
 

 

The Temporal Organization of Operant Behavior: A Response Bout Analysis 

 

by 

 

Ryan J. Brackney 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy 

 

 

 

 

 

 

 

Approved July 2015 by the 

Graduate Supervisory Committee: 

 

Federico Sanabria, Co-Chair 

Brian Smith, Co-Chair 

Janet Neisewander 

Peter Killeen 

 

 

 

 

 

 

ARZIONA STATE UNIVERSITY 

August 2015



i 

 

 

ABSTRACT 

Many behaviors are organized into bouts – brief periods of responding punctuated 

by pauses. This dissertation examines the operant bouts of the lever pressing rat. Chapter 

1 provides a brief history of operant response bout analyses. Chapters 2, 3, 5, and 6 

develop new probabilistic models to identify changes in response bout parameters. The 

parameters of those models are demonstrated to be uniquely sensitive to different 

experimental manipulations, such as food deprivation (Chapters 2 and 4), response 

requirements (Chapters 2, 4, and 5), and reinforcer availability (Chapters 2 and 3). 

Chapter 6 reveals the response bout parameters that underlie the operant hyperactivity of 

a common rodent model of attention deficit hyperactivity disorder (ADHD), the 

spontaneously hypertensive rat (SHR). Chapter 6 then ameliorates the SHR’s operant 

hyperactivity using training procedures developed from findings in Chapters 2 and 4. 

Collectively, this dissertation provides new tools for the assessment of response bouts 

and demonstrates their utility for discerning differences between experimental 

preparations and animal strains that may be otherwise indistinguishable with more 

primitive methods.   

 

 

  



 ii   

 

 

ACKNOWLEDGEMENTS 

This research would not have been possible without the support of many others. 

Federico Sanabria was my tireless and unflappable guide throughout this journey. Peter 

Killeen provided regular encouragement and continues to serve as a role-model without 

peers. Tim Cheung supplied the initial impetus and training to explore bout models, and 

without him my path would have been very different. Janet Neisewander provided 

regular support and valued advice.  

My fellow lab mates Carter Daniels, Elizabeth Watterson, and Gabriel Mazur 

provided friendship and assistance throughout my studies. For that, I wish them the best 

in their pursuits.  

The following students assisted in data collection in one or more of the studies 

presented: Alexandra Paul, Jonathan Schiro, Brittany Clark, Jennifer May, Bianca Zietel, 

Cameron Gibbons, Tara Mahmood, Chris Fencl, Alex Zoloto, Jake Gilmour, Raul Garcia, 

Marie Simonsen, Briana Martinez, Jade Hill, Chris Bustamante, Nathan Collins, Richard 

Denton, Greg Edward, Allison Lucas, Lauren Shield, and Richard Denton. 

 Finally, I wish to thank Brian Smith and Richard Gerkin, who provided new 

research opportunities and mentorship that extend beyond this dissertation. 

 

 

  



 iii   

 

 

TABLE OF CONTENTS 

Page 

TABLE OF CONTENTS ................................................................................................... iii 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ............................................................................................................ x 

PREFACE ......................................................................................................................... xii 

CHAPTER 1 GENERAL INTRODUCTION .................................................................... 1 

Basic Units .............................................................................................................. 3 

Behavior from States............................................................................................... 5 

The Response Bout ................................................................................................. 8 

Bouts in the Experimental Analysis of Behavior and the Bi-Exponential Model .. 9 

Experimental Applications of the Bout................................................................. 13 

CHAPTER 2 THE ISOLATION OF MOTIVATIONAL, MOTORIC, AND SCHEDULE 

EFFECTS ON OPERANT PERFORMANCE: A MODELING APPROACH. .............. 17 

Abstract ................................................................................................................. 17 

Introduction ........................................................................................................... 18 

Method .................................................................................................................. 24 

Results Phase 1: Maintenance ............................................................................... 28 

Discussion Phase 1: Maintenance ......................................................................... 35 

Results Phase 2: Extinction ................................................................................... 38 



 iv   

 

 

CHAPTER                                                                                                                      Page 

Discussion Phase 2: Extinction ............................................................................. 43 

General Discussion ............................................................................................... 45 

CHAPTER 3 A BOUT ANALYSES OF OPERANT RESPONSE DISRUPTION ........ 54 

Abstract ................................................................................................................. 54 

Introduction ........................................................................................................... 55 

Method .................................................................................................................. 57 

Results ................................................................................................................... 67 

Discussion ............................................................................................................. 71 

CHAPTER 4 LONGER OPERANT LEVER-PRESS DURATION REQUIREMENTS 

INDUCE FEWER BUT LONGER RESPONSE BOUTS IN RATS ............................... 74 

Abstract ................................................................................................................. 74 

Introduction ........................................................................................................... 75 

Method .................................................................................................................. 77 

Results ................................................................................................................... 81 

Discussion ............................................................................................................. 87 

CHAPTER 5 THE DISTRIBUTION OF RESPONSE BOUT LENGTHS AND ITS 

SENSITIVITY TO DIFFERENTIAL REINFORCEMENT ............................................ 93 

Abstract ................................................................................................................. 93 

Introduction ........................................................................................................... 94 



 v   

 

 

CHAPTER                                                                                                                      Page                                                                       

Method .................................................................................................................. 99 

Results ................................................................................................................. 103 

Discussion ........................................................................................................... 117 

CHAPTER 6 ASSESSING OPERANT HYPERACTIVITY IN A RODENT MODEL OF 

ADHD USING RESPONSE-BOUT MODELING ........................................................ 124 

Abstract ............................................................................................................... 124 

Introduction ......................................................................................................... 126 

Method Experiment 1 ......................................................................................... 128 

Results Experiment 1 .......................................................................................... 135 

Discussion Experiment 1 .................................................................................... 139 

Experiment 2 ....................................................................................................... 140 

Method Experiment 2 ......................................................................................... 141 

Results Experiment 2 .......................................................................................... 143 

Discussion Experiment 2 .................................................................................... 151 

General Discussion ............................................................................................. 154 

CHAPTER 7 GENERAL DISCUSSION ....................................................................... 159 

Bout Initiations and Motivation .......................................................................... 159 

Motoric Indices, the Refractory Period, and Response Durations ...................... 160 

Response Requirements and Contingencies of Reinforcement .......................... 161 



 vi   

 

 

CHAPTER                                                                                                                      Page 

Breaking the Response-Reinforcer Contingency ................................................ 162 

DBERM Assumptions and Alternative Models .................................................. 163 

SHRs and the Bayesian Hierarchical Estimation ................................................ 163 

Conclusions ......................................................................................................... 164 

REFERENCES ............................................................................................................... 170 

APPENDIX 

A   MAXIMUM LIKELIHOOD METHOD AND AKAIKE INFORMATION 

CRITERION (CHAPTER 2) ............................................................................ 1855 

B   PROBABILITY OF THE INTERVAL BETWEEN THE LAST RESPONSE 

IN A SESSION AND THE END OF THE SESSION (CHAPTER 2)............... 187 

C   REFRACTORY BI-EXPONENTIAL MODEL PARAMETERS (CHAPTER 

2) ......................................................................................................................... 189 

D   PROBABILITY OF THE INTERVAL BETWEEN THE LAST RESPONSE 

IN A SESSION AND THE END OF THE SESSION, ACCORDING TO THE 

DYNAMIC MODEL (CHAPTER 2) ............................................................... 1922 

E   RESPONSE RATE STABILITY ESTIMATES (CHAPTER 3) ................ 1944 

F   SELECTION OF SUPER-THRESHOLD IRTS FOR ANALYSIS (CHAPTER 

4) ....................................................................................................................... 1966 

G   BERM PARAMETER ESTIMATES FOR INDIVIDUAL SUBJECTS  

(CHAPTER 4) ................................................................................................... 1988 



 vii   

 

 

APPENDIX                                                                                                                     Page 

H   IRT SIMULATIONS (CHAPTER 4) ......................................................... 2011 

I    DBERM PARAMETER ESTIMATES (CHAPTER 5) .............................. 2033 

J   BERNOULLI TRIALS, GEOMETRIC AND NEGATIVE BINOMIAL 

DISTRIBUTIONS, AND THEIR RELATION TO THE LENGTHS OF BOUTS 

(CHAPTER 5) ................................................................................................... 2055 

K  ESTIMATES OF BOUT-LENGTH DISTRIBUTION PARAMETERS FROM 

BRACKNEY ET AL. (2011) (CHAPTER 5) ................................................... 2088 

  L  CURRICULUM VITAE (ABRIDGED)…………………………………….210 

 

  



 viii   

 

 

LIST OF TABLES 

Table               Page 

2-1.   Number of Sessions in Training and Experimental Conditions .............................. 27 

 2-2.   Minimum Daily ΔAIC for each of 4 Models of Operant Performance for each  

Experimental Condition in Phase 1................................................................................... 31 

 2-3.   List of Parameters for the Static and Dynamic Models. ......................................... 40 

 2-4.   Best Extinction Models According To AIC. .......................................................... 43 

 3-1.   Experiment 1 Phase Order by Subject. ................................................................... 59 

 3-2.   Experiment 2 Phase Order by Subject. ................................................................... 63 

 4-1.   Duration Threshold Training Conditions. .............................................................. 79 

 5-1.   Comparison of Bout Model Variations. ............................................................... 111 

 5-2.   Comparison of Bout-Length Models. ................................................................... 116 

 5-3.   MIX Model Parameter Estimates. ........................................................................ 118 

 6-1.   Relative Parameter Differences Between Conditions. ......................................... 154 

 C-1.   Estimates of Parameter q. .................................................................................... 190 

 C-2.   Estimates of Parameter δ...................................................................................... 190 

 C-3.   Estimates of Parameter w. .................................................................................... 190 

 C-4.   Estimates of Parameter b ..................................................................................... 191 

 G-1.   Threshold = 0.0 s. ................................................................................................ 199 

 G-2.   Threshold = 0.4 s. ................................................................................................ 199 

 G-3.   Threshold = 0.8 s. ................................................................................................ 199 

 I-1.   Individual DBERM Parameter Estimates. ............................................................ 204 

 K-1.  GEO, NB, and MIX Model fit Statistcs. ............................................................... 209 



 ix   

 

 

 Table                                                                                                                              Page 

  K-2.  MIX Parameter Estimates. ................................................................................... 209 

  



 x   

 

 

LIST OF FIGURES 

Figure                Page 

  1-1. Bouts in a Cumulative Record. .................................................................................. 2 

  1-2. Bouts as a Continuous Time Markov Chain ............................................................ 10 

  1-3. A Log-Survivor Plot ................................................................................................ 12 

  2-1. A Diagram of the Refractory Bi Exponential Model of Operant Performance. ...... 22 

  2-2. Mean Reinforcement and Response Rates .............................................................. 30 

  2-3. Phase 1 Log-Survival Plots of IRTs ........................................................................ 33 

  2-4. Cumulative Lever Presses Emitted During Extinction ............................................ 37 

  2-6. Inter-Response Times as a Function of Time t in Extinction. ................................. 46 

  3-1. Binned Response Rates During MAINT and Response Disruption ........................ 68 

  3-2. Mean DBERM PARAMETER ESTIMATES ......................................................... 69 

  4-1. Mean Median Response and Reinforcement Rates ................................................. 80 

  4-2. Distribution of Response Durations ........................................................................ 82 

  4-3. Mean of Three Response Duration Distribution Statistics ...................................... 83 

  4-4. Mean BERM Parameter Estimates .......................................................................... 85 

  4-5. Log-Survivor Plots of Super-Threshold IRTs ......................................................... 87 

  4-6. Percentile Plots of Super-Threshold IRTs ............................................................... 89 

  5-1. mFR1 and mFR5 Response and Reinforcement Rates. ......................................... 104 

  5-2. Distribution of Bout Lengths as Calculated by the IRT Cutoff Method ............... 105 

  5-3. Log-Survival Plots for mFR1 and mFR5 .............................................................. 110 

  5-4. Mean Bout-Length Distributions Estimations ....................................................... 113 

  5-5. Flow-Chart Representation of the MIX Model ..................................................... 115 



 xi   

 

 

Figure                                                                                                                             Page   

 5-6. Difference in MIX Parameter Estimates Across Conditions .................................. 116 

  5-7. Median MIX Parameter Estimates. ....................................................................... 121 

  6-1. Experiment 1 – Group Means of Individual Median Response Rates .................. 135 

  6-2. Experiment 1 – DBERM Parameter Estimates...................................................... 138 

  6-3. Experiment 2 – Group Mean of The Individual Median Response Rates ............. 143 

  6-4. Experiment 2 –  Group Mean of The Individual Median Durations and Interquartile            

Ranges ............................................................................................................................. 144 

  6-5. Experiment 2 – DBERM Parameter Estimates...................................................... 145 

  6-6. Experiment 2 – Histograms of Mean IRTs and Individual Examples ................... 149 

  6-7. Experiment 2 - DGERM Parameter Estimates ...................................................... 150 

 

 



 xii   

 

 

PREFACE 

This dissertation represents my cumulative research on response bouts during my 

graduate studies under Federico Sanabria at Arizona State University (ASU). As such, 

certain chapters were already published, were under review for publication at the time 

this dissertation document was compiled, or were being prepared for review. In all cases, 

I have attempted to keep the format of each study as close to the publication manuscript 

as possible, although some minor changes were necessary to comply with formatting 

requirements. For all manuscripts, I was the first and primary author.  

Chapter 2 was originally published as “Brackney, R. J., Cheung, T. H. C., 

Neisewander, J. L., & Sanabria, F. (2011). The isolation of motivational, motoric, and 

schedule effects on operant performance: A modeling approach. Journal of the 

Experimental Analysis of Behavior, 96(1), 17–38.” 

Chapter 5 was, at the time of this writing, under review for publication, co-

authored with Federico Sanabria.  

 Chapters 3, 4, and 6 were being prepared for submission in parallel with this 

dissertation, and are presented here in “publication ready” format. 

Some equations have been repeated across chapters. Notably, the dynamic bi-

exponential refractory model (DBERM) is first introduced in Chapter 2 (Equations 2-2 

and 2-3). In Chapter 3, the parameterization was changed slightly (Equations 3-1, 3-2, 

and 3-3), and in Chapter 6 an additional parameter was added (Equation 6-3). 
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CHAPTER 1  

GENERAL INTRODUCTION 

The primary goal of behavior analysis is to understand why behavior occurs and 

how it can be controlled (Skinner, 1950). Predicting the probability of behavior is, 

therefore, a central concern in behavior analysis. Frequently, the probability of behavior 

is inferred from a response rate, the average number of responses in a unit of time. With 

demonstrable utility, this measure has been the primary dependent variable in highly 

influential quantitative models of behavior (Herrnstein, 1970; Nevin & Grace, 2000) and 

applied technologies (Iwata, Dorsey, Slifer, Bauman, & Richman, 1994). Nonetheless, 

response rate reduces behavior to a single measure, losing useful information. Skinner's 

(1976) eulogy for the cumulative record objected to simple reductions of behavior, 

pointing out the plethora of behavioral patterns apparent from simple visual analyses.  

Shall we never again see things as fascinating as the slight overshooting when a 

pigeon switches from the ratio to the interval phase of a mixed schedule, or learns 

to use a clock in timing a fixed interval, or "sulks" for an hour after a short bout of 

fixed-ratio responding injected into a long variable-ratio performance, or slowly 

accelerates as it raps out "just one more" large fixed ratio on a straining [sic] 

schedule? These "molecular" changes in probability of responding are most 

immediately relevant (Skinner 1976, p. 218). 

Yet Skinner provided few suggestions for how such behavioral patterns could be 

subject to quantitative analyses, a basic requirement to propel any field past the most 

basic pitfalls of subjective judgments. Since Skinner’s heyday, a plethora of 

computational and quantitative tools have become easily available that make it possible 
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to quantify and assess these very patterns with precision. From among the catalog of 

minutiae seen in the moment-to-moment changes in an organism’s response probability, 

this dissertation focuses on the response bout. 

 

Figure 1-1. Bouts in a cumulative record. The left panel displays a cumulative record of a 

rat lever pressing on a variable interval (VI) 200 s schedule of reinforcement. The right 

panel displays a zoomed in portion of the left panel. Bouts are visible in portions where 

multiple responses appear in quick succession, seen as a steep increase in the slope, 

followed by a pause, seen as a plateau. Some bouts have been highlighted in the dotted 

circles in the right panel. 

Figure 1-1 shows a rat engaged in bouts of lever pressing. It responds rapidly for 

several seconds then pauses before beginning again. This dissertation asks and answers 

multiple questions about bouts. What conditions cause bouts to vary, and in what ways 

change? What can bouts tell us about how an organism emits operant responses? And 

finally, how can we measure bouts, and what sort of models can provide useful 

information about them? In Chapters 2-6, different experimental manipulations and tests 

of response bouts are described, and new analyses are devised to explore their meaning.  
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But first, why study bouts to begin with? The remainder of this chapter describes 

the historical context from which response-bout studies arose and their importance in the 

experimental analysis of behavior.  

Basic Units 

To understand the bout, we must first understand the basic experimental unit that 

feeds the cumulative record: the electric switch closure.  As either a rodent lever press or 

pigeon key-peck, the switch closure has been the de facto standard unit of measurement 

for operant researchers (Catania, 1998; Ferster & Skinner, 1957; Skinner, 1938). It allows 

for a discrete quantification of behavior directed toward food acquisition, where the 

entirety of the behavior of the organism can be collapsed into a single binary dimension. 

When examined repeatedly over time, this unit yields orderly, highly replicable patterns 

in the form of cumulative records (Ferster & Skinner, 1957; Zeiler, 1984).   

Yet, as a measure of behavior, the switch closure carries with it implicit 

assumptions that must be readdressed. Most experiments that examine the switch closure 

assume that every response is functionally equivalent. That is, that each response to the 

same operandum is uniformly informative and reflective of the same behavior or 

behavioral process (Shull, Gaynor, & Grimes, 2001; Skinner, 1935). However when, for 

example, a rat presses a lever, casual observation may reveal considerable variability in 

the form of the response. Sometimes the rat presses with its left or right front paw, other 

times it may use its teeth, and on other occasions rub its body against the lever. Should all 

these behaviors be considered functionally equivalent? Is a right-paw lever press 

functionally the same as a left-paw lever press, or gnawing on the lever to activate a 

switch closure? Skinner solved this dilemma by postulating that all behaviors that share a 
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functional relation with a specific reinforcer, regardless of their topography, are part of a 

response class and equivalent for analyses (Baum, 2002; Schick, 1971; Skinner, 1935). 

The combination of the switch closure analyses with the conception of the 

response class allowed for the collapse of a wide variety of behaviors into simple, 

manageable measures that yield orderly relations. However, modern analysis of behavior 

reveals that not all behaviors strengthened by the same reinforcer are functionally 

equivalent (Breland & Breland, 1961; Killeen & Pellón, 2013; Mechner, Hyten, Field, & 

Madden, 1997; Timberlake, 1993) and even ostensibly similar responses to the same 

lever may be functionally different (Amsel, 1992; Catania, 1971; Shull, 2011). Analyses 

have revealed an organization of behavior that extends beyond the individual switch 

closure. For example, Schwartz (1980, 1981, 1986) demonstrated that a series of key-

pecks to an array of keys may be strengthened and extinguished in a manner suggesting 

that the sequence itself is reinforced. Similarly, Bachá-Méndez, Reid, and Mendoza-

Soylovna (2007) demonstrated that an extinguished two-lever-press sequence resurged 

after the extinction of another response at a probability greater than would be expected if 

each lever press was a functionally equivalent member of a single response class. These 

studies and others (Fountain, Henne, & Hulse, 1984; Fujii & Graybiel, 2003; Monteiro & 

Machado, 2009; Terrace, 1991) show that experimentally defined behavioral measures, 

such as the lever press, do not always correspond well to the behavior that is actually 

learned. There may be disparities between the experimentally chosen response, such as 

individual lever presses, and the actual organization of behavior, such as an integrated 

sequence of multiple lever presses. Understanding what occurs in the operant chamber 
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may require alternative conceptions of behavior that extend beyond simple discrete 

response-reinforcer relations.  

Behavior from States 

An alternative to discrete simple responses is the conception of behavior as a 

concatenation of states. This approach has found been particularly useful in ethological 

studies (Patterson, Basson, Bravington, & Gunn, 2009), but can be adapted to explain 

behavior within the operant chamber. Timberlake’s (1993) Behavioral Systems approach 

treats behavior as a set of systems, that corresponding to a different general type of 

activity, such as anti-predation or foraging. The occurrence of specific behaviors is 

dependent on which system is engaged. For example, food deprivation in a rat engages 

foraging systems which result in a series of food-seeking related behaviors. According to 

this view, individual responses such as a rat’s lever presses under a partial reinforcement 

schedule, are better treated as one type of activity state resulting from engaging a 

particular behavioral system.  Other researchers have noted the similarity between the 

natural foraging behavior of rats and their lever-pressing behavior in an operant chamber 

when the availability of food is probabilistic (Collier & Johnson, 2004; Johnson & 

Collier, 1994). Engaging the lever may be considered analogous to searching a patch for 

food, before either giving up to explore another patch (a concurrent lever), to explore the 

greater environment (engage in away-from-lever activities) or consume found food (the 

reinforcer). Under this frameworks, the operant lever press for food is a reflection of a 

food-seeking state that the animal may move in and out of.  

Experimental evidence within Behavior Analysis also suggests that operant 

behavior may be best considered as periods of alternation between states rather than a 
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series of discrete responses. Early formulations describing the alternation of activity 

include the matching law (Herrnstein, 1961), and subsequently, Herrnstein's quantitative 

law of effect (Herrnstein, 1970). The matching law states that the proportion of discrete 

responses allocated to a single operandum is a function of the proportion of reinforcers 

obtained from that operandum, relative to the rate of reinforcement for other activities. 

However, later research has found that the matching law applies equally well to the time 

allocated to different behaviors (Baum & Rachlin, 1969). These observations helped lead 

to the suggestion that large “molar” patterns of activity, such as the allocation of 

responses and time to different activities, are more informative of behavior than the 

moment to moment, so-called “molecular”1 dynamics in which each measured response 

is considered a distinct action to be accounted for (Baum, 2002).   

One needs not favor a “molar” or “molecular” approach singularly, however. 

Whereas purely “molecular” approaches may forgo examining broader patterns of 

behavior, purely “molar” approaches may miss more nuanced relationships between 

individually measured responses. In cases where multiple levels of analysis can be 

dissociated, predictable alternations between different response states and types can be 

discovered. For example, Killeen, Sanabria, & Dolgov (2009) found that the responding 

of pigeons on a probabilistic discrete-trial task was best described by a bimodal 

distribution of key pecks. On each trial, pigeons either did not peck at all, or they made a 

random number of pecks. These results suggest that on each trial the pigeons were either 

in or out of a response state. When in the response state, pigeons produced pecks that 

                                                 
1 For the biologist, the “molar” and “molecular” terminology of some behavior analysts may be confusing. 

In this case “molecular” behavior does not reference molecular biology or even physical molecules, but 

instead a philosophical treatment of behavior with a focus on predicting and describing the occurrence of 

individual responses. 



 7   

 

 

appear to be generated by a specific random process. These patterns of behavior are not 

apparent when simply examining the average number of responses per trial or individual 

responses by themselves.  

The alternation between response states is also apparent on free operant tasks to a 

single operandum. Early research noted that switch closure responses tend to cluster 

together in time, and that the responses that initiates these clusters are different from 

responses within these clusters. For example, the rate at which pigeons approach a key to 

peck is dissociable from the rate at which they actually peck, suggesting that response 

rate is reflective of at least two different states, one in which the subject engages the key 

and one in which they do not (Hursh, Raslear, Shurtleff, Bauman, & Simmons, 1988; 

Nevin & Baum, 1980; Pear & Rector, 1979). Periods of differential engagement also 

become particularly apparent when examining the behavior of subjects trained on fixed-

interval schedules and other timing tasks, which has often been found to conform to a 

“break and run” pattern. This pattern consists of not responding or responding at a low 

constant rate followed by responding at a high constant rate after a certain amount of time 

has passed (Sanabria, Thrailkill, & Killeen, 2009; Schneider, 1969).  

Combined, these studies suggest that there is a functional difference between the 

response that initiates the bout and the remaining responses that complete the bout. The 

division is readily apparent when behavior is explicitly divided between two operanda: 

one that initiates the operant and another that either continues or terminates it (Mechner 

et al., 1997). For example, Mechner and Guevrekian (1962) found that when a timing 

task required the initiation of the trial on one lever and termination on a second, only the 

probability of the initiating response was sensitive to food deprivation (see also 
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Watterson, Mazur, & Sanabria, 2015). Similarly, Corbit and Balleine (2003) found that 

when training a heterogeneous two-response chain, the initiating response was sensitive 

to outcome devaluation but the terminal response was not; conversely, the terminal 

response was sensitive to Pavlovian-instrumental transfer effects but the initiating 

response was not. The dissociation of response initiation and response execution has also 

been demonstrated in patterns of neural spiking. The initiation of a response pattern such 

as a run of responses on a fixed-ratio or initiation of traversing a runway is reflective of 

specific neural spiking patterns in the dorsal striatum (Fujii & Graybiel, 2003; Jin & 

Costa, 2010) that are quiescent during the remaining execution of the response pattern, 

until finally occurring again upon completion. Taken together, this evidence supports a 

conception of behavior in which subjects alternate between multiple states of 

engagement, and in which entering a new state initiates a behavioral sequence that 

persists until reaching some exit criterion. According to this perspective, entering into a 

new state, and the corresponding initiation of the behavioral sequence, is functionally 

distinct from executing the sequence.  

The Response Bout 

The response bout is a formalization of the idea that subjects alternate between 

response states, in this case between a behavioral state in which the subjects engage in the 

target response, such as the lever pressing, and another state in which the target response 

does not occur. The temporal clustering of the response is called a bout, and the bouts are 

separated by pauses during which the subject engages in other activity. Bout-like 

processes, in which the target response is clustered temporally followed by pauses, have 

been observed across many disciplines. For example, the rate at which neurons spike are 
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often described as two alternating Poisson processes, one to describe inter-burst intervals, 

and another to describe inter-spike intervals (Gerstner & Kistler, 2002; Izhikevich, 2006). 

In another case, the distribution of swimming durations between turns in C. elegans is 

well described by a mixture of two exponential distributions (Pierce-Shimomura, Morse, 

& Lockery, 1999), as well as the frequency at which e-mails are responded to (Barabasi, 

2010; Barabási, 2005). 

In studies of animal behavior, bout-based analyses have been applied to the 

feeding behavior of many animals (Yeates, Tolkamp, Allcroft, & Kyriazakis, 2001), such 

as rats (Clifton, Lee, & Dourish, 2000), cows (Tolkamp, Schweitzer, & Kyriazakis, 

2000), pigs (Morgan, Emmans, Tolkamp, & Kyriazakis, 2000), and pigeons (Zeigler, 

Green, & Lehrer, 1971). Researchers studying feeding have long noted that, whereas 

visits to the feeder may be the measured unit, the total meals, or bouts of feeder-related 

activity, are more informative. Changes in the distribution of feeding bouts reflect 

differences in how food is consumed in different species (Zeigler et al., 1971), allowing 

for response-bout analyses to be diagnostic of different underlying processes.  

Bouts in the Experimental Analysis of Behavior and the Bi Exponential Model 

Richard Shull conducted considerable early research on the application of 

response bouts in the experimental analysis of operant behavior (Shull 2001, 2002, 2004; 

for related treatments, see Killeen, Hall, Reilly, & Kettle, 2002; Kirkpatrick, 2002; 

Monteiro & Machado, 2009). Shull (2001) conceived of the response cycle as a three-

state continuous time Markov chain (see Figure 1-2), in which behavior alternates 

between a disengaged state away from the operandum, and two engaged states: a visit 
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state and a response state.2 When the subject is in the disengaged state, there is a 

probability Pr(V) that after the passage of each arbitrary unit of time, the subject enters 

the visit state. Within the visit state, there is a probability Pr(R) that the subject enters the 

response state, where a response is made. After completion of the response, the subject 

immediately returns to the visit state with probability 1 - Pr(D) or the disengaged stated 

with Pr(D). Figure 1-2 describes this process. 

 

 

 

Figure 1-2. Bouts as a continuous time Markov chain (as described in Shull et al., 2001, 

Figure 2). The visit state is entered with probability Pr(V), and responses engaged with 

Pr(R). Once a response is made, the subject may return to the disengaged state with Pr(D) 

or return to the visit state with the probability 1 - Pr(D).  

On a continuous time scale, this Markov model gives rise to two Poisson 

response-generating processes. The first Poisson process controls the transition from a 

disengaged state to visit state, whereas the second process controls the emission of 

                                                 
2 Note that in this case, a “state” is a formal unit of the Markov model. In previous sections, the term state 

was used to refer to a more abstract construction in which the subjects were engaged in a specific response. 

In Shull’s case, “engagement” is actually represented by two formal Markov states.  
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responses while in a visit. The times between events governed by a Poisson process are 

exponentially distributed (Ross, 2006), and two alternating Poisson processes, such as in 

this case, result in a mixture of two exponential distributions of inter-response times 

(IRTs), one of long IRTs and one of short IRTs. The long IRT distribution corresponds to 

the bout initiation rate, or how often the animal visits the lever; the short IRT distribution 

corresponds to the within-bout response rate, or how fast the animal presses while at the 

lever. The formalization of this model is described beginning in Chapter 2.  

Multiple methods have been devised to describe the components of response 

bouts. Shull and colleagues (2001, 2002, 2004) analyzed response bouts by curve fitting 

to log-survivor plots of inter-response times (IRTs), or using simple IRT cutoff methods. 

When the distribution of IRTs are a mixture of two exponential distributions, the 

corresponding log-survivor function takes on a distinctive "broken stick" shape, 

characterized by two straight lines connecting at a joint, illustrated in Figure 1-2. The 

steeper slope nearer the ordinate corresponds to the within-bout response rate, whereas 

the shallower slope corresponds to the bout initiation rate. With these considerations, 

Shull and colleagues (2001; 2002; 2004) fit exponential distributions to the straighter 

portions of each limb of the broken stick using the method of least squares. They then 

projected the slope corresponding to the bout initiation rate to the point at which it would 

intercept the ordinate to estimate the proportion of IRTs that are within-bout.  
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Using these analytic techniques, Shull and colleagues (2001; 2002; 2004) 

demonstrated that each parameter of the response bout was differentially sensitive to 

changes in training and testing conditions, and revealed changes in response patterns that 

were not apparent from response rates alone. For example, when animals are trained to 

respond on a variable interval schedule of reinforcement, raising either the rate of 

reinforcement, the response requirement following the elapsed interval, or the level of 

food deprivation, all result in an increase in response rate. Despite the similarity in effect 

on overall response rate, it seems reasonable to hypothesize that these manipulations 

increased responding through different mechanisms. An increase in behavior due to food 

 

Figure 1-3. A log-survivor plot demonstrating the “broken stick”, which represents the 

within bout and bout initiation rates. The within-bout response rate is indicated by the 

upper rightward slope, and the bout initiation rate by the lower leftward slope. The 

proportion of within bout responses may be estimated by projecting the bout initiation 

slope to where it would intercept the y-axis, as denoted by the dotted line. The survivor 

plot indicates the proportion of IRTs (y-axis) that are greater than a certain value, t (x-

axis). For example, in Figure 2, all IRTs are greater than 0 s, therefore, when t=0, the 

value on the y-axis is 1. Similarly, only approximately 40% of all IRTs are greater than 

1.0 s. When exponential distributed variables are expressed on a semi-log scale, as 

here, their slopes appear as a straight line.  
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deprivation is not the same as an increase in behavior when more responses are required 

to earn the reinforcer, yet a simple analysis of response rate would suggest that they are 

indistinguishable.   

Shull demonstrated that these manipulations have unique effects on responding, 

which the parameters of response bouts reveal. For example, increasing reinforcement 

rate or food deprivation levels primarily increase bout initiation rate, but influences 

within-bout response rate and bout length substantially less. In contrast, increasing the 

number of responses required to earn reinforcement after the end of a variable interval 

changed the average bout length, but only marginally changed the bout initiation rate 

(Shull et al., 2001; Shull & Grimes, 2003).  

Experimental Applications of the Bout 

Just as discrete switch closures reveal shades of actual behavior, behavior itself 

provides clues to the inner workings of the organism, given the proper analytic tools. The 

goal of many researchers in behavioral neuroscience is to observe and manipulate 

behavior and biology, then infer what behavioral processes have been affected. For 

example, a researcher may infer from a rat’s frequent lever pressing for cocaine that the 

rat is highly motivated to seek the drug. Later, the researcher may apply some treatment 

that reduces lever pressing for cocaine, such as a new drug thought to decrease cocaine 

cravings. The onus is on the researcher to demonstrate that their treatment not only 

reduces the subjects’ lever pressing for cocaine, but that it does so because it reduces the 

rats’ motivation for cocaine. Treatments that affect behavior in other ways, such as 

reducing motoric capacity, would be undesirable if the goal is to extend the research to 

treatments in humans.  
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The problem of identifying the cause of response decrement poses a problem for 

behavioral neuroscience researchers employing typical operant methodology. There are 

many reasons why a rat may stop lever pressing aside from reduced motivation. Changes 

in working memory, motoric capacity, sensory processing, or any other of a host of 

processes result in changes in response patterns.  However, an examination of simple 

switch closures aggregated into the most typical measure, response rate, tells us little 

about the mechanisms responsible for why an animal stops responding.  

