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ABSTRACT  

   

A process plan is an instruction set for the manufacture of parts generated from detailed 

design drawings or CAD models. While these plans are highly detailed about machines, 

tools, fixtures and operation parameters; tolerances typically show up in less formal manner 

in such plans, if at all. It is not uncommon to see only dimensional plus/minus values on 

rough sketches accompanying the instructions. On the other hand, design drawings use 

standard GD&T (Geometrical Dimensioning and tolerancing) symbols with datums and 

DRFs (Datum Reference Frames) clearly specified.  This is not to say that process planners 

do not consider tolerances; they are implied by way of choices of fixtures, tools, machines, 

and operations. When converting design tolerances to the manufacturing datum flow, 

process planners do tolerance charting, that is based on operation sequence but the resulting 

plans cannot be audited for conformance to design specification. 

In this thesis, I will present a framework for explicating the GD&T schema implied by 

machining process plans. The first step is to derive the DRFs from the fixturing method in 

each set-up. Then basic dimensions for the features to be machined in each set up are 

determined with respect to the extracted DRF. Using shop data for the machines and 

operations involved, the range of possible geometric variations are estimated for each type 

of tolerances (form, size, orientation, and position).  The sequence of manufacturing 

operations determines the datum flow chain.  Once we have a formal manufacturing GD&T 

schema, we can analyze and compare it to tolerance specifications from design using the 

T-map math model. Since the model is based on the manufacturing process plan, it is called 

resulting T-map or m-map.  Then the process plan can be validated by adjusting parameters 
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so that the m-map lies within the T-map created for the design drawing. How the m-map 

is created to be compared with the T-map is the focus of this research.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Machining process plan is a sequential instruction of machining processes and tooling to 

meet the detailed design specification for a given part. Process planning is a labor-intensive 

and time-consuming activity that requires the specification of detailed step by step 

instructions to personnel on the shop floor about all operations and manufacturing 

resources to be used in production. There are many factors to be considered in process 

planning, such as tool selection, machine selection, machine-error considerations (e.g. feed 

rate, tool approach direction, etc.), fixturing methods, time scheduling, and cost modeling. 

The manufacturing process plan should satisfy the design specifications communicated in 

the form of design drawings or CAD models. Thus, process plans must satisfy the allowable 

range of dimensional variations permitted by design GD&T specs. Process planners do this 

based on personal experience, or rules of thumb. Process planning is variant, generative or 

the combination of them. Variant is when the planner retrieves and modifies an existing 

plan for a similar part, and Generative is when the planner generates a new plan from 

scratch. Thus, preparing a process plan included retrieval and manipulation of a great deal 

of information from many sources, including established standards for manufacturing, 

machinability data, machine capabilities, tooling inventories, stock availability and 

existing practice.  

Nowadays, many automated or semi-automated CAPP (Computer Aided Process  

Planning) software are developed to help the process planner create manufacturing plans, 
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but still an automated system that can perform the complete task, from creating the plan to 

doing iterations and coming up with the optimal process plan do not exist. CAPP software 

are developed to help the process planner in three main areas. The first area is to help the 

planner develop the process plan interactively and doing tasks such as: selecting the tool, 

creating the tool path, deciding on the number of passes required, creating the G code for 

CNC machines etc. The second area is related to tolerance and manufacturing errors, such 

as automatically translating GD&T specification to +/- values for the plan and doing 

tolerance analysis such as Tolerance charting. The third area is to determine how to fixture 

the part for each machining setup, which in literature is addressed as Computer Aided 

Fixture Design (CAFD) 

The goals of this research do not really lie in any of the three areas mentioned above. We 

neither want to create the process plan in CAD/CAM nor doing tolerance transformation. 

We want to audit the generated process plan from the GD&T point of view, by extracting 

the necessary information from the Process plan, present it in a formal schema that is 

familiar for everyone in the Design and Manufacturing industry, and check to see if the 

process plan is in conformance with the design tolerance limits  

1.2 Problem definition 

Process planners generate plans based on design specifications. Their choices of fixturing, 

tools, machines and finishing operations are based on achieving the desired level of 

precision. Their decisions are also based on the tools available in the machine shop, thus 

they sometimes follow the process plans for similar parts in their company archive. 

Company-specific codes for machines, tools, operations are used along with textual 
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instructions and informal sketches in creating process plans. Standard symbols, like GD&T 

symbols of design drawings, are typically not used in process plan documents to represent 

different types of permissible errors; instead less formal +/- annotations are used on 

selected sketches or in the textual instructions. All of these result in non-standard process 

plans that are for human operators only and are not computer machines readable.  

In order to clearly show the differences in standard representation of design drawings and 

non-standard presentation of process plans, a sample of each one in Figure 1 and 2 are 

compared. Figure 1 shows a design drawing which contains GD&T specifications using 

datums and tolerance frame symbols in conformance with ASME and ISO standards [1, 2]. 

This stands in contrast to a page taken from a process plan; the first stage of machining a 

casted connecting rod (Figure 2). In this figure, Datum reference frames (DRF) are not 

explicitly specified and standard symbols are not used. 

 
 

Figure 1:  A Design drawing of a part with formal GD&T Specifications 
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a) Process plan sample sheet 

 

b) Process plan sample sketch 

Figure 2:  First step in the process plan of machining the connecting rod. 
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Table 1 gives a summary of differences in design and manufacturing tolerance 

specification. Machining is typically done in multiple setups, requiring parts to be fixtured 

and oriented in ways that provide proper cutting tool approach and unobstructed access to 

the features being machined in that setup. The setups used by process planners often result 

in datums and datum reference frames (DRF) that are different from datum features and 

DRFs specified by designers. This may be to simplify the fixturing and machining steps or 

to achieve desired accuracy based on the tools and machines and their capabilities and 

precision in the shop floor. Features created in one setup may be used as datums in a 

different setup. These datums may be transition features, which are neither on the stock 

work-piece nor on the finished part. The foregoing implies that the manufacturing datum 

flow chain is quite often different than the design datum flow. 

Table 1:  Comparing of design drawing and conventional process plan 

Designs (formal GD&T) Process plan (implied GD&T) 

DRFs explicitly shown DRFs are implicit in setups, fixtures 

Formal GD&T frames At most, +/- for dimensions, No GD&T 

Datum flow chain directly extracted Datum, and flow chain implicit , distributed 

Consolidated info, in single Drawing Distributed info (in multiple steps/pages) 

Drawings represent final parts Plans represent many transitions 

Many tolerance analysis methods used 

(1D/2D/3D) 

Mostly 1-D tolerance charts used by process planners 

 

This begs the question: how can a party, other than the planner himself, verify if the process 

plan will meet the desired design tolerances? For this purpose, one would have to make 

explicit the tolerancing implied by a machining process plan. In order to trace the errors 

accumulation to verify, he needs to construct a manufacturing variability chain. This is due 
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to the fact that machined features on the final part result from a sequence of operations, 

some even done in multiple setups. Also the fixturing features may or may not be the same 

as datums used in design GD&T. 

Besides, in current industry practice, there seems to be little time to objectively determine 

the goodness of a plan. In automated CAPP systems, minimization of production time 

appears to be the only measure of goodness used, and even that is applied to a few 

alternatives that have been generated in an ad-hoc manner.  Inefficiencies in creating a 

process plan come from the fact that it is a trial-and-error process (Figure3). First, design 

tolerances are translated into manufacturing tolerances for individual machining 

operations. Then a tentative process plan is made based on personal experiences and 

knowledge or based on company- specific practices for similar parts available in the library 

of the shop floor. Then a few parts are machined following the instructions in the trial 

(initial) process plan. These sample parts are inspected, and based on their evaluated quality 

the trial process plan is modified. Possible modifications include changing the machining 

processes, the production equipment, the locating schemes, and/or the sequence of 

operations. This new process plan is also tested and modified until satisfactory results are 

obtained. It seems that we can decrease the time to get to an acceptable final process plan; 

if we audit the process plan itself and make sure that the errors in the resultant product 

based on the process plan info will not exceed the design requirements before the trial-and-

error. 

In order to verify a process plan and check if design tolerance requirements are met, 

traditionally planners used to do 1D analysis. But the 1D approach does not account for 
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DRFs, datum precedence, or tolerance-zone. Also since some error contributors are not 

aligned with the direction of analysis, they are ignored, which may yield incorrect results. 

Later process planners started to employ other approaches, in some cases supported by 

computer software. 

 

Figure 3: Overview of Process Plan evaluation 

These include the 1D manual charting method, which does not have the shortcomings of 

the traditional 1D approach mentioned above. Tolerance charting is often taught in ASME 

professional development classes and in both design and process planning versions, it is 

practiced primarily as manual procedures. Later there have been a few attempts at 

automating the charting method and then trying to automate process planning or making 

interactive computer tools for process planning.  Although, unlike the process planner’s 

1D analysis method, such 1D chart take into account all rules and tolerance types as 

indicated in Y14.5 standard, still it cannot do statistical analysis and treat contributors in 

different directions that are not coupled. In order to achieve proactive tolerance control in 

process planning, and to save the effort of trial-and-error, we propose an innovative method 
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to verify a process plan in terms of machining error prediction with respect to tolerance 

specification. Error prediction is based on actual machining error synthesis and error 

propagation tracking through the multiple processes.  

We suggest extracting the process plan variations and to use the same representation 

schema as used on the design drawing. Then we can easily evaluate the error propagation 

in the process plan, and check to see if it exceeds the allowable limit. 

1.3 Approach overview  

In order to make it possible to comprehensively “audit” the error accumulation from a 

process plan, and be able to do 3D tolerance analysis of manufacturing flaws, we need to 

perform three tasks: 

1. Tolerance Explication: make explicit, the error accumulation implied by the 

combination of setups, fixtures, operations, and machining allowances in the process 

plan, using GD&T specifications for tolerances recommended by the standards [1, 2],  

2. Manufacturing error Accumulation (m-map): construct manufacturing feature 

variability chains 

3. Tolerance Conformance Checking: Perform 3D stack analysis on transformed 

accumulated error (m-maps) in the explicit scheme to determine conformance with 

design specifications (T-maps). 

Once process plan errors can be represented  with GD&T symbols in the same way as 

design, we can use the same 3D analysis tools to automatically extract tolerance chains and 

perform both worst case and statistical analysis. 

Figure 4 shows a flow chart that outlines the major steps that need to be carried out to 

achieve the goals. The input to the system includes the geometry of the part in each step, 
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as it evolves from the raw stock to the finished item, in CAD formats along with the 

machines and tools used. Also the fixturing methods along with the faces of the part that 

contact the fixture at each setup are needed. For tolerance explication, we need to extract 

and collect the information for geometrical and dimensional errors information that are 

implied in each stage of the manufacturing process. This starts with the identification of 

implied DRFs for each setup based on the method of fixturing. Then we determine the sizes 

and location dimensions with respect to the found DRFs by analyzing the geometry model 

(CAD file) of the part at each stage. Then, using error models for each machining 

procedure, we find the range of expected variations. As a result, dimensional and 

geometrical errors will be derived and represented in a standard format that we label 

Process-Plan Constraint Tolerance Feature Graph (PCTF), a data structure developed 

previously [13].  It stores the temporary geometry information of the part in process, the 

exposed faces (machined faces in each step), and the errors related to each face and feature. 

This data structure makes it possible to create the manufacturing map (m-map) of each type 

of error corresponding to each feature, in the same way that we create the T-maps for design 

tolerances [16]. 

 In the second task, geometrical errors that are just local such as size and profile will be 

omitted, because they are not depending on any reference frame. Then we track the datums 

for other types of error on each feature in all stages looking for their transformation and its 

order. If there is a datum change, it means that there is a difference between the DRF for 

design and process plan which needs to be resolved. Thus, we have to do datum 

transformation and create the m-map for the corresponding errors. To sum up the effect of 
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different errors in multiple steps, they will be stored and superimposed into a virtual part 

that has all the final and intermediate faces of the part through machining steps with errors 

assigned to them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Overview of computational procedure 

In task 3, in order to do 3D conformance analysis, we want to model the errors with T-map 

math model and do accumulations to derive m-maps. While, T-map is a metric model that 

Final & intermediate geometries of the part in each step of 
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represents the extent of allowable variation specified by each tolerance class, m-map 

represents the variations of errors in machining processes. 

In order to do accumulation with m-maps, we have adapted Minkwoski sum which was 

initially proposed for summation of T-maps but the mathematical method is only developed 

for planar faces to date. The same method can be executed, since both maps are topological 

math models in an n-dimensional point space representing geometrical variations. 

Also, the transformation of m-maps is limited to cylindrical and planar faces. It is 

noteworthy that with spit of the fact that size errors would not accumulate (has no m-maps 

because has no datum), but the ones that are in datum transformation will be taken into 

account. Finally, in Task 3, we compare the m-maps developed in previous tasks to 

compare them with the T-maps that are created based on the design drawing of that part 

with full GD&T schema. Here we compare the m-map of a feature and its corresponding 

T-map, to see if the m-map fits inside it. If it does, it means that the design specification is 

met; if not, then we have to see which contributor is causing the problem, and trace it back 

in the process of m-map creation to see where  that error have had the biggest contribution 

and how can it be reduced. 

