CI P-value

Quantity -0.56 -1.74, 0.62 0.34 0.81 -0.36, 1.98 0.17

Variety -1.92 -3.1, -0.74 0.00 1.87 0.65, 3.12 0.00

Novelty -0.08 -0.78, 0.62 0.82 -1.27 -2, -0.55 0.00

Quality -0.86 -1.15, -0.56 0.00 -0.5 -1.05, 0.05 0.07

156

Table 8.11 Changesinindividuals’ideationmetricsforaclass

Ideation

metric

DP_4 – DP_3 DP_5 – DP_4

Mean diff. 95% CI P-value Mean diff. 95% CI P-value

Quantity -0.39 -1.51, 0.74 0.48 0.81 -0.03, 1.64 0.06

Variety -1.72 -2.79, -0.64 0.00 1.89 0.76, 3 0.00

Novelty -0.12 -0.89, 0.65 0.74 -1.27 -2.18, -0.37 0.01

Quality -0.84 -1.16, -0.52 0.00 -0.5 -1.05, 0.05 0.07

There was an overall decrease in novelty and quality of the participants. The drop in

novelty can be attributed to the way novelty is computed. If more designers come up with

more ideas including ones that would have been novel compared to a larger historical

sample, all participants would have a lower novelty score. The drop in the quality score

may be attributed to two reasons. One is that the problems which were assigned to the

participants as they moved on were more constrained. The other reason is that the

participants became more conservative and self-constraining since they were supposed to

conduct feasibility study and simulation for the second problem and build a prototype for

the third problem.

To summarize, based on the results of the various analyses conducted for Experiment

II, the following conclusions can be drawn:

· Quantity may increase if designers do more abstraction, follow a breadth order

from adding requirements, and specify key issues without decomposing them

(see Table 8.2 and Table 8.3), but it may decrease if designers ignore the

relations that functions have to other entities (see Figure 8.1).

157

· Variety may also increase if designers do more abstraction and specify key

issues without decomposing them (see Table 8.2), and decompose use

scenarios (see the negative correlation to isolated use scenarios in Appendix

D), but it may decrease if designers focus on adding more requirements and

use scenarios and identifying conflicts (see Table 8.2, Table 8.3, and

Figure 8.2).

· Novelty may increase if designers: a) specify fewer requirements (see

Figure 8.3) but more use scenarios and functions (see Appendix E), b)

structure more hierarchies especially in use scenarios (negative correlation

with isolated use scenarios in Table 8.2) and behaviors (see Figure 8.3), c)

recognize issues in relation to other entities (see Figure 8.3), d) follow a depth

exploration strategy (see Table 8.2 and Table 8.3).

· Novelty may decrease if designers: a) fail to relate functions to other entities

(see Table 8.2), b) identify more conflicts (see Table 8.3).

· Quality may increase if designers specify more behaviors and fewer artifacts,

identify more conflicts (see Table 8.3), and follow a breadth exploration

strategy (see Figure 8.4). Quality may decrease if designers ignore the

relations which requirements have to other entities (see Table 8.2), and the

relations which issues have to other entities (see the negative correlation

coefficients between disconnected issues and average quality in Appendix E).

In addition, hypotheses H2_a and H2_b were examined. The conclusions summarized

above facilitate testing hypotheses H2_b:

158

· Hypothesis H2_a stated that depth-first exploration of problem formulation

entities leads to more creativity. The results showed that depth-first exploration

of entities increased all creativity metrics though it had a greater effect on

novelty and quantity. Therefore, hypothesis H2_a is proven.

· Hypothesis H2_b stated that creativity can be improved in novice designers by

teaching them characteristics of good problem formulation. The results of

Experiment I in section 7.3.2 showed positive trends in novices’ specification

of issues, use of the abstraction strategy, and the entity depth exploration. The

results of Experiment II showed a positive trend in quantity and variety and a

negative trend in novelty. They also showed how the aforementioned problem

formulation characteristics and ideation metrics are correlated. The

simultaneous positive trends in the formulation characteristics and creativity

metrics (which are statistically significant), their correlation, and the

precedence of problem formulation to ideation imply that quantity and variety

improved as the novices learned how to formulate problems more effectively.

Therefore, hypothesis H2_b is proven for quantity and variety but not for

novelty and quality.

159

CHAPTER 9

EXPERIMENT III: PREDICTING CREATIVITY FROM FORMULATION

The second experiment identified the relationship between problem formulation and

creativity in terms of regression models and classification models. These models pave the

way for answering the third research question which is if creativity can be predicted from

problem formulation. This is the objective of the third experiment. More specifically, the

last hypothesis will be tested. The hypothesis states that:

H3) Creativity in design outcome can be predicted with an acceptable degree of

confidence from problem formulation behavior.

The mathematical models of the relation between problem formulation characteristics

and ideation metrics can be examined for generalizability. The models can predict

outcome for new observations. The predictions can be compared to an actual value. In an

ideal model the difference is zero. In reality, the differences can be considered random

variables for which the null hypothesis 𝐻0:𝜇𝐷 = 𝜇1 − 𝜇2 = 0 can be tested. The actual

values of creativity, i.e., ideation metrics can be found for different problems. The models

built based on one problem can be used to predict the creativity metrics for another

problem. The differences between actual and predicted scores can be examined with

paired t test. The test also provides determining the level of confidence for the

predictions.

9.1 Collected data

The data for this experiment is the same data collected from students of group F14G as

Experiment II. However, the first problem is not considered. The reason for excluding the

160

first problem was to block experimenter’s bias. The ideation metrics of the first two

problems were scored by the same researchers. To remove bias, the ideation metrics for

the third problem (DP_5) were found by an independent panel of judges. The linear

regression equations which were described in section 8.3.2 and 8.3.3 are used here to

make predictions.

9.2 Analysis method

The methods pertinent to this experiment have been explained in previous

experiments. Regression analysis is used to build the models. The differences between

the predicted and the actual scores are examined with the paired t test. It should be noted

that the paired t test is more powerful than a two-sample t test in design of experiments

with fewer observations in the data set. This is because the two-sample t test includes

additional variations occurring from the independence of the observations. Observations

in a paired t test are dependent. An additional benefit of t tests in general is that they are

relatively insensitive to the assumption of normality [106].

Besides test of differences with paired t test, descriptive statistics is used to represent

the differences between the actual and the predicted creativity. The distribution of the

differences is shown with histograms. Whether or not the successive models which were

built during the backward elimination process had any effects on the predictions,

boxplots of the differences between actual and predicted scores are shown for successive

regression models.

161

9.3 Results and conclusions

The differences between the actual ideation scores given by the panel of judges and

the predicted outcomes from the three models were recorded. The linear regression

models are the same that were derived in 8.3.2 and 8.3.3. For example from Table 8.3,

the following model can be written for quantity with respect to strategies counts:

𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦(𝑏𝑎𝑠𝑒𝑑𝑜𝑛𝐷𝑃4𝑑𝑎𝑡𝑎)

= 2.31 + 0.73 ∗ 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 0.18 ∗ 𝑒𝑛𝑡𝑖𝑡𝑦𝑑𝑒𝑝𝑡ℎ𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + 3.67

∗ 𝑜𝑟𝑑𝑒𝑟𝑟𝑒𝑞𝑢𝑠𝑒 − 1.65 ∗ 𝑜𝑟𝑑𝑒𝑟𝑟𝑒𝑞𝑓𝑢𝑛 − 0.82

∗ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

The ideation metrics have normalized scores (on a scale of 1-10). The number of

observations which were predicted within 1 or 2 units (10% or 20% margin of error) was

reported as the accuracy of the prediction. For one of the participants who used the above

strategies 2, 3, 1, 1, 0 times during the formulation of DP_5 the model predicts a score of

6.33. The actual score given by the judges was 2.2 which means a 4.13 difference on a

scale of 1-10 (that is more than 20% error). For another participant, the occurrences were

2, 4, 0, 0, 0 respectively which result in a predicted score of 4.49; the score given by

judges was 4.6 which is within 10% margin of error of the prediction. Table 9.1

summarizes how accurately the models for DP_4 predicted each of the ideation metrics

for DP_5. It can be seen that predictions of variety, average and max quality were highly

accurate in models based on state counts and strategies. The strategies counts model is

162

slightly more accurate in predicting quantity, average novelty, and average quality

(within 10% margin of error).

Table 9.1 Accuracy of predicting DP_5 ideation with DP_4 regression models

Ideation

metric

Statecounts Strategiescounts

20%

error

10%

error

20%

error

10%

error

Quantity 52 32 60 48

Variety 88 64 76 60

Avg. novelty 76 40 64 48

Max novelty 56 40 60 32

Avg. quality 92 72 96 64

Max quality 92 68 92 76

The results of the models after backward elimination are shown in Table 9.2.

Compared to prediction accuracies reported in Table 9.1 it can be seen that the

predictions in the models after backward elimination are less accurate with the highest

drop in the model of variety (from 88% and 64% within 20% and 10% margin of error

respectively in the state counts model of DP_4 predicting DP_5, to 40% and 24%).

Overall, the prediction accuracy for DP_4 scores based on the DP_5 model is worse. This

is partly due to less variation in the ideation metrics of DP_5 among the student

participants (F14G group). The results also suggest that an improved model fit does not

necessarily guarantee higher predictability for newer observations. Yet, the models after

backward elimination showed an overall improvement in prediction accuracy. This is

because the definition of accuracy used in Table 9.1 and Table 9.2 is narrow. It disregards

163

large residuals. Examples of change in prediction accuracy during the backward

elimination process are given in Figure 9.1, Figure 9.2, and Figure 9.3. The results are

mixed. Quantity predictions improve but the model of quality for DP_5 does not change

the prediction accuracy of DP_4. The initial quality model is accurate itself.

Table 9.2 Accuracy of predicting ideation after backward elimination

Ideation

metric

PredictingDP_5fromDP_4 PredictingDP_4fromDP_5

20%error 10%error 20%error 10%error

Quantity 56% 28% 24% 12%

Variety 40% 24% 32% 16%

Avg. novelty 52% 48% 40% 32%

Max novelty 56% 40% 28% 24%

Avg. quality 76% 56% 36% 20%

Max quality 84% 68% 40% 24%

Figure 9.1 Predicted quantity in backward elimination for DP_4 models

res_step8res_step7res_step6res_step5res_step4res_step3res_step2res_step1

10

5

0

-5

-10

-15

D
a

ta

Boxplot of predicted quantity residuals for DP_5 with model of DP_4

164

Figure 9.2 Predicted quantity in backward elimination for DP_5 models

Figure 9.3 Predicted quality in backward elimination for DP_5 models

res_step5res_step4res_step3res_step2res_step1

50

40

30

20

10

0

-10

-20

D
a

ta

Boxplot of predicted quantity residuals for DP_4 with model of DP_5

res_step7res_step6res_step5res_step4res_step3res_step2res_step1

50

25

0

-25

-50

-75

-100

D
a

ta

Boxplot of predicted quality residuals for DP_4 with model of DP_5

165

For Experiment II, different regression models were built with different independent

variables. Three models were described: state counts, strategies, and backward

elimination on combined problem formulation. The variables in the backward elimination

model were normalized (subtracting mean and dividing by standard deviation of each

variable) to build a fourth set of models; correlation coefficients in linear regression are

invariant to linear transformation. The prediction accuracies of these four models are

represented with histograms in Appendix F. Three examples can be seen in Figure 9.4,

through Figure 9.6. Models of DP_4 led to more accurate predictions of DP_5 than the

other way round. State counts models are also more accurate in prediction, though they

have a poor model fit compared to backward elimination of combined normed variables.

Predictions with normalized variables are also not too different from non-normed ones.

Figure 9.4 Prediction residuals for different DP_4 models of quantity

10.0

7.5

5.0

2.5

0.0

12840-4-8-12-16

16

12

8

4

0

12840-4-8-12-16

8

6

4

2

0

8

6

4

2

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted quantity
Model based on DP_4 predicting DP_5

score range 1-10

166

Figure 9.5 Prediction residuals for different DP_4 models of quality

Figure 9.6 Prediction residuals for different DP_5 models of variety

10.0

7.5

5.0

2.5

0.0

6420-2-4

8

6

4

2

0

6420-2-4

6.0

4.5

3.0

1.5

0.0

8

6

4

2

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted quality
Model based on DP_4 predicting DP_5

score range 1-10

24

18

12

6

0

1251007550250-25

24

18

12

6

0

1251007550250-25

10.0

7.5

5.0

2.5

0.0

20

15

10

5

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted variety
Model based on DP_5 predicting DP_4

score range 1-10

167

Finally, to examine the differences between actual and predicted creativity (ideation)

for statistical significance in relation to hypothesis H3, paired t test was conducted. The

results are shown in Table 9.3. For each ideation metric, the mean difference of actual

and predicted scores is reported with the corresponding p values. The results suggest that

Problem DP_4 cannot predict DP_5 with a 95% confidence (the results are the same even

at an 80% confidence level). On the other hand, quantity, variety, and quality of DP_5 are

predicted from DP_4 models of combined variables after backward elimination. The

histograms of prediction residuals of the four models were misleading for the state count

models. The differences in the state counts models might seem smaller (e.g., the mean

differences for DP_5 quality model is 4.71 for the state counts model and 9.23 for the

combined model). However, higher variability in the residuals leads to rejecting the

hypothesis that the difference in the means is zero.