Typically, a study that wishes to dissociate these different processes will require 

multiple experiments and behavioral methods, each focused on studying just one of the 

many hypothetical behavioral processes. Response bouts analyses may provide a less 

costly method of partitioning out the different sources of change in operant behavior 

(Johnson, Bailey, & Newland, 2011; Johnson, Pesek, & Newland, 2009; Newland, 

Hoffman, Heath, & Donlin, 2013; Shull et al., 2001, 2002; Shull, Grimes, & Bennett, 

2004; Shull, 2004). By identifying different manipulation with well agreed upon effects 

(e.g., food deprivation changes motivation or increasing the lever force requirement 

change the motoric output of the organism) and examining their effects on response bout 

parameters, we may begin to build a catalog of behavioral processes that are reflected in 

response bout parameters.   

The first major goal of this dissertation was to establish how response bouts are 

systematically changed due to different behavioral challenges, in particular: by food 

deprivation and satiation (Chapters 2 and 3) – by training requirements such as response 

count (Chapters 2 and 5), response duration (Chapter 4 and 6), and response effort 
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(Chapters 2) – and by breaking the response-reinforcer contingency through extinction 

and non-contingent reinforcement (Chapters 2 and 3). 

By establishing a catalog of bout-parameter changes, these findings may be 

extended to ask how behavioral processes differ due to less well understood factors, such 

as a new drug or differences between animal strains. If, for example, a new strain of rat 

demonstrates differences in bout parameters relative to its control strain, and these 

differences have been previously shown to be selective the result of motoric challenges, 

we may then infer that some motoric aspect of the new strain is also different.  

The second major goal of this dissertation was to then provide a test case for 

linking behavioral processes to differences in bout parameters and demonstrating the 

advantages of bout-based inferences. In Chapter 6, bout analyses are applied to the 

spontaneously hypertensive rat (SHR), a common animal model of ADHD (Sagvolden et 

al., 2009), and its control strain, the Wistar Kyoto Rat (WKY). The SHR responds more 

during operant maintenance and extinction compared to the WKY, yet the cause of these 

differences are poorly understood (Alsop, 2007). This dissertation assessed how the bout 

parameters of the SHR and WKY vary, and what behavioral processes may explain the 

differences. Using those findings, a behavioral “treatment” for the SHR was then devised, 

in which the SHR was trained to respond more like the WKY.  

The third major goal of this dissertation was to develop new models and statistical 

tools for the assessment of response bouts. The log-survivor plots and complementary 

analyses traditionally used in the past have significant limitations that needed to be 

overcome. To better describe response bouts, the dynamic bi-exponential refractory 

model (DBERM) is proposed in Chapter 2 to take into account the biophysical 
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constraints of response emission, and how bouts may change over the course of the 

session. In Chapter 5, alternative versions of DBERM are considered and a new method 

of estimating the distribution of bout lengths is described.  In Chapter 6, DBERM is fit 

using a hierarchical Bayesian framework (Gelman, 2004; Rouder & Lu, 2005; Shiffrin, 

Lee, Kim, & Wagenmakers, 2008) that overcomes many of the limitations associated 

with the inference of between-group parameter differences when using maximum 

likelihood point estimation (Myung, 2003).  
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CHAPTER 2  

THE ISOLATION OF MOTIVATIONAL, MOTORIC, AND SCHEDULE EFFECTS 

ON OPERANT PERFORMANCE: A MODELING APPROACH.  

Abstract 

Dissociating motoric and motivational effects of pharmacological manipulations 

on operant behavior is a substantial challenge. To address this problem, we applied a 

response-bout analysis to data from rats trained to lever press for sucrose on variable-

interval (VI) schedules of reinforcement. Motoric, motivational, and schedule factors 

(effort requirement, deprivation level, and schedule requirements, respectively) were 

manipulated. Bout analysis found that inter-response times (IRTs) were described by a 

mixture of two exponential distributions, one characterizing IRTs within response bouts, 

another characterizing intervals between bouts. Increasing effort requirement lengthened 

the shortest IRT (the refractory period between responses). Adding a ratio requirement 

increased the length and density of response bouts. Both manipulations also decreased the 

bout initiation rate. In contrast, food deprivation only increased the bout initiation rate. 

Changes in the distribution of IRTs over time showed that responses during extinction 

were also emitted in bouts, and that the decrease in response rate was primarily due to 

progressively longer intervals between bouts. Taken together, these results suggest that 

changes in the refractory period indicate motoric effects, whereas selective alterations in 

bout initiation rate indicate incentive-motivational effects. These findings support the use 

of response bout analyses to identify the influence of pharmacological manipulations on 

processes underlying operant performance. 
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Introduction 

Since Skinner (1938), the rate at which an operant is emitted has served as the 

principal measure of the effectiveness of reinforcement (Killeen & Hall, 2001, but see  

Hursh & Silberberg, 2008). Free operant response rate, however, is not a unitary 

phenomenon. Under most contingencies of reinforcement, operant performance seems to 

be organized in bouts separated by relatively long pauses. Bout-like organization is 

evident in break-and-run patterns observed under fixed ratio (FR) schedules of 

reinforcement (Felton & Lyon, 1966), fixed-interval (FI) schedules (Schneider, 1969), 

and peak timing procedures (Church, Meck, & Gibbon, 1994; Federico Sanabria et al., 

2009). Bout-and-pause patterns are more readily visible in variable ratio (VR; Reed, 

2011) and variable-interval (VI) schedules (Conover, Fulton, & Shizgal, 2001; Shull et 

al., 2001). These patterns suggest that response rate is constituted by two underlying 

rates—the rate at which bouts are initiated, and the rate at which responses are emitted 

while in a bout. 

Shull and colleagues (Shull et al., 2001, 2002, 2004; Shull, 2004) have shown that 

the components of operant response rate in VI schedules, bout initiation rate and within-

bout response rate, are differentially sensitive to various experimental manipulations. 

Bout initiation rate, but not within-bout response rate, positively covaries with rate of 

reinforcement and level of deprivation(Shull et al., 2001, 2002, 2004). The addition of an 

unsignaled ratio requirement at the end of a scheduled interval increases the probability 

of remaining in a bout after a response (Shull et al., 2001; Shull & Grimes, 2003; Shull, 

Grimes & Bennett, 2004). The rate of initiation and the length of bouts decrease with 

time in extinction (Shull et al., 2002). Taken together, these results suggest that, under VI 
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schedules, (1) bout initiation rate depends primarily on rate of reinforcement and 

deprivation, and (2) within-bout response rate is sensitive to schedule demands such as 

tandem ratio requirements.  

The differential sensitivity of the components of response rate to motivational and 

schedule manipulations (e.g., deprivation level and tandem ratio requirement, 

respectively) suggests that important psychological processes may be dissociated in 

nonhuman animals on the basis of critical aspects of operant performance. Such 

capability has significant implications in behavioral neuroscience, because the isolation 

of psychological processes is a prerequisite to the identification of their underlying neural 

processes and structures. In this regard, it would be ideal if the bout-and pause analysis 

could be extended to dissociate motoric effects in addition to its dissociation of 

motivational and schedule effects. Indeed, motoric effects are of great concern in 

biopsychological research, because they are often confounded with changes in motivation 

(Avila et al., 2009; Salamone, Correa, Farrar, Nunes, & Pardo, 2009; we refer to the 

experimental variation in these effort requirements as effort or motoric manipulations).  

The present study aimed to replicate the schedule and deprivation-level effects 

demonstrated by Shull and colleagues (2001, 2002, 2004), and to expand upon them by 

investigating the effect of effort requirement on response rate. We manipulated effort by 

varying the height and force requirement of the levers, and motivation for food by 

implementing a 24-hr deprivation period. Our goal was to use the bout-and-pause 

analysis to characterize the differential effects of motivational (deprivation level), 

motoric (lever height and force requirement), and schedule (presence/absence of tandem 

FR requirement) manipulations on response rate, and to identify performance parameters 
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(bout initiation rate, within-bout response rate, etc.) that are differentially sensitive to 

these manipulations. Identifying such effects is critical to establish a means of 

determining whether changes in response rate caused by a drug are due to an alteration in 

the motivation for the reinforcer or due to changes in motor capacity. To avoid 

interactions between the treatment drug and the reinforcer—in particular if the reinforcer 

is another drug—tests are often conducted under extinction conditions (Fuchs, Tran-

Nguyen, Specio, Groff, & Neisewander, 1998; Stewart & de Wit, 1987). We therefore 

introduced a novel, dynamic model to account for changes in model parameters during 

extinction. 

A Bout-and-Pause Model of VI Performance 

In a recent series of studies, Shull and colleagues (Shull & Grimes, 2003; Shull, 

2004; Shull et al., 2004) analyzed the distribution of VI inter-response times (IRTs) using 

log-survival analyses, and found evidence that such a distribution is more accurately 

described as a mixture of two exponential distributions—one characterized by very short, 

burst-like IRTs, and the other characterized by much longer IRTs. This is consistent with 

the view that a rat can be in either one of two states during a session—an engaged or a 

disengaged state (see also Heyman, 1988). When the rat is in the engaged state, it 

responds at a relatively high rate (w, within-bout response rate) according to a Poisson 

process, generating the exponential distribution of short IRTs. After each response there 

is a constant probability (1 - q) that the rat will remain in the engaged state and continue 

to respond at a high rate. There is a complementary probability (q) that the rat will quit 

the engaged state and enter the disengaged state. In the disengaged state, the rat may 

perform responses incompatible with the target response (e.g., locomotion, grooming, 
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etc.) or may simply be quiescent for a period of time. Once that period of time elapses, 

the rat will revisit the target operandum to emit a response, thus reentering the engaged 

state. The target responses that terminate the disengaged state are therefore called bout 

initiation responses. The exponential shape of the distribution of intervals between bouts 

implies that bout initiation responses are governed by another Poisson process, albeit one 

with a much lower rate (b, bout initiation rate) than the process that controls within-bout 

responses. Thus, there is evidence that operant responding is not a unitary process, but 

instead occurs in distinguishable bouts, and that overall response rate is actually a 

composite of two classes of responses—fast within-bout responses and slower bout 

initiation responses. 

According to this model, the probability density of an IRT of length τ, p(IRT=τ), 

in VI schedules of reinforcement can be described by the following bi-exponential 

distribution (Shull & Grimes, 2003; Shull, 2004; Shull et al., 2004): 

𝑝(𝐼𝑅𝑇 =  𝜏) = (1 − 𝑞)𝑤𝑒−𝑤𝑡 + 𝑞𝑏𝑒−𝑏𝑡,       (2-1) 

where w is the mean within-bout response rate; b is the mean bout initiation rate, and (1-

q) is the proportion of IRTs that are emitted during a bout; q is therefore the proportion of 

IRTs that separate bouts (which is the same as the probability of quitting the engaged 

state after a response). Overall response rate is thus a composite process controlled by 

three parameters, q, w, and b. We call this model the bi-exponential model. Note that 

setting q to zero (or one) reduces Equation 1 to an exponential distribution, which would 

be a good description of operant performance not organized in groups of bouts. 



 22   

 

 

The Refractory Period 

Equation 2-1 assumes that after a response is made, an animal can instantaneously make 

another response (i.e., there is no dead time between responses). This is likely to be 

incorrect— physical limitations impose ceilings on response rates (Killeen & Sitomer, 

2003; Killeen, 1994), which yield a dead, or refractory, period after each response during 

which the animal cannot make another response (Killeen et al., 2002). This refractory 

period, which we call δ, is longer for responses that take longer to complete, probably 

like those that involve a higher workload. We included δ in Equation 1 as 

𝑝(𝐼𝑅𝑇 =  𝜏 | τ < δ) = 0,  

𝑝(𝐼𝑅𝑇 =  𝜏 | τ ≥ δ) = (1 − 𝑞)𝑤𝑒−𝑤(𝑡−𝛿) + 𝑞𝑏𝑒−𝑏(𝑡−𝛿).     (2-2)  

We call Equation 2-2 the refractory bi-exponential model. Note that fixing δ at 0 in 

reduces it to Equation 2-1. Figure 2-1 provides a schematic diagram of the refractory bi-

exponential model underlying Equation 2-2. 

 

Figure 2-1. A diagram of the refractory bi-exponential model of operant performance. 

The lever press requires time δ to complete. Following a response, the rat either remains 

in the engaged state with probability 1-q and responds on the lever at rate w, or exits the 

engaged state with probability q and returns at rate b. 
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Predictions 

Prior data suggest that food deprivation covaries with the rate at which response 

bouts are initiated, but not with response rates within bouts in VI schedules (Shull et al., 

2001, 2002; Shull, 2004). Accordingly, we anticipated that depriving rats of food would 

increase b (bout initiation rate), but not w (within-bout response rate) or q (probability of 

quitting an engaged state after a response), in the distribution of food-reinforced VI IRTs. 

In contrast, prior data suggest that appending a tandem FR requirement at the end of the 

VI schedule, which increases the response requirement without substantially affecting 

rate of reinforcement, mainly increases within-bout response rates and not bout initiation 

rates (Shull et al., 2001, 2004; Shull & Grimes, 2003). Accordingly, we anticipated that 

the tandem FR requirement would increase w, possibly decrease q, and would not 

influence b. 

Skjoldager, Pierre, and Mittleman (1993) study provides the most relevant 

precedent to the motoric manipulation implemented in the present study. They found that 

increasing the lever height and force requirement prolongs pre-ratio pauses (i.e., reduces 

rates of engagement) and reduces run rates in a progressive ratio schedule. It is unclear, 

however, the extent to which the latter effect might have resulted from the longer time it 

takes to complete more effortful responses, which is reflected in the refractory period δ 

following each response. We thus anticipated that raising the lever and increasing its 

force requirement would decrease b, increase δ, and possibly decrease w. 
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Method 

Subjects 

Six Sprague Dawley rats (Rattus norvegicus, designated 505, 507, 517, 519, 520, 

and 521) naïve to operant conditioning experimentation served as subjects. They were 

approximately 90 days old and weighed about 350 g at the start of the study. They were 

housed individually on a 12:12 h reverse light/dark cycle with lights on at 1900 h, and 

had free access to food and water in their home cage, unless noted otherwise. 

Apparatus 

Two experimental chambers (305 mm long, 241 mm wide, and 210 mm high) 

housed in light- and sound-attenuating compartments were used. The front and rear walls 

and the ceiling of each experimental chamber were made of clear plastic; the front wall 

was hinged and functioned as a door to the chamber. The floor consisted of thin metal 

bars positioned above a catch pan. In the horizontal middle of a side wall (perpendicular 

to the front and rear walls) was a square aperture (51 mm sides, 15 mm from the chamber 

floor) to the receptacle for 45-mg sucrose pellets (dustless precision formula F0042; Bio-

Serv, Frenchtown, NJ). The chambers were equipped with two retractable levers (MED 

associates, ENV-112CM) mounted flanking the access to the pellet receptacle. The inside 

edge of each lever was 8 mm from the closest vertical edge of the receptacle. 

One lever (the ‘‘low’’ lever) was located 21 mm above the floor; the other lever 

(the ‘‘high’’ lever) was 165 mm above the floor and 16 mm below the ceiling. Rats could 

press the low lever but not the high lever without rearing. Force activation requirements 

for the low and high lever were 0.05 N and 0.78 N, respectively, except during 

autoshaping. Force requirements were measured from the tip of the lever using a stylus 



 25   

 

 

force gauge and manipulated by adjusting the spring tension of each lever. Henceforth the 

high height/force lever will be referred to as the high workload lever and the low 

height/force lever will be referred to as the low workload lever. The assignment of high 

versus low workload to the lever closest to the door was counterbalanced across 

chambers and remained fixed for the duration of the experiment. Extraneous noise was 

masked by a ventilation fan in each chamber. There was no illumination in the chambers 

during sessions. Data collection and experimental events were handled by MEDPCTM 

software and hardware. 

Procedure 

Magazine Training and Autoshaping.  

Each subject completed one session of magazine training, in which 60 sucrose 

pellets were delivered, response-independently, 1 every 60 s. At the end of the training 

session, it was verified that all rats ate all of the pellets. Nine sessions of autoshaping 

were then conducted. Each autoshaping trial started with the extension of a lever, which 

was retracted after 8 s or a lever press, whichever happened first; lever retraction was 

followed by the delivery of one pellet. The inter-trial interval (ITI) was 48 s. During 

autoshaping, both levers were set at the ‘‘low’’ height; lever force activation 

requirements were both set at 0.15 N. For all other phases of the experiment the lever 

work requirements were as described in the apparatus section. 

Phase 1: Maintenance 

Daily experimental sessions were conducted following the autoshaping phase. 

Each session began with a 5- min acclimation period in which no experimental events 

occurred. The remainder of the session was divided into trials, each signaled by the 
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extension of only one of the two levers. The lever closest to the chamber door was always 

extended for the first trial of each session. The extended lever (high or low) was strictly 

alternated between trials. Each trial ended and the lever was retracted when a sucrose 

pellet was delivered or when 300 s had elapsed since the start of the trial, whichever 

occurred first. Trials were separated by a 15-s ITI during which both levers were 

retracted.  

All experimental sessions lasted for 1 h or 60 trials, whichever occurred first. 

Sessions ended only after the end of a trial, never during. Sessions were conducted 7 days 

a week. 

Table 1 lists the experimental conditions in the order in which they were 

presented. Each condition is identified by the schedule on which pellet deliveries were 

programmed. During continuous reinforcement (FR 1), pellets were contingent on a 

single lever press. During VI schedules, pellets were contingent on the first lever press 

following an unsignaled interval that was randomly sampled without replacement from a 

flat 48-item distribution of intervals, which had a mean of the stipulated VI duration and 

ranged between 5 and 240 s. The tandem variable-time (VT) 120 s fixed ratio 5 (tandem 

VT 120-s FR 5) schedule was similar to a simple VI 120-s schedule, but pellets were 

contingent on the fifth lever press following the interval. 

Acute food deprivation was instated immediately after the 27th tandem VT 120-s 

FR 5 session. Chow was removed from the rats’ homecage for 24 h (±1 h). One session 

was conducted on the tandem VT 120-s FR 5 s schedule under food deprivation. Food 

deprivation was terminated immediately after this session to minimize the possibility of 
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chronic food-restriction effects on operant performance (Epstein, Leddy, Temple, & 

Faith, 2007).  

Table 2-1.  

Number of sessions in training and experimental conditions, arranged in chronological 

order 

Schedule of Reinforcement Sessions 

Phase 1  

FR 1 1 

VI 5 s 1 

VI 10 s 1 

VI 20 s 1 

VI 30 s 11 

VI 120 s 20 

Tand VT 120-s FR 5 27 

Tand VT 120-s FR 5 with food deprivation 1 

Phase 2  

Tand VT 120-s FR 5 7 

Extinction 1 

Phase 2: Extinction 

Performance was restabilized on the tandem VT 120-s FR 5 schedule for seven 

sessions, after which one extinction session was conducted. During extinction, only the 

lever closest to the door was extended after the initial acclimation period; it remained 

extended for the entire session, with no consequential pellet delivery. The extended lever 

(high or low workload) was counterbalanced across rats, with 3 rats exposed to each 

lever. 

Data Analysis 

Statistical analyses of overall response rates and parameters of the quantitative 

model were conducted using a within-subject 2 × 3 (workload × condition) ANOVA. The 

two levels of the workload factor were low and high workload. The three levels of the 

condition factor were VI 120 s (VI), tandem VT 120-s FR 5 without food deprivation 
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(Tandem), and tandem VT 120-s FR 5 with food deprivation (Food Dep). Dependent 

measures for each level of the condition factor were the average of the last 4 VI sessions, 

the average of the last 4 Tandem sessions, and the only Food Dep session. Because the 

condition factor was a within subject factor with more than two levels, Mauchly’s test of 

sphericity of the covariance matrix (Mauchly, 1940) was applied. This test verified the 

homogeneity of variance of the difference scores because violating variance homogeneity 

can inflate Type I error rates (Myers & Wells, 1995). For terms that violated the 

sphericity assumption, their degrees of freedom were reduced using the Huynh-Feldt 

epsilon (Huynh & Feldt, 1970), which countered Type I error rate inflation. When the 2 × 

3 ANOVA revealed significant main effects or interactions, paired-samples t-tests 

(pairing within-subject) were conducted on comparisons of interest. More specifically, 

when an effect involving the condition factor was found to be significant, follow-up 

paired-samples t-tests were conducted only between VI versus Tandem (to assess the 

effect of the tandem ratio requirement) and Tandem versus Food Dep (to assess the effect 

of food deprivation), and not between VI and Food Dep. The times at which responses 

were emitted during the single extinction session were also collected, but no between-

subject statistical inferences were made. 

Results Phase 1: Maintenance 

Reinforcement and Response Rate 

Panel A in Figure 2-2 shows daily mean reinforcement rates on both low and high 

workload levers for each manipulation. Panel B in Figure 2-2 shows the mean 

reinforcement rates averaged over the last four training sessions in the VI and Tandem 

manipulations and the mean reinforcement rates from the single Food Dep manipulation. 
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Reinforcement rate did not appear to be affected by either workload or condition: 

ANOVA failed to detect a main effect of workload, F(1, 5) 5 1.74, p = .20, condition, F < 

1, NS, or a workload 3 condition interaction, F <1, NS. This indicates that our schedule 

successfully controlled for reinforcement rates on both levers across schedule/deprivation 

manipulations. Panel C in Figure 2-2 shows daily mean response rates during VI, 

Tandem, and Food Dep sessions. Panel D in Figure 2-2 shows mean response rates 

averaged over the last four VI and Tandem sessions and the mean response rates from the 

single Food Dep session for each lever. ANOVA found no significant condition × 

workload interaction effect on response rates, F = 1, NS. ANOVA also found no 

systematic differences between response rates on the high versus low workload lever 

(main effect of workload, F , 1, NS). In contrast, ANOVA found a main effect of 

condition, F(2, 10) = 18.55, p < .01. A follow-up t-test comparing VI versus Tandem 

found that subjects responded more during the Tandem condition than during the VI 

condition, t(5) = 3.85, p < .02 (left asterisk in Figure 2-2D). A second follow-up t-test 

comparing Tandem versus Food Dep found that rats also responded more during Food 

Dep than during Tandem, t(5) = 3.87, p < .02 (right asterisk in Figure 2-2D), in 

agreement with the hypothesis that motivation is enhanced by increased food deprivation. 

Model Selection 

Although statistical analysis suggested that the response rate was not affected by 

workload, variability in performance between and within subjects may have obscured 

systematic changes in more fine-grained parameters that underlie overall response rates. 

We further explored this possibility by considering four variations of a model of IRT 

distributions (Equation 2-2, Figure 2-1): a single-exponential model, where q = 0 and δ =  
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0; a refractory exponential model, where q = 0 but δ ≥ 0; a bi-exponential model, where q 

≥ 0 but δ = 0 (Equation 2-1), and a refractory bi-exponential model, where q ≥ 0 but δ ≥ 

0 (Equation 2-2). 

We fitted each model to each rat’s daily IRT data on each lever, using the method 

of maximum likelihood (Myung, 2003). The maximum likelihood estimate (MLE) of 

each model was the product of the model’s daily likelihood estimates across levers and 

subjects. Akaike Information Criterion (AIC; Burnham & Anderson, 2002; see Appendix 

  

 

Figure 2-2. Mean reinforcement and response rates Panels A and B are reinforcement 

rate, Panels C and D are overall response rates. Error bars are the standard error of the 

mean. for experimental conditions in Phase 1. Left panels show daily means for low 

and high workload levers. Right panels show means averaged over the last four 

sessions for VI and Tandem conditions and the mean for the single Food Dep session. 

Asterisks indicate significant (p < .05) effects of condition (schedule/deprivation 

manipulations). 
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A  for a brief explanation of the maximum likelihood method, AIC, and ΔAIC) was then 

used to evaluate the relative goodness of fit of each model. In the present experiment, a 

trial occasionally timed out before the animal had earned a reinforcer, thus yielding 

periods that ended without a response. Appendix B provides the expression for the 

probability that the animal does not emit a response for a given duration. 

Table 2-2.  

Minimum daily ΔAIC for each of four models of operant performance for each 

experimental condition in Phase 1.  

Model VI Tandem Food Dep 

Single exponential (w) 3377 6239 25497 

Refractory exponential (w, δ) 2836 5771 22744 

Bi-exponential (q, w, b) 1097 1700 9622 

Refractory bi-exponential (q, w, b, δ) 0 0 0 

Note. Computation of ΔAIC is explained in Appendix A. Free parameters are indicated in 

parenthesis following model names. Note that the food deprivation condition consisted of 

only a single session. 

Table 2-2 shows the minimum ΔAIC across daily sessions under each condition 

for each model. The refractory bi-exponential model (Equation 1-2) was consistently the 

best model on every training session. The finding that the next smallest ΔAIC across all 

sessions was 1097 means that the refractory bi-exponential model was at least e548 times 

more likely than the next best model (non-refractory bi-exponential model) on any given 

day. 

To illustrate the goodness of fit of the selected model, Figure 2-3 shows log-

survival plots of IRTs (continuous curves) of a typical rat across experimental conditions, 

along with fitted refractory exponential (dotted) and refractory bi-exponential (dashed) 

traces. All plots take the approximate shape of a broken stick: a substantial portion of the 

IRTs is very short (steep portion of the curve on the left side of each plot); the longer 

IRTs range over much longer intervals (flatter portion of the curve on the right side of 
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each plot). The refractory bi-exponential model fit the data adequately, and certainly 

better than the single exponential model. The fitted non-refractory bi-exponential trace 

(not shown) was almost identical to the refractory bi-exponential trace, except that the 

former was shifted to the left by 0.1 s. The similarity of both traces highlights the 

advantage of using a likelihood-based analysis: AIC clearly showed that the inclusion of 

the refractory period provided a better description of the data. This advantage would have 

been missed by both visual inspection of the survival function and by fitting a curve to 

the function using the method of least squares (Kessel & Lucke, 2008). 

Effects of Parameter Estimates 

To assess the effect of workload, schedule of reinforcement, and food deprivation 

on refractory bi-exponential parameters, we compared estimates of these parameters3 

across experimental manipulations. This comparison was based on the same 2  3 

(workload  condition) ANOVA used to analyze overall response rates above. The 2 

levels in the workload factors were low and high workload, and the 3 levels in the 

condition factor were VI, Tandem, and Food Deprivation (Food Dep). Because our model 

assumed that each parameter was independent from one another, a separate ANOVA was 

conducted for each parameter. Estimates for individual rats are shown in Appendix C. 

                                                 
3 There are occasional sessions in which 1 animal did not emit bout-like responding – specifically rat 520 

on 3 sessions and rat 519 on 1 session under the VI condition. On these sessions, these rats’ AIC scores 

from the refractory single exponential model were the lowest. This is because the estimates for q using the 

bi-exponential model were so close to 0 that the parameter b did not account for enough variance to justify 

its inclusion. This means that the estimates of b were based on few responses and were thus unreliable. On 

these sessions, we therefore used the refractory single exponential model for these animals, with q = 0, and 

b for these animals was not estimated. On another 2 sessions under the Tandem condition, rat 520 emitted 

only one response on the high workload lever. We therefore omitted to analyze this rat’s IRT data from the 

high workload lever entirely on these 2 sessions. None of the above atypical responding occurred during 

the last 4 sessions in each condition, on which statistical analyses were based. 
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Figure 2-3. Phase 1 log-survival plots of IRTs produced by a representative rat in all 

experimental conditions (continuous curves). Left and right panels show data from low 

and high workload levers, respectively. The maximum likelihood fits of the refractory 

single exponential (Ex) and bi-exponential (Bi-ex) models are also shown. The best 

fitting parameters for the two models are displayed in each graph. q: proportion of IRTs 

separating bouts; w (responses/sec): within-bout response rate; b (responses/sec): bout 

initiation rate; δ (sec): refractory period. The rat was selected by ranking the overall 

response rate on each lever in the last session of each condition in Phase 1 for each rat, 

then averaging the rank across levers and conditions, and selecting the rat with the third 

highest average rank. 
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Panels A and B in Figure 2-4 show the probability of quitting a bout, q, for each 

of the two levers. ANOVA found no workload  condition interaction effect on q, F < 1, 

NS. Changing motor workload had no significant effect on q [main effect of workload: 

F(1, 5) = 1.07, p > .30]. In contrast, ANOVA found that q was significantly affected by 

condition [main effect of condition: F(1.0, 5.1) = 19.64,  p <. 01]. A follow-up t-test 

comparing VI vs. Tandem found that increasing ratio requirement reduced q on both 

levers, t(5) = 4.54, p < .01, (asterisk in Figure 2-4B). A second follow-up t-test 

comparing Tandem vs. Food Dep found that food deprivation did not affect q 

significantly, t(5) = 1.63, p > .10.  

Panels C and D in Figure 2-4 show mean estimates of the refractory period, δ, for 

each of the two levers. On average, δ was systematically higher for the high vs. the low 

workload lever, although the difference was small (pooled average difference = 0.033 ± 

0.009 s)4. ANOVA found no workload  condition interaction effect on δ, F(1.1, 5.3) = 

1.96,  p > .20, but it found a significant main effect of workload, F(1, 5) = 15.38, p < .02 

                                                 
4 Our estimate of δ carries a slight bias. This is because maximum likelihood is achieved when δ is as large 

as possible, i.e., at the minimum IRT. However, if X is an exponentially distributed random variable with 

rate b and no refractory period (δ = 0), and if we take n independent samples from X (e.g., n IRTs from a 

subject), then min{X1,…, Xn} will also be exponentially distributed with mean 1/nb (Ross, 2007). Similarly, 

given a bi-exponential distribution with no refractory period, if we take (1–q)n samples from the 

exponential distribution with rate w and qn samples from the other exponential distribution with rate b, then 

we expect the minimum to be exponentially distributed with mean 1/[(1–q)nw+qnb]. This is therefore our 

bias when we use the minimum IRT as our estimate for δ in the refractory bi-exponential model. We took 

bi-exponential parameter estimates from the last 4 sessions under the VI and Tandem conditions and from 

the single Food Dep session, and substituted them into the equation 1/[(1–q)nw+qnb], where n is the 

number of responses emitted by the animal. The average bias pooled across conditions and levers was 

0.005 ± 0.003 s, and there was no substantial difference between the biases on the two levers (0.002 ± 

0.002 s). The bias was only ~4% of the average estimate for δ (i.e., minimum IRT; 0.11 ± 0.01 s) and was 

also much smaller than the average difference in δ between the high and low workload levers (0.033 ± 

0.009 s). Therefore the bias in the present study was too small to affect any of the findings, and was 

consequently ignored. 
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(pound sign in Figure 2-4D), showing that increasing motor workload increased δ, as 

predicted above. The main effect of condition on δ was not significant, F(1.1, 5.3) = 3.12,  

p > .10.  

Panels E and F in Figure 2-4 show mean estimates of the within-bout response 

rate, w, for the two levers. ANOVA found no significant workload  condition interaction 

effect on w, F < 1, NS. ANOVA found that the main effect of workload was not 

significant at the .05 level, F(1, 5) = 4.50, p > .08, even though differences in mean w 

between workloads may hint that high workloads maintained higher w. ANOVA found a 

significant main effect of condition on w, F(2, 10) = 9.45,  p < .01. A follow-up t-test 

comparing VI vs Tandem found that w increased when ratio requirement was increased, 

t(5) = 4.49, p < .01 (asterisk in Figure 2-4F). A second follow-up t-test comparing 

Tandem vs. Food Dep found that food deprivation did not affect w, t(5) = 0.92, p > .35. 

Discussion Phase 1: Maintenance 

A superficial examination of response rate alone indicated that responding on a VI 

schedule increases if the tandem ratio requirement increases, or if the animals are 

deprived of food (Figure 2-2, Panels C and D). Both effects, under conditions of constant 

rate of reinforcement (Figure 2-2, Panels A and B), are replications of well-demonstrated 

phenomena (Ferster & Skinner, 1957; Shull et al., 2001; Skinner, 1938). Interestingly, no 

effect of workload on overall response rate was detected. This result is inconsistent with 

many reports indicating an inverse relationship between force-requirements and response 

rate (Adair, Wright, Pierce, & Haven, 1976; Alling & Poling, 1995; C. M. Bradshaw, 

Szabadi, & Ruddle, 1983; Posadas-Sanchez, 2005), although support for this relationship 
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is not unequivocal (Collier & Jennings, 1969; Elsmore & Brownstein, 1968; Stanley & 

Aamodt, 1954; Zarcone, Chen, & Fowler, 2007, 2009). Nonetheless, overall response rate 

is a crude measure of performance: by collapsing all the IRTs into the denominator, 

response rates neglect the information contained in the distribution of IRTs. We 

suspected that changes in IRT distribution across conditions would uncover interesting 

effects, including those produced by changes in workload. 

Our first task was to determine the most appropriate characterization of IRT 

distributions. We thus considered four models, three of which were simplified versions 

nested within a fourth, more complex model—the refractory bi-exponential model 

(Equation 2-2). The complexity of this model was well justified by the variance it 

accounted for and, therefore, it was adopted. The refractory bi-exponential model 

assumes that responses occur in bouts; it comprises four parameters: q (the probability of 

quitting a response bout; its complement, 1- q, is the probability of continuing in a bout), 

δ (the minimum IRT), w (the rate of responding within a bout), and b (the rate of bout 

initiation). 