1.4 Thesis Organization 

 In this thesis, the main focus is on GD&T explication and m-map construction tasks.  In 

the current chapter the reason of this study will be discussed and in the second chapter a 

Literature review of this topic will be summarized. Later, in chapter 3, the process of 

extracting the GD&T info is discussed. Then the inputs that are needed, the libraries 

developed, details of each step, and methods and algorithms developed will be presented. 
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In chapter 4, the data structures and the information that are handled to be used in each step 

will be discussed. Finally, each step of the information extraction and explication phase 

with a sample part process plan will be demonstrated in chapter 5. At the end, in chapter 6, 

I will do a summary and suggestions for future work. 

1.5 Scope of the work 

The developed software can read any CAD geometry for different steps of machining of a 

part, in the form of ACIS “.sat” file. After solving the unique ID problem automatically, 

all types of errors derived from the process plan can be assigned to geometry in the testbed 

interactively. All geometry and geometrical errors information will be investigated and the 

ones that are needed for conformance checking of error accumulation will be stored in a 

data format that can be analyzed with the same methods and software developed for 

tolerance analysis of parts.   

Since the work in this thesis covers many areas in the field of CAD/CAM research, some 

details around the main focus are limited but they serve their purpose to prove the concept 

of the work.  Some of these limitations are discussed in following paragraphs.  

Although extracting the GD&T errors are not automated in this research but it is discussed 

in detail in a way that it can be automated. The GD&T extraction task is an interactive task 

in the current state of the work which needs to be done by the user based on the two tables 

provided to them. The first table shows different fixturing schemes, but the fixturing faces 

are limited to planar and cylindrical faces. Also the fixuring tools are Vise, Clamp and 

Machine Tables for planar faces, V-Blocks for outer cylindrical faces, and Long Pins and 
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Diamond Pins for short and long inner cylindrical holes respectively and finally pin locaters 

for point locating 

The T-map technology for modeling Geometrical and Dimensional tolerances are not fully 

developed for all types of tolerances. The transformation the Tolerance datums, which will 

change the T-map, is dependent on the math models developed for this purpose which is 

limited to planar and cylindrical faces based on Jiang work [22]. For summation of these 

point spaces, it is proposed to use the Minkowski sum method, which is mathematically 

well defined, but adaption and implementation of it is limited  
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CHAPTER 2: LITERATURE REVIEW 

 

To determine a suitable tolerance scheme and allocate values, designers conduct tolerance 

analysis, which may range from 1D (one dimensional) manual tolerance charts for worst 

case to statistical analyses based on Monte Carlo simulation using state of the art CATS 

(Computer aided tolerance software) packages[3,4]. Traditionally, process planners only 

do worst case analysis with 1D dimensional stacks (position converted to +/- dimensions 

and size tolerances); they do not include geometric tolerances in stack analysis [5]. Turned 

parts are analyzed in radial and axial directions separately; prismatic parts in three 

orthogonal directions, or more, if there are angled faces. The 1D approach does not account 

for DRFs, datum precedence and zone tolerances.  Also, since some contributors are not 

aligned with the direction of analysis, they are ignored, which may yield incorrect results.  

There have been a few attempts at automating 1D tolerance charts, in both design and 

process planning versions. This includes research by Ahluwalia and Karolin [6], Li and 

Zhang [7], Whybrew et al. [8], and Shen [9]. Besides, researchers have been trying to 

automate process planning and making interactive computer tools for it. Y. Zhang et al [10] 

proposed a computerized graph based setup/fixture planning using GD&T. Shah et al [11] 

have developed a dimensional model that facilitates the conversion of dimensions and 

tolerances from design models to machining features which are extracted automatically by 

a feature recognition system. For geometric tolerances, Thimm [12] explores a system that 

derives and rewrites alternative geometric and size design specifications with the aim of 

improving the manufacturability of a design. Polini and Giovanni [13] have proposed a 

model to incorporate different types of tolerances in manufacturing to do tolerance 
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analysis. The objective of tolerance analysis is to check the extent of variation of a 

dependent dimension or clearance for a given GD&T scheme. Analysis approaches can be 

classified as 1D, 2D, and 3D, according to dimensionality; as worst-case or statistical 

according to the analysis objective. Popular analysis methods are manual 1D charts [14], 

linearized 2D/3D analysis, and Monte Carlo simulation [15]. For 3D tolerance analysis, 

Shah and Davidson introduced a math model that can describe all possible variations 

constrained by design or machining tolerances. T-Map is a hypothetical Euclidian point 

space model which the size and shape of it reflects all variation possibilities for a target 

feature. T-maps have been created for all types of geometric tolerances with Primitive T-

Map elements. The accumulation the T-map in machining is called m-map. [16] 
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CHAPTER 3: CONCEPTUAL DESIGN OF SOFTWARE – PCTF 

 

The ultimate goal in this research is to use the outputs of the Tolerance Explication module 

to do tolerance conformance analysis and verify the manufacturing process plans 

automatically. Therefore, the information extracted from process plans need to be 

organized in a formal machine readable format. For this purpose, a data structure is 

designed that can store and represents the explicated GD&T information of process plans 

in conjunction with the CAD model of the part to be used for analysis. Since the required 

data structure needs to store the Geometrical and Dimensional errors of a process plan and 

the geometry of the part in different steps, the data would be very similar to tolerances of 

a designed part. Thus the data structures developed previously in Design Automation Lab 

at Arizona State University, CTF and SCTF [21] graphs, are modified to create a new data 

structure called PCTF (ProcessPlan-Constraint-Tolerance-Feature) graph. This Data 

structure is very similar to its ancestors, so the details of the similar parts of them can be 

found in literature, but the main points and the differences are presented in this chapter.  

Here the basic concepts and specifications of CTF is reviewed first. Then it is shown how 

the CTF is adjusted so that it can include and store the information needed for creating m-

maps.  

In order to lay the groundwork for the development of the GD&T data model, we consider 

the types of information, entities and relations needed to express GD&T in accordance with 

the standards. Size tolerances as applied to linear, radial or angular dimensions 

corresponding to parameters are related to features of size (i.e. holes, pins, slots, tabs, 

pockets, bosses, etc.). Therefore, a definition of FOS (feature of size) is needed along with 
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its parametrization (radius, diameter, depth, etc.). Size tolerance specifies max/min values 

and can be expressed in a variety of ways: max/min parameter limits, nominal value and 

+/- variation which may be equal on both sides (i.e. equal bilateral size tolerance), unequal 

or unilateral. Any of these can be calculated for any of the other representations. Size 

tolerances are directly related to the corresponding size parameter, which are defined by 

the distance/angle between 2 lines and 2 planes or between the center and the boundary of 

a radial feature. Geometric tolerances are applied to given entities (edge, surface) or to 

features of size. There is a tolerance type, value and up to three datums if applicable. 

Modifiers may be applied to the tolerance value or tolerance zone shape. The geometric 

tolerances will control the orientation, location, shape (form), and profile of the tolerance 

entity, relative to datum reference(s) of frame. 

This leads to the following requirements for entities that need to be supported: face (planar 

or freeform surface), line, point, and features of size (cylindrical, spherical, tab/slot, etc.) 

and relations that must be supported: size, orientation, locations, and shape, where a shape 

relation control the intrinsic form of the feature, and it could be one or several linear, and 

orientation relations. 

3.1 Overview of CTF model 

In this section, I will go over the definitions of the features, constraints and the degree of 

freedom, and basic concepts used in Constraint-Tolerance-Feature-Graph-Based Model 

(or the CTF Model for short). The model content includes nominal geometry (features), 

constraints (including dimensions, mating conditions, assembly constraints), tolerances 

(including datum reference frames), and degrees of freedom (DoFs). The nominal 
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geometric information of the model is composed of the geometric primitives, and their 

combinations. Each geometric entity has certain inherent DoFs to be controlled.  

3.1.1 Real features and trimmed features  

A feature is a stereotypical shape defined by specific topology, geometry, and constraints. 

As a matter of fact, real features (i.e. toleranced surfaces on a part, not features with 

nominal parameters) can be of any type and shape. There are no abstracted primitives like 

a pure point feature, an infinite line feature, or an infinite plane feature. Instead, what we 

see are trimmed features, or approximated features that are idealized from real ones. In 

tolerance analysis, it is necessary to approximate the real features by trimmed features, 

which are defined as the features simplified or abstracted from the real ones with minor 

cutouts and protrusions suppressed. 

For example, all the planar features (assuming the toleranced planar surfaces are involved 

in a tolerance analysis, rather than otherwise like the tolerance slot, or hole, or hole pattern) 

in Figure 5, can be approximated by an ideal rectangular planar feature. Indeed, these real 

surfaces, with their cutouts and/or protrusions, would most likely to be manufactured (e.g. 

milled) at one setup. The presence of these minor cutouts and/or protrusions would not 

affect, in most cases, the choice of the manufacturing process. Therefore, this abstraction 

from the real feature to the ideal ones is not only necessary but also reasonable, because its 

effect on the simulation result is negligible. 
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Figure 5: Trimmed feature vs. Real features.  

To view the CTF-Graph Based Model, the user would like to see the real features or at least 

the trimmed features, but not the primitives or their combinations.  

3.1.2. Constraints and metric relationships: 

A geometric constraint in GD&T corresponds to a basic metric relationship between the 

primitives. Each metric relationship may be expressed in one or more analytical equations 

from the analytical geometry. 

Different metric relationships exist between the primitives, and constrain the DoFs of 

geometric entities w.r.t. each other (Wu et al. 2003). We use the same representation, i.e. 

(Xi , Yi , Zi ) for points, Ai X + BiY + Ci Z + Di = 0 for planes, and (X−Xi)/ pi = (Y−Yi)/qi 

= (Z−Zi)/ ri for lines. But for example, when a feature of size is involved, the feature’s size 

must be taken into account; or in order to compute the distance between a point and a circle 

(i.e. a special plane), the coincident relationship between a point and a plane can be used 

to check if the point is coincident with the circle defined plane.  

Geometric constraints may be specified dimensions, mating conditions, or geometric 

relations, such as perpendicularity, parallelism. For size features, size constraints can be 
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directly attached to the features themselves. A geometric constraint may have a 

measurement direction associated with it, but it is not always the case. For instance, if a 

constraint involves a plane, its measurement direction is the plane normal. If it involves 

two parallel but non-coincident lines, its measurement direction is the direction that passes 

through and perpendicular to the lines. If a constraint involves two coincident lines only, 

its measurement direction is the line direction. A size constraint of a sphere (i.e. a point 

feature) will not have a fixed measurement direction. Other cases are not enumerated here. 

The key point is that a constraint, especially a dimension, requires a measurement direction, 

and that direction will depend on how this constraint is actually measured in manufacturing 

and inspection. The user can specify the measurement direction for a geometric constraint 

by specifying the datum of this measurement. 

3.1.3 Entity degrees of freedom 

The geometric primitives or the trimmed features have their respective active DoFs and 

invariant DoFs. To limit the variation of a particular feature, its active DoFs should be fully 

controlled within certain ranges, i.e. tolerances. In other words, the tolerance specification 

should control the feature’s variations along its active DoFs with respect to its datum 

reference frame. Indeed, a GD&T specification will control the corresponding active DoFs 

of the toleranced feature, and each datum, if any, will control some of them. 

Since it is not in the scope of this work, there is no need to list all possible tolerance classes 

and how they control the active DoFs of the primitive features, i.e. point, line, and plane 

features in most scenarios. Instead, we will use the position tolerance of three datums on a 

line for demonstration. But interested readers can refer to (Shen 2005) for a complete 

coverage.  
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3.2. PCTF graph, Data structure 

PCTF, similar to its ancestors (CTF & PCTF, Shen 2005 & 2008), can represent all the 

tolerance types in the standards, and can contain all the information that is needed for error 

analysis; but this time it is modified so that it can contain the geometry of the part in 

process, and the errors of the process plan derived assigned to the geometry. This means 

that we can store work-holding information and tolerances along with the geometry for 

each operation (step) in the process plan to able to do manufacturing variability analysis 

on the whole process plan. Here we will review the main characteristics of PCTF, how it 

is represented and implemented.  

3.2.1 PCTF-Graph Implementation 

The PCTF model has been implemented using the C++ language, and commercial 

geometric kernel ACIS. Written in C++, ACIS provides an open architecture framework 

for wireframe, surface, and solid modeling from a common, unified data structure. 

With the attributed CAD model the PCTF-Graph Based Model can be automatically 

created, as explained below: 

(1) Traverse the attributed CAD model to retrieve all the GD&T information, i.e. geometric 

constraints and the associated tolerances, mating conditions. 

(2) Check all the GD&T data to find out all the geometric entities (real physical features) 

involved, and group the entities according to their owning parts. 

