
Comparison of Feature Selection Methods for Robust Dexterous Decoding of Finger

Movements from the Primary Motor Cortex of a Non-human Primate Using

Support Vector Machine

by

Subash Padmanaban

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved July 2015 by the

Graduate Supervisory Committee:

Bradley Greger, Co-Chair

Marco Santello, Co-Chair

Stephen Helms Tillery

ARIZONA STATE UNIVERSITY

August 2015

 i

ABSTRACT

Robust and stable decoding of neural signals is imperative for implementing a useful

neuroprosthesis capable of carrying out dexterous tasks. A nonhuman primate (NHP) was

trained to perform combined flexions of the thumb, index and middle fingers in addition to

individual flexions and extensions of the same digits. An array of microelectrodes was

implanted in the hand area of the motor cortex of the NHP and used to record action

potentials during finger movements. A Support Vector Machine (SVM) was used to

classify which finger movement the NHP was making based upon action potential firing

rates. The effect of four feature selection techniques, Wilcoxon signed-rank test, Relative

Importance, Principal Component Analysis, and Mutual Information Maximization was

compared based on SVM classification performance. SVM classification was used to

examine the functional parameters of (i) efficacy (ii) endurance to simulated failure and

(iii) longevity of classification. The effect of using isolated-neuron and multi-unit firing

rates was compared as the feature vector supplied to the SVM. The best classification

performance was on post-implantation day 36, when using multi-unit firing rates the worst

classification accuracy resulted from features selected with Wilcoxon signed-rank test

(51.12 ± 0.65%) and the best classification accuracy resulted from Mutual Information

Maximization (93.74 ± 0.32%). On this day when using single-unit firing rates, the

classification accuracy from the Wilcoxon signed-rank test was 88.85 ± 0.61 % and Mutual

Information Maximization was 95.60 ± 0.52% (degrees of freedom =10, level of chance

=10%)

 ii

ACKNOWLEDGMENTS

I would like to thank my parents, Padma and Padmanaban, for being supportive and

encouraging me throughout my Master’s thesis. I am truly indebted to you both for

giving me the freedom to pursue my dreams as early on as I can remember.

I consider myself fortunate to have carried out my Master’s research in the Neural

Engineering Laboratory under Dr. Bradley Greger. Thank you Dr. Greger for showing us

how to be a good researcher. In addition to promoting crazy ideas, I’m thankful to you for

giving me a sense of bigger picture and showing me the right direction during critical

moments of my thesis. I would also like to thank Dr. Marco Santello and Dr. Stephen

Helms Tillery for their constant feedback which shaped up this thesis.

I would like to thank my brother, friends and family for their support.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... iv

LIST OF FIGURES .. v

CHAPTER

1 INTRODUCTION ... 1

Motivating Problem ... 2

Potential Solution ... 2

2 METHODS ... 4

Neural Decoding System Architecture .. 5

Pre-Processing .. 6

Feature Selection .. 7

Wilcoxon Signed-Rank Test .. 11

Relative Importance ... 12

Principal Component Analysis .. 12

Mutual Information Maximization .. 13

Support Vector Machine .. 14

Performance Metrics .. 16

Cross Validation ... 17

3 RESULTS ... 21

Efficacy of Neural Decode .. 21

Endurance to Simulated Failure .. 24

 iv

CHAPTER Page

Longevity of Neural Decode ... 26

4 DISCUSSION .. 28

REFERENCES... 30

APPENDIX

 A. ALGORITHM AND CODE ... 33

 v

LIST OF TABLES

Table Page

1. XOR Truth Table ... 11

 vi

LIST OF FIGURES

Figure Page

1. Neural Decoding System Architecture ... 6

2. Optimal Number of Features for Multi-unit Firing Rate 22

3. Optimal Number of Features for Single-unit Firing Rate 23

4. Efficacy of Neural Decode .. 24

5. Endurance to Simulated Failure for Multi-unit Firing Rate 25

6. Endurance to Simulated Failure for Single-unit Firing Rate 26

7. Longevity of Neural Decode for Multi-unit Firing Rate 27

8. Longevity of Neural Decode for Single-unit Firing Rate 28

1

CHAPTER 1

INTRODUCTION

Microelectrode array brain machine interfaces (BMI) have shown the potential to

alleviate various neurological disorders. BMIs utilizing advances in robotics and machine

learning can restore limited lower and upper extremity motor function. Several research

studies have investigated the viability of a cortical brain machine interface in humans and

NHPs [1-3].

BMIs can be broadly classified based on the type of bio-signal used to control the

prosthesis. Electroencephalogram (EEG), Local field potential (LFP) and Action

potential (AP) constitute the majority of source signals used in brain machine interfaces.

APs are discrete spiking events of an individual neuron. In statistics terms, APs or neural

“spiking” can be thought of as a non-stationary point process in which neural information

is largely encoded by changes in the AP firing rate coding (frequency of action

potentials/spiking). In this paper, we utilize neural recordings of APs from individual

neurons to classify various movements of the fingers.

Brain machine interfaces for controlling a robotic limb or moving a cursor have been

successfully demonstrated in humans and non-human primates [10-12]. These systems

provided real time control of a neuroprosthetic system by decoding neural signals

moment by moment with an objective to provide certain functionality to replace the

native arm. Communication prostheses focus on achieving discrete goals like moving

2

cursor to specific targets [13-15]. These systems are based on decoding the endpoint goal

of reach and map the neural signals to spatially distributed targets.

Motivating Problem

One of the important characteristics of the human upper extremity functioning is the

ability to perform coordinated and dexterous finger movements. Typing, eating with a

spoon, writing with a pen and opening a lock with a key are some of the examples in our

daily life that require such dexterous manipulations. Incorporating dexterity as a feature

in a neuroprosthesis would help amputees and paralyzed persons to carry out a wider

range of tasks. To achieve such dexterous control requires a neural decoding algorithm

that can map high-dimensional neural signals onto a high-dimensional hand prosthesis.

