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ABSTRACT

Modern measurement schemes for linear dynamical systems are typically designed so

that different sensors can be scheduled to be used at each time step. To determine

which sensors to use, various metrics have been suggested. One possible such metric

is the observability of the system. Observability is a binary condition determining

whether a finite number of measurements suffice to recover the initial state. How-

ever to employ observability for sensor scheduling, the binary definition needs to be

expanded so that one can measure how observable a system is with a particular mea-

surement scheme, i.e. one needs a metric of observability. Most methods utilizing an

observability metric are about sensor selection and not for sensor scheduling. In this

dissertation we present a new approach to utilize the observability for sensor schedul-

ing by employing the condition number of the observability matrix as the metric and

using column subset selection to create an algorithm to choose which sensors to use at

each time step. To this end we use a rank revealing QR factorization algorithm to se-

lect sensors. Several numerical experiments are used to demonstrate the performance

of the proposed scheme.
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Chapter 1

INTRODUCTION AND CLASSICAL OBSERVABILITY

1.1 Introduction

Most modern measurement schemes for linear dynamical systems are designed so

that they have multiple sensors to select from as the system is running. Until recently,

selecting sensors on the go was not feasible for the majority of systems. However,

with advancements in technology, it is now often possible to schedule sensors while

the linear system is propagating in time in order to use them in a more efficient way.

The sensor selection/scheduling problem emerges in many fields, such as robotics [25],

chemical plants [13, 52], or wireless sensor networks [44]. With the ability to schedule,

the problem of trying to find the best possible sensors at each time step arises. In

this regard, one needs to have a metric in order to be able to optimize the utilization

of sensors.

We can formulate the sensor scheduling problem as follows. Assume that we have

n potential sensors and want to select s of them at each time step with respect to some

metric. Evaluating the performance of all
(

n
s

)

combinations is usually not practical,

and optimizing sensor selection can be shown to generally be NP-hard, [3]. In the

stochastic case, where there are process and measurement noise, and the system state

is estimated using Kalman filter, several different metrics and sub-optimal methods

have been suggested. In this case, most common metrics used for sensor scheduling

correspond to a scalar function of estimation error covariance matrix, [3, 44]. For ex-

ample, in [27] the determinant of the estimation error covariance matrix is minimized

using convex optimization. The trace of estimation error covariance matrix, which
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corresponds to mean squared error, is used in [49]. This approach is well studied,

[3, 9, 25, 27, 44, 49].

Another possible approach to sensor scheduling, in the noiseless case, is the ob-

servability of the system. If we assume there is no noise in the system and the

measurements, the problem of recovering the system state becomes more similar to

an inverse problem rather than an estimation problem. First defined and studied in

control science by Kalman [30, 31, 32, 33], observability is a binary condition which

tells us if the initial state can be determined from the measurements observed over

a finite period of time. Although observability is defined for deterministic linear sys-

tems, it is still crucial in the presence of noise. If there is a component of the system

state that is unobservable, then the system state cannot be deduced from the obser-

vations. Hence, observability is necessary for avoiding the ambiguity in determining

the initial state as well as the state trajectory.

To be able to use observability for sensor selection, one needs to expand this

binary definition of observability in order to have a metric of observability. Different

metrics of observability for sensor selection have been proposed, see e.g. [13, 51, 52]. A

typical approach, in the case of linear systems and linear measurements on the system

state, is to create the observability matrices (or Gramians) corresponding to different

sensor combinations and then to compare one or more criteria, e.g. singular values,

trace, determinant, [51], of the resulting observability matrices to determine which

sensor setup yields the optimal results for the given metric. One drawback of this

approach is that it does not provide explicit guidelines for designing sensors which

make the linear system observable. Rather, since all comparisons are performed a

posteriori, the methods are limited to pre-determined sensor combinations. Moreover,

metrics are for sensor selection rather than sensor scheduling. In other words, the

observability metric seeks to find the best possible sensor placement/configuration for

2



designing a measurement scheme using the given sensor setups rather than the optimal

sensors at each time step. To our knowledge, observability has not been utilized

much for sensor scheduling problems. One of the main reasons is that in general

sensor selection problems addressing observability are NP-hard, [53], and therefore it

is computationally intractable to find exact solutions to large-scale problems.

This dissertation presents a new approach for using observability in sensor schedul-

ing by considering the condition number of the observability matrix as the metric of

observability, and then developing an algorithm which employs column subset selec-

tion to find best possible sensors for each time step. For this purpose, we consider

two cases. First, we cover the case of time-invariant measurement schemes. We treat

the observability problem with a constructive approach and present explicit methods

for designing sensors to ensure an observable system. Since we cannot change sensors

as time progresses in this case, we emphasize the design of sensor(s), which assure

observability. Second, we study the case of time-variant measurement schemes. In

this case, we incorporate a sensor schedule which employs the condition number of

the observability matrix by developing a new sensor scheduling algorithm.

The document is organized as follows. This chapter gives a historical overview of

observability and summarizes some classical results. Chapter 2 discusses the case of

time-invariant measurement schemes and present results for designing sensors which

guarantee the observability of the system. We then investigate different observabil-

ity metrics and study the condition number as our metric of observability. We also

present some numerical examples. Time-variant measurement schemes are discussed

in Chapter 3. We first demonstrate some simple results for optimal schedules as-

suming the sensors can be designed without restrictions, and then consider the case

where the sensors are selected from a library of possible sensors at each time step.

We present a new sensor scheduling algorithm based on condition number of observ-
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ability matrix, and show some more numerical examples. Our concluding remarks

are presented in Chapter 4.

1.2 Classical Observability

This section provides a historical overview of observability and discusses some

classical results.

Observability refers to determining the state of a linear dynamical system from

the measurements over a finite time interval. In particular, in the case of discrete time

linear dynamical systems, it can be reduced to determining the initial state x0 from

a finite sequence of linear measurements. The class of discrete time linear dynamical

systems of interest is described by

xk+1 = Axk +Buk (1.2.1a)

yk = Cxk, (1.2.1b)

where k = 0, 1, 2, . . ., the state xk ∈ R
n is the vector of system variables, the system

matrix A ∈ R
n×n represents the dynamics of the system, the control (input) matrix

B ∈ R
n×p represents possible inputs to the system, the input uk ∈ R

p, the measure-

ment matrix C ∈ R
m×n represents the system sensors, and the measurement (output)

yk ∈ R
m.

While the first equation (1.2.1a) propagates the system in time, the second equa-

tion (1.2.1b) gives us information about the system by linearly measuring the state.

We consider the case where uk is identically zero. With A known, to recover the

system state xk from the measurements yk, it is sufficient to recover the initial state

x0. In this case, determining the initial state x0 is equivalent to determining the
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entire state trajectory xk, since the difference equation (1.2.1a) has a unique solution

corresponding to each initial state x0.

To investigate observability, we first discuss classical observability and its dual

concept controllability. Typically these two concepts are examined together, since

one is the dual of the other in the sense that, if the system defined in (1.2.1) is

controllable, then its dual system

xk+1 = ATxk + CTuk (1.2.2a)

yk = BTxk (1.2.2b)

is observable and vice versa. Further discussion about this duality can be found in

[28].

Observability and Controllability

Introduced by Kalman in the 1960s, [30, 31, 32, 33], controllability and observ-

ability are two major concepts in control theory. These concepts roughly address the

following questions, [26]:

Controllability: Does a control (or input) uk always exist that can transfer the

initial state x0 to any desired state xk in finite time?

Observability: Can the initial state x0 of the system always be identified by ob-

serving the output yk (and the input uk) over a finite time?

As can be seen, these concepts correspond to the relationships between the input

and the state, and between the state and the output, respectively. For a linear dy-

namical system the answers to these questions can be characterized by the properties

of the matrices A,B,C. Matrices A and B characterize controllability and hence are
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called the controllability pair, and matrices A and C characterize observability, and

thus called the observability pair.

Using these concepts, all linear dynamical systems can be divided into four sub-

systems, [22]:

1. Controllable and observable: there is a clear input-output relationship.

2. Controllable but not observable: the state can be completely controlled but

some state variables (modes) cannot be determined.

3. Observable but not controllable: all the modes of the state can be determined

and but there are some modes which cannot controlled.

4. Not controllable and not observable: some state modes cannot be controlled

and some modes cannot be determined.

The importance of controllability and observability can be illustrated as follows.

Modes that are not observable might behave in an undesired manner, however they

cannot be observed. Similarly, if some uncontrollable modes act in an undesired

manner, they cannot be changed by using inputs.

In this dissertation, we only consider linear dynamical systems with zero inputs

(uk = 0, k = 0, 1, 2, . . . ). Hence, controllability will not be discussed further in this

section. In what follows, we give an algebraic condition for observability of discrete

time linear dynamical systems.

1.2.1 Observability of Discrete Time Linear Dynamical Systems

Observability refers to the problem of being able to determine the initial state

x0 of a linear dynamical system from the measurements yk collected over a finite
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period of time. Consider the discrete time linear dynamical system with the input uk

identically zero

xk+1 = Axk (1.2.3a)

yk = Cxk, (1.2.3b)

where the system state xk ∈ R
n, system matrix A ∈ R

n×n, measurements yk ∈ R
m

and measurement matrix C ∈ R
m×n.

Assume that we want to determine the initial state x0 from the measurements

{y0,y1, . . . ,yt−1} over a finite period of time, k = 0, 1, . . . , t− 1 where t ≥ n. Equa-

tions (1.2.3a) and (1.2.3b) can be rewritten as

xk = Akx0,

yk = CAkx0.

Hence we can write the following linear system of equations:



















y0

y1

...

yt−1



















=



















C

CA

...

CAt−1



















x0 = Φtx0. (1.2.4)

The initial state x0 can be uniquely determined if and only if Φt is non-singular,

i.e. Ker (Φt) = {0}. If Φt would have a non-zero nullspace then any non-zero initial

state in the nullspace cannot be distinguished from the zero initial state x0 = 0, since

the outputs yk would be all zero. Thus before giving a definition of observability, it

might be useful to define what an unobservable state is.

Definition 1.2.1. [15] An initial state x0 is called unobservable if for any T > 0,

x0 produces the output yk = 0, k = 0, 1, . . . , T .
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Definition 1.2.2. [15] The system (1.2.3) is called (completely) observable, if no

initial state is unobservable (except zero). If any non-zero unobservable states exist,

then the system is called unobservable.

Note that by Cayley-Hamilton theorem, An can be expressed as a linear combi-

nation of {A0, A1, . . . , An−1}, [29]. Thus Ker (Φt) = Ker (Φn) for t ≥ n, which means

it is enough to consider Φt up to time (n− 1). Now we can define the observability

matrix:

Definition 1.2.3. The observability matrix Φ = Φ(A,C) of the linear dynamical

system (1.2.3) is defined as

Φ =



























C

CA

CA2

...

CAn−1



























. (1.2.5)

Theorem 1.2.1. The system (1.2.3) is observable if and only if the observability

matrix Φ in (1.2.5) is non-singular.

Proof. Let the measurements y = [y0, . . . ,yn−1]
T , then (1.2.4) becomes

y = Φx0. (1.2.6)

Thus, we can determine x0 uniquely if and only if Φ is non-singular. The initial state

x0 can be recovered by

x0 =
(

ΦTΦ
)−1

ΦTy. (1.2.7)
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We now provide two simple examples of an observable and an unobservable system.