(3) Create the general tree to capture the setup sequence information, and populate this tree 

in the order of part, constraint, tolerance, and DoF. 

(4) Create the real physical features for the visualization purpose. 
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(5) Abstract the real physical features to the trimmed features, which correspond to the 

geometric primitives and their combinations. This is where the feature recognition 

technique can play and important role. 

(6) Create all the trimmed features and populate all the GD&T data (geometric constraints 

and their dependent tolerances) to generate the PCTF Graph Based Model.  

It is important to note that the same model is always created for the same attributed CAD 

model, regardless of what independent parameter is being analyzed. With the PCTF Graph 

Based Model automatically created, it is possible to conduct different types of tolerance 

analyses right on top of this model. See (Shen 2005) for how different types of tolerance 

analyses are performed driven from the same CTF model.   

The PCTF-Graph, at the highest level, is a general tree. The data structures for this general 

tree are the tree node class and the general tree class. A general tree node has a data 

member variable data and three pointers to link current node to its parent, its child and its 

sibling nodes. It is also a template class, since the tree node is a template class. To traverse, 

modify and retrieve data from the general tree, various access, utility and modifier 

functions are defined as well. 

Using the template general tree representation, general trees of different data types can be 

created, depending on the user-defined data type. PCTF has a nested doubly-linked list data 

structure. The general tree node contains the node’s pointers, name and a CTF-Graph, thus 

or example the data type T is defined in a CTF struct. PCTF expands as shown in Figure 

6.  
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Figure 6: CTF hierarchy 

At the very first layer, it is a list of “parts” which are the geometries of the part under 

process in different stages. At the second layer, each “part” is composed of a list of 

geometric “features” (of CGeometry type). At the third layer, each geometric “feature” 

contains its basic geometric data, a list of geometric constraints, a list of tolerances, a list 

of DoFs, and a list of associated points (i.e. a special CGeometry).  

The whole model is created from top down, and lower level data is gradually populated 

when the higher-level data is available. The order is: 

 “The general tree → parts → features → constraints → tolerances → DoFs” 

The lower-level data representations, such as those for CGeometry (or feature), constraint 

(C-graph), tolerance (T-graph), and DoF are discussed in the following sub-sections. 

3.2.1.1 PCTF-Graph, Constraint structure 

The constraints are represented by a C-Graph, an undirected graph with the involved 

trimmed features at the nodes and the geometric constraints as the arcs. This measurement 
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direction is useful for traversing the C-Graph to detect the tolerance chain (Shen 2005; 

Shen et al. 2008). Note that the face ID numbers are automatically assigned when the model 

is created, and uniqueness of the face ID is guaranteed. 

The geometric constraints in the Model are represented in different classes derived from 

the constraint base class DAL_Geom_Cst. Note that constraint type eType is an enum type 

data. Involved geometric entities are saved in the pointers (i.e. gTarget_A, gTarget_B) of 

the type CGeometry. A geometric constraint can have direction vector, defined as a 

CCoordinate3D structure. 

3.2.1.2 PCTF-Graph, Feature data structure  

Geometric information of the trimmed features needs to be encoded along with the GD&T 

information. Representation of the trimmed features is designed in such a way that it can 

link to the GD&T data and be supported by the geometric constraint solver, and can 

accommodate the requirements from the analysis processes. As pointed out in section “Real 

features and trimmed features”, all geometric entities are resolved to point, line or plane 

from the DoF point of view. A point, line or plane can correspond to many different 

trimmed features. During the tolerance analysis, it is necessary to distinguish one from the 

other within the group of trimmed features corresponding to the same primitive entity. For 

instance, a line can represent a pin, a hole, a cone, and other revolved surfaces; but they 

each have their special attributes that a pure line does not have. In tolerance analysis 

involving a line, it is necessary to distinguish a pin or hole feature from a cone or helix 

feature. Therefore, the feature representation will recognize this difference, instead of just 

three types of geometry, i.e. point, line, and plane. Like the CTF graph, in the hierarchy of 

the feature classes the CGeometry is used as the base class, and other geometric types are 
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all derived from it.  This class is fully discussed in previous researches done by Shen et al. 

(2005) 

3.2.1.3 PCTF-Graph, Tolerance data structure 

The tolerance information in a CTF-Graph Based Model forms a tolerance-graph, called 

T-Graph. Unlike C-Graph, T-Graph is a directed graph with the toleranced geometric 

features at the nodes and tolerance specification as the arcs. For those tolerances that have 

no datum reference frame (DRF, i.e. the coordinate systems used to locate and orient a part 

feature (ASME 1994), the tolerance is attached to the geometric features itself.  

Since a tolerance is used to control the variation of a certain geometric constraint, it 

depends on the corresponding geometric constraint. In other words, a tolerance cannot exist 

without its corresponding geometric constraint. For instance, a dimensional plus/minus 

tolerance has no meaning if the corresponding dimension does not exist. Therefore, C-

Graph and T-Graph can be combined together to form a directed constraint-tolerance-

graph, i.e. CT-Graph. A CT-Graph is also referred to as constraint-tolerance-feature-graph 

(CTF-Graph), since it has the geometric features (or trimmed features) at its nodes. Indeed, 

the geometric features are indispensable components for a C-Graph and a T-Graph. The 

CTF-Graph does not include the machining process information, which is encoded in the 

PCTFGraph. 

The tolerance information in the Model is represented in different classes derived from the 

tolerance base class DAL_Geom_Tol. Note that tolerance type eType is an enum type data. 

Involved geometric entities are saved in the pointers (i.e.g Target, datum_A, datum_B, 

datum_C) of the type CGeometry. Material condition modifiers (e.g. MMC, LMC, and 

RFS) are also saved as enum type. 
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3.2.1.4 PCTF-Graph, DoF representation 

A DoF (in the kinematic sense) of a feature is represented in a struct using CCoordinate3D 

definition. All active DoFs of a feature is saved in a doubly-linked list in the feature itself. 

These activeDoFs are controlled by the corresponding tolerance(s) specified on this 

feature; therefore, for each tolerance object, there is doubly-linked list that contains all the 

DoFs this tolerance actually controls. The contents of the Tolerance class are: tolerance 

type, tolerance value (fValue), Diameter modifier (Diam_Symbol), Target feature pointer 

(eTarget), Target type (eTargetType), and a Linked List representing the DoFs. A union of 

all the DoFs associated with the tolerances specified on a feature should be equal to the set 

of DoFs contained in the list held by the feature itself. 

3.2.2 PCTF-Graph Example 

A sample PCTF is shown in Figure 8. It belongs to the machining process of the cap of the 

assembly shown in Figure 7, and it is created with the ASU_M-MAP_TESTBED by 

manually inputting the extracted information of the process plan. The information in the 

PCTF can be categorized in four sections: A, B, C, and D.  

 

Figure 7: Cap cylinder assembly CAD model 
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Section A of this graph (line 1) contains the name and address of the B-Rep model file of 

the geometry of machined part after an specific step and the process plan errors for the 

exposed faces in GD&T format for the very step.  So for each machining step, a B-Rep 

model needs to be associated with GD&T information derived in Task 1. 

Section B of this graph contains information about the features in a Part and their data such 

as the type of the face, its axis or normal direction and position. Section B of this Graph 

extends from line #1 to #8 and gives us all the features which a part is made of. First line 

of section B says the part number followed by the line numbers which contain the 

information about the features of that part. If there is more than once occurrence of a feature 

they are named differently for example line #4, #5 and #6 shows that there are three 

rectangular planes in this part and they are named as Face4, Face5 and Face 6. Also, Line 

#4 tells us that part 1 hole feature on one of its face which is named as face 3 (by the 

software internal modeling scheme which can be changed accordingly and has root point 

[-35.866, 4.026, 5], then the point [0, 0, 1] is the axial direction of the center of the hole, 

3.3 is the radius of the hole, 6 is the height of the hole. 

Numbering of features can be in any random order. The very important alteration from CTF 

to PCTF is that the exposed faces in each step will have a new ID and unaltered faces (fixed 

faces) will have the same ID as its previous steps among the PCTF of all steps. The 

algorithm to track the fixed faces and identify exposed faces for a part under process is 

given somewhere. Also since we are not dealing with assemblies, this section will always 

have one part. 
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Figure 8:  Example PCTF Graph for part in figure 7 

Section C contains all information about the constraints and metric relations, including the 

mating conditions (mating conditions in case of assembly). In this case section extends 

from line #9 to #22. 

For instance, line #11 tells us that there is a distance of 31.8 between the features defined 

in line #2 and #4. Line #12 of this section tells us that the metric relationship is of type 

CST_Distance defined in line #11 which is between the axis of feature defined in line #2 

and line #4.  Similar structure is followed throughout this section. First there is a type of 

#0= FILE('C:\ASU_M-MAP_testbed\sat\Cylinder Cap.sat'); 

 
#1= PART('part2', #2, #3, #4, #5, #6, #7, #8); 

#2= PIN('FACE1_of_part2', (-4.06647, 4.02592, 5), [0, 0, -1], 12.75, 6); 

#3= RECTANGULAR_PLANE('FACE10_of_part2', (29.5174, 4.02592, 5), [0, 0, -1], 18, 6.66986, [0, 1, 0]); 
#4= HOLE('FACE3_of_part2', (-35.8665, 4.02592, 5), [0, 0, 1], 3.3, 6); 

#5= HOLE('FACE4_of_part2', (17.9335, 27.0259, 5), [0, 0, 1], 3.3, 6); 

#6= HOLE('FACE2_of_part2', (17.9335, -18.9741, 5), [0, 0, 1], 3.3, 6); 
#7= RECTANGULAR_PLANE('FACE5_of_part2', (29.5174, -4.97408, 8), [0, 1, 0], 6.66986, 6, [1, 0, 0]); 

#8= RECTANGULAR_PLANE('FACE7_of_part2', (29.5174, 13.0259, 8), [0, -1, 0], 6.66986, 6, [1, 0, 0]); 

 
#9= CST_ANGLE(90, #2, #3); 

#10= METRIC_RELATIONSHIP(#9, CST_ANGLE, (90, #2[LINE(axis of PIN)], #3[PLANE])); 
#11= CST_DISTANCE(31.8, #2, #4); 

#12= METRIC_RELATIONSHIP(#11, CST_DISTANCE, (31.8, #2[LINE(axis of PIN)], #4[LINE(axis of HOLE)])); 

#13= CST_DISTANCE(31.8277, #2, #5); 
#14= METRIC_RELATIONSHIP(#13, CST_DISTANCE, (31.8277, #2[LINE(axis of PIN)], #5[LINE(axis of HOLE)])); 

#15= CST_DISTANCE(31.8277, #2, #6); 

#16= METRIC_RELATIONSHIP(#15, CST_DISTANCE, (31.8277, #2[LINE(axis of PIN)], #6[LINE(axis of HOLE)])); 

#17= CST_DISTANCE(58.5102, #6, #4); 

#18= METRIC_RELATIONSHIP(#17, CST_DISTANCE, (58.5102, #6[LINE(axis of HOLE)], #4[LINE(axis of HOLE)])); 

#19= CST_DISTANCE(58.5102, #4, #5); 
#20= METRIC_RELATIONSHIP(#19, CST_DISTANCE, (58.5102, #4[LINE(axis of HOLE)], #5[LINE(axis of HOLE)])); 

#21= CST_DISTANCE(18, #7, #8); 

#22= METRIC_RELATIONSHIP(#21, CST_DISTANCE, (18, #7[PLANE], #8[PLANE])); 
 

#23=T_SIZE(#2, (nFI, 0.05, RFS)); 

#24= DOF(#23, (SIZE_DOF, SHAPE_DOF)); 
#25= T_ PERPENDICULARITY(#2, (FI, 0.2, MMC), PD(#3, RFS)); 

#26= DOF(#25, (SHAPE_DOF, #3, RDOF[1,0,0], RDOF[0,1,0])); 

#27= T_FLATNESS(#3, (nFI, 0.12, RFS)); 
#28= DOF(#27, (SHAPE_DOF)); 

#29= T_DIMENSION(#7, (nFI, 0.1, RFS), PD(#8, RFS)); 

#30= DOF(#29, (#8, TDOF[0, 1, 0], RDOF[1, -9.28146e-014, 0], RDOF[0, 0, -1])); 
 

#31= SETUP('setup_0', $) 

#32= SETUP('setup _1', #4,#5,#6) 
#33= SETUP('setup _2', #7,#8) 

#34= PP_MODEL(#31, #32, #33) 

A 

B 

C 

D 

E 
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constraint its value and the involved features are defined. Then the metric relationship 

about the constrained is defined and then in next line the next constraint is defined. This 

process goes on till we have listed all the constraints and relationships for every part. 

Section D of this PCTF graph contains all the error tolerances and DoFs (degrees of 

freedom) information of a part. Section D occupies the lines from #23 to #30 in this case. 

This section first defines a tolerance associated with a feature and its values and material 

condition.  

The first line of this section (# 23) defines a tolerance of size on feature defined in line #2 

which is of value ɸ (± 0.05) and is at RFS (Regardless of feature size).  

