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ABSTRACT  

   

Robust and stable decoding of neural signals is imperative for implementing a useful 

neuroprosthesis capable of carrying out dexterous tasks. A nonhuman primate (NHP) was 

trained to perform combined flexions of the thumb, index and middle fingers in addition to 

individual flexions and extensions of the same digits. An array of microelectrodes was 

implanted in the hand area of the motor cortex of the NHP and used to record action 

potentials during finger movements. A Support Vector Machine (SVM) was used to 

classify which finger movement the NHP was making based upon action potential firing 

rates. The effect of four feature selection techniques, Wilcoxon signed-rank test, Relative 

Importance, Principal Component Analysis, and Mutual Information Maximization was 

compared based on SVM classification performance. SVM classification was used to 

examine the functional parameters of (i) efficacy (ii) endurance to simulated failure and 

(iii) longevity of classification. The effect of using isolated-neuron and multi-unit firing 

rates was compared as the feature vector supplied to the SVM. The best classification 

performance was on post-implantation day 36, when using multi-unit firing rates the worst 

classification accuracy resulted from features selected with Wilcoxon signed-rank test 

(51.12 ± 0.65%) and the best classification accuracy resulted from Mutual Information 

Maximization (93.74 ± 0.32%). On this day when using single-unit firing rates, the 

classification accuracy from the Wilcoxon signed-rank test was 88.85 ± 0.61 % and Mutual 

Information Maximization was 95.60 ± 0.52% (degrees of freedom =10, level of chance 

=10%) 
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CHAPTER 1 

INTRODUCTION 

Microelectrode array brain machine interfaces (BMI) have shown the potential to 

alleviate various neurological disorders. BMIs utilizing advances in robotics and machine 

learning can restore limited lower and upper extremity motor function. Several research 

studies have investigated the viability of a cortical brain machine interface in humans and 

NHPs [1-3].  

BMIs can be broadly classified based on the type of bio-signal used to control the 

prosthesis. Electroencephalogram (EEG), Local field potential (LFP) and Action 

potential (AP) constitute the majority of source signals used in brain machine interfaces. 

APs are discrete spiking events of an individual neuron. In statistics terms, APs or neural 

“spiking” can be thought of as a non-stationary point process in which neural information 

is largely encoded by changes in the AP firing rate coding (frequency of action 

potentials/spiking). In this paper, we utilize neural recordings of APs from individual 

neurons to classify various movements of the fingers. 

Brain machine interfaces for controlling a robotic limb or moving a cursor have been 

successfully demonstrated in humans and non-human primates [10-12]. These systems 

provided real time control of a neuroprosthetic system by decoding neural signals 

moment by moment with an objective to provide certain functionality to replace the 

native arm. Communication prostheses focus on achieving discrete goals like moving 
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cursor to specific targets [13-15]. These systems are based on decoding the endpoint goal 

of reach and map the neural signals to spatially distributed targets.   

Motivating Problem 

One of the important characteristics of the human upper extremity functioning is the 

ability to perform coordinated and dexterous finger movements. Typing, eating with a 

spoon, writing with a pen and opening a lock with a key are some of the examples in our 

daily life that require such dexterous manipulations. Incorporating dexterity as a feature 

in a neuroprosthesis would help amputees and paralyzed persons to carry out a wider 

range of tasks. To achieve such dexterous control requires a neural decoding algorithm 

that can map high-dimensional neural signals onto a high-dimensional hand prosthesis. 

Optimizing algorithms for decoding neural signals will be critical for providing useful 

control of upper extremity neuroprostheses. Feature selection is an important step in 

designing a machine learning system. Choosing a w-dimensional subset from a p-

dimensional feature space consisting of ‘p’ predictors using an objective metric is the aim 

of feature selection. Feature selection also reduces the dimensionality of feature space, 

inundating it with more “informative” features thus, removing lesser contributing ones 

that might occlude the feature space.  

Potential Solution 

Brain machine interfaces pose significant surgical risks and other health hazards which 

place them in the lower end of the therapeutic spectrum. Even in cases such as 

amputation and neurological diseases such as ALS where brain machine interfaces prove 



 

3 

 

to be the only solution for recovering limited motor functions, the risk to benefit ratio of 

the current constructs make it unsuitable for pragmatic purposes. In order to make it a 

viable, long-term solution, the performance of the brain machine interface must be 

valuable to the user in terms of efficacy and durability.  

Neural decoding is the process of converting raw neural signals acquired from the user to 

generate useful actuation signals for the neuroprosthesis to help accomplish a task. 