Example 1.2.1. Observable System, [38]

Consider the discrete time linear system where xk ∈ R
3 and

A =













1 2 0

2 3 0

0 1 1













, C =

[

1 0 1

]

.

From (1.2.5), we have

Φ =













1 0 1

1 3 1

7 12 1













,

which is non-singular. Hence the system is completely observable.

Example 1.2.2. Unobservable System, [38]

Now consider a system with

A =













3 2 0

0 0 −2

0 2 1













, C =

[

0 0 1

]

.

In this case we have

Φ =













0 0 1

0 2 1

0 2 −3













,

9



which is singular with rank two. Hence, the system is not completely observable,

i.e. we cannot uniquely recover the initial condition x0 from the observations y =
[

y0 y1 y2

]T

.

Now that we defined observability of a discrete time linear dynamical system, we

continue with some important classical results. In particular, we present results about

how an observable subsystem can always be extracted out of a system even when the

system itself is not observable, and moreover how the state space Rn can be separated

into observable and unobservable subspaces. These results in turn help us to state

methods for designing measurement schemes assuring the observability of the system.

1.2.2 Separation of Observable Part

As can be seen in Example 1.2.2, not all systems are completely observable. How-

ever even if a discrete time linear dynamical system is not completely observable,

we can still find a subsystem which is completely observable. In other words, even

though we cannot determine all the components of x0 we can still recover at least its

projection onto a subspace of Rn.

Theorem 1.2.2. [26] Consider the linear dynamical system defined in (1.2.3). If

rank(Φ) = q < n, i.e. the observability matrix defined in (1.2.5) is not full rank, then

a non-singular matrix T exists which transforms the linear dynamical system into the

following equivalent form:

10









x̂
(1)
k+1

x̂
(2)
k+1






=







Â11 0

Â21 Â22













x̂
(1)
k

x̂
(2)
k







yk =

[

Ĉ1 0

]







x̂
(1)
k

x̂
(2)
k






,

where x̂
(1)
k ∈ R

q, x̂
(2)
k ∈ R

n−q, with the submatrices Â11, Â21, Â22, Ĉ1 of compatible

size. Moreover, the subsystem

x̂
(1)
k+1 = Â11x̂

(1)
k

yk = Ĉ1x̂
(1)
k ,

is completely observable. (Note that x̂
(1)
0 6= x0)

Proof. A suitable transformation matrix T can be constructed in the following way.

Let

T =







T1

T2






,

where T1 consists of linearly independent rows of the observability matrix Φ and T2

contains (n− q) arbitrary rows such that T becomes non-singular. Then by defining

xk = T x̂k, we have

xk+1 = Axk

T−1xk+1 = T−1Axk

x̂k+1 = T−1AT x̂k

x̂k+1 = Âx̂k.

Similarly for measurements yk we have
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yk = Cxk

yk = CT x̂k

yk = Ĉx̂k.

Thus, any given discrete time linear dynamical system can be decomposed into

observable and unobservable subsystems. (A more detailed proof can be found in

[26].)

1.2.3 Observable Subspaces

The observable and unobservable subsystems of a system were discussed in Section

1.2.2. A similar approach can be used to separate the state space R
n into observable

and unobservable subspaces.

Assume that the observability matrix Φ in (1.2.5) is not full rank. Then the non-

negative definite matrix ΦTΦ has a non-trivial nullspace. In other words, there exists

x̂ ∈ R
n such that

ΦTΦx̂ = 0 ⇒ x̂TΦTΦx̂ = ‖Φx̂‖2 = 0.

Thus, for any initial state x0 ∈ Ker(ΦTΦ) the outputs yk = 0 and we cannot

distinguish the initial condition from the zero vector.

Definition 1.2.4. N = Ker(ΦTΦ) is called the unobservable subspace of the

system with dimension n− rank(Φ).

Definition 1.2.5. O = Im(ΦTΦ) is called the observable subspace of the system

with dimension rank(Φ).
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Hence, we can decompose R
n in the following way:

R
n = N ⊕O.

As can be observed, the rank of the observability matrix determines the dimension

of observable subspace, i.e. the bigger the rank of ΦTΦ the more we can observe.

1.2.4 Observability of Continuous Time Linear Dynamical Systems

Although the focus in this dissertation is primarily on discrete time linear dy-

namical systems, we would like to include a discussion about the observability of

continuous time systems, since observability of discrete and continuous time linear

dynamical systems are typically studied together in classical texts. Moreover, we will

be able to apply some results related to the continuous time systems to our discussion

of observability metrics in Chapter 2. To check observability of a continuous time

system its observability Gramian is used. Consider the continuous time linear

dynamical system

ẋ(t) = Ax(t) (1.2.8a)

y(t) = Cx(t), (1.2.8b)

where t ≥ 0, x(t) is the state, y(t) is the measurement, A is the system matrix and

C is the measurement matrix. For any time t1 > t0 ≥ 0 the observability Gramian

W is defined as, [29],

W (t0, t1) =

ˆ t1

t0

eA
T (t−t0)CTCeA(t−t0)dt. (1.2.9)

If the system is stable, the steady state observability Gramian W = W (t0,∞) is given

by the Lyapunov equation as, [29],
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ATW +WA = −CTC.

Theorem 1.2.3. If the observability Gramian W is non-singular then the continuous

time linear dynamical system defined in (1.2.8) is completely observable.

Proof. Can be found in [28].

In addition, for a continuous time linear dynamical system we can also use the

observability matrix Φ defined in (1.2.5) to determine its observability, [28]. Fur-

thermore, similar to the discrete time case, a continuous time system, which is not

completely observable, can be decomposed into observable and unobservable subsys-

tems, [26], as explained in Section 1.2.2.

The importance of observability of a linear dynamical system is self evident. If the

system is not observable, we cannot determine all the components of the state and

hence do not have enough information about how the system propagates. However,

even if the system is not completely observable and we cannot determine all the

components of the state, we can still recover at least its projection onto a subspace

of Rn as long as the observability matrix does not have rank zero. Therefore, our

initial goal is to investigate how to design a measurement matrix C to ascertain an

observable system.
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Chapter 2

TIME-INVARIANT MEASUREMENT SCHEMES

In order to employ observability in sensor scheduling, we first have to find a

way to design our sensors which makes the system completely observable. Once the

observability of the system is guaranteed, the second challenge is to decide which

metric to use for measuring observability of the system and moreover how this metric

can be used for sensor scheduling.

In this chapter, we first present classical results for sensor design, defined by the

measurement matrix C in (1.2.3), to ascertain the observability of a system with

a time-invariant measurement scheme. We then reformulate the classical results to

provide explicit guidelines for constructing sensors to ensure the observability of the

system. We also discuss different observability metrics, and then demonstrate that

using the condition number of the observability matrix in (1.2.5) provides a mean-

ingful observability metric. Finally, we examine the relation between observability

matrices and Vandermonde matrices.

2.1 Constructive Observability

Chapter 1 introduced the idea of observability of a linear dynamical system. We

would like our system to be completely observable so that we can always determine

all the system states. Hence, given an invertible system matrix A a straightforward

question would be how to design a measurement matrix C so that the system is

completely observable.

This problem has been studied to some extent, see e.g. [28, 29]. Given the system

matrix A in (1.2.3), for systems with scalar measurements (i.e. yk ∈ R and C = cT ,
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where c ∈ R
n), there are two main tests, called the Popov-Belevitch-Hautus (PBH)

tests, which determine the observability of a system depending on the measurement

vector cT , [28]. Although these tests are helpful in determining the observability of a

system, they are not constructive in nature. That is, they can be used for checking

whether a sensor makes the system observable or not, but they do not provide explicit

directions for designing a sensor which makes the system observable.

In this section, we discuss the PBH tests and then reformulate them to present

methods to design a measurement matrix C, given the system matrix A, that guar-

antees the observability of the system.

2.1.1 Popov-Belevitch-Hautus Tests

Theorem 2.1.1. [PBH Eigenvector Test] The system
{

A, cT
}

is unobservable if

and only if there exists a non-zero vector p ∈ R
n such that Ap = λp and cTp = 0,

for some λ 6= 0.

Proof. First assume that such a p exists. Now consider Φp such that

Φp =



















cT

cTA

...

cTAn−1



















p =



















cTp

λcTp

...

λn−1cTp



















=



















0

0

...

0



















.

Thus, Φ is singular and the system is unobservable.

Now assume that
{

A, cT
}

is unobservable. Then, as discussed in Chapter 1, we

separate the system into observable and unobservable parts using a transformation

matrix T as
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x̂
(1)
k+1

x̂
(2)
k+1






=







Â11 0

Â21 Â22













x̂
(1)
k

x̂
(2)
k







yk =

[

(ĉ1)
T 0

]







x̂
(1)
k

x̂
(2)
k






.

Then pT =

[

0 pT
22

]

, where p22 is an eigenvector of Â22, satisfies the conditions

of the theorem.

Theorem 2.1.2. [PBH Rank Test] The system
{

A, cT
}

is observable if and only

if rank







cT

sI− A






= n, for all s ∈ R.

Proof. If







cT

sI−A






has rank n, then there cannot be a non-zero p ∈ R

n such that







cT

sI− A






p = 0,

for any s ∈ R, i.e.

cTp = 0 and Ap = sp.

Then by Theorem 2.1.1
{

A, cT
}

should be observable. The converse follows by re-

versing the arguments.

2.1.2 Results on the Eigenstructure of A and the Observability Matrix Φ

Although the PBH tests determine if a system is observable for a particular cT ,

the tests are not constructive. Thus below we present results on how to construct

a measurement vector (or matrix) depending on the eigenstructure of A so that the
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system is completely observable. That is, given the dynamics (matrix A) of the

system, we will construct the sensor(s) that yield an observable system.

Consider again the discrete time linear dynamical system from (1.2.3), where

uk = 0, given by

xk+1 = Axk (2.1.1a)

yk = Cxk, (2.1.1b)

where A ∈ R
n×n , C ∈ R

m×n, xk ∈ R
n, and yk ∈ R

m. We investigate the relation

between the eigenstructure of A and the observability matrix Φ by constructing a

suitable C that ensures a completely observable system. For this aim, we consider

three cases where A has distinct eigenvalues and repeated eigenvalues. We start with

the case where A has n distinct eigenvalues. We say that c ∈ R
n has a non-zero

weight along each eigenvector of AT if

c =
n
∑

j=1

αjqj, (2.1.2)

and αj 6= 0, j = 1, . . . , n, where qj are the right eigenvectors of AT .

Theorem 2.1.3. If A has n distinct non-zero eigenvalues then
{

A, cT
}

is observable

if and only if c ∈ R
n has a non-zero weight along each eigenvector of AT .

Proof. First consider the observability matrix Φ

Φ =



















cT

cTA

...

cTAn−1



















=

[

c ATc · · ·
(

AT
)n−1

c

]T

.
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To prove Φ is full rank, we need to show that {c, ATc, . . . ,
(

AT
)n−1

c} are lin-

early independent. Since A has n distinct eigenvalues, AT has n distinct eigenvalues,

{λj}nj=1, and n distinct linearly independent eigenvectors, {qj}nj=1, constituting a

basis for Rn.

Thus c ∈ R
n can be written as in (2.1.2) with αj 6= 0, j = 1, . . . , n. We now write

(

AT
)k

c as

(

AT
)k

c =
n
∑

j=1

λk
jαjqj .