Finally in Section E, we can see the list of the setups the part has gone through. This section 

is contain the exposing faces machine din each setup. Thus all the exposing faces that has 

gone through datum transformation will be stored and can be tracked in this section easily.  

3.3. PCTF & GDT Testbed 

Using the CTF-Graph Based Model, a tolerance analysis testbed has been previously 

developed in DAL. With the input of the hybrid attributed CAD model, the G&T info is 

stored in a Neutral Representation model (like PCTF-Graph) which can serve as the 

common data model for all types of tolerance analyses, such as automatic charting, 

simulation-based analysis and T-Maps based analysis.  

I have modified this Testbed to be able to take in the CAD models of a machining part 

under process to interactively assign and allocate the GD&T info in each stage extracted 

from the process. With this Testbed, we can map the GD&T info to create m-maps like the 

T-maps we could create for design tolerances. This Testbed store the machining info for 
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each step in multiple CTFs which will be compared at the end to create the PCTF. If a user 

interactively input all the extracted errors, it will create a textual representation of the 

PCTF. For this purpose, the user needs to input the machining variability (error 

limits/tolerances) of each machining operation. In our algorithm, each machining process 

is considered one step and the geometry of the part before and after the machining step 

needs to be available. So we need to have the CAD model of the part in process from the 

raw material or stack, till the final shape. The user then needs to select the datums, type of 

the error and its values in each step correspondent to each machine process. In this thesis, 

the application of the testbed, is shown with a help of an example in chapter 6.  

Recall the CTF-Graph Based Model contains the T-Graph, which is a directed graph 

representing the datum target relationship between different features in the Model. This 

directed graph facilitates downstream GD&T processing like tolerance analysis. Note that 

in reality, the arcs just contain the pointers to the corresponding objects (e.g. constraints, 

tolerances, mating conditions), which in turn, hold pointers to the target features and datum 

features. This way, the travel can be two-way. With such a model, it is trivial to find the 

target-datum relationship of all the features involved. If we want to perform a tolerance 

analysis, say create an m-map for a part, the simulation can start from the primary datum 

of the part (not a specific tolerance), i.e. the datum feature that does not reference any other 

features as datums. Then the simulation continues upwards along the target-datum 

relationship, in one or more paths, until all the involved features are varied.  
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Conclusion 

In this chapter we have explained the representation model, the PCTF-Graph, which 

overcomes the shortcomings of the other models to handle all different types of machining 

error. This lean model holds just enough information that is needed for the representation 

and use of the data. To be specific, this neutral model contains all the geometric, constraint, 

assembling, and tolerance information needed for different types of tolerance analyses. 

This neutral model can be used to create m-maps which has the same representation with 

t-maps. Thus we can perform conformance analysis by comparing these two. 
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CHAPTER 4: TOLERANCE EXPLICATION 

Tolerance explication requires the following details of the process plan in each setup: the 

before/after geometry of the part in process; the faces and features created;  the machines 

and operations used; the method used to fix and locate the part in the machine; and part 

fixturing features/faces. Because the machine tools used affect the accuracy of the parts 

created, we need to supplement process planning information with machine error maps, as 

well. To illustrate these ideas, let us look at the simple example shown in Figure  9. 

 
 

m/c VMILL-38 

Fixtures: F1, F2, F3 

Op4: End mill thru 
slot 

Tool: X 

Op5: center drill hole 

Tool: Y 

Op6: twist drill hole 

Tool: Z 

Op7: ream hole 

Tool: Q 
 

a) Design GDT spec of a part b) Partial Plan 

Figure 9:  Part design and process plan 

Figure 9a shows the design specification of a part with standard GD&T symbols (tolerance 

values and modifiers have been omitted on purpose in order to focus on the control schema 

only). The hole position is controlled by the DRF A-B-C, where A is the bottom face, B is 

the slot feature and C is the side face. However, both the slot and the hole are machined in 

the same setup according to the process plan shown partially in Figure 9b. This can be 

thought of as a macro-plan, i.e. pre NC code generation.  
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The machining DRF uses the left side face as the secondary datum instead of the slot used 

in the design DRF. Center drilling controls the position of the twist drill in the following 

operation. We need to rely on machine and operations accuracy to know exactly the 

variation to expect, as the process plan gives only nominal position and contains no explicit 

values for the position tolerance. This example illustrates the following issues for 

investigation:   

 How to determine the implied DRF from setup and fixture specification 

 How to convert +/- feature tolerances to geometric FOS (feature of size) position or 

orientation tolerance (e.g. the slot’s position) 

 How to transfer tolerances of Design DRF and Process DRFs in order to verify 

conformance (tolerance transfer problem) 

 How to extract operation tolerances from machine, cutting tool and operation type 

As stated before, the aim is to extract and represent the implied manufacturing tolerances 

in the same syntax as ASME Y14.5 standard tolerance frames. Apart from having clearly 

defined semantics, the rationale for this choice is that the same 3D tolerance analysis tools 

can now be used on manufacturing GD&T. This includes our tolerance T-map math model, 

T-maps [16].  In the next three sections we will discuss our approach in more detail. As 

shown in Figure 4 these steps include extracting datums, implied DRFs, dimensions and 

GD (Geometrical & Dimensional) errors. 

4.1 Datum Extraction 

Datums and datum reference frames (DRF) are used as references for measurements; they 

specify the direction of measurement and set up coordinate systems. Datums are 
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theoretically exact points, axes, lines and planes. They are neither on the measured part nor 

on the gage blocks or inspection tooling; they are simulated by contact between the two. A 

DRF is a set of two or three mutually perpendicular features (planes, mid-planes, axes) that 

are derived from sufficient datum features or portions of them. Figure 10 illustrates the so-

called 3-2-1 principle for simulating a DRF with three mutually perpendicular datums.   

Since some types of errors (e.g., orientation, position) need a datum to be measured from 

we need to derive datums first. And since, datums correspond to the way the part is located 

and fixed in each machine; it can be derived from the fixturing features and fixturing 

method in each setup. 

 

Figure 10:  Illustration of 3-2-1 principle 

Figure 11shows the first two setups for machining a connecting rod from a forged work 

piece. In this example the locators and clamps which fix the part are shown. So by 

analyzing at the position of the clamps (or the locators), or the feature of the part that are 
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clamped (or used to locate the part), we can determine the equivalent DRFs corresponding 

to the setup used for manufacturing features machined in this configuration. The first datum 

can simply be the face that the connecting rod is sitting on, as shown in the side views of 

both setups. The secondary and tertiary datums have to be extracted from the locaters and 

clamps shown in the top view of each setup separately. 

 
a) First setup 

 

b) Second Setup 

Figure 11:  First two stages of machining a connecting rod  
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For the first setup, the two locators on the side planes of the crank hole can be translated 

as the mid plane between those to be the second datum. And the other two locators pointing 

at the cylindrical face of the hole for the gudgeon pin can be interpreted as the tertiary 

datum to be the axis of the smaller hole. One locator at the end is also constraining the part 

from moving in longitudinal direction so another datum can be the top plate of the rod.  

With the same logic, for the second setup, a look at the clamps at the end of the rod and the 

locators below the crank hole help us determine the second and third datums: the second 

datum being the mid plane between two end faces at the smaller hole end; the tertiary datum 

is the cylindrical face of the crank hole. 

In order to develop a software to extract implied datums and DRFs, the procedure provided 

above  should be organized in the form of a flow chart or pseudo code. This requires 

classification of fixturing methods and rules for datum extraction associated with each. 

Although many different fixture configurations are used in industry, the most common 

methods of fixturing are limited. The scope of this thesis does not include custom jigs and 

fixtures. Thus, in order to make the task of datum extraction easier, we have created a 

library of fixturing types. This library (shown in Table ) illustrates the main methods of 

fixturing along with different information that is related with the datums geometry that are 

essential for later use in analysis. 
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Table 2: Library of Fixturing configurations 

Category Sub-Category Method of Fixturing Corrs. Datums 
Locating 

model 

Plane Locating 

Type of datum limiting 
DOF 

First plane, 
three points 

3 

Second plane, 
two points 

2 

Third plane, 
one point 

1 
 

3-2-1 Point locating 

 

Three planar faces 

 

Plane , Small surface, and Pin 

locating 

 

Pin-Hole locating 

Type of datum limiting 
DOF 

Long cyl. pin 4 

Short cyl. pin 2 

diamond pin 1 
 

Round & Diamond pin 

locating 

 

One cylindrical and 

one prismatic hole 

with tow mid planes 

Short shaft , Pin, and small 

surface locating 

 

Two cylindrical hole 

and one planar face 

External profile locating 

Type of datum limiting 
DOF 

long V block 4 

short v block 2 

locating pad 1 
 

V-block locating: one  

 

One cylindrical face, 

one planar face, one 
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V-pad locating 

 

Two planar faces 

Clamping Simple Clamp Vertical model Mid-Plane (vertical) 

Horizontal model Mid plane 

(Horizontal) 

For instance, as shown in Table 2, the 3-2-1 locating method can be translated as the most 

common DRF systems (6 point DRF, fully constrained), with the surface of three points as 

the primary datum and the planes with 2 and 1 points as the second and tertiary datums 

respectively. Also, we should save the association of the imaginary planes considered for 

DRFs extracted with the faces of the part geometry in each stage. In other words, we have 

to know which faces in the nominal geometry of the part in each machining stage are 

considered as the datums. As discussed earlier, all the faces in the whole manufacturing 

process, fixed or exposed ones, have unique ID numbers that will be used later to track the 

error propagation in subsequent stages of machining. 

In order to illustrate the application of this procedure, we will discuss a case in which a 

part can be located and fixed in two alternative ways, involving different fixturing faces 

and features (Figure  12). The two options are shown in Figure 12 a, c. In order to drill the 

holes in the part which has a slot in the middle-top, we can fix the part to constrain it in x 

direction either with its outer right plane as shown in (a) or by using the slot as in (c). 

Therefore, for DRFs we derive for each case, the third datum is different, as shown in (b) 

and (d), respectively.  
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a) First fixturing method b) DRF extracted for the first fixturing method 

 

 

c) Second fixturing method d) DRF extracted for the second fixturing method 

Figure 12: Different Fixturing methods for machining the same part 

In order to make clear the consequence of this datum difference, we have added dimensions 

and position tolerances to all of the holes and slots. In these Figures the extracted sizes of 

all Features of Size (or a pattern of them) are also shown. Thus it is essential to know the 

datum precedence and the face used as a datum since the errors in creating that face (which 

is now used as the datum) will affect the features created later.     

Now in the case that in a machining process, we use machine tables and surface plates to 

fix the part, then the planes and axis are derived from the machine coordinate system; this 
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establishes the simulated datums from which the measurements need to be done and 

dimensions to be verified. For the most common machines used in industry (turning, 

milling, drilling, etc.) we can derive the machine coordinate system. Thus based on the 

machine used in each step, which is noted in the process plan, the corresponding DRF can 

be derived. For instance, it is shown in Figure 13a that if a part is fixed for a turning process, 

a datum axis and datum plane can be derived.  

 

a) Turning  machine 

 

b) Milling machine 

Figure 13:  Different machines and the DRF derived with respect to their coordinate 

systems 

And for a milling machine shown in Figure 13b the bottom plate can be considered as a 

datum plane, and the other datums need to be derived from the way the part is fixtured. It 

is noteworthy that the accuracy of the machine surface accuracy with respect to nominal 
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Machine Coordinate system will affect the accuracy of the part feature created in that 

setup. The foregoing provides a systematic method for automating DRF extraction. 

4.2 Dimensions and dimensional errors extraction 

In this step it will be shown how to extract the dimensions and dimensional errors in 

machining. This task is facilitated by a software module developed previously for 

extracting so-called “Directions of Dimensional Control” [15].  We can think of a part’s 

geometry as consisting of a number of planes, mid-planes and cylinder axes. We can think 

of planes as belonging to the same direction of control if their normals point in the same 

direction, i.e. the planes are parallel. Parallel axes also line up in particular directions of 

control. Features in the same direction of control chain are displaced from each other by 

linear distance. This module can find all the direction of a part where we have faces and 

feature, and also the distance of each face in each direction from the first node is output. 

The distance between the features can be calculated by subtracting their absolute distance 

(distance from the first node). Some of these distances correspond to size dimension and 

some to position. Essentially, these directional chains represent linear stacks for tolerance 

accumulation.  

We need also tolerances values with each of these dimensions and positions in the 

directional chains. These will be dependent on machine and operation precision that 

produce the finished features. In order for this happen, the process plan must be read to its 

lowest level with all the notes and details. For example, if the last cut producing the final 

size has a relatively deep depth of cut and a relatively high feed rate it will yield the least 

precise finished product; if the last cut has a relatively shallow depth of cut and a 
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significantly slower feed rate than the preceding cuts a more smooth surface and less errors 

in product will result. Also, if the last cut with the first tool leaves a relatively shallow depth 

of cut which is finish cut with a different tool at a relatively slow feed rate the best precision 

will be achieved. This is because taking a relatively shallow finish cut at a slower feed rate 

produces less tool pressure which yields more uniform results over the life of the tool by 

minimizing the variability due to increased tool pressure as the tool wears. As well, using 

a separate cutter to finish will result in longer accurate production as it will not be worn by 

the heavy roughing cuts. Beyond this if the same surface is subsequently ground and/or 

lapped increasingly close tolerance control can be achieved. Therefore, finishing operation 

machining analysis would be necessary to determine the expected resulting tolerance 

control.  