Optimizing algorithms for decoding neural signals will be critical for providing useful

control of upper extremity neuroprostheses. Feature selection is an important step in

designing a machine learning system. Choosing a w-dimensional subset from a p-

dimensional feature space consisting of ‘p’ predictors using an objective metric is the aim

of feature selection. Feature selection also reduces the dimensionality of feature space,

inundating it with more “informative” features thus, removing lesser contributing ones

that might occlude the feature space.

Potential Solution

Brain machine interfaces pose significant surgical risks and other health hazards which

place them in the lower end of the therapeutic spectrum. Even in cases such as

amputation and neurological diseases such as ALS where brain machine interfaces prove

3

to be the only solution for recovering limited motor functions, the risk to benefit ratio of

the current constructs make it unsuitable for pragmatic purposes. In order to make it a

viable, long-term solution, the performance of the brain machine interface must be

valuable to the user in terms of efficacy and durability.

Neural decoding is the process of converting raw neural signals acquired from the user to

generate useful actuation signals for the neuroprosthesis to help accomplish a task.

Neural decodes play a critical role in realizing the high levels of performance in a brain

machine interface. Kalman filter based algorithms have proven to be efficient in decoding

continuous parameters such as position and velocity [1, 3, 11, 16-17]. Kalman filter also

known as liner quadratic estimation, is a set of equations describing the relationship of

the system and its output by assuming a Gaussian noise error in each equation. The

simple Kalman filter which has been used in the aforementioned papers, assumes a linear

relationship between the input (neural data, in this case) and the output (movement

trajectory). For decoding discrete targets, a variety of machine learning algorithms have

been employed in motor neuroprosthetic application. Milekovic et al examined the

applicability of regularized linear discriminant analysis for decoding bi-directional cursor

movements on screen [18]. Linear discriminant analysis is a method of searching the

optimal linear combination of features that best help separate the ‘k’ classes. It is closely

related to principal component analysis and logistic regression in creating a linear

decision boundary. Kim et al analyzed various linear and nonlinear filters such as Wiener

filter, LMS adaptive filter, Gamma filter and subspace Wiener filter for a food-reaching

and target hitting task from the motor cortex of a non-human primate [19]. These filters

are loosely related to the simple Kalman filter and proved to work significantly better

4

than the Kalman filter in both the food-reaching and target hitting tasks. The authors

attributed the decreased performance of the simple Kalman filter to the inefficiency in

estimating the Kalman Gain matrix due to errors in estimating the large covariance

matrices.

An integral part of designing machine learning systems for neuroprosthetic applications

is feature selection. Removing redundant information and inundating the feature space

with relatively more “informative” features is the objective of feature selection. We

investigate the performance of four feature selection algorithms namely, Wilcoxon

signed-rank test, Relative Importance, Principal Component Analysis and Mutual

Information Maximization in classifying dexterous finger movements from neural

signals. The performance of these feature selection techniques will be assessed based on

(i) efficacy (ii) endurance to simulated failure and (iii) longevity of neural decode. We

also analyze the impact of using AP firing rates from individual neurons (single-unit

recordings) and from multiple neurons (multi-unit recordings) as the input feature vector

to the multiclass SVM. We believe that the metrics chosen here for comparing the

performance of neural decodes encapsulate the crux of the issues that need to be

addressed while designing a machine learning system for neuroprosthetic applications.

CHAPTER 2

METHODS

The recording setup, behavioral task, data collection and preliminary data processing

approaches are explained elsewhere [4]. A 96 channel microelectrode array (MEA,

5

Blackrock Microsystems) was implanted in the hand area of primary motor cortex of a

male macaca mulatta. The non-human primate (NHP) was trained to perform cued

combined flexions of the thumb, index and middle finger and individual flexions and

extensions of the same digits using a manipulandum. Visual cues were provided using a

computer screen placed in front of the monkey. In order to start a trial, the monkey had to

relax all its fingers moving all of the finger switches in the manipulandum to the open

state. After a randomized wait time of 1000-3000ms, a visual cue indicating which

finger(s) to flex/extend appeared on the computer screen. The monkey then had 2000ms

to react to the visual cue and depress the associated switch. Once the correct switch was

pressed, the monkey had to hold the switch for 500ms. The trial was deemed successful if

the monkey pressed the correct switch and adhered to the time constraints. The

behavioral task was implemented using a real-time operations systems in a custom

LabVIEW (National Instruments) program.

Neural Decoding System Architecture

6

Figure 1. Neural decoding system architecture

Figure 1 shows the architecture for the machine learning decoding system. Neural data

recorded from the NHP was spike sorted using an offline sorter (Plexon, Inc.). The

timestamp of spike events was obtained from the offline sorter. Pre-processing also

included binning/moving average windowing of the point process using a boxcar

window. After applying the moving average technique, neural “firing rate” for each

single or multi-unit was obtained. Neural firing rate was used as the feature vector (input)

to the SVM. Trial snippets corresponding to each successful finger movement trial was

extracted and concatenated. The entire dataset was randomly divided into 10 folds. Each

fold served as the testing set once while data from the remaining folds was used for

training. Model parameters such as box constraint(C) and sigma (of the RBF kernel)

were estimated using an exhaustive grid search algorithm with exponentially increasing

values from 1e-5 to 1e5. Classification accuracy was calculated after predictions were

made on the unseen test set. This process was repeated 20 times to reduce generalization

error of the SVM.

Pre-processing

The MEA is a 10x10 grid of 1 mm tall electrodes that are capable of recording single and

multi-unit activity in addition to local field potentials [5]. The MEA data were sampled at

30 kHz. Neural data collected using the MEA were sorted offline using an expectation-

maximization based competitive mixture of t-distributions decomposition algorithm [9].