Finally, we identified substantial changes in refractory bi-exponential parameters 

caused by changes in experimental conditions. Consistent with Shull et al. (2001), we 

found that the tandem VT FR schedule maintained higher response rates than the simpler 

VI schedule because it sustained longer bouts of fast responding (lower q, higher w), even 

though these bouts were less frequent (lower b). Food deprivation selectively increased 

bout frequency, thus yielding even higher response rates; this also replicated Shull’s 

(2004) findings. We also found that mean response rates obscured three mutually 

compensating effects of workload: higher workloads yielded less frequent bouts (lower b) 
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of responses that took longer to complete (higher δ), but that tended to be emitted at 

higher rates (higher w). Although not statistically significant, the workload-induced 

change in w was sufficient to counteract the depressing influence of b and δ on overall 

response rate. 

 Among the factors considered in this study, changes in schedule of reinforcement 

affected only the probability of staying on the lever (1- q) and the rate of within-bout 

responding (w), whereas workload uniquely affected the minimum IRT (δ). Thus, 

evidence presented here supports the use of q and w as indices of schedule effects, and δ 

as an index of motoric effects in food-maintained behavior. Motivational effects, such as 

those of food deprivation, may be identified by exclusive changes in the rate of bout 

initiation b. This means that changes in b that are accompanied by changes in other 

parameters may be caused by non-motivational manipulations. As shown in Figure 2-4 

Panel H, a schedule manipulation (tandem FR requirement) and a motoric challenge 

 

 

Figure 2-4. Cumulative lever presses emitted during extinction on the low and high 

workload levers for individual rats. Vertical drop lines indicate the time at which each 

subject emitted half of its total lever presses in the extinction session. Rat numbers are 

indicated at the end point of each record. 
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(higher workload lever) yielded reductions in b. These non-motivational manipulations 

also influenced other parameters; only food deprivation influenced b alone. 

Results Phase 2: Extinction 

Figure 2-5 shows, in separate plots for low and high workload, the cumulative 

lever presses emitted by individual rats and the time when half of those lever presses 

were emitted during the extinction session. On average, fewer responses appear to be 

emitted during the extinction of high workload lever pressing, although the variability 

between subjects precludes any meaningful statistical analysis. In contrast, the rate at 

which responding decayed during extinction, indexed by the half-life of the cumulative 

response, was similar across workload levels. As in Phase 1, we anticipated that the 

analysis of response aggregates provided no more than a general semblance of the 

extinction process. We thus applied the modeling exercise from Phase 1 to the data from 

Phase 2. 

Because the exponential model is a special case of the bi-exponential model, we 

will focus on generalizing the latter model to extinction performance. Like the 

maintenance model, the extinction model assumes that responses occur stochastically and 

independently according to two underlying independent Poisson processes – one with 

high rate (within-bout) and one with low rate (bout initiation). It is assumed that, during 

an extinction session, one or more of the following parameters decay exponentially 

towards zero over time: the probability of remaining in a bout (1 – q), the within-bout 

response rate (w), and the bout initiation rate (b). The decay of any one of these 

parameters would yield longer IRTs, and thus reduced response rates, as a function of 

time in extinction. The nomination of these decay processes is not motivated by 
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theoretical considerations, but provides reasonable descriptions of the extinction process, 

given the refractory bi-exponential model. 

Specifically, let (1 – q0) be the baseline probability of remaining in the engaged 

state at the beginning of the extinction session, w0 be the baseline within-bout response 

rate, and b0 be the baseline bout initiation rate. Let 1 – qt be the probability of quitting the 

engaged state at time t into the extinction session, wt be the within-bout response rate at 

time t into the session, and bt be the bout initiation rate at time t into the session. Then: 

 1 − 𝑞𝑡 = (1 − 𝑞0)𝑒−𝛾𝑡 

𝑤𝑡 = 𝑤0𝑒−𝛼𝑡 

𝑏𝑡 = 𝑏0𝑒−𝛽𝑡, (2-3) 

where γ, α, and β, are the rates of decay of (1 – q0), w0, and b0, respectively. The 

probability of quitting a bout at time t, qt, is simply 1 – (1 – qt). Note that the exponential 

function is used in Equation 2-3 to describe the decay of parameters as a function of time 

in extinction, and not to describe the probability distribution of IRTs (cf. Equations 2-1 

and 2-2). For simplicity, we assume that if a rat responded at time t and the next response 

occurs at t + δ, then the parameters qt, wt and bt are given by Equation 3 and they remain 

constant between t and t + δ. Appendix D provides expressions for the probability that the 

animal does not emit a response between its last emitted response and the end of the 

session. Parameters were estimated for each animal in each experimental condition, based 

on the joint probability of all IRTs and the “no-response” periods. 
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Table 2-3.  

List of parameters for the static and dynamic models. 

Static models 

 δ Refractory period 

 q Probability of quitting a bout 

 w Within-bout response rate 

 b Bout initiation rate 

Dynamic models 

 δ Refractory period 

 1–q0 Baseline probability of remaining in bout 

 w0 Baseline within-bout response rate 

 b0 Baseline bout initiation rate 

 γ Rate of decay of 1–q0 

 α Rate of decay of w0 

 β Rate of decay of b0 

Because parameters q, w, and b change as a function of time in extinction, we call 

this model the dynamic refractory bi-exponential model, in contradistinction to the static 

model of Equation 2-2. Note that if all three decay-rate parameters (γ, α, β) are set to 

zero, the model reduces to Equation 2-2. Table 2-3 lists all the parameters of both static 

and dynamic refractory bi-exponential models with their meaning, for reference. 

We had no a priori hypothesis as to which of the parameters, (1–q0), w0, or b0, 

would decay during the extinction session. We therefore used maximum likelihood 

estimates and AIC to determine the most efficient model. The following models were 

compared using AIC: (a) single versus bi-exponential (q0 = 0 vs. q0 ≥ 0); (b) non-

refractory versus refractory (δ = 0 vs. δ ≥ 0); and (c) all possible combinations of decay 

rate parameters (γ, α, and β) fixed at zero vs. not fixed at zero. Models with parameters 

fixed at zero are more parsimonious and are analogous to the “null hypothesis” that those 

parameters are superfluous (Burnham & Anderson, 2002). The AIC scores for these 

“null” models would be lower, and hence these models would be favored, if alternative 
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models that allow these parameters to be free did not account for substantially more 

variance. There are a total of four single exponential candidate models: two models with 

α either free or fixed at zero  two models with δ either free or fixed at zero.  There are a 

total of 16 bi-exponential candidate models: 23 models with γ, α, and β, each either being 

free or fixed at zero, and for each bi-exponential model δ can be free or fixed at zero, 

yielding 23  2 = 16 candidate models. Animals were grouped according to which lever 

was presented during the extinction session (high vs. low workload); model selection and 

parameter estimation were conducted for each group separately. AIC analysis showed 

that the refractory bi-exponential model fit extinction data better than both single 

exponential models and the non-refractory bi-exponential model. 

Table 2-4 shows the five best fitting models for extinction of high vs. low 

workload lever pressing, as well as the best fitting non-refractory bi-exponential model 

and the best fitting single exponential model. Model names indicate whether the model is 

refractory (δ is free) and the decay rate parameters that are allowed to vary freely. Each 

model’s ΔAIC is shown in parenthesis. The best fitting refractory bi-exponential models 

were more than e700 times more likely than the best non-refractory bi-exponential model, 

which was in turn more than e3500 times more likely than the best fitting single 

exponential model. This provides strong evidence that bout-like responding occurs during 

extinction, justifying the present fine-grained analysis. The likelihood of each of the top 

four models for both groups (extinguished on low vs. high workload levers) is fairly 

similar to each other. In fact, β was the only decay rate parameter that the present data 

unequivocally suggested needed to be free: for both groups of animals, the best models 

with β set to zero (ranked fifth in Table 2-4) were more than e58 times less likely than a 
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similar models with β allowed to be free, providing strong evidence that bout initiation 

rate declined as extinction progressed. Table 2-4 also shows that models with γ or α set to 

zero (ranked second) had low ΔAICs. The present data therefore did not provide 

substantial evidence that the probability of remaining in a bout or the within-bout 

response rate declined during an extinction session (for model selection criteria, see 

Appendix A). The model ranked second, underlined in Table 2-4, was therefore selected 

as best balancing parsimony and goodness-of-fit. 

Figure 2-6 shows how IRTs (pauses between responses) changed as a function of 

time in extinction. The x-coordinate of each point is the time t when a response was 

emitted; the y-coordinate shows how long the animal waited until emitting the next 

response. Note that the y-axis is plotted on a log scale. Also shown are the fitted mean 

IRTs drawn from the dynamic refractory exponential model selected in Table 4—solid 

lines represent within-bout IRTs (δ + 1/wt) and broken lines represent between-bout IRTs 

(δ + 1/bt). Note that although the selected dynamic model assumes that bt remains 

constant (flat) between consecutive responses and only increases in discrete “jumps”, the 

mean IRTs in Figure 2-6 have been joined by a smooth straight line for illustrative 

purposes. Figure 2-6 clearly shows clusters of rapid within-bout responses with mean 

IRT of about 0.3 s, intermixed with much slower bout initiation responses with mean IRT 

of about 10 s at the beginning of the extinction session, and rising exponentially to about 

100 s by the end of the session. Rat 519 ceased responding completely at about 1500 s 

into the session; all other rats showed a more gradual decline in bout initiation rate. 
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Table 2-4. 

Best extinction models according to AIC.  

Model rank Low workload (ΔAIC) High workload (ΔAIC) 

1 δ, α, β (0) δ, α, β (0) 

2 δ, β (0) δ, β (1) 

3 δ, γ, β (2) δ, γ, α, β (5) 

4 δ, γ, α, β (2) δ, γ, β (5) 

5 δ, γ  (250) δ (121) 

Best non-refractory bi-exp β (2829) β (1483) 

Best single exp δ, α (12771) δ, α (8736) 

Note. Free parameters are listed for each model; 1- q0, w0, and b0 were free to vary for all 

bi-exponential models (see Equation 1-3). The best non-refractory and single exponential 

models are listed for comparison. Selected models are underlined (see Appendix A 

explanation). 

The group mean parameter estimates (±SEMs) of model 2 for each group are 

presented in Table 2-5. Due to the small group size (n = 3), statistical analysis was not 

conducted on parameter estimates. Nonetheless, there are some noteworthy qualitative 

inconsistencies and regularities in parameter estimates. The difference in w0 across 

workloads was not in the same direction as observed during Phase 1. As the statistical 

analysis suggested in Phase 1, workload-induced changes in within-bout response rate do 

not appear reliable. The differences in b0 and δ across workloads, nonetheless, are 

consistent with the differences observed during Phase 1, thus confirming that higher 

workload yields fewer bouts of prolonged responses. Absent reinforcement, bouts of 

more laborious responses do not appear to decline faster in frequency. 

Discussion Phase 2: Extinction 

The present experiment complements a previous study by Shull et al. (2002). In 

their study, extinction sessions were separated into blocks of approximately 20 min, with 

the assumption that model parameters are constant within a block. Then, two separate 
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analyses were conducted to estimate model parameters for each block, and changes in 

parameters as a function of block (time in extinction) were visually compared. The first 

analysis used log-survival plots to fit parameters for each block. However, the authors 

noted that this method was problematic because the number of IRTs per block became 

increasingly small, which reduced the reliability of parameter estimates in the later 

blocks. The second technique imposed an arbitrary cutoff-IRT. All IRTs shorter than the 

cutoff were classified as within-bout, and all IRTs longer than the cutoff were classified 

as between-bout. Although Shull and colleagues used this method without any reported 

issues, the selection of the cutoff-IRT was arbitrary, and has the potential to misclassify 

pauses between bouts as within-bout IRTs, and vice versa. The present study 

circumvented these difficulties by generalizing the response-bout model so that any 

dynamic changes in steady-state parameters can be captured quantitatively. This 

generalization not only allows parameters to be estimated for individual subjects on a 

sound theoretical basis, it also has the potential to allow different hypotheses to be 

explicitly tested using AIC, such as which of the steady-state parameters (q, w, or b) 

change during extinction. The results from the present extinction experiment supported a 

relatively simple extension of the static refractory bi-exponential model: when 

reinforcement is discontinued, only the rate of bout initiation declines exponentially over 

time. Research elsewhere has shown similar effects of extinction on bout initiation, 

although small decrements in bout length were also reported (Shull et al., 2002; 

Podlesnik, Jimenez-Gomez, Ward, & Shahan, 2006). 

Overall, these findings are consistent with reports of selective effects of rate of 

reinforcement on rate of bout initiation (J. E. Johnson et al., 2009; Shull et al., 2001). The 
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evidence supports the notion that reinforcement operates primarily on the initiation of 

response bouts (G. M. Heyman, 1988), although other studies have shown variations in 

bout length (Shull et al., 2004) and within-bout response rate (Conover et al., 2001) with 

rate of reinforcement. The constancy of within-bout “tempo”, for instance, is particularly 

salient in the flat solid lines of Figure 2-6. As discussed in Phase 1, however, bout 

initiation appears to be sensitive also to workload and schedule demands. It is yet unclear 

whether the workload manipulation implemented in this study influenced the rate at 

which bout initiation declines during extinction.  

General Discussion 

Our results support the notion that free operant responding under VI schedules is 

organized in bouts separated by pauses. We effectively extended this notion to 

characterize extinction as an exponential lengthening of the pauses that separate bouts, 

which is consistent with prior findings (Podlesnik et al., 2006; Shull et al., 2002). 

Although we considered two models to account for maintenance and extinction 

performance (the static and dynamic models, respectively), both models may be special 

cases of a more comprehensive model. In this more general model, operant performance 

may be characterized as a propensity to initiate response bouts, which increases with 

reinforcement and declines with time. Alternatively, the decline in bout initiation may be 

driven by unreinforced responses, in line with Skinner’s (1938) notion of reflex reserve  
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Figure 2-6. Inter-response times (IRTs) as a function of time t in extinction.  

The broken, solid, and dotted lines are, respectively, traces of bout initiation rate (bt), 

within bout rate (wt), and constant minimum IRT (), drawn from the dynamic 

refractory bi-exponential model (Equation 2-5) and fit using the maximum likelihood 

method. Traces of bt have been joined by a smooth straight line for illustrative 

purposes (see main text). 
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(Catania, 2005). More precisely, the model of bout initiation decline considered in this 

study was a hybrid of the time-dependent and response-dependent decline models: we 

assumed that bout initiations decline as time without reinforcement progressed, but the 

hypothesized clock was only updated with each response. Further research may clarify 

how the initiation of bouts declines in the absence of reinforcement. We also extended 

the bi-exponential model to include a refractory period following each response, and 

demonstrated that it is an informative component of operant performance. 

Although the refractory bi-exponential model was capable of describing food-

reinforced behavior in rats, it may be somewhat limited in describing the behavior of 

other species. Pigeon key-pecking has been notoriously resistant to bout-and-pause 

analyses. Visual inspection of log-survival plots of key-pecking IRTs often fail to reveal 

a distinct inflection point (Bennett, Hughes, & Pitts, 2007; Bowers, Hill, & Palya, 2008;  

Podlesnik, Jimenez-Gomez, Ward, & Shahan, 2006). This divergence in the 

performance of rats and pigeons suggests that a more flexible model, of which the 

refractory bi-exponential is a special case, may be necessary to characterize operant 

behavior across species.  

Motoric Effects 

When rats were required to press a higher, heavier lever, bout initiation rate 

declined and the minimum time between consecutive responses (the refractory period  in 

Equation 1-2) increased. Bout initiation rate is also sensitive to deprivation level and rate 

of reinforcement (Shull, 2004; Shull et al., 2004), but both were kept constant across 

workload manipulations. Thus, it appears that workload manipulations had an effect 



 48   

 

 

similar to that of altering deprivation and rate of reinforcement, aside from the more 

purely motoric effect of lengthening of the refractory period. This is consistent with 

Posadas-Sanchez’s (2005) finding that a higher lever force requirement decreases indices 

of motivation while increasing indices of response duration. Skjoldager et al. (1993) 

reported that an increase in lever height and force requirement prolonged pre-ratio pauses 

and reduced run rates in a progressive ratio schedule. Alling and Poling (1995) replicated 

these effects in fixed ratio schedules. Pre-ratio pauses are akin to between-bout IRTs—

they indicate periods of disengagement from the operandum, and are particularly attuned 

to motivational manipulations such as those of deprivation level (Malott, 1966). All this 

evidence converges on the notion that changes in response cost necessarily influence 

motivation. Therefore motoric effects, which are embedded within changes in run rates, 

cannot be empirically isolated; they can only be analytically isolated. That is, motoric 

effects may not be observed without motivational changes, but they may be estimated on 

the basis of changes in the shortest IRT. The refractory bi-exponential model provides a 

means for such estimation. 

The hypothesis that motoric manipulations imply motivational effects may 

explain some weaknesses of extant methods of motor-motivational dissociation. One 

popular method, for instance, consists of estimating the parameters of Herrnstein’s (1970) 

hyperbola from performance across various VI schedules (Bradshaw, Ruddle, & Szabadi, 

1981; Glautier, Rigney, & Willner, 2001; Heyman, Kinzie, & Seiden, 1986). A common 

assumption, derived from early interpretations of the hyperbolic parameters (de Villiers 

& Herrnstein, 1976), is that the asymptotic response rate k attained with very high 

reinforcement rates should be sensitive only to motoric manipulations, whereas the rate 
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of reinforcement re that yields a response rate of k / 2 should only be sensitive to 

motivational manipulations. A recent review (Dallery & Soto, 2004) suggests that k is 

sensitive to motoric manipulations, but not selectively: it also appears to be sensitive to 

changes in deprivation level and reinforcer magnitude. In turn, re seems to be sensitive to 

motoric manipulations under certain circumstances. Motivational effects inherent to 

motoric manipulations may explain why re is sensitive to motoric manipulations, but not 

why k is sensitive to motivational manipulations. A generalization of Herrnstein’s 

hyperbola (McDowell, 2005), similar to that provided by Baum, (1974) for the matching 

law, appears to account for motivational effects otherwise absorbed by k. This may be a 

productive development toward a global account of performance in VI schedules. Local 

mechanisms similar to those suggested here, however, are not specified by the 

generalized hyperbola.  

Schedule Effects 

Rats emitted fewer response bouts when a FR requirement was appended at the 

end of an interval schedule. These bouts, however, were longer and denser in responses 

(smaller q, higher w), yielding higher overall response rates. If overall response rate was 

taken as an index of motivation, we would be deceived into believing that the imposition 

of a tandem FR schedule increased the motivation to engage the operandum. The 

reduction in bout initiation rate suggests the contrary: the tandem FR schedule reduced, 

not increased, motivation. Why would a tandem FR schedule reduce motivation? Longer 

bouts increase the number of intervening responses between bout-initiating lever presses 

and reinforcement, and may widen the interval between the two. It is widely 

acknowledged that delayed reinforcement is less effective in maintaining behavior (e.g., 
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Dickinson, Watt, & Griffiths, 1992). More directly relevant to our results, pre-ratio 

pauses in FR schedules increase with reinforcement delay (Meunier, Starratt, & Sergio, 

1979; Morgan, 1972). Although the ineffectiveness of delayed reinforcement has a credit-

assignment component (Lieberman, McIntosh, & Thomas, 1979), it is likely to include 

also a motivational component: delayed incentives are less attractive than immediate ones 

(e.g., Mazur, 2010). Bout initiation rate may thus be reduced by tandem FR schedules 

because these schedules yield longer bouts that separate their initiation from 

reinforcement. This explanation has a significant implication: it suggests that, even 

though the computer recording the rat’s activity may count a bout initiation lever press 

just as any other lever press, these lever presses are functionally distinct from within-bout 

lever presses. Despite their topographical similarity, bout-initiating responses and within-

bout responses may constitute separate response classes (Schick, 1971). If such were the 

case, reinforcement of the latter would not completely generalize to the former, and vice 

versa (see Shull et al., 2004, pp. 76-78, for a related discussion on the bout as a 

behavioral unit). 

Our explanation of reduced bout initiation rates in tandem FR schedules is based 

on longer bouts. Why, then, do tandem FR schedules yield longer bouts? Probably 

because fast response bursts are more likely to be reinforced under tandem VT FR than 

under VI schedules (Killeen, 1969); schedules with a terminal tandem FR requirement 

selectively reinforce longer bursts. Interestingly, such reinforcement did not appear to 

generalize to bout initiation lever presses in the present study, supporting the notion that 

bout initiation and within-bout lever presses are functionally distinct. 
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Like workload manipulations, schedule manipulations appear to have a 

motivational and a non-motivational component. The motivational component is related 

to the resulting delay between bout initiation and reinforcement. The non-motivational 

component is related to the proximity of within-bout responses to reinforcement. The 

refractory bi-exponential model identifies changes in the former component with changes 

in parameter b in Equation 1-2, and changes in the latter component with changes in q 

and w. 

Motivational Effects 

Food deprivation selectively increased bout initiation rate (Phase 1), whereas the 

elimination of reinforcement selectively reduced bout initiation rate (Phase 2). Similarly, 

Podlesnik et al. (2006) found that prefeeding and extinction reduced bout initiation rate. 

The results reported here complement the evidence that bout initiation rate selectively 

covaries with rate of reinforcement (Shull et al., 2001). They suggest that the rat’s 

willingness to engage the operandum, which is driven by hunger, reinforcer availability, 

and low “price”, is expressed in the rate of bout initiation (parameter b in Equation 1-2). 

Such general willingness may be described as operant motivation, to distinguish it from 

the more specific notion of incentive motivation (Bindra, 1978).  

Incentive motivation refers to the approach or seeking behavior elicited by 

appetitive or conditional stimuli. Incentive motivation is mostly dependent on the 

properties of the stimulus and on the state of the animal with respect to the stimulus, and 

is independent of response cost and the interval between response and reinforcer. Operant 

motivation, instead, is a function of both incentive and response. Response cost may 

influence operant motivation, as shown by the effects of motoric manipulations, and 



 52   

 

 

longer response-reinforcer intervals are likely to reduce operant motivation, as inferred 

from the effects of schedule manipulation and rate of reinforcement. Incentive motivation 

for food, for instance, may be raised by depriving an animal of food or by presenting food 

(or associated stimuli) to the animal; operant motivation for engaging in food-producing 

activities may be raised by increasing incentive motivation for food, by reducing the 

energetic cost of the activities that yield food, or by reducing the time between activities 

and food. Because incentive motivation is subsumed within operant motivation, changes 

in incentive motivation may be inferred from concomitant changes in bout initiation rate, 

but only when response-reinforcement contingencies are kept constant. 

Researchers are often interested in drawing inferences about changes in incentive 

motivation from operant performance. We may want to demonstrate, for instance, that a 

particular treatment reduces the incentive motivation for cocaine. One way to perform 

this demonstration is to compare operant performance for cocaine (under maintenance or 

extinction schedules) with and without the treatment. Based on the results reported here, 

one would be advised not to compare overall response rates, but to compare estimates of 

the rate at which response bouts are initiated. Even then, because bout initiation is an 

indication of operant, not incentive motivation, one would have to rule out motoric and 

schedule effects that would indirectly affect operant motivation. That is, if the test 

indicates that only bout initiation rates were affected by treatment, it would constitute 

positive evidence that the treatment reduced the incentive motivation for cocaine, 

however if it also affected the within-bout response rate or the minimum IRT, reliable 

inferences on incentive motivation may not be drawn. 
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The previous example assumes that the inferences we have drawn from food-

seeking behavior may be generalized to cocaine self-administration. Whether such 

generalization is justified or not will require further research with a wider range of 

reinforcers (e.g., drugs, access to mates, defense against aversive stimuli) and a variety of 

operants. The present study has laid out the empirical and analytical methods to assess 

changes in the components of operant performance, even when the reinforcer is absent. 

We believe these methods are critical to advancing our understanding of motivated 

behavior. 
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CHAPTER 3  

A BOUT ANALYSES OF OPERANT RESPONSE DISRUPTION 

Abstract 

This study investigated how three different forms of operant response disruption - 

extinction (EXT), non-contingent reinforcement (NCR), and prefeeding (PRE) - disrupt 

response bouts. In Experiment 1, Wistar Kyoto rats (WKY) were trained on a tandem 

variable-time (VT) 120 s fixed-ratio (FR) 5 schedule of reinforcement; after stability was 

established their responding was disrupted for three sessions with one of the three 

disruptors (EXT, NCR, or PRE). In Experiment 2, Long Evans (LE) rats were trained on 

a tandem VT 240 s FR 5 to stability, and their responding disrupted with EXT or NCR. In 

EXT and NCR, response rates declined significantly over the course of the session, 

primarily due to a declining bout initiation rate in EXT, and to shrinking bouts in NCR. 

In contrast, a session-wide drop in response rate was observed in PRE, primarily due to a 

reduction in bout initiation rate at the start of the session. These findings suggest that 

different forms of disruption impact dissociable aspects of behavior. Theories of 

behavioral persistence should account for these functional differences, which appear to be 

obscured in response rate measures.  
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Introduction 

 Operant responding can be disrupted in many ways. A rat’s lever pressing for 

food may be decreased by sating the animal prior to the experimental session. 

Alternatively, the response-reinforcer contingency can be broken by withholding the food 

reinforcer (extinction) or by providing the food independent of the operant (non-

contingent reinforcement). Each of these methods decrease response rate, but presumably 

in ways that are functionally distinct (Bindra, 1978; Bouton, 2004; Lachter, Cole, & 

Schoenfeld, 1971; Skinner, 1948). This study asks whether the distinct ways in which 

each of these response disruptors, extinction (EXT), non-contingent reinforcement 

(NCR), and prefeeding (PRE), change operant responding are revealed by the change in 

the organization of responses in bouts.  

 Response bouts are clusters of responses separated by short inter-response times 

(IRTs), punctuated by longer IRTs (Brackney, Cheung, Herbst, Hill, & Sanabria, 2012; 

Brackney, Cheung, Neisewander, & Sanabria, 2011; Hill, Herbst, & Sanabria, 2012; J. E. 

Johnson et al., 2009; Shull et al., 2001, 2002; Shull, 2004, 2011; T. T. Smith, McLean, 

Shull, Hughes, & Pitts, 2014; Tolkamp et al., 2000). There are three primary 

characteristics of the response bout: (a) the mean bout length, or how many responses the 

animal makes while in a bout; (b) the within-bout response rate, or how fast the animal 

responds while in a bout; and (c) the bout initiation rate, or how frequently the animal 

begins a new bout.  

 Brackney and colleagues (2011) used the bi-exponential refractory model 

(BERM) to estimate bout-organization parameters, showing that those estimates change 

systematically in response to different reinforcement contingencies and other 
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experimental manipulations. For example, Brackney et al. (2011) found that depriving a 

rat of food decreases the overall bout initiation rate, whereas extinction decreases the 

bout initiation rate gradually over the course of the session, while neither manipulation 

had an appreciable effect on other parameters. In contrast, increasing the number of 

responses required to collect a reinforcer increased both the within-bout response rate and 

the mean bout length.  

 This study is a partial replication and extension of Brackney et al. (2011). There 

are several critical differences between Brackney et al. (2011) and the current study. 

First, in Brackney et al. (2011), the effect of acute food deprivation on normally free-fed 

rats was examined during variable-interval training (VI), whereas this study examines the 

effect of acute prefeeding on rats that are normally food-deprived. Second, the current 

study adds an additional comparison condition, NCR. Third, whereas conditions in 

Brackney et al. (2011) were confounded by training order, exposure to each disruption 

condition in the current study was counterbalanced across rats. Fourth and finally, the 

current study examines response bouts in two strains of rats, Wistar Kyoto (WKY; 

Experiment 1) and Long Evans (LE, Experiment 2), whereas Brackney et al. (2011) 

examined the performance of Sprague Dawley rats. WKYs are an inbred strain 

commonly used as a control strain for the spontaneously hypertensive rat (SHR), an 

animal model of both hypertension and attention deficit hyperactivity disorder 

(Sagvolden et al., 2009). WKYs generally display low rates of operant responding, and 

are sometimes used as an animal model of depression and anxiety (Will, Aird, & Redei, 

2003). LE rats are a commonly used outbred strain that originally resulted from a cross 

between Wistar and wild gray rats (Oiso, Riddle, Serikawa, Kuramoto, & Spritz, 2004). 
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 The primary goal of this study was to assess the relative contributions of each 

response bout parameter to the decline in responding observed in each response-

disruption condition. To achieve this goal, a response-bout model, the dynamic bi-

exponential refractory model (DBERM; Brackney et al., 2011; Cheung, Neisewander, & 

Sanabria, 2012) was fit to responding during maintenance training and to responding 

during the first disruption session of each condition. Differences between estimates of 

DBERM parameters during maintenance and disruption were then assessed.  

Method 

Subjects 

Experiment 1 

Twelve experimentally experienced, pair-housed Wistar Kyto rats (WKY/NHsd, 

Harlan Laboratories, US) served as subjects. They were approximately one year old 

[post-natal day, (PND) 336] at the start of the study. The rats were food restricted: 30 min 

after each experimental session, free access to homecage chow (Harlan 2920X rodent 

diet) was allowed for 1 h. This feeding regimen remained in effect unless noted 

otherwise. It maintained subjects at approximately 85% of their ad libitum weight based 

on a logistic function fitted to growth curves provided by breeder. 

All twelve subjects participated in several previous experiments and were well 

trained in lever pressing for sucrose pellets at the start of the experiment.  Their 

experimental histories included training on simple variable interval (VI) schedules, 

extinction following VI training, latent inhibition, and fixed minimum interval training 

(Hill, Covarrubias, Terry, & Sanabria, 2011; Mechner & Guevrekian, 1962). 
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Experiment 2 

Ten experimentally naïve Long Evans (LE; Charles River Laboratory, US) rats 

served as subjects. The experiment started on PND 60. All other details were identical to 

Experiment 1 unless otherwise stated.  

Apparatus 

 Experimental sessions were conducted in six identical Med Associates® 

chambers, 305 mm long, 241 mm wide, and 210 mm high. The chambers were housed in 

sound and light attenuating cabinets, in which a ventilation fan provided white noise at 

approximately 60 dB.  The chambers were arranged according to the standard dual lever 

configuration – two retractable levers 21 mm above the floor flanked a food receptacle 

aperture in (51 mm sides, 15 mm from the chamber floor). The walls orthogonal to levers 

and food receptacle aperture were made of transparent Plexiglas, whereas the remaining 

two walls were made of aluminum. A houselight mounted outside the experimental 

chamber provided dim illumination inside the chamber when on. Forty-five mg sucrose 

pellets (TestDiet™ 5TUT) served as the experimental reinforcers and were delivered into 

the food receptacle aperture via a pellet dispenser mounted outside the chamber. The 

experimental equipment was identical in Experiments 1 and 2. 

Procedure 

Experiment 1 

Each daily session began with a 300-s acclimation period, during which no experimental 

events occurred. Following acclimation, the left lever (farthest from the door) was 

extended. All sessions were conducted with the houselight off except when noted 

otherwise. Sessions were 60-min long and were conducted 7 days per week. Due to the 
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rats’ considerable experimental history, pretraining such as autoshaping or chamber 

habituation was judged unnecessary.  

Table 3-1.  

Experiment 1 phase order by subject. 

Subject Phase 

3-1 M1 RemT M2 NCR M3 PRE M4 EXT 

3-2 M1 EXT M2 NCR M3 PRE M4 NCR 

3-3 M1 PRE M2 PRE M3 NCR M4 EXT 

3-4 M1 PRE M2 PRE M3 NCR M4 EXT 

3-5 M1 NCR M2 EXT M3 EXT M4 PRE 

3-6 M1 NCR M2 EXT M3 EXT M4 PRE 

4-1 M1 RemT M2 PRE M3 EXT M4 NCR 

4-2 M1 NCR M2 PRE M3 EXT M4 NCR 

4-3 M1 EXT M2 NCR M3 PRE M4 NCR 

4-4 M1 RemT M2 NCR M3 PRE M4 EXT 

4-5 M1 PRE M2 EXT M3 NCR M4 EXT 

4-6 M1 PRE M2 EXT M3 NCR M4 EXT 

Sessions in Phase 13 3 16 3 14 3 13 3 

Note. The order in which rats experienced each phase progresses from left to right. The 

number of sessions in each phase is listed in the bottom row. If a subject experienced a 

disruption condition twice, only the first disruption condition was analyzed. M = 

maintenance, EXT = extinction, NCR = non-contingent reinforcement, PRE = 

prefeeding, RemT = remedial VI training.  

The experiment consisted of alternating phases of maintenance training (MAINT) 

and response disruption (Table 3-1). During MAINT, lever presses were reinforced 

according to a tandem variable-time (VT) 120 s fixed ratio (FR) 5 schedule of 

reinforcement. Reinforcement was contingent upon the occurrence of 5 lever presses after 

the elapse of an unsignaled interval that was randomly sampled without replacement from 

a 12-item list drawn from a Flesher-Hoffman distribution (Fleshler & Hoffman, 1962) 

with a mean of 120 s. Reinforcement consisted of the delivery of a sucrose pellet and was 

signaled by a noticeable but brief (0.1 s) flash of the house light. 
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All subjects began the experiment in MAINT. After each MAINT session, the 

stability of the response bouts was assessed over a 5-session window. Once stability was 

detected (see the Appendix E for detection protocols), all rats were switched to a 

response disruption phase for the following three sessions. 

During a response disruption phase, each subject was exposed to a response 

disrupter for 3 consecutive sessions. There were 3 types of response disrupters:  

1. Extinction (EXT). The experimental contingencies were identical to MAINT, 

except that lever pressing never resulted in a houselight flash or sucrose pellet delivery. 

Lever presses were recorded but had no programmed consequences. 

2. Non-contingent reinforcement (NCR). Pellets were delivered according to a VT 

120 s schedule. The experimental contingencies in NCR were similar to MAINT, except 

that the houselight flash and sucrose pellet delivery occurred at the end of the programed 

interval independent of lever pressing. Lever presses were recorded but had no 

programmed consequences. 