Now consider the equation for linear independence for {c, ATc, . . . ,
(

AT
)n−1

c} for

some coefficients d =

[

d1 · · · dn

]T

∈ R
n

n−1
∑

k=0

dk+1(λ
k
1α1q1 + λk

2α2q2 + . . .+ λk
nαnqn) = 0. (2.1.3)

Since qk are linearly independent, (2.1.3) is equivalent to

n−1
∑

k=0

dk+1λ
k
1 =

n−1
∑

k=0

dk+1λ
k
2 = · · · =

n−1
∑

k=0

dk+1λ
k
n = 0. (2.1.4)

Hence considering the sums as inner products, (2.1.4) yields that d should be orthog-

onal to the vectors





















































1

λ1

...

λn−1
1



















,



















1

λ2

...

λn−1
2



















, . . . ,



















1

λn

...

λn−1
n





















































, (2.1.5)

corresponding to the system V d = 0, where
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V = V (λ) =



















1 λ1 · · · λn−1
1

1 λ2 λn−1
2

...
...

...

1 λn · · · λn−1
n



















, (2.1.6)

is the Vandermonde matrix. Since V is invertible, the only d that would satisfy

(2.1.4) is the zero vector, and we conclude that {c, ATc, . . . ,
(

AT
)n−1

c} are linearly

independent so that Φ is full rank.

Now assume that
{

A, cT
}

is observable. The above steps can be reversed to prove

the only if part.

Remark. Theorem 2.1.3 is similar to Theorem 3 in [11], in which the observability

problem is approached in the context of data assimilation for discretized partial dif-

ferential equations.

Note that if any αj was zero, we would not be able to cover the whole space R
n

with the span of (2.1.5) and it would be possible to find a non-zero d. Thus any zero

αj results in unobservability in the corresponding eigenvector direction.

Corollary 2.1.1. Assume only m < n many αj are non-zero, i.e. c has zero weight

along some eigenvectors of AT . Then applying AT to c successively creates at most

m linearly independent vectors {c, ATc, . . . ,
(

AT
)m−1

c}.

Now we check the case where AT has a repeated eigenvalue and is non-defective.

Theorem 2.1.4. If AT has a repeated eigenvalue with algebraic and geometric mul-

tiplicity s, then for C =

[

c1 · · · cs

]T

, where c1 has a non-zero weight along each

eigenvector of AT and c2, . . . , cs are any distinct vectors such that

{c1, ATc1, . . . ,
(

AT
)n−1

c1, c2, . . . , cs}

are linearly independent, the system {A,C} is completely observable.

20



Proof. Without loss of generality assume that λ1 is the repeated eigenvalue. Then

there are s eigenvectors {q1, . . . ,qs} corresponding to λ1. Since λ1 has geometric

multiplicity s, {q1, . . . ,qs} are linearly independent. As in the previous proof, the

eigenvectors of AT again constitute a basis for Rn, and c1 ∈ R
n can be written as in

(2.1.2)

c1 =

n
∑

j=1

αjqj ,

where αj 6= 0, j = 1, . . . , n.

By the same reasoning as in Theorem 2.1.3, when C = cT1 it is possible to find a

vector d ∈ R
n such that it is orthogonal to the vectors





















































1

λ1

...

λn−1
1



















,



















1

λ2

...

λn−1
2



















, . . . ,



















1

λn−s+1

...

λn−1
n−s+1





















































.

In this case we can only construct (n − s) + 1 linearly independent vectors by

applying AT to c1, and {c1, ATc1, . . . ,
(

AT
)n−1

c1} only span a (n−s)+1 dimensional

subspace of Rn. Thus, in order to get a full rank observability matrix Φ we need (s−1)

more linearly independent vectors, which make {c1, ATc1, . . . ,
(

AT
)n−1

c1, c2, . . . , cn}

linearly independent in our measurement matrix C.

Remark. Theorem 2.1.4 is similar to Theorem 4 in [11].

Intuitively, we cannot have complete observability with only one vector c1 in

this case since we cannot distinguish between the directions corresponding to the

eigenvectors {q1, . . . ,qs}. So the extra conditions are needed to ensure an observable

system.
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Corollary 2.1.2. If AT has a repeated eigenvalue and is non-defective, then for any

cT , where c has a non-zero weight along each eigenvector of AT , the system
{

A, cT
}

is unobservable.

Finally, we look at the case where AT is defective.

Theorem 2.1.5. If AT has a repeated eigenvalue with algebraic multiplicity s and

geometric multiplicity 1, then for any cT , where c ∈ R
n has a non-zero weight along

each (generalized) eigenvector of AT , the system
{

A, cT
}

is completely observable.

Proof. Without loss of generality assume that λ1 is the repeated eigenvalue. Since it

has geometric multiplicity 1, it has s corresponding generalized eigenvectors {q1, . . . ,qs}

which are linearly independent and can be formulated as

ATq1 = λ1q1

(

AT − λ1I
)

q2 = q1

...

(

AT − λ1I
)

qs = qs−1.

Thus, we can write the following equations.

ATq1 = λ1q1

ATq2 = q1 + λ1q2

...

ATqs = qs−1 + λ1qs.

Again, since the generalized eigenvectors of AT constitute a basis for Rn we can write

c as in (2.1.2). Then after some algebra,
(

AT
)k

c can be expressed as
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(

AT
)k

c =
(

α1λ
k
1 + kα2λ

(k−1)
1 +

1

2
k(k − 1)α3λ

(k−2)
1 + . . .+

1

(s− 1)!

k!

(k − s+ 1)!
αsλ

(k−s+1)
1

)

q1+

(

α2λ
k
1 + kα3λ

(k−1)
1 +

1

2
k(k − 1)α4λ

(k−2)
1 + . . .+

1

(s− 2)!

k!

(k − s+ 2)!
αsλ

(k−s+2)
1

)

q2+

...

(

αsλ
k
1

)

qs+

(

αs+1λ
k
2

)

qs+1+

...

(

αnλ
k
n−s+1

)

qn.

The above equation is more concisely expressed as

(

AT
)k

c =

s
∑

j=1

(

s−1
∑

i=0

(

k

i

)

λ
(k−i)
1 αi+j

)

qj +

n
∑

j=s+1

λk
j−s+1αjqj .

Following the same reasoning as in the proof of Theorem 2.1.3, to check the linear

independence of
{

c, ATc, . . . ,
(

AT
)n−1

c
}

we should determine the existence of a non-

zero vector d =

[

d0 . . . dn−1

]T

such that it is orthogonal to
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, . . . ,
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...

0

1

sλ1

...

1(n−1)!
(s−1)!(n−s)!

λ
(n−s)
1
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1

λ2

λ2
2

λ3
2

λ4
2

...

λ
(n−1)
2







































, . . . ,







































1

λn−s+1

λ2
n−s+1

λ3
n−s+1
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n−s+1

...

λ
(n−1)
n−s+1

















































































































.
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By confluent Vandermonde matrix properties, [24], these vectors are linearly in-

dependent and span R
n. Thus the only d which is orthogonal to all the above vectors

is the zero vector. Hence, Φ is full rank and the system is completely observable.

Note that even if we had a non-zero weight only along qs for the generalized

eigenvectors, we would still get a completely observable system.

Corollary 2.1.3. Assume AT is as above, for any c =
∑n

j=s αjqj, αj 6= 0, j =

s, . . . , n, the system is completely observable.

Proof. Observe that

(

AT
)k

c = αs

k
∑

i=0

(

k

i

)

λ
(k−i)
1 qs−i +

n
∑

j=s+1

λk
j−s+1αjqj ,

which again yields the same set of vectors that are the rows of confluent Vandermonde

matrix. Hence, the system is completely observable.

2.1.3 Equivalency of PBH Tests and Results in Section 2.1.2

In previous discussion we developed methods to construct a measurement matrix

C depending on the eigenstructure of A so that the system {A,C} is completely

observable. Now we establish an equivalency between our results and PBH tests.

Theorem 2.1.3 and PBH Eigenvector Test

Assume that A has n distinct non-zero eigenvalues and
{

A, cT
}

is unobservable.

Proposition 2.1.1. There exists a non-zero vector p ∈ R
n such that Ap = λp and

cTp = 0 if and only if there exists αj = 0, where c =
∑n

j=1 αjqj.

Proof. Since qj are the left eigenvectors of A we have the following relation between

the normalized left eigenvectors qj and normalized right eigenvectors pl of A:
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qT
j pl = δjl, (2.1.7)

where δjl is the Kronecker delta

δjl =















1 j = l

0 j 6= l.

First assume p = pl for some l such that Apl = λlpl and cTpl = 0. Then,

cTp =

(

n
∑

j=1

αjq
T
j

)

pl = αl = 0

by equation (2.1.7).

Now let αl = 0. Then for the right eigenvector pl, we have

cTpl =

(

n
∑

j=1

αjq
T
j

)

pl = 0

by equation (2.1.7).

Corollary 2.1.2 and PBH Eigenvector Test

Since PBH tests consider the case where C = cT , we establish an equivalency between

the Corollary 2.1.2 and PBH eigenvector test. To simplify the problem, assume the

case where the eigenvalue λ1 has algebraic and geometric multiplicity 2.

Proposition 2.1.2. For any c with a non-zero weight along each eigenvector of AT ,

there exists a non-zero vector p ∈ R
n such that Ap = λp and cTp = 0, and hence

{

A, cT
}

is unobservable.

Proof. Write c again as c =
∑n

j=1 αjqj , where αj 6= 0, j = 1, . . . , n. Assume Ap1 =

λ1p1 and Ap2 = λ1p2. Define p = 1
α1

p1 − 1
α2

p2. Clearly Ap = λ1p. Moreover,
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cTp =

(

n−1
∑

j=1

αjq
T
j

)

(

1

α1

p1 −
1

α2

p2

)

=
1

α1

α1 −
1

α2

α2 = 0.

Corollary 2.1.3 and PBH Eigenvector Test

Assume that AT has a repeated eigenvalue with algebraic multiplicity s and geometric

multiplicity 1.

Proposition 2.1.3. There exists a non-zero vector p ∈ R
n such that Ap = λp and

cTp = 0 if and only if there exists αj = 0, where c =
∑n

j=s αjqj.

Proof. Since only the right eigenvectors ps, . . . ,pn−s+1 of A satisfy Ap = λp, the

proof is the same as Proposition 2.1.1. Here note that the relation among the right

generalized eigenvectors is in reverse order of the left generalized eigenvectors. ATq1 =

λ1q1 but Ap1 = p2 + λ1p1. Similarly, ATqs = qs−1 + λ1qs but Aps = λ1ps.

2.2 Metrics of Observability

We now have techniques to design a measurement matrix C so that the system

{A,C} is completely observable. Now assume that matrices A and C in (2.1.1) are

time-invariant but C can be chosen from a collection C of possible measurements,

represented by different measurement matrices Ci. There may be more than one

measurement matrix Ci making the system completely observable. Hence, we would

like to have a metric of observability so that we decide which measurement matrix

best suits our system.

For discrete time systems, we formulate the problem as follows. Suppose that

we have a linear dynamical system as given in (2.1.1), and a library of possible
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measurement matrices C = {Ci}. Each Ci gives us a different observability matrix

Φi. We would like to find Φi which optimizes some criterion. The use of observability

to select measurements from a collection of potential sensor configurations has been

studied, e.g. [13, 51, 52]. Some of these approaches are described below.