Neural decodes play a critical role in realizing the high levels of performance in a brain 

machine interface. Kalman filter based algorithms have proven to be efficient in decoding 

continuous parameters such as position and velocity [1, 3, 11, 16-17]. Kalman filter also 

known as liner quadratic estimation, is a set of equations describing the relationship of 

the system and its output by assuming a Gaussian noise error in each equation. The 

simple Kalman filter which has been used in the aforementioned papers, assumes a linear 

relationship between the input (neural data, in this case) and the output (movement 

trajectory). For decoding discrete targets, a variety of machine learning algorithms have 

been employed in motor neuroprosthetic application. Milekovic et al examined the 

applicability of regularized linear discriminant analysis for decoding bi-directional cursor 

movements on screen [18]. Linear discriminant analysis is a method of searching the 

optimal linear combination of features that best help separate the ‘k’ classes. It is closely 

related to principal component analysis and logistic regression in creating a linear 

decision boundary. Kim et al analyzed various linear and nonlinear filters such as Wiener 

filter, LMS adaptive filter, Gamma filter and subspace Wiener filter for a food-reaching 

and target hitting task from the motor cortex of a non-human primate [19]. These filters 

are loosely related to the simple Kalman filter and proved to work significantly better 
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than the Kalman filter in both the food-reaching and target hitting tasks. The authors 

attributed the decreased performance of the simple Kalman filter to the inefficiency in 

estimating the Kalman Gain matrix due to errors in estimating the large covariance 

matrices.   

An integral part of designing machine learning systems for neuroprosthetic applications 

is feature selection. Removing redundant information and inundating the feature space 

with relatively more “informative” features is the objective of feature selection. We 

investigate the performance of four feature selection algorithms namely, Wilcoxon 

signed-rank test, Relative Importance, Principal Component Analysis and Mutual 

Information Maximization in classifying dexterous finger movements from neural 

signals. The performance of these feature selection techniques will be assessed based on 

(i) efficacy (ii) endurance to simulated failure and (iii) longevity of neural decode. We 

also analyze the impact of using AP firing rates from individual neurons (single-unit 

recordings) and from multiple neurons (multi-unit recordings) as the input feature vector 

to the multiclass SVM. We believe that the metrics chosen here for comparing the 

performance of neural decodes encapsulate the crux of the issues that need to be 

addressed while designing a machine learning system for neuroprosthetic applications.  

CHAPTER 2 

METHODS 

The recording setup, behavioral task, data collection and preliminary data processing 

approaches are explained elsewhere [4]. A 96 channel microelectrode array (MEA, 
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Blackrock Microsystems) was implanted in the hand area of primary motor cortex of a 

male macaca mulatta. The non-human primate (NHP) was trained to perform cued 

combined flexions of the thumb, index and middle finger and individual flexions and 

extensions of the same digits using a manipulandum. Visual cues were provided using a 

computer screen placed in front of the monkey. In order to start a trial, the monkey had to 

relax all its fingers moving all of the finger switches in the manipulandum to the open 

state. After a randomized wait time of 1000-3000ms, a visual cue indicating which 

finger(s) to flex/extend appeared on the computer screen. The monkey then had 2000ms 

to react to the visual cue and depress the associated switch. Once the correct switch was 

pressed, the monkey had to hold the switch for 500ms. The trial was deemed successful if 

the monkey pressed the correct switch and adhered to the time constraints. The 

behavioral task was implemented using a real-time operations systems in a custom 

LabVIEW (National Instruments) program.  

Neural Decoding System Architecture 
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Figure 1. Neural decoding system architecture 

Figure 1 shows the architecture for the machine learning decoding system. Neural data 

recorded from the NHP was spike sorted using an offline sorter (Plexon, Inc.). The 

timestamp of spike events was obtained from the offline sorter. Pre-processing also 

included binning/moving average windowing of the point process using a boxcar 

window. After applying the moving average technique, neural “firing rate” for each 

single or multi-unit was obtained. Neural firing rate was used as the feature vector (input) 

to the SVM. Trial snippets corresponding to each successful finger movement trial was 

extracted and concatenated. The entire dataset was randomly divided into 10 folds. Each 

fold served as the testing set once while data from the remaining folds was used for 

training. Model parameters such as box constraint( C) and sigma (of the RBF kernel) 

were estimated using an exhaustive grid search algorithm with exponentially increasing 

values from 1e-5 to 1e5. Classification accuracy was calculated after predictions were 

made on the unseen test set. This process was repeated 20 times to reduce generalization 

error of the SVM.  

Pre-processing 

The MEA is a 10x10 grid of 1 mm tall electrodes that are capable of recording single and 

multi-unit activity in addition to local field potentials [5]. The MEA data were sampled at 

30 kHz. Neural data collected using the MEA were sorted offline using an expectation-

maximization based competitive mixture of t-distributions decomposition algorithm [9]. 

Data were then imported to Matlab (Mathworks) for further analysis. The time stamps of 

action potentials recorded at 30 kHz were downsampled to 600 Hz. A boxcar moving 
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average window of 300ms width and 33.3 ms step size was used to obtain a moving 

average “firing rate”. The moving average of the point process was downsampled in 

order to reduce data size. A 4th order low pass Butterworth filter with a cut-off frequency 

of 10 Hz was used prior to downsampling the neural firing rate to 20 Hz and the neural 

firing rate was obtained as a time varying vector. This process was repeated for all 96 

electrodes to obtain multi-unit neural firing rate, i.e. the cumulative firing rate of all 

neurons recorded on a particular electrode. An average of 142.2 ± 36.3 neural units were 

recording from 96 electrodes during each session. 

