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ABSTRACT

Micro-blogging platforms like Twitter have become some of the most popular sites for

people to share and express their views and opinions about public events like debates, sports

events or other news articles. These social updates by people complement the written news

articles or transcripts of events in giving the popular public opinion about these events. So

it would be useful to annotate the transcript with tweets. The technical challenge is to align

the tweets with the correct segment of the transcript. ET-LDA by Hu et al [9] addresses

this issue by modeling the whole process with an LDA-based graphical model. The system

segments the transcript into coherent and meaningful parts and also determines if a tweet

is a general tweet about the event or it refers to a particular segment of the transcript.

One characteristic of the Hu et al’s model is that it expects all the data to be available

upfront and uses batch inference procedure. But in many cases we find that data is not

available beforehand, and it is often streaming. In such cases it is infeasible to repeatedly

run the batch inference algorithm. My thesis presents an online inference algorithm for

the ET-LDA model, with a continuous stream of tweet data and compare their runtime and

performance to existing algorithms.
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Chapter 1

INTRODUCTION

Social Media and Microblogging platforms are becoming an integral part of journal-

ism and news consumption by the public. Twitter, a microblogging platform, as of today,

has over 302 million monthly active users[1]. Events in countries like Egypt and Tunisia,

where huge changes in the political landscape of the countries was facilitated by twitter as

the main tool of communication, demonstrates the effectiveness of social media as a plat-

form to disseminate information and in expressing and galvanizing opinions about events.

Such microblogging platforms are also fast becoming the venue for people to discuss their

opinions and share their thoughts about public events such as Presidential debates and

speeches. Indeed, often there is a spike in the usage of these platforms when such events

are occurring. These events also show the effectiveness of social media in covering news

events that are not covered in conventional media. In fact it is not uncommon these days

for conventional media to pick up news stories from the trending topics of the day from

social media.

A popular trend emerging in journalistic circles is to combine news stories from con-

ventional media with posts and updates from social media to enrich the experience of news

consumption. Annotating news stories with social media updates ensures that the readers

get an idea as to how that particular bit of news was received by the general public or how

certain prominent members of the society reacted to that particular bit of news. With the

huge amount of data generated by social media, annotating news stories with social media

posts cannot always be done manually and automated solutions will be required. It is also

common practice for many political organizations to run social media campaigns about the

causes they care about. Automated solutions would also be useful here.
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Twitter is one such platform where people share news stories and also voice their opin-

ion on various matters. The usage of the platform peaks during public events like debates

and speeches, when people use it to not only voice their own opinions, but also to view the

opinion of other people and communicate with them. This platform acts as a virtual town

square where people discuss various events. Engaging in this platform enriches the expe-

rience of the events like the Presidential Debate or Speeches. This also serves as a source

of data, like a survey or a poll, to measure public sentiment about the events. This creates

an opportunity for journalists and other political scientists to gauge the public mood about

different aspects discussed in the debate.

The technical challenge here is to retrieve tweets relevant to particular segment of the

story, in other words to align tweets with the respective parts of the story which they refer

to in a meaningful way. ET-LDA by Hu et al [9] attempted this problem by modeling the

problem as a LDA-based probabilistic graphical model with a generative story, and then

infer the parameters using approximate inference techniques like Markov Chain Monte

Carlo.

ET-LDA is a joint topic model to segment the transcript and also infer the topic dis-

tributions of the different segments and the segment indicators of the tweets. ET-LDA is

different from earlier works in that, it takes the topical influence of tweets into account

while jointly modeling the transcript segmentation and the topic-word distributions.

ET-LDA however requires the complete dataset to be present to run the inference algo-

rithm, in other terms it is a batch system. But Twitter is a live stream of data and in many

situations like a live event, we do not have a complete corpus of tweets for us to run the ET-

LDA’s batch inference. Hence the need for an online inference algorithm, which infers and

updates the model parameters as we obtain more data from the twitter stream. Although

online inference algorithms exist for graphical models like Latent Dirichlet Allocation [6],

they need to be adapted and modified to work for the joint model of ET-LDA.

2



The contribution of the thesis is developing an online inference procedure for the ET-

LDA graphical model. This involved altering the update rules for the parameter estima-

tion of batch inference procedure, and building a system that is able to handle the online

stream of data and continuously update the values of the latent variables. We also provide

a systematic comparison of online and batch versions of ET-LDA. In particular we made a

comparison of runtime of the online inference algorithm to the batch algorithm. We also

compared the accuracy of the parameter estimates to those obtained by the batch version

and how well they converge to the true values of the latent variables.