Therefore, to get tolerance values from a process plan we have to look at the information 

provided about the tools and machines that are used in each stage of producing the part. To 

have an automated system we have classified the sources of error as follows: 

I. Locating/positioning errors sources:  

 Fixture errors   

 Datum errors 

 Raw material errors 

II. Machining errors sources: 

 Machine tool errors 

 Cutting tool errors 
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We might not be able to consider all detail of the process plan with this classification as a 

general method, but these notes can get implemented as rules to the systems. For instance, 

roughing operations do not affect machining tolerances in most of the cases, but they affect 

position tolerances as in the case of twist drilling. Finishing operations affect the size and 

form tolerances, e.g. flatness.  Such information is not directly available in process plans. 

We need to supplement the process plan with data about the machines and tools.   

As an example let’s look again at the information available in the machining process plan 

for the casted connecting rod we discussed earlier. As shown in Figure 14, some 

dimensional values are specified with +/- range. These values can be translated to a position 

and size error. The position tolerance is a geometrical tolerance that we will discuss in the 

next section, but the size which is a dimension also will have some errors that we need to 

extract first.  In Figure 15, we have underlined the information about fixtures, clamps, 

machines, tools, feeds, and speeds are underlined from which geometrical errors and their 

values can get extracted with some heuristics. These heuristics will be used to identify the 

fixture type and fixturing method used. For instance, usually when a part is fixed with a 

clamp it will result in more errors than a part located with a pin with tight clearance. And 

then the accuracy of the pin location will affect the dimensional size tolerance of the 

exposing face. 
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Figure 14:  Annotated figures accompanying the first stage of connecting rod process 

plan 

 

Figure 15:  Process data for extracting errors in machining the connecting rod  
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4. 3 Geometrical errors extraction 

To be able to create a complete GD&T scheme we also need other geometric tolerances, 

not just size and position. Without that, a full tolerance analysis cannot be done. However, 

process plans have no geometrical tolerances (form, orientation, profile, runout) explicitly 

specified. We assume that the process planner did consider them in choosing the machines, 

operations, tooling, fixturing.  So here we consider if we can “reverse engineer” his thought 

process to derive geometric tolerances implicit in his plan. 

Since we can recognize the effect of different errors in machines and tools on target 

features, we need to put them in a formal format to be able to use them in our system. For 

example while machine precision affects the size and the position of features, tool type and 

speed of cut affect the form of features. We can code the factors on a selected scale and 

populate the values for each machine in a database. Table 3 summarizes the type of 

tolerances affected by the combination of the machine type, tool type and tool direction in 

a tabular format. This information can be stored in a database for different combinations to 

be used to extract the geometrical errors. In Table , “FN” stands for Face Normal vector, 

“TA” is the Tool Axis, and “CA” is the Cylindrical face Axis. Also, “FN  TA” means face 

normal vector is perpendicular to the tool axis; and “FN || TA” means face normal vector 

is parallel to the tool axis. 

The terms “fixed” and “exposed” has been used throughout this document but the technical 

definition of them are provided here to better understand the Table 3. 

Exposed features are the features or faces that are machined in a setup; we use this term 

here because they are exposed on the work-piece after material removal in the machining 
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process; tolerances are applied to exposed faces. Several factors influence the machining 

tolerances on exposed features.  

Fixed faces are the faces that are not machined in a setup. Since the faces that we can use 

to fix the part are among fixed faces, the DRF that we extract will be the nominal geometry 

of the chosen fixed faces. For instance, Orientation tolerance on exposed planar face should 

be given with respect to the fixed faces that are perpendicular to it. Similarly position 

tolerance on exposed planar face should be given with respect to the fixed face that is 

parallel to it.  

The requirement of the number of fixed faces to associate errors extracted with, depends 

on type of exposed face. Below is description for requirement of types of tolerance on three 

types of target features and their faces. 

Planar face: While machining a planar face, three fixture faces are required to control 

orientation and position of the exposed face. Let’s name the three fixed faces as primary, 

secondary and tertiary fixed face. The three fixed faces should be perpendicular to each 

other; and it is practical to assume that the face lying on the table to consider as primary 

fixed face. Three types of tolerance are relevant for exposed planar face, Form (flatness), 

Orientation (Parallelism or Perpendicularity), and Position. The position tolerance is  

tolerance on distance between exposed face and fixed face parallel to it. 

There are two conditions to apply tolerance on the exposed planar face. 
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When the face is parallel to primary fixed face: In this condition the position and 

orientation (parallelism) tolerance can be applied with respect to primary fixed face. 

Other two fixed faces do not contribute to any variations. 

When the face is not parallel to primary fixed face: In this condition the orientation 

(perpendicularity) tolerance with respect to two fixed faces that are perpendicular to the 

exposed face and position tolerance applied with respect to a fixed face parallel to the 

exposed face. 

Note that form tolerance does not require a datum, i.e. no fixed face needed. Hence it can 

be applied the same way regardless of exposed face and fixed face relation. 

Cylindrical face (Hole/Pin): Machining cylindrical faces also requires three fixed faces. 

Two fixed faces that are parallel to axis of cylindrical surface control position; and the fixed 

face perpendicular to cylindrical axis controls orientation of the axis. As per definition of 

position tolerance in ASME standard perpendicularity tolerance is included in the position 

tolerance itself. Hence we can control the perpendicularity of the hole by just applying 

position tolerance on it with respect to all three fixed faces. Also, form tolerance 

(straightness) and size tolerance are also applicable to cylindrical faces regardless of fixed 

face. 

Slot: Slot is group of planar faces of which two faces are antiparallel. Size tolerance is 

applied between these two faces and position tolerance is applied on the mid-plan (formed 

by the two faces) with respect to all three faces (similar to position tolerance applied to 

hole). 
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Table 3:  Geometric errors on exposed features in milling operations 

Machine 

Type 

Tool Face type 

exposed after 

the process4 

Face-Tool 

relation1 

TA = Tool 

axis, 

FN = face 

normal vector 

CA = Cyl. 

face axis 

Fixed faces 

required2 

P = 

Primary, 

S = 

Secondary, 

T = 

Tertiary 

Required Tolerances 

on the face3 

VMC 

End Mill 

/ Face 

Mill 

Planar face FN || TA P 
- Form, 

- Orientation w.r.t. P, 

- Position w.r.t. P, 

Planar face FN  TA P, S, T 

- Form, 

- Orientation w.r.t. P 

and S or T, 

- Position w.r.t. S or T 

End Mill 

Cylindrical face 

(Hole / Pin) 

CA || TA P, S, T 

- Form, 

- Size, 

- Position w.r.t. P,S,T 

Drill 

Cylindrical face 

(Hole) 

CA || TA P, S, T 

- Form, 

- Size, 

- Position w.r.t. P,S,T 

HMC 

Plain 

Mill 

Planar face FN || TA P 

- Form, 

- Orientation w.r.t. P, 

- Position w.r.t. P, 

Side Mill Planar face FN  TA P, S, T 

- Form, 

- Orientation w.r.t. P 

and S or T, 

- Position w.r.t. S or T 
 

Some of the variations on exposed faces occur due to these fixed faces. So basically if a 

fixed face that is previously machined in a different setup, is used to fix the part for a new 

setup, the errors in the fixed faces initiated in the previous machining process will be 

transferred to the exposing faces of the new setup. Note that for some of the exposed faces 

that are removed in subsequent processes, but used as fixed faces during a machining 
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process, it is necessary to sum up their resultant errors. Some shapes or features are more 

complex to machine and some are not accessible directly by the tool when there is a lack 

of appropriate fixture. Therefore, a process planner utilizes several methods to create those 

features with the existing capability of the machine shop. One of those techniques involves 

creating features just to serve as a fixture or a datum to create other intended features. We 

call these features, transient features and they are temporary. They will disappear down the 

line of subsequent operations. Sometimes transient features are created intentionally,  and 

sometimes they are just created in one step then removed in subsequent steps.This can be 

due to several reasons, for instance a machine may create a certain part in multiple steps or 

a hole of a large diameter cannot be created in a single operation etc. Creation of transient 

features whether intentionally or unintentionally is a common phenomenon occurring at 

the shop floor. Often the importance of these transient features is neglected in dimensional 

and geometrical accuracy of the final  part due to the fact that they are transient in nature 

and do not appear on the final part but they may have affected the precision if for instance 

they have been used as a datum down the line in machining processes. 

A simple example of intentional transient features is shown in Figure 16. Let’s assume that 

we want to create a circular part with a rectangular hole in the middle from a raw square 

plate. A procedure that a process planner may suggest is to make 4 holes in the middle of 

the plate, which fit in the square hole that we want to cut from the plate, as the fixture. 

Thus, the steps to make this part can be as shown in the Figure  17. In the first step, we 

make the four holes that will serve as the fixture faces for the second and third steps. In the 

second step, we machine the outer cylindrical surface. And finally, in the third step we cut 
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the rectangular hole, containing the four holes, from the plate. There may be better 

solutions for manufacturing this part; it is greatly dependent on the type of machines 

available in the shop. But this example is just to highlight the fact that some features can 

be temporary which we have called transient features. We can see that these four holes are 

neither in the beginning, nor in the end. We create them in order to serve as the fixture for 

the next steps; therefore the errors in creating the holes will be accumulated with the errors 

that occur in the steps where these holes serve as the point of fixturing for. The 

accumulation of errors in these distinct steps of manufacturing is the key point here. 

 

 

 

 

Figure 16:  Process plan intent Figure 17: Process plan steps 

 

Thus, transient features that are created in a manufacturing process play an important role 

in the tolerance control of the feature for which they are acting as a reference (datum or a 

fixture). Since these transient features contribute to the tolerance accumulation, their error 

should be taken into account and here we do it by adding necessary tolerances to the 

exposed faces in each setup which can be a part a transient feature.  This information, 
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including the transient features, needs to be collected in a form that facilitates determining 

their effect on exposed features. 

Table 4:  Sources and factors affecting geometric tolerances 

Variation Type Source Of Error Factors 

Form 

Machine static error Tool travel w.r.t origin 

Dynamic error Length / Diameter ratio (for hole) 

Position 

Machine static error Tool travel w.r.t origin (for hole) 

Fixture error  Height of fixture locators 

Dynamic error  Feed rate, Speed, Depth of cut, length of tool 

(for plane) 

Size Tool (for holes) 

Tool wear (Tool material vs work piece 

material) 

Orientation Fixture error Difference in height of fixture locators 

 

Back to the problem of geometrical errors, there are many parameters that create variations 

on faces. It is very difficult to give explicit information about source of error and types of 

error. Here we tried to predict them based on major sources of error. Note that the variations 

modeled here may be different than practical machining variations. This model may be 

used temporarily to produce some sensible tolerance values. One can use more 

sophisticated variation model to obtain tolerance values. The variation type and associated 

source of error is described in table 4. So with having the Geometric tolerances and their 

connection with the geometry, we can establish our GD&T schema based on errors that 

will occur in the process plan.  
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4.4 Conclusion 

In this chapter, we discussed our new approach of deriving the information needed for 

verification of machining process plan from GD&T point of view. We showed that this 

information are in the process plan but they are not explicitly represented. To have 

Geometrical and Dimensional machining errors in the standard representation of design 

tolerances, we need to extract three basic information: 1. Datums, 2. Variation types, and 

3. Variation tolerance values. Therefore, we first discussed how the information in the 

process plan such as machine working tables and coordinate systems, method of fixturing 

and etc. that convey the datum features can be extracted. Then we discussed how to identify 

the type of errors that happen during milling and drilling process from the machining 

operation, machine types and the tools used, tool path and etc. And finally we discussed 

how to estimate the amount of variations for each tolerance class. The discussions in this 

chapter and libraries developed, with limited scope in this work, will help the m-map 

testbed user to assign the errors to the geometry of the part in each step for further analysis. 

It is noteworthy that although the process of GD&T information extraction is assumed to 

be done interactively by the user in this research, but the groundworks are based in such a 

way that an automated system can be developed on top of the same methodologies and 

classifications.  
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CHAPTER 5: m-map CONSTRUCTION FROM EXPLICIT GD&T 

5.1Algorithms and Implementation 

In this chapter the method for creating m-maps is discussed. This approach is summarized 

in the flowchart of Figure 18. As shown, the inputs to the systems are the process plan data 

files including the geometry of the part in each step (Task 0). The geometry needs to be in 

ACIS (.sat) file format, which can be output from most major CAD/CAM packages, and 

other information such as tool listing or operation lists are usually in .txt file format.  