2.2.1 A Brief Overview of Current Metrics of Observability

There have been different approaches to measure the observability of a system. In

this section, we give a brief overview of some of the currently used methods. Although

the metrics are defined using the observability matrix Φ, they can be equivalently used

with the observability Gramian W in (1.2.9) .

1. Smallest eigenvalues (or singular values), [40]: If a system is near sin-

gular then inversion of ΦT
i Φi in (1.2.7) and possible errors introduced by the

inversion would be dominated by the smallest eigenvalues. Moreover, as the

system propagates in time, smallest eigenvalues decay fastest (Assuming they

have modulus less than one). Therefore, it is important to capture information

pertaining to the eigenmodes corresponding to these eigenvalues before they

vanish. This metric would be most relevant if we want to recover the compo-

nents of x0 in all eigenmodes with equal precision. One application would be

satellite positioning, [34].

2. Maximizing the spectral radius, [51]: Another approach is to find the

configuration which would maximize the spectral radius of the observability

matrix. This can be formulated as maxσmax(Φi). Since ‖Φi‖2 = σmax (Φi), this

metric can be considered as an indicator of the geometric size of Φi. Larger

values for spectral radius correspond to a “bigger” observability matrix.

27



3. Maximizing the trace, [51]: This approach can be formulated as max tr(Φi) =

∑n
j=1 σj(Φi), where the trace can be interpreted as the size criterion of the

singular values, containing the overall average information obtained via the

measurements. Hence, this metric would be most beneficial if the obtained

information is desired to be maximized on average, without emphasizing any

particular eigenmodes. This metric is similar to the A-optimality criterion in

experimental design theory, [1].

4. Figure of merit, [5]: Three different criteria are combined into a single metric

using the Fisher information matrix (FIM), [48], which can be considered as a

scaled observability Gramian. The following criteria are combined:

i. Minimizing the condition number of the FIM, which is linked to the rank of

the matrix and the difficulty in performing its inversion.

ii. Maximizing the trace of the FIM, which measures the global sensitivity of the

sensors.

iii. Maximizing the determinant of the FIM, since inverse of the determinant

measures the overall uncertainty of estimation.

Using these criteria, a combined criterion figure of merit (FOM) can be defined as

follows

FOM = −α1 log(κ (FIM)) + α2 log(tr (FIM)) + α3 log(det (FIM)), (2.2.1)

where αi is the weight of each corresponding criterion.

Example 2.2.1, [51], is used to illustrate the problem of selectable measurements.
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Example 2.2.1.

Consider the following continuous time linear dynamical system for state variable

x = x(t)

ẋ = Ax =













−1 1 1.5

1 −2 1

0 1 3

























x1

x2

x3













and possible Ci, (2.1.1b),

C1 = [ 1 0 0 ], C2 = [ 0 1 0 ], C3 = [ 0 0 1 ].

The results in Table 2.2.1 correspond to some of the criteria mentioned above for

the observability Gramians W1, W2, W3 in (1.2.9) for C1, C2, C3.

W1 W2 W3

σmin(Wi) 0.0008 0.0001 0.0026

σmax(Wi) 7.00 2.82 0.41

tr(Wi) 7.12 2.92 0.50

Table 2.2.1: Criteria for C1, C2, C3 (For each criterion the “winning” configuration
is in bold)

It is evident from Table 2.2.1 that there is no clear “winning” Ci. However,

σmax(Wi) and tr(Wi) indicate that using C1 and hence measuring x1 might provide

an optimal strategy.

2.2.2 An Analysis of Current Observability Metrics

We now discuss various metrics of observability in detail.
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Maximum Eigenvalue, Trace and Determinant of Inverse Characteristics

In [40], the metric problem is approached theoretically with metrics defined axiomat-

ically. While the analysis is conducted for controllability, with appropriate modifica-

tions for A, B, C as described in (1.2.2) we can simply replace the word “controllable”

with “observable” and obtain the same results. Below the results are presented in

their original context, that is, with regard to the controllability of the system.

Consider the continuous time system

ẋ(t) = Ax(t) +Bu(t) (2.2.2a)

y(t) = Cx(t), (2.2.2b)

where A is the system matrix, B the input (control) matrix, C the measurement

matrix, x(t) is the state, u(t) is the input and y(t) is the measurement. Similar to

(1.2.9), the controllability Gramian Wc(t0, t1) for 0 < t0 < t1 < ∞ can be written as

Wc(t0, t1) =

t1
ˆ

t0

eA(τ−t0)BBT eA
T (τ−t0)dτ. (2.2.3)

Three candidates for physically meaningful metrics are proposed by measuring

the minimum control energy (taking the system from x(t0) = x0 to x(t1) = 0) which

is given by

G(t0, t1; x0) = min
u

t1
ˆ

t0

‖u(τ)‖2dτ

= xT
0W

−1
c x0.

They are:
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(i) Maximum eigenvalue of W−1
c (t0, t1)

This metric measures the maximum value of the minimum control energy over the

unit ball ‖x0‖ = 1, i.e.

max
‖x0‖=1

G(t0, t1; x0) = λmax(W
−1
c ) =

1

λmin(Wc)

yielding

µ1 = λmin(Wc). (2.2.4)

The system is more controllable the larger µ1 is.

(ii) Trace of W−1
c (t0, t1)

This metric measures the average value of the minimum control energy over the unit

ball ‖x0‖ = 1, given by

Ḡ(t0, t1) =

´

‖x0‖=1
xT
0W

−1
c x0dx0

´

‖x0‖=1
dx0

=
1

n
tr(W−1

c ).

The corresponding metric is then

µ2 =
n

tr(W−1
c )

. (2.2.5)

Once again, the system is more controllable the larger µ2 is.

(iii) Determinant of W−1
c (t0, t1)

This metric utilizes the fact that the volume of the hyperellipsoid xT
0W

−1
c x0 = 1 is

proportional to the square root of det(Wc), i.e.
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V =

ˆ

xT
0
W−1

c x0≤1

dx0 = O
(

√

det(Wc)
)

.

Thus the third metric is

µ3 = det(Wc). (2.2.6)

We note that since the matrices A, B, C in (2.2.2) are time-invariant, the metrics

can also be defined using the controllability matrix Qc which is given by

Qc =

[

B AB · · · An−1B

]

. (2.2.7)

Thus the metrics become, [40],

µi = µi(QcQ
T
c ), i = 1, 2, 3. (2.2.8)

These three metrics are generalized by defining the following axioms.

Definition 2.2.1. [Axioms of Metric Quality] For a symmetric positive (semi-)

definite matrix P (Wc in (2.2.3) or QcQ
T
c in (2.2.7)) a scalar value µ(P ) is called a

metric (measure) of quality if and only if

i. µ(P ) = 0 if det(P ) = 0,

ii. µ(P ) > 0 if det(P ) > 0,

iii. µ(kP ) = kµ(P ) for k ≥ 0, (ensuring homogeneity)
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iv. µ(P1) ≥ µ(P2) + µ(P3) for P1 = P2 + P3 (concavity condition: a system with

two controls has to be at least as controllable as the two partitioned systems

together)

Remark. In [40], it is demonstrated that the metric µ3 must be modified as

µ3 =
n
√

det(Wc) (2.2.9)

in order to satisfy the axioms.

The metrics µi in (2.2.8) can be embedded in the following general metric defini-

tion.

Definition 2.2.2. [Metric Measure] ms is called a metric measure and is given by

ms = ms(Λ(P )) =

(

n
∑

i=1

1

n
λs
i

)1/s

, (2.2.10)

where λi are the eigenvalues of P .

Using (2.2.10) and (2.2.4), (2.2.5), (2.2.9), we see that µ1 = m−∞, µ2 = m−1, and

µ3 = m0. Thus, ms(Λ(P )) is a metric (measure) for s ≤ 0, and

µ1 ≤ µ2 ≤ µ3,

moreover

ms1(Λ(P )) ≤ ms2(Λ(P )) if s1 ≤ s2.

Condition Number

Following [12], in [13] the condition number of the observability GramianW0 in (1.2.9)

is proposed as a metric of observability. Their aim is to minimize the errors due to
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the inversion of W0 during reconstruction. We discuss the use of condition number

as a metric of observability in more detail in the Section 2.3.

Spectral Radius and Trace

The metrics introduced in [40] and [13] place strong emphasis on the smallest singular

values. The reason for selecting these metrics is that if a system is near singular,

inversion of the Gramian and errors introduced by the inversion are dominated by

the smallest eigenvalues. In [51], it is observed that in order to monitor the principal

changes in the state, different metrics should be used. Two new metrics are introduced

here:

(i) Spectral Radius of W0

ρ(W0) = σmax(W0).

This metric can be interpreted as the geometric size of the Gramian. The system is

more observable the larger ρ(W0) is.

(ii) Trace of W0

tr(W0) =

n
∑

i=0

σi(W0).

This metric can be interpreted as the average measure of estimation performance of

the sensors. Again the system is more observable the larger tr(W0) is.

2.3 Conditioning of Φ as a Metric of Observability

As discussed, there have been efforts to utilize singular values and the conditioning

as a metric of observability. For instance, in [52], different measures of observability

regarding σmin (Φ) and κ (Φ) were used to optimize the sensor locations in a linear
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system. We consider the condition number κ(Φ) of the observability matrix as a

reasonable metric of observability, since to reconstruct x0 we have to invert ΦTΦ, and

κ (Φ) relates to both the stability and the accuracy of reconstruction of x0. Moreover,

a small condition number also diminishes the errors in reconstructing x0 introduced

by measurement noise. Thus, given the system matrix A we would like to construct

C so that κ(Φ) is minimized.

We first recall the definition of the condition number.

Definition 2.3.1. The 2-norm condition number κ (M) = κ2 (M) of M ∈ R
m×n

is defined by

κ (M) =
σmax(M)

σmin(M)
,

where σ are the singular values of M . If m = n, κ (M) can be expressed as

κ (M) = ‖M‖2‖M−1‖2,

where ‖M‖2 is the operator norm of M .

To study κ(Φ) as a metric of observability, we consider scalar measurement systems
{

A, cT
}

. First, we construct an upper bound for κ(Φ) in terms of the eigenvalues

λj of the system matrix A in (2.1.1) and the weights αj of the measurement vector

cT in (2.1.2). This provides insight about how λj and αj affect κ(Φ). Second, we

inspect the relation between the observability matrix Φ and the Vandermonde matrix

of eigenvalues λj of A by finding an optimal set of eigenvalues λj and a lower bound

for κ(Φ) in case of real eigenvalues. We then study the problem of minimizing the

condition number κ(Φ) with respect to the measurement vector cT . Finally, we

present some numerical examples.
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2.3.1 Upper Bound for κ(Φ)

In previous sections we studied the problem of designing measurement matrices C

to guarantee complete observability for a linear dynamical system. Even though full

rank of Φ ensures observability, an observability matrix with a high condition number

would be not practically useful for design purposes, since the condition number of Φ is

critical for the accuracy and stability of computing the initial state from the equation

Φx0 = y in (1.2.6).

Condition number is a highly useful metric to analyze problem sensitivity to per-

turbations. Assume that we have a scalar measurement system, i.e. Φ ∈ R
n×n, and

there is some perturbation (noise) in the measurements so that we have ŷ = y +∆y

as our measurement vector. Then Φx0 = y is perturbed to

Φ(x0 +∆x0) = y +∆y.

It is easy to show that, [50], the reconstruction error ∆x0 can be bounded above by

‖∆x0‖ ≤ ‖Φ−1‖‖∆y‖.