3. Prefeeding (PRE). Rats were provided ad-libitum access to their homecage 

chow for one hour immediately prior to the experimental session. The experimental 

contingencies were identical to those in MAINT. 

During all 3 sessions of a response disruption condition, each rat was exposed to 

only one response disrupter. The order in which rats were exposed to the response 

disrupters was counterbalanced (Table 3-1). MAINT resumed on the session immediately 

following the end of each disruption condition and continued until response-rate stability 

was reestablished. 
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 The majority of subjects began responding at high rates within the first 7 sessions. 

However, 3 rats (3-1, 4-1, and 4-3) exhibited low response rates, fewer than 12 

responses/min, during the first MAINT phase, in comparison to the other 9 rats that were 

responding at more than 20 responses/min. In order to establish higher levels of 

responding, rats responding at low rates were excluded from stability analyses for the 

first MAINT phases, and introduced to three sessions of remedial training (RemT) 

instead of the first response disruption phase (Table 3-1). During RemT, subjects were 

exposed to an ascending schedule sequence of VI 24 s, VI 46 s, and VI 96 s, with a new 

schedule each day. On the fourth day, RemT was deemed effective in raising response 

rate, and rats were returned to MAINT. 

 Due to experimenter error, subjects 3-3 and 3-4 were exposed to PRE twice, and 

subjects 3-5 and 3-6 were exposed to EXT twice. A fourth treatment phase was added to 

the end of the experiment to expose all subjects to all treatment conditions. Where 

subjects experienced a disruptor condition twice, only the first exposure was analyzed. 

Experiment 2   

In Experiment 2, LE rats were trained on a tandem VT FR, as in MAINT in 

Experiment 1, and were exposed to two disruptor conditions, EXT and NCR. Because the 

LE rats were experimentally naïve, they were first exposed to pretraining, which involved 

chamber habituation (day 1), magazine training (day 2), autoshaping (days 3 and 4), and 

the gradual decrease in reinforcement rate (days 5-10) until the target tandem VT 120 s 

FR 5 schedule was reached. During chamber habituation, each subject was placed in its 

chamber for 1 h; no experimental events occurred, except for the delivery of 5 sucrose 

pellets at the start of the session. Magazine training consisted of 45 individual sucrose 
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pellet deliveries on a VT schedule ranging from 45 to 90 s. Autoshaping consisted of 45 

daily trials in which the left lever was presented for 8 s followed by a single sucrose 

pellet delivery; a lever press ended the trial and immediately delivered a sucrose pellet. 

The inter-trial interval during autoshaping was variable and ranged from 45 to 90 s. 

 Days 5 to 13 consisted of one day each of the following schedules in consecutive 

order: continuous reinforcement, FR 5, tandem VT 3-s FR 5, tandem VT 6-s FR 5, 

tandem VT 12-s FR 5, tandem VT 24 s FR 5, tandem VT 49-s FR 5, and tandem VT 98-s 

FR 5. On day 14, rats began training on a tandem VT 120-s FR 5, where contingencies of 

reinforcement were identical to those in Experiment 1. 

 After 23 days of training on the VT 120 s FR 5 schedule, bout-like responding 

was not apparent. The mean of the median daily response rate for sessions 13-23 was 

51.4 responses/min, with the mean of the daily standard deviation at 28.4 responses/min. 

In comparison, the overall mean response rate for the WKY during the last 5 sessions of 

MAINT in Experiment 1 was 28.3 responses/min with a standard deviation of 15.3 

responses/min. Examination of log-survivor plots of the IRTs (not shown) suggested that 

rats were responding at a nearly constant rate without noticeable bouts, as evidenced by 

no acute deflections in the traces. To allow for detectable bouts, the reinforcement rate 

was halved, changing the schedule to a tandem VT 240-s FR 5. This produced more 

appreciable response bouts. 

 Rats then proceeded to train on the tandem VT 240-s FR 5 for both maintenance 

components (MAINT1 and MAINT2). Similar to Experiment 1, rats were first trained on 

the VT 240-s FR 5 (MAINT1) to stability before being exposed to 3 sessions of a 
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disruption condition (either EXT or NCR; NCR was a VT 240 s instead of VT 120 s). 

Rats were then retrained on the tandem VT 240-s FR 5 (MAINT2) to stability before 

being exposed to 3 sessions of the alternate disruption condition. Table 3-2 describes the 

order and duration of each condition for each rat. 

Table 3-2.  

Experiment 2 phase order by subject. 

Subject Phase Order 

5-1 M1 EXT M2 NCR 

5-2 M1 NCR M2 EXT 

5-3 M1 EXT M2 NCR 

5-4 M1 NCR M2 EXT 

5-5 M1 EXT M2 NCR 

5-6 M1 NCR M2 EXT 

5-7 M1 EXT M2 NCR 

5-8 M1 NCR M2 EXT 

5-9 M1 EXT M2 NCR 

5-10 M1 NCR M2 EXT 

Session in Phase 24 3 19 3 

Note. The order in which subjects experienced each phase progresses from left to right. 

The number of sessions in each phase is listed in the bottom row. Refer to Table 3-1 for 

abbreviations.   

Data Analysis 

 Response rates generally declined across consecutive disruption sessions within a 

phase, which indicated that (a) there were fewer responses to model in the first disruption 

session relative to the second and third, and (b) it would be inappropriate to pool the 

responses across all three sessions, as their estimated parameters would almost certainly 

be different. Only performance in the first disruption session of each condition was 

analyzed because it had the greatest number of IRTs, and the certainty of estimated 

model parameters is dependent on the number of observations. 
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DBERM Parameter Estimation 

 DBERM assumes that IRTs are generated by a mixture of two independent 

Poisson processes, which underlie the within-bout response rate (wt) and the bout 

initiation rate (bt). The mixture weighting parameter, pt, is the probability of remaining in 

a bout after each response, and δ is minimum IRT, or response refractory period.  

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 <  𝛿) = 0 

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 ≥ 𝛿) = 𝑝𝑡𝑤𝑡𝑒−𝑤𝑡(𝜏−𝛿) + (1 − 𝑝𝑡)𝑏𝑡𝑒−𝑏𝑡(𝜏−𝛿).  

 min (IRT) ≥ δ > 0; wt ≥ bt > 0; 1 ≥ pt ≥ 0 (3-1) 

The parameter pt is a function of the mean bout length (excluding the bout initiating 

response), Lt,  

t

t
t

L

L
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1
.          

(3-2)  

Lt, wt, and bt, at the start of the session (when t = 0), are referred to as L0, w0, and b0, 

which together constitute the baseline parameters. Over the course of the session, Lt, wt, 

and bt, are assumed to decay exponentially from their starting values at rates α, β, and γ, 

such that 

𝐿𝑡 = 𝐿0𝑒−𝛾𝑡 

𝑤𝑡 = 𝑤0𝑒−𝛼𝑡 

𝑏𝑡 = 𝑏0𝑒−𝛽𝑡.  L0, w0, b0, γ ≥ 0; β ≥ α ≥ 0 (3-3) 

To ease interpretation, the decay parameters are reported as half-lives (e.g., HLL = ln(2) / 

γ), the time taken for the parameter to reach half of its baseline value (L0, w0, or b0). 



 65   

 

 

To assess how response bouts changed during each disruption condition (NCR, 

EXT, and PRE) the dynamic bi-exponential model of response bouts (DBERM; Brackney 

et al., 2011; Cheung, Neisewander, & Sanabria, 2012) was fit to each rat’s IRTs using the 

method of maximum likelihood (Myung, 2003) using custom-written software in 

Matlab® (MATLAB and Statistics Toolbox Release 2013a, Mathworks, Inc; Natick, 

MA). For each MAINT condition, DBERM was fit to the aggregate IRTs of the last 5 

days of MAINT (i.e., one set of parameters were estimated for the entire 5 days, per 

subject, per MAINT condition). For each disruption condition, DBERM was fit to the 

first disruption session individually (i.e., parameters estimates were allowed to vary 

freely for each subject). When a rat was exposed to the same disruption condition twice 

(see Table 3-1), the second exposure to that disruption condition (all 3 sessions) and the 

MAINT condition prior to it were excluded from analysis for that rat.  

Response Rate Recovery by Simulation 

 Monte Carlo simulations were conducted to ensure that the underlying DBERM 

parameter estimates accurately reflected the observed response rates.  The simulation was 

conducted as follows: for each rat and phase a series of a Bernoulli trials were conducted 

with a probability according to pt (Equation 3-1). A success sampled an IRT from an 

exponential distribution with a mean of 1/wt, whereas a failure sampled an IRT from an 

exponential distribution with a mean of 1/bt. The sampled IRT then advanced the 

simulation clock by its respective value, and another trial began. The simulation ended 

when the session clock exceeded 55 minutes, and the final IRT was removed from the list 

of simulated IRTs. Each simulation also included enforced pauses that corresponded to 

post-reinforcement pauses observed for each subject. During those times, the simulation 
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clock still advanced, but no responses could be produced. One hundred simulations were 

run for each rat and phase, and then averaged to produce mean predicted response rates. 

Null Hypothesis Significance Tests (NHST) 

NHST on response rates were conducted in IBM SPSS v22 (Armonk, NY: IBM 

Corp).  To assess whether response rate changed significantly during the first session of 

disruption in each condition relative to MAINT, responding in each session was 

partitioned into eight equal-length bins of 6.9 min. The 5 sessions of MAINT per animal 

prior to the disruption session was collapsed into a single measure per bin by taking the 

median response rate in each bin. A phase × bin (2: phase × 8: bin) repeated measures 

ANOVA was then conducted on log-transformed response rates. As the goal of these 

tests was simply to verify that response rate was generally less in disruption relative to 

MAINT, post-hoc pair-wise tests using Fisher’s LSD were conducted when a significant 

interaction was observed. Bins between phases were first compared, and if the source of 

the interaction was not revealed, bins within phases were also compared. Pair-wise test 

outcomes were only reported for p < 0.05.  

To test whether there was a significant change in DBERM parameters between 

MAINT and each disruption condition, log-transformed parameters estimated in 

disruption and in the preceding MAINT were examined with paired t-tests in Matlab® 

2013a (Mathworks, Inc; Natick, MA). Because there are seven free parameters in 

DBERM, a Dunn–Šidák correction for seven comparisons was applied using an expected 

Type I error rate of 5%. As a result of this correction, p-values less than 0.0073 were 

reported as significant effects. Due to the stringency of this correction, trends toward 

significance were reported for 0.0073 ≤ p < 0.05. 
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Results 

Response Rates 

 Figure 3-1 displays the response rates for each experiment during MAINT and the 

first disruption session of each condition. 

Experiment 1 

 For EXT, there was a significant phase × bin interaction effect on response rate 

[F(7,77) = 2.230, p = 0.041]. Follow-up tests revealed that each bin in EXT was 

significantly slower than in MAINT. The source of the interaction was then revealed by 

an examination of each bin in MAINT relative to a central bin (bin 5), and the same 

analysis in EXT. In MAINT, response rates in bin 5 were only significantly lower than 

bin 1 and 3, and only significantly higher than bin 8, whereas in EXT, response rates in 

bin 5 were significantly lower than in bins 1, 2, and 3, and significantly higher than in 

bins 7 and 8. Combined, these tests indicated that response rate declined more rapidly in 

EXT than MAINT.  

 For NCR, there was a significant session by bin interaction [F(7,77) = 2.448, p = 

0.025]. Follow up tests indicated that response rate was significantly lower in NCR 

relative to MAINT in all bins but 1 and 7 during NCR relative to MAINT, indicating that 

response rate was the same at the beginning of the session, but quickly dropped in NCR. 

 In Experiment 1, PRE, there was a significant effect of phase [F(1,11) = 30.927, p 

< 0.001) and bin [F(7,77)= 5.078, p < 0.001]. These results indicated that response rate 

was lower in PRE than MAINT, but both decreased at approximately the same rate. 
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Figure 3-1. Binned response rates during MAINT and response disruption. The 

markers (filled and open) are the observed response rates for Experiments 1 and 2. The 

lines (dashed and solid) are the predicted response rates according to the DBERM 

simulation for Experiments 1 and 2. 
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Figure 3-2. Mean DBERM parameter estimates for Experiments 1 and 2. The grey bars 

are for the disruption condition (EXT, NCR and PRE), and the black bars are the 

preceding phase of MAINT. Error bars represent the standard error of the mean. The 

“*” represents a significant effect of p < 0.0073, the “#” represents a non-significant 

trend of p < 0.05. Units for each parameter are:  L0 = responses; w0 = responses / s; b0 = 

response / s; δ = s; HL(L) = min; HL(w) = min; HL(b) = min. There was no PRE for 

Experiment 2.  
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Experiment 2 

 For EXT, there was a session by bin interaction [F(7,63) = 17.523, p < 0.001]. 

Follow up tests indicated that response rate was significantly lower in EXT than MAINT 

for all bins except the first. Combined, these results indicate that response rate at the start 

of EXT was little different from MAINT, but rapidly declined.  

 In NCR, there was a significant session by bin interaction [F(7,63)  = 2.64, p = 

0.019)]. Follow up tests indicated that response rate was significantly lower in NCR than 

MAINT for bins 2, 4, 5, and 6. Combined, these results indicate that response rate at the 

start of NCR was little different from MAINT, but rapidly declined during the middle of 

the session.  

DBERM Parameters 

Figure 3-2 displays the mean DBERM parameter estimates for each disruption 

condition and the preceding phase of MAINT for both experiments. 

Experiment 1 

 EXT significantly decreased HL(b) [t(11) = 3.33, p = 0.003], and HL(w) [(t(11) = 

3.78, p = 0.0066), indicating that the within-bout response rate and bout initiation rates 

decreased more rapidly in EXT, compared to MAINT.  Trends toward significance were 

also observed for a decrease in b0 [t(11) = 1.926, p = 0.080], an increase in δ [t(11) = 

3.254, p = 0.008], and a decrease in HL(L) [t(11) = 3.033, p = 0.011] in EXT. 

 NCR only decreased HL(L) [t(11) = 3.28, p = 0.0072), indicating that bout-

lengths decreased more rapidly in NCR than MAINT. Trends toward significance were 
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also observed for an increase w0 [t(11) = 3.144, p = 0.009] and an increase δ [t(11) = 

3.179, p = 0.009] in NCR. 

 PRE decreased b0  [t(11) = 6.24, p < 0.0001] and increased δ  [t(11) = 5.52, p = 

0.0002], indicating that initial bout initiation rates were slower and refractory periods 

were longer in PRE compared to MAINT. Trends toward significance were also observed 

for a decreased L0 [t(11) = 2.644, p = 0.023], and a decreased HL(L) [t(11) = 2.261, p = 

0.045] in PRE.  

Experiment 2 

As in Experiment 1, EXT in Experiment 2 decreased HL(b) ([t(9) = 7.22, p < 

0.0001] relative to MAINT. Trends toward significance were also observed for a 

decreased L0 [t(9) = 3.402, p = 0.008] and an increased δ [t(9) = 2.997, p = 0.015]. 

 In contrast to Experiment 1, NCR in Experiment 2 only increased δ [t(9) = 7.22, 

p = 0.0047] relative to MAINT, indicating that the refractory period was significantly 

longer. However, trends toward significance were also observed for an increased w0 [t(9) 

= 2.387, p = 0.041] and a decreased HL(L) [t(9) = 2.400, p = 0.040] in NCR. 

There was no PRE in Experiment 2. 

Discussion 

It is important to acknowledge first that, when compared to MAINT, at least an 

increasing trend was observed in the refractory period (δ) in all disrupters and 

experiments. This is likely an artifact of the lower number of responses observed in 

disruption compared to MAINT. The estimation of δ as the shortest IRT observed is 

biased upwards, because as the number of IRTs sampled declines, the shortest IRT is 
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likely to be longer (see footnote 4 in Chapter 2). Therefore, disruption effects on δ will 

not be further discussed. 

Bout initiation rate appears to decline faster during EXT than during MAINT for 

WKY (Experiment 1) and LE (Experiment 2) rats. This effect was previously observed in 

Sprague Dawley rats (Brackney et al., 2011). In addition, within-bout response rates 

appear to decline faster during EXT than during MAINT in WKY rats. Although, this 

effect had not been observed before, Brackney et al. (2012) reported an unusual pattern of 

EXT performance in WKY rats: EXT appears to induce a remarkably fast decline in bout 

length in this strain (a trend of which was observed also in Experiment 1). It is thus likely 

that inbred strains of rat such as WKY may display EXT-induced changes in aspects of 

behavior that are robust to EXT in outbred strains such as LE and Sprague Dawley. 

Unlike EXT, NCR did not induce a significant decline in bout initiation rate in 

either experiment. Instead, NCR appears to induce a faster decline in bout-length (a 

significant effect in WKY, a trend in LE), and possibly a lower baseline within-bout 

response rates (a trend in both strains). NCR-induced bout-length effects may be partially 

explained by adventitious reinforcement of alternative behaviors that compete with the 

operant (Skinner, 1948). In such case, however, a decline in bout initiation rate would 

also be expected (T. T. Smith et al., 2014). Alternatively, when reinforcement occurs 

while a rat is responding within a bout, the sudden reinforcer delivery may interrupt the 

bout and thus reinforce shorter bouts, with repeated interruptions gradually reducing the 

average bout length over time. Future research might explicitly examine whether 

interrupting bouts at different points in their occurrence (e.g., at the initiation versus 

several responses into the bout) have a differential effect on response disruption.  
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Whereas estimates of the speed of bout-length decline in NCR, they appear to be 

robust to PRE. Like EXT, bout initiation rate appears to be sensitive to PRE, but in a very 

different way. Whereas EXT induced a faster decline in bout initiation rate than MAINT, 

PRE induced a lower baseline bout initiation rate, but did not decline in an appreciably 

different way from MAINT. This finding replicates observations by Podlesnik et al. 

(2006) that prefeeding reduces bout initiation rates, and Brackney et al. (2011) that food 

deprivation increases bout initiation rates. Combined, these studies suggest that changes 

in bout initiation rate may serve as an index of changes in operant motivation.  

Although all response disrupters decreased response rate, the sources of those 

differences appear to vary across disrupters, as evidenced by selective changes in 

response bout parameters. Theories of behavioral persistence, such as behavioral 

momentum theory (Nevin & Grace, 2000) generally treat these disrupters as functionally 

interchangeable, assuming response rate as the critical dependent measure to be 

explained. The present study suggests that focusing instead on the parameters of the 

organization of behavior may reveal distinct behavioral effects associated with each 

disrupter.  

  



 74   

 

 

CHAPTER 4  

LONGER OPERANT LEVER-PRESS DURATION REQUIREMENTS INDUCE 

FEWER BUT LONGER RESPONSE BOUTS IN RATS 

Abstract 

Operant responding reinforced under variable-interval schedules is organized in 

bouts. Previous research showed that increasing the work required to produce a response 

decreases the rate at which bouts are emitted, and increases the minimum inter-response 

time (IRT). In the current study, the minimum effective IRT was directly manipulated by 

changing the minimum duration of effective lever presses. Contrary to assumptions of 

previous models, response durations were consistently variable. Response durations were 

typically 0.5 s greater than the minimum duration threshold; durations that exceeded this 

threshold were approximately log-normally distributed. As the required duration 

threshold increased, rats emitted fewer but longer bouts. This effect may reflect a 

duration-induced facilitation of a response-outcome association. 
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Introduction 

Operant behavior appears to be organized in response bouts (Barabási, 2005; 

Brackney, Cheung, Neisewander, & Sanabria, 2011; Cheung, Neisewander, & Sanabria, 

2012; Hill, Herbst, & Sanabria, 2012; Johnson, Pesek, & Newland, 2009; Podlesnik, 

Jimenez-Gomez, Ward, & Shahan, 2006; Reed, 2011; Shull & Grimes, 2003; Smith, 

McLean, Shull, Hughes, & Pitts, 2014; Yeates, Tolkamp, Allcroft, & Kyriazakis, 2001; 

but see Bowers, Hill, & Palya, 2008). Such organization implies that operant behavior 

can be described using three parameters: the rate at which bouts are initiated (b), the rate 

at which responses are emitted within bouts (w), and the mean length of a bout (L). Under 

variable-interval (VI) schedules of reinforcement, rates b and w appear to be roughly 

constant, yielding each an exponential distribution of inter-response times (IRTs) 

(Brackney et al., 2011). Rates b and w may thus be estimated from the distribution of 

IRTs using the probability distribution function  

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 <  𝛿) = 0 

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 ≥ 𝛿) = 𝑝𝑡𝑤𝑡𝑒−𝑤𝑡(𝜏−𝛿) + (1 − 𝑝𝑡)𝑏𝑡𝑒−𝑏𝑡(𝜏−𝛿)             

 min (IRT) ≥ δ > 0; w ≥ b > 0; 1 ≥ p ≥ 0. (4-1) 

The weighting parameter p is a function of L, the average length of a bout without the 

bout-initiating response; p = L / (L + 1).  

Brackney et al. (2011) introduced the distribution-shift factor δ, which represents 

the response refractory period. After a response begins, it is assumed that a minimum 

amount of time, δ, must elapse before another response can be started. This parameter 

represents the time it takes the animal to complete a single response, plus any additional 
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time it may take to prepare the next response. The reciprocal of the refractory period, 1/δ, 

is the absolute maximum response rate an animal can emit, equivalent to the asymptotic 

response rate of Herrnstein’s hyperbola (Cheung et al., 2012; Herrnstein, 1970; Killeen et 

al., 2002). By subtracting δ from all IRTs, changes that alter the time taken to make a 

response (such motoric or mechanical constraints on the behavior) can be functionally 

dissociated from other controlling variables, such as the animal’s propensity to respond. 

For instance, increasing the required work-load (e.g., height and force of a lever) 

increases δ but leaves w relatively unaffected (Brackney et al, 2011). If δ was not 

estimated, it may be erroneously inferred that work-load reduces the within-bout response 

rate instead.  

Brackney et al. (2011) found that, in addition to increasing δ, increasing the 

required work-load decreased the rate of bout initiations, b. However, a causal relation, if 

any, between the altered δ and b could not be determined because the time required to 

make a response was not directly manipulated.   

The primary goal of the current study was to examine how direct manipulations of 

the required response duration (the effective δ) affected response bout parameters. Rats 

were trained to respond on a variable interval (VI) 40-s schedule of reinforcement. 

Responses that met or exceeded a duration threshold of 0.0, 0.4 or 0.8 s (depending on 

the condition) were signaled by a brief tone and light flash. Only signaled responses 

could trigger reinforcement after the end of the variable interval.  

A secondary goal was to characterize the distribution of response durations 

emitted under a VI schedule. Whereas Equation 3-1 assumes that the time to emit a 
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response is constant, direct measurement of lever-press durations have found them to 

vary from response to response (Fowler, Filewich, & Leberer, 1977; Gharib, Derby, & 

Roberts, 2001; Gharib, Gade, & Roberts, 2004; Roberts & Gharib, 2006). This study 

directly examined the distribution of response durations across different duration 

thresholds. 

Method 

Subjects 

 Eight male Wistar rats (WI/NCrl; Charles River Laboratories, US), starting at 

postnatal day age 74, served as subjects. All rats were pair-housed and had ad libitum 

access to food and water. Subjects were housed with a reverse dark-light cycle (lights off 

7 am to 7 pm); experiments were conducted during the dark phase of this cycle. All 

subjects had previously been trained to respond on left and right levers in an operant 

chamber on a variable interval (VI) 120-s schedule of food reinforcement. The study 

adhered to Arizona State University Institutional Animal Care and Use Committee 

guidelines.   

Apparatus 

  Experimental sessions took place in 8 Med Associates modular test chambers 

using the standard operant setup. The chambers were enclosed in a light and sound 

attenuating box with interior dimensions of 30.5 cm x 24.1 cm x 21.0 cm. All test 

chambers were controlled by MED-PC® IV software (Med Associates, St. Albans, VT). 

The operant chambers consisted of a clear polycarbonate roof, door, rear, and two lateral 

walls of aluminum panels mounted to a white polypropylene base. The center panel of 

one of the walls had a speaker attached to a multiple tone generator and an Eiko 1820 
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miniature incandescent house light. A liquid dipper with a head entry detector was 

located centrally on the wall opposite of the speaker. Two retractable levers flanked the 

dipper; a triple LED stimulus light panel was positioned above each lever. A 0.01-ml cup 

on the motorized arm of the liquid dipper provided reinforcement, which was a 

sweetened condensed milk (True Value® Walmart Brand, Bentonville, AR) and water 

mixture (1/3 milk by volume). The operant chambers had a metal-wired floor and a 

stainless steel waste pan filled with wood-chip bedding. The levers were set on 

continuous recording mode so that the duration of lever presses could be measured with a 

nominal resolution of 0.01 s. A lever press was required to be separated by 0.06 s or more 

from the previous lever press in order to be counted as a new response. This threshold 

was selected because 0.06 s was the absolute minimum lever-press IRT previously 

observed in our laboratory (Brackney et al, 2011). The levers were calibrated to activate 

when a force of 0.2 (+/-0.05) N was exerted on their edge.  

Procedure 

Throughout the experiment, lever presses were categorized as either super- or 

sub-threshold, where the threshold was 0.0, 0.4, or 0.8 s, depending on the experimental 

condition (Table 4-1). If the lever press duration exceeded the threshold, the response 

was signaled by a flash of the lights above the lever and a 5-kHz tone sounding for a brief 

time (0.1 s). For the 0.0 s threshold, every lever presses was immediately signaled. 

Daily sessions began with a 5-min acclimation period, during which no 

experimental events were programmed, followed by the extension of the left lever. Super-

threshold lever pressing was reinforced on a VI 40-s schedule. Intervals were sampled 

without replacement from a 14-item list drawn from a Flesher-Hoffman distribution 
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(Fleshler & Hoffman, 1962). During reinforcement, the lever was withdrawn, the 

houselight illuminated and the dipper arm raised. Three seconds later, the dipper arm was 

lowered, the houselight turned off, and the lever re-extended. Sessions terminated after 

80 minutes or 84 reinforcer deliveries, whichever occurred first. 

Table 4-1.  

Duration threshold training conditions.  

Duration Threshold (s) Cycle Condition Length (Sessions) 

0.0 1 15 

0.4 1 13 

0.8 1 13 

0.0 2 12 

0.4 2 12 

0.8 2 17 

Note. Experimental conditions occurred in descending order. When the duration threshold 

was 0.0 s, a discrete response of any duration met the threshold requirement. 

The response-duration threshold varied across 6 experimental conditions (Table 

1). During the first three conditions (Cycle 1) the duration threshold was 0.0, 0.4, and 0.8 

s.  The following three conditions (Cycle 2) were replications of the previous three. 

Subjects were transitioned from one condition to the next after a minimum of ten 

sessions, and when the mean response rate and the mean median response duration over 

the previous five days were judged stable by visual inspection.  

Data Analysis 

All analyses were conducted on the responses of individual rats, aggregated over 

the last five sessions of each condition. Equation 3-1 was fit to the distribution of inter-

response times (IRTs), using maximum likelihood estimation (Myung, 2003) with custom 

written MATLAB® (MATLAB and Statistics Toolbox Release 2013, MathWorks,  
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Inc., Natick, MA) software. IRTs were defined as the intervals between the beginnings of 

each pair of consecutive super-threshold responses5. 

ANOVAs were conducted with Prism (GraphPad Software Inc., San Diego, CA). 

To identify significant effects, a 2 × 3 repeated-measures ANOVA (cycle × threshold) 

was conducted on each variable of interest. Simple main effects were assessed with  

                                                 
5 See Appendix F for a discussion of the exclusive analysis of super-threshold IRTs. 

 

 

Figure 4-1. Mean median response and reinforcement rates as a function of response-

duration threshold calculated over the last five sessions in each threshold condition in 

Cycles 1 (solid curves) and 2 (dashed curves). (A) Overall response rate, calculated 

using both super- and sub-threshold responses. (B) Super-threshold response rate. (C) 

Reinforcement rate. Error bars represent the standard error of the mean. 
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Tukey’s honestly significant difference test. Significant effects are reported when 

p < .05. ANOVAs were conducted on the log-transformed response rates, reinforcement 

rates, median response durations, inter-quartile range of response durations, and 

parameters estimates of Equation 3-1, except p, which was log-odds transformed. All 

variables of interest are reported back-transformed; mean bout length is reported as L = p 

/ (1 – p).  A 2 × 2 repeated measure ANOVA  (cycle × threshold) was conducted on the 

arcsine-transformed6 proportion of responses that exceeded the response threshold for the 

0.4 and 0.8 s threshold conditions (all responses were necessarily above the threshold in 

the 0.0 s threshold condition).   

Results 

Response and Reinforcement Rates 

Overall response rate (computed including sub- and super-threshold responses) 

and super-threshold response rate declined with longer duration thresholds; overall: F(2, 

14) = 36.64, p < .001, super-threshold only: F(2, 14) = 37.85, p < .001 (Figure 4-1A and 

Figure 4-1B). Both dependent measures also declined between Cycles 1 and 2; overall: F 

(1, 7) = 30.52, p < .001, super-threshold only: F(1, 7) = 28.53, p < .001. Overall response 

rate declined significantly between the 0.0 and 0.8 s conditions and between the 0.4 and 

0.8 s conditions in Cycle 1, p < .05, and among all conditions in Cycle 2, p < .001. 

Super-threshold response rates declined significantly with longer thresholds in both 

cycles, p < .05. 

                                                 
6 y = arcsin (x0.5), where x is a proportion and y is approximately normally distributed. 
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Figure 4-2. Distribution of response durations in the last five days of each threshold 

condition in Cycles 1 (solid curves) and 2 (dashed curves). The vertical dotted lines 

indicate the response-duration threshold. The left column are the group means, the middle 

and right columns are representative rats. The abscissa is on a log scale to highlight the 

log-normal-like distribution of a portion of response durations. 

Response Durations 

Figure 4-2 displays the distribution of response durations for the group, and for 

two representative rats, in each condition. In the 0.0 s conditions, the distribution of 

response durations appears approximately log-normal. Longer duration thresholds 

displaced a large portion of the distribution of response durations rightwards, just above 

the threshold. For the 0.4 and 0.8 s thresholds, response durations greater than the 

threshold appear log-normally distributed. Sub-threshold response durations appear to be 

distributed according to an unknown flatter distribution, which is distinct from the super-

threshold durations. 
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Figure 4-3 displays summary statistics of the duration distributions: the mean (+/-

SEM) of the individual median durations (Figure 4-3A), the interquartile range of 

durations (Figure 4-3B), and the proportion of durations that met or exceeded the 

duration threshold (Figure 4-3C). 

 Median response durations increased with longer duration thresholds: F(2, 14) = 

219.90, p < .001. The interquartile range of the response durations also significantly 

increased as the threshold increased, F(2, 14) = 37.80, p < .001, but declined between 

cycles, F(1, 7) = 5.70, p < .05. The proportion of responses that exceeded the duration 

 

Figure 4-3. Mean of three response-duration distribution statistics as a function of 

response-duration threshold, calculated over the last five sessions in each threshold 

condition in Cycles 1 (solid curves) and 2 (dashed curves). (A) Median response 

duration; across all threshold conditions, the median duration was between 0.32 and 

0.54 s longer than the required duration. (B) Inter-quartile range of response durations. 

(C) Proportion of responses that exceeded the duration threshold; all responses in the 

0.0 s condition exceeded the threshold by design. Error bars represent the standard 

error of the mean. 
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threshold increased between cycles, F(1, 7) = 29.49, p < .001. These effects indicate that 

longer response-duration thresholds resulted in longer, more variable response durations, 

and point at potential learning effects between cycles. 

Response Bout Modeling 

Figure 4-4 displays the mean (± SEM) parameter estimates for each condition. 

Individual parameter estimates for each rat and condition are described in Tables G-1, G-

2 and G-3 of Appendix G.  

The average bout length, L, increased with longer duration thresholds, F (2, 14) = 

11.53, p < .05.  Significant differences in estimates of L were observed between the 0.0 

and 0.4 s conditions and between the 0.0 and 0.8 s conditions in both cycles, p < .05. 

Within-bout response rate, w, significantly decreased with longer thresholds, F (2, 14) = 

47.61, p < .001, and between cycles; F (1, 7) = 14.82, p < .05. Significant differences in 

estimates of w were observed among all conditions in Cycle 1, p < .05, and between the 

0.0 and 0.4 s conditions and between the 0.0 and 0.8 s conditions in Cycle 2, p < .001. 

Bout initiation rate, b, significantly decreased with longer thresholds, F (2, 14) = 34.12, p 

< .001, and between cycles, F (1, 7) = 14.89, p < .05. Significant differences in estimates 

of b were observed among all conditions in both cycles, p < .05. The refractory period, δ, 

increased with longer duration thresholds, F (2, 14) = 2599, p < .001, and between 

cycles, F (1, 7) = 28.76, p < .001. Significant differences in estimates of δ were observed 

among all threshold conditions in both cycles, p < .001. When considered together, the  
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effects of response-duration threshold on L, w, b, and δ suggest that longer thresholds 

yielded fewer but longer response bouts that contained more spaced within-bout 

responses. 