Before finishing this chapter, it should be noted that there is a difference between

model transfer and model generalization. What was proposed can be considered a weak

model transfer. Model transfer is about examining whether a model of a phenomenon

leads to comparable results in a new setting completely independent of when the initial

model was built. In the case of Experiment III this would be if the models derived for one

problem and group of participants were used to predict data for a completely different

problem with different participants. If only one of these two factors (problem and

participants) were changed the prediction study would be a matter of generalizing one

model to another problem, not transferring it to a new case. However, with human

subjects who are learning a task, and with time, the subjects change and they are no

168

longer the same. In examining hypothesis H2_b it was shown that students’ problem

formulation characteristics changed over time during a semester. Therefore, it can be said

that the problem was changed, the judges who generated the data were different, and the

tasks were assigned about 2 months apart. Nonetheless, the prediction results cannot be

invalidated and there evidence is provided on statistical significance of prediction

accuracy with paired t test.

Table 9.3 Differences of actual and predicted ideation; mean row 1; p value row 2

 Model States Strategies Combined

with BE

Combined

normed with BE

DP_4

predicting

DP_5

Quantity 3.79

0.00

4.5

0.00

4.6

0.00

3.26

0.00

Variety 3.5

0.00

5.77

0.00

3.9

0.00

3.96

0.00

Novelty 3.92

0.00

5.65

0.00

3.5

0.00

4.82

0.00

Quality 4.55

0.00

5.15

0.00

4.33

0.00

5.06

0.00

DP_5

predicting

DP_4

Quantity 2.88

0.00

4.48

0.00

0.18

0.94

4.06

0.11

Variety 4.37

0.00

6.4

0.00

-4.81

0.38

5.84

0.03

Novelty 3.16

0.00

3.23

0.00

2.67

0.01

3.55

0.00

Quality 4.71

0.00

4.83

0.00

9.23

0.05

4.56

0.08

169

To summarize, based on the presented results in Experiment III, the following

conclusions can be drawn:

· Some creativity metrics may be predicted from problem formulation. This

proves hypothesis H3 with some considerations: a) predictions are reliable for

models of specific problems, b) backward elimination results in more

statistically significant predictions, c) novelty is more difficult to predict due to

lower variability when designers become more competent.

· Predictions of variety and quality are more accurate within small margins of

error.

· Predictions of novelty and quality are more accurate within small margins of

error after backward elimination.

· Some problem formulation characteristics might be invariant to design

problems, i.e., they do not require normalization.

170

CHAPTER 10

POTENTIAL APPLICATIONS

The three previous chapters described three experiments in search for answers to the

research questions and to examine stated hypotheses. From the findings of the

experiments opportunities arise in using the P-amps framework for potential applications.

Three applications are discussed in this chapter. One application is the creation of an

applied test of design problem formulation skills. A second application is to use P-maps

for an objective assessment of students’ problem formulation in design education by

defining a set of Problem Formulation metrics. If these two applications seem similar,

they are. An analogy can be made to the relation between these two tests and that of the

Divergent Thinking test [99] and the ideation metrics [24]. While the Divergent Thinking

test and the tentative Problem Formulation test measure a potential skill with a set of

questions, the ideation metrics and Problem Formulation metrics assess the outcome of

the ideation and problem formulation processes respectively. There is also another

application that has a potential to open new avenues in design research. It is to use the

framework to examine previous observations and findings from other researchers.

10.1 Applied test of problem formulation skill

Shah [112] had identified a different set of conceptual design skills which a successful

designer should possess. A skill is defined as a cognitive ability to perform an

engineering design task. A battery of tests have been developed for measuring these

skills: divergent thinking [99], and visual thinking [113], qualitative reasoning [114,

115]. A test for problem formulation (PF) has not been developed yet. While the medium

171

for developing and taking the first three tests was restricted to pen and paper, the PF test

can take advantage of the Problem Formulator testbed [96] for data collection and test

taking. Another advantage that can be exploited in developing the test is to use the

findings from the empirical studies conducted in this research and reported in the

previous three chapters to identify problem formulation skills that influence creativity.

The process of developing the test, involves identifying sub-skills, defining metrics for

measuring each sub-skill, proposing questions and candidate test items, conducting pilot

tests and determining which test items lead to a more appropriate distribution of scores

for identifying how differently designers possess the skills. The current work is a

preliminary task towards the finished test.

10.1.1 Identification of subskills

To identify problem formulation skills two sources can be used: one is the reviewed

literature; the other is the findings of the three experiments. The conducted empirical

studies explained in previous chapters highlighted the relation between problem

formulation characteristics and creativity, more specifically as a list of formulation

characteristics influencing ideation metrics in Experiment II. The identified sub-skills and

their justification in light of the results of experiments are summarized in Table 10.1.

Each sub-skill is discussed below.

A design problem often starts with a problem statement where some customer needs

are explicitly stated. The designer must then discover implicit requirements that are

necessary to meet. These implicit requirements can be additional requirements at the top

level, or derived, as existing requirements are decomposed further. Results of Experiment

172

II showed that identifying requirements and their relations to other entities led to an

increase in quality. This subskill is requirement elicitation.

Relationship identification among different aspects of the problem is another subskill

that affects creativity in problem formulation. There were several evidences in

Experiments I and II about the effect of identifying relations among entities. The results

showed that failing to identify the relations to functions and issues adversely affect

quantity and novelty respectively. Recognizing the relations that issues had to other

entities increased novelty and quality.

Questions about missing information can be defined in P-maps as a subtype of issue.

Many of the issues that the participants raised in the empirical studies were about missing

information (e.g., what is the stiffness of the surface where the goofy gopher competition

in DP_3 is played). In Experiment II, it was shown that the addition of issues positively

influenced quantity and variety. This relates to an information seeking subskill.

Table 10.1 Problem formulation skills in relation to creativity (from Exp. II)

Formulation characteristic Affected creativity metric

Requirement elicitation Quality

Relationship identification Quantity, novelty, quality

Information seeking Quantity, variety

Use description Novelty

Key objective identification Quality

Challenging issue All metrics

Delight addition Quality

Specification Quality

Decomposition Quantity, variety, novelty

173

One of the causes of bad designs is that designers fail to consider who uses the end

product and how. Results of Experiment II showed that specifying more entities about

use scenarios increases novelty. The ability to identify use scenarios, or use description,

is another subskill in problem formulation.

One characteristic of formulating a design problem is to understand where one should

pay the main attention to, as resources are limited in a design project. One of the main

differences between experts and novices is that experts quickly identify the key objective

and the challenging issues, while novices treat everything equally [14]. The related

subskills are called key objective identification and challenging issue respectively.

Results of Experiment I also showed a progress in novices’ time of identifying issues.

Issues were discovered earlier in the final problem (DP_5) compared to the one before it

(DP_4). Results of Experiment II showed that identifying the main objectives (under

requirements) affect quantity.

One of the aspects that makes good designers stand out is the ability to deliver

surprising features in the design that delights customers. The well-known Kano model

[116] differentiates between basic features and features of delight in a design where the

mere presence of the latter increases customer satisfaction. These feature can be

described under requirements in P-maps. The empirical study in Experiment II showed

that identification of these requirements increases quality. This subskill is Delight

addition.

In the same way that problem and solution spaces co-evolve during design and cannot

be separated, PF skills involve convergence in addition to divergence. An aspect of

174

defining the problem is specification, setting the boundaries of variables, constraints, etc.

Specs are part of requirements in the P-maps ontology which positively relate to quality.

Designers not only expand and bound the design space during problem formulation,

but also structure the space. The findings in Experiment II showed that decomposing

functions increased novelty and quantity while decomposing entities use scenarios

increased variety. The decomposition of the problem is also an important subskill in

problem formulation.

10.1.2 Associating P-maps measures with sub-skills

Measures can be defined for the identified PF skills. The number of added

requirements that are necessary to achieve but implicit, i.e., not directly mentioned in the

problem statement, can indicate requirement elicitation. The number of identified

relations between different fragments of the problem can be a measure of the relationship

identification skill. The number of times that a designer requests additional information

that are important in the design and not apparent in the problem statement, or refers to

external sources of information that are known to the designer are indicators of

information seeking. Use description can be measured by the number of times the

designer identifies pertinent environmental variables or user affordances. The number of

identified key issues and the degree to which the designer allocates resources to them can

measure how successful they are at finding the challenging issue. The number of

auxiliary features of delight that are added can indicate delight addition. The portion of

parameters that are bounded with absolute or relative ranges and targets constitute a

measure of specification. The level of decomposing different aspects of the problem, e.g.,

175

the depth of an objective tree or number of disjunctive functional decompositions, can be

indicators of the decomposition skill.

Measures within the P-maps ontological framework can be associated with the

measures defined above for each problem formulation sub-skill. For example the number

of derived requirements can be for the requirement elicitation sub-skill. Table 10.2

proposes a set of P-map measures for the PF subskills. This relation only shows the

corresponding measures that one can calculate from a P-map; it does not specify a

scoring or grading schema.

Table 10.2 P-maps measures for PF subskills

Formulation characteristic Problem Map measure

Requirement elicitation Number of requirements not specified in the problem

statement

Relationship identification Total number of linked entities in all groups in log 6

Information seeking Number of questions (subtype of issues)

Use description Total number of use scenarios

Key objective identification Number objectives (subtype of requirements)

Challenging issue Total number of issues

Delight addition Number of delight features added under requirements

Specification Number of specs (subtype of requirements)

Decomposition Sum of hierarchy depth and disjunctive branches in the

function tree

Scoring the skills can be based on comparing participants’ responses to a normative P-

map for the given question. The norm can be created from an aggregate of all the P-maps

in the same sample or in a historic sample. For example, for scoring the key issue

identification subskill one can create an aggregate of possible issues for the given

176

problem and assign the highest score when the test taker includes all the issues on the list

in his P-map, and proportionally lower scores for fewer issues.

10.1.3 Candidate test items

The examples shown in this chapter were for complete design projects. Questions in a

test can be in a more controlled setting. Possible questions for different parts of the test

can be proposed. Similar to the previous examples, aggregate of responses can be turned

into inventories for comparison of the test takers’ responses to the norm. One of the

important characteristics of a test is how well it reflects on differences among takers. In

order to have a test with an appropriate distribution, the questions should be balanced,

i.e., most subjects should be able to answer easy questions; some subjects respond better

to more difficult questions; a few find the most difficult answers. Finding distributions

similar to what was shown in Figure 10.1 helps with that regard.

The main difference between using P-maps for the test and using it for evaluating

problem formulation outcome is that in the former, instead of a design task, the assigned

questions are limited to measuring one or a few of the characteristics. For example, a

question can ask the test taker to pick the order of issues which are more challenging in a

specific design situation from a provided list of issues for that problem. Another example

is testing decomposition in two ways. One is to given a high level function and ask the

test taker to provide as many functions as possible in lower levels. A different way of

posing the question is to provide an incomplete function structure and ask the test taker to

fill in empty nodes.

177

The test has not been fully developed yet but it is structure and some candidate test

items are discussed in [117]. Unlike the previous design skill tests [99, 113, 118], this test

is planned to be taken on a web-based testbed, not pen and paper, with the intention that

more subjects take the test and be graded quickly. One remaining challenge in using the

tool for this purpose is that some automatic text processing is required for assessing the

free form text responses collected in P-maps.

10.2 Objective evaluation of students’ problem formulation

Since the P-maps framework facilitated data collection about problem formulation in a

structured way, it was feasible to find a rubric from the diverse set of variables which P-

maps provide for evaluating problem formulation skills. To compute some of the

formulation variables, inventories should be created based on all the responses from all

the students, similarly to how it is done for calculating ideation metrics. The process was

described in section 6.4. Table 10.3 and Table 10.4 show examples of implicit and

fictitious requirements, and key and irrelevant issues for the goofy gopher problem

(DP_3) problem derived from an aggregate of all the P-maps.

Table 10.3 Examples of implicit and fictitious requirements inventory

Implicit Fictitious

should collect balls with higher points should store few balls in device

should protect collected balls from the opponent should carry ball to silo

should endure the whole tournament should minimize weight

should sustain impacts from opponent's device should move back and forth

should be easy to control by one operator should not have excess cables

178

The type of responses from entries into the testbed within the defined categories of the

P-maps ontology was determined by two judges through a process of arbitration. One

major factor in deciding if a response is appropriate is to see if it unnecessarily bounds

the design space at such an early stage. For example the implicit requirement ‘should

store few balls in device’ implies a certain design where the device moves on the field,

while a viable design option is to deliver the balls from the point they are picked to the

silo without carrying them, e.g., by throwing.

Table 10.4 Examples of key and irrelevant issues inventory

key issues irrelevant issues

Control of the device with one operator Mechanism degrees of freedom

Material constraints limit variety of

solutions

Interfering with opponent's device

without damaging it

Managing power consumption

To objectively assess students’ problem formulation, a grading schema was set up for

the identified P-maps measures. Table 10.5 shows this grading schema. The measures are

normalized with respect to the sample to create a scale of 1-10 similar to the scales in the

applied design skill tests [99, 113, 118] and ideation effectiveness metrics [24]. Some

measures can be found by deducting points when the students choose inappropriate

responses. This is similar to how afixability is computed in the Divergent Thinking test

[99]. For most measures the response should be appropriate which is determined with

respect to the inventories created as explained above. Few scores can be directly

measured from raw counts (of problem formulation characteristics). The distribution of

the students’ scores is shown in Figure 10.1.