Similarly, if there is perturbation ∆Φ in the observability matrix, i.e. (Φ+∆Φ)(x0 +

∆x0) = y, and if we assume (∆Φ) (∆x0) is negligible, it is not hard to show that

‖∆x0‖ ≤ ‖Φ−1‖‖∆Φ‖‖x0‖.

Then using the definition of the condition number of Φ, κ (Φ) = ‖Φ‖‖Φ−1‖, we get

‖∆x0‖
‖x0‖

≤ κ (Φ)
‖∆y‖
‖y‖ ,
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‖∆x0‖
‖x0‖

≤ κ (Φ)
‖∆Φ‖
‖Φ‖ .

Hence it is evident that the condition number provides a valuable upper bound for

the relative error in reconstructing x0.

In this section, we investigate the relation between the eigenvalues λj of A, the

weights αj of c, and the condition number κ(Φ) of the observability matrix for systems

with scalar measurements
{

A, cT
}

. For the case where A is symmetric and has n

distinct non-zero eigenvalues, we bound κ(Φ) from above. To achieve this aim we use

the following bound, [21],

κ(Φ) ≤ 2

| det(Φ)|

(‖Φ‖F√
n

)n

, (2.3.1)

where ‖Φ‖F is the Hilbert–Schmidt norm of Φ.

In order to use this upper bound we first write the observability matrix Φ as a

product of simpler matrices so that we express the upper bound in (2.3.1) in terms

of the eigenvalues λj and the weights αj. The procedure is described below.

Assume A is symmetric and has n non-zero distinct eigenvalues. Then the eigen-

vectors {p1, . . . ,pn} of A constitute an orthonormal basis for Rn. Thus, A is diago-

nalizable and can be written as

A = PΛP T ,

where P =

[

p1 · · · pn

]

is the matrix of the eigenvectors of A and is orthogonal

since A is symmetric, and Λ = diag(λ1, . . . , λn) is the matrix of eigenvalues of A.

We now write c in (2.1.2) as

c = Pα,
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where α =

[

α1 . . . αn

]T

, αj 6= 0. By Theorem 2.1.3, using cT guarantees a

completely observable system.

We now express the observability matrix as a product of simpler matrices. For

this we need to write
(

AT
)k

c = Akc using the matrix of eigenvectors P :

(

AT
)k

c =
(

PΛkP T
)

(Pα)

= P













λk
1

. . .

λk
n













α

= P













λk
1α1

...

λk
nαn













.

(2.3.2)

Hence using (2.3.2), the observability matrix Φ can be expressed as

ΦT = P













α1 λ1α1 · · · λn−1
1 α1

...
...

. . .
...

αn λnαn · · · λn−1
n αn













= PDV, (2.3.3)

where V is the Vandermonde matrix in (2.1.6) and D = diag(α1, . . . , αn).

Now that Φ is written in terms of three simpler matrices, we express the upper

bound (2.3.1) in terms of λj and αj. To do this, we first write ‖Φ‖2F = tr(ΦTΦ) in

(2.3.1) as

38



‖Φ‖2F = α2
1

n−1
∑

k=0

(

λ2
1

)k
+ · · ·+ α2

n

n−1
∑

k=0

(

λ2
n

)k

=

n
∑

j=1

α2
j

(

1− λ2n
j

1− λ2
j

)

, (2.3.4)

and

| det(Φ)| = | det(P ) det(D) det(V )|

= |
n
∏

j=1

αj

∏

1≤j<l≤n

(λj − λl) |.

Here the second line follows since det(P ) = ±1 due to the orthogonality of P and

det(V ) =
∏

1≤j<l≤n (λj − λl).

We now bound the condition number κ(Φ) of the observability matrix using (2.3.1)

κ(Φ) ≤ 2
∣

∣

∏n
j=1 αj

∏

1≤j<l≤n (λj − λl)
∣

∣









√

∑n
j=1 α

2
j

(

1−λ2n
j

1−λ2

j

)

√
n









n

. (2.3.5)

The upper bound in (2.3.5) gives us some insight about the relation between

κ(Φ) and λj, αj . For instance, we observe that if the eigenvalues λj of A are too

close to each other, the condition number might be very large. However, numerical

tests show that the upper bound (2.3.5) is very loose for Vandermonde-like matrices,

which is in agreement with the observations in [21] that the bound is not tight for

matrices whose singular values differ by orders of magnitude, e.g. the Vandermonde

matrix. To illustrate the looseness of the upper bound (2.3.5) we investigate the case

where the eigenvalues λj of the system matrix A are uniformly distributed. Since the

bound is loose for any type of Vandermonde-like matrix with real nodes, we chose the

equispaced case for our numerical example.
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Numerical Example

Figure 2.3.1 compares the upper bound (2.3.5) with the computed condition number

κ(Φ) of the observability matrix Φ corresponding to A with equispaced eigenvalues

on [−0.9, 0.9], λj = −0.9 + j−1
n−1

1.8, j = 1, . . . , n, and measurement vector cT with

weights αj = 1, j = 1, . . . , n. Since our results do not depend on the eigenvectors pj ,

any symmetric matrix A with the same eigenvalues would yield similar results.
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Upper bound

Figure 2.3.1: Comparison of the upper bound (2.3.5) and the computed κ(Φ) for
equispaced λj

Observe that as the number of eigenvalues (i.e. the dimension of the system)

increases, the gap between the computed condition number κ(Φ) and the bound

(2.3.5) widens steadily. Still, the bound in (2.3.5) is useful for understanding the

relation between the eigenvalues λj of the system matrix A, the weights αj of c along

the eigenvectors and the conditioning of the observability matrix Φ.
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2.3.2 Relation between the Observability Matrix and the Vandermonde Matrix

As seen in (2.3.3), the observability matrix Φ of the system
{

A, cT
}

and V are

closely related. Below we show how this relationship can be exploited for some special

cases. In particular, we investigate how the eigenvalues λj of A can affect κ (Φ).

(i) λj = ei
2π
n
j

Theorem 2.3.1. If the eigenvalues λj of the symmetric system matrix A are roots

of unity, i.e. λj = ei
2π
n
j, j = 1, . . . , n and αj = 1, j = 1, . . . , n, then κ(Φ) = 1.

Proof. By (2.3.3) we can write ΦT as

ΦT = PDV.

Since αj = 1, we have D = In. Moreover, since P is orthogonal and multiplication

by an orthogonal matrix does not affect the condition number we get that

κ(ΦT ) = κ(V ).

Now, for λj = ei
2π
n
j , V becomes the discrete Fourier transformation matrix, which

is known to be unitary. Hence,

κ(ΦT ) = κ(V ) = 1.

(ii) λj are symmetric on the real axis

Theorem 2.3.2. If the eigenvalues λj of the symmetric system matrix A are sym-

metric on real axis and αj = 1, j = 1, . . . , n, then κ (Φ) grows exponentially as the

dimension n of the system increases with
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κ(Φ) >
2n/2

n
.

Proof. By [17], for λj symmetric on real axis, we have

κ(V ) >
2n/2

n
.

By the proof of previous theorem we have κ(ΦT ) = κ(V ). Thus,

κ(ΦT ) >
2n/2

n
.

Although Theorem 2.3.2 addresses the case when the eigenvalues are real and

symmetric, we observe in practice that these results hold whenever λj ∈ R.

2.3.3 Optimal Preconditioner of Vandermonde Matrix

Theorem 2.3.1 illustrates that κ (Φ) is optimal for roots of unity, while Theorem

2.3.2 demonstrates how certain eigenvalues can cause κ(Φ) to grow exponentially. We

now ask whether it is possible to minimize κ(Φ) using the weights αj of c instead of

the eigenvalues λj.

For this we recall (2.3.3)

ΦT = PDV.

Since P is orthogonal it does not affect κ(Φ). However we can consider D as a diag-

onal preconditioner of V . Hence we reformulate the problem as finding the optimal

diagonal preconditioner Wopt of V such that κ(WoptV ) is minimized with respect to

some norm, i.e.

Wopt = arg min
W∈Rn×n

κ (WV ) .
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The optimal diagonal preconditioner for Vandermonde-like matrices with respect to

the Frobenius norm was calculated in [47] as follows:

Define Wopt as

Wopt = arg min
W∈Rn×n

κF (WV ) .

If

Aj = ‖eTj V ‖2

Bj = ‖
(

V T
)−1

ej‖2,

where {ej}nj=1 is the canonical basis for Rn, then the minimizer Wopt is given by

Wopt =



















√

B1

A1

√

B2

A2

. . .
√

Bn

An



















. (2.3.6)

Hence, by setting αj =
√

Bj

Aj
, j = 1, . . . , n, we obtain the optimal preconditioner

for V and thus, the observability matrix Φ has the smallest condition number.

2.3.4 Numerical Tests

We now test our results from Sections 2.3.2 and 2.3.3 with numerical examples.

Growth of κ (Φ)

In our first example, we study how fast the condition number κ(Φ) grows for a system

with scalar measurements and how it compares to the lower bound in Theorem 2.3.2.

Figure 2.3.2 compares the computed condition number κ(Φ) and the lower bound 2n/2

n

stated in Theorem 2.3.2 for the observability matrix Φ corresponding to a symmetric
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system matrix A and measurement vector cT with unit weights αj = 1, j = 1, . . . , n,

i.e. diag(α1, . . . , αn) = In. Here we consider A with eigenvalues corresponding to

equispaced nodes on [−0.9, 0.9], λ
(1)
j = −0.9+ j−1

n−1
1.8, j = 1, . . . , n and to Chebyshev

nodes λ
(2)
j = cos((2j−1)π/2n), j = 1, . . . , n. Since these two collocation methods are

very common in function reconstruction problems, we considered them relevant for our

comparison. Note that since the condition number does not depend on eigenvectors,

any Φ corresponding to A with the same eigenvalues yield the same results.
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Figure 2.3.2: Comparison of κ(Φ) for λ
(1)
j , λ

(2)
j and lower bound 2n/2

n

As can be seen in Figure 2.3.2, κ(Φ) grows exponentially for both equispaced

eigenvalues λ
(1)
j and Chebyshev eigenvalues λ

(2)
j and is much larger than the lower

bound in Theorem 2.3.2. Hence, we observe that κ(Φ) for systems with scalar mea-

surements increases very rapidly as the dimension of the system increases and our

accuracy for recovering the initial state x0 may suffer for high dimensions.
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Optimal Preconditioner

In our next example, we would like to investigate how much we can improve κ(Φ)

for a system with scalar measurements by using the optimal weights αj in (2.3.6).

Figure 2.3.3 and Figure 2.3.4 compare the computed condition number κ(Φ) of the

observability matrix Φ corresponding to measurement vector cT with unit weights

α
(1)
j = 1, j = 1, . . . , n and optimal weights α

(2)
j =

√

Bj

Aj
, j = 1, . . . , n. Here again

we consider the cases where the symmetric system matrix A has eigenvalues corre-

sponding to equispaced nodes on [−0.9, 0.9], λ
(1)
j = −0.9 + j−1

n−1
1.8, j = 1, . . . , n and

to Chebyshev nodes λ
(2)
j = cos((2j − 1)π/2n), j = 1, . . . , n. Figure 2.3.3 compares

the condition number κ(Φ) for α
(1)
j and α

(2)
j for equispaced eigenvalues, and Figure

2.3.4 compares κ(Φ) for α
(1)
j and α

(2)
j for Chebyshev eigenvalues.