 

Figure 18: flowchart of the tasks to creat m-maps 

Geometry of finished and intermediate parts in each step 
Machining info: Machin, tools, fixturing, setup, operation 

Compare the geometry of the part 

before and after each stage 
 Assign unique & consistent IDs 

Derive DRFs 

Derive dimensions 

Derive geometrical 

& Dimensional 

errors 

Allocate machining errors as 

tolerance types in m-map testbed 

GD&T info explication 

CAD models 

with consistent 

IDs 

Identify tolerances with datum transformation 

Create individual m-maps, do accumulation and transformation 

PCTF graph of Virtual part 

Compare m-maps with T-maps for conformance checking 

GD&T 

info 

m-maps 

Final part CAD model 

with Full GD&T schema 

T-maps 

Task 3: Creating m-maps 

Task 0: Input data 

Task 1: Unique IDs 

Task 2: Testbed to    allocate tolerances 

Task 4: Conformance analysis  

Fixturing 
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process & resulting 
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Geometry of the 
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The system will take the geometry for the part in each step to compare and assign unique 

IDs to faces that are similar (not changed through machining process) in different 

machining steps (Task1). Then the user needs to input the dimensional and geometrical 

machining errors, based on the process plan information, in the form of design GD&T for 

every machined face (exposed face) in each setup. This means that based on machining 

information provided in the process plan, the user needs to identify the corresponding error 

type, its value and its respective Datum from the look up tables. Then the user can allocate 

the errors interactively, the same way tolerances are allocated, to the geometry using the 

software. This information will first get stored for every step in CTFs and then they will be 

compared to create the final PCTF. The PCTF includes the superposition of all the errors 

that has datum transformation. The information in the PCTF can be interpreted as the 

tolerance information for a virtual part that has all intermitted faces with assigned errors of 

all machining steps.  

5.2: Algorithm for the consistent IDs in PCTF: 

In our system each step corresponds to one machining operation and we need to track the 

changes of the fixed and exposing faces through all the steps. For this purpose, the 

geometry of the parts before and after each machining process is considered; the geometry 

before machining in each step is called “stock part”, and the one after machining is called 

“machined part”. The method used for identifying machined faces is named “Clashing 

Faces” method. In this method, the geometry of the machined part is compared with the 

stock part in each step and in the same coordinate system to find all the faces that are 

clashing (faces that are coincident, per ACIS kernel API definition). The faces that are 
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clashing are fixed faces and other faces are new machined faces. Although fixed faces may 

be trimmed and have a different size and topology in the machined part of each step, they 

have the same reference geometry, thus they need to have the same ID to prevent an 

unnecessary datum transformation later. Accordingly, all fixed faces of the machined part 

will get the same ID as the stock part and exposed faces will get new face IDs. Face IDs 

are unique textual attributes attached to each face of a part. The algorithm for Unique IDs 

can be summarized in the flow chart shown in Figure 19: 

  

Figure 19: Unique ID algorithm for the CAD geometry of the part under machining 

process 

To better illustrate the concept of unique IDs for a part under machining process, I will 

walk you through an example that starts with drilling a hole in a stock part. The stock part 

is a cube with 6 faces, thus it has 6 unique IDs attached to each face as shown in Figure 20: 

#1 planar face 
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#2 planar face 

#3 planar face 

#4 planar face 

#5 planar face 

#6 planar face 

 
Figure 20: Stock part (a cube) 

In the first step (Figure 21), when we drill the hole, a new cylindrical face will be created 

and the two top and bottom faces will also change. We want these faces to keep their IDs 

and have the same number as the ones assigned to them in the stock part. Thus we will 

bring this machine part with the stock part and compare them in the same coordinate system 

to find the clashing faces. The four side faces of this part are not changed, thus they are 

fixed faces. Since face 3 (Top face) and face 6 (bottom face) will clash with their original 

face, they will also be recognized as fixed faces (although they are altered and their size, 

shape and topology is changed) and the unique IDs from the Stock part will be transferred 

to the machined part in the first step. The only non-clashing face is the new cylindrical face 

created in drilling operation which will be recognized as an exposed face (machined face). 

This Cylindrical face will be assigned a new face ID that is added to the face list in Figure 

21. 

#1 planar face 

#2 planar face 

1 2 

3 
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#3 planar face 

#4 planar face 

#5 planar face 

#6 planar face 

#7 cylindrical face 

 
Figure 21: First Machining Process, drilling a hole 

Two scenarios are considered for machining in the next step. In the first scenario, the part 

is machined in a milling operation to create a step on two edges of the part (Figure 22). In 

the second scenario, the part is machined to create an “L” shaped slot as shown in Figure 

23. The reason for bringing a second scenario is to point out the details of the unique ID 

generating algorithm. In the first scenario, by comparing the CAD model of the machined 

part with the previous step, we find three non-clashing (exposing) faces which will be given 

new face IDs (faces 8, face 9 &  face10). Face8 and face 9 are parallel to face1 and face 2 

but they are distant, so they are exposing faces. It is the same for face # 10, which is parallel 

to face 3 but distant from it. 

1 
2 

3 

7 



 

58 

 

Figure 22: First scenario for the second machining process, milling a step 

 

Figure 23: Second scenario for the second machining process, milling a slot 

In the second scenario, following the same algorithm, 5 machined faces (exposed faces) 

will be identified. The main point is that in machining the slot, the top plane (face 3) is split 

2 
1 

7 

8 
9 

10 

3 

11 

1 
2 

3 

* 

12 

* 
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8 

Face 10: bottom of slot 

Face 8, 9, 11, and 12: wall sides of slot 
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into two pieces and when checking the clashing faces, both of them will coincide with the 

face 3 of the previous steps. Although from computational geometry and constraints point 

of view the two top faces are different, but they will be assigned the same ID.  As shown 

in Figure 23, there are 4 exposing faces (face8, face9, face10, and face11) as the walls of 

the slot and one exposing face (face12) as bottom of the slot. Also, the face marked with 

asterisks in Figure 23 which will be recognized as a new face in geometry of the part, is 

not an exposing face. Thus, by applying the same algorithm all exposed faces will be 

identified and the face attributes saved for later use. This unique ID generating algorithm 

makes sure that all of the faces of the part are uniquely identified throughout the machining 

steps.  

5.3 Deriving and assigning Geometrical and Dimensional errors (Creating PCTF) 

When faces of the CAD models for the part in different steps have same face IDs, any 

information attached to them can be tracked throughout the machining steps. At this point, 

the user can interactively assign the error information derived from the process plan, based 

on the libraries that were discussed in chapter 4. The system is capable of storing the 

Geometrical and Dimensional errors information along with the geometry in CTF as 

discussed in chapter 3. Initially, the info for each step is stored in separate CTFs, and then 

they will be combined and summarized in one PCTF file for creating m-maps. The GD&T 

information of each step is stored in a CTF which will be compared to the CTF of other 

steps. The system will look for faces (of any feature of the part) that has been machined in 

one step and later used as the datum (for fixtruing the part in next steps) —these are the 

cases where datum transformation occurs for which the m-map needs to be generated. Thus 
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the information of those faces, the errors types and value for each step they are involved, 

and the order of the error accumulation will be stored in the PCTF.  

Basically, the PCTF represents a virtual part that include all intermediate faces of the part 

under machining processes, with all the errors superposed. This virtual part does not really 

exist, and it cannot be modeled in conventional CAD software because the constraint solver 

of CAD/CAM packages cannot solve the constraints.  However, this virtual part can be 

analyzed with conventional tolerance analysis methods such as Tolerance charts, Monte 

Carlo simulation, or T-maps. In this thesis, we will use the T-map, or “Tolerance Map”, 

method developed by the Design Automation Lab (DAL) at Arizona State University 

(ASU). When the T-map method is used to model the accumulation of machining errors 

through multiple steps of manufacturing based on a process plan, it is called m-maps where 

“T” for tolerances is substituted with “m” for manufacturing. 

5.4 Creating accumulation maps (m-maps)  

In this step we have the CAD models of all intermediate shapes, with unique IDs for the 

faces. Also the GD&T errors are populated in the testbed and stored in CTF graphs. As we 

know, CTF is structured in a way that stores the errors with respect to a datum which is 

marked with its unique ID. Thus by parsing through the CTFs, the tolerances/errors which 

have datum transformation, if any, will be selected to create the m-map. In order to do this, 

we start with the datums of the final step, and trace them with their ID though previous 

CTFs, if they have machining tolerance error with respect to another datum in an earlier 

step, they have datum transformation, and their info needs to be stored. All the geometrical 

errors with datum transformation are superimposed into one “virtual” part and their 



 

61 

information are stored in a PCTF. Finally, based on spatial and geometric parameters along 

with accumulated errors, m-maps are created and transformed to be checked versus T-

maps. Detail of T-maps can be found in appendix B.  How m-maps are compared with T-

maps is discussed in the next section.  

5.5 Conformance and checking 

In the final phase, when all the accumulated m-maps are created, the m-maps can be 

compared with the T-maps. In order to do this, first we need to make sure that the two maps 

are in the same coordinate system. This does not happen unless, the final machining datums 

of the accumulated error (in m-map) coincide with datums specified in the design drawing 

(in T-map); thus in most cases we need to do transformation. Ke Jiang [22] has developed 

the mathematical model to describe transfer of cylindrical and planar datum 

comprehensively. His model can also obtain machining tolerances accurately when taking 

material condition on datums. Now, basically a worst case analysis checks if the m-map fit 

in the T-map. If it does, we can realize that in each direction, corresponding to one type of 

tolerance/error, the process plan can meet the design specification. If not, we may need to 

generate alternative plans to reduce machine errors exceeding the allowed tolerances in 

design. To illustrate this, we have shown a simple 3-D T-map, and a sample transformed 

accumulated m-map in Figure 24. We can see in Figure 24-c that the m-map in red dashed 

lines fit in the T-map when they are shown in the same coordinate system. To analyze each 

type of error we have to check each direction, and for this reason different cross sections 

of the maps can be compared. This shows us the directions in which the m-map has 

exceeded its tolerance limits represented by the T-map (Figure 25). 
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a) T-map 

 

 

b) m-map 
 

c) T-map Vs. m-map 

Figure 24:  Example of a T-map Vs. m-map [23] 

 

a) Cutting planes and cross sectioning 

 

b) 2D cross sections of the maps for 

comparison 

Figure 25:  Cross-sections of the T-map and M-maps for comaparison 

Note that m-map and T-map are both n-dimensional point spaces, thus their volume-area 

are comparable. It is also possible to see what stage of the manufacturing process has the 

most contribution in the resulting error. This can happen by tracking the m-map 

accumulation contributors in the PCTF. Thus the ideal system can optimize the process 

plan versus design drawing e.g. for minimum manufacturing cost in an iterative process. 

All of the steps, shown in Figure 18, which were discussed in this chapter, will be illustrated 

with an example in the next chapter 
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CHAPTER 6: CASE STUDY AND VERIFICATION 

In this chapter, I will go through each step of the algorithm with the help of an example. 

The example part is a simplified model of an eccentric shaft. The Design drawing and the 

CAD model of this part is shown in Figure 26.  

 

Figure 26:  Design Drawing and CAD model of a simple eccentric shaft 

The design drawing of the part specifies allowable tolerance limits, and the datums. The 

manufacturing scheme might not follow the same datums for fixturing in all the steps, 

which is decided by the process planner and manufacturer at the machine shop floor.  On 
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possible way to machine this part from stock is shown in Figure 27. This figure shows the 

geometry of the part in each step, and the blue faces are machined faces of each one. Also 

the the faces that are sued to fic the part are marked with locating signs. The stock is first 

fixed to mill the cylindrical boss on top of the part, and then the middle hole is drilled to 

the needed depth. Then, the part is turned to be fixed with the boss and the hole, to machine 

the outer cylindrical surface and then the outcentric boss (shaft) on the other side.  In the 

final two steps, the part can be machined either with a turning or a milling machine, which 

depend on the availability and precision of the machines on the shop floor. Since in the 

facility the experiment is conducted, the milling machine has more precision, milling is 

considered for the last two machining operations.  

 

Figure 27: Manufacturing steps of machining the eccentric shaft 

Fixing/Locating points (features) 
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Details of manufacturing, such as the machine and tools to be used in each step, are 

available in the process plan table (Table 5).  This table presents the machining information 

of each step, e.g.  in the first step (step10), milling machine M1 with tool  F662 is used to 

machine and remove material to create the boss on the top of the part from the block stock 

part. We have created the process plan for this example part in NX CAM software. The 

same can be understood from the next three steps. Figures 28 and 29 are also output reports 

of the NX CAM package being the “tool list” and the “operation list” respectively. These 

lists provide more detailed information about the machines and tools used. Also the number 

of passes the tool path and other information are available in the process plan output data 

files which are not provided here.  One last piece of information that is usually provided to 

the manufacturing process is informal sketches along with notes on design requirements. 