Data were then imported to Matlab (Mathworks) for further analysis. The time stamps of

action potentials recorded at 30 kHz were downsampled to 600 Hz. A boxcar moving

7

average window of 300ms width and 33.3 ms step size was used to obtain a moving

average “firing rate”. The moving average of the point process was downsampled in

order to reduce data size. A 4th order low pass Butterworth filter with a cut-off frequency

of 10 Hz was used prior to downsampling the neural firing rate to 20 Hz and the neural

firing rate was obtained as a time varying vector. This process was repeated for all 96

electrodes to obtain multi-unit neural firing rate, i.e. the cumulative firing rate of all

neurons recorded on a particular electrode. An average of 142.2 ± 36.3 neural units were

recording from 96 electrodes during each session.

Data from individual trials was aligned in time on switch closure times of successful

trials. A movement period was defined as the duration corresponding to 450ms prior and

1000ms after the switch closure. A baseline period (resting state) for a trial was defined

as the duration corresponding to 2500ms to 1000ms prior to switch closure. Baseline and

movement period data was obtained for all available degrees of freedom and all

successful trials for each day experiments were conducted and represented a vector of

time-series data.

Feature Selection

Using machine learning algorithms for multivariate, high-dimensional data is often

computationally expensive. Due to the complexity of feature space and rigorous

numerical computations involved in designing the hyperplane in this high-dimensional

feature space, the performance of the machine learning algorithm is deterred. Feature

selection is the process of selecting an O-dimensional subset feature space from a P –

dimensional original feature space where ‘p’ is the number of predictors. In case of the

8

neural data, there were 96 predictors for multi-unit based firing rate feature vector and an

average of ~144 predictors for single-unit based firing rate feature vector.

Feature selection is usually applied to reduce information redundancy and trim the input

space to better predict the responses. Some of the advantages of feature selection are:

 Facilitate data visualization and data understanding

 Reduce data measurement and storage requirements

 Reduce training and utilization times

 Simplify the learning model and aid in better understanding and interpretation by

researchers

 Enhance generalization by reducing overfitting

 Defy the curse of dimensionality to improve predictor performance [23].

Identifying the best subset of features is a sub-optimal problem to solve. The only method

to do this is through exhaustive grid search, i.e. exhaustively searching through every

permutation of predictors available. Mathematically, there exists 2p permutations of

features that can be selected from ‘p’ features. In case of our neural data, this results in

iterating through a minimum of 296 (96 features for multi-unit firing rate and >96 features

for single-unit firing rate based feature vector) permutations of features to identify the

“best” subset.

When dealing with multivariate, time-series signals like neural signals, it is imperative to

judge where the learning algorithm must focus its attention. Filter or Criterion based

feature selection and Wrapper based feature selection are two broad categories of feature

selection that are commonly applied in machine learning. Application of statistical,

9

empirical or other “criteria” based methods such as mean, variance, student’s t-test and

correlation are some examples of criterion based feature selection. Applying criterion

based feature selection requires some domain expertise in order to determine what

qualifies as a useful criteria. Wrapper based feature selection iteratively uses various

combinations of features as input to a machine learning algorithm and evaluates the

importance of each feature based on some evaluation criteria from the prediction such as

coefficient of determination (r2). Ideally, it is advisable to use the same machine learning

algorithm as a classifier and a wrapper for feature selection. Oftentimes, it is also

valuable to use a simpler, computationally efficient machine learning algorithm as a

substitute wrapper. For example, SVMs are an efficient yet computationally intensive

solution to solve the problem of face recognition by computing key points (that act as

features) on the face. Using SVM as a wrapper in this case would demand access to a lot

of resources (in terms of clusters) and still be time consuming. An alternative to using

SVM in this case would be using a simpler algorithm such as Logistic regression. Care

should be taken to ensure both the algorithms have similar assumptions about the data

(such as nonlinearity, heteroscedasticity of noise). In this study, we have limited our

comparisons to criteria based feature selection methods.

Redundancy, Correlation and Complementarity of Features

Guyon and Elisseeff examined the properties of multivariate features and their impact on

feature subset selection. The motivation to use feature subset selection is to reduce the

redundancy of information in the feature space. Oftentimes, redundant features are

irrelevant and thus, do not contribute to increasing the classification accuracy. It should

10

be noted that, there are certain cases where inclusion of few redundant variables can be

beneficial in noise reduction. Consider two independently and identically distributed

(i.i.d) variables that follow a Gaussian distribution with zero covariance as a feature

vector to solve a two class problem. By averaging the two i.i.d. variables and using it as a

new feature improves class separability by a factor of √2. In general, it can be

mathematically proven that by averaging ‘n’ i.i.d. variables, we will get a reduction in

standard deviation of √n. Noise reduction and subsequently better class separation can be

obtained by adding presumably redundant variables [23-25].

Feature correlation impacts the amount of redundancy in the feature space. Let Ɛ

represent the correlation of two i.i.d variables. It was found that, there was maximum

improvement in class separability when the two distributions were perpendicular to each

other (Ɛ is small, but not zero). In case of perfectly correlated variables (Ɛ = 0), the sum

of the two variables results in an increase in intra-class covariance by a factor of α and

does not necessarily improve class separability. Perfectly correlated variables are truly

redundant in the sense that there is no additional information gain obtained by adding

them.

One of the concerns of multivariate features is their property of overfitting. Let us

consider the famous XOR problem (also known as the two-bit parity problem). The

distribution for a two feature, two class problem is given below. The truth table of an

XOR function is as follows:

11

Table 1. XOR truth table

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 0

X1 and X2 are two input features taking binary values. Y is the output of this problem that

can also take binary values. X1 and X2 are useless by themselves as plotting X1 vs. Y and

X2 vs. Y reveals that the two univariate problems are non-separable. But by combining

the two features X1 and X2, we can get separability in two dimensions through a

nonlinear decision boundary (using a sigmoid function). This is a classic example that

illustrates the property of feature complementarity in machine learning. Two features that

are useless by themselves, can be useful together.