This thesis is organized in the following manner, in chapter 2 we describe the literature

related to ET-LDA, such as text segmentation, event analysis, and annotating news articles

with related social media updates. In chapter 3 we give a brief overview of the ET-LDA

system. In chapter 4 we describe the online inference algorithm and its implementation. In

chapter 5 we describe the experiments and the evaluation of our system. In chapter 6 we

give the concluding remarks and possible extensions of the work.
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Chapter 2

RELATED WORK

Online ET-LDA is an extension of the existing work on ET-LDA [9]. ET-LDA deals

with finding the dominating topics of the different segments of the transcript and the indi-

vidual tweets. Simultaneously it also segments the transcript and aligns the tweets with a

segment of the transcript based on the topic distributions of the tweet and the segment. The

graphical model of ET-LDA is an extension of the Latent Dirichlet Allocation and jointly

models, finding latent topics and finding segment boundaries in the transcript. This work

is an extension of topic modeling techniques like Latent Dirichlet Allocation by Blei em et

al [5], which finds latent topics in a given set of documents. Blei’s work uses Variational

Bayes for the inference procedure, which gives an exact analytical solution to an approxi-

mation of the posterior. Griffith em et al [7] proposed a Gibbs sampling procedure for the

same model, which is a Monte Carlo technique for providing a numerical approximation to

the exact posterior distribution through sampling.

One of the other appealing aspects of our work is the thematic alignment of tweets and

segments. Shraer et al [12] propose a method of annotating news articles with social media

updates using a publish-subscribe pattern. Barnard et al [3] propose MOM-LDA which is

a joint graphical model to align image segments with their relevant text annotations.

A related direction of research, one which has influenced our work to a considerable

extent, has been to extend LDA to a continuous stream of online data. Online LDA has

been approached with different methods. Hoffman et al [8] proposed an online Variational

Bayes inference algorithm, which they show converges to a local optimum of the Variation

Bayes objective function. Canini et al [6] proposed an online procedure for the Gibbs

sampler, an iterative process to update the model parameters with a periodic resampling
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of a subset of the old data. It had results comparable to the batch Gibbs sampler. There

has also been research to extend Latent Dirichlet Allocation to short texts such as tweets.

Sahami and Heilman in [11] propose a method of augmenting the tweets which has been

used in this thesis.

ET-LDA by Hu et al [9] jointly models the problems of text segmentation and finding

topic distributions to find the segment boundaries, topic distribution and the tweet transcript

alignment, but does it with offline data. But an expectation of the model is to have the whole

transcript and the twitter corpus beforehand to run the inference algorithm. In this thesis

we propose an algorithm to do the inference with an online stream of twitter data.
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Chapter 3

ET-LDA OVERVIEW

This chapter gives a brief overview of ET-LDA [9]. ET-LDA is a joint topic model to

segment the transcript and align the tweets with transcript segments based on the similarity

of their topics.

The graphical model of the ET-LDA is shown in Figure 3.1 and the symbol description

are shown in Figure 3.2

Figure 3.1: Graphical Model for ET-LDA

The generative story of the ET-LDA has been outlined in Algorithm 2. Conceptually

ET-LDA tries to jointly model the event and the tweet, with the assumption that the event

influences the topics of the tweets. It is also assumed that a given tweet can be associated

with any segment of the event transcript, and is not restricted by any time window. Also

tweets could be a specific tweet, meaning the subject matter of the tweet is pertaining to

one particular segment of the transcript, or it could be a general tweet, meaning the content

of the tweet is about the whole event in general. ET-LDA also segments splits the transcript
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Figure 3.2: Symbol Description for ET-LDA Graphical Model

into sequential segments with each segment covering a particular set of topics. The latent

variables of the model inferred using approximate techniques like Markov Chain Monte

Carlo.

3.1 Gibbs Sampling

Gibbs sampling also called Markov Chain Monte Carlo is used when the joint distribu-

tion is not known explicitly or it is hard to sample from it directly, but the conditional distri-

bution of each variable is known and we can sample from these conditional distributions[2].

Gibbs sampling is only applicable when the random variableX has atleast two dimensions,

i.e. each point x is actually x =< x1, x2, ..., x3 > with k > 1.