To ensure that the model was providing reasonable fits, log-survivor plots (Shull 

et al., 2001) of the model predictions were compared to log-survivor plots of the observed 

 

 

Figure 4-4. Mean BERM parameter estimates (Equation 4-1) as a function of response-

duration threshold, computed from super-threshold IRTs in the last five days of each 

threshold condition in Cycles 1 (solid curves) and 2 (dashed curves). (A) Bout length, 

not including the bout initiation response; (B) within-bout response rate; (C) bout 

initiation rate, and (D) refractory period. Error bars represent the standard error of the 

mean. Estimates for individual subjects are in Tables G-1, G-2, and G-3 of Appendix 

G. 
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IRTs. Appendix H describes how model predictions were determined. Figure 4-5 displays 

the log-survivor plots of the group mean and two representative rats for each duration 

threshold in Cycle 1. As the duration threshold increased, the shape of the log-survivor 

plot changed from the often-reported “broken-stick” pattern (e.g., Shull et al., 2001) to a 

straighter pattern. The model faithfully reproduced the distribution of IRTs in the 0.4-s 

and 0.8-s conditions. In the 0.0-s condition, however, the simulation appears to 

overestimate the prevalence of the longest, approximately 20%, of IRTs. Because the 

slope of the right-hand side of the “broken-stick” corresponds to b (Shull et al., 2001), 

this divergence suggests that b may be underestimated in the 0.0-s condition.  

Reanalyzing the Log-Survivor Plot 

 In log-survivor plots of IRT distributions, the vast majority of IRTs are 

represented in a small space in the upper left hand portion of the plot. This feature of the 

log-survivor plots helps emphasizes the “broken-stick” appearance that is characteristic 

of bi-exponentially distributed data (Shull et al., 2001), but exaggerates deviations from 

fit in IRTs corresponding to bout initiations, making it difficult to detect deviations from 

fit for within-bout IRTs. To identify the range of IRTs over which observation and model 

diverge, observed and model-predicted IRTs were divided into bins each representing 

consecutive two percentile slices of the data; the mean IRT for each bin was calculated 

and plotted. This alternative method of comparing the observed and predicted IRTs 

allows the full range of IRTs to be more equally represented. The observed and predicted  

IRTs, organized in percentiles, are shown in Figure 4-6 averaged across rats and for the  
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two representative rats from Figure 4-5. Figure 4-6 shows little deviation between data 

and model, suggesting that much of the apparent deviation in Figure 4-5 is due to the 

“stretching out” of the longest IRTs.  

Discussion 

Longer Refractory periods yield fewer but longer bouts 

Prior research has shown that higher, heavier levers yield longer refractory 

periods between responses and lower bout initiation rates (Brackney et al., 2011),  

 

Figure 4-5. Log-survivor plots of super-threshold IRTs demonstrating model fit in 

Cycle 1. Solid curves correspond to empirically observed IRTs; dashed curves 

correspond to IRTs predicted by model simulation (see details in Appendix C). Each 

row of plots corresponds to a different response-duration threshold. The left column is 

the group mean, the middle column and right columns are representative animals. 

Although some deviations from the observed data seem prominent from a visual 

inspection of the plots, they actually comprise only a small proportion of very long 

IRTs. 
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presumably because they higher-heavier levers take longer to press. To test the 

hypothesis that longer response durations decrease bout initiation rates, the present study 

directly manipulated the minimum time required for an effective lever press. Consistent 

with prior findings, higher response-duration thresholds yielded lower bout initiation 

rates. Unlike prior studies, however, higher thresholds also yielded significantly longer 

bouts and lower within-bout response rates.  

The unpredicted changes in parameters (L and w) observed in the present study 

likely stem from three sources. First, the higher work-load condition in Brackney et al. 

(2011) only increased the mean refractory period from over 0.1 s to less than 0.2 s; the 

present study increased the required refractory period to 0.4 s and 0.8 s in some of its 

conditions. This may explain why even though Brackney et al. (2011) report a mean 

increase in bout length with higher work-load7, that increase was not statistically 

significant. 

The second and third sources of divergence between Brackney et al. (2011) and 

the present results are the strain of rat employed and the schedule of reinforcement 

implemented. Brackney et al. (2011) trained Sprague Dawley rats on a VI 120-s schedule 

of reinforcement, whereas the present study trained Wistar rats on a VI 40-s schedule. It 

is likely that these factors contributed to the differences in mean baseline bout length 

across studies (L < 1.5 vs. > 3.0 responses in Brackney et al., 2011 vs. the present study), 

which may have affected the sensitivity of this parameter to changes in refractory period.  

                                                 
7 Estimated from parameter q, where L = (1 – q) / q. 
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In short, results from both Brackney et al. (2011) and the present study are consistent 

with the notion that responses of longer duration yield fewer but longer response bouts.  

The threshold-induced reduction in bout frequency is somewhat intuitive. 

Brackney et al. (2011) suggested that reinforcer deprivation, availability, and response 

“price” may drive what they labeled operant motivation, a general predisposition of the 

organism to engage the operandum, which is expressed in the bout initiation rate. In the 

 

Figure 4-6. Percentile plots of super-threshold IRTs demonstrating model fit in Cycle 1. 

Each point is the mean IRT for a two-percentile bin of the data. Heavy dots correspond 

to empirically observed IRTs; dotted curves correspond to IRTs predicted by model 

simulation. Each row of plots corresponds to a different response-duration threshold. 

The left column is the group mean, the middle column and right columns are 

representative animals. 
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present study, higher duration thresholds raised the response “price”, thus lowering the 

bout initiation rate. 

The threshold-induced lengthening of bouts is less intuitive. Why would rats 

persist longer in a bout of more effortful responses? It is well established that the efficacy 

of a reinforcer declines as a function of time between the reinforced response and the 

reinforcer (Dickinson, Watt & Griffiths, 1992). This suggests a delay-of-reinforcement 

gradient; as a response takes a larger fraction of the area under such gradient, it may be 

more efficaciously reinforced (Hill et al., 2012; Killeen & Sitomer, 2003; Killeen, 1994). 

Thus, long-duration responses—once initiated—are more efficaciously reinforced, which 

may be expressed in longer bouts. This hypothesis is consistent with the notion that bout 

length reflects the strength of the response-outcome association (Hill et al., 2012). 

Refractory Periods are Variable 

Figure 4-2 and Figure 4-3 reveal that lever presses have variable duration. A 

considerable minority of recorded responses in the 0.4 and 0.8 s conditions was shorter 

than the required threshold for reinforcement. Conversely, the median duration typically 

exceeded the threshold by approximately 0.5 s, which is considerably more than the 

refractory periods of approximately 0.1 s that are typically estimated when the refractory 

period is assumed to be static (cf. Brackney et al., 2011).  

Training order may have contributed to the high prevalence of sub-threshold 

responses, as the 0.0 s condition always preceded the 0.4 and 0.8 s condition. Auditory 

and visual cues signaled when the threshold had been crossed, and subjects adjusted their 

behavior to meet the new contingencies after a condition switch. However, learned 
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responses with lower durations may have persisted in their behavioral repertoire. Sub-

threshold responses may also have been adventitiously reinforced when they preceded a 

super threshold response that triggered reinforcement (Catania, 1971; Johansen, Killeen, 

& Sagvolden, 2007; Killeen, 1994).  

Gharib and colleagues’ (2001, 2002; Roberts & Gharib, 2006) findings suggest 

another source of variability in response durations. Roberts and Gharib (2006) 

hypothesized that decreasing the probability of reinforcement increases the variability in 

response durations. The rate of earned reinforcers (Figure 4-1) decreased significantly (if 

by a small margin) as the response threshold increased, which may have increased 

duration variability. 

Regardless of its cause, the variability in response durations is inconsistent with 

the assumption of Equation 4-1 that, under constant conditions, the refractory period is 

constant. Instead, it appears that the refractory period is a mixture-distributed random 

variable with at least two components: a shifted log-normal distribution of super-

threshold latencies, and an unknown but flatter distribution of durations that is insensitive 

to threshold requirement. Future research may determine whether the parameters of this 

mixture distribution are sensitive to motivational and schedule manipulations, as 

suggested previously (Faustman & Fowler, 1981; Roberts & Gharib, 2006). 

Conclusion 

Reinforced responses are organized in bouts. The selective reinforcement of 

longer response durations not only increases the relative frequency of these durations, it 

also yields fewer but longer response bouts. Bout-length effects may reflect a duration-
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induced facilitation of the response-outcome association. The variability in response 

durations indicate that, contrary to prior assumptions (Equation 4-1 and Chapter 2), the 

refractory period between IRTs is not constant. Previous studies have shown that 

response durations can provide valuable information about the pharmacological and 

behavioral processes affecting operant performance (Faustman & Fowler, 1981; Liao & 

Fowler, 1990; Roberts & Gharib, 2006). Future research may explore how the variability 

of the refractory period is integrated into more comprehensive models of operant 

performance (e.g., Equation 4-1). Along with the parameters of IRT distribution, the 

parameters of response-duration distribution may contribute to identify the multiple 

factors that influence operant behavior.   
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CHAPTER 5  

THE DISTRIBUTION OF RESPONSE BOUT LENGTHS AND ITS SENSITIVITY 

TO DIFFERENTIAL REINFORCEMENT 

Abstract 

Response bouts are clusters of responses that occur in rapid succession and are 

punctuated by pauses during which the response does not occur. Under variable interval 

schedules of reinforcement, the number of responses in each bout (the bout length) varies 

among bouts. This experiment was aimed at determining whether the relative rate of 

reinforcement influenced the relative frequency of bouts of different lengths. Lever 

pressing in rats was reinforced under a tandem variable time (VT) 150-s fixed ratio (FR) 

X, where X could be 1 or 5 and varied randomly after each reinforcer. Two conditions 

were included: majority FR1 (mFR1) and majority FR5 (mFR5). In mFR1, 75% of 

reinforcers had a tandem FR requirement of 1 and 25% had a tandem FR requirement of 

5; this distribution was reversed in mFR5. The inter-response times (IRTs) in each 

condition were fit to the dynamic bi-exponential refractory model of response bouts. The 

parameters of those fits and the IRTs were then used to simulate probable distributions of 

bout lengths. The distribution of bout lengths comprised a mixture of short geometrically-

distributed bout lengths and long negative-binomially-distributed bout lengths. Long 

bouts were significantly longer in the majority FR5 condition than in the majority FR1 

condition. In conjunction with previous data, the present study suggests that the 

prevalence of long bouts increases with the proportion of reinforcers with FR5 

requirement. These results suggest that bouts of different lengths are sensitive to the rate 

at which they are reinforced.   
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Introduction 

Behavior is sensitive to the explicit reinforcement of response patterns that extend 

beyond simple response-reinforcer relations. For example, animals can be trained to emit 

inter-response times (IRTs) of a specific durations (Shimp, 1968), response sequences of 

fixed length (Evenden & Ko, 2005; Mechner & Guevrekian, 1962), and even response 

sequences that are random (Neuringer, 2002). Even without explicit selection by the 

experimenter, stereotyped response patterns may emerge (Schwartz, 1982). One such 

pattern frequently observed across multiple organisms and response types is the response 

bout, in which multiple responses are emitted in quick succession before engaging in 

other behaviors (Barabási, 2005; Brackney et al., 2011; Kirkpatrick, 2002; C. A. Morgan 

et al., 2000; Podlesnik et al., 2006; Shull et al., 2001; T. T. Smith et al., 2014).  

Response bouts emerge spontaneously when behavior is allowed to occur at its 

operant level, unreinforced by the experimenter (Cabrera, Sanabria, Jiménez, & 

Covarrubias, 2013); they have also been observed in adjunctive behavior (Ibias, Pellón, 

& Sanabria, 2014). In the operant domain, bouts are often observed in variable interval 

(VI) schedules of reinforcement, whether programmed alone (Brackney et al., 2011; 

Conover, Fulton, & Shizgal, 2001; Shull, 2004; Shull & Grimes, 2003; Shull et al., 2001, 

2002, 2004) or concurrently with another VI schedule (Shull, 2011; Smith, McLean, 

Shull, Hughes, & Pitts, 2014). Bouts can be represented by multiple parameters that are 

each differentially sensitive to various experimental manipulations. For example, the rate 

at which bouts occur (the bout initiation rate) is highly sensitive to motivating operations; 

in contrast, response rate during a bout (the within-bout response rate) and the number of 
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responses in a bout (the bout length), are relatively insensitive to motivating operations, 

but are highly sensitive to response requirements (Brackney et al., 2011). Using these 

parameters, behavioral effects of drugs and poisons (Cheung, Neisewander, & Sanabria, 

2012; Johnson, Bailey, & Newland, 2011; Newland, Hoffman, Heath, & Donlin, 2013), 

and differences between strains of rats (Brackney, Cheung, Herbst, Hill, & Sanabria, 

2012; Hill, Herbst, & Sanabria, 2012) and mice (Johnson, Pesek, & Newland, 2009) have 

been identified.  

Response-bout parameters are typically estimated by examining the distribution 

of IRTs. Across a range of schedules, this distribution appears to conform to a mixture of 

two shifted exponential distributions, one that characterizes within-bout responding and 

another that characterizes bout initiation. This mixture distribution constitutes the bi-

exponential refractory model (BERM) of operant performance (Brackney et al., 2011; 

Cheung et al., 2012; Hill et al., 2012), which is expressed mathematically as  

Pr(𝐼𝑅𝑇 =  𝜏 | 𝜏 <  𝛿) = 0 

Pr(𝐼𝑅𝑇 =  𝜏 | 𝜏 ≥ 𝛿) = 𝑝𝑤𝑒−𝑤(𝜏−𝛿) + (1 − 𝑝)𝑏𝑒−𝑏(𝜏−𝛿).  

min (IRT) ≥ δ > 0; w ≥ b > 0; 1 ≥ p ≥ 0 (5-1) 

Equation 5-1 has four parameters: the within bout response rate (w), the bout initiation 

rate (b), the proportion of responses which are within-bout (p), and the minimum amount 

of time required to emit a response and prepare to emit the next (δ, or refractory period). 

The mean of within- and between-bout IRTs are, respectively, 1/(w + δ) and 1/(b + δ); 

their standard deviations are 1/w and 1/b.  The number of responses per bout—i.e., the 

average bout length—is 1/(1 – p). 
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Equation 5-1 does not specify how bout lengths are distributed around their mean. 

Past models have suggested that bouts lengths are geometrically distributed (Brackney et 

al., 2011; Shull et al., 2001), but have not provided empirical support (although see Smith 

et al., 2014 Figures 6B, 7B and 8B). The purpose of the present study was to characterize 

the distribution of bout lengths in free-operant behavior. 

Bout lengths are of particular interest because they appear to reflect the 

responsiveness of the organism to the response-reinforcer contingency. This inference is 

drawn from the positive correlation between mean bout-length estimates and the number 

of responses required to collect reinforcement, typically instantiated by following a 

variable-time (VT) schedule with a tandem ratio schedule (Brackney et al., 2011; Shull et 

al., 2001). Various accounts of free-operant performance suggest that reinforcement is 

facilitated when the response is repeatedly emitted just before reinforcement (Catania, 

1971; Killeen & Sitomer, 2003; Killeen, 1994; Killeen refers to this facilitation as 

response-reinforcement coupling). Furthermore, rats with reduced capacity to couple 

responses to the reinforcer (Johansen et al., 2007) also emit significantly shorter bouts 

(Hill et al., 2012). It is yet unknown, however, whether the tandem response requirement 

affects other parameters of the distribution of bout lengths aside from their mean. This 

possibility was tested in the present study. 

Bouts may also have behavioral-unit like properties (Brackney et al., 2011; Shull 

et al., 2001). If this is the case, bouts of different lengths may belong to different response 

classes, and the frequency of bouts of different lengths may have some correspondence to 

the frequency at which they are reinforced (Bachá-Méndez et al., 2007; Schwartz, 1986; 

Shimp, 1968). Unfortunately, the differential reinforcement of specific bout lengths 
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cannot be explicitly tested due the probabilistic nature of starts and ends of individual 

bouts (for extended discussions of bout detection methods, see Brackney et al., 2011; 

Cheung et al., 2012; Shull et al., 2001; Shull, Gaynor, & Grimes, 2002). Thus, the first 

step in determining the sensitivity of bout lengths to differential reinforcement is to 

devise a method to determine whether a particular IRT is within- or between-bout. 

Bouts may be defined using an IRT cutoff method (Shull et al., 2001, 2002) 

where all IRTs ≤ X s, are classified as within-bout; IRTs > X s are classified as between-

bouts, where X s is the cutoff criterion. Although this method is easy to implement, it has 

significant drawbacks. In particular, the X s criterion is both arbitrary and does not take 

into account potential between- and within-subject variability in pauses separating bouts, 

thus it is likely to misclassify a substantial number of IRTs.  

An alternative method to estimate bout-length distribution parameters is based on 

estimates of the parameters of a model such as BERM (henceforth, the parameter-based 

method). Given those estimates, the probability that each observed IRT is within-bout can 

be established. Bout-length distributions can then be estimated by realizing, for each IRT, 

its probability of being within-bout and simulating the frequency of each bout-length. 

The main limitation of this method is that bout-parameters must be analyzed post hoc by 

examining the entire population of IRTs within an experimental session, i.e., bout lengths 

cannot be identified during a session, only after. 

 Although the parameter-based method for classifying IRTs does not allow the 

experimenter to program reinforcement for bouts of a specific length, this method may 

still be useful in inferring the sensitivity of bout lengths to reinforcement. Previous 

studies (Brackney et al., 2011; Shull et al., 2001) have shown that increasing the fixed-
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ratio (FR) requirement that follows in tandem to a variable-interval (VI) schedule 

increases the average bout length. This effect is consistent with the notion that higher 

tandem FR schedules may selectively reinforce longer bouts. To that extent, the 

probabilistic implementation of long and short tandem FR schedules should result in a 

mixture distribution of long and short bouts. Such mixture distribution may be unveiled 

by the parameter-based method for classifying IRTs.  

To evaluate this possibility, responding was trained on a single lever under a 

tandem VT fixed-ratio (FR) schedule of reinforcement with probabilistic ratio 

requirement. In one condition, the majority (75%) of reinforcers were delivered on an FR 

5 after the interval elapsed in order to earn reinforcement, while the minority (25%) of 

reinforcers were delivered on an FR 1 after the interval elapsed. In the other condition, 

the contingencies were reversed: the majority (75%) of reinforcers required an FR 1 and 

the minority (25%) required an FR 5. In neither condition was the FR requirement 

signaled.  

A first approximation to the shape of the bout length distributions was obtained 

using the IRT-cutoff method with various plausible cutoff criteria. These analyses 

suggested that bout lengths may be geometrically distributed, negative-binomially 

distributed, or a mixture of both. The parameter-based method was then implemented to 

estimate the distribution of bout lengths. Geometric, negative binomial, and mixture 

distributions were fit to the estimated distributions of bout lengths.  
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Method 

Subjects 

Ten male, pair-housed Sprague Dawley rats (CD-1) that were approximately 90 

days old and weighed between 322 and 400 grams at the start of the study served as 

subjects. They previously participated in another experiment in which they were tested on 

an object recognition task (Ortiz, Mathewson, Hoffman, Hanavan, Terwilliger, & Conrad, 

2014). Prior to the present study, some rats received one intraperitoneal injection of d-

cycloserine, a partial N-methyl-D-aspartate (NMDA) agonist, which has been shown to 

facilitate Pavlovian extinction when applied immediately prior to an extinction session 

(Walker, Ressler, Lu, & Davis, 2002). Rats 1, 5, 8 and 10 received saline injections, rats 

4 and 9 received one 3 mg/kg dose of d-cycloserine, and rats 2, 6 and 7 received one 15 

mg/kg dose of d-cycloserine. D-cycloserine was administered to the rats two weeks 

before they were introduced to operant chambers used in the current study. Because d-

cycloserine has a plasma half-life of 70 min in rats (Löscher, Wlaź, Rundfeldt, Baran & 

Hönack, 1994), its administration was not expected to have any effect on the current 

operant task, nor were any obvious effects observed. 

Rats were housed on a 12:12 h reverse light/dark cycle; all experimental sessions 

were conducted during the dark portion of the cycle. Rats received ad libitum water in 

their home cage, but were food restricted. They were provided ad libitum access to food 

for only 1 h each day, beginning 30 min after the end of each experimental session.  

Apparatus 

Experimental sessions were conducted in 10 identical Med Associates® 

chambers, 305 mm long, 241 mm wide, and 210 mm high. The chambers were housed in 
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sound and light attenuating cabinets, in which a ventilation fan provided white noise at 

approximately 60 dB.  The chambers were arranged according to the standard dual lever 

configuration – two retractable levers (Med Associates®) 21 mm above the floor flanked 

an aperture (51 mm sides, 15 mm from the chamber floor) that gave access to a liquid 

dipper (Med Associates®, ENV-202M-S). Only one lever, the one farthest from the door, 

was operational; it was calibrated to record a press when at least 0.2 N was applied to it. 

The walls orthogonal to levers and dipper aperture were made of transparent plexiglass, 

whereas the other two walls were made of aluminum.  The dipper well was filled with a 

freshly-prepared sweetened condensed milk (True Value® Walmart Brand, Bentonville, 

AR) and water mixture (1/3 milk, 2/3 water, by volume) at the beginning of each session. 

Each reinforcer was 0.01 ml of the milk-water mixture, delivered by the dipper arm and 

made available for a 3-s interval. When turned on, a houselight mounted outside the 

experimental chamber provided dim illumination inside the chamber. Data collection and 

experimental events were handled by MED-PC™ software and hardware. 

Procedure  

All sessions were conducted with the houselight off except during reinforcement, 

when the dipper was raised for 3 s, the houselight was illuminated, and the lever 

withdrawn. Sessions were conducted once a day, 7 days a week. 

Pretraining 

Prior to the experiment, subjects were trained to drink from the dipper, press the 

lever, and to respond on a VI schedule. On the day previous to the first pretraining 

session, each subject was provided with approximately 1 ml of the milk/water mixture in 

their home cage in order to familiarize them with the reinforcer. During the first 
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pretraining session, the houselight remained on, and the dipper was programmed to be in 

the up position. Three seconds after each head entry to the dipper aperture, the dipper arm 

was lowered and raised again to refresh the supply of milk in the dipper cup. On the 

second and third sessions, the dipper was programmed to be in the down position, and 

head entries illuminated the houselight and raised dipper arm for 3 s. On the fourth, fifth, 

and sixth pretraining sessions, the reinforcer was paired with the lever extension. The 

lever was extended for 8 s, followed immediately by its retraction, turning on the 

houselight, and raising the dipper arm. The dipper remained in the up position and the 

houselight remained on for 3 s. A press to the lever also immediately withdrew the lever, 

turned on the houselight, and raised the dipper arm. Inter-trial intervals (ITIs) were 

randomly sampled from a list of intervals ranging between 10 and 150 s. Training was 

judged to be complete once the mean latency between lever retraction and the subsequent 

head entry was shorter than 2.5 s for each subject, or more than 50% of trials concluded 

with a lever press. All subjects met the criterion within three sessions.  

In order to prepare the subjects for the experimental conditions, the next six 

sessions of pretraining reinforced lever pressing according to the following reinforcement 

schedules: continuous reinforcement, VI 10-s, VI 20-s, VI 40-s, VI 80-s, and VI 150-s. 

Experimental Training  

The experiment proper began once pretraining concluded. Each session began 

with a 300-s acclimation period, during which no experimental events occurred. 

Experimental conditions were implemented following the acclimation period. Each 

session was terminated after either 60 min elapsed or 16 reinforcers were delivered, 

whichever occurred first. 
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During each session, lever pressing was reinforced on a tandem VT 150-s FR X 

schedule, where X was the ratio requirement. After acclimation and after each reinforcer, 

the lever was extended. The computer randomly sampled an interval without replacement 

from a 16-item list generated by a Fleshler-Hoffman distribution (Fleshler & Hoffman, 

1962) with a mean of 150 s. The interval began after each reinforcer, and reinforcement 

was contingent upon the Xth response after the interval had elapsed. The VT 150-s FR X 

schedule is similar to a VI schedule, but the number of lever presses required after the 

interval elapses is X instead of 1. 

The experiment consisted of two conditions: a majority FR 1 condition (mFR1) 

and a majority FR 5 condition (mFR5). During mFR1, 75% of reinforcers only required 1 

response after the VT (X = 1) while the remaining 25% of reinforcers required 5 

responses after the VT (X = 5). In mFR5 the proportions were reversed: 75% of 

reinforcers required 5 responses and 25% of reinforcers required 1 response. The ratio 

requirement after each reinforcer was determined by sampling X randomly without 

replacement from a 16-item list that contained the numbers 1 (12 items in mFR1, 4 in 

mFR5) and 5 (4 in mFR1, 12 in mFR5). In this manner, after every reinforcer, interval 

length and FR requirement selection was random and independent of each other. The 

selected response requirement was not signaled to the subjects. 

Subjects were divided into two groups: the odd numbered rats (1, 3, 5, 7, 9) were 

assigned to group ‘mFR5 first’ and the even numbered rats (2, 4, 6, 8, 10) were assigned 

to group ‘mFR1 first’. Each group received approximately equal exposure to both the 

mFR1 and mFR5 condition, but in opposite order. For the first 27 sessions, group ‘mFR5 

first’ was trained on mFR5 and group ‘mFR1 first’ was trained on mFR1. For the 
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subsequent 26 sessions, ‘mFR5 first’ was trained on mFR1 and group ‘mFR1 first’ was 

trained on mFR5.  

Data Analysis 

Although subjects were trained for 26 or 27 days on each condition, only the last 

five sessions from each condition (mFR1 and mFR5), when the performance appeared 

stable, were analyzed.. All analyses were conducted with custom written Matlab® code. 

Model parameters were estimated using maximum likelihood estimation (MLE; Myung 

2003); this method identifies the set of parameters that are more likely to produce the 

observed data.  

Results 

Reinforcement and Response Rate 

Figure 5-1 shows individual changes in response and reinforcement rate between 

mFR1 and mFR5. Response rate was greater in mFR5 for all rats in mFR5 first (mean 

difference = 15.58, SEM = 4.91 resp/min) but not in mFR1 first (mean difference = -2.63, 

SEM = 2.38 resp/min). Changes in reinforcement rate between mFR1 and mFR5 were 

negligible for both mFR5 first (mean difference = -0.38, SEM = 0.22 reinf/h) and mFR1 

first (mean difference = 0.76, SEM = 0.29 reinf/h).  This asymmetry in response rate 

differences between mFR1 and mFR5 suggests that overall response rate was affected by 

the order in which mFR1 and mFR5 were experienced. However, all subsequent analyses 

were initially conducted separately on each order condition, and showed only minor 

differences in response bouts and bout lengths (see individual subject plots of Figure 5-3 

and Figure 5-4). 
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Figure 5-1. mFR1 and mFR5 Response and reinforcement rates. The top panels show the 

response rates and the bottom panels show reinforcement rates for individual subjects in 

the mFR1 and mFR5 conditions for groups mFR1 first and mFR5 first. The dashed lines 

connect individual subjects to highly response rate changes between conditions. 
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Figure 5-2. Distribution of bout lengths as calculated by the IRT cutoff method (cutoffs 1, 

2, 4, and 8 s), averaged over groups (mFR1 first and mFR5 first) for mFR1 and mFR5. 
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Estimation of Bout Lengths by IRT Cutoff Method 

The mean bout-length distribution for mFR1 and mFR5 using IRT cutoffs of 1, 2, 

4, and 8 s are displayed in Figure 5-2. The shape of the bout length distribution changed 

considerably, depending on the cutoff used. When the cutoff was 1 s (top panels), bout-

length distributions in both conditions appeared approximately geometric with a mode of 

1 response per bout. In contrast, when the cutoff was 8 s (bottom panels), bout-length 

distributions appeared more peaked, with modal lengths longer than 1. Many of the 

distributions also appear to have multiple peaks, particularly under mFR5. These 

distributions informed the nomination of candidate bout-length models described in the 

Modeling Bout Lengths section below. 

In the next three sections, an alternative approach to characterizing the 

distribution of bout lengths is described (the aforementioned parameter method). In those 

sections, response bout model parameters are estimated to generate probable distributions 

of bout lengths that are then fit to models of bout length.  

 

DBERM Model Selection and Parameter Estimation 

Instead of identifying bouts based on a cut-off method, BERM (Equation 5-1) 

determines the probability that each IRT is either within- or between-bouts based on 

characteristics of the entire population of IRTs. When the average IRT lengthens over the 

course a session, the dynamic version of BERM, DBERM, may be fit to the data to 

account for changes in the distribution of IRTs (Cheung et al., 2012). For all analyzed 

sessions (N = 100), the mean median IRT in the first half of each session was 0.55 s 

(SEM = 0.037), whereas the mean median IRT within the second half of each session was 
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4.87 s (SEM = 1.76). This within-session lengthening of median IRTs supported the 

implementation of DBERM.  

According to DBERM, at time t since the beginning of a session, the mean 

within-bout IRT, the mean between-bout IRT, and the proportion of IRTs sampled from 

the within-bout distribution are, respectively, 1/(wt + δ), and 1/(bt + δ) and pt, 

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 <  𝛿) = 0 

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 ≥ 𝛿) = 𝑝𝑡𝑤𝑡𝑒−𝑤𝑡(𝜏−𝛿) + (1 − 𝑝𝑡)𝑏𝑡𝑒−𝑏𝑡(𝜏−𝛿).  

 min (IRT) ≥ δ > 0; wt ≥ bt > 0; 1 ≥ pt ≥ 0 (5-2) 

The mean bout length at time t is 1 / (1 – pt). For computational convenience, the bout-

initiating response is not counted as part of the bout; the adjusted mean bout length at 

time t is 

Lt = pt / (1 – pt).  (5-3) 

In order to accommodate changes in response rate over the course of a session, 

DBERM allows the parameters Lt, wt and bt to decay exponentially over time, 

𝐿𝑡 = 𝐿0𝑒−𝛾𝑡 

𝑤𝑡 = 𝑤0𝑒−𝛼𝑡 

𝑏𝑡 = 𝑏0𝑒−𝛽𝑡, L0, w0, b0, γ ≥ 0; β ≥ α ≥ 0 (5-4) 

in which L0 is the adjusted mean bout length when t = 0 s, 1/(w0 + δ) and 1/(b0 + δ) are 

the mean within- and between-bout IRTs when t = 0 s, and γ, α, and β are the decay rates 

of L0, w0, and b0. In order to determine whether all decay parameters were justified, a 

series of nested DBERM models were fit to the data (Table 5-1). Each of these models 



 108   

 

 

allowed some of parameters to vary freely while others were fixed at zero. Each model 

was fit to each individual subject’s aggregated IRTs in the last five sessions of each 

condition (mFR1 and mFR5).  

 A more general version of BERM is a mixture model of two gamma distributions 

(Smith et al., 2014), 

Pr(𝐼𝑅𝑇 = 𝜏) = 𝑝𝑡Γ(ℎ𝑤, 𝜃𝑤) + (1 − 𝑝𝑡)Γ(ℎ𝑏 , 𝜃𝑏). 

hw, hb ≥ 1; θw, θb > 0; hbθb > hwθw; 1 ≥ p ≥ 0 (5-5)  

This bi-gamma model was also compared against DBERM as an account of IRT 

distributions.  

In this model, Γ is the probability density function of a gamma distribution, and h 

and θ are its respective shape and scale parameters for the within (hw, θw) and between 

(hb, θb) IRTs. Note that if hw = hb = 1, the bi-gamma model reduces to BERM with w = 

1/θw and b = 1/θb. The full version of Equation 5-5 was tested, in which all parameters 

were estimated freely, as well as a version in which hw = 1 and a version where hb = 1. 

Note that the gamma distribution (Γ) is distinct from the bout length decay parameter (γ).  

The nested variations of DBERM and the bi-gamma model were compared using 

the corrected Akaike information criterion (AICc), a model selection criterion that 

balances goodness-of-fit against parsimony (Burnham & Anderson, 2002). In AICc, k is 

the total number of free parameters, n is the total number of observations, and LL is the 

log likelihood of the model,  

𝐴𝐼𝐶𝑐 = 2𝑘 − 2𝐿𝐿 +  
2𝑘(𝑘+1)

𝑛−𝑘−1
. (5-6) 



 109   

 

 

The lower the AICCc, the better the model balances a lower number of free parameters 

with a higher likelihood. The ΔAICc of a model is the difference in AICc between that 

model and the model with the lowest AICc. 

Table 5-1 shows the AICc values for all candidate models. For both mFR1 and 

mFR5, bi-gamma models had very high AICc, and were thus no further considered. AICc 

selected DBERM (Equation 5-2) with γ constrained to 0 and all other parameters allowed 

to vary freely for both mFR1 and mFR5. The selected variation of DBERM assumes 

IRTs were bi-exponentially distributed, and the within-session decline in IRTs was 

mainly due to changes in within-bout and bout initiation rates, not due to changes in bout 

length.  

To additionally confirm the validity of the selected model, its predictions were 

plotted against the observed distribution of IRTs, as displayed in the log-survival plots of 

Figure 5-3. The figures show that, in general, the model predicts the empirical 

distribution of IRTs, although there are some noticeable deviations to the fit of lower, 

between bout limb, which roughly comprises the longest 10% of IRTs. The estimated 

model parameters for individual subjects in mFR1 and mFR5 are displayed in Table H-1 

in Appendix H. Estimates of L0 and w0 suggest that rats produced, on average, more and 

somewhat faster responses per bout at the onset of mFR5 sessions than at the onset of 

mFR1 sessions. These findings are consistent with prior reports (Brackney et al., 2011). 

The interval between these within-bout responses (1/w0 + δ) increased on average by 45% 

throughout the session. The mean interval between bouts (1/b0 + δ) was about 5.8 s in 

both conditions, increasing to 1/b3600 + δ = 10.9 s and 13.9 s by the end of mFR1 and 

mFR5 sessions, respectively. 
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Figure 5-3. Log-survival plots for mFR1 and mFR5 from observed IRTs (obs) and of 

IRTs predicted by DBERM (model). Model traces have been bolded to help distinguish 

them from the observed data curves, but the width of the bolding carries no additional 

significance. 
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Table 5-1.  