Wilcoxon Signed-rank Test

Wilcoxon signed-rank test is a non-parametric alternative to the student’s t-test. This non-

parametric test can be used to identify if samples from two independent yet related

distributions are significantly different. In the context of selecting single or multi-unit

data as input to the SVM, the difference between baseline and movement related firing

rate was computed. The null hypothesis was that the data came from a continuous,

symmetric distribution with a median equal to zero (i.e. no electrode recorded increased

firing rates in the movement period as compared to the baseline period). Electrodes for

12

which the null hypothesis was rejected (p<0.001) with a positive median difference from

baseline were kept. These electrodes were then sorted in order of increasing median

difference. For the purpose of feature selection, the median difference was computed as a

scalar to select features (single unit/multi-unit).

Relative Importance

Relative importance was a feature selection technique initially developed for selecting

neurons in the primary motor cortex for decoding [6]. First the movement only firing rate

(difference of movement and baseline firing rate) was computed. The trial averaged firing

rate for each neuron for all the successful trials was calculated. Then, the inter-movement

variance was computed as the difference of trial averaged firing rate and the average

firing of a neuron for a degree of freedom. The neural recordings were then ranked in

descending order of inter movement variance. For the purpose of feature selection, the

inter movement variance was computed as a scalar to rank features (single/multi-unit).

Principal Component Analysis

Principal component analysis (PCA) can be used as a feature transformation technique,

where a transform function is applied to the data to represent it in a higher dimensional

transform space. For an ‘n’ dimensional possibly correlated data, PCA represents the data

in a (n-1) dimensional space in linearly uncorrelated principal component coordinates.

The transformation is carried out in such a way that the first principal component

contains the maximum possible variance of the data. The succeeding principal

components are ordered in descending order of variance. This transformation of data

13

according to the variance at each time point can be used to eliminate noise, but does not

necessarily extract discriminative features. Neural firing rates corresponding to each

degree of freedom was provided as an input to PCA.

The operation of PCA can be thought of as revealing the internal structure of the data

based on its variance. For a multivariate dataset that can be represented in a high-

dimensional space, PCA provides a better representation in low-dimensional space from

an “informative” viewpoint. This is done by considering only the first few principal

components and thus, PCA serves as a dimensionality reduction method.

Mutual Information Maximization

Mutual information is the mutual dependence of two random variables. Unlike

correlation, mutual information is not limited to real-valued random variables and

estimates how similar the joint distribution P(X|Y) is to the products of the factored

marginal distribution P(X) and P(Y). Entropy of a random variable C can be defined as

𝐻(𝐶) = − ∑ 𝑃(𝑐)log (𝑃(𝑐))

𝑐

The conditional entropy of two random variables C and Y can be defined as

𝐻(𝐶|𝑌) = −()(∑ 𝑃(𝑐|𝑦) log(𝑃(𝑐|𝑦)) 𝑑𝑦

𝑐

Then, the mutual information of random variables C and Y can be defined as the I(C;Y) =

H(C) – H(C|Y) and can be represented as

𝐼(𝐶|𝑌) = ∑ ∑ 𝑃(𝑐|𝑦)log
𝑃(𝑐|𝑦)

𝑃(𝑐). 𝑃(𝑦)
𝑦𝑐

14

Mutual Information maximization was implemented using the FEAST Toolbox available

for MATLAB [7]. For a class label X, the mutual information score of feature Ck is

defined as:

J(Ck) = I(Ck;X)

This score J(Ck) is referred to as mutual information maximization and we rank the

features in descending order of the mutual information score. Neural firing rates

corresponding to movement period for each degree of freedom was used as the input to

Mutual Information Maximization algorithm.

Support Vector Machine

Support vector machine is a class of non-probabilistic, binary, linear classifier. Support

vector machines represent the data in higher dimensional space and find the best

separating hyperplane in this space. The objective of the SVM is to find a hyperplane that

has the maximum distance from a point belonging to any class. Such a classifier is also

called a maximum margin classifier whose generalization error is low. During training,

each point in the training set is assigned a weight α. Those points with training weights α

≠ 0 are called the support vectors since, they help forming the hyperplane. In case of

linearly non-separable cases, a soft margin classifier is implemented which allows for

misclassified instances. Non-linear problems can be solved by using the “kernel trick” in

the SVM. Kernel functions map data into a higher dimensional space where, the

hyperplane is now formed. Gaussian (radial basis function) kernel was employed in our

classification problem to account for non-linearity in the input-output relationship.

15

Gaussian kernel K(x,x’) for two samples x and x’ defined as a feature vector in some

predictor space is defined by,

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
||𝑥 − 𝑥′||2

2𝜎2
)

where 𝜎 is a free parameter that defines the smoothness of Gaussian kernel.

SVMs are inherently binary classifiers i.e. they can distinguish between only two classes.

Their functionality can be expanded to solve multiclass problems by decomposing it into

multiple binary sub-problems. We used a one-vs-one multiclass implementation of the

SVM to differentiate between the many available degrees of freedom. For a problem of

classifying ‘k’ classes, we require
𝑘(𝑘−1)

2
 binary SVM classifiers for each pair of the ‘k’

classes. The class of a test instance is predicted by taking the mode of predictions of all

the one-vs-one SVM pairs. In a one-vs-all implementation, there are ‘k’ pairs of SVM to

classify ‘k’ classes where each SVM differentiates between class ki and the rest.

In addition to extracting snippets of neural activity corresponding to valid trials for all

available degrees of freedom for a particular session, we included 30 random baseline

periods as a “rest” phase (11th degree of freedom). The target/output instances used for

training were created manually depending on the degree of freedom which was later used

for estimating the classification accuracy. Target instances were assigned to each sample

based on the trial type or degree of freedom it came from and were assigned discrete

values like 1,2,3 and so on.

16

Performance Metrics

Efficacy of Neural Decode

The first step in assessing the performance of feature selection methods was to find the

optimal number of features for each feature selection algorithm that best classified the

different finger movements and the resting state. For this purpose, all available successful

trials in a session were split into a 70% for training (and validation) and the remaining

30% for testing. A 10 fold cross validation routine was performed to reduce variability in

performance estimates during validation. For a given input data (multi-unit or single-unit

firing rate), the features were ranked based on the results of the feature selection

algorithms. We iteratively incremented one feature at a time and used it as an input to the

classifier to identify the optimal number of features. We also included random multi-unit

and isolated unit firing rate selection to compare with the other methods.