The basic idea behind Gibbs sampling is that instead of probabilistically picking the

7



Algorithm 1 Generative Model of ET-LDA
1: for every para s ∈ S do

2: draw a segment choice indicator c(s) ∼ Bernoulli(δ(s))

3: if c(s) = 1 then

4: draw a topic mixture θ(s) ∼ Dirichlet(αθ)

5: else

6: draw a topic mixture θ(s) ∼ δ(θ(s−1), θ(s))

7: end if

8: for each word wis ∈ s do

9: draw a topic zis ∼Multinomial(θ(s))

10: draw a word wis ∼ φzis

11: end for

12: end for

13: for every tweet t ∈ T do

14: for each word wit ∈ t do

15: draw a topic changing indicator c(t) ∼ Bernoulli(λ(t))

16: if c(t) = 1 then

17: draw a topic mixture ψ(t) ∼ Dirichlet(αψ)

18: draw a general topic zit ∼Multinomial(θ(s))

19: else

20: draw a para indicator s ∼ Categorical(γ(t))

21: draw a specific topic zit ∼Multinomial(θ(s))

22: end if

23: end for

24: end for

8



value of the variable at the next time iteration x(t+1) directly, we sample each of the k

dimensions separately, conditioned on the other k − 1 dimensions. Such a sequence of

samples constitutes a Markov chain, and the stationary distribution of that Markov chain

is the desired joint distribution [2]. The generic Gibbs Sampling algorithm is as shown in

Algorithm 2.

Algorithm 2 Gibbs Sampling Algorithm

1: x(0) =< x
(0)
1 , x

(0)
2 , ...x

(0)
k >

2: for t=1 to T do

3: for i=1 to k do

4: x
(t+1)
i ∼ P (Xi|x(t+1)

1 , ..., x
(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
k )

5: end for

6: end for

Sampling the posterior distribution of a Bayesian network is specifically well suited to

Gibbs Sampling, since Bayesian networks are typically specified as a collection of condi-

tional distributions.

3.2 Collapsed Gibbs Sampling

A collapsed Gibbs sampler means that we marginalize the joint distribution over one or

more variables and then we sample from the distribution. For example if we have a distri-

bution P (x, y, z) we can computer P (x, y) by summing over all possible values of z. Now

though we have accounted for the variable z we do not have to deal with the complexities

of manipulating it explicitly as a parameter for every iteration of the sampling process. If

z, instead of a discrete variable is a continuous variable then we will be integrating over

all values of z instead of summing. Also if we are using conjugate priors, with distribu-

tions belonging to the same exponential family, which we do both in LDA and ET-LDA,

9



then the inference rules for the Gibbs sampler will become considerably simpler by using

a collapsed Gibbs sampling, where we integrate out the conjugate prior, as opposed to just

Gibbs sampling[10].

3.3 Batch Inference

The batch inference is shown in Algorithm 3. In batch inference we require the Gibbs

sampler to read the entire data into the memory and iteratively run the Gibbs sampler over

the entire dataset for every iteration. The symbol descriptions for the algorithm is given in

Figure 3.2
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Algorithm 3 Online Gibbs Sampling Algorithm for ET-LDA

1: Randomly assign the topic indicators zs,N and zt,N ∼ {1, 2, 3, ..., k} and the segment

indicators ct, cS, st

2: for t = 1 to T do

3: for every para p in transcript S do

4: // Sample the segment indicator for every para p to decide if the para will begin

a new segment or it will continue in the previous segment

5: cs ∼ P (cs|c−(s,i), ct, ws, wt, zs, zt, st)

6: // Sample topic indicator for every word i in the current paragraph

7: zs,i ∼ P (zs,i|z−(s,i), zt, ws, wt, cs, ct, st)

8: // Update the distributions θ(s), c(s), φ based on the new topic assignments

9: end for

10: for word i in all tweets do

11: // Sample the general/specific distribution indicator

12: ct ∼ P (c(t,i)|c−(t,i), cs, ws, wt, zs, zt, st)

13: // Sample the segment indicator for the specific distribution conditioned on ct

14: st ∼ P (st|s−(t,i), ct, cs, wt, ws, zt, zs)

15: // Sample the topic indicator for the word

16: zt ∼ P (zt,i|z−(t,i), zs, ws, wt, cs, ct, st)

17: // Update the distributions ψ(t), λ(t), γ(t), φ based on the new topic assignments

18: end for

19: end for

11



Chapter 4

ONLINE INFERENCE

In the previous chapter we gave a basic overview of the ET-LDA for learning the seg-

mentation of the transcript, the topic distributions of the segments and tweets, and the

transcript-tweet alignment. But the batch inference procedure for ET-LDA does not pro-

vide us with a way of inferring the above latent variables with online data. It does not

provide us a way of updating our latent variables in the light of new data.