179

Table 10.5 The scoring scheme forevaluatingstudents’PFinadesigntask

Subskill Measure (normed by dividing by max in sample) Response

inventory

Requirement

elicitation

Total derived requirements Yes

Relationship

identification
𝐿𝑜𝑔6𝑇𝑜𝑡𝑎𝑙𝑙𝑖𝑛𝑘𝑠 No

Information

seeking

Total questions (sub-type of issues) Yes

Use

description

Total use scenarios No

Key objective

identification
10
− 𝑡𝑜𝑡𝑎𝑙𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠𝑤𝑖𝑡ℎℎ𝑖𝑔ℎ𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒

Yes

Challenging

issue

identification

10 − 𝑡𝑜𝑡𝑎𝑙𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑠𝑠𝑢𝑒𝑠𝑤𝑖𝑡ℎℎ𝑖𝑔ℎ𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 Yes

Delight

addition

Total derived delight requirements Yes

Specification Total number of specs (sub-type of requirement) No

Decomposition Width + depth of the function hierarchy No

Figure 10.1 Distributionofstudents’gradesofPFskillsforadesigntask

Sub-skill

U
se

 d
es

cr
ip

tio
n

Sp
ec

ifi
ca

tio
n

Req
ui
re

m
ent

 e
lic

ita
tio

n

Rela
tio

ns
hi
p id

en
tif

i c
at

io
n

Key
 o

bje
ct

iv
e

id
en

tif
ic
at

io
n

In
fo

rm
at

io
n s

ee
ki
ng

D
el
ig

ht
 a
ddi ti

on

D
ec

om
posi

tio
n

Cha
lle

ng
in

g is
su

e

25

20

15

10

5

0

C
o

u
n

t

Hi

Mid

Lo

Score

Distribution of F14G students' scores of DP_4

180

The scores of sub-skills can be measured during an interval to track students’ progress.

This was done for the participants in group F14G. Scores of students’ nine problem

formulation sub-skills were compared for two design problems (DP_4 and DP_5).

Figure 10.2 shows the changes in problem formulation characteristics from DP_4 to

DP_5.. It can be seen that for the majority of the sub-skills, the students not only

improved but also converged. Major improvements occurred in finding implicit

requirements, identifying the challenging issues, and creating a more comprehensive spec

sheet (the specification skill). The decomposition skill also saw improvement; this may

probably be attributed to learning how to better use the Formulator testbed. To find out if

the aforementioned changes were statistically significant or not, a paired t test was

conducted to evaluate the differences in the means for each sub-skill. Table 10.6

summarizes the results. It can be seen that use description significantly went down which

can be explained by the more constrained nature of the problem. While different user

groups and environmental conditions affect the shot-buddy design (DP_4), there are

relatively fewer use scenarios for the autonomous surveillance design problem (DP_5).

181

Figure 10.2 Changes in students’problemformulationcharacteristics

Table 10.6.Testofchangesinindividuals’problemformulationsub-skills

10

5

0

DP_5DP_4

10

5

0

DP_5DP_4

10

5

0

DP_5DP_4

Requirement elicitation

Problem

Relationship identification Information seeking

Use description Key objective identification Challenging issue

Delight addition Specification Decomposition

Changes in the problem formulation characteristics

 DP_3-DP_5 p-value

Requirement elicitation 1.96 0.00

Relationship identification 0.34 0.56

Information seeking -0.97 0.32

Use description -2.86 0.00

Key objective identification 0.86 0.27

Challenging issue 1.94 0.02

Delight addition 0.14 0.85

Specification 1.53 0.00

Decomposition 0.92 0.01

Total score 0.68 0.02

182

10.3 A vehicle for reproducing previous studies

One of the main motivations in breaking away from protocol analysis in this research

and embracing the application of a computer testbed based on an ontological framework

with a limited set of defined entities has been to enable large scale data collection and

analysis. Research in design thinking often suffers from studies with small sample sizes

[2]. A consequence of this difficulty in conducting empirical research in design is that

unlike some fields in science such as material science or even marketing in humanities,

studies with the objective of reproducing previous findings are almost non-existent. An

indirect advantage of following the proposed method in this research (data collection on

computer testbed) is that efforts in replicating previous studies or comparing the variety

of the results which were found in this research to the findings in the literature becomes

more convenient than if protocol analysis was used.

This section provides a few examples from comparing observations from the literature

with some of the discoveries in this research. The first example involves the role of the

direction of search and exploration in the design space. While Ball et al. [40] stated that

experts use breadth-first search when novices use depth-firs search, Ho [39] stated that

expert designers use depth-first exploration more successfully. On the other hand, Cai et

al. [41] found no difference between subjects who follow either depth or breadth

exploration of the design space with respect to creativity. In this study, for student

subjects, a positive correlation was found between depth-first exploration and novelty.

The second example is about how designers decompose a problem. There have been

quite contrasting observations in the literature on the effect of problem decomposition.

Liikkanen and Perttula [38] found that decomposition does not affect creativity while the

183

opposite was found among expert designers [39]. In this study, I found that following

specific orders in decomposing different aspects of the problem (adopting the order

req_use and order req_fun strategies) increased the quantity of ideas.

Another example revolves around a well-known strategy in the literature of design;

how abstraction influences creativity. Ward et al. [36] described the role of abstraction in

improving novelty in ideation. Ball et al. [37] also found that experts used abstraction

more frequently than novices did. The findings in this dissertation provide a detailed

account of how statistically significant the influence of abstraction is on each metric, and

if the results stand if a factor such as the design problem is varied. For the two problems

DP_4 and DP_5, abstraction was found to positively influence the quantity and the

variety of ideas for one problem. There was a positive influence on max novelty and max

quality though the correlation was not statistically significant (p 0.52 and coefficient of

0.26 for max novelty; p 0.33 and coefficient of 0.14 for max quality).

Some of the studies that were reviewed in the literature suggest promising alignment

between qualitative results with results obtained from quantitative analyses that utilize

computational frameworks [41, 47]. I shall emphasize that using computational methods

with data collected on a large scale as it was carried out in this research, and coupled with

text analysis methods and formal ontologies as will be suggested for future work might

help design researchers to reach new findings while avoiding tedious and resource-

consuming qualitative research methods.

184

CHAPTER 11

CONCLUDING REMARKS

11.1 Research questions revisited

The main objective of this research has been the understanding of problem

formulation in engineering design and how it may affect creative outcome. There is

enough evidence from past studies that experienced and/or creative designers, approach

design problems differently from novice and less creative designers. However, the

findings have often been at a high level and sometimes contradicting each other. The

main hindrance in studying how designers think (or how they formulate problems which

is the scope of this research) has been the tediousness of the main method of studying

design cognition, protocol analysis. This research has proposed a new method for

investigating problem formulation in design; modeling data in a computational and

ontological framework which can be collected and analyzed on a large scale in a

computer testbed. A variety of quantitative assessment models and qualitative

observations of designers were found throughout this work and in adopting the proposed

method. Let us revisit the research questions and the stated hypotheses of this thesis:

1. What model can be used to capture a designer’s understanding of a design

problem, and show individual differences in problem formulation?

2. How do more creative and/or experienced designers formulate design problems

differently from less creative and/or novice designers? How can the differences

be captured within the framework?

185

3. Can creative outcome be predicted from the way designers formulate

problems?

H1_a) Novice designers follow a systematic order in expressing problem

formulation while experts have a more opportunistic behavior.

H1_b) Experts find key issues early on during problem formulation while novices

find more issues and later in the formulation process.

H2_a) Depth-first exploration of problem formulation entities leads to more

creativity.

H2_b) Creativity can be improved in novice designers by teaching them

characteristics of good problem formulation.

H3) Creativity in design outcome can be predicted with an acceptable degree of

confidence from problem formulation behavior.

Chapters 3 and 4 covered the answer to the first research question. The Problem Map

framework was presented and compared to different modeling frameworks to reaffirm the

motivations behind proposing P-maps and the lack of an appropriate ontological

framework in past work for studying problem formulation. To evaluate the

appropriateness of the P-maps ontology for expressing problem formulation data, one of

the common methods was used which is finding inter-rater agreement in assigning

fragments to entities in the ontology. The worst agreement was a 0.28 Cohen’s Kappa

between two previous users of the testbed associated with the ontology. The best

agreement was found between two researchers intimately involved developing the

ontology at 0.75 Cohen’s Kappa which is considered near perfect. In describing how

strategies could be formalized and traced in the P-maps framework in 6.3.3, predicate

186

logic formalism (ASP/Prolog) was also described as a textual representation of problem

formulation data.

The answer to the second research question was provided with results of the first

designed experiment in chapter 7. Even though the expert designers were a small sample,

some differences among them could be observed in addition to differences to the student

subjects in this study. One example of a within subject (expert) difference was that most

designers added requirements early in their problem formulation while one expert

continued adding requirements throughout his work. An example of a difference found

between experts and students was that experts had a higher rate of adopting the

abstraction strategy than students, while students followed a forward order (defining and

relating requirements, functions, artifacts, and behaviors in this specific order) more than

the experts did. In addition, hypothesis H1_a was proven but hypothesis H1_b was

rejected.

Some of the findings in this research may have been reported to a degree in the past as

explained in section 2.1. However, the main contribution of this work though comes from

the detailed empirical findings based on correlation analysis, linear regression modeling,

and a host of statistical data mining methods facilitated by the fine-grained ontological

framework, results of which were explained in Experiment II throughout chapter 8. In

addition, the relationship between problem formulation and creativity was studied.

Characteristics of problem formulation were related to ideation metrics. The key findings

are:

187

· Quantity may increase if designers do more abstraction and specify key issues

without decomposing them, but it may decrease if designers ignore the

relations that functions have to other entities.

· Variety may also increase if designers do more abstraction and specify key

issues without decomposing them, and decompose use scenarios, but it may

decrease if designers focus on adding more requirements and use scenarios and

identifying conflicts.

· Novelty may increase if designers: a) specify fewer requirements but more use

scenarios and functions, b) structure more hierarchies especially in use

scenarios and behaviors, c) recognize issues in relation to other entities, d)

follow a depth exploration strategy.

· Novelty may decrease if designers: a) fail to relate functions to other entities,

b) identify more conflicts.

· Quality may increase if designers specify more behaviors and fewer artifacts,

identify more conflicts, and follow a breadth exploration strategy. Quality

may decrease if designers ignore the relations which requirements have to

other entities, and the relations which issues have to other entities.

From the results of Experiment II hypotheses H2_a and H2_b were also proven. The

answer to the third research question came from using the regression models built for two

problems to predict the outcomes for one another. This was covered in chapter 9 as the

third designer experiment. Predicted results were compared to scores assigned by an

independent panel of judges. The R-squared and R-squared adjusted statistics, as well as

the difference between the scores predicted by the models and scores assigned by the

188

judges were used as indicators of model fit (predictability) and accuracy of the regression

models respectively. Models of novelty and quality had statistically more reliable models.

Models of variety, novelty, and quality had more accurate predictions. An iterative

backward elimination method was used to remove the regressors which were statistically

less significant, in order to produce a more reliable model with respect to the R-squared

adjusted statistic. Predictability of the models improved significantly (the least change in

R-squared adjusted was for max quality from 95% to 97%; the most change was for

variety from -201% to 31%). However, accuracy of the predicted outcomes dropped

especially for variety.

It should be noted that in retrospect, a few other questions were partly dismissed either

because they did not fit the scope of this research, or they were sidestepped in search for

answers to more fundamental questions. One of the initial questions was: “Is it possible

to build an interactive computer tool that aids problem formulation leading to

creativity?”. Obviously, the answer has involved the development of an interactive tool

which has been used in this research as a testbed for data collection. Another change from

an initial plan of research related to the evaluation of the implemented modeling

framework. Instead of evaluating the framework with respect to the initially proposed

criteria (domain-independence, richness, compactness, unambiguity, and flexibility), a

common approach to the evaluation of ontological frameworks was used: inter-rater

agreement. The main reason was that determining measures for the initial criteria set was

subjective and uncommon in the literature, but measures for inter-rater agreement are

well-established.

189

11.2 Limitations

11.2.1 Limitations of the exploratory studies

While the P-maps models allows one to represent a large part of the problem

formulation process the designers went through, there were some things that could not be

coded using the model in the exploratory protocol studies. The reasons lie within the

shortcomings of the protocol analysis method. One is that the process relies on the judges

or raters’ interpretation of verbalized thought. The other is that verbalized thoughts are

incomplete [119], i.e., the designer does not express all the process that goes through

mind verbally. Examples of such limitations are described in this section. Some of these

limitations led to changes in the ontology as described in chapter 3. Implementing a

computer testbed instead of a think-aloud method of data collection could overcome other

limitations.

One of these limitations was that the model was designed to be domain independent.

While this was a major strength of the model, this also meant that without domain

knowledge, the different combinations of possible designs that may have been generated

from the P-map might have contained artifacts, or other entities that could not combine

well or at all in reality. In order to allow for this information to be entered, the problem

map model would need to allow the designer to specify when two entities could not be

combined.