Endurance to Simulated Failure

The performance of the brain machine interface (BMI) can be influenced by the quantity

of neural information available for decode. Previous research has shown that there is a

significant decrease in the signal to noise ratio of the neural signals and a steady decrease

in impedance of the recording electrodes over time [8]. There can be a steady decrease in

the number of electrodes that record action potentials, which can have a deleterious effect

on BMI performance. Feature selection algorithms should be robust enough to handle the

sudden losses in neural information over time. In order to test the endurance of the

feature selection algorithms, we randomly dropped 10’s of percent of the available

17

features and tested its performance. The random removal procedure was repeated 20

times to reduce generalization bias.

Longevity of Neural Decodes

Brain machine interfaces are devices which will be used over an extended period of time.

In order to be useful the neuroprosthetic device must be capable of accurate performance

over this extended period of time. We present here the chronic decoding results of 32

sessions collected over 79 days. For a given session the optimal number of features was

computed. Decoding accuracy for a feature selection algorithm on a particular day was

then calculated using the cross validated optimal features.

Cross Validation

In machine learning, the performance of an algorithm is evaluated by splitting the entire

dataset into a mutually exclusive training and testing sets. Supervised learning methods

such as Support Vector Machine are induction algorithms that predict responses for

unseen test data based on a model learned from the training data. Quantifying the

unbiased performance of a classifier is imperative for model selection and predicting real-

time values. For a set of training pair (xi , yi) where xi refers to training data (input) and

yi (y ∈{0,1}) its corresponding class label (output), the SVM computes a hyperplane or

decision boundary which separates the binary classes 0 and 1 by minimizing a cost

function J(Θ) [26]. The cost function of the SVM was inspired from the logistic

regression and is as follows:

18

𝑚𝑖𝑛

𝜃

1

𝑚
 ∑[𝑦(𝑖)

𝑚

𝑖=1

𝑐𝑜𝑠𝑡1 (𝜃𝑇𝑥(𝑖)) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃𝑇𝑥(𝑖))] +
𝜆

2𝑚
 ∑ 𝜃𝑗

2

𝑚

𝑖=1

Where 𝑐𝑜𝑠𝑡1 = −(log ℎ𝜃(𝑥(𝑖)) (cost function when y=1 is

misclassified)

 𝑐𝑜𝑠𝑡0 = − log(1 − ℎ𝜃𝑥(𝑖)) (cost function when y=0 is

misclassified)

 ℎ𝜃(𝑥) =
1

1+ 𝑒−𝜃𝑇𝑥
 (hypothesis relating input ‘x’

and ‘y’)

 λ – regularization parameter, where λ ∈ [10-5, 105].

 m – number of training instances

The cost function penalizes the learning algorithm by some quantity Ɛ, when it

incorrectly learns a training instance. Thus, this correction leads to learning the correct

mapping for the given dataset.

In order to select the optimal parameters for the SVM model, a cross validation routine

was performed. Estimating this performance also helps predict the classification accuracy

of future data. For assessing the final accuracy of the classifier, we would like a method

that has low bias and low variance. Bias and variance are two types of error that are

commonly encountered in supervised learning algorithms. Cross validation can be

broadly divided into two categories:

1. Exhaustive cross validation

2. Non-exhaustive cross validation

19

Exhaustive cross validation measures learn and test the performance of a classifier in all

possible ways. There are two popular methods of performing exhaustive cross-validation:

(i) Leave – p –out cross validation:

Let ‘n’ be the total number of instances in the dataset. In this method, ‘p’

instances are used as the validation set when ‘n-p’ instances are used for

training. The process is repeated until all possible combinations of validation

is exhausted. The classifier learns and validates the dataset a total of 𝐶𝑝
𝑛 times.

(ii) Leave-one-out cross validation:

This can be considered as a special case of leave-p-out cross validation where

p=1. Each instance in the dataset serves as a validation set once while the

remaining dataset is used for training. A total of 𝐶1
𝑛 = 𝑛 iterations of unique

training and validation is performed.

Non-exhaustive validation does not evaluate the performance of the classifier

exhaustively. The popular methods of non-exhaustive cross validation are:

(i) K-fold cross validation:

In this method, the dataset is divided into ‘k’ folds. In a 10-fold cross

validation scheme, data from 9 folds are used for training the model and the

remaining one fold serves as a testing set exactly once. The final estimate is

obtained by averaging the performance across all folds. When k=n, k-fold

cross validation becomes identical to leave-one-out cross validation.

Repeating the k-fold procedure multiple times produces a Monte Carlo type

estimate which is a better generalization of the unbiased estimate of a

20

classifier. K-fold cross validation suffers from high bias as the random

splitting of datasets into may have unequal data points from each class.

(ii) Stratified k-fold cross validation:

Suppose our data has 1000 instances of class A and 10 instances of class B.

Chances are that the data from Class B may not be equally represented in a

10-fold cross validation procedure. It may also be completely absent in certain

folds. Stratified k-fold cross validation takes this into account and populates

each fold with data from various classes of almost equal proportions. Similar

to k-fold cross validation, the final classification accuracy is obtained by

averaging the performance across all folds

(iii) Holdout cross validation:

This is the simplest cross validation procedure. Data is divided into two

mutually exclusive sets of training and testing sets. This can be considered as

a 2-fold cross validation. Since the training and testing sets are large, we can

be sure that each data point would have served as a training and testing set at

least once [27].

For our analysis, we used a repeated 10-fold cross validation procedure. The entire data

was divided into a 70-30 mutually exclusive training and testing set. The training set was

10-fold cross validated for model selection and the parameters with the least error rate

across all folds was used on the test set. K-fold segmentation was performed 20 times and

the performance was averaged to get the final classification accuracy.