In this chapter we outline the online inference algorithm that we developed to handle a

continuous stream of data.

4.1 Sampling Algorithm

The online inference algorithm updates the latent variables of the graphical model in the

light of new data without going through all the past data. The assumption with the proposed

algorithm is that the event transcript is available beforehand but the twitter stream arrives

online. We obtain new tweets with each iteration of the time.

The basic idea of the algorithm is, at each iteration we run the Gibbs sampler assum-

ing the transcript and the tweets that have arrived at that particular iteration as the whole

dataset. But as this forms a very small subset of the entire dataset, our estimate of the latent

distributions are bound to be off by a margin that is not insignificant. To offset this we

periodically reassign topic and segment indicators for a subset of the past tweets. If this re-

assignment of topic and segment indicators are done often enough then the latent variables

being inferred will converge to the true distribution [6].

In fact re-assigning the topics to past data too often and to the whole dataset rather than

a subset of the dataset will be like running the batch algorithm over and over again. But

12



this would not be optimal performance, hence our online inference algorithm avoids this

pitfall at the same time is able to converge to the true latent distribution values. The Online

inference procedure is outlined in Algorithm 1

The following table gives a description of the different symbols used in the update rules.

nksw Number of time topic k is assigned to word w in event transcript

nktw Number of times topic k is assigned to word w in tweets

nSik Number of times topic k appears in segment Si

ntSik Number of times topic k appears in tweets that align with segment Si

nik Number of times topic k appears in general distribution

M0
t Number of words that belong to a specific distribution in tweet t

M1
t Number of words that belong to a general distribution in tweet t

nis Number of times segment s is referred to in tweet t

S1
s Number of times the paragraph topic changes, i.e. number of times cs = 1

S0
s Number of times the paragraph topic changes, i.e. number of times cs = 0

We will now elaborate on each of the update rules and how we will sample from each

of the probability distribution.

The following rule determines the binomial distribution from which we will sample

to determine if we are to start a new segment in the event transcript or will we continue

with the same distribution as previous paragraph. The distribution is sampled for every

paragraph of the transcript. If cs is 0 then it will merge into the same segment as the last

paragraph and if it is 1 then it will branch off to begin a new segment with its own topic

distribution.

13



Algorithm 4 Online Gibbs Sampling Algorithm for ET-LDA

1: Randomly assign the topic indicators zs,N and zt,N ∼ {1, 2, 3, ..., k} and the segment

indicators ct, cS, st

2: for t = 1 to T do

3: for every para p in transcript S do

4: // Sample the segment indicator for every para p to decide if the para will begin

a new segment or it will continue in the previous segment

5: cs ∼ P (cs|c−(s,i), ct, ws, wt, zs, zt, st)

6: // Sample topic indicator for every word i in the current paragraph

7: zs,i ∼ P (zs,i|z−(s,i), zt, ws, wt, cs, ct, st)

8: // Update the relevant distributions based on the new topic assignments

9: end for

10: Mark the current tweet for Re-sampling with probability( Rejuvenation) 0.1

11: for word i in tweets of the current time epoch do

12: // Sample the general/specific distribution indicator

13: ct ∼ P (c(t,i)|c−(t,i), cs, ws, wt, zs, zt, st)

14: // Sample the segment indicator for the specific distribution conditioned on ct

15: st ∼ P (st|s−(t,i), ct, cs, wt, ws, zt, zs)

16: // Sample the topic indicator for the word

17: zt ∼ P (zt,i|z−(t,i), zs, ws, wt, cs, ct, st)

18: // Update the relevant distributions based on the new topic assignments

19: end for

20: if number of marked tweets crosses threshold then

21: Run the Gibbs sampler for the marked tweets

22: Clear all marked tweets

23: end if

24: end for
14



P (cs|c−(s,i), ct, ws, wt, zs, zt, st) ∝
S0
s+αδ−1
S+2αδ−1

× n
Si
k +nt

Si
k +αθ

n
Si
(.)

+nt
Si
(.)

+Kαθ
if cs = 0

S1
s+α(δ)−1

S+2αδ−1
× Γ(Kαθ)

Γ(θ)K
×

K∏
k=1

Γ(n
S(s−1)
k +nt

S(s−1)
k +αθ)

Γ(n
S(s−1)
(.)

+nt
S(s−1)
(.)

+Kαθ)
×

K∏
k=1

Γ(n
S(s)
k +nt

S(s)
k +αθ)

Γ(n
S(s)
(.)

+nt
S(s)
(.)

