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ABSTRACT

With the rise of social media, user-generated content has become available at an

unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on

Facebook, 20 million links are shared every 20 minutes. These massive collections of

user-generated content have introduced the human behavior’s “big-data.”

This big data has brought about countless opportunities for analyzing human

behavior at scale. However, is this data enough? Unfortunately, the data available at

the individual-level is limited for most users. This limited individual-level data is often

referred to as thin data. Hence, researchers face a “big-data paradox”, where this big-

data is a large collection of mostly limited individual-level information. Researchers

are often constrained to derive meaningful insights regarding online user behavior

with this limited information. Simply put, they have to make thin data thick.

In this dissertation, how human behavior’s thin data can be made thick is in-

vestigated. The chief objective of this dissertation is to demonstrate how traces of

human behavior can be efficiently gleaned from the, often limited, individual-level

information; hence, introducing an all-inclusive user behavior analysis methodology

that considers social media users with different levels of information availability. To

that end, the absolute minimum information in terms of both link or content data

that is available for any social media user is determined. Utilizing only minimum

information in different applications on social media such as prediction or recommen-

dation tasks allows for solutions that are (1) generalizable to all social media users and

that are (2) easy to implement. However, are applications that employ only minimum

information as effective or comparable to applications that use more information?

In this dissertation, it is shown that common research challenges such as detecting

malicious users or friend recommendation (i.e., link prediction) can be effectively per-

formed using only minimum information. More importantly, it is demonstrated that
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unique user identification can be achieved using minimum information. Theoretical

boundaries of unique user identification are obtained by introducing social signatures.

Social signatures allow for user identification in any large-scale network on social me-

dia. The results on single-site user identification are generalized to multiple sites and

it is shown how the same user can be uniquely identified across multiple sites using

only minimum link or content information.

The findings in this dissertation allows finding the same user across multiple sites,

which in turn has multiple implications. In particular, by identifying the same users

across sites, (1) patterns that users exhibit across sites are identified, (2) how user

behavior varies across sites is determined, and (3) activities that are observed only

across sites are identified and studied.
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Chapter 1

INTRODUCTION

If the doors of perception were

cleansed every thing would

appear to man as it is: infinite.

William Blake

With the rise of social media, the number of information outlets are increasing

exponentially. The number of websites double every three months and the blogosphere

doubles every 5 months. In addition to the increase in information outlets, user

generated content has also become available at an unprecedented scale. Users exhibit

tremendous activity patterns on social media sites. On Youtube, more that 1 billion

unique user visits are observed every month and 100 hours of video are uploaded

every minute. Similarly on Facebook, the 1.3 billion users spend 640 Millions minutes

monthly on its 54 million pages. This boom in user activity is consistently observed

in social media and has introduced the human behavior’s “big-data.”

1.1 Big-Data Paradox

This big data brings about with itself countless opportunities for analyzing human

behavior. It is often perceived that with this big data one can study human behavior

at scale. But, is this data enough? Unfortunately, even with this big data, the data

at the individual-level is often limited for most users. For example, on Twitter, more

than 40% of the users have never twitted and more than 60% of the users leave within

their first month. This limited data at the individual level is denoted as thin data.

Similar observations are not only observed in social media but also in other domains
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where the majority of data is generated by a small percentage of the possible causes.

This is often known as the Pareto Principle or the 80–20 Rule. For example, it is

known that the content generation on the web roughly follows the 80–20 rule, that

is, 80% of the content is generated by 20% of the users.

The sole existence of such phenomenon can be easily explained using the statistical

distributions governing this kind of data. It is well known that big data on social

media and the web often follows a power-law distribution. A power-law distribution

can be stated as

p(x) = Cx−α for x ≥ xmin, (1.1)

where C is the normalization constant and α is known to be in range: 2 ≤ α ≤ 3.

As mentioned, content generation on the web roughly follows the 80–20 rule.

Consider the fraction P of the user population that has generated at least x amount of

information. This can be easily computed using the ccdf of the power-law distribution:

P (x) =

∫ ∞
x

Cy−αdy = (
x

xmin

)−α+1. (1.2)

Now, consider the fraction of information that is generated by this population:

I(x) =

∫∞
x
yp(y)dy∫∞

xmin
yp(y)dy

= (
x

xmin

)−α+2. (1.3)

Assuming x
xmin

= z, we can see that P (x) = z−α+1 and I(x) = z−α+2. Therefore,

I(x) = P (x)
2−α
1−α . (1.4)

Solving for α, we get

α =
ln I(x)− 2 lnP (x)

ln I(x)− lnP (x)
. (1.5)

When 80% of the data is generated by 20% of the users, we are assuming I(x) = 0.8

and P (x) = 0.2. Using equation 1.5, we get α = 2.16 ∈ [2, 3].
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This observation shows that in power-law distributions most of data comes from

a small set of users (20%). In other words, for the other 80% the data is very

sparse. While we can have big datasets of user-generated content, for each user in

the dataset, data is often very sparse. Hence, with this thin data, we face a big-data

paradox, where we are inundated with large collections of thin data; however, behavior

analysis for a specific users can be still challenging. This phenomenon happens on

any social media site, but user data is not limited to a single site. Users on social

media join multiple sites and their sparse data, becomes even more sparse, as it is

distributed across sites. So, how can we analyze online users with this inherent data

sparsity within and across sites?

To study user behavior comprehensively, one has to consider two important con-

straints. First, to be able to analyze behavior of all users, one has to be able to study

them with the amount of information that is guaranteed to be available for each and

every one of the users. In other words, we have to be able to study users with the

minimum information that is always available for any user. Second, one has to be

able to accumulate data that belongs to the same user across sites. Hence, the same

users should be identified across sites, however, with minimum information.

In this dissertation, we analyze user behavior with limited information. Our goal

is to efficiently glean traces of human behavior in the information that is available for

each individual; therefore, including most users with limited information availability.

As discussed, because user data is sparse and spread across multiple sites, our methods

are constrained to utilize the absolute minimum information available in social media

to (1) study user behaviors and to (2) identify the same users across sites. Identifying

the same users across sites with minimum information has numerous benefits (see

Section 1.2). Hence, in this dissertation, we focus more on identifying users across

sites with minimum information. By connecting users across sites, we investigate the
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unexplored patterns of user behavior that are exhibited only across sites. Next, we

detail some other motivations for identifying the same individual across sites.

1.2 Motivation

The need for identifying corresponding users across different social media is mul-

tifold. For example, advertisement revenue is often a principal sources of finance

for a sustainable social networking site. Web giants such as Google report a $50.57

billion dollar yearly ad revenue1; that is 91% of Google’s annual revenue2. The same

consistent pattern is observed among other internet sites such as Facebook or Ya-

hoo!. Thus, internet sites are often interested in increasing the success rate of their

ad campaigns.

It is well-known that the relevance of ads to the interests of individual users can

directly impact the success of an ad campaign. To have relevant ads, it is required

to have a good understanding of individuals, which can be achieved by profiling

users. Though a growing number of people use social media, people use various

social media for different purposes, and the information about an individual on each

site is often limited. Though each site has only limited information about a user,

other social media sites could provide complementary information for the user, and

integrating information from various sites can help build better user profiles. However,

for combining these sources of complementary information, one has to reliably identify

corresponding user identities across social media sites. Companies such as Yahoo!

often sign agreements with other companies to connect their user base for better

marketing and a richer user experience. However, preliminary attempts to match

users across sites even for these companies are challenging as users provide limited or

1http://bit.ly/1fbM89P
2http://bit.ly/1k5uVXI
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no information for matching purposes [31].