There was no way to specify whether the children of a parent were both required or if

they were disjunctive when interpreting the transcriptions. For example, a device may

have either required a regular valve or a one-way valve, or both may have be required in

190

different parts of the device. These valves would be coded in the following way

regardless of whether they were conjunctive and disjunctive:

physicalEmbodimet(em_one_way_valve).

physicalEmbodiment(em_valve).

parentOf(sl_device, em_valve).

parentOf(sl_device, em_one_way_valve).

This was due to the nature of how these physical embodiments were often introduced

in the protocols and the fact that proto-solutions often overlap, sharing many entities.

This information could be encoded using the P-map modeling framework, but encoding

hierarchical information from protocol studies was prohibitive.

Additionally, in some instances, designers connect components to the high-level

solution principle of the device. When a more specific device was mentioned, it might

have been the case that the child did contain the components connected to the high level

device, or it might have been the case that those high level components were actually

connected to a disjunctive solution. This was another piece of information that could not

be coded.

Functions specified by the designer might have been used in a sequence multiple times

with different parameter values. While the P-map model coded sequential information,

there was no way to specify which parameter value went with which instance of the

function. For example, one designer’s protocol mentioned the ascend function three times

during the process of collecting the sample. The first time, the designer wanted the device

to ascend ten meters, puncture a balloon, ascend another predetermined amount, collect

the sample, and then drop the weights and ascend the remaining distance to the surface.

191

Another piece of information that was hard to encode was whether a parent solution

principle of a physical embodiment was an abstract solution principle guiding the

selection of entities, or a parent, which contained the child physical embodiment. For

example, one designer specified that the design should incorporate disposable liners for

the water-sampling container to avoid contamination between samples. This liner

therefore was specified as both a child of the solution principle sl_disposable and as a

child of the sl_water_sampler though these relationships were different. In another

example, one designer first specified that he wanted a water container, and that this

device should have a balloon. Later he elaborated and said that he wanted a pressure

containment vessel as the water container. Both pressure containment vessel and balloon

would have been coded as children of the higher lever water container.

Another observation was that the coding scheme linked parameters, such as spatial

location to the entity the location information belongs to, but not necessarily the entity

that it affected. For example, if a solutionPrinciple sl_device had an embodiment

em_hatch, the parameter (pr_hatch_location) would be linked to the device, without any

sort of link to the em_hatch. While this type of information was not necessary for the

analyses presented earlier in this paper, it would become more relevant when assessing a

formulated problem with measures such as quality, quantity, fluency, and originality of

the resulting design outcome.

Finally, the designers were often found specifying information about what did not

need to be considered in the design space. For example, one designer concluded that,

since the device was intended for freshwater use only, salt erosion, oxidation or any

contamination of the materials could be safely ignored. There was no clear way to code

192

this information. On the one hand, the model allowed for a statement such as “the device

should be made out of materials that do not become contaminated and that should be

resistant to salt erosion or oxidation.”. On the other hand, it was possible to use negation

in the predicate logic formalism of ASP, though unlike a well-defined problem, the ill-

defined nature of a design problem with a design space that cannot be finitely bounded

does not make the defined problem space with counterfactuals trivial.

11.2.2 Limitations of the experimental studies

Three major challenges were faced in the way that data was collected. The first

challenge related to the difficulties that were experienced in using the data collection tool,

the web-based Problem Formulator [96]. Similar to any software tool there is a learning

curve. Prior to working on the problems which were used throughout this study, the

student participants in all groups (F12U, F13G, and F14G) learned about the tool and its

underlying ontology in an hour long workshop, in addition to working on a different

practice design problem (students in F14G had an additional workshop presenting the

depth-first and breadth-first approaches). Yet, some students still misused the tool in

entering fragments under the wrong categories. Another common mistake was to mistake

conjunctive relations with disjunctive relations (which mean alternatives) under a parent

node. A part of future work will be to embed a pre-verification system in the tool where

users will be prompted to correct their entries, or a more appropriate category is

suggested by the tool.

Another challenge in this study was the limitations of selecting appropriate design

problems. Even though the ideation metrics have a normalized scoring schema with

193

respect to either a historical pool from previous designs for the same problem, or the

sample of designers’ concepts at hand, it is difficult to find two problems which lead to

ideation outcomes of the same distribution of scores. Some problems, by the inherent

constraints that they have, lead to less ideas with less variety in the proposed solutions,

which in turn lowers the chance of having high scores of novelty. Figure 11.1 shows the

changes in the variety scores of the students for the DP_4 and DP_5 problems. Even

though the median remains fairly the same in both problems, the distribution is much

narrower in the variety scores of DP_5 compared to DP_4. Figure 11.2 shows how

average novelty goes down from DP_4 to DP_5, mainly because the second problem was

more constrained since the students were asked to build a working prototype to compete

with other students. It is plausible to assume that the students became more conservative

in proposing their designs merely due to the fact that they were subconsciously searching

for a design that worked.

Figure 11.1 Decreasing variability in variety (DP_4 to DP_5)

D2D1

6

5

4

3

2

1

problem

V
a

ri
e

ty
 (

p
e

r
fn

)

Boxplot of Variety (per fn)

DP_4 DP_5

194

Figure 11.2 Decreasing mean and variability of average novelty (DP_4 to DP_5)

The challenge in problem selection is coupled with the nature of a progressing class of

students (who have been the majority of the participants in this research) throughout a

semester in further lowering the variation in outcomes. As the class progressed, through

multiple assignments and design projects, the students design skills improved, resulting

in a convergence in some of the ideation metrics from DP_4 to DP_5. An alternative

interpretation of Figure 11.2 is that it was less likely to come up with a novel idea when

students’ level of competence had become close.

11.3 Future work

The creation of a computational framework based on an ontology and an associated

computer testbed for a large scale data collection and analysis is a promising method in

research in engineering design and designer thinking. There are four major directions to

follow in the future. One is to test hypotheses based on the current observations. For

D2D1

8

7

6

5

4

3

2

1

problem

a
v

g
 n

o
v

e
lt

y

Boxplot of avg novelty

DP_4 DP_5

195

example, results from the regression models suggested that structuring behaviors

improves quality but lowers novelty. To test this hypothesis, one can set up an

experiment with a test group that receives recommendations about structuring their

behaviors, while a control group is discouraged from doing so (or in alternative

experiment, the control group does not receive any recommendations). Similarly to

testing hypotheses based on observations from this research, another possibility is to use

the framework for testing hypotheses based on past work by others. The fine-grained

framework can be used to validate or refute previous findings. Examples were given in

section 10.2.

The second direction is to identify more problem formulation strategies either by

formalizing them based on introspection or the literature, or by using machine learning

methods to propose new strategies. Two possible approaches are using templates and

Inductive Logic Programming. With templates, meta-level rules can be defined instead of

the specific strategies which were defined in 6.3.4. An example of template can be

formulated in the following meta-level rule: given an entity of type A at time 1, find if

there are more entities linked to it of type B or type C. Another template can have this

meta-level rule: given an entity of type A at time 1, find if entities of type B were linked

to it before entities of type C. Inductive Logic Programming [120] combines logical

knowledge representation with machine learning in a relational learner, i.e., it takes

advantage of a predefined knowledge of relations among attributes or features (a belief

network) to generate human-interpretable explanations.

The third possibility for future work is to turn the current computer testbed into a

coaching or tutoring system. Based on the measures associated with the problem

196

formulation skills as explained in Chapter 10, one can diagnose participants’ weak

problem formulation sub-skills, and provide prescribed recommendations to improve

individuals. The development of the problem formulation skill test is also a step towards

that goal.

Finally, an important task for the future is to overcome the main challenge in scaling

up empirical studies using the associated computer testbed, which is the automation of

the understanding, and categorization of the text inputs. One shortcoming of the current

testbed is that users can enter data fragments in the wrong categories. Some of the

measures described in this research could be found without looking into the data

fragments, e.g., the total number of functions. Some measures require understanding the

meaning of the fragment, e.g., whether a requirement is implicit or fictitious or whether

an issue is a question for seeking information or about a conflict between different

requirements. Understanding text fragments is a first step for automatic evaluation of the

input. Providing the users with a score also requires creating normative P-maps from an

aggregate of a sample to be compared to. Automating this step in the process is even

more challenging since one should determine which responses are close in meaning and

should fall under one cluster.

11.4 Original contributions

Problem formulation is an important yet understudied subject in designer thinking.

Existing frameworks and methods of empirical investigation lack a level of detail

appropriate for studying how problem formulation influences creativity. This motivated

the creation of a new ontological framework which facilitated answering research

197

questions about the characteristics of problem formulation in relation to creativity. The

Problem Maps framework is one of the original contributions of this research. An earlier

version of the P-maps model was also reported as one of the original contributions in the

thesis proposal.

One of the main contributions of this research is the creation of a theoretical

framework for representing design strategies in a formalized way. There are two benefits

in the proposed framework. One is that a fairly qualitative designer behavior is turned

into a quantitative variable (counts of occurrences of strategies). Second, strategies are

defined as a set of actions that meet certain conditions regardless of any other actions that

is happening in an interval as long as they do not violate the conditions of the strategy.

The set of strategies defined in this work was small but there is a potential in identifying

more strategies as it was explained in the previous section on future work.

A computerized testbed was created to speed up data collection, data analysis, and the

rate of discovery of empirical findings. The Problem Formulator testbed was another

original contribution of this research. The testbed was used to collect data to conduct

experiments to answer the research questions and proposed hypotheses.

Three experiments were designed to understand the differences within and between

novices and experts, model the relation between problem formulation characteristics and

creativity, and examine if creativity can be predicted from problem formulation. Results

of the protocol study with the eight experts were reported in the thesis proposal as an

original contribution. Comparisons to novices are additional contributions.

The models of ideation metrics with respect to problem formulation are also original

contributions of the research. They led to a list of problem formulation characteristics

198

which influenced creativity. Based on these relations, recommendations can be made for

improving novices’ problem formulation skills. Another contribution of this research was

to enable predicting a designer’s creative outcome based on his problem formulation.

Finally, new hypotheses were suggested based on the findings from the empirical studies.

11.5 Publications

Journal papers:

1. Dinar M., Danielescu A., Maclellan C., Shah J. J., and Langley P. “Problem

Map: An ontological framework for a computational study of problem

formulation in engineering design”, Journal of Computing and Information

Science in Engineering, 15(3), 031007

2. Dinar M. , Shah J. J, Cagan J., Leifer L., Linsey J., Smith S., Vargas-

Hernandez N., 2015, “Empirical Studies of Design Thinking: Past, Present,

Future”, Journal of Mechanical Design, 137 (2), 021101

3. Maclellan C., Langley P., Shah J. J., and Dinar M., 2013, “A Computational

Aid for Problem Formulation in Early Conceptual Design”, Journal of

Computing and Information Science in Engineering, 13 (3), 031005

Conference papers:

1. Dinar M., Park Y., Shah J. J, Langley P., 2015, Patterns of Creative Design:

Predicting Ideation from Problem Formulation, ASME DETC, Boston, MA,

USA

199

2. Dinar M., Park Y., Shah J. J, 2015, Evaluating the Effectiveness of Problem

Formulation and Ideation Skills Learned Throughout an Engineering Design

Course, ASME DETC, Boston, MA, USA

3. Dinar M., Park Y., Shah J. J, 2015, Challenges in developing an ontology for

problem formulation, International Conference on Engineering Design

(ICEDP_45), Milan, Italy

4. Dinar M., Shah J. J, 2015, Towards a Comprehensive Test of Problem

Formulation Skill in Design, The 3rd International Conference on Design

Creativity, Bangalore, India

5. Dinar M., Shah J. J, 2014, Enhancing Design Problem Formulation Skills for

engineering design students, Proceedings of ASME DETC, Buffalo, NY, USA.

6. Cagan J., Dinar M., Shah J. J, Leifer L., Linsey J., Smith S., Vargas-Hernandez

N., 2013, “Empirical Studies of Design Thinking: Past, Present,

Future”, Proceedings of ASME DETC, Portland, OR, USA.

7. Dinar M., and Shah J. J., 2012, “A Model of Problem Formulation Strategies

in Engineering Design,” Proceedings of First Annual Conference on Advances

in Cognitive Systems, P. Langley, ed., Palo Alto, CA, USA.

8. Danielescu A., Dinar M., Maclellan C., Shah J. J., and Langley P., 2012, “The

Structure of Creative Design: What Problem Maps Can Tell Us about Problem

Formulation and Creative Designers,” Proceedings of ASME DETC, Chicago,

IL, USA.

9. Dinar M., Maclellan C., Danielescu A., Shah J. J., and Langley P., 2012,

“Beyond Function-Behavior-Structure,” Design Computing and Cognition

200

DCC’12, J.S. Gero, ed., Springer, Texas A&M University, College Station,

TX, USA.

10. Dinar M., Shah J. J., Langley P., Campana E., and Hunt G. R., 2011, “Towards

a Formal Representation Model of Problem Formulation in

Design,” Proceedings of ASME DETC, Washington D.C., USA.

11. Dinar M., Shah J. J., Langley P., Hunt G. R., and Campana E., 2011, “A

Structure for Representing Problem Formulation in Design,” Proceedings of

the International Conference on Engineering Design, Copenhagen, Denmark.