Data from individual trials was aligned in time on switch closure times of successful 

trials. A movement period was defined as the duration corresponding to 450ms prior and 

1000ms after the switch closure. A baseline period (resting state) for a trial was defined 

as the duration corresponding to 2500ms to 1000ms prior to switch closure. Baseline and 

movement period data was obtained for all available degrees of freedom and all 

successful trials for each day experiments were conducted and represented a vector of 

time-series data.  

Feature Selection 

Using machine learning algorithms for multivariate, high-dimensional data is often 

computationally expensive. Due to the complexity of feature space and rigorous 

numerical computations involved in designing the hyperplane in this high-dimensional 

feature space, the performance of the machine learning algorithm is deterred. Feature 

selection is the process of selecting an O-dimensional subset feature space from a P – 

dimensional original feature space where ‘p’ is the number of predictors. In case of the 
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neural data, there were 96 predictors for multi-unit based firing rate feature vector and an 

average of ~144 predictors for single-unit based firing rate feature vector.  

Feature selection is usually applied to reduce information redundancy and trim the input 

space to better predict the responses. Some of the advantages of feature selection are: 

 Facilitate data visualization and data understanding 

 Reduce data measurement and storage requirements 

 Reduce training and utilization times 

 Simplify the learning model and aid in better understanding and interpretation by 

researchers 

 Enhance generalization by reducing overfitting 

 Defy the curse of dimensionality to improve predictor performance [23].  

Identifying the best subset of features is a sub-optimal problem to solve. The only method 

to do this is through exhaustive grid search, i.e. exhaustively searching through every 

permutation of predictors available. Mathematically, there exists 2p permutations of 

features that can be selected from ‘p’ features. In case of our neural data, this results in 

iterating through a minimum of 296 (96 features for multi-unit firing rate and >96 features 

for single-unit firing rate based feature vector) permutations of features to identify the 

“best” subset.  

When dealing with multivariate, time-series signals like neural signals, it is imperative to 

judge where the learning algorithm must focus its attention. Filter or Criterion based 

feature selection and Wrapper based feature selection are two broad categories of feature 

selection that are commonly applied in machine learning. Application of statistical, 
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empirical or other “criteria” based methods such as mean, variance, student’s t-test and 

correlation are some examples of criterion based feature selection. Applying criterion 

based feature selection requires some domain expertise in order to determine what 

qualifies as a useful criteria. Wrapper based feature selection iteratively uses various 

combinations of features as input to a machine learning algorithm and evaluates the 

importance of each feature based on some evaluation criteria from the prediction such as 

coefficient of determination (r2). Ideally, it is advisable to use the same machine learning 

algorithm as a classifier and a wrapper for feature selection. Oftentimes, it is also 

valuable to use a simpler, computationally efficient machine learning algorithm as a 

substitute wrapper. For example, SVMs are an efficient yet computationally intensive 

solution to solve the problem of face recognition by computing key points (that act as 

features) on the face. Using SVM as a wrapper in this case would demand access to a lot 

of resources (in terms of clusters) and still be time consuming. An alternative to using 

SVM in this case would be using a simpler algorithm such as Logistic regression. Care 

should be taken to ensure both the algorithms have similar assumptions about the data 

(such as nonlinearity, heteroscedasticity of noise). In this study, we have limited our 

comparisons to criteria based feature selection methods.  

 

Redundancy, Correlation and Complementarity of Features 

Guyon and Elisseeff examined the properties of multivariate features and their impact on 

feature subset selection. The motivation to use feature subset selection is to reduce the 

redundancy of information in the feature space. Oftentimes, redundant features are 

irrelevant and thus, do not contribute to increasing the classification accuracy. It should 
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be noted that, there are certain cases where inclusion of few redundant variables can be 

beneficial in noise reduction. Consider two independently and identically distributed 

(i.i.d) variables that follow a Gaussian distribution with zero covariance as a feature 

vector to solve a two class problem. By averaging the two i.i.d. variables and using it as a 

new feature improves class separability by a factor of √2. In general, it can be 

mathematically proven that by averaging ‘n’ i.i.d. variables, we will get a reduction in 

standard deviation of √n. Noise reduction and subsequently better class separation can be 

obtained by adding presumably redundant variables [23-25].  

Feature correlation impacts the amount of redundancy in the feature space. Let Ɛ 

represent the correlation of two i.i.d variables. It was found that, there was maximum 

improvement in class separability when the two distributions were perpendicular to each 

other (Ɛ is small, but not zero). In case of perfectly correlated variables (Ɛ = 0), the sum 

of the two variables results in an increase in intra-class covariance by a factor of α and 

does not necessarily improve class separability. Perfectly correlated variables are truly 

redundant in the sense that there is no additional information gain obtained by adding 

them.  