In addition to the aforementioned marketing example, we illustrate the need using

multiple examples.

1. Enhancing Friend Recommendation. Better friend recommendations can

help increase user engagement in social media sites. Often, non-connected users

that share mutual friends are recommended as potential friends. Consider the

following example. John and Catherine are not connected and are both friends

of Russ on social network S1. Thus, Catherine seems a good candidate for

recommendation to John on S1. Catherine and John are also members of social

network S2 and are also not connected on S2. Assume that Catherine and John

share no mutual friends on S2. With the information that we have from S1, the

recommendation algorithm could recommend Catherine to John on S2, even

though they share no mutual friends on S2.

This type of recommendation is only possible when there is cross-site comple-

mentary information. Cross-site friendship information will increase the re-

call of the friendship recommendation algorithm by recommending more known

friends, as well as its accuracy by having more information about the network.

2. Information diffusion. Information diffusion is commonly measured within

the context of a single social network. In reality, information can flow within and

across different social networks. Thus, it is of interest to investigate whether

information diffuses more within one network or across networks. Moreover,

what type of information propagates more within a network and what type

propagates more across networks?

3. User Migrations. Consider the migration of users in social media [76]. Users

often migrate from one social network to another due to their limited time and
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the better quality of service they receive at the destination network. Given a

mapping among identities of users across these two networks and their mem-

bership dates (or dates where they started their activity on the destination

network), a migration can be detected. The network from which users are

migrating can decrease the migration rate by detecting it early and can also

improve its site by introducing the additional features and services that the

destination network provides. We discuss user migrations in Chapter 7.

4. Multiple Network Group Interaction. By connecting users across sites,

one can can analyze group interaction across sites. Multiple-network group

interactions can be viewed as an instance of single-net group interactions by

combining the graph of all connected social networks. Hence, methods proposed

for single network group interaction analysis [114] can be generalized for multiple

networks.

5. Analyzing Network Dynamics. Dynamics of single-site social networks are

well-studied in the literature. These networks are known to have a power-law de-

gree distribution, a small average path length, and being highly clusterable [138].

However, users belong to multiple sites and these network properties need to

be generalized to multiple networks. In particular, it is interesting to determine

how close the dynamics of single networks are to that of multi-networks.

1.3 Contributions

In this dissertation, we make the following contributions:

1. Identifying Users with Minimum Information: we develop methods that

can identify users across social media sites with minimum information. In par-

ticular, we investigate both link- and content-based method.
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(a) Link-Based Identification: we introduce link-based techniques that em-

ploy minimum link information across sites. We investigate why (sub)graph

isomorphism-based methods fail in social networks and demonstrate prop-

erties of social networks that make (sub)graph isomorphsim challenging.

Finally, we introduce social signatures as different way of tackling user

identification. In addition, we show how social signatures can be used to

reconstruct graphs

(b) Content-Based Identification: we introduce behavioral modeling, a

strategy for gleaning digital traces of human behavior in the content that

they generate. In addition, we introduce MOBIUS, a content-based method-

ology that uses behavioral modeling for user identification with minimum

information. We show that user identification with minimum content infor-

mation is highly effective. Inspired by studies in psychology and sociology,

we introduce a large set of computational features for efficient user identi-

fication with content information.

2. Applications of Minimum Information: Considering that users on social

media are either normal or malicious, we investigate two representative applica-

tions that utilize minimum information for each category of users. For normal

users, we investigate friend recommendation and show that minimum content

information, combined with features that can detect social forces that result in

friendships (homophily, influence, among others) can help detect future friends

with performance comparable to state-of-the-art link prediction that has ac-

cess to more information. For malicious users, we investigate literature from

psychology and criminology, and combine that with machine learning and com-

plexity theory, to efficiently detect malicious users, yet with minimum informa-
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tion. Our results show that the information complexity of malicious users makes

them distinguishable from normal users. The performance of the methodology

for detecting malicious users is comparable to that of state-of-the-art malicious

user detection techniques that have access to extra information.

3. Analyzing User Behavior across Sites: Combining user data across sites,

allows us to analyze (1) patterns, (2) variations, and (3) behaviors across sites.

(a) Patterns across Sites. We investigate the basic patterns of users that

are clearly visible across sites. In particular, we demonstrate how users

select sites to join across social media and how joining patterns can be

used to predict future sites that users will join. In addition, we show the

statistical distributions that govern how individuals are distributed across

social media.

(b) Variations across Sites. We investigate how users behavior varies across

sites. In particular, we focus on the fundamental question of how friend-

ships vary across sites and how the degree distribution changes across sites.

In addition, we show how the average number of friends changes across

sites. Our findings are aligned with studies in evolutionary psychology.

(c) Behaviors across Sites. We investigate specific behaviors that are only

observable across sites. In particular, we demonstrate how user migrations

can be analyzed across sites and introduce a randomization-test based

method for detecting migrations without ground truth. The method can

be used in other domains and social media research, when ground truth is

unavailable [143].
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1.4 Roadmap

The remainder of this dissertation is organized as follows. We first determine

ways to identify users across sites using minimum information. As the majority of

data on social media is link or content, we dedicate two chapters to this topic. We

first discuss minimum link information on social media in Chapter 2 and how it can

be used to connect users across sites. We discuss minimum content information and

ways to identify users across sites with it in Chapter 3. In Chapter 4, two well-

known applications of utilizing minimum information is discussed. In particular, we

consider one application for normal users (recommendation) and one application for

malicious users (detecting malicious users). Once users are identified across sites, we

discuss user patterns that are observed across sites in Chapter 5. We discuss how user

behavior varies across sites in Chapter 6. Finally, in Chapter 7, we discuss particular

behaviors that are only observed across sites. We conclude and provide directions for

for future work in Chapter 8.
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Chapter 2

UTILIZING MINIMUM LINK INFORMATION

A minimum put to good use is

enough for anything.

Jules Verne

Connecting user identities across social media sites is not a straightforward task.

The primary obstacle is that connectivity among user identities across different sites is

often unavailable. This disconnection happens as most sites maintain the anonymity

of users by allowing them to freely select usernames without revealing their real iden-

tities, and also because different websites employ different user-naming and authenti-

cation systems. Moreover, websites rarely link their user accounts with other sites or

adopt Single-Sign-On technologies such as openID, where users can logon to differ-

ent sites using a single user account (e.g., users can login to Google+ and YouTube

with their GMail accounts). Regardless, there exists a mapping that connects user

accounts of the same individuals across sites. Can we find this mapping?

In this chapter, we provide evidence on the existence of a mapping among iden-

tities across multiple social media, study the feasibility of finding this mapping, and

illustrate and develop means for finding it.

Network structure and friendship information is known to carry information that

could prove useful in many tasks, such as link and attribute prediction, spam detec-

tion, behavioral analysis, and studying group behavior. Recent studies have indicated

that link-based methods outperform many other techniques on various tasks. For ex-

ample, Agrawal et al. [8] show that their link-based algorithm exhibits a significant

Part of the content in this chapter has been published in the TKDD journal [145].
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accuracy advantage over the classical text-based methods for mining certain news-

groups. Moreover, it is well established that link-based methods are more resilient to

spam attacks [57]. Examples from social networks include systems that are designed

using link-based methods that combat unwanted communications [96] or that guard

against Sybil attacks [117, 133].