201

REFERENCES

1. Harfield S (2007) On design “problematization”: Theorising differences in

designed outcomes. Des Stud 28:159–173

2. Dinar M, Shah JJ, Cagan J, Leifer L, Linsey JS, Smith SM, Hernandez NV (2015)

Empirical Studies of Designer Thinking: Past, Present, and Future. J Mech Des

137:021101

3. Maher M Lou, Poon J, Boulanger S (1996) Formalising Design Exploration as Co-

Evolution: A Combined Gene Approach. In: Gero JS, Sudweeks F (eds) Adv.

Form. Des. Methods CAD Proc. IFIP WG5.2 Work. Form. Des. Methods Comput.

Des. June 1995. Springer US, pp 3–30

4. Dorst K, Cross N (2001) Creativity in the design process: co-evolution of

problem–solution. Des Stud 22:425–437

5. Amabile T (1996) Creativity in context: update to the social psychology of

creativity. 317

6. Boden MA (2004) The creative mind: myths and mechanisms. 2:344

7. Newell A, Simon HA (1972) Human Problem Solving. Prentice-Hall, Upper

Saddle River, NJ

8. Chandrasekaran B (1990) Design Problem Solving: A Task Analysis. AI Mag

11:59–71

9. Goel V, Pirolli P (1992) The structure of Design Problem Spaces. Cogn Sci

16:395–429

10. Simon HA (1973) The structure of ill structured problems. Artif Intell 4:181–201

11. Dorst K (2006) Design problems and design paradoxes. Des issues 22:4–17

12. Valkenburg R, Dorst K (1998) The Reflective Practice of Design Teams. Des Stud

19:249–271

13. Coyne R (2005) Wicked problems revisited. Des Stud 26:5–17

14. Shah JJ (2014) Design theories and models.

15. Ullman DG, Dietterich TG, Stauffer LA (1988) A model of the mechanical design

process based on empirical data. Artif Intell Eng Des Anal Manuf 2:33–52

202

16. Waldron MB, Waldron KJ (1988) A time sequence study of a complex mechanical

system design. Des Stud 9:95–106

17. Thomas JC, Carroll JM (1979) The psychological study of design. Des Stud 1:5–

11

18. Cross N, Cross AC (1998) Expertise in Engineering Design. Res Eng Des 141–149

19. Atman CJ, Chimka JR, Bursic KM, Nachtmann HL (1999) A Comparison of

Freshman and Senior Engineering Design Processes. Des Stud 20:131–152

20. Eisentraut R (1999) Styles of problem solving and their influence on the design

process ¨. Des Stud 20:431–437

21. Kim MHH, Kim YSS, Lee HSS, Park J a. A (2007) An underlying cognitive

aspect of design creativity: Limited Commitment Mode control strategy. Des Stud

28:585–604

22. Jansson DG, Smith SM (1991) Design fixation. Des Stud 12:3–11

23. Purcell AT, Gero JS (1996) Design and other types of fixation. Des Stud 17:363–

383

24. Shah JJ, Smith SM, Vargas-Hernandez N (2003) Metrics for measuring ideation

effectiveness. Des Stud 24:111–134

25. Nelson BA, Wilson JO, Rosen D, Yen J (2009) Refined metrics for measuring

ideation effectiveness. Des Stud 30:737–743

26. Kim MJ, Maher M Lou (2008) The impact of tangible user interfaces on spatial

cognition during collaborative design. Des Stud 29:222–253

27. Lemons G, Carberry A, Swan C, Jarvin L, Rogers C (2010) The benefits of model

building in teaching engineering design. Des Stud 31:288–309

28. Gero JS, Jiang H, Williams CB (2013) Design cognition differences when using

unstructured, partially structured, and structured concept generation creativity

techniques. Int J Des Creat Innov 1:196–214

29. Christiaans H, Dorst K (1992) An empirical study into design thinking. Res. Des.

Thinking, N. Roozenbg. K. …

30. Fricke G (1999) Successful approaches in dealing with differently precise design

problems. Des Stud 20:417–429

203

31. Pahl G, Beitz W (1996) Engineering Design: A Systematic Approach. Springer,

London, UK

32. Otto KN, Wood KL (2001) Product design: techniques in reverse engineering and

new product development. 1071

33. Kogure M, Akao Y (1983) Quality function deployment and CWQC in Japan.

Qual Prog 16:25–29

34. Kruger C, Cross N (2006) Solution driven versus problem driven design: strategies

and outcomes. Des Stud 27:527–548

35. Gero JS, Mc Neill T (1998) An approach to the analysis of design protocols. Des

Stud 19:21–61

36. Ward TB, Patterson MJ, Sifonis CM (2004) The Role of Specificity and

Abstraction in Creative Idea Generation. Creat Res J 16:1–9

37. Ball LJ, Ormerod TC, Morley NJ (2004) Spontaneous analogising in engineering

design: a comparative analysis of experts and novices. Des Stud 25:495–508

38. Liikkanen LA, Perttula M (2009) Exploring problem decomposition in conceptual

design among novice designers. Des Stud 30:38–59

39. Ho C (2001) Some phenomena of problem decomposition strategy for design

thinking: differences between novices and experts. Des Stud 22:27–45

40. Ball LJ, St.B.T. Evans J, Dennis I, Ormerod TC (1997) Problem-solving Strategies

and Expertise in Engineering Design. Think Reason 3:247–270

41. Cai H, Do EY-L, Zimring CM (2010) Extended linkography and distance graph in

design evaluation: an empirical study of the dual effects of inspiration sources in

creative design. Des Stud 31:146–168

42. Kavakli M, Sturt C, Gero JS (2002) The structure of concurrent cognitive actions:

a case study on novice and expert designers. Des Stud 23:25–40

43. Ahmed S, Christensen BT (2009) An In Situ Study of Analogical Reasoning in

Novice and Experienced Design Engineers. J Mech Des 131:111004

44. Atman CJ, Cardella ME, Turns J, Adams R (2005) Comparing freshman and

senior engineering design processes: an in-depth follow-up study. Des Stud

26:325–357

204

45. Goldschmidt G (1997) Capturing indeterminism: representation in the design

problem space. Des Stud 18:441–455

46. Goldschmidt G, Tatsa D (2005) How good are good ideas? Correlates of design

creativity. Des Stud 26:593–611

47. Kan JWT, Gero JS (2008) Acquiring information from linkography in protocol

studies of designing. Des Stud 29:315–337

48. Gero JS (1990) Design prototypes: a knowledge representation schema for design.

AI Mag 11:26–36

49. Gero JS, Kannengiesser U (2004) The situated function-behaviour-structure

framework. Des Stud 25:373–391

50. Pourmohamadi M, Gero JS (2011) LINKOgrapher: An Analysis Tool to Study

Design Protocols Based on FBS Coding. Proc. Int. Conf. Eng. Des. Copenhagen,

Denmark, pp 1–10

51. Anthony L, Regli WC, John JE, Lombeyda S V. (2001) An Approach to Capturing

Structure, Behavior, and Function of Artifacts in Computer-Aided Design. J

Comput Inf Sci Eng 1:186–192

52. Gero JS, Kannengiesser U (2007) Locating Creativity in a Framework of

Designing for Innovation. In: León-Rovira N (ed) Trends Comput. Aided Innov.

Springer Boston, pp 57–66

53. Sembugamoorthy V, Chandrasekaran B (1986) Functional representation of

devices and compilation of diagnostic problem-solving systems. In: J K, Riesbeck

C (eds) Exp. Mem. Reason. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 47–

73

54. Chandrasekaran B (1994) Functional Representation: A Brief Historical

Perspective. Appl Artif Intell 8:173–197

55. Umeda Y, Takeda H, Tomiyama T, Yoshikawa H (1990) Function, behaviour, and

structure. In: Gero JS (ed) Appl. Artif. Intell. Eng. V1. Computational Mechanics

Publications and Springer-Verlag, Berlin, Germany, pp 177–194

56. Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T (1996) Supporting

conceptual design based on the function-behavior-state modeler. Artif Intell Eng

Des Anal Manuf 10:275–288

205

57. Umeda Y, Kondoh S, Shimomura Y, Tomiyama T (2005) Development of design

methodology for upgradable products based on function–behavior–state modeling.

Artif Intell Eng Des Anal Manuf 19:161–182

58. Goel AK, Rugaber S, Vattam S (2009) Structure , Behavior and Function of

Complex Systems: The Structure, Behavior, and Function Modeling Language.

Artif Intell Eng Des Anal Manuf 23:23–35

59. Helms M, Goel AK (2014) The Four-Box Method: Problem Formulation and

Analogy Evaluation in Biologically Inspired Design. J Mech Des 136:111106

60. Wölkl S, Shea K (2009) A computational product model for conceptual design

using SysML. Proc. ASME IDETC/CIE

61. Larkin JH, Simon HA (1987) Why a Diagram is (Sometimes) Worth Ten

Thousand Words. Cogn Sci 11:65–100

62. Doumont J-L (2002) Verbal versus visual: A word is worth a thousand pictures,

too. Tech Commun 49:219–224

63. Willows DM (1978) A picture is not always worth a thousand words: Pictures as

distractors in reading. J Educ Psychol 70:255–262

64. Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38:39–

41

65. Bohm MR, Stone RB, Simpson TW, Steva ED (2008) Introduction of a data

schema to support a design repository. Comput Des 40:801–811

66. Uschold M (1998) Knowledge level modelling: concepts and terminology. Knowl

Eng Rev 13:5–29

67. Sim SK, Duffy AHB (2003) Towards an ontology of generic engineering design

activities. Res Eng Des 14:200–223

68. Srinivasan V, Chakrabarti A (2009) SAPPHIRE – AN APPROACH TO

ANALYSIS AND SYNTHESIS. Proc. Int. Conf. Eng. Des. pp 417–428

69. Srinivasan V, Chakrabarti A, Lindemann U (2013) Towards an Ontology of

Engineering Design Using SAPPhIRE Model. In: Chakrabarti A (ed) CIRP Des.

2012 SE - 3. Springer London, pp 17–26

70. Hirtz J, Stone RB, Mcadams DA, Szykman S, Wood KL (2002) A functional basis

for engineering design: Reconciling and evolving previous efforts. Res Eng Des

13:65–82

206

71. Novak JD, Gowin DB (1984) Learning how to learn. Cambridge Univ Pr

72. Oxman R (2004) Think-maps: teaching design thinking in design education. Des

Stud 25:63–91

73. Novak JD, Cañas AJ (2008) The Theory Underlying Concept Maps and How to

Construct and Use Them.

74. Quillian R (1966) Semantic Memory. Carnegie Institute of Technology

75. Lehmann F (1992) Semantic networks. Comput Math with Appl 23:1–50

76. Hao J-X, Chi-Wai Kwok R, Yiu-Keung Lau R, Yan Yu A (2010) Predicting

problem-solving performance with concept maps: An information-theoretic

approach. Decis Support Syst 48:613–621

77. Dinar M, Shah JJ, Langley P, Hunt GR, Campana E (2011) A Structure for

Representing Problem Formulation in Design. In: Culley SJ, Hicks BJ, McAloone

TC, Howard TJ, Chen W (eds) Proc. Int. Conf. Eng. Des. Copenhagen, Denmark,

pp 392–401

78. Gero JS, Tham KW, Lee HS (1991) Behaviour: A Link Between Function and

Structure in Design. IFIP WG 5.2 Work. Conf. Intell. Comput. Aided Des.

79. Baya V, Leifer LJ (1996) Understanding Information Management in Conceptual

Design. In: Cross N, Christiaans H, Dorst K (eds) Anal. Des. Act. John Wiley &

Sons, pp 151–168

80. Goel AK (1997) Design, analogy, and creativity. IEEE Expert 12:62–70

81. Dinar M, Shah JJ, Langley P, Campana E, Hunt GR (2011) Towards a Formal

Representation Model of Problem Formulation in Design. Proc. ASME

IDETC/CIE

82. Ulrich KT, Eppinger SD (2004) Product design and development. McGraw-Hill,

Boston, MA, USA

83. Dieter GE, Schmidt LC (2008) Engineering Design, 4th ed. McGraw-Hill

84. Norman DA (1990) The design of everyday things. 1 Doublay/:257

85. Simon HA (1969) The Sciences of the Artificial. MIT Press, Cambridge, MA

207

86. Dinar M, Danielescu A, MacLellan C, Shah J, Langley P (2015) Problem Map: An

ontological framework for a computational study of problem formulation in

engineering design. J Comput Inf Sci Eng 15:1–10

87. Gero JS, Fujii H (2000) A computational framework for concept formation for a

situated design agent. Knowledge-Based Syst 13:361–368

88. Stone RB, Wood KL (2000) Development of a functional basis for design. J Mech

Des 122:359–370

89. Altshuller G (1998) 40 Principles: TRIZ keys to technical innovation, 1st ed. 141

90. Pelham B, Blanton H (2007) Conducting research in psychology: Measuring the

weight of smoke, 3rd ed. Thompson Wadsworth, Belmont, CA, USA

91. Cohen J (1960) A Coefficient of Agreement for Nominal Scales. Educ Psychol

Meas 20:37–46

92. Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol

Bull 76:378

93. Gwet KL (2008) Variance Estimation of Nominal-Scale Inter-Rater Reliability

with Random Selection of Raters. Psychometrika 73:407–430

94. Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions,

3rd ed. John Wiley & Sons, Hoboken, NJ, USA

95. Landis JR, Koch GG (1977) The measurement of observer agreement for

categorical data. Biometrics 33:159–174

96. Maclellan CJ, Langley P, Shah JJ, Dinar M (2013) A Computational Aid for

Problem Formulation in Early Conceptual Design. J Comput Inf Sci Eng

13:031005

97. Nagel RL, Perry KL, Stone RB, McAdams DA (2009) FunctionCAD: A

Functional Modeling Application Based on the Function Design Framework. Proc.