+Kαθ)
if cs = 1

(4.1)

P (zs,i|z−(s,i), zt, ws, wt, cs, ct, st) =
nksw + nktw + β − 1

nks(.) + nkt(.) +Wβ − 1
× nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
(4.2)

Intuitively, formula 2 can be seen as product of two probabilities, the left term represents

the probability of word w having topic k, the right component is about the probability of

topic k appearing in that segment. The product of the two will give us the probability of

topic k being assigned to word w which has occurred in segment s.

P (zt,i|z−(t,i), zs, ws, wt, cs, ct, st) =


nksw+nktw+β−1

nk
s(.)

+nk
t(.)

+Wβ−1
× n

Si
k +nt

Si
k +αθ−1

n
Si
(.)

+nt
Si
(.)

+Kαθ−1
if ct = 0

nksw+nktw+β−1

nk
s(.)

+nk
t(.)

+Wβ−1
× nik+αψ−1

ni
(.)+Kαψ−1

if ct = 1

(4.3)

The above update rule for assigning the topics to the different words of the tweet can be

seen as follows - If tweet is a general tweet i.e. ct = 1, the probability distribution for the

topic indicator is a product of two expressions, the probability of a particular word w being

assigned the topic k and the probability of topic k being in the general distribution. If the

tweet were a specific tweet pointing to a segment s then the update rule is same as that of

assigning a topic to a word in the segment s of the event transcript. This is not surprising

as the topic distributions for the tweet and the segment would be the same if the tweet is

aligning with that particular segment of the transcript.
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We should note that the word counts in the matrix ntSik , which maintains a topic-wise

and segment-wise word count of the twitter data, continuously increases as we see more

data. Unlike the batch algorithm words are not just being reassigned to different topics but

rather new words that are streaming in are being assigned topics and hence progressively

increasing the word counts in our matrices.

Another, rather more interesting, point to note here is how Bayesian learning fits very

well into online learning. The expressions that determine the probabilities of topic assign-

ment to words in tweets, and the expression that determines the segment-tweet alignment

are at first very strongly determined by the prior values that we assign, and as it progres-

sively learns from data, we observe from the update rules that the posterior we obtain from

a particular time step will act as the prior for the next time step.

P (c(t,i)|c−(t,i), cs, ws, wt, zs, zt, st) =


M0
t +α(λλ)−1

Mt+α(λγ)+α(λψ)−1
× n

Si
k +nt

Si
k +αθ−1

n
Si
(.)

+nt
Si
(.)

+Kαθ−1
if ct = 0

M1
t +α(λλ−1)

Mt+α(λγ)+α(λψ)−1
× nik+αψ−1

ni
(.)+Kαψ−1

if ct = 1

(4.4)

The above rule is to determine of the new tweet that has arrived is a general or a specific

tweet. Conditioned on the result of sampling from the above binomial distribution we either

sample a topic from the general distribution or determine an aligning segment from the

event transcript from the rule given below and sample a topic from the topic distribution of

the corresponding segment.

P (st|s−(t,i), ct, cs, wt, ws, zt, zs) =
nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
× nis + αγ − 1

ni(.) + Sαγ − 1
(4.5)

4.2 Implementation of the Inference Engine

The inference engine maintains two K ×N matrix( topics by words), one for the event

transcript the other for the tweets. It also maintains a P × K matrix to keep track of the
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para-topic word count and a P dimensional vector for maintaining the segment boundaries

in the event. The two together can determine the various segment-topic distributions. The

engine also keeps track of a T × 2 matrix to keep count of general and specific tweets.

Also a 50 dimensional array that keeps track of the tweets that have been marked for

re-sampling/rejuvenation is maintained. With these matrices and counts, we are able to

determine all the latent distributions, θ(s), c(s), s(t), c(t), ψ(t) and φ.
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Chapter 5

EXPERIMENTS AND EVALUATION WITH REAL AND SYNTHETIC DATA

In this chapter we outline the experiments we ran and the evaluations we made. We will

demonstrate that the latent variables of the graphical model such as the topics distributions

and the segment indicators can be learnt efficiently from the online algorithm introduced in

the previous chapter.