Recent interest in the information that immediate links (friends) carry about an

individual has brought with it interesting results. When tracking link formation

in online sites, Kossinets and Watts [74], and on a larger scale Leskovec et al. [78],

found that the likelihood of forming links increases steadily as the number of common

friends increases. In similar membership closure studies [36], it has been shown that

the same increasing trend can be observed when analyzing the probability of joining

a community as a function of the number of friends who have already joined. In

another study, Backstrom et al. [16] show that the tendency of an individual to join

a group is influenced not only by the number of friends the individual has within the

community, but also crucially by how they are linked to one another.

These results suggest that it should be reasonable to use link information to

identify users across social networks. The link information and in particular friends

(immediate links) of an individual can help identify the individual across networks.

From the computer science theory point of view, this problem appears to be an

example of well-known graph isomorphism or subgraph isomorphism problem.

In the graph isomorphism, given two graphs G1(V1, E1) and G2(V2, E2), the goal

is to find a bijection f : V1 → V2 between the vertex sets of G1 and G2 such that if

two vertices v1 and v2 are adjacent in G1, i.e., (v1, v2) ∈ E1, their mapped vertices

are adjacent in G2, i.e. (f(v1), f(v2)) ∈ E2. In subgraph isomorphism, given graphs

G1 and G2 the goal is to find whether G1 contains a subgraph that is isomorphic to

G2. In terms of computational complexity, it is known that subgraph isomorphism
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is NP-complete [32]; however, it is still unknown whether graph isomorphism is NP-

complete. As subgraph isomorphism is known to be NP-complete, we can identify

the same users across sites using graph isomorphism. Note that by using graph

isomorphism detection methods, we are making strong assumptions. In particular,

we are assuming that there is a one-to-one mapping between two networks and that

there are degree correlations. We will evaluate the validity of these assumptions later

in section 2.3. In addition, the best current known graph isomorphism algorithm,

proposed by Eugene M. Luks in 1983 [14, 84], runs in exponential time (2O(
√
n logn)).

Executing such an algorithm is infeasible even for graphs that are far smaller than

those observed in social media. For example, even for graphs with 50,000 nodes,

Luks algorithm requires 10146 operations. Hence, one can approach this problem

using heuristic-based methods that execute in polynomial time.

In this chapter, by considering the state-of-the-art heuristic-based methods for

graph isomorphism and subisomorphism, we propose two heuristic-based link-based

methods to identify individuals across social networks in Section 2.1. The first method

utilizes local information (neighborhood data) to identify users across sites and the

second method utilizes global information for finding individuals. We evaluate these

methods in section 2.2 using synthetic and real-world datasets. The evaluation results

indicate that further investigation is required regarding the graph structure of users

that are shared across networks. We investigate graph structure of users that are

shared across networks in section 2.3 along with some applicationsz. Building upon

these investigations, we propose a representation, which we call social signature to

identify users across sites. Social signatures are introduced in section 2.4. We conclude

this chapter with a summary of contributions.
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2.1 Link-based User Identification

Let us formally define the problem of identifying individuals across social media

sites. Without loss of generality, we focus on two social media sites and a single

individual in this study. This is reasonable because solving the problem of 2 sites can

be easily generalized to the problem of n sites by considering n sites in a pairwise

manner. The same argument holds for more than one individual. In traditional graph

isomorphism or subgraph isomorphism there is access to the whole graph information

for both graphs. However, this is an unrealistic assumption to start with. Following

the tradition in machine learning and data mining research, we assume that we are

given some available labeled information. This labeled information is the known part

of a one-to-one relationship that connects users that co-exist on both networks. We

call this labeled information “the mapping”. The mapping for these two social net-

works contains a set of known individuals and their identities on both these networks;

it basically denotes “who on this network is who on the other?”. Finally, we focus

on situations where the identity of the individual on one of these websites is known,

e.g., profile of someone is known on Twitter; can we find his profile on Facebook?

When using link information, a social network S is represented using a graph

GS(VS , ES) and the identity of an individual is represented using a node v (vertex) in

this social graph, i.e., v ∈ VS . The mapping connects a node in the first graph to its

corresponding node in the second’s graph. We denote the first site as base-site and

the second site as target-site.

Definition. Link-based User Identification. Given two social media sites S1

(base-site) and S2 (target-site) and their respective social network graphs GS1(VS1 , ES1)

and GS2(VS2 , ES2), a mapping M⊆ VS1 × VS2 that identifies a subset of users across

these networks and an individual u whose identity (a vertex vi ∈ VS1) we know on S1
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(base-node), a link-based user identification procedure attempts to resolve the identity

(a vertex vj ∈ VS2) of u on S2 (target-node).

We introduce two techniques to identify users across sites based on link informa-

tion. The first technique uses only local information (i.e., neighborhoods and shared

friends) to identify users across sites. The second techniques utilizes global network

information (i.e., the whole graph) to identify users across sites.

2.1.1 A Local Link-based Method for Identifying Users

We introduce an iterative method for identifying users across sites using local link

information. The method considers users across sites that share most mutual friends

across sites as identities of the same individual. Our intuition is that as users join

multiple sites, it is more likely for them to become friends with individuals that they

have befriended on other sites. So, nodes that share most common friends across

sites are more likely to be the same user. Inspired by the success of methods that

utilize common friends within one site, our method employs the same heuristic across

sites. The method’s pseudocode is outlined in Algorithm 1, in which, F(i,S) denotes

friends of user i on site S.

The method starts from the users not in the mapping, and it acts similar to

the semi-supervised learning algorithms and in particular co-training [148]. In the

pseudocode, the users already mapped in S1 (S2) are denoted as M1 (M2), and the

users not mapped are denoted as VS1 \M1 (VS2 \M2).

The method then maps two users to one another across networks based on their

number of friends inside the mapping. Here, we find two users, one on each network,

who have the most number of friends among users in the mapping, and we assume

these users represent the same individual.

Since these two users are assumed to represent the same individual, they are added
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Input: GS1(VS1 , ES1), GS2(VS2 , ES2), Mapping M, v1 ∈ VS1 (base-node)

Output: v2 ∈ VS2 (target-node) or NIL

shouldContinue = True, targetNode = NIL;

while shouldContinue do

M1 = {i|(i, j) ∈M}, M2 = {j|(i, j) ∈M}; % Nodes in the Mapping

if VS1 \M1 = ∅ or VS2 \M2 = ∅ then

shouldContinue = False, break while; % No More Users Left

end

% Find Users with the Maximum Number of Friends among Mapping Nodes

x = arg maxi |F(i,S1) ∩M1|, s.t., i ∈ VS1 \M1;

y = arg maxj |F(j,S2) ∩M2|, s.t., j ∈ VS2 \M2;

if x = v1 then

targetNode = y, shouldContinue = False, break while; % Target Found

end

M = M∪ {(x, y)}; % Add an Identified Pair to the Mapping

end

Return targetNode;

Algorithm 1: The Link-based Iterative Method for Identifying Individuals

to the mapping.

This process is continued until no further user is identified on both networks

(VS1 \M1 = ∅ or VS2 \M2 = ∅), or the required user is found on both networks.

The method only considers the local neighborhood of nodes. Our next method

considers global network structure to identify users across sites.

2.1.2 A Global Link-based Method for Identifying Users

The local algorithm only considers nodes in the mapping that are 1-hop away.

While this is more realistic for using minimum information, the algorithm can be
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modified in order to consider nodes in the mapping that are more than one-hop away.