Table 5: Machining process plan of the cap of the cap-cylinder assembly  

Part No: 

001 

 Part name: 

Cylinder Cap 

planner: 

P. Haghighi 

checked by: 

P. Mohan, N. Kalish 

Date: 

8/28/14 

Page: 

1/1 

Material:  Acrylic glass (PMMA) Stock size:  80x80x50 Comments:     

Setup No. Operation Description: Dept Machine Tooling setup Std. 

10 Mill cyl.l surface: 60mm Dia. x 24mm Depth Mill M1 F662 1 hr. 5 min 

20 Drill hole: 30mm Dia. x 50mm Depth Drill D1 J555 0.5 hr. 3 min 

30 Mill cyl. surface: 100mm Dia. x 70mm Depth Lathe M1 G0810 0.7 hr. 5 min 

40 Mill cyl. surface: 25mm Dia. x 40mm Depth Mill M1 F630 1 hr. 7 min 

50        
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Figure 28:  Tool list 

 

Figure 29:  Operation list 

 

Now we want to go over each step of our flowchart in Figure18 for creating the m-maps.  

We have all the CAD models and some detail of machining for each step. In the first step, 
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by choosing the “ID” icon in the testbed, all the CAD models can be input to the software, 

and the system will create “.sat” files with unique IDs automatically. The input parts should 

follow the naming convention and the .sat files created will have the same name with “- 

ID” added to their name, in order to not overwrite the original files. Then the user can open 

the CAD models of each step and based on machining information of the process plan, 

assign geometrical and dimensional errors in to the part. The user has to first select the type 

of error he/she want to add to the geometry, then select the face or faces to assign the error 

to. For example to assign dimensional error, the user has to select the size tolerance (+/-) 

icon, and then select two entity , one at a time, between which he wants to add size 

tolerance. 

 

Figure 30:  Screen shot of the Testbed while assigning orientation error to the top 

surface 
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For geometrical errors, based on the machining operation for that setup, the user can select 

the type of errors needed by looking at Table 3. Then he can select the corresponding icon 

from the menu, and then select the face (or faces for features of size) that needs to be 

toleranced. Also for geometrical tolerance, based on the type, from1 to 3 datums may be 

asked by the testbed. Figure 30 is a screenshot of the testbed, while assigning orientation 

error for the top surface with respect to the bottom face in the third step of machining. The 

entity to tolerance is face No. 6 which is highlighted and since it’s a planar face, the system 

only asks for one datum. 

For each step, when machining errors are assigned to the geometry, the information will be 

stored in a separate CTF. The information in each CTF can be red back into the software 

to visualize or edit, if needed. In Figure 31, the Geometrical and Dimensional errors of the 

five machining steps in the example are represented in the same way as design tolerances 

in five 3D-CAD models. In steps 1 to 3 of machining, shown in figures A through c of 

Figure 31, the bottom plate is datum A as it is the face it is sitting on, and the side 

perpendicular faces are datums B and C (for each one two opposite faces are chosen as 

feature of size) since they are used to fix the part in this setup. Then the setup is changed 

for the 4th and 5th step and the cylindrical boss and the middle hole machined in earlier 

steps are used to fix the part to create the outer cylindrical face and the out-centric shaft. 
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A:  Frist step 

 

B:  Second step 

 

C:  Third step 

 

D:  Forth step 
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E:  Fifth step 

Figure 31:  The CAD model of the five steps of machining the sample part with 

tolerances 

 

When all the errors for each step are interactively assigned to the geometry, all the 

information will be stored in CTF format, and will be saved in the computer with the same 

name (step number) and with .ctf extension. The CTF for the five steps of machining the 

example part are provided here. The information in each one are organized as discussed in 

chapter 3 of this thesis: 1. the name of the file, 2. part number (step number), 3. Constraints, 

and 4. Tolerances. 
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CTF for Step1: 
ASU - Constraint - Feature - Graph 
#1('part1', #2, #3); 
#2=PLANE('FACE4_of_part0', (88, -50, 50), [-1, 0, 0]); 
#3=PLANE('FACE5_of_part0', (0, -50, 50), [-1, 0, 0]); 
#5=T_DIMENSION(#3, (nFI, 2, RFS), PD(#2, RFS)); 
#7=T_PARALLELISM(#2,  (FI, 1, RFS), PD(#3, RFS)); 
--------------------------------------------------------------------------------------------------------------------------------------------- 
CTF for Step2: 
ASU - Constraint - Feature - Graph 
#1('part2', #2, #3, #4, #5); 
#2=PIN('(FACE8&FACE6)_of_part0', (64, 0, 0), [1, 0, 0], 20, 24); 
#3=PLANE('FACE5_of_part0', (0, -50, 50), [-1, 0, 0]); 
#4=PLANE('FACE2_of_part0', (88, 50, 50), [0, 1, 0]); 
#5=PLANE('FACE1_of_part0', (88, 50, -50), [0, 0, -1]); 
#6=CST_ANGLE(90, #2, #3); 
#7=METRIC_RELATIONSHIP(#6, CST_ANGLE, (90, #2[LINE(axis of PIN)], #3[PLANE])); 
#7=CST_ANGLE(90, #3, #4); 
#8=METRIC_RELATIONSHIP(#7, CST_ANGLE, (90, #3[PLANE], #4[PLANE])); 
#8=CST_DISTANCE(50, #2, #4); 
#9=METRIC_RELATIONSHIP(#8, CST_DISTANCE, (50, #2[LINE(axis of PIN)], #4[PLANE])); 
#9=CST_ANGLE(90, #3, #5); 
#10=METRIC_RELATIONSHIP(#9, CST_ANGLE, (90, #3[PLANE], #5[PLANE])); 
#10=CST_ANGLE(90, #4, #5); 
#11=METRIC_RELATIONSHIP(#10, CST_ANGLE, (90, #4[PLANE], #5[PLANE])); 
#11=CST_DISTANCE(50, #2, #5); 
#12=METRIC_RELATIONSHIP(#11, CST_DISTANCE, (50, #2[LINE(axis of PIN)], #5[PLANE])); 
#13=T_DIMENSION(#3, (nFI, 1, RFS), PD(#0, RFS)); 
#15=T_SIZE(#2, (nFI, 1, RFS)); 
#16=DOF(#15, (SIZE_DOF, SHAPE_DOF)); 
#17=T_POSITION(#2, (FI, 0.5, RFS), PD(#3, RFS), SD(#4, RFS), TD(#5, RFS)); 
--------------------------------------------------------------------------------------------------------------------------------------------- 
CTF for step3: 
ASU - Constraint - Feature - Graph 
#1('part3', #2, #3, #4, #5, #6); 
#2=PIN('(FACE6&FACE8)_of_part0', (64, 0, 0), [1, 0, 0], 20, 24); 
#3=HOLE('(FACE10&FACE9)_of_part0', (0, 0, 0), [1, 0, 0], 10, 88); 
#4=PLANE('FACE5_of_part0', (0, -50, 50), [-1, 0, 0]); 
#5=PLANE('FACE2_of_part0', (88, 50, 50), [0, 1, 0]); 
#6=PLANE('FACE1_of_part0', (88, 50, -50), [0, 0, -1]); 
#7=CST_ANGLE(90, #3, #4); 
#8=METRIC_RELATIONSHIP(#7, CST_ANGLE, (90, #3[LINE(axis of HOLE)], #4[PLANE])); 
#8=CST_ANGLE(90, #4, #5); 
#9=METRIC_RELATIONSHIP(#8, CST_ANGLE, (90, #4[PLANE], #5[PLANE])); 
#9=CST_DISTANCE(50, #3, #5); 
#10=METRIC_RELATIONSHIP(#9, CST_DISTANCE, (50, #3[LINE(axis of HOLE)], #5[PLANE])); 
#10=CST_ANGLE(90, #4, #6); 
#11=METRIC_RELATIONSHIP(#10, CST_ANGLE, (90, #4[PLANE], #6[PLANE])); 
#11=CST_ANGLE(90, #5, #6); 
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#12=METRIC_RELATIONSHIP(#11, CST_ANGLE, (90, #5[PLANE], #6[PLANE])); 
#12=CST_DISTANCE(50, #3, #6); 
#13=METRIC_RELATIONSHIP(#12, CST_DISTANCE, (50, #3[LINE(axis of HOLE)], #6[PLANE])); 
#14=T_SIZE(#3, (nFI, 1, RFS)); 
#15=DOF(#14, (SIZE_DOF, SHAPE_DOF)); 
#16=T_POSITION(#3, (FI, 1, RFS), PD(#4, RFS), SD(#5, RFS), TD(#6, RFS)); 
--------------------------------------------------------------------------------------------------------------------------------------------- 
CTF for Step4: 
ASU - Constraint - Feature - Graph 
#1('part4', #2, #3, #4); 
#2=PIN('(FACE11&FACE12)_of_part0', (0, 0, 0), [1, 0, 0], 50, 64); 
#3=PLANE('FACE4_of_part0', (88, -50, 50), [-1, 0, 0]); 
#4=PIN('(FACE6&FACE8)_of_part0', (64, 0, 0), [1, 0, 0], 20, 24); 
#5=CST_ANGLE(90, #2, #3); 
#6=METRIC_RELATIONSHIP(#5, CST_ANGLE, (90, #2[LINE(axis of PIN)], #3[PLANE])); 
#6=CST_ANGLE(90, #3, #4); 
#7=METRIC_RELATIONSHIP(#6, CST_ANGLE, (90, #3[PLANE], #4[LINE(axis of PIN)])); 
#7=CST_DISTANCE(0, #2, #4); 
#8=METRIC_RELATIONSHIP(#7, CST_DISTANCE, (0, #2[LINE(axis of PIN)], #4[LINE(axis of PIN)])); 
#9=T_SIZE(#2, (nFI, 2, RFS)); 
#10=DOF(#9, (SIZE_DOF, SHAPE_DOF)); 
#11=T_POSITION(#2, (FI, 1, RFS), PD(#3, RFS), SD(#4, RFS)); 
----------------------------------------------------------------------------------------------------------------------------- ---------------- 
CTF for Step5: 
 ASU - Constraint - Feature - Graph 
#1('part5', #2, #3, #4); 
#2=PIN('(FACE13&FACE15)_of_part0', (40, 30, 0), [-1, -0, -0], 10, 40); 
#3=PLANE('FACE4_of_part0', (88, -50, 50), [-1, 0, 0]); 
#4=HOLE('(FACE9&FACE10)_of_part0', (0, 0, 0), [1, 0, 0], 10, 48); 
#5=CST_ANGLE(90, #2, #3); 
#6=METRIC_RELATIONSHIP(#5, CST_ANGLE, (90, #2[LINE(axis of PIN)], #3[PLANE])); 
#6=CST_ANGLE(90, #3, #4); 
#7=METRIC_RELATIONSHIP(#6, CST_ANGLE, (90, #3[PLANE], #4[LINE(axis of HOLE)])); 
#7=CST_DISTANCE(30, #2, #4); 
#8=METRIC_RELATIONSHIP(#7, CST_DISTANCE, (30, #2[LINE(axis of PIN)], #4[LINE(axis of HOLE)])); 
#9=T_SIZE(#2, (nFI, 1, RFS)); 
#10=DOF(#9, (SIZE_DOF, SHAPE_DOF)); 
#11=T_POSITION(#2, (FI, 0.5, RFS), PD(#3, RFS), SD(#4, RFS)); 
 

After that all CTFs are created, by choosing the PCTF Icon in the testbed, the system allows 

the user to select multiple CTF files. By choosing the CTFs of all the machining steps in 

order of machining sequence, they will be compared by the program to create the PCTF. 