5.1 Datasets

We used two datasets for our experiments, the Denver Debate dataset, mined from the

twitter API, and a synthetic corpus that we generated, which consists of a synthetically

generated event transcript and the tweets associated with it. The Denver debate data con-

sists of tweets pertaining to the debate crawled from the twitter API, and the even transcript

of the debate1. The transcript contains 360 paragraphs. A segment in a transcript can be

one or more contiguous paragraphs. Both the transcript and the tweets were preprocessed

to strip the text of all the stopwords, non-English words, punctuations and other miscella-

neous words like retweets and hyperlinks to urls etc. Tweets are typically texts with very

few words, and once we remove the stopwords and stem the existing text, we end up with

even fewer words, and as shown by Tang et al in [13] topic modeling techniques like LDA

do not work very well with short texts. To address this issue we augment the tweets with

additional text by the method outlined by Sahami et al in [11].

The purpose of synthetic data is that, often there could be a dissonance between the

generative model we have assumed and the real event. This could cascade and affect the

1The event transcript was obtained from NYTimes at the following link,

http://www.nytimes.com/2012/10/03/us/politics/transcript-of-the-first-presidential-debate-in-denver.html
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accuracy of the inference algorithms that we are trying to evaluate. With synthetic data

we will not have such issues and we can make a completely objective measure of the

performance of the algorithm and we also get to observe the convergence of distributions

more clearly and accurately.

The synthetic data was created using the generative model of ET-LDA. We took a dic-

tionary of 5000 words and defined 10 multinomials over these words, which are the 10

topics of our data. A mixture of these topics defines a segment-topic distribution or a gen-

eral distribution. These distributions were used to generate the event transcript and the

tweet corpus.

The size of the generated transcript was 320 paragraphs which were divided into 10

segments and 10,000 tweets of 100 words each.

5.2 Tuning the Hyper-parameters

In Bayesian statistics a hyperparameter is a parameter of the prior distribution. Tuning

a hyperparameter usually involves choosing a hyperparameter that effectively captures the

prior knowledge we have of the system and also improve the performance of the learning

or inference algorithm. So the parameter of the prior dirichlet and beta distributions of the

ET-LDA model become the hyperparameters of the model.

The hyperparameters of the ET-LDA model are αδ and αλ for the beta priors δ(s) and

λ(t), αθ, αψ and β for the dirichlet priors θ(s), ψ(t)and φ.

All the above hyperparameters are fractional parameters to symmetric priors with the

exception of αλ which is an asymmetric prior to decide what fraction of the tweets are

general and what are specific tweets. A very low fractional hyperparameter for a symmet-

ric prior means that we expect the distribution to be very sparse. We do not expect each

of the topics to contain all the words in the dictionary, hence we give a low value to the

hyperparameter β. αδ determines the binomial distribution ct which decides the segment
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boundaries for the event transcript, a low value for this beta prior ensures that segment

boundaries do not get marked too often. Similar logic is followed for the other two dirich-

let priors αψ and αθ which are the segment-topic distribution and the general distribution

respectively. These distributions are probably not as sparse as the topic-word distribu-

tion, because the number of topics will always be considerably smaller than the number of

words, nonetheless we give them fairly lower values because we do not expect a segment

to contain too many topics. The exact values assigned to these parameters are mentioned

in the evaluation section.

5.3 Results

There are three main things we look to compare - the segmentation of the transcript, the

segment distributions and topics discovered and the tweet-segment alignment. The evalua-

tion techniques and baselines are different for each dataset due to the nature of the datasets.

With the synthetic data we have the ground truth and we try to make to an objective evalua-

tion of our algorithm, but with real data we use the batch inference algorithm as a baseline

and we mainly use user evaluations for measuring the effectiveness of the algorithm.

5.3.1 Evaluation with Denver Debate Data

The parameter values for the number of topics K was 10 and parameter values for the

prior dirichlet and beta distributions is as follows

αδ = 0.1, αγ = 0.15, αλ = [0.3, 0.7], αθ = 0.1, αψ = 0.2, β = 0.01

The system was run with the whole event transcript and 15,000 tweets with timestamps

between October 3rd 9:00 pm to October 3rd 10:30 pm EDT.

Evaluating the transcript segmentation. We first measure the quality and effective-

ness of online ET-LDA for the segmentation of the transcript using the two inference algo-

rithms. A visualization of the results of the event segmentation are shown in Figure 5.1.
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We compare the segmentation we have obtained with the hand segmented transcript. Pk

measure elaborated in [4], is the probability that a randomly chosen pair of words from the

event transcript will be incorrectly separated by a hypothesized segment boundary. Hence,

a lower Pk indicative of better agreement with the hand-segmentation hence more accurate.

Figure 5.1: Segmentation Boundaries of Denver Debate Transcript(A Lower Pk Values

Indicates Better Agreement)

The ground truth against which the Pk values are measured is the hand segmented tran-

script. The results show that our online inference algorithm has performance comparable

to the one achieved by the batch inference.