For each node, the number of nodes in the mapping that are 1. . . k hops away can be

computed and a k-dimensional vector can be used to represent users. The distance

between these vectors could help identify identities of the same individual and in

turn, grow the mapping. A more sophisticated approach is to use the topology of the

induced subgraphs of the nodes in the mapping and the nodes connected to them.

We can assume that the two networks are two different views of the same underlying

structure. In other words, we assume that users possess a specific friendship behavior

and the way they befriend others across different networks are just different ways

that they exhibit this behavior. We expect these networks to be highly correlated

and hence, a transformation between them can be computed.

The base-site and target-site graph can be represented as an adjacency matrix. Let

us call these matrices A1 and A2. An additional preprocessing step is usually taken

in order to extract structural features of the graphs. For preprocessing purposes,

the normalized Laplacians, L1 and L2, for each graph is calculated. The normalized

Laplacian L for adjacency matrix A is calculated as follows,

L = D−1/2LD−1/2, (2.1)

L = D − A, (2.2)

where D, also known as the degree matrix, is a diagonal matrix where each entree

on the diagonal represents the degree of the node. L here represents the unnor-

malized Laplacian matrix. After computing the normalized Laplacians, the k top

eigenvectors of the matrix are extracted and are used instead of the adjacency ma-

trix. This matrix can better represent the structural features of the graph when

compared with the adjacency matrix [115]. Different k’s were tested in our experi-

ments, k = 3, 5, 20, 50, 100, 200, 500. For values above 50, our results did not improve
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much; hence, we used k = 100 for our experiments. Let us call these new matrices

X1 and X2. We take the mapping part of these two matrices (corresponding mapped

rows) and call them Xm
1 and Xm

2 . Assuming there exists a linear transformation, the

transformation W can be found using the following optimization,

min ||Xm
1 W −Xm

2 ||2. (2.3)

The transformation W can be efficiently computed using a least square approx-

imation. After the weights are obtained, the unmapped part of matrix X1 can be

multiplied by W and then compared with the unmapped part of X2. Rows (users)

with the highest similarity are assumed to be the same individual.

2.2 Evaluation

In this section, we evaluate the proposed methods using both synthetic and real-

world datasets.

2.2.1 Evaluation with Synthetic Data.

To conduct a systematic evaluation of the proposed methods, we generated a set of

synthetic datasets. These synthetic datasets must contain mapping information (la-

beled data). For synthetic dataset generation, we adhere to the following procedure:

1) a real-world social network was gathered and used as the base-site; 2) the base-site’s

network was copied as the target-site; and 3) noise was introduced on the target-site.

Three common types of noise were employed, namely: i) randomly adding edges to the

target-site with probability p, ii) randomly removing edges from the target-site with

probability p, or iii) randomly rewiring [124] edges from the target-site with proba-

bility p, 0% ≤ p ≤ 100%. In rewiring, for every disjoint pair of random edges (a, b),

(c, d), we swap their end points to get new edges, (a, c), (b, d). This makes sure that
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Figure 2.1: Prediction Accuracy for Different Percentage of Edges Added, Removed,
or Rewired

the degrees are preserved for every node in the target-site graph. Based on the types

of noise introduced and the probability value p, we call these datasets SYN ADD(p),

SYN REMOVE(p), and SYN REWIRE(p), respectively. The mapping is obvious in

the case of synthetic data, and for every node in the base-site, the mapping connects

it to the corresponding copied node in the target-site. For the real-world network used

in our synthetic dataset generation, we employed a collection of 11 large scale social

media datasets (see Table 2.1) obtained from the social computing data repository

[137].

We conduct experiments on synthetic data to verify if our link-based methods

perform effectively in a controlled environment. We start with no noise (p = 0)

and notice that the local method is not even accurate for cases where no noise is

introduced. This is a result of many nodes having the same number of friends among

mapping nodes. Table 2.1 shows the accuracy rate of both methods in the case

where no noise is introduced over all synthetic datasets. The table shows that the

local method is, in eight out of eleven cases, less than 2% accurate, and the best

accuracy rate obtained is less than 7%. On the contrary, the global model is highly

accurate with no noise and is at least 79% accurate and at times, up to 98% accurate.

Next, we added noise. We used BlogCatalog dataset as the real network required for

synthetic data generation. Part of the mapping was used for training and the rest
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Table 2.1: Prediction Accuracy for Different Social Networks

Site Nodes

(Mapping

Size)

Edges

(Friendship

Links)

Accuracy

(Local

Method)

Accuracy

(Global

Method)

Blogcatalog 88,784 4,186,390 6.93 % 89.3%

Buzznet 101,168 4,284,534 5.11 % 79.7%

Digg 116,893 7,261,524 1.81 % 91.4%

Douban 154,907 654,188 1.78 % 84.1%

Flixster 2,523,386 9,197,338 0.57 % 96.6%

Friendster 100,199 14,067,887 0.32 % 91.3%

Foursquare 106,218 3,473,834 0.53 % 98.0%

Hyves 1,402,611 2,777,419 0.37 % 95.0%

Last.fm 108,493 5,115,300 0.76 % 95.6%

Livemocha 104,438 2,196,188 4.57 % 96.4%

YouTube 1,138,499 2,990,443 4.57 % 90.5%

for testing. 10-fold cross-validation was used and the average accuracy for correctly

predicting identities in the testing part of the mapping was recorded. Figure 2.1

depicts these accuracy rates for the local method and for cases where with different

probabilities, edges were being added, removed, or rewired. As seen in these figures,

the local method performs quite poorly on synthetic data. The average accuracy rates

for SYN ADD(p), SYN REMOVE(p), and SYN REWIRE(p) were 4%, 1%, and 1%,

respectively. The results did not improve much for the global method. With p = 0.5,

the accuracy rates for SYN ADD(p), SYN REMOVE(p), and SYN REWIRE(p) were

6%, 10%, and 0.01%, respectively. Next, we evaluate the performance of the methods

with real-world datasets.
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Table 2.2: Real-World Dataset Properties

Dataset BlogCatalog network Size Flickr network Size Mapping Size |M|

BF3Hop 88,784 users 564,491 users 1,747 individuals |I1|

BF1Hop 1,455 users 630 users 546 individuals |I2|

2.2.2 Evaluation with Real-World Data.

We gathered two real-world datasets. For collecting real-world datasets, we require

additional mapping information about identities across social media sites. Fortu-

nately, there exist websites where users have the opportunity of listing their identities

(user accounts) on different social networks. For instance, on Facebook users can list

their usernames on different sites. This can be thought of as labeled data for our

learning task since it provides the accurate mapping for our experiments. In addition

to labeled data, these websites provide strong evidence on the existence of a mapping

between identities across social media sites. Later on, in Section 3.3.1, we discuss the

procedure for collecting mapping information in detail. From sites that provide such

mapping information, we gathered individuals that had account on two sites: Flickr

and BlogCatalog, due to their large network size and many overlaps.

We collected two disjoint sets of individuals. All individuals had accounts on both

BlogCatalog and Flickr. We call these sets I1 and I2 (I2∩I2 = ∅). For each member

of these sets, we collected their identity on both BlogCatalog and Flickr. Then for

individuals in I1 and for each of their two identities, we collected all the users who

were within a 3-hop distance in the respective network using a Breadth-First-Search

crawling procedure [91]. For I2, however, we only crawled users who were within a

1-hop distance (immediate friends). Hereafter, we will refer to the network datasets

created from I1 and I2 as BF3Hop and BF1Hop, respectively. Table 2.2 provides

some statistics about the cardinalities of these datasets.
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Table 2.3: Performance of Link-Based Methods on Real-World Datasets

Dataset Local Method Global Model

BF3Hop ≈ 0 ≈ 0

BF1Hop 0.3% 0.6%

These datasets help showcase the effect of non-immediate link information on

the performance of our proposed algorithms. This is true since BF3Hop contains

non-immediate information, whereas BF1Hop lacks this property.