One of the concerns of multivariate features is their property of overfitting. Let us 

consider the famous XOR problem (also known as the two-bit parity problem). The 

distribution for a two feature, two class problem is given below. The truth table of an 

XOR function is as follows: 
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Table 1. XOR truth table 

X1 X2 Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

X1 and X2 are two input features taking binary values. Y is the output of this problem that 

can also take binary values. X1 and X2 are useless by themselves as plotting X1 vs. Y and 

X2 vs. Y reveals that the two univariate problems are non-separable. But by combining 

the two features X1 and X2, we can get separability in two dimensions through a 

nonlinear decision boundary (using a sigmoid function). This is a classic example that 

illustrates the property of feature complementarity in machine learning. Two features that 

are useless by themselves, can be useful together.  

Wilcoxon Signed-rank Test 

Wilcoxon signed-rank test is a non-parametric alternative to the student’s t-test. This non-

parametric test can be used to identify if samples from two independent yet related 

distributions are significantly different. In the context of selecting single or multi-unit 

data as input to the SVM, the difference between baseline and movement related firing 

rate was computed. The null hypothesis was that the data came from a continuous, 

symmetric distribution with a median equal to zero (i.e. no electrode recorded increased 

firing rates in the movement period as compared to the baseline period). Electrodes for 
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which the null hypothesis was rejected (p<0.001) with a positive median difference from 

baseline were kept. These electrodes were then sorted in order of increasing median 

difference. For the purpose of feature selection, the median difference was computed as a 

scalar to select features (single unit/multi-unit).  

Relative Importance 

Relative importance was a feature selection technique initially developed for selecting 

neurons in the primary motor cortex for decoding [6]. First the movement only firing rate 

(difference of movement and baseline firing rate) was computed. The trial averaged firing 

rate for each neuron for all the successful trials was calculated. Then, the inter-movement 

variance was computed as the difference of trial averaged firing rate and the average 

firing of a neuron for a degree of freedom. The neural recordings were then ranked in 

descending order of inter movement variance. For the purpose of feature selection, the 

inter movement variance was computed as a scalar to rank features (single/multi-unit). 

Principal Component Analysis 

Principal component analysis (PCA) can be used as a feature transformation technique, 

where a transform function is applied to the data to represent it in a higher dimensional 

transform space. For an ‘n’ dimensional possibly correlated data, PCA represents the data 

in a (n-1) dimensional space in linearly uncorrelated principal component coordinates. 

The transformation is carried out in such a way that the first principal component 

contains the maximum possible variance of the data. The succeeding principal 

components are ordered in descending order of variance. This transformation of data 
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according to the variance at each time point can be used to eliminate noise, but does not 

necessarily extract discriminative features. Neural firing rates corresponding to each 

degree of freedom was provided as an input to PCA.  

The operation of PCA can be thought of as revealing the internal structure of the data 

based on its variance. For a multivariate dataset that can be represented in a high-

dimensional space, PCA provides a better representation in low-dimensional space from 

an “informative” viewpoint. This is done by considering only the first few principal 

components and thus, PCA serves as a dimensionality reduction method.  

Mutual Information Maximization 

Mutual information is the mutual dependence of two random variables. Unlike 

correlation, mutual information is not limited to real-valued random variables and 

estimates how similar the joint distribution P(X|Y) is to the products of the factored 

marginal distribution P(X) and P(Y). Entropy of a random variable C can be defined as  

𝐻(𝐶) =  − ∑ 𝑃(𝑐)log (𝑃(𝑐))

𝑐

 

The conditional entropy of two random variables C and Y can be defined as  

𝐻(𝐶|𝑌) =  −()(∑ 𝑃(𝑐|𝑦) log(𝑃(𝑐|𝑦)) 𝑑𝑦

𝑐

 

Then, the mutual information of random variables C and Y can be defined as the I(C;Y) = 

H(C) – H(C|Y) and can be represented as  

𝐼(𝐶|𝑌) =  ∑ ∑ 𝑃(𝑐|𝑦)log 
𝑃(𝑐|𝑦)

𝑃(𝑐). 𝑃(𝑦)
𝑦𝑐
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Mutual Information maximization was implemented using the FEAST Toolbox available 

for MATLAB [7]. For a class label X, the mutual information score of feature Ck is 

defined as: 

J(Ck) = I(Ck;X) 

This score J(Ck) is referred to as mutual information maximization and we rank the 

features in descending order of the mutual information score. Neural firing rates 

corresponding to movement period for each degree of freedom was used as the input to 

Mutual Information Maximization algorithm.  

Support Vector Machine 

Support vector machine is a class of non-probabilistic, binary, linear classifier. Support 

vector machines represent the data in higher dimensional space and find the best 

separating hyperplane in this space. The objective of the SVM is to find a hyperplane that 

has the maximum distance from a point belonging to any class. Such a classifier is also 

called a maximum margin classifier whose generalization error is low. During training, 

each point in the training set is assigned a weight α. Those points with training weights α 

≠ 0 are called the support vectors since, they help forming the hyperplane. In case of 

linearly non-separable cases, a soft margin classifier is implemented which allows for 

misclassified instances. Non-linear problems can be solved by using the “kernel trick” in 

the SVM. Kernel functions map data into a higher dimensional space where, the 

hyperplane is now formed. Gaussian (radial basis function) kernel was employed in our 

classification problem to account for non-linearity in the input-output relationship. 
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Gaussian kernel K(x,x’) for two samples x and x’ defined as a feature vector in some 

predictor space is defined by, 

𝐾(𝑥, 𝑥′) =  𝑒𝑥𝑝 (−
||𝑥 − 𝑥′||2

2𝜎2
) 

where 𝜎 is a free parameter that defines the smoothness of Gaussian kernel.  