Comparison of bout model variations. 

 mFR1 (n = 71142) mFR5 (n = 95085) 

Model k AICc LL ΔAICc AICc LL ΔAICc 

DBERM 

w0, b0, p0 30 33746 -16843 1768 26053 -11259 8146 

w0, b0, p0, δ 40 32081 -16001 103 19102 -9448 1196 

w0, b0, p0, δ, β 60 32069 -15974 91 18831 -9325 924 

w0, b0, p0, δ, α, β 60 31978 -15929 0 17907 -8953 0 

w0, b0, p0, δ, α, β, γ 70 31998 -15929 20 17938 -8949 31 

Bi-Gamma 

hb, θw, θb, p 40 32096 -16008 118 20501 -10132 2594 

hw, θw, θb, p 40 32116 -16008 138 20541 -10132 2634 

hw, hb, θw, θb, p 50 33757 -16838 1779 26024 -11233 8117 

Note. Free parameters are listed for each model; other parameters were fixed at zero, 

except for hw and hb, which were fixed at 1. AICc was computed for each model, fitted to 

individual IRT distributions, according to . n is the number of IRTs observed; k is the 

number of free parameters in each model multiplied by 10, the number of rats. Lower 

AICc indicates higher likelihood, after correcting for free parameters. ΔAICc of model j 

is the difference between AICc of model j and the lowest AICc.  

 

Estimation of the Distribution of Bout Lengths  

Distributions of bout lengths were generated for each rat and experimental 

condition using Monte Carlo simulations. According to DBERM (Equation 5-2), the 

probability that an IRT of duration τ initiated at time t since session onset is sampled 

from the within-bout distribution is  

Pr𝑤𝑖𝑡ℎ𝑖𝑛(𝜏, 𝑡) =
𝑝𝑡𝑤𝑡𝑒−𝑤𝑡(𝜏−𝛿)

𝑝𝑡𝑤𝑡𝑒−𝑤𝑡(𝜏−𝛿)+(1−𝑝𝑡)𝑏𝑡𝑒−𝑏𝑡(𝜏−𝛿) 
. (5-7) 

Note that Equation 5-7 is simply the within-bout portion of DBERM’s likelihood 

function over its entire likelihood function (Equation 5-2). In the simulation, Prwithin (τ,t) 

served as the parameter for a Bernoulli trial, the outcome of which classified the IRT as 

either within- or between-bouts. Bout lengths were then calculated as one plus the 

number of consecutive within-bout IRTs. Because of the computational time required to 
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conduct the simulation, and because the probability that an IRT was within-bout was 

typically either < 20% or > 80%, the simulation was run only 5 times for each rat and 

condition. The simulation yielded a total of 298597 bouts. Simulated bout-length 

distributions, averaged over 5 runs, are displayed in Figure 5-4.The output of the 

simulations served as data for modeling the distribution of bout lengths.  

Modeling Bout Lengths 

Shull (2001) assumed that bout lengths are the outcome of a Markov chain in 

which the probability of emitting a within-bout IRT is constant. This process generates 

geometrically distributed bout lengths; the probability that a bout is λ responses long 

(where λ includes the bout initiation response, and thus must be an integer greater than or 

equal to 1) is 

Pr(𝜆) = 𝑝𝑔𝑒𝑜(1 − 𝑝𝑔𝑒𝑜)𝜆−1, 0 ≤ 𝑝𝑔𝑒𝑜 ≤ 1; 𝜆 ∈ ℕ1 (5-8) 

where pgeo is the probability of ending the bout after each response; 𝜆 ∈ ℕ1 indicates that 

λ is an integer equal to or greater than 1. This model, henceforth referred to as GEO, 

assumes that after each response, a Bernoulli trial occurs, the outcome of which 

determines whether the subject exits the bout. The length of many of the bouts generated 

by the IRT cutoff method in Figure 5-2 and by some of the simulations reported in Figure 

5-4 appear to be consistent with Equation 5-8.  
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Figure 5-4. Mean bout-length distributions estimations, from 5 runs of a Monte Carlo 

simulation (sim; Equation 5-6) and predicted by MIX (model; Equation 5-10) for mFR1 

and mFR5. The simulation yielded an average of 14930 bouts/rat/condition. 
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In contrast, many of the bout-length distributions in Figure 5-2 and Figure 5-4 

have modes greater than 1. Because all geometric distributions parameterized as Equation 

5-8 have a mode of 1 (see Appendix J), these distributions are inconsistent with the 

assumptions of GEO. A generalization of geometric distribution that accommodates these 

divergences in the data is the negative binomial distribution. A second model was 

devised, henceforth NB,  

Pr(𝜆) = (
𝜆 + 𝑟 − 2

𝜆 − 1
) 𝑝𝑛𝑏

𝑟 (1 − 𝑝𝑛𝑏)𝜆−1 . 0 ≤ 𝑝𝑛𝑏 ≤ 1; 𝑟, 𝜆 ∈ ℕ1 (5-9) 

The middle parenthetical expression is the binomial coefficient. Whereas GEO assumes 

that exiting a bout results from the failure of a single Bernoulli trial, NB requires r failed 

Bernoulli trials, each with failure probability pnb, to exit the bout. When r is 1, NB 

reduces to GEO. Appendix J expands upon the rationale and background of the GEO and 

NB and explains Equations 5-8, 5-9, and 5-10 in even greater detail. 

Many of the distributions in Figure 5-2 and Figure 5-4 appear to be bimodal, with 

one peak at 1 response and another peak at a bout length greater than 1. To account for 

these observations, a mixture of GEO and NB (MIX), 

Pr(𝜆) = (1 − 𝜔)[𝑝𝑔𝑒𝑜(1 − 𝑝𝑔𝑒𝑜)𝜆−1] +  𝜔 [(
𝜆 + 𝑟 − 2

𝜆 − 2
) 𝑝𝑛𝑏

𝑟 (1 − 𝑝𝑛𝑏)𝜆−1], 

0 ≤ 𝑝𝑛𝑏 , 𝑝𝑔𝑒𝑜, 𝜔 ≤ 1; 𝑟, 𝜆 ∈ ℕ1 (5-10)  

 

was developed as a third model of bout lengths. In MIX, ω is the weighting parameter 

that specifies the proportion of bout lengths sampled from the NB; 1 – ω is the proportion 

of bout lengths sampled from the GEO. Figure 5-5 represents the MIX model and each of 

its components as a flow chart. 
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Figure 5-5. Flow-chart representation of the MIX model (Equation 5-10). (A) The model 

repeatedly chooses between subroutines GEO (Equation 8) with probability 1 – ω, and 

NB (Equation 9) with probability ω. (B) Subroutines GEO and NB have similar structure, 

but different parameters. Both begin a bout with a response, followed by a Bernoulli trial. 

With probability p (p = pgeo in GEO; p = pnb in NB), counter n increases; if n = r (r = 1 

in GEO, r ≥ 1 in NB), the bout is exited; otherwise, another Bernoulli trial is conducted. 

With probability 1 – p, a response is produced followed by another Bernoulli trial. 

 

 

GEO, NB, and MIX (Equations 5-8, 5-9, and 5-10, respectively) were fit to the 

aggregate distribution of simulated bout lengths of each individual rat (Figure 5-4) using 

MLE. Selection among these three models was conducted using AICc (Equation 5-6). 

Table 5-2 shows that MIX was a substantially more likely model than either one of the 

alternative models. Figure 5-4 displays the distribution of bout lengths estimated by the 

MIX model for each rat in each condition overlaid over the mean bout length simulations. 

Overall, the predicted distribution of bout lengths conforms to the distribution of bout 

lengths observed from the simulation, without any systematic deviations. 
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Table 5-2.  

Comparison of bout-length models. 

  mFR1 (n = 162144) mFR5 (n = 136453) 

Model k AICc LL ΔAIC AICc LL ΔAIC 

GEO 10 745902 -372940 12370 775784 -387882 24552 

NB 20 736586 -368274 3054 759070 -379514 7838 

MIX 40 733532 -366726 0 751232 -375576 0 

Note. See Table 5-1 for nomenclature. 

In order to determine whether training conditions significantly affected the 

distribution of bout lengths, three separate components of MIX were compared between 

mFR1 and mFR5: the weighting parameter ω, the expected mean of the GEO portion of 

MIX, 

𝜇𝑔𝑒𝑜 =
(1−𝑝𝑔𝑒𝑜)

𝑝𝑔𝑒𝑜
 , (5-11) 

and the expected mean of the NB portion of MIX, 

𝜇𝑛𝑏 =
(1−𝑝𝑛𝑏)𝑟

𝑝𝑛𝑏
. (5-12) 

 
 

Figure 5-6. Difference in MIX parameter estimates across conditions (mFR5 – mFR1). 

Squares represent individual differences, circles represents the mean group difference. 

The “*” in the x-axis label indicates a significant difference in estimates between 

mFR1 and mFR5. The dashed lines indicate the expected value if there is no difference 

between conditions.  
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Table 5-3 displays estimates of ω, μgeo, and μnb for each subject and condition. 

displays, for each rat, the difference in ω, μgeo, and μnb between mFR5 and mFR1. 

Condition mFR5 increased ω relative to mFR1 for 7 of 10 subjects, and condition mFR5 

increased μnb relative to mFR1 for 9 of 10 subjects. In contrast, there were diverse 

patterns of change in μgeo between mFR5 and mFR1, with 5 subjects showing an increase 

in mFR5, 3 showing an increase in mFR1, and 1 subject showing almost no change 

between conditions. One-tailed Wilcoxon signed rank were conducted to assess whether 

ω, μgeo and μnb varied significantly between mFR1 and mFR5. Results indicate that μnb (Z 

= 1.83, p = 0.03) was significantly larger in mFR5 than in mFR1, but there was no 

significant difference in μgeo (Z = -0.92, p = 0.82) or ω (Z = 1.33, p = 0.09) between 

conditions.  

Combined, the model fit and parameter estimates indicate that both mFR1 and 

mFR5 were characterized by two separate populations of response bouts – short GEO-

distributed bouts and long NB-distributed bouts. On average, NB bouts were longer and 

somewhat more frequent in mFR5 than in mFR1.  

Discussion 

Prior research has shown that operant behavior is organized in bouts, and that 

mean bout length estimates are proportional to the number of responses required to 

collect reinforcement (Brackney et al, 2011). These studies, however, did not explicitly 

examine the shape of the distribution of bout lengths and its sensitivity to response 

requirements. The purpose of the present study was to examine this parameter of operant 

performance, which is critical to build a generative models of that postulates behavioral 

mechanisms responsible for operant learning and performance. A model that assumes that  
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length of those bouts, would be severely limited. 

Table 5-3.  

MIX model parameter estimates. 

  mFR1  mFR5 

Rat  ω μgeo μnb  ω μgeo μnb 

1  0.850 2.076 2.629  0.153 4.987 7.522 

2  0.460 4.628 6.486  0.830 1.119 10.042 

3  0.811 0.786 4.357  0.702 0.850 4.724 

4  0.810 0.251 3.547  0.875 0.650 5.996 

5  0.679 1.801 5.794  0.528 8.491 13.253 

6  0.318 1.169 1.173  0.921 0.408 4.698 

7  0.503 2.448 4.904  0.798 1.449 5.973 

8  0.144 5.342 1.607  0.897 0.411 6.999 

9  0.626 1.647 5.111  0.814 1.108 9.799 

10  0.216 4.905 15.401  0.874 0.813 7.987 

Mean  0.542 2.505 5.101  0.739 2.029 7.699 

SEM  0.081 0.573 1.270  0.075 0.834 0.850 

 

In the present study, two requirements to collect reinforcement were randomly 

intermixed within the same session. Sometimes rats were required to emit 1 lever press  

(tandem VT 150-s FR 1 schedule) after the end of a variable interval; sometimes they 

were required to emit 5 lever presses (tandem VT 150-s FR 5 schedule). Neither schedule 

was signaled. Consistent with prior research, as the proportion of FR 5 reinforcement 

increased, the estimated mean bout length also increased (Brackney et al., 2011). 

The estimated mean bout length is, however, not informative of the shape of the 

distribution of bout lengths. Cursory bout length estimates were established using IRT 

cutoffs to inform possible bout-length distributions (Figure 5-2), but the use of cutoffs as 

the sole determinant of bouts has significant limitations (Shull et al., 2002). Due to the 

probabilistic nature of bouts in a single-operandum study, bout lengths cannot be 

established deterministically. Instead, expected distributions of bout lengths were 

estimated on the basis of simulations of DBERM with best-fitting parameters. These 
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bout-length distributions were best fit by a mixture of geometrically (GEO) and negative-

binomially (NB) distributions (MIX model;  

Table 5-2). This model suggests that at least two processes govern the generation 

of response bouts, one that produces short bouts with a mode of 1 response, and one that 

produces longer bouts with a mode greater than 1. Model estimates suggest that, when a 

tandem FR 5 requirement was imposed, the long bouts were longer than when a tandem 

FR 1 requirement was imposed (Figure 5-6). 

To further examine the utility of the bout-length mixture model, we reanalyzed 

the data from Brackney et al. (2011), in which rats were trained to lever press on a VI 

120-s and tandem VT 120-s FR 5. Bout-length model selection criteria and parameter 

estimates are displayed in Appendix K. The MIX model conforms well to the data from 

Brackney et al. (2011). Estimates of prevalence (ω) and mean (μnb) of NB-distributed 

bout lengths from Brackney et al. (2011) are sensitive to FR requirement, similar to the 

present study. The relation between these variables is more clearly visible when median 

ω, μgeo, and μnb estimates are plotted as a function of the prevalence of FR 5 requirements 

in the schedule (Figure 5-7). With more frequent tandem FR 5 requirements, the 

prevalence and mean length of NB bouts tends to increase, whereas the mean length of 

GEO bouts remains constant and close to 1.6 responses. 

The finding that bout lengths are sampled from two separate populations, suggests 

that bouts of different lengths belong to separate functional response classes. That is, 

reinforcement of bouts of a particular length seems to differentially strengthen those 

bouts relative to bouts of other lengths. The hypothesis that reinforcement operates on 

bouts and not on individual responses is consistent with evidence that bout initiations 
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increase with rate of reinforcement according to Herrnstein's (1970) hyperbola (Shull, 

2011; see also Hill et al., 2012), with evidence that reinforcement operates on responses 

that precede the one that produces reinforcement (Catania, 1971), and, to some extent, 

with Killeen’s (1994) notion of response-reinforcement coupling. However, one aspect of 

the present results seems inconsistent with the bout-length-as-response-class hypothesis: 

If reinforcement of bouts is expressed in a single population of bout lengths centered near 

the mean of reinforced bout lengths, why would there be two populations of bout lengths 

when there is only one ratio requirement (1 response in VI 120-s, 5 responses in tandem 

VT 120-s FR 5)? Determining the origin of bouts that are not explicitly reinforced is a 

significant obstacle toward explaining the current results. Currently, the information 

available on the sources of variance in bout length in operant performance is scant. It is 

yet unclear, for instance, the extent to which variance in bout length is due to variance in 

the length of bouts reinforced (the same tandem VT FR schedule may deliver 

reinforcement after bouts of varied length) or due to generalization of reinforcement to 

bouts of similar length. Controlling these sources of variance in future research may 

provide a more precise account of the provenance of bouts of various lengths, including 

those not explicitly reinforced.  
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The extent to which the MIX model may be more generally applied to other 

contingencies of reinforcement known to produce bout-like behavior, such as Tandem 

VT-VR (Shull et al., 2001, 2004)  and concurrent VI schedules (T. T. Smith et al., 2014) 

will require further investigation. For example, Smith and colleagues (2014) provided 

histograms (Figures 6B, 7B and 8B) of consecutive responses on a single operandum in a 

concurrent VI VI before changing over to the alternative operandum. The authors argue 

that this performance is analogous in many respects to response bouts on a single 

operandum. Their figures show distributions that appear to conform to GEO in some 

cases and to NB in others, but the merit of neither of these models, nor the MIX model, 

was quantitatively established.  

 

 

Figure 5-7. Median MIX parameter estimates for VI 120-s and VT 120-s FR 5 (from 

Brackney et al., 2011) and for mFR1 and mFR5. The percentage of intervals with a 

tandem FR 5 requirement is noted in the x-axis. 
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Bout Length Estimation Methods 

In this study, we introduce a new, parameter-based method for estimating bout 

lengths, and contrast its use with the more simple IRT cut-off method. A third method, of 

intermediate complexity, estimates bout lengths using a more informed cutoff that 

minimizes classification errors (see Berdoy, 1993, Equation 2). Unfortunately, this 

method is still too limited, because it does not weigh IRTs based on their probability of 

being within-bout: an IRT that has a 0.51 probability of being within-bout is weighted in 

the distribution of bout lengths identically to an IRT that has a 0.99 probability of being 

within-bout. In contrast, the parameter-based method does not have this limitation.   

Another concern related to the estimation of bout lengths is whether their bi-

modal distribution is an artifact of DBERM fit to IRTs that change within session. Such 

artifact is unlikely. First, bi-modal distributions of bout length were also observed using 

the cut-off method. Second, DBERM does not specify a particular distribution of bout 

lengths, only the mean bout length Lt. Finally, if bout lengths were sampled from 

geometric distributions with parameters varying over the course of the session, the 

resulting mixture distribution would still have a single mode of 1.  

Conclusions 

Past research has demonstrated that animals may learn to emit response sequences 

of a particular length, when such sequences are explicitly reinforced (Evenden & Ko, 

2005; Mechner & Guevrekian, 1962), and may even learn to emit two sequences of 

different length at rates that match their respective rates of reinforcement (Shimp, 1982). 

The present study extends these findings to response bouts; it suggests that response 

bouts that emerge from free-operant responding may be shaped by tandem response 
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requirements. Given that response bouts are visible even at operant level when 

responding is not explicitly reinforced (Cabrera et al., 2013), it is plausible that, through 

contiguity, reinforcement selects among bouts of different lengths.  
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CHAPTER 6  

ASSESSING OPERANT HYPERACTIVITY IN A RODENT MODEL OF ADHD 

USING RESPONSE-BOUT MODELING   

Abstract 

Background: Operant hyperactivity, or the emission of operant responses at an 

inordinately high rate, has been a frequently observed in children with attention deficit 

hyperactivity disorder (ADHD) and in a common animal model of ADHD, the 

spontaneously hypertensive rat (SHR). Prior research used response-bout modeling on 

the behavioral differences between the SHR and the Wistar-Kyoto (WKY) control strain 

to identify the core aspects of response bouts potentially responsible for operant 

hyperactivity in the SHR. This study replicated those performance differences and, based 

on inferences from response-bout modeling, tested a procedure to attenuate the 

performance deficits of the SHR. 

Method: In Experiment 1, SHR and WKY rats were trained extensively on a variable-

interval (VI) schedule of reinforcement, and then exposed to a single session of extinction 

training. In Experiment 2, a new cohort of SHR and WKY rats were again trained on a VI 

schedule; one SHR group was later trained to depress the lever for at least 0.8 s in order 

to earn reinforcement. Response bouts were analyzed using the using multiple versions of 

dynamic bi-exponential refractory model (DBERM) of operant performance. DBERM 

parameters were estimated using hierarchical Bayesian modeling. 

Results: Experiments 1 and 2 generally replicated the findings of previous studies that 

showed that SHRs emit shorter response bouts in VI schedules, but faster within-bout 

response rates and bout initiation rates than WKYs, and that differences in extinction 
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performance were primarily due to higher initial bout initiation rates. Furthermore, when 

SHRs were required to hold the lever down longer during VI training, their performance 

became more similar to the WKYs, as evidenced by an increase in their bout lengths and 

a decrease in their within-bout response rates and bout initiation rates.  

Conclusions: The operant hyperactivity of SHRs is characterized by short, rapid visits to 

the lever punctuated by only brief interludes between visits. This hyperactivity can be 

attenuated by imposing longer response duration requirements, causing visits to become 

longer, with longer breaks between visits. A change in response-outcome associations 

may underlie this effect.  
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Introduction 

Operant learning deficits have been hypothesized to be a core component of 

attention deficit hyperactivity disorder (ADHD; Luman, Tripp, & Scheres, 2010; 

Sagvolden, Johansen, Aase, & Russell, 2005). They have been observed in humans with 

ADHD (Aase & Sagvolden, 2006; Sagvolden et al., 2005) and in a common animal 

model of ADHD, the spontaneously hypertensive rat (SHR; Brackney et al., 2012; Hill et 

al., 2012; Johansen et al., 2007; Johansen & Sagvolden, 2005b). When compared to the 

Wistar-Kyoto (WKY) control strain, the SHR demonstrates deficits in associating 

responses with reinforcers (Johansen et al., 2007), perseverative responding during 

extinction learning (Brackney et al., 2012; Johansen & Sagvolden, 2005b), steeper 

sensitivity to delay of rewards (Hand, Fox, & Reilly, 2010; Sagvolden, Metzger, et al., 

1992), and excessive responding at low rates of reinforcement (Hill et al., 2012).  

Despite a large body of literature profiling the behavior of the SHR, the causes of 

their behavioral deficits have not yet been fully determined (Alsop, 2007). Differences in 

operant learning and performance between rat strains or between experimental conditions 

are likely multifactorial, and not easily revealed by simple traditional measures 

(Brackney et al., 2011; Shull, 2011).  

Response-bout analyses and their associated models are one set of tools that have 

proven successful in the determining the sources of variability in operant responding 

(Brackney et al., 2011; Cheung et al., 2012; Johnson et al., 2009). Under simple 

schedules of reinforcement, rats typically engage in response bouts—they rapidly press 

the lever several times before pausing (Brackney et al., 2011; Johnson et al., 2009; Reed, 

2011; Shull et al., 2001; Shull, 2011). Four parameters describe the organization of 
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responses in bouts: the mean number of responses made on the lever before pausing (bout 

length), how fast the animal responds on the lever (within-bout response rate), how 

frequently the animal starts a bout (bout initiation rate), and the time taken for an animal 

to make a single response and prepare for the next response (refractory period).  

 Sanabria and colleagues (Brackney et al., 2012; Hill et al., 2012) found that, 

under multiple variable-interval (VI) schedules of food reinforcement, SHRs produce 

more frequent but shorter bouts of lever presses than WKYs, and that during extinction 

bouts were gradually shortened for the WKY, but not the SHR. These results conform 

with previous observations that SHRs are hyperactive in the open field (Hsieh & Yang, 

2008; Sagvolden, Metzger, et al., 1992) and have difficulty learning new associations 

between responses and reinforcer (Johansen et al., 2007; Sagvolden et al., 2005).  

The present study aimed at replicating and extending the findings of Hill et al. 

(2012) and Brackney et al. (2012). In Experiment 1, SHR and WKYs were trained to 

lever-press on a VI schedule of reinforcement. To assess response-bout parameters, the 

Dynamic Bi-Exponential refractory model (DBERM) of response bouts was fit using a 

Bayesian Hierarchical Analysis (BHA). In general, the results confirmed previous 

findings that SHRs engage in more bouts and respond faster than WKYs during VI 

training and extinction. Experiment 2 attempted to reduce these strain differences by 

requiring SHRs to hold down the lever longer to obtain reinforcement. After the SHRs 

were trained to hold down the lever, their performance became more similar to the 

performance of WKYs.   
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Method Experiment 1 

Subjects 

Sixteen male SHR (Charles River Laboratories, US) and 16 male WKY (Harlan 

Laboratories, US). All subjects were pair-housed with a 12:12 h reverse light cycle (dark 

from 7 AM to 7 PM). Subjects arrived at the facility on post-natal day (PND) 24. Rats 

were fed ad libitum until PND 36. Ad libitum food availability was gradually reduced 

from 9 h of access on PND 37 to 1 h of access by PND 40. Throughout the rest of the 

experiment, subjects only had ad libitum access to food for 1 h per d, starting 30 min 

after the end of the experimental session.  

Apparatus 

 Six standard modular MED Associates (St. Alban, VT) operant chambers were 

used. Each contained two retractable levers that flanked a food delivery aperture used for 

reinforcement. The operant chambers were the same as those used in previous SHR 

studies from our lab (Brackney et al., 2012; Hill et al., 2012). Activation of a liquid 

dipper delivered 0.01 mL of a sweetened condensed milk (Great Value® brand, Wal-

Mart Stores, Inc., Bentonville, AR) and tap water mixture (1/3 milk by volume) to the 

operant chamber. Operant chamber assignment was counterbalanced across rat strains. 

Procedure 

Pretraining 

Rats were trained to consume the reinforcer and press the lever following the 

same protocol described Chapters 4 and 5. Prior to the start of the first training session, 

each rat was given 1 h access to 1 mL of the milk mixture in their homecage for 

acclimation. On PND 26-28, rats were trained to drink from the liquid dipper in the 



 129   

 

 

operant chamber. On PND 29-30, rats were trained to lever press by pairing the lever 

presentation with reinforcer delivery. On PND 31, every lever press was reinforced 

(continuous reinforcement).  

Variable-Interval Training 

Each variable-interval (VI) session began with a 300-s acclimation period during 

which no experimental events occurred and the house light remained on. Following the 

acclimation period, the house light was extinguished and the first trial began. Sessions 

lasted for either 45 minutes or 18 trials, whichever completed first.   

Each VI trial began with the extension of the operative lever. An interval was 

selected without replacement from a list of 18 intervals generated by a Fleshler-Hoffman 

distribution (Fleshler & Hoffman, 1962). The first lever press after the selected interval 

had elapsed was reinforced. Reinforcement consisted of the immediate illumination of the 

house light and withdrawal of the lever, and the activation of the dipper arm for 3 s after 

the head-entry IR beam was broken.  

On PND 32-36, rats were trained on short VI schedules to familiarize them with 

the task and prevent early cessation of responding. The mean interval was then increased 

daily, progressing from 5 s, to 15 s, 30 s, and 60 s. On PND 37, subjects began training 

on VI 120 s, and remained on that schedule for 41 more days.  

Extinction 

On PND 79, rats were exposed to a single extinction session (EXT). During EXT, 

the lever was extended and the house light extinguished after the 300-s acclimation 
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period, but responding was not reinforced. The lever remained extended without any 

experimental events occurring for the remaining 40 minutes of the session.  

Data Analysis 

In order to compare results with Hill et al. (2012) and Brackney et al. (2012), VI 

training was analyzed over two epochs. Epoch 1 was PND 49-53 and Epoch 2 PND 74-

78. 

ANOVAs were conducted using IBM SPSS Statistics® v. 22 software. Response 

rates and reinforcement rates during VI training were analyzed with a 2 × 2 mixed 

ANOVA with strain (SHR vs. WKY) as the between-subjects factor and epoch (Epoch 1 

vs. Epoch 2) as within-subjects factor. Response and reinforcement rates were calculated 

daily as number of responses and reinforcers emitted divided by the total time during 

which the lever was extended minus the post-reinforcement pauses (PRPs, the time 

between the reinforcer ending and the first subsequent response). The individual rats’ log 

median response and reinforcement rates over the five days of each epoch served as 

dependent variables.  

During EXT, the session (after the acclimation period) was broken in eight 5-min 

bins. An 8 x 2 (bin × strain) mixed ANOVA was conducted on log response rates. When 

appropriate, follow-up post-hoc analyses to the ANOVAs were conducted using Tukey’s 

HSD, and reported when p ≤ 0.05. 

Model 

DBERM (Brackney et al., 2012, 2011; Cheung et al., 2012) was fit each to inter-

response times (IRTs, intervals between consecutive responses without an intervening 
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reinforcer) in Epochs 1, Epoch 2, and extinction EXT to identify the source of differences 

in response rates between the SHRs and WKYs’ response rates. Cumulative evidence, 

such as log-survivor analyses, indicate that operant response bouts are often a mixture of 

two distinct probability distributions; an exponential distribution that explains the within-

bout IRTs and another that explains the between bouts IRTs (Brackney et al., 2011;  

Johnson et al., 2009; Kessel & Lucke, 2008; Shull et al., 2001; Shull, 2011). To describe 

these IRTs, and how they may change over the course of an experimental session, 

Sanabria and colleagues (Brackney et al., 2012, 2011; Cheung et al., 2012) developed 

DBERM, which assumes that free-operant responses are organized in bouts that are 

governed by four separate parameters: the average bout length, Lt; the within-bout 

response rate; wt, the bout initiation rate, b;, and the refractory period, δ, which describes 

the minimum amount of time between two responses. L, w, and b are allowed to change 

over the course of the session, with their values at time t represented by Lt, wt, and bt.. 

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 <  𝛿) = 0 

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 ≥ 𝛿) = 𝑝𝑡𝑤𝑡𝑒−𝑤𝑡(𝜏−𝛿) + (1 − 𝑝𝑡)𝑏𝑡𝑒−𝑏𝑡(𝜏−𝛿).  

 min (IRT) ≥  δ > 0; wt ≥ bt > 0;1 ≥ pt ≥ 0 (6-1) 

Parameter pt is the weighting parameter of the mixture distribution, which may be used to 

compute the average bout length (excluding the bout initiation response), Lt, 

pt = Lt / (Lt + 1).  (6-2) 

Parameters Lt, wt, bt are allowed to decline in order to account for within session declines 

in response rate. At each time point, t, they decay according to, 
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𝐿𝑡 = 𝐿0𝑒−𝛾𝑡 

𝑤𝑡 = (𝑤0 −  Ω)𝑒−𝛼𝑡 + Ω 

𝑏𝑡 = (𝑏0 −  Ω)𝑒−𝛽𝑡 +  Ω, w0, b0, > Ω ≥ 0; L0,γ ≥ 0;  β ≥ α ≥ 0  (6-1).  

in which L0, w0, and b0 are the average bout length, within-bout response rate, and bout 

initiation rate at the beginning of the session, when t = 0. They will henceforth be referred 

to as the baseline parameters. Parameters γ, α, and β are the decay rates of Lt, wt, bt, 

respectively, and will henceforth be referred to as the dynamic parameters. To ease 

interpretation, the decay parameters are expressed as half-lives [e.g., Hb = ln(2) / β]. 

The parameter Ω is the asymptotic response rate that w and b approach as the 

session progresses. The refractory period, δ, is the minimum amount of time required to 

depress the lever and recover, and is expressed functionally as a shift in the exponential 

distribution of within- and between-bout IRTs. Henceforth, δ and Ω will be referred to 

the ancillary parameters. Overall, there were a total of 8 DBERM parameters for each rat 

for each condition (3 baseline, 3 dynamic, 2 ancillary). 

Parameters were estimated separately for Epoch 1, Epoch 2, and EXT.  

Bayesian Hierarchical Modeling 

Parameters were estimated using Bayesian Hierarchical modeling (BHA; Cheung 

et al., 2012; Gelman, 2004; Griffiths, Kemp, & Tenenbaum, 2008; Shiffrin, Lee, Kim, & 

Wagenmakers, 2008) on the pooled IRTs within each condition. The application of BHA 

in conjunction with DBERM is described in detail in previous papers (Brackney et al., 

2012; Cheung et al., 2012). By imposing a hierarchical structure onto the data, BHA can 

account for variability between subjects that would not be possible if DBERM were fit to 
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each subject individually. It simultaneously uses information at both the individual and 

group level to fit model parameters, permitting robust between-group comparisons of 

model parameters fit to individual subjects. This hierarchical assumption asserts that the 

likelihood of individual model parameters is conditional not just to the performance of an 

individual subject, but also to the performance of all other subjects in the group, 

attenuating the effects of extreme values or few data points in individual subjects.  

For this paper, it was assumed that the DBERM parameters (L0, w0, etc.) of 

individual rats are sampled from a log-normally-distributed population. The mean [μ(θ)] 

and standard deviation [σ(θ)] of the population govern the group-level distribution of each 

DBERM parameter θ; differences in μ(θ) across strains determines the size of strain 

effects on θ. 

The posterior distributions of the DBERM parameters and their population hyper-

parameters were estimated using a Markov Chain Monte Carlo (MCMC) method 

(Gelman, 2004), programmed in custom-written software  in MATLAB (MATLAB and 

Statistics Toolbox Release 2013a Mathworks, Inc; Natick, MA). To determine if there 

was a significant difference between strains for a given DBERM parameter, par, the 

distribution of differences between strain posterior means [μdif(par)]  was calculated: 

μdif(par) = μSHR(par) – μWKY(par).        (6-4) 

A significant strain effect was identified when the 95% credible interval around μdif(θ) 

did not include zero. This meant of the sample estimates of μSHR(par) and μWKY(par), 95% of 

the μSHR(par) samples were consistently either large or smaller than μWKY(par).  
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DBERM Simulation 

A posterior-predictive check was conducted to assess DBERM’s goodness of fit. 

Simulations were conducted using DBERM parameters taken from the MCMC samples 

comprising each subject’s posterior distribution of each parameter. The simulation 

method is described in detail in Brackney et al. (2012). In brief, the simulation used a 

Monte Carlo method that repeatedly sampled DBERM-distributed IRTs until the sum of 

all IRTs sampled exceeded the session length of 40 min (excluding the 300-s acclimation 

period). Specifically, the simulation repeatedly sampled IRTs from one of two 

exponential distributions with means of 1/wt and 1/bt.  Before each sample, the simulation 

conducted a Bernoulli trial with a probability of pt (from Equation 6-2). If the Bernoulli 

trial succeeded, the IRT was sampled from the distribution with the mean 1/wt, otherwise 

the IRT was sampled from the distribution with the mean 1/bt. After each IRT was 

sampled, the values of pt, wt and bt were recalculated according to Equation 6-4 to reflect 

the current time in session. The PRPs of the animals were included in the simulation by 

inserting pauses into simulation that reflected the actual observed times and lengths of 

each animal’s PRPs. During those pauses, no IRTs could be generated. 