We evaluate both methods on real-world datasets. We apply the local method to

our real-world datasets and 10-fold cross-validation is employed to measure accuracy.

The method failed on both datasets with an average accuracy rate of 0.3% onBF1Hop

and ≈ 0 on BF3Hop. Similarly, we evaluated the global model. However, the

results did not improve much. For real-world datasets, the accuracy rate were 0.6%

on BF1Hop and 0% on BF3Hop. Table 2.3 summarizes the results of link-based

methods on the real-world datasets.

We have shown that using both local and global information, poor performances

are expected when using real-world datasets. The question is whether there are any

properties in real-world datasets that need to be considered in order to obtain higher

accuracy rates. We investigate this question next.

2.3 Investigating Properties of Real-World Datasets

To further real-world datasets, let us present various hypotheses regarding the

properties of the users that are in the mapping. These link-related properties that

identities share when representing the same individual across different networks can

be employed when designing methods for identifying users across social networks.

Each of these hypotheses is empirically evaluated. The observations gathered while

evaluating these hypotheses can be used later to help construct link-based methods.
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To simplify the notation in these hypotheses, let xi be a user (node), and F(xi,S)

the set of friends user xi has on site S. For two users x1 ∈ S1, x2 ∈ S2 that belong

to two different sites, we define the concept of shared-friends across networks. In this

case they are the set of people who co-exist on both S1 and S2 and are friends with

both x1 and x2. For clarity, shared friends are depicted in Figure 2.2. In this figure,

the mapping consists of 3 pairs and is shown using dashed lines and black circles

denote shared friends between x and y. The concept is formalized as follows,

SF(x1, x2) = {(y1, y2)|y1 ∈ S1, y2 ∈ S2, , (y1, y2) ∈M,

y1 ∈ F(x1,S1), y2 ∈ F(x2,S2)}.

We also define the concept of crossed-over friends for a user x. These are the

corresponding identities, on the other site, for the friends of x who are members of

both sites. So, if x is a member of S1, this set includes identities on S2 for those

friends of x that are members of both sites. Formally,

CRS1→S2(x) = {y|y ∈ S2,∃x′ ∈ F(x,S1), s.t., (x′, y) ∈M}.

This definition is bidirectional. Note that if users x1 and x′1 belong to the same

individual, i.e., (x1, x
′
1) ∈M, then the value of |CRS1→S2(x)| is not necessarily equal

to |CRS2→S1(x′)|. In general, for any two users x ∈ S1 and y ∈ S2 there could be

no relationships between the values of |CRS1→S2(x)|, |CRS2→S1(y)|, and |SF(x, y)|,

e.g., consider the situation where there are no shared friends but different number of

crossed-over friends. Similarly, in Figure 2.2, circles in the right dashed oval denote

CRS1→S2(x), and circles in the left dashed oval represent CRS2→S1(y). Given these

formal definitions, we present our hypothesis next.
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Figure 2.2: A visualization of two social networks and the mapping. Social network
S1 consists of the nodes on the left and social network S2 consists of the nodes on
the right. Dashed lines denote the mapping M (|M| = 3), solid circles denote
shared friends SF(x, y), circles in the right dashed oval denote crossed-over friends
CRS1→S2(x), and circles in the left dashed oval denote CRS2→S1(y).

2.3.1 Hypotheses Verification

H1: There is a correlation between the number of friends of the same

individual across networks. To test this, for all the users in the mapping, we

analyze the number of friends they have in both networks. A Pearson correlation

analysis revealed that the number of friends are uncorrelated across networks for the

same individual. The correlation coefficient ρ was 0.038 for BF3Hop and 0.186 for

BF1Hop. For a randomly generated mapping, the correlation coefficient ρ was 0.007

for BF3Hop and 0.019 for BF1Hop. This shows that there is no strong correlation

among the number of friends across networks for the same individual.

H2: There is a correlation between the percentage of friends of the same

individual on each network that are shared across networks. To verify this,

we first enumerated the number of friends shared between identities of the same

individual across networks, i.e., we calculated SF(x1, x2) for all (x1, x2) ∈ M, and
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Table 2.4: Friends Shared across Social Networks

Property BF1Hop BF3Hop

Average number of friends shared 1.14 .18

Average number of friends on Flickr 3.08 26.22

Average number of friends on BlogCatalog 24.89 141.41

Average % Flickr friends shared 37% 2%

Average % BlogCatalog friends shared 9% .2%

Maximum number of friends shared 32 30

Minimum number of friends shared 0 0

Standard deviation of the number of friends shared 2.30 1.09

for both datasets. Table 2.4 shows some statistics about these shared friends.

As shown in this table, the average number of friends shared is at most around 1

in the datasets. Having at most one shared friend suggests that the friends that are

shared across both social networks, in the best case, can form connected components

on both networks. Starting from an individual in the mapping and its two identities,

a Breadth-First-Search procedure on each network should be able to traverse many

other users in the mapping.

The table also shows, for both BlogCatalog and Flickr, the average values for the

percentage of users’ friends that were shared. The small values of these percentages

denotes that many friends on both social networks do not cross over into the other 1. A

correlation analysis on these percentages across networks, when there was at least one

friend shared, showed that ρ ≈ 0 for both datasets. Again, the value was close to the

correlation coefficient for both datasets when the mapping was randomly generated

1This could also be due to the small size of the mapping in the dataset; however, when collecting

the initial set of mapping users from BlogCatalog we made sure a connected component was collected

to reduce the effect of this phenomenon.
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Figure 2.3: Target User Connection Probability to Different Fractions of Crossed-
Over Friends

and shows that there is no strong correlation between percentages.

H3: The target-node is connected to the crossed-over friends of the base-

node. Here, we conjectured intuitively and based on previous evidence from the

social sciences (e.g., see Herding Behavior [45]), that when users join various social

networks, their friends also follow them and join these networks. We assume that if

one analyzes the connections of crossed-over friends, one might be able to find the

user on the target network.

For evaluating this hypothesis, for all pairs (x1, x2) ∈ M , x1 ∈ S1, x2 ∈ S2, we

first extracted all crossed-over friends of x1 (CRS1→S2(x1)). Then for all members

of this set y ∈ CRS1→S2(x1), we checked whether the target-node x2 is connected to

y, i.e., x2 ∈ F(y,S2). In other words, we are trying to calculate the probability of

identifying the target-node by analyzing the connections of the crossed-over friends

of the base-node.

It turns out that in both datasets, the probability of target-node x2 being con-

nected to all the friends of the base-node that crossed-over is always less than 5%.

Furthermore, the probability of x2 being connected to at least one of the friends is

still very low for both datasets (around 45% for BF3Hop dataset at its best). Figure
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2.3 shows the probability of the target-node being connected to different fractions of

crossed-over friends of the base-node for the BF3Hop dataset: (a) friends crossed-

over from Flickr to BlogCatalog, and (b) from BlogCatalog to Flickr. For instance,

Figure 2.3(b) shows that in the best case, one has less than a 45% chance to find the

target-node based on crossed-over friends of the base-node. This is because in 55% of

the cases, the target-user is not even connected to these friends. The 45% is reduced

to less than 5% in the worst case. But, when the user is connected to these friends, is

it easy to distinguish him from others who are also connected to these friends? This

brings us to our next hypothesis.