21

CHAPTER 3

RESULTS

Efficacy of neural decode

Figure 2(a) Selecting optimal number of channels. The plots above shows the cross

validated accuracy of feature selection algorithms for increasing number of multi-unit

features. The solid circle (cyan) in each graph shows the maximum accuracy for a feature

selection algorithm.

22

Figure 2 (b) Selecting optimal number of units. The plots above shows the cross validated

accuracy of feature selection algorithms for increasing number of single-unit features

(Fig. 2 b). The solid circle (cyan) in each graph shows the maximum accuracy for a

feature selection algorithm. The number of channels/units corresponding to this accuracy

was chosen as the optimal number of features.

From figure 2 (a-b), it can be seen that different feature selection methods have different

optimal number of features. With an exception of Wilcoxon signed-rank test, the other

feature selection algorithms did not show significant changes from using multi-unit and

single-unit firing rate both in terms of number of optimal features and classification

accuracy (less than ± 3% difference in classification accuracy and ± 1 feature). In case of

Wilcoxon signed-rank test, the number of optimal features increased from 9 features for

multi-unit firing rate to 19 feature for single-unit firing rate. The classification accuracy

23

improved from 51.12 ± 0.65 % for multi-unit firing rate to 88.12 ± 0.61 % for single-unit

firing rate (Figure 2).

Figure 3. Efficacy of neural decode on post implantation day 35. Classification accuracy

of feature selection algorithms on the test set using cross validated optimal number of

features. The plots in red and black correspond to classification accuracy obtained using

multi-unit firing rate and single-unit firing rate respectively. Level of chance was 10%

(10 degrees of freedom).

24

Endurance to Simulated Failure

Figure 4a Endurance to simulated failure of multi-unit firing rate.

Figure 4b Endurance to simulated failure of singl-unit. Mutual information maximization

25

based feature selection had a classification accuracy of 90.79% with just 10% of the

neural units as feature vector.

There is a general trend of decrease in the performance of feature selection algorithms

when we decrease the number of features from 100% to 10%. While using multi-unit

firing rate, the performance of Principal component analysis was best at 64.82 ± 2.27 %

for 10% of channels, whereas the performance of Wilcoxon signed-rank test was 21.08 ±

0.63 %. When we used single-unit firing rate as the feature vector, the endurance to

simulated failure was higher for all feature selection algorithms when compared to their

respective multi-unit firing rate. In case of Wilcoxon signed-rank test there was a ~10%

increase in classification accuracy while there was a ~40% increase in classification

accuracy for Mutual information maximization based feature selection. The performance

of mutual information maximization feature selection for single-unit firing rate stayed

above 90% classification accuracy even while using only 10% of the available units.

There is a clear advantage to using single-unit firing rate at times when the quantity of

neural features (single/multi-units) decreases.

26

Longevity of neural decodes

Figure 5a. Longevity of neural decodes using multi-unit firing rate. For a given session,

70% of all available successful trials were used as a training set and the remaining 30%

were used for testing.

27

Figure 5b. Longevity of neural decodes using single-unit firing rate. The optimal number

of features for each feature selection technique was identified using an iterative cross

validation scheme. For a given session, 70% of all available successful trials were used as

a training set and the remaining 30% were used for testing.

Classification accuracy of all feature selection algorithms except Wilcoxon signed rank-

test using channel and single-unit firing rate had a difference of <~4% on average. The

standard deviation of prediction for mutual information maximization was 7.09 while it

was 18.51 for Wilcoxon signed-rank test (for single-unit firing rate). As it can be seen

from Figures 5 a-b, the improvement in classification accuracy from channel to single-

unit firing rate requires an action potential isolating pre-processing procedure. Relative

importance, principal component analysis and mutual information maximization had

28

comparable accuracies across 32 sessions and performed better than random selection of

features.

CHAPTER 4

DISCUSSION

Comparing the efficacy of neural decodes based on input data, features from single-unit

firing rate yield slightly better accuracy than features from multi-unit firing rate except

for Wilcoxon signed-rank test. Principal component analysis and mutual information

maximization are two commonly used feature selection techniques for time-series data.

Comparing the raw classification accuracies based on feature selection techniques,

Mutual Information Maximization performed better than the other feature selection

techniques. It has better accuracy while using either multi-unit or single-unit firing rate.

With the exception of Wilcoxon signed-rank test, the efficacy of neural decodes of the

other feature selection techniques did not improve significantly for single-unit and multi-

unit firing rates.

The performance of single-unit firing rate based features was more consistent and robust

to simulated failure than multi-unit firing rate. For single-unit feature sets ~80-90%

accuracy was obtained with only 10% of single-unit features for all feature selection

methods. Mutual Information Maximization produced highest accuracies for simulated

failure for both single-unit and multi-unit firing rates. Wilcoxon signed-rank test had the

maximum improvement in endurance to simulated failure moving from multi-unit to

single-unit firing rate.

29

Assessing the chronic decoding capability of various feature selection methods, Mutual

Information Maximization produced the best results for both single-unit and multi-unit

based firing rate. In general, single-unit firing rate feature vector yielded slightly better

(~3-4% on average) performance compared to multi-unit firing rate feature vector for all

feature selection methods except Wilcoxon signed-rank test. The chronic decoding results

also validate the viability of using a neuroprosthetic device with high classification

accuracies (> 90% on average and several folds better than level of chance).

Isolating the action potentials from individual neurons is routinely performed on neural

recordings from microelectrodes. We have shown that by applying feature selection

techniques to single-unit and multi-unit firing rates, we can get comparable performance

on a chronic level. However, utilizing single-unit firing rates demonstrated better

performance than multi-unit firing rates when the number of active electrodes decreased.

Thus, the choice of input data (multi-unit or single-unit firing rate) and feature selection

algorithm is more mandated by the primary need and available resources than

convenience. We speculate that Mutual Information Maximization performs better across

all three performance metrics as it maximizes the relevance of time-series features in the

predictor space.