SVMs are inherently binary classifiers i.e. they can distinguish between only two classes. 

Their functionality can be expanded to solve multiclass problems by decomposing it into 

multiple binary sub-problems. We used a one-vs-one multiclass implementation of the 

SVM to differentiate between the many available degrees of freedom. For a problem of 

classifying ‘k’ classes, we require 
𝑘(𝑘−1)

2
  binary SVM classifiers for each pair of the ‘k’ 

classes. The class of a test instance is predicted by taking the mode of predictions of all 

the one-vs-one SVM pairs. In a one-vs-all implementation, there are ‘k’ pairs of SVM to 

classify ‘k’ classes where each SVM differentiates between class ki and the rest.  

In addition to extracting snippets of neural activity corresponding to valid trials for all 

available degrees of freedom for a particular session, we included 30 random baseline 

periods as a “rest” phase (11th degree of freedom). The target/output instances used for 

training were created manually depending on the degree of freedom which was later used 

for estimating the classification accuracy. Target instances were assigned to each sample 

based on the trial type or degree of freedom it came from and were assigned discrete 

values like 1,2,3 and so on.  
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Performance Metrics 

Efficacy of Neural Decode 

The first step in assessing the performance of feature selection methods was to find the 

optimal number of features for each feature selection algorithm that best classified the 

different finger movements and the resting state. For this purpose, all available successful 

trials in a session were split into a 70% for training (and validation) and the remaining 

30% for testing. A 10 fold cross validation routine was performed to reduce variability in 

performance estimates during validation. For a given input data (multi-unit or single-unit 

firing rate), the features were ranked based on the results of the feature selection 

algorithms. We iteratively incremented one feature at a time and used it as an input to the 

classifier to identify the optimal number of features. We also included random multi-unit 

and isolated unit firing rate selection to compare with the other methods. 

Endurance to Simulated Failure 

The performance of the brain machine interface (BMI) can be influenced by the quantity 

of neural information available for decode. Previous research has shown that there is a 

significant decrease in the signal to noise ratio of the neural signals and a steady decrease 

in impedance of the recording electrodes over time [8]. There can be a steady decrease in 

the number of electrodes that record action potentials, which can have a deleterious effect 

on BMI performance. Feature selection algorithms should be robust enough to handle the 

sudden losses in neural information over time. In order to test the endurance of the 

feature selection algorithms, we randomly dropped 10’s of percent of the available 



 

17 

 

features and tested its performance. The random removal procedure was repeated 20 

times to reduce generalization bias. 

 

Longevity of Neural Decodes 

Brain machine interfaces are devices which will be used over an extended period of time. 

In order to be useful the neuroprosthetic device must be capable of accurate performance 

over this extended period of time. We present here the chronic decoding results of 32 

sessions collected over 79 days. For a given session the optimal number of features was 

computed. Decoding accuracy for a feature selection algorithm on a particular day was 

then calculated using the cross validated optimal features. 

Cross Validation 

In machine learning, the performance of an algorithm is evaluated by splitting the entire 

dataset into a mutually exclusive training and testing sets. Supervised learning methods 

such as Support Vector Machine are induction algorithms that predict responses for 

unseen test data based on a model learned from the training data. Quantifying the 

unbiased performance of a classifier is imperative for model selection and predicting real-

time values. For a set of training pair (xi , yi) where xi  refers to training data (input) and 

yi ( y ∈{0,1}) its corresponding class label (output), the SVM computes a hyperplane or 

decision boundary which separates the binary classes 0 and 1 by minimizing a cost 

function J(Θ) [26]. The cost function of the SVM was inspired from the logistic 

regression and is as follows:  
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𝑚𝑖𝑛

𝜃
 

1

𝑚
 ∑[𝑦(𝑖)

𝑚

𝑖=1

𝑐𝑜𝑠𝑡1 (𝜃𝑇𝑥(𝑖)) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃𝑇𝑥(𝑖))] +  
𝜆

2𝑚
 ∑ 𝜃𝑗

2

𝑚

𝑖=1

  

Where     𝑐𝑜𝑠𝑡1 =  −(log ℎ𝜃(𝑥(𝑖)) (cost function when y=1 is 

misclassified) 

   𝑐𝑜𝑠𝑡0 =  − log(1 −  ℎ𝜃𝑥(𝑖)) (cost function when y=0 is 

misclassified) 

     ℎ𝜃(𝑥) =  
1

1+ 𝑒−𝜃𝑇𝑥
   (hypothesis relating input ‘x’ 

and ‘y’) 

   λ – regularization parameter, where λ ∈ [10-5, 105].  

   m – number of training instances 

The cost function penalizes the learning algorithm by some quantity Ɛ, when it 

incorrectly learns a training instance. Thus, this correction leads to learning the correct 

mapping for the given dataset.   