For each subject, 1,000 simulations were conducted. The parameters in each 

simulation were chosen at random without replacement from the MCMC sample of the 

posterior distribution of DBERM parameters for individual subjects. To calculate 

response rates, each simulated session was divided into eight equal length bins, and the 

number of responses within each bin was divided by the bin length. The median of these 

response rates were then calculated for each animal, and the mean calculated for the 

group.  
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Results Experiment 1 

Response and Reinforcement Rates 

  To visualize the correspondence between the observed response rates and those 

predicted by the DBERM simulations, sessions were divided into eight equal length bins 

(5 min each), and response rate was calculated for each bin. Figure 6-1 shows the mean 

(± SEM) of the individual logged median response rates for each bin of Epoch 1, Epoch 2 

and EXT.  

To assesses whether response rates differed significantly between strains and 

Epochs 1 and 2, A 2 × 2 (Strain x Epoch) mixed ANOVA was conducted. A significant 

strain × epoch interaction effect, F (1, 22) = 20.86, p < .001, were detected. Post-hoc 

analyses indicated that SHRs increased their response rate from Epoch 1 to Epoch 2, p < 

.001, but WKYs did not.  

 

Figure 6-1. Experiment 1 – Group means of individual median response rates during 

Epoch 1, Epoch 2, and EXT for SHRs and WKYs. The markers indicate the observed 

response rates, whereas the solid and dashed lines response rates predicted from the 

DBERM simulation. Error bars represent the standard error of the mean. For comparison 

with the simulations, sessions were divided into 5 min bins over which response rates 

were calculated, although ANOVAs were conducted on the medians calculated over the 

entire session during Epochs 1 and 2.   
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To assess whether response rates declined during extinction, and whether there 

was a difference in response rates during EXT between strains, a 2 × 8 mixed-design 

ANOVA (Strain × Bin) was conducted. Significant effects of strain, F (1, 22) = 10.80, p 

< .05, and bin, F (7, 154) = 43.36, p < .001, were observed on response rates. The strain 

effect indicates that SHRs responded more than WKYs during EXT.  

Similar ANOVAs were conducted on the same factors to assess differences in 

reinforcement rate, but no differences were found for Epochs 1 or 2.  

 Model Parameters 

 DBERM was fit to 58,251, 53,428, and 6,306 individual IRTs for Epoch 1, Epoch 

2, and EXT, respectively. Whereas BHA estimated logged parameters, they were back-

transformed to the linear scale to ease interpretation; μθ on the log scale is the median of 

parameter θ on the linear scale. The medians and 95% credible intervals (CI) of the 

baseline parameters, their half-lives, and the ancillary parameters are displayed in Figure 

6-2 for each of the three conditions and each rat strain.  

  In Epoch 1, significant differences between strains were observed for parameters 

L0, w0, b0, HL(w), HL(b), and Ω. At the onset of the session, the SHRs engaged in more 

bouts (higher b0) that were both shorter (lower L0) and contained more responses (higher 

w0) than those of the WKYs. Moreover, although within-bout response rates declined 

very slowly [HL(w) far exceeded the length of the session], they did so more steeply for 

WKYs than for SHRs. The bout initiation rate decayed faster [lower HL(b)] for SHRs 

than for the WKYs, but it did so to a higher asymptotic rate (Ω). 
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  In Epoch 2, significant differences between strains were observed for parameters 

b0, δ, and HL(w). The SHRs engaged in more bouts (b0) than the WKYs, and the SHRs 

took less time to complete individual responses (δ) than the WKYs. As in Epoch 1, 

HL(w) was significantly different between strains, but the calculated half-lives (medians 

for SHRs  = 8,090 min, WKYs = 314 min) indicated that the within-bout response rate 

did not change appreciably during sessions within Epoch 2. 

 In EXT, a significant difference between strains was only observed for b0, indicating 

that the SHRs emitted more bouts at the onset of EXT than the WKYs.  

  In Figure 6-1, the response rates predicted from the estimated DBERM 

parameters (see DBERM Simulation in Methods) are overlaid on the observed response 

rates. The predicted response rates closely tracked the changes in response rates observed 

during Epoch 1, Epoch 2, and EXT, thus validating DBERM parameter estimates as 

reasonable descriptions of the performance of the SHRs and WKYs. 

 The BHA reached convergence, an indication that sufficient parameter samples were 

collected, after 30,000, 18,500, and 21,000 MCMC samples were collected for Epoch 1, 

Epoch 2, and EXT, respectively. 
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Figure 6-2. Experiment 1 – DBERM parameter estimates for Epoch 1, Epoch 2, and EXT 

for SHRs and WKYs. Asterisks (*) indicate significant differences between groups, as 

determined by the posterior distribution of differences (see Bayesian Hierarchical 

Modeling section of the Methods).  Error bars represent the 95% credible intervals. 
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Discussion Experiment 1 

  Experiment 1 was a replication and extension of the findings of Hill et al. (2012) 

and Brackney et al. (2012). Whereas the SHRs and WKYs in those previous studies were 

trained on multiple variable interval schedules that changed reinforcement rates 

throughout the session, the subjects in this experiment received prolonged training on 

only a single VI 120 s.  

  During Epoch 1, no difference in response rates was observed between strains, 

similar to Hill et al. (2012). Despite the overall response rate differences, the SHRs 

engaged in more frequent bouts that were both shorter and faster than the WKYs, also 

similar to the findings of Hill et al. (2012).   

  During Epoch 2, SHRs had greater response rates than WKYs, again replicating 

Hill et al. (2012). An examination of response bout parameters revealed that SHRs 

engaged in more frequent bouts than the WKYs, which was also found in Hill et al. 

(2012). However, in Hill et al. (2012), the SHRs also had systematically shorter bouts, 

which was not replicated here. Regardless of the differences in bout lengths between the 

two studies, the SHRs still demonstrated greater operant hyperactivity, as evidenced by 

the increased response rate, which was most likely due to an overall increase in bout 

initiations.  

  During EXT of the present study, the SHRs engaged in more frequent bouts at the 

start of EXT, similar to the results of Brackney et al. (2012). However, in that previous 

study, bout lengths declined faster for the WKYs than for the SHRs, which was not 

replicated here. 
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  Multiple factors may have contributed to the differences between the past and 

present experiments. First, the rats in Hill et al. (2012) and Brackney et al. (2012) had 

been trained on multiple VI schedules that alternated within each session. In contrast, 

subjects in the present experiment were trained on a single VI schedule. Second, the 

response-bout model used in Hill et al. (2012) included neither the dynamic nor the 

ancillary parameters of DBERM, which allow a much more accurate characterization of 

response bouts. Third, Hill et al. (2012) and Brackney et al. (2012) only had six subjects 

per strain, making inferences on population parameters more susceptible to potential 

outliers. Fourth, Hill et al. (2012) fit their model to each subject individually using 

maximum likelihood estimations. In contrast, the current study and Brackney et al. 

(2012) used a Bayesian Hierarchical framework, which uses information from all subjects 

to estimate each individual subjects parameters, and further reduces the effect of potential 

outliers.  

Experiment 2 

  Experiment 1 found that in Epoch 1, SHRs, compared to the WKYs, engaged in 

more frequent and shorter bouts that contained more responses. In Epoch 2, the SHRs, 

compared to the WKYs, engaged in more frequent response bouts and took less time to 

emit individual responses (the refractory period) than the WKYs. Chapter 5 found that 

increasing the minimum duration for an effective lever press (i.e., increasing the effective 

refractory period), decreased the frequency of bouts and the within-bout response rate, 

and increased the length of bouts. Similarly, Brackney et al. (2011) found that the 

frequency of bouts could be reduced and the refractory period increased by increasing the 

work required to lever press. To the extent that these findings generalize to the SHRs 
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performance, increasing the response duration requirement of the SHRs should 

effectively attenuate their observed operant hyperactivity: it should reduce the frequency 

of response bouts and increase their length, yielding a reduced overall response rate. 

  Experiment 2 trained three groups of rats (two SHR groups and one WKY group) 

to lever press on a VI schedule, similar to Experiment 1. Lever presses for one group of 

SHRs (SHR-EXP) were required to be 0.8 s or longer in order to earn reinforcement. The 

second group of SHRs were trained to lever press as normal, without a duration 

requirement (SHR-CTR). Differences in performance between SHR groups reflected the 

effect of response-duration requirement. The WKYs were also trained to lever press as 

normal (WKY-CTR). This group served as reference: response-duration effects were 

expected to change SHR bout parameters in the direction of WKY bout parameters. 

Method Experiment 2 

Subjects and Apparatus. 

  Thirty-two SHR (Charles River Laboratories, US) and 16 WKY (Harlan 

Laboratories, US) rats were procured for Experiment 2. All rats were male and 

experimentally naïve. They were treated identically to the subjects in Experiment 1, 

except when noted otherwise. The experiment was conducted in 16 operant chambers 

whose assignment was counterbalanced across groups. The chambers were identical to 

those used in Experiment 1. 
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Procedure 

  Subjects were trained to respond on a VI 120 s, as in Experiment 1. In addition, 

each lever press was signaled by a 0.5 s flash of three LED lights positioned on the wall 2 

cm above the lever.   

  On PND 55, subjects were assigned to their experimental conditions. Sixteen 

SHRs were assigned to the 0.8-s response duration treatment condition (SHR-EXP). In 

that condition, a response was only signaled once the lever had been depressed for 0.8 s. 

Only signaled lever presses could trigger reinforcement.  

  The WKYs and the remaining SHRs continued to train on the VI 120 s without 

any change in experimental contingencies, i.e., a lever press was signaled when a lever 

depression exceeded 0.0 s. Henceforth, this will be referred to as the CTR condition. In 

this manner, subjects were organized in 3 groups of n = 16 each: WKY-CTR, SHR-CTR, 

and SHR-EXP. 

SHRs were assigned to their groups by assessing their individual response rates 

for the last five days prior to PND 55. SHRs were sorted into two groups so that the mean 

and standard deviation of response rates for both groups was approximately equal. 

Data Analysis 

  To mirror the analysis in Experiment 1, responses were analyzed on PND 74-78. 

The earlier epoch (PND 49-53) was not analyzed because it occurred before subjects 

were assigned to their experimental conditions. Median response rates, reinforcement 

rates, response durations, and interquartile ranges (IQRs) of response durations were 
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measured for individual subjects. Between-group differences in these measures were 

assessed using ANOVAs conducted in IBM SPSS v22 (Armonk, NY: IBM Corp). 

  For rats in the EXP condition, only responses that met or exceeded the duration 

threshold were analyzed.  The BHA was conducted using identical methods as 

Experiment 1, except where stated otherwise in the results. 

 

Figure 6-3. Experiment 2 – Group mean of the individual median response rates for 

WKY-CTL, SHR-CTL, and SHR-EXP during PND 74-78.  Error bars represent the 

standard error of the mean. For comparison with the simulations, sessions were divided 

into 5 min bins over which response rates were calculated, although ANOVAs were 

conducted on the medians calculated over the entire session. Simulated response rates are 

generated from repeated sampling of DGERM. 

Results Experiment 2 

Response and Reinforcement Rate 

  Figure 6-3 shows the mean (+/- SEM) of the individual log median response rates 

for each group, divided into 5-min bins. The SHR-EXP group responded at significantly 



 144   

 

 

lower rates than the SHR-CTR and WKY-CTR groups, F (2, 45) = 44.18, p <.001. 

Reinforcement rate did not differ significantly between groups.  

Response Durations 

Figure 6-4 shows the mean (± SEM) median and IQR of response durations. Both 

duration medians and IQRs were greater for SHR-EXP, but there was no significant 

difference between WKY-CTR and SHR-CTR [median duration: F (2, 45) = 68.30, p 

<.001; IQR: F (2, 45) = 46.37, p <.001]. 

 

Figure 6-4. Experiment 2 –  Group mean of the individual median durations and 

interquartile ranges (IQR) for WKY-CTL, SHR-CTL, and SHR-EXP during PND 74-78.  

Asterisks (*) indicate significant difference (p < 0.05) between groups. Error bars 

represent the standard error of the mean. 

Model Parameters  

  The IRTs of each group were initially fit to DBERM, as in Experiment 1. Figure 

6-5 shows the median and 95% credible intervals (CI) of the baseline parameters, their 

half-lives, and the ancillary parameters of each group. The study was concerned with two 
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primary comparisons. First, parameter estimates from the SHR-CTR and WKY-CTR 

groups were compared to ensure replication of Experiment 1. Second, parameter 

estimates from the SHR-CTR and SHR-EXP groups were compared to verify whether the 

response-duration requirement reversed the effects of strain. 

 

Figure 6-5. Experiment 2 – DBERM parameter estimates for WKY-CTR , SHR-CTR, 

and SHR-EXP. Asterisks (*) indicate significant differences between groups, as 

determined by the posterior distribution of differences. Error bars represent the 95% 

credible intervals. 
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  A comparison of SHR-CTR vs. WKY-CTR generally replicated the findings of 

Experiment 1 (Epoch 2). Significant differences between SHR-CTR and WKY-CTR 

were again observed in b0, δ, and HL(w), in addition to a significance difference in 

HL(L). The SHR-CTR group engaged in more bouts (b0) than the WKY-CTR group, and 

the SHR-CTR had a lower refractory period (δ) than the WKY-CTR group. Whereas 

significant differences in half-lives of both L and w were observed, the half-lives were 

again generally too long (medians > 500 min) to have an appreciable effect on 

responding.  

  A comparison of SHR-CTR vs. SHR-EXP indicated a significance difference in 

L0, w0, b0, δ, HL(L), and HL(w). When the SHRs were required to depress the lever for 

0.8 s, the estimated initial bout length (L0) increased by 10,000 fold, indicating that more 

than 99.99% of responses were “within-bout” according Equations 6-2 and 6-3. Although 

estimates of HL(L) were considerably lower, the high initial values meant that by the 

half-life, more than 99.99% of response were still within bout. 

  As an additional check to ensure that DBERM was an appropriate model for the 

IRTs in Experiment 2, IRT histograms were visually examined for each group (Figure 6-

6). The IRTs of SHR-CTR and WKY-CTR appeared approximately bi exponential, as 

suggested by a general monotonic decrease in the probability of IRTs with a negative 

concave slope and a long right-ward tail. In contrast, the frequency of IRTs in the SHR-

EXP group had a single distinct mode appreciably greater than zero, indicating that the 

IRTs were not bi exponentially distributed.   
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  Smith and colleagues (T. T. Smith et al., 2014) demonstrated that for some IRT 

distributions with multiple modes greater than 0 s, a mixture of gamma distributions can 

adequately account for the data. Given that SHR-EXP’s IRTs contained only a single 

mode within the range of what could reasonably be expected to be that of within-bout 

IRTs, the following model was postulated: 

Pr(𝐼𝑅𝑇𝑡 =  𝜏 | 𝜏 ≥ 𝛿) = 𝑝𝑡Γ(𝜏; 𝑘, θ) + (1 − 𝑝𝑡)𝑏𝑡𝑒−𝑏𝑡(𝜏−𝛿)  

 min (IRT) ≥  δ > 0; 1/(kθ) ≥ bt > 0; θ > 0; k  ≥ 1; 1 ≥ pt ≥ 0 (6-5). 

Henceforth, Equation 6-5 will be referred to as the dynamic gamma exponential 

refractory model (DGERM). DGERM is a modification of Equation 6-1, wherein the 

between-bout IRTs are described using an identical form to DBERM (Equations 6-1, 6-2, 

and 6-3), but the exponential distribution of within-bout IRTs has been replaced with a 

gamma distribution. In Equation 6-5, Γ is the gamma probability density function with 

shape parameter k and scale parameter θ. Note that Γ is not the bout length decay 

parameter, γ. When k = 1, the gamma distribution reduces to an exponential distribution 

with a rate parameter of 1/θ.    

  In comparison to DBERM, DGERM does not contain a within-bout response rate 

decay (α in Equation 6-2) or a shift in the distribution of within-bout IRTs by δ. The 

parameter α was excluded because previous estimates were considered to have a 

negligible effect on the distribution of IRTs, and because the parameterization of within-

bout response rate decay for a gamma distribution has yet to be determined. The 

parameter δ was excluded from the within-bout distribution calculations because the 

probability of an IRT = 0 s is zero when k > 1. When a the refractory period, δ, is 
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subtracted from an observed IRT, τ, then τ – δ may equal 0. When this occurs, the log-

likelihood of any gamma model with k > 1 becomes negative infinity, and all IRTs = δ 

are estimated to be impossible to observe, which is clearly not the case.   

To compare the response-bout parameters of the SHR-EXP group against SHR-CTR, 

Equation 6-5 was fit to the IRTs of all three groups using BHA in a manner otherwise 

identical to the DBERM fits. The BHA reached convergence after 31,497 samples for 

DBERM, and 12,000 samples for DGERM. 

  Figure 6-7 shows the new DGERM parameter estimates. The mean within-bout 

IRT estimated by the gamma distribution is kθ, meaning that the within-bout response 

rate is 1/ kθ. However, the within-bout IRTs in DGERM are not shifted by δ, as they are 

in DBERM. In order to calculate a post-hoc within-bout responses rate (wΓ) that is more 

comparable with DBERM’s, the estimated DGERM mean within-bout IRT (kθ) was 

shifted by δ: 

𝑤Γ =  
1

𝑘𝜃−𝛿
.           (6-6) 

  Using DGERM, SHR-CTR had significantly shorter estimates of δ than WKY-

CTR. Estimates of HL(L) were also significantly greater for SHR-CTR than WKY-CTR, 

but not meaningfully so, as the mean bout length declined over the course of the session 

by less than 0.1 responses per bout in both groups.  

  In contrast, significant differences between SHR-CTR and SHR-EXP were found 

between all DGERM parameters, except L0. SHR-EXP demonstrated both slower initial 

bout initiation rates (b0) and within-bout response rates (wΓ). Notably, estimates of wΓ are 

approximately equal to estimates of w0 for DBERM. Although significant treatment 
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effects were not observed on estimates of L0, these estimates for the SHR-EXP group 

decreased from an excess of 1,000 responses in DBERM to a more reasonable median of 

1.8 responses in DGERM.  

 

Figure 6-6. Experiment 2 – Histograms of mean IRTs and individual-examples for WKY-

CTR, SHR-CTR, and SHR-EXP. Bin size = 0.5 s. The IRT distributions for WKY-CTR 

and SHR-CTR groups appear generally consistent with a bi-exponential distribution as 

evidenced by the left-most mode and negatively accelerating decrease in longer IRTs. 

Although some of the CTL animals appear to have short modes > 0, this is primarily 

because the displayed IRTs are not shifted by the refractory period. In contrast, the IRTs 

of SHR-EXP are non-monotonic, suggesting that an alternative model such as DGERM 

may be more appropriate. 
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Figure 6-7. Experiment 2 - DGERM parameter estimates for WKY-CTL, SHR-EXP, 

SHR-EXP. Asterisks (*) indicate significant differences between groups, as determined 

by the posterior distribution of mean differences. Error bars represent the 95% credible 

intervals. The HL(w) is absent because the w decay parameter was not part of the 

DGERM.  
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  Bout-length half lives [HL(L)] were also shorter for the SHR-EXP group, with 

median half-lives at approximately 10 min for the SHR-EXP group, in comparison to 

4682 min for the SHR-CTR group. Conversely, the median half-life of the bout initiation 

rate [HL(b)] was 3.4 min for SHR-CTR group, compared to 39 min for the SHR-EXP 

group, indicating that bout initiation rates decreased more rapidly for the SHR-CTR 

group. The asymptotic response rate (Ω), was also lower for the SHR-EXP group than the 

SHR-CTR group. 

In Figure 6-3, the response rates predicted from the estimated DGERM 

parameters are overlaid on the observed response rates. The predicted response rates were 

generated using Monte Carlo simulations, as in Experiment 1, but within-bout IRTs were 

sampled from a gamma instead of exponential distribution in accordance with Figure 6-5. 

The predicted response rates closely tracked the changes in response rates observed for 

each group for all but the final bin.8  

Discussion Experiment 2 

 Experiment 2 asked whether the operant hyperactivity of the SHRs could be 

reduced by imposing a duration requirement upon their operant responding. To examine 

this question, one group of SHRs (SHR-CTR) and one group of WKYs (WKY-CTR) 

were trained to respond typically on a VI schedule, while a third group of SHRs (SHR-

EXP) were trained to depress the lever for 0.8 s or more in order to earn reinforcement on 

the same VI schedule. Experiment 2 was designed for two critical comparisons: WKY-

                                                 
8 Notably similar, if smaller, deviation occurred in Epoch 2 of Experiment 1 as well, but not in Epoch 1 or 

EXT. Similarly, the WKYs in Chapter 3 (Figure 3-1) showed low bin 8 deviations from the predicted 

response rates in some phases, but the LE rats did not. In all cases, response rates were calculated in the 

same way, suggesting that the unpredicted response rate drops in bin 8 may be unique to older SHRs and 

WKYs.  
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CTR vs SHR-CTR to ensure replication of Experiment 1; and SHR-CTR vs SHR-EXP to 

test the effect of the duration requirement.  

 Figure 6-3 shows that without a response-duration requirement, SHRs emitted 

higher rates of responding than WKYs, and that the duration requirement reduced the 

response rates in SHRs. But how do the underlying response bouts differ between strains 

and change due to duration requirements? Table 1 summarizes the effects of strain 

(Experiments 1 and 2) and duration requirement (Experiments 1 and 2) on the parameters 

of response bouts. Each column displays the direction of the observed difference between 

the typically-trained SHRs (the SHR group in Experiment 1, and the SHR-CTR group in 

Experiment 2) and the comparison group (WKY group for Experiment 1, WKY-CTR or 

SHR-EXP groups for Experiment 2). To the extent that the duration requirement 

decreased operant hyperactivity in SHR, it was expected that differences in response-bout 

parameter estimates between SHR-CTR and WKY-CTR would be reduced or reversed by 

the response duration requirement (SHR-CTR vs. SHR-EXP). 

Experiment 2 generally replicated the findings of Experiment 1, Epoch 2. When 

DBERM parameter estimates are compared between the SHR-CTR and WKY-CTR 

groups, significant differences in the same direction are observed for all parameters, with 

a single exception. In Experiment 2, HL(L), was larger for the SHRs, but not in 

Experiment 1. However, the estimated HL(L) for both groups in Experiment 2 represents 

a negligible change in bout lengths over the course of the session, indicating that 

although there was a statistical difference, it was not meaningful.  
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Comparisons of SHR-EXP and SHR-CTR parameters are, on the surface, less 

straightforward, but can be easily be addressed. Because the distribution of IRTs for 

SHR-EXP were clearly non-monotonic (Figure 6-6, right panel), DGERM and DBERM 

were fit to the IRTs of all groups. This raises the question: which model should be used 

for comparison between groups? An examination of Table 6-1 renders this concern 

somewhat moot however, as fits of both models suggest similar differences in parameter 

estimates. When a significant difference in parameters were not replicated between 

models, non-significant trends in the same direction were still observed with only one 

exception. With DGERM, HL(b) was significantly smaller for SHR-CTR than SHR-

EXP, but DBERM indicated a positive, though non-significant increase in HL(b). In 

general, the effect in HL(b), across models and conditions was equivocal (see also 

Brackney et al. 2012), suggesting that the primary effects of both duration requirements 

and strain are tied to other parameters. 

Table 6-1 reveals that the directional effect of strain on response-bout parameters 

closely mirrors the effect of response duration requirements, regardless of whether 

DBERM or DGERM is used. When a significant difference in a parameter was identified, 

it was never inconsistent with a significant difference in the same parameter in another 

column of the table. When significant effects are not replicated within a table row, there 

was still generally a non-significant trend in the same direction, with few exceptions. 

Combined, these results support the hypothesis of Experiment 2: imposing a 

duration requirement reduces operant hyperactivity in the SHRs. The duration 

requirement lowered response rates in the SHR-EXP group, just as the WKY-CTR group 

showed lower response rates than the SHR-CTR group. In both cases, slower response 
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rates appear to be caused by a change a reduction in bout initiation rates, although 

transient reductions in within-bout responses, asymptotic response rates, and increases in 

bout-lengths were also inferred. 

Table 6-1.  

Relative parameter differences between conditions.  

 

Relative to WKY 

(strain effect)  

Relative to SHR-EXP 

(duration effect) 

Param. 
Exp. 1 

Epoch 1 

Exp. 1. 

Epoch 2 

Exp. 2 

DBERM 

Exp. 2 

DGERM 
 

Exp. 2 

DBERM 

Exp. 2 

DGERM 

L0 - * + - -  -* - 

w0 or wΓ +* + - +  +* +* 

b0 +* +* +* +  +* +* 

δ = -* -* -*  -* +* 

HL(L) + = +* +*  +* +* 

HL(w) +* +* +*   +*  

HL(b) -* - - +  + -* 

Ω +* + + +  + +* 

Notes. The left portion of the table displays the differences between the typically trained 

SHRs (SHR in Experiment 1, SHR-CTR in Experiment 2) relative to WKYs (WKY in 

Experiment 1, WKY-CTR in Experiment 2) and the right portion displays the differences 

between typically trained SHRs (SHR-CTR) relative to SHR-EXP. The symbols indicate 

that the median parameter estimate for the typically trained SHRs (SHR group in 

Experiment 1, SHR-CTR group in Experiment 2) was greater (+) or lower (-) than the 

comparison group (either WKY-CTR or SHR-CTR). *Significant difference between the 

groups. For Experiment 2, parameter estimates for both DBERM and DGERM were 

compared. No HL(w) differences are indicated for DGERM columns because within-bout 

response rate was not permitted to decay in DGERM. The (=) indicates the difference 

between the estimates was not significant and was smaller than 1%. To the extent that 

strain effects were consistent across epochs, experiments, and models, symbols should be 

the same within rows under “Relative to WKY” column. To the extent that the response-

duration effect reversed the effect of strain, symbols should be the same within rows 

under all columns. 

General Discussion 

 SHRs have been generally reported to be more active than WKYs (Sagvolden, 

Hendley, & Knardahl, 1992; Sagvolden, Metzger, et al., 1992), including in operant tasks 

(Brackney et al., 2012; Hill et al., 2012; Johansen & Sagvolden, 2005a; Orduña, García, 
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& Hong, 2010). The primary goal of the current experiments was to characterize the 

underlying source of these performance differences, and develop a means to ameliorate 

them.  

Experiment 1: Maintenance Differences Between SHRs and WKYs  

Both experiments in the present study provide evidence consistent with the notion 

that SHRs display operant hyperactivity (heightened responding at low rates of 

reinforcement) during young adulthood (Epoch 2: PND 74-78) but not earlier (Epoch 1: 

PND 49-53). These findings are consistent with those of Hill et al. (2012) and Williams 

and colleagues (Williams, Sagvolden, Taylor, & Sagvolden, 2009a, 2009b). Also 

consistent with Hill et al. (2012), the response bouts of SHRs in early adulthood (Epoch 

1) were shorter but more frequent compared to WKYs. In this study and in Hill et al. 

(2012), increased bout initiation rates of the SHR persisted into later adulthood. 

However, in Hill et al. (2012), SHRs in later adulthood demonstrated short bout lengths, 

whereas only non-significant trends in that direction were found in the present study 

(Experiment 2). The present study also revealed that that the minimum time it takes to 

complete a response and start a new one (the refractory period) is shorter for the SHR 

than for the WKY during later adulthood. 

The differences between Hill et al. (2012) and the present results are likely due to 

the differences in schedule design (multiple schedules in Hill et al., a simple schedule in 

the present study), and the analytic approach that takes into consideration the within-

session decline in responding during maintenance. Hill and colleagues (Hill et al., 2012) 

applied a static bi-exponential model to the IRTs and compared parameter point-

estimates. In contrast, this study used models that could account for dynamic changes in 
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the baseline bout parameters over the course of the session, and applied a BHA 

framework that accounts for variability in parameter likelihoods across subjects, 

diminishing the effects of potential outliers and allowing for more robust between-group 

comparisons (Cheung et al., 2012).  

Experiment 1: Extinction Differences Between SHRs and WKYs 

Previously, Brackney et al. (2012) found that differences in response rates during 

extinction between SHRs and WKYs were primarily due to SHRs emitting bouts (a) at a 

higher rate at the onset of extinction, and (b) whose length persisted longer over 

extinction training. This study replicated the first effect, and showed a weaker strain 

effect in the same direction as the second effect. Because Brackney et al. (2012) used 

same model and model-fitting methods as those used in the current study, the 

discrepancies between the studies are most likely due to the experimental history of the 

rats. Whereas the rats in the present study were trained on a simple VI schedule before 

extinction, the rats in Brackney et al. (2012) were trained on the multiple-schedule design 

described in Hill et al. (2012).  

Experiment 2: Effects of Minimum-Duration Requirement on SHR Performance 

Based on prior research (Chapter 4), and the observation the SHRs have shorter 

refractory periods, we hypothesized that requiring longer responses from the SHRs may 

result in performance that was more similar to the performance of the WKYs. In 

particular, it was expected that longer responses would yield fewer response bouts with 

more responses in each bout, thus reversing the purported source of operant hyperactivity 

in SHR. 
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Overall, the present data are consistent with the study’s hypothesis. Longer 

response-duration requirements reduced bout initiation rates and increased the length of 

bouts in SHRs. In addition, the increased response-duration requirement changed the 

shape of the IRT distribution. It appears that, partially consistent with Smith et al. (2014), 

a gamma distribution may provide a more general characterization of within-bout IRTs, 

particularly when responses take longer to complete.  

Implications for ADHD 

The refractory period, which has been suggested as an index of motoric capacity 

(Brackney et al., 2011), was shorter in SHRs than WKYs. The present results are 

consistent with the notion that operant hyperactivity in SHRs stems, at least partially, 

from a motoric ability of SHRs to produce responses at very high rates. Notably, 

however, neither the median response durations nor the IQRs differ across strains, 

suggesting that the motoric differences in response generation are only observable when 

examining the fastest responses the rats are capable of producing.  

Sagvolden and colleagues (Johansen et al., 2007; Sagvolden et al., 2005) have 

also suggested that the hyperactivity of SHRs stems in part from an inability to learn 

responses that are temporally distant from the reinforcer. This hypothesis is consistent 

with the observation that SHRs produce shorter bouts: for SHRs, the time between each 

response that initiates a long bout and the next reinforcer may be too long for the latter to 

strengthen the former, thus selecting only for short bouts (Hill et al., 2012). By requiring 

individual responses to take longer (Experiment 2), bout initiations become more 

temporally distant from their reinforcer, and operant hyperactivity may be reduced as the 

association between hyperactive responses and their appetitive outcomes is decreased. 
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However, why response-duration requirements increase bout lengths (see also Chapter 4), 

still requires investigation. Longer responses may be more memorable, increasing their 

sensitivity to reinforcement (Killeen & Pellón, 2013; Thomas, Lieberman, McIntosh, & 

Ronaldson, 1983), although this hypothesis has yet to be tested.  
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CHAPTER 7  

GENERAL DISCUSSION 

Bout Initiations and Motivation 

In Chapter 2, rats that normally had ad libitum food access were placed on acute 

food restriction, and only bout-initiation rates increased. In Chapter 3, rats that normally 

were food restricted were given ad libitum food access, and bout initiation rates 

decreased. These results are notably similar to those of some discrete-trial preparations, 

such as the fixed minimum interval (Mechner & Guevrekian, 1962; Watterson et al., 

2015), demonstrating that the latency to start a timing task (perhaps analogous to the bout 

initiation) is sensitive to changes in food and water deprivation, but responding on the 

task (perhaps analogous to within-bout responding) is not. However, these general effects 

are reversed when rats are trained on a heterogeneous response chain between two 

operandums (e.g., a lever press, then a nose poke). There, food deprivation increases the 

probability to respond on the second action in the response chain, but not the first action 

(Balleine, Garner, Gonzalez, & Dickinson, 1995). In contrast, Pavlovian instrumental 

transfer increases the probability to respond on the first action in a chain, but not the 

second action (Corbit & Balleine, 2003). Disentangling the differential effects of 

different forms of motivation on responding will require a close look at these ostensibly 

similar tasks with disparate findings. The first step may be to examine how Pavlovian 

instrumental transfer, commonly believed to affect incentive motivation, alters response 

bouts.  

In Chapter 2, bout initiations are interpreted as an index of motivation. However, 

throughout this dissertation, bout-initiation rates changed due to almost all manipulations, 
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indicating that either motivation is changing in all cases or that altered bout-initiation 

rates reflect a more general effect.  

Multiple researchers have suggested that sequences of responses may acquire 

behavioral unit-like properties (Bachá-Méndez et al., 2007; Schwartz, 1981; Shimp, 

1982; Shull et al., 2001; Shull, 2011; Terrace, 1991). If bouts were the units of behavior 

emitted by the organism, any perturbation to behavior would be expected to affect the 

probability of the whole bout (bout-initiation rate) regardless of the cause. With only a 

single exception, this was observed for all the manipulations described in Chapters 2-5. 

The debate about the existence of theoretical units of behavior (Bachá-Méndez et al., 

2007; Graybiel, 1998; Schwartz, 1981; Shull, 2011; Thompson & Zeiler, 1986) and their 

role in response-bout formations will not be solved exclusively with the data in this 

dissertation, but they do suggest that the rats learns a behavioral pattern that extends 

beyond individual lever presses.  