ASME DETC. ASME, San Diego, CA, USA, pp 591–600

98. Vattam S, Wiltgen B, Helms M, Goel AK, Yen J (2011) DANE: fostering

creativity in and through biologically inspired design. Des. Creat. 2010. Springer,

pp 115–122

99. Shah JJ, Millsap RE, Woodward J, Smith SM (2012) Applied Tests of Design

Skills—Part 1: Divergent Thinking. J Mech Des 134:021005

208

100. Dixon J, Duffey M, Irani R, Meunier K, Orelup M (1988) A proposed taxonomy of

mechanical design problems. Proc. ASME Comput. Eng. Conf. San Francisco, pp

41–46

101. Gelfond M (2008) Answer Sets. In: Frank van Harmelen VL and BPBT-F of AI

(ed) Handb. Knowl. Represent. Elsevier, pp 285–316

102. Gebser M, Kaminski R, Kaufmann B, Schaub T (2012) Answer Set Solving in

Practice. Synth Lect Artif Intell Mach Learn 6:238

103. Gebser M, Kaminski R, Kaufmann B, Ostrowski M, Schaub T, Schneider M

(2011) Potassco: The {P}otsdam Answer Set Solving Collection. AI Commun

24:107–124

104. Csikszentmihalyi M (1996) Creativity: flow and the psychology of discovery and

invention. 1:456

105. Ward TB, Smith SM, Vaid J (1997) Creative thought: an investigation of

conceptual structures and processes. 1:567

106. Montgomery DC, Runger G (2007) Applied statistics and probability for

engineers, 4th ed. Wiley, Hoboken, NJ, USA

107. Tan P-N, Steinbach M, Kumar V (2005) Introduction to data mining. 1:769

108. Danielescu A, Dinar M, Maclellan CJ, Shah JJ, Langley P (2012) The Structure of

Creative Design: What Problem Maps Can Tell Us about Problem Formulation

and Creative Designers. Proc. ASME IDETC/CIE

109. Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA

110. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten ian h (2011) The

WEKA Data Mining Software: An Update. SIGKDD Explor 11:10–18

111. Koestler A (1964) The act of creation. Hutchinson & Co, London, UK

112. Shah JJ (2005) Identification, Measurement and Development of Design Skills in

Engineering Education. In: Samuel A, Lewis W (eds) Proc. 15th Int. Conf. Eng.

Des. Melbourne, Australia, p DS35_557.1

113. Shah JJ, Woodward J, Smith SM (2013) Applied Tests of Design Skills—Part II:

Visual Thinking. J Mech Des 135:71004

209

114. Khorshidi M, Woodward J, Shah JJ (2012) Towards a Comprehensive Test of

Qualitative Reasoning Skill in Design. Proc. ASME IDETC/CIE. ASME, Chicago,

IL, USA, p 889

115. Khorshidi M, Shah JJ, Woodward J (2013) Rethinking the Comprehensive Test on

Qualitative Reasoning for Designers. Proc. ASME IDETC/CIE. American Society

of Mechanical Engineers, Portland, OR, p V005T06A027

116. Kano N, Seraku N, Takahashi F, Tsuji S (1984) Attractive quality and must be

quality. Quality 14:39–48

117. Dinar M, Shah JJ, Todeti SR (2015) Towards a Comprehensive Test of Problem

Formulation Skill in Design. In: Chakrabarti A, Taura T, Nagai Y (eds) Proc.

Third Int. Conf. Des. Creat. Bangalore, India, pp 19–26

118. Khorshidi M, Shah JJ, Woodward J (2014) Applied Tests of Design Skills—Part

III: Abstract Reasoning. J Mech Des 136:101101

119. Cross N, Christiaans H, Dorst K (1996) Analysing design activity. 463

120. Muggleton S, de Raedt L (1994) Inductive Logic Programming: Theory and

methods. J Log Program 19-20:629–679

210

APPENDIX A

DESIGNERS’ FORMULATION SHOWN IN SNAPSHOTS

211

212

213

214

APPENDIX B

ASP ENCODINGS OF STRATEGIES

215

abstraction_strategy = "strategy(abstraction,Ent_parent):-

entity(Ent_parent,Desc_parent,T_parent), entity(Ent_child,Desc_child,T_child),

parent_of(Ent_parent,Ent_child,T_parent_of), T_parent>T_child."

entity_depth_prevalence_strategy = "strategy(entity_depth_prevalence,Ent_parent):-

parent_of(Ent_parent, Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate>T_parent_of,

not violate_edp_strategy(Ent_parent). violate_edp_strategy(Ent_parent):-

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate<T_parent_of."

order_req_use_strategy = "strategy(order_req_use,Requirement):-

requirement(Requirement,Desc_req,T_req), usescenario(Usescenario,Desc_use,T_use),

function(Function,Desc_fun,T_fun), artifact(Artifact,Desc_art,T_art),

behavior(Behavior,Desc_beh,T_beh),

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req), T_fun_req>T_use_req,

T_art_req>T_use_req, T_beh_req>T_use_req.\n\

strategy(order_req_use,Requirement):- requirement(Requirement,Desc_req,T_req),

usescenario(Usescenario,Desc_use,T_use), function(Function,Desc_fun,T_fun),

behavior(Behavior,Desc_beh,T_beh), issue(Issue,Desc_iss,T_iss),

216

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_fun_req>T_use_req,

T_beh_req>T_use_req, T_iss_req>T_use_req.\n\

strategy(order_req_use,Requirement):- requirement(Requirement,Desc_req,T_req),

usescenario(Usescenario,Desc_use,T_use), artifact(Artifact,Desc_art,T_art),

behavior(Behavior,Desc_beh,T_beh), issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_art_req>T_use_req,

T_beh_req>T_use_req, T_iss_req>T_use_req.\n\

strategy(order_req_use,Requirement):- requirement(Requirement,Desc_req,T_req),

usescenario(Usescenario,Desc_use,T_use), function(Function,Desc_fun,T_fun),

artifact(Artifact,Desc_art,T_art),

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req), T_fun_req>T_use_req,

T_art_req>T_use_req.\n\

strategy(order_req_use,Requirement):- requirement(Requirement,Desc_req,T_req),

usescenario(Usescenario,Desc_use,T_use), function(Function,Desc_fun,T_fun),

behavior(Behavior,Desc_beh,T_beh),

217

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req), T_fun_req>T_use_req,

T_beh_req>T_use_req.\n\

strategy(order_req_use,Requirement):- requirement(Requirement,Desc_req,T_req),

usescenario(Usescenario,Desc_use,T_use), function(Function,Desc_fun,T_fun),

issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_fun_req>T_use_req,

T_iss_req>T_use_req.\n\

strategy(order_req_use,Requirement):- requirement(Requirement,Desc_req,T_req),

usescenario(Usescenario,Desc_use,T_use), artifact(Artifact,Desc_art,T_art),

behavior(Behavior,Desc_beh,T_beh),

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req), T_art_req>T_use_req,

T_beh_req>T_use_req.\n\

strategy(order_req_use,Requirement):- requirement(Requirement,Desc_req,T_req),

usescenario(Usescenario,Desc_use,T_use), artifact(Artifact,Desc_art,T_art),

issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req),

218

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_art_req>T_use_req,

T_iss_req>T_use_req.\n\

strategy(order_req_use,Requirement):- requirement(Requirement,Desc_req,T_req),

usescenario(Usescenario,Desc_use,T_use), behavior(Behavior,Desc_beh,T_beh),

issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_beh_req>T_use_req,

T_iss_req>T_use_req."

order_req_fun_strategy = "strategy(order_req_fun,Requirement):-

requirement(Requirement,Desc_req,T_req), function(Function,Desc_fun,T_fun),

artifact(Artifact,Desc_art,T_art), behavior(Behavior,Desc_beh,T_beh),

issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_art_req>T_fun_req,

T_beh_req>T_fun_req, T_iss_req>T_fun_req.\n\

strategy(order_req_fun,Requirement):- requirement(Requirement,Desc_req,T_req),

function(Function,Desc_fun,T_fun), artifact(Artifact,Desc_art,T_art),

behavior(Behavior,Desc_beh,T_beh),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

219

interrelate_bi_directionally(Artifact,Requirement,T_art_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req), T_art_req>T_fun_req,

T_beh_req>T_fun_req.\n\

strategy(order_req_fun,Requirement):- requirement(Requirement,Desc_req,T_req),

function(Function,Desc_fun,T_fun), artifact(Artifact,Desc_art,T_art),

issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_art_req>T_fun_req,

T_iss_req>T_fun_req.\n\

strategy(order_req_fun,Requirement):- requirement(Requirement,Desc_req,T_req),

function(Function,Desc_fun,T_fun), behavior(Behavior,Desc_beh,T_beh),

issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_beh_req>T_fun_req,

T_iss_req>T_fun_req.\n\

strategy(order_req_fun,Requirement):- requirement(Requirement,Desc_req,T_req),

function(Function,Desc_fun,T_fun), artifact(Artifact,Desc_art,T_art),

behavior(Behavior,Desc_beh,T_beh), issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req), T_art_req>T_fun_req.\n\

220

strategy(order_req_fun,Requirement):- requirement(Requirement,Desc_req,T_req),

function(Function,Desc_fun,T_fun), artifact(Artifact,Desc_art,T_art),

behavior(Behavior,Desc_beh,T_beh), issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req),

T_beh_req>T_fun_req.\n\

strategy(order_req_fun,Requirement):- requirement(Requirement,Desc_req,T_req),

function(Function,Desc_fun,T_fun), artifact(Artifact,Desc_art,T_art),

behavior(Behavior,Desc_beh,T_beh), issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_iss_req>T_fun_req."

forward_order_strategy = "strategy(forward_order,Requirement):-

requirement(Requirement,Desc_req,T_req), usescenario(Usescenario,Desc_use,T_use),

function(Function,Desc_fun,T_fun), artifact(Artifact,Desc_art,T_art),

behavior(Behavior,Desc_beh,T_beh), issue(Issue,Desc_iss,T_iss),

interrelate_bi_directionally(Usescenario,Requirement,T_use_req),

interrelate_bi_directionally(Function,Requirement,T_fun_req),

interrelate_bi_directionally(Artifact,Requirement,T_art_req),

interrelate_bi_directionally(Behavior,Requirement,T_beh_req),

interrelate_bi_directionally(Issue,Requirement,T_iss_req), T_fun_req>T_use_req,

T_art_req>T_use_req, T_beh_req>T_use_req, T_iss_req>T_use_req."

221

requirement_depth_prevalence_strategy =

"strategy(requirement_depth_prevalence,Ent_parent):- requirement(Ent_parent,Desc,T),

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate>T_parent_of,

not violate_edp_strategy(Ent_parent). violate_edp_strategy(Ent_parent):-

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate<T_parent_of."

usescenario_depth_prevalence_strategy =

"strategy(usescenario_depth_prevalence,Ent_parent):- usescenario(Ent_parent,Desc,T),

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate>T_parent_of,

not violate_edp_strategy(Ent_parent). violate_edp_strategy(Ent_parent):-

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate<T_parent_of."

function_depth_prevalence_strategy =

"strategy(function_depth_prevalence,Ent_parent):- function(Ent_parent,Desc,T),

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate>T_parent_of,

not violate_edp_strategy(Ent_parent). violate_edp_strategy(Ent_parent):-

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate<T_parent_of."

222

artifact_depth_prevalence_strategy =

"strategy(artifact_depth_prevalence,Ent_parent):- artifact(Ent_parent,Desc,T),

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate>T_parent_of,

not violate_edp_strategy(Ent_parent). violate_edp_strategy(Ent_parent):-

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate<T_parent_of."

behavior_depth_prevalence_strategy =

"strategy(behavior_depth_prevalence,Ent_parent):- behavior(Ent_parent,Desc,T),

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate>T_parent_of,

not violate_edp_strategy(Ent_parent). violate_edp_strategy(Ent_parent):-

parent_of(Ent_parent,Ent_child,T_parent_of),

interrelate_bi_directionally(Ent_parent,Any,T_interrelate), T_interrelate<T_parent_of."

conflict_identification_strategy = "strategy(conflict_issue,Issue):-

issue(Issue,Desc_issue,T_issue), interrelate_bi_directionally(Issue,Req_1,T1),

interrelate_bi_directionally(Issue,Req_2,T2), requirement(Req_1,Desc_req1,T_req1),

requirement(Req_2,Desc_req2,T_req2),Desc_req1!=Desc_req2."