In order to select the optimal parameters for the SVM model, a cross validation routine 

was performed. Estimating this performance also helps predict the classification accuracy 

of future data. For assessing the final accuracy of the classifier, we would like a method 

that has low bias and low variance. Bias and variance are two types of error that are 

commonly encountered in supervised learning algorithms. Cross validation can be 

broadly divided into two categories: 

1. Exhaustive cross validation 

2. Non-exhaustive cross validation 
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Exhaustive cross validation measures learn and test the performance of a classifier in all 

possible ways. There are two popular methods of performing exhaustive cross-validation: 

(i) Leave – p –out cross validation: 

Let ‘n’ be the total number of instances in the dataset. In this method, ‘p’ 

instances are used as the validation set when ‘n-p’ instances are used for 

training. The process is repeated until all possible combinations of validation 

is exhausted. The classifier learns and validates the dataset a total of 𝐶𝑝
𝑛 times.    

(ii) Leave-one-out cross validation: 

This can be considered as a special case of leave-p-out cross validation where 

p=1. Each instance in the dataset serves as a validation set once while the 

remaining dataset is used for training. A total of 𝐶1
𝑛 = 𝑛 iterations of unique 

training and validation is performed.  

Non-exhaustive validation does not evaluate the performance of the classifier 

exhaustively. The popular methods of non-exhaustive cross validation are: 

(i) K-fold cross validation: 

In this method, the dataset is divided into ‘k’ folds. In a 10-fold cross 

validation scheme, data from 9 folds are used for training the model and the 

remaining one fold serves as a testing set exactly once. The final estimate is 

obtained by averaging the performance across all folds. When k=n, k-fold 

cross validation becomes identical to leave-one-out cross validation. 

Repeating the k-fold procedure multiple times produces a Monte Carlo type 

estimate which is a better generalization of the unbiased estimate of a 
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classifier. K-fold cross validation suffers from high bias as the random 

splitting of datasets into may have unequal data points from each class. 

(ii) Stratified k-fold cross validation:  

Suppose our data has 1000 instances of class A and 10 instances of class B. 

Chances are that the data from Class B may not be equally represented in a 

10-fold cross validation procedure. It may also be completely absent in certain 

folds. Stratified k-fold cross validation takes this into account and populates 

each fold with data from various classes of almost equal proportions. Similar 

to k-fold cross validation, the final classification accuracy is obtained by 

averaging the performance across all folds 

(iii) Holdout cross validation: 

This is the simplest cross validation procedure. Data is divided into two 

mutually exclusive sets of training and testing sets. This can be considered as 

a 2-fold cross validation. Since the training and testing sets are large, we can 

be sure that each data point would have served as a training and testing set at 

least once [27].  

For our analysis, we used a repeated 10-fold cross validation procedure. The entire data 

was divided into a 70-30 mutually exclusive training and testing set. The training set was 

10-fold cross validated for model selection and the parameters with the least error rate 

across all folds was used on the test set. K-fold segmentation was performed 20 times and 

the performance was averaged to get the final classification accuracy.  
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CHAPTER 3 

RESULTS 

Efficacy of neural decode 

 

Figure 2(a) Selecting optimal number of channels. The plots above shows the cross 

validated accuracy of feature selection algorithms for increasing number of multi-unit 

features. The solid circle (cyan) in each graph shows the maximum accuracy for a feature 

selection algorithm. 
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Figure 2 (b) Selecting optimal number of units. The plots above shows the cross validated 

accuracy of feature selection algorithms for increasing number of single-unit features 

(Fig. 2 b). The solid circle (cyan) in each graph shows the maximum accuracy for a 

feature selection algorithm. The number of channels/units corresponding to this accuracy 

was chosen as the optimal number of features. 

From figure 2 (a-b), it can be seen that different feature selection methods have different 

optimal number of features. With an exception of Wilcoxon signed-rank test, the other 

feature selection algorithms did not show significant changes from using multi-unit and 

single-unit firing rate both in terms of number of optimal features and classification 

accuracy (less than ± 3% difference in classification accuracy and ± 1 feature). In case of 

Wilcoxon signed-rank test, the number of optimal features increased from 9 features for 

multi-unit firing rate to 19 feature for single-unit firing rate. The classification accuracy 
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improved from 51.12 ± 0.65 % for multi-unit firing rate to 88.12 ± 0.61 % for single-unit 

firing rate (Figure 2).  

 

Figure 3. Efficacy of neural decode on post implantation day 35. Classification accuracy 

of feature selection algorithms on the test set using cross validated optimal number of 

features. The plots in red and black correspond to classification accuracy obtained using 

multi-unit firing rate and single-unit firing rate respectively. Level of chance was 10% 

(10 degrees of freedom). 
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Endurance to Simulated Failure 

 

 

Figure 4a Endurance to simulated failure of multi-unit firing rate. 

Figure 4b Endurance to simulated failure of singl-unit. Mutual information maximization 
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based feature selection had a classification accuracy of 90.79% with just 10% of the 

neural units as feature vector. 