Figure 2.3.3: κ(Φ) for equispaced

nodes λ
(1)
j with α

(1)
j = 1 and α

(2)
j =

√

Bj

Aj

Figure 2.3.4: κ(Φ) for Chebyshev

nodes λ
(2)
j with α

(1)
j = 1 and α

(2)
j =

√

Bj

Aj

As can be seen in the Figures 2.3.3 and 2.3.4, the optimal weights α
(2)
j does improve

κ(Φ) somewhat about up to n = 40. Since the process for finding α
(2)
j includes

inverting the Vandermonde matrix, possibly for large values of n the accuracy of

inversion is low, and we observe that using the unit weights α
(1)
j yields better results.
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Thus, we conclude that using the optimal weights does not improve the conditioning

in a sensible manner.

By the numerical experiments above we see that for systems with scalar measure-

ments the condition number κ(Φ) of the observability matrix grows exponentially and

hence, the accuracy of recovering x0 might be low for high dimensional systems. In

addition, we cannot improve κ(Φ) much by employing the weights αj only.
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Chapter 3

TIME-VARIANT MEASUREMENT SCHEMES

3.1 Introduction

In Chapter 2, we considered the situation in which the measurement matrix C in

(1.2.3) was invariant for all time steps. Given the system matrix A in (1.2.3), we used

the conditioning of the observability matrix as a metric to select the best C from a

collection of possible measurement matrices. A natural extension of this idea would

be to choose an optimal measurement matrix Ck at each time step k as the system is

propagating.

To investigate this problem, we consider systems with time-variant measurement

vectors, i.e. Ck = cTk ∈ R
n. Hence we study the system, k = 0, 1, 2, . . .

xk+1 = Axk (3.1.1a)

yk = cTk xk, (3.1.1b)

where xk, ck ∈ R
n, A ∈ R

n×n, and yk ∈ R.

We let the measurement vector ck change over time and select a ck at each time

step k from a library of possible measurements (sensors) S = {s1, · · · , sm}, where

each si represents a different measurement vector. The collection of measurement

vectors ck in (3.1.1) over time is called a schedule.

Definition 3.1.1. [(Sensor) Schedule] {ck}tfk=t0
is called a schedule for the system

(3.1.1) from time step t0 to tf , if ct0 is used as the measurement vector at time t0,

ct0+1 at time t0 + 1 and so on until ctf is used at time tf .
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Since the measurement vector is time-variant in (3.1.1), we need to generalize to

definition of the observability matrix.

Definition 3.1.2. [Observability Matrix for Time-Variant Schemes] The ob-

servability matrix Φ = Φ (A, ck) for the system (3.1.1) (from time k = 0 to n− 1) is

defined as

Φ =



















cT0

cT1A

...

cTn−1A
n−1



















. (3.1.2)

As discussed in Chapter 2, singular values and the conditioning have been used

as a metric of observability for time-invariant measurement systems. For example,

in [52] the minimum singular value and condition numbers are used as metrics of

observability to optimize the sensor locations. Since reconstructing the initial state

x0 means solving the system Φx0 = y in (1.2.6), it is reasonable to consider the

condition number κ(Φ) of the observability matrix as a metric of observability. In

addition, if white noise is present in measurements, i.e. if the measurements are in

the form

yk = cTk xk + νk,

where νk ∼ N [0, σ2] for some small variance σ2, a small condition number helps

alleviating the effects of the noise. This follows by the definition of the condition

number, since the relative error for reconstructing x0 is linearly dependent on κ (Φ)

and the perturbation, νk.

The approach to determining a schedule {ck}n−1
k=0 is to minimize the condition

number κ (Φ) corresponding to the system
{

A, cTk
}n−1

k=0
. In this chapter, we first

48



prove the existence of a schedule that ensures an observable system. We then briefly

discuss and present some results for designable measurements. Thereafter we study

column subset selection and present a new sensor scheduling algorithm. Finally, as

an application of the algorithm, we investigate a diffusive system and present some

numerical results.

3.2 Existence of a Schedule

Theorem 3.2.1 shows that if the library S covers all the eigenmodes of AT then

there always exists a schedule {ck}n−1
k=0 that guarantees observability for the system

{A, ck}n−1
k=0.

Theorem 3.2.1. Consider the system (3.1.1). Assume that A has n non-zero distinct

eigenvalues, {λj}nj=1. Let S = {si}mi=1 be a library of possible measurement vectors and

{qj}nj=1 be the right eigenvectors of AT . If for each qj there exists an si such that si

has a non-zero weight along qj in the eigenbasis of AT , then there exists a schedule

{ck}n−1
k=0 such that {A, ck}n−1

k=0 is observable.

Proof. Since AT has n distinct eigenvalues, {qj}nj=1 constitute a basis for Rn. Then

each measurement vector si can be expressed in the eigenbasis of AT as

si = Qai,

where Q =

[

q1 · · · qn

]

is the matrix of eigenvectors of AT and ai is the vector

of coefficients for si.

Without loss of generality, assume that s1 has the most non-zero coefficients in

the eigenbasis Q with Z1 entries corresponding to eigenvectors {q1, . . . ,qZ1
}, i.e.

argmaxi∈{1,...,m} ‖ai‖0 = a1, where the 0-norm corresponds to the total number of non-

zero elements in a vector. For convention we set ζ1 = Z1. Now consider the coefficients
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a
(1)
i corresponding to the eigenvectors Q(1) = {qZ1+1, . . . ,qn} for the remaining si.

Suppose s2 has the most non-zero coefficients in Q(1), i.e. argmaxi∈{2,...,m} ‖a(1)
i ‖0 =

a
(1)
2 , with ζ2 entries corresponding to {qZ1+1, . . . ,qZ2

} where Z2 = ζ1+ζ2. We continue

in this fashion and finally pick sr, r ≤ m, so that it has the most non-zero coefficients

in Q(r−1) =
{

qZr−1+1, . . . ,qZr

}

with ζr entries where Zr = ζ1 + . . . + ζr = n. Hence,

{s1, . . . , sr} ⊆ S cover all the eigenmodes of AT . In other words,

s1 = Q

































a1,1
...

a1,Z1

0

...

0

































, s2 = Q







































...

a2,Z1+1

...

a2,Z2

0

...

0







































, . . . , sr = Q



















...

ar,Zr−1+1

...

ar,Zr



















.

Now consider the following schedule {ck}n−1
k=0 :

c0 = s1

c1 = s1

... =
...

cZ1−1 = s1

cZ1
= s2

... =
...

cZ2−1 = s2
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cZ2
= s3

... =
...

cZr−1
= sr

... =
...

cZr−1 = sr.

The schedule {ck}n−1
k=0 results in the following observability matrix

ΦT = QVr,

where

Vr =







































a1,1 · · · a1,1λ
Z1−1
1

...

...
. . .

...

a1,Z1
· · · a1,Z1

λZ1−1
Z1

0
. . .

...

... ar,Zr−1+1λ
Zr−1

Zr−1+1 · · · ar,Zr−1+1λ
Zr−1
Zr−1+1

...
. . .

...

0 ar,Zrλ
Zr−1

Zr
· · · ar,Zrλ

Zr−1
Zr







































,

consisting of r many blocks of ζi× ζi Vandermonde-like matrices Vi,i on the diagonal,

corresponding to different eigenvalues λj and coefficients ai,

Vr =



















V1,1(a1;λ1, . . . , λZ1
)

...
...

0 V2,2(a2;λZ1+1, . . . , λZ2
)

...
. . .

...

0 0 · · · Vr,r(ar;λZr−1+1, . . . λZr)



















.

Since each Vi,i is full rank, Vr is full rank as well. Thus Φ is full rank and, we conclude

that the schedule {ck}n−1
k=0 makes the system observable.
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Note that even if we change the time steps when sensors {si}ri=1 are used in the

schedule, the system would still be observable. Hence, how many times a particular

measurement vector si is selected is more critical for ensuring observability than at

what time steps k it is used. In particular, if si helps us recover ζi many eigenmodes,

it has to appear ζi times in the schedule for an observable system. However, the order

of the sensors clearly matter when a metric is introduced.

3.3 Designable Measurements

Theorem 3.3.1 and 3.3.2 assume that we can design ck without restrictions.

Theorem 3.3.1. Assume A in (3.1.1) is symmetric and full rank, and let pj be

the normalized eigenvectors of A and λj the corresponding eigenvalues. Now let, for

k = 0, . . . , n− 1,

ck =
1

(λk+1)
k
pk+1.

Then for the system {A, cTk }n−1
k=0, κ(Φ) = 1.

Proof. Consider the observability matrix Φ

ΦT =

[

c0 Ac1 A2c2 · · · An−1cn−1

]

=

[

p1
1
λ2

Ap2
1
λ2

3

A2p3 · · · 1
λn−1
n

An−1pn

]

=

[

p1 p2 p3 · · · pn−1

]

.

Since A is symmetric, pi are orthonormal. Hence, κ(Φ) = 1.

Thus for the simple case where A is symmetric, assuming ck can be designed

without restrictions, we can find a schedule {ck} which minimizes κ (Φ). However, it
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should be noted that if A has eigenvalues near zero, the reciprocal terms in ck result in

numerical instability and the condition number might in fact diverge for these cases.

Theorem 3.3.2 provides an alternative schedule for the case where A does not need

to be symmetric.

Theorem 3.3.2. Assume A in (3.1.1) is invertible and {r0, r1, . . . , rn−1} is a set of

orthonormal vectors in R
n. Let

cTk = rTk (A
k)−1.

Then for the system
{

A, cTk
}n−1

k=0
, κ (Φ) = 1.

Proof. Consider the measurement yk of the system state xk = Akx0

yk = cTk xk

= cTkA
kx0

= rTk (A
k)−1Akx0

= rTk x0.

Then the observability matrix Φ becomes

Φ =













rT0
...

rTn−1













.

Since {r0, r1, . . . , rn−1} is orthonormal, κ (Φ) = 1.

Thus we see that as long as there are no constraints on the measurement vectors

ck, an optimal schedule such that κ (Φ) = 1 can be readily designed.
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3.4 Sensor Scheduling

Now assume that instead of being able to design our measurement vectors, we have

a library of sensors S = {s1, . . . , sm} from which we can choose our measurement

vector ck at each time step k. Then our aim is to choose the best possible sensor si

at each time step so that we minimize κ (Φ). However we cannot immediately choose

the best conditioned subset of S, since a sensor si used at time k, i.e. ck = si, results

in the row sTi A
k of the observability matrix Φ.

To approach this problem, we first create the mn × n matrix M = ΦT (A,S) as

though we are using all the possible sensors in S:

M =

[

S | ATS | · · · |
(

AT
)n−1 S

]

, (3.4.1)

where
(

AT
)k S =

(

AT
)k
[

s1 · · · sm

]

, k = 0, . . . , n− 1.