223

problem_driven_approach_strategy = "violate strategy(problem_driven_approach):-

requirement(Requirement,Desc_req,T_requirement),

usescenario(Usescenario,Desc_use,T_usescenario),

function(Function,Desc_fn,T_function), artifact(Artifact,Desc_art,T_artifact),

behavior(Behavior,Desc_beh,T_behavior),

use_req(Usescenario,Requirement,T_use_req),

fun_req(Function,Requirement,T_fun_req), art_req(Artifact,Requirement,T_art_req),

beh_req(Behavior,Requirement,T_beh_req),"

coevolutionary_requiremenet_elicitation_strategy =

"violate_cre_strategy(Requirement,Artifact,Any):-

requirement(Requirement,Desc_req,T_req), artifact(Artifact,Desc_art,T_art),

interrelate_bi_directionally(Requirement,Artifact,T_req_art),

entity(Any,Desc_ent,T_ent), T_req>T_art, T_ent>T_art, T_ent<T_req_art,

Any!=Artifact, Any!=Requirement. \n\

not_strategy(coevol_req_elicitation,Requirement,Artifact):-

requirement(Requirement,Desc_req,T_req),

artifact(Artifact,Desc_art,T_art),interrelate_bi_directionally(Requirement,Artifact,T_req_

art), entity(Any,Desc_ent,T_ent), T_req>=T_art,

violate_cre_strategy(Requirement,Artifact,Any). \n\

strategy(coevol_req_elicitation,Requirement,Artifact) :- not

not_strategy(coevol_req_elicitation,Requirement,Artifact),requirement(Requirement,Des

c_req,T_req), artifact(Artifact,Desc_art,T_art)."

224

coevolutionary_general_requiremenet_elicitation_strategy =

"violate_cre_strategy(Requirement,Entity,Any):-

requirement(Requirement,Desc_req,T_req), entity(Entity,Desc_ent,T_ent),

interrelate_bi_directionally(Requirement,Entity,T_req_ent),

entity(Any,Desc_any,T_any), T_req>T_ent, T_any>T_ent, T_any<T_req_ent,

Any!=Entity, Any!=Requirement. \n\

not_strategy(coevol_req_elicitation,Requirement,Entity):-

requirement(Requirement,Desc_req,T_req), entity(Entity,Desc_ent,T_ent),

interrelate_bi_directionally(Requirement,Entity,T_req_ent),

entity(Any,Desc_any,T_any), T_req>=T_ent,

violate_cre_strategy(Requirement,Entity,Any). \n\

strategy(coevol_req_elicitation,Requirement,Entity) :- not

not_strategy(coevol_req_elicitation,Requirement,Entity),requirement(Requirement,Desc_

req,T_req), entity(Entity,Desc_ent,T_ent)."

225

APPENDIX C

EXCERTPS OF A CODED PROTOCOL (DP_1)

226

Code Data

solutionPrinciple(sl_device) Mechanical device,…

requirement(rq_freshwater_sample),

requirementType(rq_freshwater_sample,

given)

...fresh water samples.

requirement(rq_max_depth_500meters),

requirementType(rq_max_depth_500meters

,

given)

Let’s see, to 500 meter depth. Okay,

hmm.

requirement(rq_not_attached),

requirementType(rq_not_attached, given)

Device must not be attached to the boat

and must be ...

requirement(rq_known_depth),

requirementType(rq_known_depth, given),

requirement(rq_depth_accuracy_10meters),

requirementType(rq_depth_accuracy_10met

e

rs, given)

...within 10 meters of pre-adjusted

depth

requirement(rq_sample_size_.5liters),

requirementType(rq_sample_size_.5liters,

given)

I think that’s coming from out there.

And return with a point five liter

sample of water from that depth.

requirement(rq_mechanical_device),

requirementType(rq_mechanical_device,

given), requirement(rq_mechanical_only)

Umm so, well, I’ll attempt to answer

your – so mechanical only or does

it – it can be electrical or there’s I guess

you can’t answer that. But,

hmm. It says mechanical so it implies

mechanical only device. Okay. It’s

just that in Larry’s thing he said

electromechanical but okay,

mechanical.

227

Code Data

physicalEffect(ph_pressure),

issue(iu_stop_at_known_depth, sl_device,

"I'm trying to think of how to get it to go

down and stop at a certain depth")

All right, let’s see. Kind of what I’m

thinking is how would this work,

is, ah, you somehow let’s – how would

that work? Set, obviously setting

it to go to a certain depth, hmm, a

certain pressure, um, I’m trying to

think of how to get it to go down and

stop at a certain depth.

goal(gl_do_not_bouce_off_bottom_of_lake) So let’s see, pretty much need to work

with the water pressure, we can’t

be attached. Yeah, we’re not going to

like bounce off the bottom of the

lake and come up some amount.

delete(gl_do_not_bounce_off_bottom_of_la

k

e)

Well, I suppose you could go all the

way down and then come back up.

solutionPrinciple(sl_pressure_activated) Um let’s see. I’m just jotting here, let’s

see, so it’s going to be like

pressure-activated.

function(fn_collect_sample),

parameter(pr_known_depth),

parameterFunction(pr_known_depth,

fn_collect_sample)

And it – so it needs to be able to open

up and accept a sample when it

gets to a certain depth…

function(fn_make_buoyant),

function(fn_ascend)

...and then once it gets the sample it

needs to do something to make it

buoyant and come back to the surface

goal(gl_do_not_bouce_off_bottom_of_lake) So I’ll just say pressure activated to

accept sample, hmm. Then it must

become buoyant. Buoyant to return and

228

Code Data

oh, I see, to known depths down

to maximum of 500, so you’re probably

not going to want to bounce it

off the bottom because the bottom

could be lower than that.

solutionPrinciple(sl_transistor) Uh, let’s see. Hmm. What am I

thinking? I’m thinking something like

a,

what do I need to do that? Some kind

of like a transistor kind of thing…

solutionPrinciple(sl_diaphragm),

physicalEffect(ph_force)

...or a diaphragm so you’re using a

smaller amount of pressure to move

pressure over a diaphragm to have

enough force to do something.

solutionPrinciple(sl_compressed_air) Um, I think I pretty much need to, in

order to make it buoyant again, I

pretty much – I think I’m going to – I

don’t know for sure. I need some

kind of like compressed air on board.

function(fn_expand_vessel),

functionObject(fn_expand_vessel,

sl_device)

Compressed air question mark. Um,

either that or does it work for it to,

for my um container, my vessel to just

get bigger when it wants to come

up? Just kind of expand bigger…

function(fn_pull_vacuum),

functionObject(fn_pull_vacuum, sl_device)

...and pull a little bit of a vacuum on

the inside.

issue(iu_hard_to_pull_vacuum,

fn_pull_vacuum, "this [the vacuum] might

be

That might be kind of hard to do

though. Uh, yeah. Especially under all

that pressure.

229

Code Data

hard to do")

equation(eq_atm_related_to_feet, one atm

for

like 32 feet of water, concrete)

Okay. Hm. What were we, we were

just talking at – not, yeah, not about

this at lunch, but a couple of my

buddies – let’s see, one atmosphere’s

like 32 feet of water.

function(fn_drop_in_water),

functionObject(fn_drop_in_water,

sl_device),

physicalEmbodiment(em_door)

Um, and so yeah, we chuck this thing

over the edge and then have like a

little door, a door on the inside, kind of

showing a side view here,...

physicalEmbodiment(em_gasket),

solutionPrinciple(sl_seal), parentOf(sl_seal,

em_gasket)

...got a little gasket to seal it.

physicalEmbodiment(em_screw) And then, let’s see, I have like ah,

probably something with a screw on

it.

physicalEmbodiment(em_handle),

connects(em_handle, em_screw),

parameter(pr_depth_of_screw),

parameterEmbodiment(pr_depth_of_screw,

em_screw)

A little handle coming out the side, so I

can set how far in I want the

screw,…

physicalEmbodiment(em_compression_spri

n

g), connects(em_compression_spring,

em_screw), function(fn_compress_spring),

functionObject(fn_compress_spring,

em_compression_spring),

realizes(em_screw,

fn_compress_spring)

... and then the screw is compressing a

big old compression spring.

230

Code Data

issue(iu_water_makes_device_sink,

sl_device, "if I let water in and do nothing

else, it's going to start dropping fast")

And let’s see. If I’m letting water in

and doing nothing else, it’s going to

start dropping faster.

function(fn_close_device),

issue(iu_how_to_close_device,

fn_close_device, "how the heck am I going

to close the device")

Let’s see, and I need this thing to close

back up again too, so how the

heck am I going to do that? Hm.

parameter(pr_delta_time_to_open),

parameterFunction(pr_delta_time_to_open,

fn_collect_sample),

function(fn_stabilitize_device_at_depth)

I’m wondering if when I send this thing

down, if I have it open fast

enough such that it doesn’t take very

long to get it’s half a liter – that’s

not that much water in there, then I

don’t have to be concerned about

stabilizing this thing at a particular

depth.

before(fn_collect_sample, fn_close_device),

before(fn_close_device, fn_ascend)

So I don’t need to stop it then. Um, pull

the water in and close it up and

head to the top. I can just be kind of

moving as I quickly gulp in the half

a liter of water. But after I gulp it, I

need to close it back up. I don’t

think there’s any way I can get away

with not closing it back up.

issue(iu_contamination_of_sample,

fn_collect_sample, "can't get a lot of

contamination from water going back up")

Yeah. Let’s see. I mean if I gulped it –

well, no, but what I was thinking

is if I bring it in slowly then launch

back to the surface then I might not

get much contamination from water

when I get back up.

231

Code Data

issue(iu_do_I_need_separate_chamber_for_

c

ompressed_air, sl_compressed_air, "do I

need

a separate chamber for this compressed air

thing?")

But, nah. Let’s see. Well, I’ve got my

compressed air just waiting to be

deployed here. Hmm, what am I

thinking here? Hmm. I’m thinking

something. Um, I’m trying to decide if

I need a separate chamber for

this compressed air thing. I probably

do.

physicalEmbodiment(em_bladder),

physicalEmbodiment(em, balloon)

Uh, I’m thinking I’ll have like a

bladder, like a balloon, bladder,

whatever, that will get filled up at some

point.

realizes(sl_compressed_air,

fn_close_device),

physicalEmbodiment(em_compressed_air_t

a

nk), parentOf(sl_compressed_air,

em_compressed_air_tank)

And let’s see, do I want it in the same

housing as my sample taker or

not? Probably not. Um, but I’m also

thinking I want to use that

compressed air to close my little door

again.

function(fn_let_out_compressed_air),

before(fn_let_out_compressed_air,

fn_close_device),

parameterFunction(pr_known_depth,

fn_let_out_compressed_air)

Um, hmm. Yeah, I’m pretty sure I can,

I mean I can come up with

something – concept here pretty

quickly that will trip the compressed air

cylinder to let air out, uh, when I get to

the depth, when I can have it trip

off my little door opening. Hmm. Or

maybe I have a different idea.

Hmm. Let’s see. So if I go to another

page, can I rip out the page or not?

connects(sl_device, Okay. I’m going to rip out this and just

232

Code Data

em_compressed_air_tank) set it aside here. So I’m thinking

this might simplify it a little bit. So

let’s see, I’ve got my big, I’ve got

my container, I’ve got my compressed

air up – well, let’s just say it’s

wherever it is, it’s – it doesn’t even

have to – I’m just going to draw it on

the outside of the containers where my

compressed air tank.

physicalEmbodiment(em_open_bottomed_d

e

vice),parentOf(sl_device,

em_open_bottomed_device),

parameter(pr_num_holes_on_sides),

parameterEmbodiment(pr_num_holes_on_s

i

des, em_open_bottomed_device)

And inside, let’s see. On this one, yeah,

I have like a – in this case what

I’m thinking is the bottom of my

container is open on the sides in a

number of spots. Or – yeah, yeah, some

of this will take a little work,

probably. Yeah, let’s just say it’s open

on the bottom here.

connects(em_open_bottomed_device,

em_gasket)

I have a gasket here.

parameter(pr_door_open),

parameterFunction(pr_door_open,

fn_descend)

So in this scenario, basically the tank,

the collection vessel is wide open

and so water’s kind of – hmm, flushing

through it as I drop it down, and

as a I get to depth I close it up. So it’s

open the whole time until I get to

depth and then close it up.