The software looks at the final step first; if the ID of any of the datums in the final step is 

found as the machined face in prior CTFs, it will store it in the PCTF. Then the system will 
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do the same check for the datums used in the step before the last and continue till the second 

step. For example, in Step 5, there is a position tolerance with respect to face 4 and Face 9 

&10 (highlighted). When these faces are tracked in previous steps, it can be seen that in 

step 3, Face 9&10 have position tolerance with respect to Face5 and Face 2 and Face1 

(highlighted). Thus we have a datum transformation and error accumulation, therefore the 

information will be stored in PCTF.  The following is the PCTF for this example: 

ASU - Constraint - Feature - Graph 
#1('part1', #2, #3); 
----------------------------------------------------------------------------------------------------------------------------------- 
#2=PLANE('FACE4_of_part0', (88, -50, 50), [-1, 0, 0]); 
#3=PLANE('FACE5_of_part0', (0, -50, 50), [-1, 0, 0]); 
 
#4=PIN('(FACE8&FACE6)_of_part0', (64, 0, 0), [1, 0, 0], 20, 24); 
#5=PLANE('FACE2_of_part0', (88, 50, 50), [0, 1, 0]); 
#6=PLANE('FACE1_of_part0', (88, 50, -50), [0, 0, -1]); 
 
#7=HOLE('(FACE10&FACE9)_of_part0', (0, 0, 0), [1, 0, 0], 10, 88); 
----------------------------------------------------------------------------------------------------------------------------------- 
#8=CST_ANGLE(90, #2, #3); 
#8=METRIC_RELATIONSHIP(#6, CST_ANGLE, (90, #2[LINE(axis of PIN)], #3[PLANE])); 
#9=CST_ANGLE(90, #3, #4); 
#9=METRIC_RELATIONSHIP(#7, CST_ANGLE, (90, #3[PLANE], #4[PLANE])); 
#10=CST_DISTANCE(50, #2, #4); 
#10=METRIC_RELATIONSHIP(#8, CST_DISTANCE, (50, #2[LINE(axis of PIN)], #4[PLANE])); 
#11=CST_ANGLE(90, #3, #5); 
#11=METRIC_RELATIONSHIP(#9, CST_ANGLE, (90, #3[PLANE], #5[PLANE])); 
#12=CST_ANGLE(90, #4, #5); 
#12=METRIC_RELATIONSHIP(#10, CST_ANGLE, (90, #4[PLANE], #5[PLANE])); 
#13=CST_DISTANCE(50, #2, #5); 
#13=METRIC_RELATIONSHIP(#11, CST_DISTANCE, (50, #2[LINE(axis of PIN)], #5[PLANE])); 
#14=CST_ANGLE(90, #4, #5);  
#14=METRIC_RELATIONSHIP(#8, CST_ANGLE, (90, #4[PLANE], #5[PLANE])); 
#15=CST_DISTANCE(50, #3, #5); 
#15=METRIC_RELATIONSHIP(#9, CST_DISTANCE, (50, #3[LINE(axis of HOLE)], #5[PLANE]));  
#16=CST_ANGLE(90, #4, #6); 
#16=METRIC_RELATIONSHIP(#10, CST_ANGLE, (90, #4[PLANE], #6[PLANE])); 
#17=CST_ANGLE(90, #5, #6); 
#17=METRIC_RELATIONSHIP(#11, CST_ANGLE, (90, #5[PLANE], #6[PLANE])); 
#18=CST_DISTANCE(50, #3, #6); 
#18=METRIC_RELATIONSHIP(#12, CST_DISTANCE, (50, #3[LINE(axis of HOLE)], #6[PLANE])); 
----------------------------------------------------------------------------------------------------------------------------------- 
#19=T_DIMENSION(#3, (nFI, 2, RFS), PD(#2, RFS)); 

From first setup 

From second 

setup 

From third setup 
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#20=T_PARALLELISM(#2,  (FI, 1, RFS), PD(#3, RFS)); 
#21=T_DIMENSION(#3, (nFI, 1, RFS), PD(#0, RFS)); 
#22=T_SIZE(#2, (nFI, 1, RFS)); 
#23=DOF(#15, (SIZE_DOF, SHAPE_DOF)); 
#24=T_POSITION(#2, (FI, 0.5, RFS), PD(#3, RFS), SD(#4, RFS), TD(#5, RFS)); 
#25=T_SIZE(#3, (nFI, 1, RFS)); 
#26=DOF(#14, (SIZE_DOF, SHAPE_DOF)); 
#27=T_POSITION(#3, (FI, 1, RFS), PD(#4, RFS), SD(#5, RFS), TD(#6, RFS)); 
----------------------------------------------------------------------------------------------------------------------------- ----------- 
#28=STEP(step_1, #2, #3); 
#29=STEP(step_2, #4, #5, #6); 
#30=STEP(step_3, #7); 

 

This PCTF represents a virtual part with all the final and intermediate faces of the example 

part under four machining operations, as shown in Figure 32. This PCTF also include the 

geometrical errors that need to be accumulated along with the sequence of the datum 

transformation. This PCTF can be the input to the Tolerance analysis testbed to do tolerance 

analysis like we do for any other part.  

 

Figure 32:  Virtual part  

Storing which faces was 

machined in which step 
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CHAPTER 7: CONCLUSION, LIMITATIONS/ASSUMPTIONS & FUTURE 

WORK 

In current industry practice, there seems to be little time to objectively determine the 

goodness of a plan. In automated CAPP systems, minimization of production time appears 

to be the only measure of goodness used, and even that is applied to a few alternatives that 

have been generated in an ad-hoc manner. Another difficulty in evaluating process plans is 

that decisions are made at many different levels disconnected from each other, even though 

those decisions affect other aspects of the plan. The selection of stock, operations, setups, 

fixtures, machines, tools, machining sequence, cutting pattern, tool paths, etc. is done at 

different levels of planning, even though each decision constrains others. In this research a 

new approach to audit machining process plan by explicating the machining errors was 

suggested. This method is based on extracting the machining errors and representing them 

in the standard representation available for Geometrical and Dimensional tolerances. The 

System architecture, the data structure to store the Data, and the algorithms to create the 

m-maps, that are comparable with design tolerance maps, is presented in detail.  

7.1 Conclusion 

To verify a manufacturing process it is necessary to model the machining errors and analyze 

the correspondence of produced parts with the functional tolerances.  In order to tackle this 

problem, we propose to use a semantic model for manufacturing errors which is consistent 

with our metric Bi-level model for GD&T, tolerance maps (T-maps). Since this new model 

maps the manufacturing errors into an n-dimensional Euclidian point space, we have 

named it ‘m-map’. In this research, we have outlined a framework for extracting the 

manufacturing errors and their corresponding datums. We have also designed a data 
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structure (PCTF), that includes all the GD&T errors along with the geometry of the part 

under machining processes which is a general and machine readable data structure which 

can be used for any system and any tolerance analysis method.   

This data can be used to automate conformance checking. Based on the PCTF we can find 

the m-maps that need to be created. Tolerances with no datum and errors that do not go 

through datum transformation have no m-map. Thus we search in PCTF for each 

dimensional or geometrical error on each feature (or face) that goes through datum 

transformation. When all the m-maps are found and accumulated m-maps are created, in 

the last phase, we can compare the m-maps with the T-maps. Basically if the m-map fit in 

the T-map we can say that in each direction, corresponding to one type of tolerance-error, 

the process plan can meet the design specification; if not, we may need to generate 

alternative plans to curb machine errors exceeding the allowed tolerances in design.  

In current industry practice, there seems to be little time to objectively determine the 

goodness of a process plan. In automated CAPP systems, minimization of production time 

appears to be the only measure of goodness used, and even that is applied to a few 

alternatives that have been generated in an ad-hoc manner. Another difficulty in evaluating 

process plans is that decisions are made at many different levels disconnected from each 

other, even though those decisions affect other aspects of the plan.  

7.2 Limitations and Future work 

 

In this research the method proposed is a general and expandable approach for doing 

conformance analysis of process plans. We have talked about all types of geometrical and 
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Dimensional Tolerance errors to be extracted and a data structure that can convey all the 

information. Also the m-map model is a comprehensive model like t-maps, which has 

already been developed for most of tolerance types. As we have discussed, this work is 

divided into three steps. In the first step, we discussed how to extract errors from the 

process plan and developed library for fixturing methods and tables showing the errors 

correspondent to each machining process (machines, tools, etc used). These libraries and 

tables are now limited and do not cover all types of fixturing and machining process. These 

can be further studied and expanded to cover more cases. Also, with spit of the fact that we 

have shown how this step can be automated, it is considered to be interactive process. Thus 

a user has to extract the errors based on these libraries and heuristics, and assign them on 

the CAD model in test-bed. Therefore in the next level, this step can be automated too. 

The second step is already and automated process, which takes in the PCTF and based on 

them, finds and creates the necessary individual m-maps. But the current state of the third 

steps is now a proof of concept which is limited to planar and cylindrical faces, since the 

mathematic model for tolerance transfer of only cylindrical and planar datum 

transformation are developed. Also Minkowski sum mathematical models for summation 

of m-maps are limited to planar faces for now.  As a result, to have an automated system 

to work with all different types of features, other transformations and summation methods 

are needed.  
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T-map is a mathematical model for representing 3-D geometric variations in a hypothetical point 

space. Every Tolerance-Map is a convex set. The shape, size and internal subsets of T-Map 

represent the possible variations in size, form, orientation and position of the feature [18].  A general 

procedure for construction of T-Maps is given in reference [20]. T-map can handle tolerance 

interactions (MMC, LMC), form tolerances, floating zones and is consistent with Rule#1 in Y14.5 

[1].  Also, since all the axes in T-Maps have same units, it makes feasible to compare different 

specifications on a feature. Also, to find the accumulated Tolerances zone of various tolerances, we 

can do Minkovski Sum of their T-maps. The resultant would be the worst case boundary for the 

toleranced feature. T-map makes stack-up relations apparent in an assembly, and these can be used 

to allocate size and orientational tolerances; the same relations also can be used to identify 

sensitivities for these tolerances. Stack-up relations are developed for parts where the centers of 

faces are offset laterally. All stack-up relations can be met for 100% interchangeability or for a 

specified probability. 

A an example, out of the fifty T-map models that have been developed so far based on 

combinations of target feature, tolerance type and datum type, a few are shown in Table A1. More 

examples and description of T-maps are in the references. [20-22].  

 

Table A1: Library of a few T-maps 

T-map Geometry, tolerance, 
datum 

T-map Geometry, tolerance, 
datum 

 

Geom: Rect bar; plane 

Tol class: size 

Datum: none 

 

Geom: Rect bar; plane 

Tol class: size + orient 

Datum: planar face 
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Geom: Round bar; 

plane 

Tol class: size 

Datum: none 
 

Geom: Round bar; plane 

Tol class: size + orient 

Datum: offset axis 

 

Geom: Round bar; 

plane 

Tol class: size + orient 

Datum: planar face 

 

Geom: Planar circular 

face 

Tol class: circular runout 

Datum: axis 

 

Geom: traing bar; 

plane 

Tol class: size 

Datum: none 

 

Geom: Rect bar; plane 

Tol class: size + orient 

Datum: two datums 

  



 

84 

APPENDIX B 

TOLERANCE CHARTS 
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Traditionally, process planners verify manufacturing tolerances by conducting one dimensional 

(1D) analysis [1]. The 1D approach does not account for DRFs, datum precedence, zone tolerances 

and neglects contributors from other directions. That means they consider each 1D stack to be 

uncoupled from others.  Designers also employ a variety of approaches, in some cases supported 

by computer software. This includes the 1D manual charting method, often taught in ASME 

professional development classes. However, unlike the process planner’s 1D analysis method, such 

1D charts consider all tolerance types as per the Y14.5 standard.  

However, it is a manual bookkeeping procedure for 1-D stack calculation used typically with 

engineering drawings. A 1D coordinate system is set up with the origin at the left side of the 

unknown dimension as shown in Figure B1 (or lower end for radial stack), with positive direction 

to the right and negative to the left. The rationale for this convention is that if A comes out to be 

positive it is a clearance, and negative means interference (for assemblies); for part level analysis 

a negative value means that the feature disappears. A stack is a path from the origin to the other 

side of the analyzed dimension obtained by traversing a series of known dimensions. All tolerances 

encountered in traversing the stack are accounted for by rules that are specific to each class.  The 

chart contains two main columns in which a value and a sign are entered for each tolerance 

contained in the stack, based on these rules. For size tolerances, the rule is that if the travel is in the 

positive direction, the maximum limit of the size is entered in the first column with a positive sign 

and its minimum in column 2 also with a positive sign. If travel is in the negative direction, the 

minimum value is put in column 1 and max in column 2, both with negative sign. The arithmetic 

sum of column 1 gives the max value of A and column 2 gives the min value of A. In the example 

shown, the stack is –b+c, so column 1 sum will be (-bmin+cmax) and column 2 will be (-

bmax+cmin). 
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Figure B1: Format of a traditional tolerance chart 

Space does not permit us to discuss rules for all geometric tolerance classes. Suffice to say that this 

method does take into account all Y14.5M rules, such as material conditions, Rule#1, bonus and 

shift. However, only worst case analysis can be done; no statistical analysis can be done since no 

algebraic expression for the analyzed dimension in terms of the contributors is generated by this 

method.  Also, since some contributors are not aligned with the direction of analysis, they are 

ignored, which may yield incorrect results. Charts can also be constructed for worst case analysis 

of clearances in assemblies. The analyst mentally “positions” parts in a way that gives the worst 

cases (min. or max. value of analyzed dimension). Separate charts have to be done for each worst 

case.   

Although tolerance charting, both design and process planning versions, are practiced primarily as 

manual procedures, there have been a few attempts at automating them. Notable research has been 

done by Ahluwalia and Karolin [6], Li and Zhang [7], Whybrew et al. [8], and Shen [9]. Besides, 

researchers have been trying to automate process planning and making interactive computer tools 

for it. Y. Zhang et al [10] proposed a computerized graph based setup/fixture planning using GD&T. 

Shah et al [11] have developed a dimensional model that facilitates the conversion of dimensions 

and tolerances from design models to machining features extracted automatically by a feature 

recognition system. For geometric tolerances, Thimm [12] explores a term rewriting system to 

derive alternative geometric and size design specifications with the aim of improving the 

manufacturability of a design. 