We now seek the best conditioned n× n submatrix ΦT =

[

φ0 · · · φn−1

]

of M

such that the columns of ΦT satisfy φk ∈
(

AT
)k S, k = 0, . . . , n−1. This requirement

is consistent with (3.1.1), since only one sensor can be used at each time step. Each

column φk =
(

AT
)k

si, for some i ∈ {1, . . . , m}, of ΦT corresponds to a different

possible sensor, si. We can generate our schedule {ck}n−1
k=0 by using the fact that Φ

corresponds to the observability matrix of {A, ck}n−1
k=0 , where

φk =
(

AT
)k

si =
(

AT
)k

ck. (3.4.2)

3.4.1 Column Subset Selection

The problem of finding the best conditioned submatrix of a given matrix is called

column subset selection problem, [7, 8], and can be formulated as follows: Given a
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matrix A with n columns and an integer k < n, we wish to determine a permutation

matrix P such that

AP =

[

A1 A2

]

,

where A1 has the best conditioned k columns of A, and A2 has the remaining n− k

columns. The desirable conditions for subset selection, [8], can be formulated as

i. The smallest singular value σk(A1) of A1 should be as large as possible.

ii. The best linear combination of A1 should be close to A2, i.e. minE ‖A1E−A2‖,

where E is an elementary column operator, should be as small as possible. (A2

should be well represented by A1)

3.4.2 RRQR Factorization

One known solution for this problem, when k is the numerical rank ofA, is achieved

using Rank Revealing QR (RRQR) factorization, [10, 20, 23]. Given an m×n matrix

A with n ≥ m, RRQR factorization gives the permutation matrix P that yields the

QR factorization,

AP = QR = Q







R11 R12

0 R22






.

The numerical rank k of A can then be determined as follows [20]: R11 is well condi-

tioned, ‖R22‖2 is small and R12 is linearly dependent on R11.

The following definitions and lemmas are needed to perform RRQR factorization.

Definition 3.4.1. An m× n matrix A has numerical rank k if

σk(A) ≫ σk+1(A) = O(εmach),
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where εmach is the machine precision.

Lemma 3.4.1. [20] For any permutation matrix P , by the interlacing property of

singular values, [18], we have

σi(R11) ≤ σi(A) and σj(R22) ≥ σk+j(A)

for 1 ≤ i ≤ k and 1 ≤ j ≤ n− k. Thus,

σmin(R11) ≤ σk(A),

‖R22‖2 = σmax(R22) ≥ σk+1(A).

Assume σk(A) ≫ σk+1(A) = O(εmach), i.e. the numerical rank of A is k. Then we

seek P so that σmin(R11) is maximized and σmax(R22) is minimized.

Lemma 3.4.2. [23] If A = QR is the QR factorization of A with R =







R11 R12

0 R22







and R11 ∈ R
k×k, and if

σmin(R11) ≫ σmax(R22) = ‖R22‖2 = O(εmach),

then A has numerical rank k.

Proof. Follows from Lemma 3.4.1.

Now we give a definition of RRQR factorization.

Definition 3.4.2. [23] Assume that a matrix A ∈ R
m×n has numerical rank k. If

there exists a permutation P ∈ R
n×n such that

AP = QR = Q







R11 R12

0 R22






,
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where R11 ∈ R
k×k and

σmin(R11) ≫ ‖R22‖2 = O(εmach),

then AP = QR is called a Rank Revealing QR (RRQR) factorization of A.

RRQR factorization has been utilized for subset selection problem in different con-

texts, such as rank deficient least squares, subset selection, and matrix approximation

problems [8, 10]. Here we find an RRQR factorization of M = ΦT (A,S) in (3.4.1) as

MP = Q







R11 R12

0 R22






=






ΦT | Q







R12

R22












,

yielding the best conditioned columns of M in ΦT , from which we determine our

sensor schedule {ck}n−1
k=0.

3.4.3 Sensor Scheduling Algorithm

We now present a new sensor scheduling algorithm which utilizes RRQR factor-

ization for finding the schedule {ck}n−1
k=0.
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Algorithm 3.1 Sensor scheduling algorithm using RRQR factorization

i. Create M = ΦT (A,S) in (3.4.1).

ii. Find the permutation matrix P using RRQR factorization MP = QR to obtain

the best conditioned columns of M .

iii. Using the first n columns of P , generate Pn so that we work only with the n

columns Mn = MPn of M .

iv. Determine which time steps k and sensors si have been used in Mn.

v. If some time steps are repeated in Mn, find the earliest time step k0 which has

been repeated and the first sensor s0 used in this time step.

vi. Update M by deleting the column M(k0, s0) corresponding to the time step k0

and sensor s0 in M .

vii. Repeat steps ii-vi until no time steps are repeated in Mn.

viii. Reorder the columns of Mn to obtain M̂n = ΦT where the order of the columns

follows the order of time steps.

ix. Obtain the schedule {ck}n−1
k=0 using (3.4.2).

Algorithm 3.1 essentially deletes one column at a time from M so that in the end

each column of Mn comes from a different time step. Hence, it finds the best columns

from each time block
(

AT
)k S and creates a schedule {ck}n−1

k=0 which minimizes κ (Φ).

The performance of Algorithm 3.1 depends mainly on the routines used for RRQR

factorization. Therefore we now discuss several column subset selection algorithms.
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3.5 Column Subset Selection Algorithms

In this section, several different algorithms for column subset selection with their

computational complexities are discussed and two of them are compared numerically.

3.5.1 RRQR-MEX

RRQR-MEX provides a MATLAB routine rrqr, implementing an interface to the

FORTRAN RRQR factorization codes (ACM 782), [4]. The routine has been devel-

oped in [46], and the complexity of the ACM 782 algorithm is O(nk), [7].

3.5.2 Pan Algorithm

This algorithm was developed in [43]. Rather than an RRQR factorization, it

creates a Rank Revealing LU (RRLU) factorization of the matrix A. The RRLU

factorization for a square matrix can be described as follows.

Theorem 3.5.1. Let A ∈ R
n×n, 1 ≤ k < n and σ1 ≥ · · · ≥ σk ≥ σk+1 ≥ · · · ≥ σn ≥ 0

be the singular values of A. Then there exist permutations Q and P such that

QTAP =







L11 0

L21 In−k













U11 U12

0 U22






,

where L11 is unit lower triangular and U11 is upper triangular,

σk ≥ σmin(L11U11)

and

σk+1 ≤ ‖U22‖.
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An algorithm for the factorization is provided (Algorithm 2, [43]). A comparison

to other existing RRQR factorization algorithms yields comparable results, and the

complexity is O(n3), [7].

3.5.3 Pseudoskeleton Approximation

An investigation of how well A can be approximated with a pseudoskeleton ap-

proximation is performed in [19].

Definition 3.5.1. Let A ∈ R
m×n, n > m and rank(A) = r. Then there exists a

non-singular r × r submatrix Â in A. If Â lies in rows i ∈ Î ≡ {i1, . . . ir} and in

columns j ∈ Ĵ ≡ {j1, . . . jr}, i.e. Â = A(Î , Ĵ), then

A = CÂ−1R

is called a skeleton decomposition of A, where

C = A(I, Ĵ), R = A(Î , J)

I ≡ {1, . . . , m}, J ≡ {1, . . . , n}.

Now, let rank(A+E) = r, where ‖E‖ ≈ 0 for some matrix norm. Then for sufficiently

small ε

‖A− CÂ−1R‖2 = O
(

‖A‖22‖Â−1‖22ε
)

.

If we replace Â−1 with a more suitable matrix B, then we can approximate A by

the matrix B = CGR. Any matrix of the form B = CGR is called a pseudoskeleton

component of A.
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Theorem 3.5.2. Assume A, F ∈ R
m×n, rank(A − F ) ≤ r, and ‖F‖2 ≤ ε for some

ε > 0. Then there exists a pseudoskeleton component CGR such that

‖A− CGR‖2 ≤ O
(

ε
√
r
(√

m+
√
n
))

.

Methods for finding a suitable G utilizing the SVD decomposition of Ψ = Â− F̂ ,

where Â and F̂ denote the r × r submatrices which occupy the intersections of rows

Î and columns Ĵ in A and F , have been presented in [19]. In addition, a MATLAB

implementation SkeletonApproximation of this method has been presented in [6]. The

complexity of the implementation is O (m2n+ n3).

3.5.4 CUR Decomposition

Similar to pseudoskeleton approximation, CUR decomposition, [37], approximates

A so that A can be described as a product of its actual rows and columns.

Let Ak be the rank-k SVD approximation of A. Then CUR decomposition seeks

a low-rank approximation CUR ≈ A, where C, R contain small number of actual

columns and rows of A, respectively, and U a user constructed matrix such that

‖A− CUR‖F ≤ ‖A− Ak‖F + ε‖A‖F

for some ε > 0. However the problem with this decomposition is that it does not

return a fixed number of columns and instead returns an expected number of columns.

Hence, it cannot be used for the sensor scheduling problem.

3.5.5 Numerical Examples

We compare RRQR-MEX and pseudoskeleton approximation by creating random

matrices and comparing the condition number of the returned submatrices and run-
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times. All of the examples are implemented in MATLAB on a Linux machine with a

3.20 GHz CPU and 8 GB ram.

(i) m = 80, n = m2

In this example, 100 random matrices of size 80 × 802 have been created with 80

columns being selected using the RRQR-MEX and SkeletonApproximation. In the

first plot the condition numbers of 80 × 80 submatrices returned by the algorithms

are presented. In the second plot, corresponding run-times in seconds are shown.
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Figure 3.5.1: Condition numbers and run-times for two algorithms

Observe from Figure 3.5.1 that the SkeletonApproximation is nearly 100 times

slower. However, since RRQR-MEX is originally coded in FORTRAN and Skeleton-

Approximation is coded in MATLAB, the run-times cannot be taken as a compari-

son of their complexities. Rather, we can only conclude that the implementation of

pseudoskeleton approximation in MATLAB takes longer than RRQR-MEX’s imple-

mentation.
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(ii) m = 10, · · · , 80, n = m2

In this example, we allow the dimension of the matrices to change. We observe how

the condition numbers and the run-times for each algorithm scale. We increase the

number of the rows m of the matrix from 10 to 80, and create 100 random matrices

of size m×m2 for each m. Then we select m columns from each random matrix using

the algorithms. The averages of the results for 100 matrices have been computed and

plotted against m (dimension of the system) in Figure 3.5.2.
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Figure 3.5.2: Average condition numbers and run-times of 100 random matrices for
two algorithms as m increases

We can again see that the condition numbers are comparable for both algorithms

and SkeletonApproximation is about 100 times slower than RRQR-MEX using MAT-

LAB.

3.6 Diffusion Equation with DST Measurements

We now present a numerical example using diffusion equation to discuss the merits

of sensor scheduling using Algorithm 3.1. Consider the N ×N second order centered
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difference matrix D2 for a boundary value problem with N + 2 collocation points on

[0, 1]

D2 =
1

h2



















−2 1

1 −2
. . .

. . .
. . . 1

1 −2



















,

where

h =
1

N + 1
.

It is known, [35], that D2 has the eigenvalues, p = 1, . . . N ,

λp(D2) =
2

h2
(cos(pπh)− 1) ,

and eigenvectors

up =

[

sin(pπh) · · · sin(pπNh)

]T

. (3.6.1)

We consider the forward finite difference solution of the diffusion equation

ut = αuxx (3.6.2)

for some α > 0 on [0, 1] with Dirichlet boundary conditions, u(0) = u(1) = 0, as our

system state. We have the following finite difference matrix as our system matrix A

A =



























1− 2γ γ 0 · · · 0

γ 1− 2γ γ
. . .

...

0 λ 1− 2γ
. . . 0

...
. . .

. . .
. . . γ

0 · · · 0 γ 1− 2γ



























,
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where

γ = α
∆t

h2
.