233

APPENDIX D

REGRESSORS OF STATE COUNTS MODELS

234

Comparison of regressors of P-map state counts for two problems; italic: same sign;

bold: P < 0.2; starred: lowest P value above 0.2

Variable

D
P

_
4
 q

u
a
n

tity

D
P

_
5
 q

u
a
n

tity

D
P

_
4
 v

a
riety

D
P

_
5
 v

a
riety

D
P

_
4
 a

v
g
. n

o
v
elty

D
P

_
5
 a

v
g
. n

o
v
elty

D
P

_
4
 m

a
x
 n

o
v
elty

D
P

_
5
 m

a
x
 n

o
v
elty

D
P

_
4
 a

v
g
. q

u
a
lity

D
P

_
5
 a

v
g
. q

u
a
lity

D
P

_
4
 m

a
x
 q

u
a
lity

D
P

_
5
 m

a
x
 q

u
a
lity

Constant

4
.7

2

1
.8

5

5
.3

3

3
.4

2

5
.6

4

2
.7

4

7
.7

1

4
.1

7

5
.7

4

3
.5

3

7
.5

7

4
.0

0

requirement

0
.3

0
*

0
.1

2

0
.1

7

-0
.2

7

-0
.0

2

-0
.0

5

0
.0

9

-0
.1

8

-0
.0

3

0
.1

5

0
.0

9

-0
.1

4

use scenario

-0
.2

6

0
.1

4

0
.0

7

0
.8

6

0
.3

1

-0
.1

1

0
.3

2

0
.1

8

0
.0

2

-0
.2

9

-0
.1

8

0
.0

7

function

-0
.0

5

-0
.0

2

0
.0

1

0
.0

0

0
.2

0

0
.0

3

0
.2

2

0
.0

8

-0
.0

5

-0
.0

2

-0
.1

0

0
.1

4
*

artifact
0
.1

2

-0
.0

8

0
.0

1

0
.2

7

0
.1

0

0
.1

6

0
.0

4

0
.2

5

-0
.0

6

-0
.0

5

-0
.0

3

0
.0

5

behavior

-2
.2

6

0
.5

9

-2
.5

5

0
.5

6

-1
.0

8

-.5
2
*

-2
.0

9

-0
.4

0

0
.1

9

0
.2

7

-0
.0

7

0
.3

2

issue

0
.6

2

-.5
4

*

1
.3

5

-0
.4

2

0
.6

0

0
.0

4

0
.9

2
*

-0
.1

3

0
.2

1
*

0
.4

3
*

0
.0

5

0
.2

3

isolated

requirement

-0
.0

7

-0
.1

1

-0
.0

3

0
.0

8

-0
.0

5

0
.0

5

-0
.0

7

0
.0

5

-0
.0

3

-0
.0

1

-0
.0

4

0
.0

5

isolated use

scenario

-0
.6

0

0
.2

1

-1
.0

2

-0
.3

4

-0
.5

8

-0
.1

1

-0
.9

4

-0
.0

8

0
.0

7

0
.0

8

-0
.1

0

-0
.0

1

isolated

function

-0
.0

5

-0
.0

8

0
.0

1

-0
.1

7

0
.0

4

-0
.0

1

0
.0

1

-0
.0

6

-0
.0

1

0
.0

3

0
.0

4

-0
.1

1

235

Variable

D
P

_
4
 q

u
a
n

tity

D
P

_
5
 q

u
a
n

tity

D
P

_
4
 v

a
riety

D
P

_
5
 v

a
riety

D
P

_
4
 a

v
g
. n

o
v
elty

D
P

_
5
 a

v
g
. n

o
v
elty

D
P

_
4
 m

a
x
 n

o
v
elty

D
P

_
5
 m

a
x
 n

o
v
elty

D
P

_
4
 a

v
g
. q

u
a
lity

D
P

_
5
 a

v
g
. q

u
a
lity

D
P

_
4
 m

a
x
 q

u
a
lity

D
P

_
5
 m

a
x
 q

u
a
lity

isolated

artifact

0
.0

7

0
.2

7

0
.2

3

-0
.0

9

-0
.0

9

0
.0

1

-0
.0

4

0
.0

1

0
.1

1

0
.0

7

0
.1

1

0
.0

3

isolated

behavior

1
.6

6

-0
.6

0

1
.6

0

-0
.2

8

0
.5

9

0
.4

0

1
.3

5

0
.2

0

-0
.2

3

-0
.4

0

0
.0

4

-0
.3

7

disconnected

requirement

-0
.3

7

-0
.1

8

-0
.2

4

0
.2

5

-0
.0

1

0
.0

5

-0
.1

4

0
.1

6

0
.0

1

-0
.1

1

-0
.1

1

0
.1

1

disconnected

use scenario

0
.2

0

-0
.2

1

0
.1

1

-0
.9

5

-0
.1

3

0
.0

4

-0
.0

8

-0
.3

0

0
.0

3

0
.2

9

0
.1

9

0
.0

3

disconnected

function

0
.1

8

0
.0

4

0
.1

2

0
.1

6

-0
.0

7

0
.0

2

0
.0

0

0
.0

4

-0
.0

1

-0
.0

9

0
.0

4

-0
.0

7

disconnected

artifact

-0
.2

7

0
.3

5

-0
.3

9

-0
.0

5

-0
.3

6

-0
.0

9

-0
.4

0

-0
.1

4

0
.0

5

0
.2

6

0
.1

5

0
.1

3

disconnected

behavior

0
.6

6

-0
.1

3

1
.1

2

-0
.5

7

0
.7

4

-0
.0

4

1
.0

1

-0
.0

8

0
.1

4

0
.1

0

0
.1

0

-0
.1

5

disconnected

issue

-0
.2

6

0
.9

5

-1
.1

2

0
.8

4

-0
.7

5

0
.1

1

-1
.0

5

0
.3

7

-0
.4

3

-0
.4

8

-0
.3

6

0
.1

2

236

APPENDIX E

REGRESSORS AFTER BACKWARD ELIMINATION

237

Regressors after backward elimination for the combined P-map state and strategies

variables; italic: same sign in DP_4 and DP_5

Variable

D
P

_
4
 q

u
a
n

tity

D
P

_
5
 q

u
a
n

tity

D
P

_
4
 v

a
riety

D
P

_
5
 v

a
riety

D
P

_
4
 a

v
g
. n

o
v
elty

D
P

_
5
 a

v
g
. n

o
v
elty

D
P

_
4
 m

a
x
 n

o
v
elty

D
P

_
5
 m

a
x
 n

o
v
elty

D
P

_
4
 a

v
g
. q

u
a
lity

D
P

_
5
 a

v
g
. q

u
a
lity

D
P

_
4
 m

a
x
 q

u
a
lity

D
P

_
5
 m

a
x
 q

u
a
lity

Constant

4
.1

8

0
.3

5

5
.6

1

-0
.3

4

5
.5

4

2
.1

3

8
.5

3
.1

1

6
.4

7

4
.9

6

7
.6

5

4
.8

requirement

0
.2

5

-0
.4

5

0
.5

9

-0
.3

8

-0
.8

1

-0
.0

8

-0
.7

5

0
.0

6

-0
.6

1

use scenario

1
.9

6

0
.3

8

0
.3

0
.2

2

1
.3

1
.2

7

-0
.1

5

0
.9

4

function

-0
.3

9

0
.2

3

-1
.0

9

0
.3

1

0
.2

9

0
.1

7

0
.4

3

-0
.0

2

0
.3

1

artifact

0
.7

1

-0
.3

5

-0
.1

behavior

-3
.7

8

3
.4

9

-3
.0

5

2
.7

2

-2
.2

2

-3
.5

2

0
.5

4

-0
.4

7

0
.6

9

-0
.8

3

0
.5

8

issue

1
.3

6

0
.6

2

2
.7

3

0
.8

5

1
.5

6

-0
.2

5

2
.4

2

0
.6

6

0
.6

4

isolated

requirement

0
.1

9

0
.0

8

0
.1

0
.0

3

0
.1

3

0
.1

6

isolated use

scenario

-0
.6

8

-1
.1

5

-0
.8

8

-0
.6

2

-0
.9

8

-0
.4

1

-0
.8

7

-0
.1

3

-0
.6

8

238

Variable

D
P

_
4
 q

u
a
n

tity

D
P

_
5
 q

u
a
n

tity

D
P

_
4
 v

a
riety

D
P

_
5
 v

a
riety

D
P

_
4
 a

v
g
. n

o
v
elty

D
P

_
5
 a

v
g
. n

o
v
elty

D
P

_
4
 m

a
x
 n

o
v
elty

D
P

_
5
 m

a
x
 n

o
v
elty

D
P

_
4
 a

v
g
. q

u
a
lity

D
P

_
5
 a

v
g
. q

u
a
lity

D
P

_
4
 m

a
x
 q

u
a
lity

D
P

_
5
 m

a
x
 q

u
a
lity

isolated

function

-0
.2

3

0
.8

2

-0
.3

1

0
.2

7

-0
.1

2

0
.1

9

-0
.0

4

0
.3

2

-0
.0

6

0
.1

8

isolated

artifact

0
.2

1

0
.1

5

0
.1

7

0
.1

isolated

behavior

2
.8

6

-2
.7

5

2

-2
.1

3

1
.3

8

2
.1

7

0
.4

1

-0
.7

3

0
.6

-0
.7

8

disconnected

requirement

-0
.2

8

0
.3

5

-0
.1

1

-0
.4

9

-0
.0

5

0
.3

6

-0
.1

1

0
.7

4

0
.0

5

0
.6

8

-0
.0

9

0
.5

3

disconnected

use scenario

-1
.3

9

-1
.8

-0
.2

-0
.5

1

-0
.8

5

-0
.0

6

0
.1

3

-0
.2

2

disconnected

function

0
.1

1

0
.1

1

0
.8

1

-0
.1

0
.0

3

-0
.1

-0
.0

3

-0
.4

3

-0
.2

disconnected

artifact

-0
.1

6

0
.5

4

-0
.4

8

-0
.4

1

-0
.5

2

0
.0

9

0
.3

8

0
.1

6

0
.1

1

disconnected

behavior

0
.6

6

1
.1

3

0
.9

7

1
.5

7

-0
.4

6

0
.2

0
.2

7

disconnected

issue

-1
.2

1

-0
.3

8

-2
.4

2

0
.4

-1
.5

8

0
.4

-2
.5

3

-0
.8

7

-0
.7

1

-0
.9

1

239

Variable

D
P

_
4
 q

u
a
n

tity

D
P

_
5
 q

u
a
n

tity

D
P

_
4
 v

a
riety

D
P

_
5
 v

a
riety

D
P

_
4
 a

v
g
. n

o
v
elty

D
P

_
5
 a

v
g
. n

o
v
elty

D
P

_
4
 m

a
x
 n

o
v
elty

D
P

_
5
 m

a
x
 n

o
v
elty

D
P

_
4
 a

v
g
. q

u
a
lity

D
P

_
5
 a

v
g
. q

u
a
lity

D
P

_
4
 m

a
x
 q

u
a
lity

D
P

_
5
 m

a
x
 q

u
a
lity

Abstraction 0
.8

3

-1
.3

9

0
.7

1

-1
.6

2

-0
.2

9

-0
.4

4

0
.1

5

Entity depth

prevalence

1
.2

8

-0
.3

6

0
.6

5

1
.1

1

-0
.1

1
.1

3

0
.5

8

Order

req_use

0
.4

3

1
.4

4

1
1
.5

-2
.5

3

-2
.3

-4
.3

-2
.5

7

-0
.6

2

-7
.6

-0
.9

2

-3
.5

6

Order

req_fun

-1
3
.8

1
.1

9

2
.3

1

2
.3

6

1
.9

6

0
.3

8

1
0
.3

0
.5

2

5
.9

Conflict

identification
-2

.6
1

-1
9
.8

-4
.0

3

1
7
.2

-2
.5

-3
.3

6

-1
.7

-1
3
.4

-0
.9

-2
1
.5

-1
.2

5

-1
0
.8

240

APPENDIX F

HISTOGRAMSOF PREDICTION RESIDUALS

241

10.0

7.5

5.0

2.5

0.0

12840-4-8-12-16

16

12

8

4

0

12840-4-8-12-16

8

6

4

2

0

8

6

4

2

0

state counts
Fr

e
q

u
e

n
c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted quantity
Model based on DP_4 predicting DP_5

score range 1-10

8

6

4

2

0

12840-4-8-12-16

12

9

6

3

0

12840-4-8-12-16

8

6

4

2

0

8

6

4

2

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted variety
Model based on DP_4 predicting DP_5

score range 1-10

242

10.0

7.5

5.0

2.5

0.0

5.02.50.0-2.5-5.0-7.5-10.0

16

12

8

4

0

5.02.50.0-2.5-5.0-7.5-10.0

10.0

7.5

5.0

2.5

0.0

10.0

7.5

5.0

2.5

0.0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted novelty
Model based on DP_4 predicting DP_5

score range 1-10

10.0

7.5

5.0

2.5

0.0

6420-2-4

8

6

4

2

0

6420-2-4

6.0

4.5

3.0

1.5

0.0

8

6

4

2

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted quality
Model based on DP_4 predicting DP_5

score range 1-10

243

24

18

12

6

0

403020100-10-20-30

20

15

10

5

0

403020100-10-20-30

12

9

6

3

0

8

6

4

2

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted quantity
Model based on DP_5 predicting DP_4

score range 1-10

24

18

12

6

0

1251007550250-25

24

18

12

6

0

1251007550250-25

10.0

7.5

5.0

2.5

0.0

20

15

10

5

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted variety
Model based on DP_5 predicting DP_4

score range 1-10

244

16

12

8

4

0

1260-6-12

12

9

6

3

0

1260-6-12

8

6

4

2

0

8

6

4

2

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted novelty
Model based on DP_5 predicting DP_4

score range 1-10

24

18

12

6

0

40200-20-40-60-80

24

18

12

6

0

40200-20-40-60-80

16

12

8

4

0

16

12

8

4

0

state counts

Fr
e

q
u

e
n

c
y

210-1-2

strategies

combined with BE combined normed with BE

210-1-2

Differences between actual and predicted quality
Model based on DP_5 predicting DP_4

score range 1-10