H4: If the target-node is connected to the crossed-over friends of the base-

node, how easily can it be identified? To answer this question, we further

analyzed these crossed-over friends and ranked other users in the target network

based on the number of connections they have to them. In these ranked users, we

found that in BF1Hop and on average, the target user x2’s ranking is 19 for friends

who cross-over from BlogCatalog to Flickr and 25 in the opposite direction. These

averages showed a dramatic increase in BF3Hop and were 272 and 251, respectively.

Furthermore, in BF1Hop, x2 was the top ranked user in only 23% of the cases where

friends crossed over from BlogCatalog to Flickr and 24% of the cases where the

crossing over took place in the opposite direction. These percentages dropped to 9%

and 8% for the BF3Hop dataset, respectively. Note that even if one is successful in

finding that the target user among the nodes that are connected to the crossed over

friends of the base-node, it is very unlikely to correctly identify the target user. For

example, in case of friends who crossed over from BlogCatalog to Flickr in BF3Hop,

this probability is at most 45%× 9% u 4%.

The heuristic-based methods proposed in this chapter are inspired by (sub)graph

isomorphism detection methods. They utilize mapping information and graph struc-
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ture in a semi-supervised manner. However, the results from the hypotheses verifica-

tion suggest that such methods that deal with link information (local or global) can

perform poorly when solving the user identification problem. Based on the evidence

that we gathered, it is very unlikely to come up with new isomorphism detection

methods that uses mapping information or graph structure to perform significantly

better than the presented link-based methods. While our results clearly show that

link information is not always useful, there are exceptions where link information in

mapping or graph structure can be utilized for user identification across sites. This

has been witnessed in recent studies where link-information has been successfully

utilized to identify individuals across sites [82, 113, 146].

The results showed that counter-intuitively, link information is not sufficient when

using mapping information or graph structure to identify individuals across networks.

In addition, our constraint of introducing link-based methods that utilize minimum

information was not fully realized, especially in the case of the global link-based

method. Therefore, this suggests approaching the problem from a different angle. Our

view is that there might be properties of nodes that remain unique across networks.

Once these properties are identified, one can utilize them to identify the same nodes

across networks. We investigate such properties next.

2.4 Social Signatures

What is the absolute minimum information a graph node can have about its

surrounding network? Clearly, it is the degree of the node. As we discussed, if this

minimum information becomes unique, then it can be utilized to identify users across

sites. Hence, we first investigate degree uniqueness in graphs.
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2.4.1 Degree Uniqueness

The node’s degree is the absolute minimum network information that we can have

about a node in a graph. The degree can at times help identify nodes uniquely in

graphs. For example, the node with the maximum degree2, as in a popular celebrity

on Twitter, can be uniquely identified solely based on its degree. Hence, if a graph is

anonymized and only node degrees are available, we can de-anonymize the node with

the maximum degree.

To investigate node uniqueness realistically, we make a series of assumptions. We

assume the problem is solved for large-scale real-graphs or synthetic graphs that

exhibit properties of real-world graphs. Both types of graphs are known to exhibit

specific properties such as a having a power-law degree distribution. Hence, we assume

that the graph has a power-law degree distribution. In a graph with a power-law

degree distribution, the probability of observing a degree d is

p(d) = Cd−α, (2.4)

where C is a normalizing constant and 2 < α < 3 in real-world networks. To measure

degree uniqueness, we identify the degrees that can be unique in a power-law degree

distribution. The following theorem investigates degree uniqueness in graphs with

power-law degree distribution.

Theorem 1. For any graph with a power-law degree distribution, the proportion of

degrees that are unique is θ(n
1−α
α ).

Proof. Consider the first degree dE that is expected to be unique in a power-law

distribution. For degree dE to be unique, the probability of observing it in the graph

2Assuming there is one such node.
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should be 1
n
, where n is the number of nodes in the graph. Thus,

p(dE) = Cd−αE =
1

n
. (2.5)

Solving for dE, we obtain

dE = n1/α. (2.6)

This is similar to the bound obtained by Aielo et al. [10] for such unique degrees

in large graphs. According to Equation 2.4, degrees larger than dE are less likely

to be observed. So, any degree that is larger than dE is also unique in the graph.

In particular, the largest degree in the graph should also be unique. To obtain the

largest degree in the graph, we can use the ccdf [101] of the power-law distribution,

P (d) =

∫ ∞
k=d

p(k)dk = (
d

dmin

)
−(α−1)

, (2.7)

where dmin is a constant.3 As there are no other degrees larger than the maximum

degree, we can use the ccdf of the power-law distribution (Equation 2.7) to compute

its value,

P (dmax) =

∫ ∞
k=dmax

p(k)dk =
1

n
. (2.8)

Solving for dmax, we obtain

dmax = n1/(α−1). (2.9)

All the degrees between dE and dmax are unique. Therefore, the probability of

degrees being unique in a power-law graph is P (dE) − P (dmax) that can be shown,

with basic algebra, is equal to

P (dE)− P (dmax) =

∫ ∞
k=n1/α

p(k)dk −
∫ ∞
k=n1/(α−1)

p(k)dk

∈ θ(n
1−α
α ). (2.10)

3Power-law distribution cut-off.

29



Because α > 1, the exponent of the term θ(n
1−α
α ) is negative. Therefore, as the

size of the graph (n) grows, the proportion of nodes with a unique degree shrinks to

zero.

Corollary 2. As the number of nodes grow in large-scale graphs, nodes become less

and less unique.

We have theoretically shown that degrees become less unique as graphs grow. This

can be empirically tested using large-scale networks. For this purpose, we take 10 so-

cial network graphs, all publicly available from social computing data repository [137]

and SNAP4 and measure their degree uniqueness. We make sure that the graphs are

of different sizes so that the effect of network growth on degree uniqueness shown in

Corollary 2 can be observed. For each graph, we measure how unique degrees are.

For instance, in a graph with completely distinct degrees, the uniqueness is 100%.

The results are provided in Table 2.5. The results confirm our theoretical findings.

That is, as the size of the network (n) grows, the uniqueness, denoted as U in Table

2.5, drops.

The number of friends can at times help uniquely identify users on large graphs.

This unique identification can be easily achieved in case of a popular celebrity with

millions of friends on social networks. However, we have shown both theoretically

and empirically, that the number of friends (i.e., degree) in general cannot help with

unique identification in large graphs. Hence, one needs to add more information for

unique identification. For that purpose, we will propose social signatures next.

2.4.2 Revisiting Minimum Information

As degrees tend to become less unique in larger graphs, we can investigate if

one can uniquely identify nodes by adding a little more information about them in

4http://snap.stanford.edu/
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Table 2.5: Degree Uniqueness for Different Social Networks

Site Nodes Degree Uniqueness (U)

Blogcatalog 88,784

3× 10−3 < U < 6× 10−3Buzznet 101,168

Livemocha 104,437

Douban 154,908

2× 10−4 < U < 6× 10−4
Foursquare 639,014

Digg 771,231

YouTube 1,157,827

Hyves 1,402,693

U < 1.4× 10−4LiveJournal 4,036,537

Friendster 5,689,532

addition to their degrees. Consider the graph provided in Figure 2.4. In this graph,

we can represent node A with its degree: dA = 3. We can instead represent A with

the friends that it has. Let f(v) denote the set of friends for node v. In this case,

the new representation would be f(A) = {B,C,D}. Here, we are assuming that each

node in the graph has a circle around its friends. These circles are shown for nodes

B, C, and D in Figure 2.4. By representing a node using its friends, we are implying

that the node is in the intersection of the respective circles of the friends. In Figure

2.4, node A has friends B, C, and D; therefore, it is in the intersection of the circles

of these nodes.