Motoric Indices, the Refractory Period, and Response Durations 

In Chapter 2, the refractory period (δ) was introduced as a novel response-bout 

parameter. Across all experimental manipulations, the refractory period only changed 

when the required lever force and lever height was increased (Chapter 2, though see 

Chapter 3), suggesting that it is an appropriate index of the motoric constraints of the 

organism. However, this interpretation comes with caveats. The refractory period 

represents the amount of time it takes the animal to complete a response and reassert their 

position in space enough to initiate a new response. It is estimated as a static point for any 

set of IRTs, but Figure 4-3 shows that response durations are variable. This suggests that 

refractory periods may also be variable, and if so, the current DBERM parameterization 
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will require improvement. Future bout-modeling research may attempt to explain IRT 

variability as a function of both the variable duration of the response and the variable 

time between the completion of the response and the initiation of the next response. More 

precise accounting of response durations in DBERM may then provide a better index of 

motoric challenges than a static refractory period.  

Response Requirements and Contingencies of Reinforcement 

 Three distinct response requirements were manipulated in this dissertation: (a) the 

number of responses required after the end of a variable interval (Chapters 2 and 5); (b) 

the response duration required (Chapters 4 and 6); and (c) the lever force and lever 

height, or response effort (Chapter 2). Whereas explicit motivational manipulations only 

changed the bout initiation rate, response requirement manipulations changed the bout 

lengths, within-in bout response rate, and/or the refractory period.  Combined, these 

results suggest that while bout initiations reflect the general probability of the reinforced 

behavior pattern, the bout lengths, within-bout response rates, and refractory periods 

reflect the behavioral pattern selected for by reinforcement.  

This interpretation is further supported by the bout-length distributions in Chapter 

5. Using a novel method, the chapter showed that bout lengths are sensitive to varying 

response requirements within the same session. As the proportion of trials that require 1 

response after the end of the variable interval vary relative to the proportion of trials that 

require 5 responses after the end of the variable interval, so do the proportion of short and 

long bouts.  



 162   

 

 

Future research might replicate the findings of Chapter 5 using additional 

methods. Although the analytic techniques implemented in Chapter 5 are superior to 

more traditional methods, such as the IRT cutoff, it still relies on multiple models and 

simulations, each of which carries its own assumptions. A two-lever preparation in which 

bouts are initiated on one lever and terminated on a second lever may provide an 

empirical method of determining bout lengths, instead of inferring them from a model’s 

IRT distributions. However, the extent to which bouts produced by two levers reflect the 

same behavioral processes as bouts on a single lever will require investigation. 

Breaking the Response-Reinforcer Contingency 

How response bouts change during extinction and non-contingent reinforcement 

was investigated in Chapters 2 and 3. The dynamic parameters (γ, α, β; Equation 2-3) 

were first introduced in Chapter 2 to allow the average bout length, within-bout response 

rate, and bout-initiation rate to decay over the course of the session.  

In Chapters 2 and 3, bout initiation rate decay was found to increase during 

extinction, indicating that extinction is primarily due to a gradual reduction in bout 

frequency. In contrast, non-contingent reinforcement increased bout-length decay, 

possibly due to the interruption of the response bout and reinforcement of competing 

behaviors. These findings support the notion that extinction leaves behavior relatively 

intact in the animal’s repertoire (Bouton, 2004; Winterbauer & Bouton, 2011), and 

provides a possible explanation for why non-contingent and/or alternative reinforcement 

may more effectively eliminate a target behavior than extinction alone (Cooper, Heron, & 

Heward, 2007; Zeiler, 1971) 
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DBERM Assumptions and Alternative Models 

In Chapter 2, BERM (Equation 2-1) was first introduced, and the hypothetical 

process that underlies BERM’s assumptions are illustrated in Figure 2-1. It later became 

obvious that the process described in Figure 2-1 was not necessarily accurate. Although 

that process produces IRTs that are perfectly described by BERM, the assumption that a 

single Bernoulli trial (as implicated by the center, diamond node) decides whether the 

next IRT is within or between bouts is not an explicit assumption of any mixture model. 

Chapter 5 revealed this error quite clearly, when it was found that bout-length 

distributions were not always geometric. Although Figure 2-1 is based on an inaccurate 

assumption, it had no impact on actual parameter estimation. 

Beginning in Chapter 5, and again in Chapter 6, an alternative model in which one 

or both of the exponential distributions in the mixture model were replaced with a 

gamma distribution. The model provides a good account of IRT distributions that have 

modes greater than the minimum IRT, but integrating the decay components and/or the 

refractory period of DBERM with a gamma-based model is problematic (Chapter 6). 

Future research may investigate how to incorporate these unique aspects of DBERM 

with the more flexible gamma-based models.  

SHRs and the Bayesian Hierarchical Estimation 

In Chapter 6, the BHA method of estimating DBERM parameters is introduced, 

which provides multiple advantages over maximum likelihood point estimation. BHA 

simultaneously uses information at both the individual and group levels to fit model 

parameters. By generating distributions of parameter estimates instead of single points, it 

becomes possible to conduct between-group comparisons while taking into account the 
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inherent uncertainty of parameter estimates (Gelman, 2004). Although BHA is a 

powerful model estimation technique, complicated models such as DBERM are 

computationally expensive to fit and require the development of custom-built modeling 

programs. Future research may extend the experimental manipulations of Chapters 2-5 

using BHA. 

Conclusions 

This dissertation demonstrated the sensitivity of IRT distributions to a variety of 

perturbations and challenges. Combined, these data lead to two primary conclusions. 

First, lever presses are organized into bouts, and the frequency of bout initiations reflect 

the overall probability of behavior. Second, bout lengths, within-bout responses rates, 

refractory periods, and response durations reflect the specific behavior patterns selected 

for by the contingencies of reinforcement.  

The prototypical measure of behavioral probability in operant research is response 

rates (Killeen & Hall, 2001; Skinner, 1966). In every experiment in this dissertation, 

except one (NCR; Chapter 3), changes in overall response rate were found to be 

concordant with similar changes in bout initiation rates. Furthermore, manipulations that 

could reasonably be postulated to only change the general probability of behavior, such as 

changing motivation or extinction, only reliably changed bout initiations rates. These 

findings are consistent with prior research that indicate that the matching  of response 

rates to their reinforcement rates (Baum, 1974; Herrnstein, 1961) can be explained 

primarily by bout initiation rates (Shull, 2011). Combined, these multiple lines of 

evidence suggest that common overall changes in behavior probability are specifically 

due to changes in the probability of bouts, but not responding within a bout.  
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 Manipulations that changed the requirements to earn reinforcement (changes in 

response count/force/height/duration) caused specific changes in bout lengths, within-

bout response rates, and refractory periods. When the required number of responses 

increased, bout lengths and within-bout response rates increased. When the lever was 

made more difficult to press, the refractory period lengthened. When the response 

duration requirement was increased, bout lengths grew longer and within-bout response 

rates decreased. When the contingencies of reinforcement were varied to select for a 

mixture of short and long bouts, the proportion of long bouts increased as reinforcement 

for more responses increased. In concert, these findings reveal how different 

contingencies of reinforcement select for different patterns of responding, and suggest 

that response bouts may better reflect the learned behavior of the rat than the simple 

frequency of individual lever presses. 

 Chapters 2-6 provided multiple lines of evidence leading to these conclusions, but 

as with any scientific endeavor, new questions spring forth as old ones are answered. If 

response bouts are selected for by the contingencies of reinforcement, why are the within-

bout IRTs and bout-lengths so variable from bout-to-bout? To the operant researcher 

accustomed to counting discrete lever presses, the dynamic, moment-to-moment changes 

in response bouts may be disconcerting. However, the static nature of the lever press is an 

illusion perpetrated by our standard measurement procedures. As Figure 4-2 illustrates, a 

closer look at differences between individual responses reveals their variability. 

Skinner (1935) recognized the trouble variability posed to behavioral 

classification efforts, and neatly sidestepped the need to formally account for behavioral 

variability by instead postulating that all responses that share a common reinforcer belong 
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to the same response class.  Responses were declared functionally equivalent if they 

resulted in the same consequence, regardless of their physical form. Since then, multiple 

lines of research (Amsel, 1992; Ibias et al., 2014; Killeen & Pellón, 2013; Mechner et al., 

1997; Shull, 2011; Sidman, 2000) have revealed that different types of responses may 

share the same reinforcer, while maintaining distinct functional relations with that 

reinforcer. For example, Killeen and Pellón (2013) demonstrated how different behaviors 

(e.g., lever pressing versus schedule-induced drinking) are selected by the same 

reinforcer, despite occurring at different timescales with different sensitivities to the 

reinforcement. While such studies do not invalidate the usefulness of the conceptual 

response class, they demonstrate that class-membership is controlled by more than simply 

sharing the same reinforcer, and additional membership criteria need to be discovered.   

Just as a speciated population of animals is variable between individuals, may 

change over time, and is best categorized by examining properties of the population as a 

whole, the same is true of operant responses (Skinner, 1981). To identify the population 

or class membership of an operant and locate the natural lines of fracture between 

behavioral events, behavioral variability, and how it changes, must be explained. This 

dissertation accounted for the natural variability in inter-response times (IRTs) of the 

lever-pressing rat using response-bout models. Its findings support previous studies 

(Cheung et al., 2012; Shull et al., 2001, 2004) showing that IRTs may naturally divide 

into two distinct populations, within-bout IRTs and bout-initiation IRTs, and show that 

the reinforced operant is not fixed like a unit on a yardstick, but is instead probabilistic 

and hierarchically organized (Dezfouli et al., 2014). Reinforcement affects the probability 

of bouts, as well as the pattern of activity that makes up the bout. 
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Many more questions regarding the nature of response bouts remain. For 

example, what are the conditions under which bouts occur? Operant bouts are most 

frequently studied during variable interval (VI) reinforcement. These reinforcement 

schedules allows the organism to emit many responses, while relative few of them are 

directly responsible for activating the reinforcer. Bouts within the operant chamber may 

form simply because a sequence of tightly spaced responses occurred in close proximity 

to reinforcement. A simple test of this hypothesis would be to reinforce only the terminal 

response when its follows a sufficiently long IRT (a tandem VT-differential 

reinforcement of low rates; VT-DRL). If bout-like responding does not occur under such 

a schedule, this would support the hypothesis that bouts are the result of reinforcing a 

series of short IRTs. However, the “bursting” of rats trained on simple DRL schedules 

(Doughty & Richards, 2002), despite explicit reinforcement of the opposite, suggests that 

bouts cannot be explained by accounts of IRT reinforcement alone (Peele, Casey, & 

Silberberg, 1984; Rachlin, 1978).  

Strain differences among rats may provide some clues about the origin of 

response bouts. Notably, SHRs often produce shorter bouts than WKYs, which is 

consistent with the hypothesis that SHRs have a decreased capacity to associate delayed 

responses with the reinforcer (the delay-of-reinforcement gradient hypothesis; Sagvolden, 

Johansen, Aase, & Russell, 2005). Under this hypothesis, few responses would be 

associated with the reinforcer, yielding shorter bouts. Because the bout initiating response 

is then temporally closer to the reinforcer, it would also acquire more strength, explaining 

the occurrence of more frequent bouts in the SHRs. If this hypothesis is correct, more 

memorable responses (Lieberman et al., 1979; Thomas et al., 1983) should also increase 
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the bout lengths of SHRs. This is a possible explanation for why increasing the response-

duration requirement increased bout lengths (Chapters 4 and 6). Experiments that 

increase the salience or otherwise signal the occurrence of responses prior to 

reinforcement may validate this hypothesis.  

None of these hypotheses, however, can explain why within-bout response rates 

(e.g., Chapter 3, Experiment 1) and bout lengths (e.g, Brackney, Cheung, Herbst, Hill, & 

Sanabria, 2012) extinguish in some cases, but not in others (e.g., Chapter 2). Multiple 

lines of research have suggested that operant resistance to change may be a function of 

learning to integrate multiple responses together into an action sequence chunk (Dezfouli 

et al., 2014; Fujii & Graybiel, 2003; Graybiel, 2008; Ostlund & Balleine, 2008). Under 

this hypothesis, responses early in training are each encoded separately, and mediated by 

the dorsal medial striatum (DMS; the primate caudate homolog). As training progresses, 

consecutive responses become encoded as a single action, or chunked, which is mediated 

by the dorsal lateral striatum (DLS; the homolog of the primate putamen). The 

similarities between bouts, and action sequence chunks has been noted previously 

(Dezfouli & Balleine, 2012), and may explain differences in the extinction of response 

bouts under different preparations and rat strains. If responses within a bout become 

encoded a single action pattern, they may be expected to also extinguish as a single action 

pattern, evidenced by only a reduction in bout initiation rates. In contrast, if responses 

within a bout are encoded individually, bout lengths and within-bout responses should 

also decline over the course of extinction.  

The bouts/chunking hypothesis is testable through multiple experiments. The 

formation of response bouts may be accompanied by additional physiological changes 
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associated with chunking (Fujii & Graybiel, 2003; Jin & Costa, 2010; Smith & Graybiel, 

2013; Yin & Knowlton, 2006). Lesions to the DLS, but not to the DMS, may then alter 

the distribution of bout lengths (see Chapter 5). Whereas geometrically distributed bout 

lengths (Chapter 5) may be indicative of bouts in which individual responses are encoded 

separately and each response is produced independent of the previous (in accordance with 

Figure 1-2), bouts in which sequences of responses are encoded as a group may create 

more peaked distributions of bout-lengths (in accordance with Figure 5-5). Greater 

resistance to extinction may then be observed when bouts are encoded as an integrated 

unit, as opposed to individual responses (Dezfouli & Balleine, 2012).  

From the data presented in the previous chapters, it is clear that bout analyses 

provide a powerful alternative to the simple assessment of discrete responses. 

Responding is always variable, and models that account for that variability will be more 

useful than those that treat it as unexplained noise. The next step is to explain the causes 

of that variability, to explain why bouts occur and change in some cases, but not others, 

and to describe the underlying behavioral and biological processes responsible. The 

experiments proposed in this section may take us far along that path, and reveal more 

about the nature of bouts and operant conditioning.  
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(CHAPTER 2) 
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The maximum likelihood method consists of maximizing the probability of the 

data (i.e., the joint probability of all of the observed IRTs and the observed “no-response” 

periods for each individual rat in a session) given each model, by adjusting model 

parameters. The maximized probability is known as the maximum likelihood estimate 

(MLE). The Akaike Information Criterion (AIC) is then used to select between candidate 

models (Burnham & Anderson, 2002; for examples of its use, see Avila et al., 2009; 

Killeen, Sanabria & Dolgov, 2009; Sanabria, Acosta, Killeen, Neisewander, & Bizo, 

2008; Sanabria & Killeen, 2008). The AIC for a model is computed as AIC = 2k – 

2ln(MLE), where k is the total number of free parameters, i.e., the number of parameters 

allowed to vary in the model, multiplied by the number of subjects. For example, 

Equation 4, in which q, w, b, and δ are allowed to vary freely, applied to 10 subjects, 

involves k = 4  10 = 40. The model with the lowest AIC (AICMIN) represents the best 

balance between likelihood (high MLE) and parsimony (low k). ΔAIC was computed for 

model i as ΔAICi = AICi - AICMIN. As a rule of thumb, if ΔAICi > 4 the evidence for 

model i is considered weak relative to the model with the lowest AIC (the best fitting 

model). This is because the likelihood of model i relative to the best fitting model is 

exp(ΔAICi/2) (Anderson & Burnham, 2002), and with ΔAICi > 4, it at least e2 ≈ 7 times 

more likely to observe the data using the best fitting model than using model i. Following 

this rule, the simplest model (lowest k) with ΔAICi < 4 was favored 
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PROBABILITY OF THE INTERVAL BETWEEN THE LAST RESPONSE IN A 

SESSION AND THE END OF THE SESSION (CHAPTER 2) 
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Let us assume that the animal emitted its last response of the session at time L, and 

that the session ended at time S. Then, under the assumption of the dynamic refractory bi-

exponential model, the probability that an animal emits no responses between L and S is: 

p(no response between L and S | S – L < δ ) = 1  

p(no response between L and S | S – L ≥ δ)  = (1–q)e-w(S-L–δ) 
 + qe-b(S-L–δ)         (B-1). 

For non-refractory models, fix δ at 0. For single exponential models, fix q at 1. 
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REFRACTORY BI-EXPONENTIAL MODEL PARAMETERS (CHAPTER 2) 

  



 190   

 

 

The following tables show estimates of q, δ, w, and b in separate tables. Estimates 

are shown separately for each individual rat in each experimental condition. Estimates 

were obtained for each daily session. For the VI and Tandem conditions, the mean 

estimate of the last 4 sessions is shown. 

Table C-1.  

Estimates of parameter q (probability of quitting a response bout). 

Rat 
Low workload lever High workload lever 

VI Tandem Food Dep VI Tandem Food Dep 

505 0.52 0.16 0.12 0.11 0.09 0.08 

507 0.26 0.14 0.14 0.25 0.13 0.15 

517 0.48 0.15 0.17 0.32 0.13 0.13 

519 0.43 0.24 0.20 0.73 0.14 0.14 

520 0.67 0.12 0.07 0.75 0.13 0.10 

521 0.47 0.16 0.15 0.38 0.13 0.13 

 

Table C-2.  

Estimates of parameter δ in seconds. 

Rat 
Low workload lever High workload lever 

VI Tandem Food Dep VI Tandem Food Dep 

505 0.08 0.08 0.06 0.10 0.09 0.07 

507 0.09 0.07 0.09 0.11 0.07 0.08 

517 0.08 0.08 0.08 0.06 0.13 0.16 

519 0.18 0.10 0.06 0.27 0.08 0.06 

520 0.18 0.10 0.09 0.28 0.09 0.08 

521 0.06 0.06 0.06 0.17 0.09 0.09 

 

Table C-3..  

Estimates of parameter w (within-bout response rate) in responses per second. 

Rat 
Low workload lever High workload lever 

VI Tandem Food Dep VI Tandem Food Dep 

505 2.07 3.31 3.48 2.34 4.69 3.17 

507 1.91 2.91 3.16 1.71 3.79 3.54 

517 5.31 3.11 2.59 3.14 8.60 17.13 

519 1.06 4.03 4.48 4.17 5.69 5.43 

520 1.15 3.90 3.14 2.52 3.09 3.17 

521 2.27 6.09 7.30 3.90 9.56 9.98 
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Table C-4.  

Estimates of parameter b (rate of bout initiation) in responses per second. 

Rat 
Low workload lever High workload lever 

VI Tandem Food Dep VI Tandem Food Dep 

505 0.20 0.13 0.19 0.11 0.06 0.15 

507 0.34 0.19 0.23 0.11 0.18 0.21 

517 0.17 0.08 0.24 0.12 0.06 0.09 

519 0.14 0.11 0.28 0.05 0.10 0.33 

520 0.08 0.03 0.05 0.04 0.02 0.03 

521 0.25 0.23 0.33 0.18 0.11 0.23 
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APPENDIX D   

PROBABILITY OF THE INTERVAL BETWEEN THE LAST RESPONSE IN A 

SESSION AND THE END OF THE SESSION, ACCORDING TO THE DYNAMIC 

MODEL (CHAPTER 2) 

  



 193   

 

 

Let us assume that the animal emitted its last response of the session at time L, 

and that the session ended at time S. Then, under the assumption of the dynamic 

refractory bi-exponential model, the probability that an animal emits no responses 

between L and S is: 

p(no response between L and S | S – L < δ ) = 1  

 p(no response between L and S | S – L ≥ δ) = ,   

(D-1) 

where qL, wL and bL, are calculated by substituting L into t in Equation 2-5. For non-

refractory models, fix δ at 0. For single exponential models, fix q at 1. 

  



(1 qL )e
wL (SL )  qLe

bL (SL )
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APPENDIX E   

RESPONSE RATE STABILITY ESTIMATES (CHAPTER 3) 
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To assess the stability of response bouts, each individual subjects’ session IRTs 

were fit to BERM (Equation 2-2) by maximum likelihood estimation using custom- 

written Matlab® software. For each parameter L, w and b, a simple linear regression over 

sessions was fit to estimates pooled across subjects on that day. Therefore, three linear 

regressions (one each for L, w, and b) were estimated for each moving window of five 

sessions. Fit was determined by the method of minimizing the residual sum of squares. 

AICc (Anderson and Burnham, 2002; Hurvich & Tsai 1989) was then used to assess 

whether the arithmetic mean of each BERM parameter of the past five days was a better 

fit than the linear regression. If the AICc value of the fit to the arithmetic mean was four 

or more less than the AICc value of the fit to the regression, then the past five day 

sequence of parameter estimates were judged to be stable. If the parameters L, and b, w 

were all found to be stable, a treatment condition was initiated on the following day. 
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APPENDIX F   

SELECTION OF SUPER-THRESHOLD IRTS FOR ANALYSIS (CHAPTER 4) 
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Model fits were conducted only on the IRTs between super-threshold responses to 

more accurately reflect operant performance as it is typically recorded. In most operant 

protocols, it is likely that animals regularly produce behaviors that belong to the target 

response class, but go unnoticed by the experimenter. When a discrete switch closure 

constitutes the functional response that triggers reinforcement, there may be a multitude 

of behaviors that are either adventitiously reinforced due to their temporal proximity to 

the response that triggered reinforcement (Catania, 1971; Killeen & Pellón, 2013), 

generalizations of the functional response (e.g., response that are topographically similar 

to the target, but do not meet the reinforcement criterion), or simply induced by the 

reinforcement protocol. When lever tension is tightened to increase the force needed to 

depress the lever, as in Brackney et al. (2011), the subject may continue to emit responses 

that no longer fully depress the lever and hence go unrecorded. Zarcone, Chen, and 

Fowler (2007, 2009) demonstrated this methodological challenge by programming 

reinforcement contingent upon exerting a certain force on a force-plate transducer. In 

these studies, a significant proportion of responses was below the force threshold, and 

would not have been identified with a more typical operandum. For these reasons, 

functionally ineffective sub-threshold responses were excluded from response-bout 

modeling.  
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APPENDIX G   

BERM PARAMETER ESTIMATES FOR INDIVIDUAL SUBJECTS 

 (CHAPTER 4) 
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This appendix includes the estimates of individual parameters of the bi-

exponential refractory model (BERM, Equation 4-1), for each threshold condition and 

cycle. Estimates were obtained using the method of maximum likelihood. The units for L, 

w, b, and δ are responses, responses/s, bouts/s, and s, respectively. 

Table G-1.  

Threshold = 0.0 s. 

Rat 
Cycle 1 Cycle 2 

L w b δ L w b δ 

1 10.65 2.23 0.27 0.08 3.21 2.10 0.17 0.08 

2 4.11 0.79 0.08 0.09 1.03 0.86 0.08 0.11 

3 0.88 1.75 0.14 0.08 1.35 2.25 0.08 0.09 

4 3.31 0.87 0.10 0.09 2.23 1.19 0.14 0.10 

5 1.14 1.27 0.08 0.08 3.32 0.30 0.03 0.12 

6 0.85 3.11 0.09 0.09 1.94 0.75 0.06 0.08 

7 4.18 0.44 0.06 0.09 7.82 0.19 0.03 0.10 

8 1.34 1.40 0.17 0.08 1.95 1.71 0.13 0.08 

mean 3.31 1.48 0.12 0.08 2.86 1.17 0.09 0.09 

median 2.33 1.34 0.10 0.08 2.09 1.03 0.08 0.09 

SEM 1.16 0.31 0.02 < 0.00 0.76 0.28 0.02 0.01 

 

Table G-2.  

Threshold = 0.4 s. 

Rat 
Cycle 1 Cycle 2 

L w b δ L w b δ 

1 3.33 0.82 0.14 0.47 18.80 0.15 0.04 0.48 

2 22.94 0.24 0.02 0.47 9.69 0.18 0.03 0.51 

3 0.70 0.76 0.09 0.47 2.17 0.18 0.04 0.49 

4 10.19 0.48 0.05 0.47 12.51 0.25 0.05 0.47 

5 7.59 0.18 0.02 0.49 7.52 0.15 0.01 0.47 

6 3.27 0.48 0.05 0.47 5.99 0.15 0.02 0.48 

7 33.85 0.14 0.02 0.47 17.60 0.09 0.01 0.69 

8 12.88 0.19 0.05 0.47 3.81 0.14 0.05 0.53 

mean 11.84 0.41 0.05 0.47 9.76 0.16 0.03 0.51 

median 8.89 0.36 0.05 0.47 8.61 0.15 0.03 0.49 

SEM 4.01 0.10 0.01 < 0.00 2.17 0.02 0.01 0.03 

 

Table G-3.  

Threshold = 0.8 s. 

Rat Cycle 1 Cycle 2 



 200   

 

 

L w b δ L w b δ 

1 21.30 0.17 0.04 0.87 33.83 0.13 0.01 0.88 

2 20.11 0.17 0.03 0.91 13.03 0.10 0.01 0.92 

3 10.90 0.13 0.01 0.88 21.71 0.08 0.01 1.01 

4 18.89 0.19 0.03 0.93 11.63 0.13 0.01 1.16 

5 6.60 0.15 0.02 0.87 0.40 0.74 0.04 0.88 

6 4.38 0.10 0.02 0.89 5.52 0.10 0.02 1.15 

7 21.42 0.06 0.01 1.17 14.22 0.07 0.00 1.12 

8 7.01 0.15 0.06 0.93 6.12 0.08 0.02 0.95 

mean 13.83 0.14 0.03 0.93 13.31 0.18 0.02 1.01 

median 14.90 0.15 0.03 0.90 12.33 0.10 0.01 0.98 

SEM 2.59 0.01 0.01 0.04 3.72 0.08 0.00 0.04 
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IRT SIMULATIONS (CHAPTER 4) 
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Simulations were conducted to obtain the predicted distribution of IRTs from the 

fitted model (Equation 4-1). Although determining the expected inverse cumulative 

distribution (i.e., a survivor plot) is a simple matter of integrating over the probability 

density function, determining the mean IRT for each percentile bin is more complicated. 

To keep estimation techniques identical for both the survival plots (Figure 4-5) and 

percentile plots (Figure 4-6), IRT-generation simulations were used for both types of 

plots. 

Each simulation used a Monte Carlo method in which a series of Bernoulli trials 

were generated. After each success [with probability p = L / (L + 1)], an IRT was sampled 

from an exponential distribution with a mean of 1/w; after each failure (with probability 1 

– p), an IRT was sampled from an exponential distribution with a mean of 1/b. The 

refractory period, δ, was then added to the IRT. The sampled IRT then advanced the 

session clock by its respective value, and new trial then began. The session continued 

until the session clock exceeded the maximum session length of 3,160 s (the 84-min 

session time minus the 5-min acclimation period); the vector of IRTs was truncated to 

exclude the final IRT, which advanced the session clock beyond the session length. One 

hundred sessions were simulated for each rat and condition; the generated IRTs were then 

aggregated to produce the model prediction traces for the log-survivor and percentile 

plots in Figure 4-5 and Figure 4-6.  
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Table I-1.  

Individual DBERM parameter estimates.  

Rat L0 w0 b0 δ  α β 

 (responses) 

(responses 

/s) 

(bouts/ 

s) (s) 

 

(s-1 × 10-3) (s-1 × 10-3) 

 Majority FR1 (mFR1) Condition 

1 2.623 2.896 0.143 0.09  0.208 0.208 

2 5.383 2.434 0.315 0.07  0.058 0.160 

3 3.689 4.207 0.169 0.07  0.018 0.018 

4 2.913 3.576 0.286 0.08  0.130 0.144 

5 4.631 2.325 0.078 0.04  0.205 0.205 

6 1.154 1.310 0.218 0.09  0.000 0.000 

7 3.786 3.380 0.093 0.08  0.097 0.097 

8 4.791 1.017 0.174 0.08  0.219 0.511 

9 3.856 4.169 0.155 0.03  0.135 0.136 

10 7.622 0.709 0.109 0.09  0.108 0.294 

Mean 4.045 2.602 0.175 0.07  0.118 0.177 

SEM 0.552 0.402 0.027 0.01  0.025 0.046 

 Majority FR5 (mFR5) Condition 

1 5.416 2.149 0.176 0.09  0.302 0.539 

2 8.570 3.988 0.255 0.07  0.059 0.185 

3 3.515 3.371 0.273 0.07  0.000 0.190 

4 5.302 4.496 0.183 0.08  0.094 0.113 

5 11.047 2.417 0.197 0.04  0.093 0.475 

6 4.382 4.571 0.091 0.09  0.056 0.068 

7 5.146 3.345 0.155 0.08  0.052 0.116 

8 6.466 1.541 0.059 0.08  0.112 0.112 

9 8.316 5.271 0.277 0.03  0.316 0.489 

10 7.212 2.927 0.059 0.09  0.170 0.170 

Mean 6.537 3.407 0.175 0.07  0.125 0.246 

SEM 0.719 0.375 0.027 0.01  0.034 0.057 

Note. In some instances, β = α. This is because β was constrained to be equal or higher 

than α, so that wt would be higher than bt at all times. When relaxing this constraint 

yielded better fits, the best solution within these constraints was a single rate of decay for 

both wt and bt. 
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BERNOULLI TRIALS, GEOMETRIC AND NEGATIVE BINOMIAL 

DISTRIBUTIONS, AND THEIR RELATION TO THE LENGTHS OF BOUTS 

(CHAPTER 5) 
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Geometric and negative binomial distributions describe the results of a series of 

Bernoulli trials, which may be thought of as analogous to a series of “coin flips” where 

the probability p that a coin falls “heads”—i.e., a “success”—may take any value 

between 0 and 1. The geometric distribution  

 

Pr(𝑥) = 𝑝(1 − 𝑝)𝑥 0 ≤ 𝑝 ≤ 1;  𝑥 ∈ ℕ0 (J-1) 

 

describes the probability that x failures will be observed before a success. In the GEO 

bout-length model (Equation 5-7), a failure is expressed as remaining in a bout and 

making another within-bout response; a success is expressed as leaving the bout. Because 

bouts must have at least one response, the number of failures in a bout of length, λ, is λ – 

1. According to Shull et al.’s (2001) original model, the decision to remain within-bout or 

exit the bout after each response is determined by a simple Bernoulli trial, and hence bout 

lengths are distributed according to GEO. 

A fundamental property of a geometric distribution is that its mode is always zero 

or 1, depending on the parameterization of geometric distribution. In Equation J-1, the 

mode is 0, and when applied to bout lengths, which always have at least one response, the 

mode is 1.  

When bout lengths have a mode greater than 1, GEO becomes insufficient to 

describe the data. An extension of the geometric is the negative binomial (NB) 

distribution, 

 Pr(𝑥) = (
𝑟 + 𝑥 − 1

𝑥
) 𝑝𝑟(1 − 𝑝)𝑥0 ≤ 𝑝 ≤ 1, 0 ≤ 𝑝 ≤ 1;  𝑥 ∈ ℕ0; 𝑟 ∈ ℕ1 (J-2) 
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which specifies the probability that r failures will occur before x successes. As in GEO, 

each NB success is expressed as a within-bout response. In contrast to GEO, however, 

NB failures do not necessarily correspond to exiting the bout. In NB, each failure 

increases a counter, n; bouts are exited only when n = r; if n < r, another Bernoulli trial 

occurs. As in GEO, NB bouts must have at least one response, so the number of failures 

in a bout of length λ is λ – 1 (Equation 5-9). 

For simplicity, the discrete form of the negative binomial distribution function is 

noted in Equations 5-8 and 5-9. However, parameter estimation was actually conducted 

with an extension of the negative binomial distribution function that allows r to take on 

non-integer values, 

Pr(𝐵𝐿 =  𝜆) =
Γ(𝑟+𝜆−1)

Γ(𝑟)Γ(𝜆)
𝑝𝑛𝑏

𝑟 (1 − 𝑝𝑛𝑏)𝜆−1. 0 ≤ 𝑝𝑛𝑏 ≤ 1; 𝑟 > 0; 𝜆 ∈ ℕ1 (J-3)  

This extension prevents parameter estimates from being interpreted simply in terms of 

Bernoulli trials, however it also simplifies parameter estimation, as estimating discrete 

parameter values using standard optimization algorithms in Matlab® is non-trivial.  
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APPENDIX K  

ESTIMATES OF BOUT-LENGTH DISTRIBUTION PARAMETERS FROM 

BRACKNEY ET AL. (2011) (CHAPTER 5) 
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Model selection and parameter estimates were based on “low” lever data from Brackney 

et al. (2011). The “low” lever condition is more similar to the training conditions in the 

present study and to typical training conditions. 

Table K-1.  

GEO, NB, and MIX model fit statistics. 

  VI (n = 42013) Tandem (n = 34881) 

Model k AICc LL ΔAIC AICc LL ΔAIC 

GEO 6 135638 -67814 442 198062 -99024 4794 

NB 12 135650 -67814 454 198074 -99024 4806 

MIX 24 135196 -67574 0 193268 -96610 0 

Note. See Table 1 for nomenclature. 

 

Table K-2.  

MIX parameter estimates. 

  VI 120 s  Tandem VI 120 s FR5 

Rat  ω μgeo μnb  ω μgeo μnb 

505  0.605 0.111 1.214  0.756 0.314 6.07 

507  0.091 2.83 3.901  0.597 2.065 7.535 

517  0.139 0.848 2.709  0.693 1.924 11.274 

519  0.385 39.103 6.363  0.769 0.455 6.152 

520  0.737 1.815 0.477  0.83 2.199 14.328 

521  0.173 1.077 1.902  0.523 2.554 9.337 

Mean  0.355 7.63 2.761  0.695 1.585 9.116 

SEM  0.109 6.306 0.868  0.047 0.389 1.322 
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