Future analysis will investigate the stability of neural decodes. Stability of neural decodes

refers to the performance of a trained model over time without updating the model. The

stability of neural decoding models will impact how often a user will need to retrain the

classifier model.

30

REFERENCES

1. SP Kim, JD Simeral, LR Hochberg, JP Donoghue, MJ Black, " Neural control of

computer cursor velocity by decoding motor cortical spiking activity in humans

with tetraplegia", Journal of Neural Engineering, IOP Publishing, pp 455,

2008/12/05

2.JL Collinger, B Wodlinger, JE Downey, W Wang, EC Tyler-Kabara, DJ Weber, AJC

McMorland, M Velliste, ML Boninger, AD Schwartz, “High-performance

neuroprosthetic control by an individual with tetraplegia”, Lancet, 6736 : 61816-

61819, 2012

3. Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM, Churchland

MM, Kaufman MT, Kao JC, Ryu SI, Shenoy KV (2012) A high-performance

neural prosthesis enabled by control algorithm design. Nature Neuroscience.

15:1752-1757

4. J Baker, W Bishop, S Kellis, T Levy, P House and B Greger, "Multi-scale recordings

for neuroprosthetic control of finger movements", 31st International conference of

the IEEE EMBS, Minnesota, USA, IEEE, pp 4573-4577, 2009/09/02

5. P. A. House, J. D. MacDonald, P. A. Tresco, and R. A. Normann, “Acute

microelectrode array implantation into human neocortex: preliminary technique

and histological considerations.” Neurosurg Focus, vol. 20, no. 5, p. E4, 2006.

6. HN Kim, YH Kim, HC Shin, V Aggarwal, MH Schieber, NV Thakor, "Neuron

selection by relative importance for neural decoding of dexterous finger prosthesis

control application", Biomed Signal Process Control, Elsevier, pp 632-639,

2012/11/01

7. G Brown, A Pocock, MJ Zhao, M Lujan, "Conditional likelihood maximization: a

unifying framework for information theoretic feature selection", Journal of

machine learning research, pp 27-66, 2012/01

8. RJ Vetter, JC Williams, JF Hetke, EA Nunamaker, DR Kipke,"Chronic neural

recording using silicon substrate microelectrode arrays implanted in cerebral

cortex",IEEE transactions on biomedical engineering, Vol. 51, No. 6, pp 896-904

31

9. S Shoham, MR Fellows, RA Normann, “ Robust, automatic spike sorting using

mixtures of multivariate t-distributions”, Journal of Neurscince Methods, Vol.

127, pp 111-122

10. Carmena, J., Lebedev, M., Crist, R., O’Doherty, J., Santucci, D., Dimitrov, D., Patil,

P., Henriquez, C., and Nicolelis, M. (2003). “Learning to control a brain-machine

interface for reaching and grasping by primates”. PLoS Biology, pp 1:193–208.

11. Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A.

H., Branner, A., Chen, D., Penn, R. D., and Donoghue, J. P. (2006). “Neuronal

ensemble control of prosthetic devices by a human with tetraplegia”. Nature,

442:164–171

12. Ganguly, K. and Carmena, J. M. (2009). “Emergence of a stable cortical map for

neuroprosthetic control”. PLoS Biology, 7(7):e1000153+

13. Shenoy, K. V., Meeker, D., Cao, S., Kureshi, S. A., Pesaran, B., Mitra, P., Buneo, C.

A., Batista, A. P., Burdick, J. W., and Andersen, R. A. (2003). “Neural prosthetic

control signals from plan activity”. NeuroReport, 14:591–596

14. Musallam, S., Corneil, B., Greger, B., Scherberger, H., and Andersen, R. (2004).

“Cognitive control signals for neural prosthetics”. Science, 305:258–262

15. Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A., and Shenoy, K. V. (2006). A high-

performance brain-computer interface. Nature, 442:195–198

16. Wu W, Gao Y, Beinenstock E, Donoghue JP, Black MJ. (2006). “Bayesian

population decoding of motor cortical activity using a Kalman filter”, Neural

Computation, 18-1 pp 80-118

17. Wu W, Black MJ, Mumford D, Gao Y, Beinenstock E, Donoghue JP. (2004).

“Modeling and decoding motor cortical activity using a switching Kalman filter”,

IEEE Transactions on Biomedical Engineering, 51-6 pp 933-942

18. Milekovic T, Fischer J, Pistohl T, Ruescher J, Schulz-Bonhage A, Aertsen A, Rickert

J, Ball T, Mhring C. (2012). “An online brain machine interface using decoding

of movement direction from the human electrocorticogram”. Journal of Neural

Engineering. pp 0464003

32

19. Kim SP, Sanchez JC, Rao YN, Erdogmus D, Carmena JM, Lebedev MA, Nicolelis

MAL, Principe JC. (2006). “A comparison of optimal MIMO linear and non-

linear models for brain machine interfaces”. Journal of Neural Engineering. pp

145-161

20. Chestek CA, Gilja V, Blabe CH, Foster BL, Shenoy KV, Parvizi J, Henderson JM.

(2013). “Hand posture classification using electrocorticography signals in the

gamma band over human sensorimotor brain areas”, Journal of Neural

Engineering. 026002.

21. Hao Y, Zhang Q, Controzzi M, Cipriani C, Li Y, Li J, Zhang S, Wang Y, Chen W,

Carrozza MC, Zheng X. (2014). “Distinct neural patterns enable grasp types

decoding in monkey dorsal premotor cortex”. Journal of Neural Engineering.

066011.

22. Wissel T, Pfeiffer T, Frysch R, Knight RT, Chang EF, Hinrichs H, Riecher JW, Rose

G. (2013). “Hidden markov model and support vector machine based decoding of

finger movements using Electrocorticography”. Journal of Neural Engineering.

056020.