While this representations carries a natural explanation, it is not mathematically

well-defined. This definition is self-referential, meaning that for uniquely finding A,

we need to find B, C, and D, and for finding them, we need to find their friends,

and so on. To resolve this issue, we can assume that the circle that surrounds the
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Figure 2.4: A Sample Graph

friends of each user, is as big as the number of friends that the user has. For instance,

in Figure 2.4, the big circle around friends of B has size 3 and the smaller circle

around friends of C has size 2. Again, a user is in the intersection of these circles

corresponding to different friends. This way instead of representing node A with its

friends f(A) = {B,C,D}, we can represent it with the size of the circles (i.e., number

of friends) of its friends: S(A) = {1, 2, 3}. This representation basically shows the

number of friends that the friends of A have. We denote this representation as the

Social Signature of A.

Definition 1. The social signature of node v in a graph, denoted as S(v), is the

multiset of the number of friends that the friends of v have.

As a direct result, a node with an empty social signature, is an orphan node in the

graph. The following example clarifies computation of social signatures in a graph.
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Example 2.4.1. Consider the graph in Figure 2.4. In this graph, the social signatures

for each node can be calculated as follows:

S(A) = {2, 3, 3}, (2.11)

S(B) = {2, 2, 3}, (2.12)

S(C) = {3, 3}, (2.13)

S(D) = {1, 2, 3}, (2.14)

S(E) = {3, 3}, (2.15)

S(F ) = {3}. (2.16)

Next, we will discuss some properties of social signatures.

2.4.3 Properties of Social Signatures

Social signatures have intuitive properties that connect them to well-known con-

cepts in networks. Some network and graph properties can be directly computed

from social signatures and some can be approximated or bounded using them. The

connection between social signature properties and network concepts can be made

rigorous through extremal graph theory [23]. As these are straightforward proper-

ties, we demonstrate them through examples. These properties are presented in an

increasing order of complexity.

Let S(v) = {d1, d2, . . . , dk} denote the social signature for node v. Let l(v) = k

denote the length of the social signature of v. In other words, l(v) counts the number

of elements in the social signature for v. Let,

S∑(v) =
k∑
i=1

di (2.17)
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denote the summation of degrees in the social signature of v. Then, the following

properties connect social signatures to graph properties:

1. Node Degree. For node v, the length of its social signature l(v) is equal

to its degree dv. For example, in Figure 2.4, the social signature of node A,

S(A) = {2, 3, 3}, has three elements. Hence, l(A) = 3 = dA.

2. Degree Distribution. For a given node v, with degree d, by definition, its

degree is observed in social signatures of d other nodes. Let nk denote the

total number of times degree k is observed in a graph. Let sk denote the total

number of times degree k is observed in all social signatures. Hence, given social

signatures for all nodes, nk can be calculated as

nk =
sk
k
. (2.18)

For example, in Example 2.4.1, the number of times 3 is observed in social

signatures is s3 = 9 times. Hence, there are n3 = s3/3 = 9/3 = 3 nodes of

degree 3 in the graph in Figure 2.4.

Given nk, we can easily recover the degree distribution p(dx = k) of a graph

with n nodes using social signatures,

p(dx = k) =
nk
n

=
sk
nk
. (2.19)

3. Ego Degree Distribution. The social signature of a node is a subset of the

degree sequence of the graph. Note that the social signature is not the degree

sequence of the subgraph induced by the node and its neighbors, also known as

the ego network. This is because degrees in the social signature are the degrees

in the whole graph. Each degree in the social signature of a node can be larger

than the corresponding degree in the degree sequence of the ego network. This
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fact can be used to approximate the degree distribution of the ego network, i.e.,

ego degree distribution.

The ego network of node v, has l(v) + 1 nodes ( l(v) friends + ego ). let

n≥k (v) denote the number of degrees that are greater or equal to k in the social

signature of v. Then the degree distribution for the ego network of v can be

approximated as follows,

p(dx = k) ≤


n≥
k (v)

l(v)+1
k 6= l(v);

n≥
k (v)+1

l(v)+1
k = l(v).

(2.20)

For example, in Figure 2.4, social signature for A is S(A) = {2, 3, 3} and l(A) =

3. Here, we have n≥3 (A) = 2. So, in the A’s ego network,

p(dv = 3) ≤ 2 + 1

3 + 1
= 0.75. (2.21)

Similarly, in D’s ego network, p(dx = 3) ≤ 2/4 and in F ’s ego network, p(dx =

1) ≤ 1.5

4. Node Connectivity. Consider any two vertices v1 and v2, with degrees d1

and d2, respectively. If there is an edge between v1 and v2, then d1 ∈ S(v2) and

d2 ∈ S(v1). This property can be used for graph reconstruction when only social

signatures are available, but edges are unavailable. For example, in Figure 1,

node A has social signature S(A) = {2, 3, 3} and degree dA = 3 and node F

has social signature S(F ) = {3} and degree dF = 1. Nodes A and F cannot be

connected because dA = 3 ∈ S(F ), but dF = 1 6∈ S(A).

5. Social Signatures vs. Adjacency Lists. Social signatures are a relaxed

version of adjacency lists. Consider the space required to store adjacency lists

5In case of nodes with degree 1, upper-bound is tight and inequality becomes equality. Hence,

p(dv = 1) = 1.
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and social signatures. In a network with n vertices and m edges, storing the

adjacency list requires storing n indices for nodes and
∑

i di = 2m indices for

the connections in the adjacency list, i.e., a total of n + 2m values. For social

signatures, we require
∑

i di values to be stored because the social signature for

node i contains di values. Hence, a total of 2m values are required for stor-

age. Therefore, social signatures are more storage friendly that adjacency lists.

Note that adjacency lists are more accurate and can guarantee perfect network

reconstruction. However, in adjacency lists, for each nodes we carry more infor-

mation about the surrounding network of a node. In social signatures, while we

carry minimum information about the surrounding network, the reconstruction

accuracy is still high as we will show in Section 2.4.5.

6. Common Neighbors. For two nodes v1 and v2, if they are both connected to a

node x (a common neighbor), then dx ∈ S(v1) and dx ∈ S(v2). Let S(v1)∩S(v2)

denote the multiset intersection between the social signatures of nodes v1 and

v2. Let N(v1, v2) denote the number of common neighbors v1 and v2 have.

Then,

N(v1, v2) ≤ |S(v1) ∩ S(v2)|. (2.22)

For example, in Figure 2.4, nodes B and D have two common neighbors A and

E, i.e., N(B,D) = 2. The intersection between the social signatures of nodes B

and D is {2, 3}. Therefore, the property holds as N(B,D) = 2 ≤ 2 = |{2, 3}|.

This property has application for link prediction using social signatures as the

number of common neighbors plays an important role for predicting potential

links in social networks [80].