Topic Distributions. Next we study the topics extracted from the transcript-tweet cor-

pus. The topics extracted from the online inference and baseline, batch inference, are

shown in Table 5.1 and 5.2. The tables show the top words for the different topics from

the online and batch inference respectively. Each of the topics have been labeled with a

name which we believe captures the theme of the top words of that topic. The tables also

shows two topics for each of the segments obtained from the segment-topic distribution of

the two inference procedures. Table 5.3 shows the user evaluation of the segment-topic

distributions obtained.

The user evaluation was done with six graduate students, not associated with the project.
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The users were given a copy of the transcript, its segment boundaries, a brief summary of

each of the segments, the inferred topic distributions of the segments and top five tweets

that aligned with the respective segments. The users were asked to rate the topic relevance

of each of the segments and the tweet-segment alignment on a scale of 1-5 with 5 being the

best.
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Table 5.1: Online Inference

Employment billion, money, medicaid, programs, approach, care, for-

ward, dollar, young, jobs

Obamacare care, insurance, the, health, plan, people, obamacare, fact,

board

Economy businesses, deductions, million, money, problem, invest-

ments, work, trillion, exemptions

Government government, know, law, policy, people

Debate thank, closing, presidential, fight, debate, share, future, in-

dividuals, saying

Social Security medicare, regulation, frank, security, private, social, banks,

seniors, need

Regulations law, people, two, taxes, funding

Tax middle, tax, we, income, will, class, business, small, top,

families, is, things, jobs, america

Defence war,Iraq, strength

S1 Debate, Government

S2 Employment, Economy

S3 Taxes, Regulation

S4 Economy, Regulations

S5 Social Security, Obamacare

S6 Government, Regulations

S7 Government, Defense

S8 Debate, Government
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Table 5.2: Batch Inference

Banking/Regulations budget, cut, companies, employ, training, employees

Taxes revenue, trillion, medicaid, taxes, spending, states, raise,

corporate, deficit, overseas, dollar, debt, breaks

Economy percent, work, time, state, money, country, businesses, job,

pay

Government government, know, law, policy, people

Employment tax, small, jobs, taxes, deficit, energy, trillion, income, fam-

ilies, rates, deductions, business, rate, growth

Obamacare insurance, health, care, obamacare, medicare

Election/Debate middle, america, top, states, denver, health, american, col-

lege, presidential, university, woman, trickle

Social Security regulation, that, social, security, banks, health, private, cost,

seniors, current, insurance, repeal, retirees, voucher

Defence Military, elected, wind, american, incomes, party, opportu-

nity, promised

Education government, education, schools, role, federal, kids, teach-

ers, opportunity, america, elected

S1 Election/Debate

S2 Employment, Economy

S3 Taxes, Banking/Regulation

S4 Economy, Regulations

S5 Social Security, Obamacare

S6 Obamacare, Education

S7 Defense, Government
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Table 5.3: Segment-Topic Distribution Evaluation

Inference Procedure S1 S2 S3 S4 S5 S6 S7

Online Inference 4.83 4.33 3.83 4.0 4.33 3.66 3.5

Batch Inference 4.83 4.16 4.0 4.0 4.33 4.0 4.0

As we can see from the topics extracted and the Likert scale evaluation of the segment-

topic distributions, the online inference procedure performs comparably well with respect

to the batch inference. The main difference between the two procedures comes up due to

the different segment boundaries that get drawn during the inference process. The batch

inference is also able to capture extra topics like ’Education’ which gets discussed towards

the end of the event, but such topics are missed by the online inference.

Tweet-Segment alignment. For each of the segments we retrieve the top 5 tweets

that align with it and measure its relevance to the corresponding segment. Likert scale

evaluation for the alignment are shown in Table 5.4.

Table 5.4: Segment-Tweet Alignment

Inference Procedure S2 S3 S4 S5 S6

Online Inference 4.0 3.0 3.5 5.0 3.5

Batch Inference 4.5 4.0 3.16 5.0 3.5

The alignment evaluations are comparable between the two inference procedures. The

alignment for the segment that deals with topics like ’Obamacare’ and ’Social Security’

had a very good performance, this was probably due to the huge popularity of these issues

among the general public. We expect a large number of tweets about such topics and users

are likely to be more aware and voice specific opinions about such topics, hence we get

a very good alignment with such tweets. Also the performance for alignment with the

first and last segment was lower compared to other segments because the topics in these
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segments were very generic and hence it would be hard to distinguish general tweets and

tweets aligning with these segments.