Our system state is the numerical solution xk = ū(x, t) of the heat equation discretized

over time and space. For stability, we use

∆t = rh2, (3.6.3)

with r < 1
2
. For the measurements vectors, we use up in (3.6.1), i.e. the discrete

sine transform (DST) library. The library S = {u1, . . . ,uN} of possible measurement

vectors can then be written as

S =





















































sin(kπ 1
N+1

)

sin(kπ 2
N+1

)

...

sin(kπ N
N+1

)





















































N

k=1

.

Thus we have the scalar measurement system (3.1.1) where the measurement vector

ck is chosen at each time step k from the DST library S.

3.6.1 Eigenstructure of A and ΦT (A,U)

We rewrite the system matrix A in terms of D2 as

A = I + α∆tD2.

Then A has eigenvalues

λp = 1 + α∆t

(

2

h2
(cos(pπh)− 1)

)

= 1 + 2γ (cos(pπh)− 1) ,
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p = 1, . . . N, and the same eigenvectors up given in (3.6.1).

Defining U =

[

u1 · · · uN

]

, where up is given in (3.6.1), we can generate

M = ΦT (A,U) as in (3.4.1)

M =

[

U ATU · · ·
(

AT
)N−1

U

]

.

Now define the matrix of eigenvalues of D2 and A, as Λ(D2) and Λ(A), respectively.

Then

D2 = UΛ(D2)U
−1 and A = UΛ(A)U−1.

Since U is the DST matrix we have

UTU =

(

N + 1

2

)

I ⇒ U−1 =

(

2

N + 1

)

UT .

Thus,

AT =

(

2

N + 1

)

UΛ(A)UT

ATU =

(

2

N + 1

)

UΛ(A)UTU

= UΛ(A).

Therefore,

(

AT
)k

U = UΛk(A)

=

[

λk
1u1 · · · λk

NuN

]

.

Thus we see that each time block
(

AT
)k

U in M is a column-wise weighted DST

matrix U using the powers of the corresponding eigenvalues as weights. Moreover,
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for each time block
(

AT
)k

U we have the following singular values, p = 1, . . . N, and

k = 0, . . . , n− 1,

σp

(

(

AT
)k

U
)

=

√

N + 1

2
λk
p.

3.6.2 Possible Sensor Schedules and Observability Matrices

For the system to be observable, each ck must be a different eigenvector up by the

PBH eigenvector test (Theorem 2.1.1). Since the up are orthogonal to each other, all

of them are needed to span R
n. Therefore, without loss of generality, any observability

matrix Φ has the form

ΦT =

[

λk1
1 u1 · · · λkN

N uN

]

,

where ki ∈ {0, . . . , N − 1} , i = 1, . . . , N .

Let L =
{

λk1
1 , . . . , λkN

N

}

. Since the up are orthogonal, the singular values of ΦT

are
√

N+1
2

L. Thus, since λp < 1, we can express the condition number κ
(

ΦT
)

of any

observability matrix Φ as

κ
(

ΦT
)

=
maxL

minL
=

1

minL
.

Algorithm 3.1 for the diffusion problem always picks up the higher frequencies first

before going down sequentially. This makes intuitive sense, since large frequencies

correspond to small eigenvalues, and they decay quickly as time progresses. If we

construct the observability matrix using Algorithm 3.1 we get

ΦT
rrqr =

[

uN λN−1uN−1 · · · λN−1
1 u1

]

,

which yields the singular values, p = 1, . . . N,
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σp

(

ΦT
rrqr

)

=

(
√

N + 1

2

)

λp−1
N+1−p.

Hence the condition number for Φrrqr is

κ
(

ΦT
rrqr

)

=
1

|min{λN−1, λ2
N−2, λ

N−1
1 }| .

While it is difficult to prove that the schedule Algorithm 3.1 returns is optimal

for large N , an exhaustive search up to dimension N = 10 demonstrated that the

schedule given by Algorithm 3.1 was in fact optimal in every case. We now compare

sequential sampling with our Algorithm 3.1.

3.6.3 Comparison of Sequential Sampling and Algorithm 3.1

Figures 3.6.1 and 3.6.2 compare the results of Algorithm 3.1 to sequential sam-

pling, that is ck−1 = uk, k = 1, . . . , N , for the diffusion equation with the initial state

given by u0(x) = x(1− x). We chose the parameters N = 80, α = 0.1 in (3.6.2) and

r = 0.4 in (3.6.3). In Figure 3.6.1, the first plot shows the sensors (up) chosen by Al-

gorithm 3.1, and the second plot displays the measurements yk = cTk xk corresponding

to sequential schedule and Algorithm 3.1 (RRQR) schedule.
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Figure 3.6.1: Sensors chosen by Algorithm 3.1 and measurements for sequential and
Algorithm 3.1 schedules

Figure 3.6.2 compares the pointwise reconstruction errors of x0 for both schedules.

The corresponding condition numbers of observability matrices and the two norm
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reconstruction errors are also included in the plot legends. As we observe, Algorithm

3.1 yields a five orders of magnitude improvement in the condition number, and a

four orders of magnitude improvement in the reconstruction. We note that numerical

tests verify that using a random sampling instead of sequential sampling generally

yields similar results.
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Figure 3.6.2: Reconstruction errors for sequential and Algorithm 3.1 schedules

3.6.4 Noisy Measurements

While either scheduling algorithm is sufficiently robust in the absence of noise,

the condition number matters when noise is present, since the perturbation in the

measurements is amplified by the condition number. We demonstrate this below.

Assume that the measurements yk are corrupted by additive white noise so that

yk = cTk xk + νk,
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where νk ∼ N [0, σ2]. To analyze Algorithm 3.1 in noisy environments, we must

consider the relation between relative error, condition number and the signal-to-noise

ratio (SNR).

Theorem 3.6.1. The relative error in reconstructing x0 is linearly dependent on the

condition number of Φ and the inverse of SNR.

Proof. For the noiseless case we have

Φx0 = y,

and in the presence of the noise we have

Φx̂0 = y + ν,

where y is the vector of measurements and ν is the noise vector. Therefore Φ(x0 −

x̂0) = ν, and

‖x0 − x̂0‖ ≤ ‖Φ−1‖‖ν‖.

Now consider the relative error

‖x0 − x̂0‖
‖x0‖

≤ ‖Φ−1‖‖ν‖
‖x0‖

≤ ‖Φ−1‖‖ν‖
‖x0‖

‖Φ‖‖x0‖
‖y‖

≤ κ (Φ)
‖ν‖
‖y‖ . (3.6.4)

By (3.6.4), we can clearly see that the relative reconstruction error is dependent

on the condition number. Hence, keeping the condition number low helps to reduce

the effect of the noise on the reconstruction.

We now show some numerical results regarding the preceding discussion.
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3.6.5 Comparison of Sequential Sampling and Algorithm 3.1 with Noisy

Measurements

We simulate the noisy case by changing the variance σ2 of the noise from 10−16 to

10−1 and observe its effects on the relative error. We also plot the bound in (3.6.4)

to see how tight it is.

Figure 3.6.3 compares the results for sequential sampling and Algorithm 3.1 us-

ing the same parameters as in the previous example for N = 40, 80. We made 100

simulations for each variance value and plotted the average relative errors along with

the bounds.
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Figure 3.6.3: Relative errors for sequential sampling and Algorithm 3.1 for N =
40, 80

Observe that the relative error is improved in the order of O(102) for N = 40, and

in the order of O(104) for N = 80. Hence we see that the ratio of the relative errors

follows the ratio of the condition numbers. Moreover, although the error resulting

from Algorithm 3.1 stays almost the same for both N = 40 and 80, the error for
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sequential sampling increases almost three orders of magnitude. We further observe

that the bound in (3.6.4) is tight in this example, suggesting that it can be used as a

good estimate for the relative error.
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Chapter 4

CONCLUSION

This dissertation discussed observability and its multiple uses for linear systems

with both time-invariant and time-variant measurement schemes. Specifically, we

employed the condition number as a metric of observability, and used this metric for

designing measurement schemes and generating sensor schedules.

For time-invariant measurement schemes, we reformulated PBH tests (Theorems

2.1.1 and 2.1.2) to provide guidelines for constructing a measurement vector or matrix

that ensures observability. The advantage of this approach is evident for designing

measurement schemes. With explicit methods, one can easily construct sensors which

would make a system observable, rather than trying to find a working sensor setup

from possible sensor configurations. Another advantage of this approach is that since

the construction of the measurement vector c in (2.1.2) depends on the eigenstructure

of A, one can easily design a sensor that emphasizes some eigenmodes of A over

the others by adjusting the weights αj in (2.1.2). Hence if some eigenmodes are

more critical than others, these eigenmodes can be measured more closely without

sacrificing overall observability.

Although the upper bound (2.3.5) for the condition number κ (Φ) of the observ-

ability matrix Φ is not tight, it provides insight about how the eigenvalues λj of A and

the weights αj of c affect κ (Φ). As suggested by the bound (2.3.5), λj play a bigger

role than αj in determining the magnitude of κ (Φ). Moreover, with our analysis on

the similarities between the Vandermonde matrix and Φ, we were able to observe that

for scalar measurement systems, adjusting the weights αj was not very effective for

diminishing κ (Φ).
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Observability has been utilized for sensor selection [13, 51, 52]; however to our

knowledge, it has not been studied much in the context of sensor scheduling. As

in the case for time-invariant measurement schemes, recent methods are useful for

selecting an optimal sensor configuration from a set of possible configurations with

respect to some observability metric. However, they are not practical for sensor

scheduling, where a different measurement has to be chosen at each time step rather

than selecting an optimal time-invariant measurement matrix. Using the condition

number metric, we provided results for designing schedules and presented a new sensor

scheduling algorithm using observability and RRQR factorization. One advantage of

Algorithm 3.1 is that it can be computed a priori, and hence does not require any

online computation time. Moreover, since Algorithm 3.1 only uses the system matrix

A in (3.1.1) and the set of possible sensors S for generating a schedule, it can reduce

the need for running or simulating the system in order to obtain a schedule.

As an application of Algorithm 3.1 we studied diffusion equation with DST mea-

surements. This analysis can be generalized to other applications where there is diffu-

sion in the system. One such application is MRI measurements, where the magnetic

field decays over time. In addition, since MRI measurements are computationally

expensive, being able to generate an a priori schedule would greatly assist reducing

the computational cost of finding a schedule online.

In this dissertation we focused on scalar measurement systems, i.e. yk = cTkxk ∈ R

in (3.1.1). One natural continuation of our work would be to study the multi-

dimensional measurement case where yk ∈ R
m. Moreover, systems with noisy mea-

surements have been discussed to a short extent in Section 3.6.4. The analysis for

noisy measurements can be expanded, and Algorithm 3.1 can be improved in order

to better address the case when measurements contain noise. For example, instead

of assuming a zero mean noise we can have the measurement noise νk ∼ N [µ, σ2] for
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some µ 6= 0 and can use ŷk = yk − µ to apply our method. In addition, we might

assume noise in the sensors, i.e si = s̄i +wi for some noise parameter wi, which will

result in a random observability matrix. We can also consider the case where the

sensors depend on a continuous parameter, i.e. si = si(θ), for some θ ∈ R, such as

gain of a sensor. We can utilize this property, for instance, to emphasize the eigen-

modes corresponding to small eigenvalues. In this case we would have a continuous

observability matrix.

Finally, since controllability is the dual concept of observability, a similar study

can be conducted for controllability.
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