There is a general trend of decrease in the performance of feature selection algorithms 

when we decrease the number of features from 100% to 10%. While using multi-unit 

firing rate, the performance of Principal component analysis was best at 64.82 ± 2.27 % 

for 10% of channels, whereas the performance of Wilcoxon signed-rank test was 21.08 ± 

0.63 %. When we used single-unit firing rate as the feature vector, the endurance to 

simulated failure was higher for all feature selection algorithms when compared to their 

respective multi-unit firing rate. In case of Wilcoxon signed-rank test there was a ~10% 

increase in classification accuracy while there was a ~40% increase in classification 

accuracy for Mutual information maximization based feature selection. The performance 

of mutual information maximization feature selection for single-unit firing rate stayed 

above 90% classification accuracy even while using only 10% of the available units. 

There is a clear advantage to using single-unit firing rate at times when the quantity of 

neural features (single/multi-units) decreases.  
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Longevity of neural decodes 

 

 

Figure 5a. Longevity of neural decodes using multi-unit firing rate. For a given session, 

70% of all available successful trials were used as a training set and the remaining 30% 

were used for testing. 
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Figure 5b. Longevity of neural decodes using single-unit firing rate. The optimal number 

of features for each feature selection technique was identified using an iterative cross 

validation scheme. For a given session, 70% of all available successful trials were used as 

a training set and the remaining 30% were used for testing. 

Classification accuracy of all feature selection algorithms except Wilcoxon signed rank-

test using channel and single-unit firing rate had a difference of <~4% on average. The 

standard deviation of prediction for mutual information maximization was 7.09 while it 

was 18.51 for Wilcoxon signed-rank test (for single-unit firing rate). As it can be seen 

from Figures 5 a-b, the improvement in classification accuracy from channel to single-

unit firing rate requires an action potential isolating pre-processing procedure. Relative 

importance, principal component analysis and mutual information maximization had 
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comparable accuracies across 32 sessions and performed better than random selection of 

features.  

CHAPTER 4 

DISCUSSION 

Comparing the efficacy of neural decodes based on input data, features from single-unit 

firing rate yield slightly better accuracy than features from multi-unit firing rate except 

for Wilcoxon signed-rank test. Principal component analysis and mutual information 

maximization are two commonly used feature selection techniques for time-series data. 

Comparing the raw classification accuracies based on feature selection techniques, 

Mutual Information Maximization performed better than the other feature selection 

techniques. It has better accuracy while using either multi-unit or single-unit firing rate. 

With the exception of Wilcoxon signed-rank test, the efficacy of neural decodes of the 

other feature selection techniques did not improve significantly for single-unit and multi-

unit firing rates.  

The performance of single-unit firing rate based features was more consistent and robust 

to simulated failure than multi-unit firing rate. For single-unit feature sets ~80-90% 

accuracy was obtained with only 10% of single-unit features for all feature selection 

methods. Mutual Information Maximization produced highest accuracies for simulated 

failure for both single-unit and multi-unit firing rates. Wilcoxon signed-rank test had the 

maximum improvement in endurance to simulated failure moving from multi-unit to 

single-unit firing rate.     
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Assessing the chronic decoding capability of various feature selection methods, Mutual 

Information Maximization produced the best results for both single-unit and multi-unit 

based firing rate. In general, single-unit firing rate feature vector yielded slightly better 

(~3-4% on average) performance compared to multi-unit firing rate feature vector for all 

feature selection methods except Wilcoxon signed-rank test. The chronic decoding results 

also validate the viability of using a neuroprosthetic device with high classification 

accuracies (> 90% on average and several folds better than level of chance).  

Isolating the action potentials from individual neurons is routinely performed on neural 

recordings from microelectrodes. We have shown that by applying feature selection 

techniques to single-unit and multi-unit firing rates, we can get comparable performance 

on a chronic level. However, utilizing single-unit firing rates demonstrated better 

performance than multi-unit firing rates when the number of active electrodes decreased. 

Thus, the choice of input data (multi-unit or single-unit firing rate) and feature selection 

algorithm is more mandated by the primary need and available resources than 

convenience. We speculate that Mutual Information Maximization performs better across 

all three performance metrics as it maximizes the relevance of time-series features in the 

predictor space.  

Future analysis will investigate the stability of neural decodes. Stability of neural decodes 

refers to the performance of a trained model over time without updating the model. The 

stability of neural decoding models will impact how often a user will need to retrain the 

classifier model. 
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APPENDIX -A 

ALGORITHM AND CODE 
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This section of the appendix contains a brief overview of the algorithms used in different 

sections of the neural decoding architecture. It also contains the core pieces of the code 

used for analysis and generating the results. 