23. Guyon I, Elisseeff A. (2003). “An introduction to variable and feature selection”.

Journal of Machine Learning Research. Vol 3. pp 1157-1182

24. Liu H, Yu L. (2005). “Toward integrating feature selection algorithms for

classification and clustering”. IEEE Transactions on Knowledge and Data

Engineering. 17-4. pp 1041-4347

25. Kohavi R, John GH. (1997). “Wrappers for feature subset selection”. Artificial

Intelligence. 0004-3702. pp 273-324

26. Platt J (1998). “Sequential Minimal Optimization: a fast algorithm for training

support vector machines”, Microsoft Research, MSR-TR-98-14

27. Kohavi R (1995). “A study of cross-validation and bootstrap for accuracy estimation

and model selection”, International Joint Conference on Artificial Intelligence

1995

33

APPENDIX -A

ALGORITHM AND CODE

34

This section of the appendix contains a brief overview of the algorithms used in different

sections of the neural decoding architecture. It also contains the core pieces of the code

used for analysis and generating the results.

Pre-processing

Computing multi-unit and single-unit firing rate from the NEV file. The NEV file

contains time stamp of Action Potentials based on channels.

boxwin = 0.3; %boxcar window in sec

col = NEV.MetaTags.DataDuration;

Hd = design(fdesign.lowpass('N,F3dB',4,10,600),'butter'); %spikes initially downsampled

to 600S/sec for convolution, then down to 15

WF = [];

switch param

 case 'channel'

% RateDS.Data = zeros(96,ceil(col/2000)); %total length for 15 S/sec

 RateDS.Data = zeros(96,ceil(col/1500)); %total length for 20 S/sec

 for k=1:96

 clc, disp(k)

 TS = double(NEV.Data.Spikes.TimeStamp(NEV.Data.Spikes.Electrode==k &

NEV.Data.Spikes.Unit~=0 & NEV.Data.Spikes.Unit~=255));

 % WF =

double(NEV.Data.Spikes.Waveform(:,NEV.Data.Spikes.Electrode==k &

NEV.Data.Spikes.Unit~=0 & NEV.Data.Spikes.Unit~=255));

 % RateDS.WfTS(k) = {TS./2000}; %timestamps downsampled to 15 S/sec

 % RateDS.Wfs(k) = {WF};

 TS(TS <1) =1;

 RateB = zeros(1,ceil(col/50)); %total length for 600 S/sec

 if ~isempty(TS)

 RateB(ceil(TS./50)) = 1; %timestamps at 600 S/sec

 RateB = conv2(RateB,ones(1,boxwin*600)./boxwin);

 RateB = RateB(1:ceil(col/50));

 % RateB = conv2(RateB,gausswin(boxwin*300)'./(boxwin/2),'same'); %std =

N/5 (i.e. std = 90/5 = 18samples = 60ms)

 RateB = filter(Hd,RateB); %filter at 10Hz

% RateDS.Data(k,:) = RateB(1:40:end); %downsample from 600 S/sec to 15

S/sec

 RateDS.Data(k,:) = RateB(1:30:end); %downsample from 600 S/sec to 20

S/sec

 end

35

 end

 VarRate = RateDS.Data;

 case 'units'

 RateDS=struct([]);

 for k=1:96

 clc, disp(k)

 uniqueunits =

setdiff(unique(double(NEV.Data.Spikes.Unit(NEV.Data.Spikes.Electrode

==k))),[0,255]);

 % Compute the number of active units found in each electrode. Later

 % compute the firing rate for that particular units alone

 Data=zeros(numel(uniqueunits),ceil((col./1500)));

 for j=1:numel(uniqueunits)

 TS = double(NEV.Data.Spikes.TimeStamp(NEV.Data.Spikes.Electrode==k &

NEV.Data.Spikes.Unit==j));

 % WF =

double(NEV.Data.Spikes.Waveform(:,NEV.Data.Spikes.Electrode==k &

NEV.Data.Spikes.Unit~=0 & NEV.Data.Spikes.Unit~=255));

 % RateDS.WfTS(k) = {TS./2000}; %timestamps downsampled to 15 S/sec

 % RateDS.Wfs(k) = {WF};

 TS(TS <1) =1;

 RateB = zeros(1,ceil(col/50)); %total length for 600 S/sec

 if ~isempty(TS)

 RateB(ceil(TS./50)) = 1; %timestamps at 600 S/sec

 RateB = conv2(RateB,ones(1,boxwin*600)./boxwin);

 RateB = RateB(1:ceil(col/50));

 % RateB = conv2(RateB,gausswin(boxwin*300)'./(boxwin/2),'same'); %std

= N/5 (i.e. std = 90/5 = 18samples = 60ms)

% RateB = filter(Hd,RateB); %filter at 7.5Hz

% Data(j,:) = RateB(1:40:end); %downsample from 600 S/sec to 15 S/sec

 Data(j,:) = RateB(1:30:end); %downsample from 600 S/sec to 20 S/sec

 end

 end

 RateDS(k).Units=Data;

 end

 VarRate = vertcat(RateDS(:).Units);

End

Feature selection

for jj=1:5

 switch jj

 case 1

36

 [~,features] = findDrivenElects(ChanFeatures,ChanBaselines,'cns',baserate);

%Wilcoxon

 case 2

 [~,features] = relativeimp(ChanFeatures,ChanBaselines);

 % Relative Importance of features

 case 3

 [wcoeff,pcamat] = oldpca(Raw_Input','NumComponents',25);

 Raw_Input = pcamat';

 % Principal Component Analysis

 case 4

 features = randperm(numvariables,25);

 % Random features

 case 5

 features = feast('mim',25,Raw_Input',Output');

 % Mutual information maximization

 end

end

Support vector machine

[trainData, testData, trainLabel, testLabel] =

splitData(RawNewInput,Output,0.7,'random');

 t =

templateSVM('Standardize',1,'KernelFunction','gaussian','BoxConstraint',svmparam(jj),'K

ernelScale',svmparam(jj));

Mdl = fitcecoc(trainData',trainLabel','Learners',t,'Coding','onevsone');

predicted = predict(Mdl,testData');