5.3.2 Evolution of the General Topic Discourse

Another interesting aspect we get to observe in online ET-LDA is the evolution of the

general topic distribution. As shown in Figure 5.2 we ran online ET-LDA on the whole

corpus of twitter data of the Denver debate. As we process the stream of twitter data, the

general distribution of the twitter data is continuously evolving, which is reflective of the

changing topics in the public discourse of the viewers. We get to observe this evolution

of the public discourse, which would not be available in the batch inference process. Also

to make such an evaluation we have run ET-LDA on a much larger dataset of twitter data,

which spans 2-3 days. The batch inference procedure will have memory constraints and

will not be able to handle such huge amounts of data for the inference procedure. The

online inference, which reads the data piecewise, will not run into such issues and will be

able infer such evolution of discourse over large datasets, spanning the entire timeline of

the event.
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Figure 5.2: Evolution of Public Discourse with Event Timeline
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5.3.3 Evaluation with Synthetic Data

Segmentation The segmentation of the online and batch process and their correspond-

ing Pk values is shown in Figure 5.3. The figure shows segmentation obtained by both the

online and batch inference, and also the segmented version of the original synthetic data,

which is the ground truth in this case. We see the ten segments of the data in the third fig-

ure in the diagram, and we also observe how close the segmentation of the online inference

procedure comes to the ground truth. Like with Denver debate data, we use Pk values as

a metric to determine how close we are able to get to the ground truth. A lower Pk value

indicates a better match with the ground truth.

Figure 5.3: Segmentation Boundaries of Synthetic Data(A Lower Pk Values Indicates Bet-

ter Agreement)

Convergence of Data Likelihood

Figure 5.4 shows the convergence of the log-likelihood over time using both online

and batch inference. We took snapshots of the estimated latent distributions of the different

variables in the model, at regular intervals of time during the inference procedure and

calculated the data likelihood based on these disributions. The time taken by the online

inference to converge is lesser than that of the offline process. The graph for the online
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inference flattens off much sooner than the offline version, but the likelihood of the batch

inference is greater than the online version. This holds true to our expectation that online

inference, though faster is less accurate.

Figure 5.4: Convergence of the Likelihood of the Two Inference Procedures

Apart from a faster convergence the other significant benefit of online inference is scal-

ability. ET-LDA is often run on huge amounts of text and tweets. As the size of the corpus

grows it becomes unfeasible to load the whole corpus into memory and run the Gibbs Sam-

pler, the online inference on the other hand does not require you to read the entire twitter

corpus into the memory at the same time. At every time epoch, it reads a small subset of

the streaming data, that has arrived at that time epoch, hence unlike the batch inference, it

never runs out of main memory irrespective of the size of the data.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis we introduced an online inference algorithm for ET-LDA, and demon-

strated its accuracy and efficiency by evaluating them with both Denver debate and syn-

thetic datasets. We also made a comparison of the runtime and space complexity of the

two inference algorithms and found that the online inference algorithm is faster of the two

algorithms, and at the same time does not compromise too much on the accuracy of the

latent variables. The estimation of the parameters for the graphical model, i.e. the num-

ber of topics, determining the dirichlet and beta priors for the different distributions and

determining the number of tweets to be included in the rejuvenation phase of the online

inference algorithm was accomplished by trial and error. We also found that the online

inference algorithm is scalable as it does not have any memory constraints like the batch

inference procedure. We also observed and compared the convergence of the log-likelihood

of the two inference procedures and saw that though the online inference procedure con-

verges quicker, it is not as accurate as the batch inference procedure. By running the online

ET-LDA on the entire tweet corpus, which spans over 2 days of twitter data, we also got

to observe a change in the topics of the general distribution, which could be seen as the

evolution of the public discourse with respect to the timeline of the event.

6.1 ET-LDA using Bayesian Non-parametrics

One of the possible and the most promising directions of future work will be to make the

event transcript also stream online, along with the twitter data. With such an experimental

setup we will not only get to see the changing nature of the general distribution but also

how the specific distributions of the event transcript evolves. To solve such a problem we
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will have to use non-parametric Bayesian methods, where we will not give the number of

topics beforehand as a parameter to the model, rather the graphical model and the inference

algorithm will automatically converge to the right number of topics. Such a model will very

clearly exhibit the evolution of specific topics in the transcript segments. We will not only

get to see to see the changing trends in the specific topics but also observe how the number

of topics in the event evolves over the duration of the event.
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