Pre-processing 

Computing multi-unit and single-unit firing rate from the NEV file. The NEV file 

contains time stamp of Action Potentials based on channels.  

boxwin = 0.3; %boxcar window in sec 

col = NEV.MetaTags.DataDuration; 

Hd = design(fdesign.lowpass('N,F3dB',4,10,600),'butter'); %spikes initially downsampled 

to 600S/sec for convolution, then down to 15 

WF = []; 

switch param 

    case 'channel' 

%         RateDS.Data = zeros(96,ceil(col/2000)); %total length for 15 S/sec 

        RateDS.Data = zeros(96,ceil(col/1500)); %total length for 20 S/sec 

        for k=1:96 

            clc, disp(k) 

            TS = double(NEV.Data.Spikes.TimeStamp(NEV.Data.Spikes.Electrode==k & 

NEV.Data.Spikes.Unit~=0 & NEV.Data.Spikes.Unit~=255)); 

            %     WF = 

double(NEV.Data.Spikes.Waveform(:,NEV.Data.Spikes.Electrode==k & 

NEV.Data.Spikes.Unit~=0 & NEV.Data.Spikes.Unit~=255)); 

            %     RateDS.WfTS(k) = {TS./2000}; %timestamps downsampled to 15 S/sec 

            %     RateDS.Wfs(k) = {WF}; 

            TS(TS <1) =1; 

            RateB = zeros(1,ceil(col/50)); %total length for 600 S/sec 

            if ~isempty(TS) 

                RateB(ceil(TS./50)) = 1; %timestamps at 600 S/sec 

                RateB = conv2(RateB,ones(1,boxwin*600)./boxwin); 

                RateB = RateB(1:ceil(col/50)); 

                % RateB = conv2(RateB,gausswin(boxwin*300)'./(boxwin/2),'same'); %std = 

N/5 (i.e. std = 90/5 = 18samples = 60ms) 

                RateB = filter(Hd,RateB); %filter at 10Hz 

%                 RateDS.Data(k,:) = RateB(1:40:end); %downsample from 600 S/sec to 15 

S/sec 

                RateDS.Data(k,:) = RateB(1:30:end); %downsample from 600 S/sec to 20 

S/sec 

            end 
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        end 

        VarRate = RateDS.Data; 

    case 'units' 

        RateDS=struct([]); 

        for k=1:96 

            clc, disp(k) 

            uniqueunits = 

setdiff(unique(double(NEV.Data.Spikes.Unit(NEV.Data.Spikes.Electrode 

==k))),[0,255]); 

            % Compute the number of active units found in each electrode. Later 

            % compute the firing rate for that particular units alone 

            Data=zeros(numel(uniqueunits),ceil((col./1500))); 

            for j=1:numel(uniqueunits) 

                TS = double(NEV.Data.Spikes.TimeStamp(NEV.Data.Spikes.Electrode==k & 

NEV.Data.Spikes.Unit==j)); 

                %     WF = 

double(NEV.Data.Spikes.Waveform(:,NEV.Data.Spikes.Electrode==k & 

NEV.Data.Spikes.Unit~=0 & NEV.Data.Spikes.Unit~=255)); 

                %     RateDS.WfTS(k) = {TS./2000}; %timestamps downsampled to 15 S/sec 

                %     RateDS.Wfs(k) = {WF}; 

                TS(TS <1) =1; 

                RateB = zeros(1,ceil(col/50)); %total length for 600 S/sec 

                if ~isempty(TS) 

                    RateB(ceil(TS./50)) = 1; %timestamps at 600 S/sec 

                    RateB = conv2(RateB,ones(1,boxwin*600)./boxwin); 

                    RateB = RateB(1:ceil(col/50)); 

                    % RateB = conv2(RateB,gausswin(boxwin*300)'./(boxwin/2),'same'); %std 

= N/5 (i.e. std = 90/5 = 18samples = 60ms) 

%                     RateB = filter(Hd,RateB); %filter at 7.5Hz 

%                     Data(j,:) = RateB(1:40:end); %downsample from 600 S/sec to 15 S/sec 

                    Data(j,:) = RateB(1:30:end); %downsample from 600 S/sec to 20 S/sec 

                end 

            end 

            RateDS(k).Units=Data; 

        end 

        VarRate = vertcat(RateDS(:).Units); 

End 

 

Feature selection 

 

for jj=1:5 

            switch jj 

                case 1 
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                    [~,features] = findDrivenElects(ChanFeatures,ChanBaselines,'cns',baserate); 

%Wilcoxon 

    case 2 

                    [~,features] = relativeimp(ChanFeatures,ChanBaselines);  

                % Relative Importance of features                              

                case 3 

                    [wcoeff,pcamat] = oldpca(Raw_Input','NumComponents',25); 

                    Raw_Input = pcamat'; 

      % Principal Component Analysis 

                case 4 

                    features = randperm(numvariables,25); 

      % Random features 

                case 5 

                    features = feast('mim',25,Raw_Input',Output'); 

      % Mutual information maximization 

            end 

end 

Support vector machine 

[trainData, testData, trainLabel, testLabel] = 

splitData(RawNewInput,Output,0.7,'random'); 

                    t = 

templateSVM('Standardize',1,'KernelFunction','gaussian','BoxConstraint',svmparam(jj),'K

ernelScale',svmparam(jj)); 

Mdl = fitcecoc(trainData',trainLabel','Learners',t,'Coding','onevsone'); 

predicted = predict(Mdl,testData'); 

 

  

 

 

 