7. Network Density. If all the social signatures are known, all the degrees are

known. The summation of all degrees is known to be twice as the number of
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edges; therefore, the number of edges can be determined. For a network with n

vertices and their social signatures, the network density ρ can be computed as

ρ =

∑
v l(v)

n(n− 1)
. (2.23)

8. Ego Network Density. As mentioned, the ego network for node v has l(v)+1

nodes. It is easy to show that ego network density for node v, ρ(v), can be

approximated as

ρ(v) ≤ min(
S∑(v) + l(v)

l(v)(l(v) + 1)
, 1), (2.24)

where S∑(v) (defined in Equation 2.17) is the summation of degrees in the

social signature.

9. Clustering Coefficient. (local) clustering coefficient measures how close

neighbors of a node are to being a clique. We can approximate the cluster-

ing coefficient c(v) of node v as

c(v) ≤ min(
S∑(v)

l(v)(l(v)− 1)
, 1). (2.25)

We have demonstrated some basic properties of social signatures. Next, we will

investigate the uniqueness of social signatures in large graphs.

2.4.4 Social Signature Uniqueness

In this subsection, we investigate the possibility of uniqueness in social signatures.

To that end, we investigate the uniqueness of social signatures in different large-scale

synthetic and real-world networks with power-law degree distributions.

In the first part, we investigate uniqueness in large synthetic graphs. There are

many models that generate synthetic graphs with power-law degree distribution in-

cluding the small-world model [124], the vertex copying model [71], the preferential
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attachment model [17], random graphs with power-law degree distribution [10], among

many others. Here, we focus on the popular preferential-attachment model [17] and

leave the theoretical analysis of other well-established models as part of our future

work.

In the second part, we investigate real-world graphs with power-law degree dis-

tribution. These networks are similar to social networks observed online for which

the underlying process generating these networks is generally unknown. The results

in the second section are general and apply to any real-world graph with power-law

degree distribution.

Uniqueness in Synthetic Networks

Here, we investigate the uniqueness of social signatures in graphs generated by the

preferential attachment model. The following theorem provides the condition under

which social signatures become unique in synthetic graphs generated by the prefer-

ential attachment model. In the theorem, let k = l(v) be the length of the social

signature of a node v, i.e., its degree.

Theorem 3. For a power-law graph with n nodes that is generated by the preferential

attachment model, the social signature of a node is unique when its degree k & lnn.

Proof. Let p(d1, d2, . . . , dk|k) denote the probability of observing a social signature of

{d1, d2, . . . , dk} for a node that has degree k. Based on the preferential attachment

model, the node that arrives in the network selects other nodes solely based on their

degrees, so we can assume

p(d1, d2, . . . , dk|k) ≈ p(d1|k)p(d2|k) . . . p(dk|k). (2.26)

Later, we will show that this is not a strong assumption and fits the real-world
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data well. Using Bayes theorem, we can rewrite Equation 2.26 as

p(d1, d2, . . . , dk|k) ≈ p(k, d1)

p(k)

p(k, d2)

p(k)
. . .

p(k, dk)

p(k)
. (2.27)

To compute the RHS of Equation 2.27, one needs to compute the joint distribution

p(k, l). We can compute the joint distribution by following the process provided by

Albert and Barabasi [11]. Here, we summarize their solution in the following up to

Equation 2.29 for clarifying the rest of our proof (more details for calculating the

joint distribution can be found in the work of Albert and Barabasi [11]).

To compute the joint distribution, we consider the number nodes with degree k

and l that are connected. Let Nk,l denote the number of such pairs. In the preferential

attachment process, younger nodes that are added later to the network have smaller

degrees. So, without loss of generality, we can assume k < l and that k is added later

to the network than l. We can also assume for mathematical convenience that the

number of nodes selected during the preferential attachment process is m = 1. In

other words, once a node enters a network, it selects only one other node to connect

to. Then, we can compute the change that Nk,l makes in time:

dNk,l

dt
=

(k − 1)Nk−1,l − kNk,l∑
k kNk

+
(l − 1)Nk,l−1 − lNk,l∑

k kNk

+ (l − 1)Nl−1δk,1, (2.28)

where δ represents the Kronecker delta, and Nk and Nl−1 are the number of nodes

with degree k and l − 1 at time t, respectively. The first term in Equation 2.28

computes the change that Nk,l will have if we add one edge to a node that has a

degree k or k − 1 and is connected to a node of degree l. The first term in the

numerator represent the gain that Nk,l will have and the second term represents the

loss. Similarly, the second term in Equation 2.28, considers edges added to nodes
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that have degrees l or l− 1 and are connected to nodes with degree k. The last term

in the equation considers the case where k = 1 and the edge connects a new node to

another node of degree l − 1.

In the preferential attachment model, we know that
∑

k kNk = 2t and N(k, l) =

tp(k, l); therefore, Equation 2.28 can be made time independent. Solving which for

p(k, l) results in

p(k, l) =
4(l − 1)

k(k + 1)(k + l)(k + l + 1)(k + l + 2)

+
12(l − 1)

k(k + l − 1)(k + l)(k + l + 1)(k + l + 2)
. (2.29)

As, k < l, to maximize p(k, l), we can set l = k + 1 in Equation 2.29. Therefore,

p(k, l) ≤ 4k

k(k + 1)(2k + 1)(2k + 2)(2k + 3)

+
12k

k(2k)(2k + 1)(2k + 2)(2k + 3)

=
4k

k(2k + 1)(2k + 2)(2k + 3)
(

1

k + 1
+

3

2k
)

≤ 4k

k(2k + 1)(2k + 2)(2k + 3)
(
1

2
+

3

2
)

=
8k

k(2k + 1)(2k + 2)(2k + 3)

=
8

8k3 + 24k2 + 22k + 6
, (2.30)

where last inequality uses the fact that 1
k+1

+ 3
2k

is maximized when k = 1.

Substituting Equation 2.30 in Equation 2.27, we get

p(d1, d2, . . . , dk|k) ≤ (
8

(8k3 + 24k2 + 22k + 6)p(k)
)k. (2.31)

It is known that in the preferential attachment model, the probability of observing

k, p(k), is approximately k−3 [11]; therefore,
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p(d1, d2, . . . , dk|k) ≤ (
8k3

8k3 + 24k2 + 22k + 6
)k

= (
1

1 + 3
k

+ 22
8k2

+ 6
8k3

)k

≤ (
1

1 + 1
k

)k

≈ (
1

e
)k. (2.32)

For a social signature to be unique, we must have

p(d1, d2, . . . , dk|k)np(k) ≤ 1. (2.33)

Since, 0 ≤ p(k) ≤ 1, uniqueness condition is met when

p(d1, d2, . . . , dk|k) ≤ 1

n
. (2.34)

Equation 2.32 provides an upper-bound for the likelihood of observing a social

signature; therefore, a social signature is unique when

p(d1, d2, . . . , dk|k) . (
1

e
)k ≤ 1

n
, (2.35)

or equivalently, when k & lnn, which completes the proof. Note that as k needs to

be an integer, it is more realistic to consider k & dlnne.

Our later experiments show that the lower bound is in fact tight and k ≈ dlnne.

The theorem shows that the uniqueness of social signature grows logarithmically with

the size of n. This is surprising, as in a network of n = 10100 nodes, you only need

k ≈ 230 to be unique. In other words, having 230 or more friends and constructing

the social signature from those friends, can represent the user uniquely in the network.

In fact for Facebook, the largest current social network, n ≤ 1010, having 23 or more

friends is enough for uniquely representing users. Figure 2.5 demonstrates the social
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Figure 2.5: The Social Signature Length (degree) k that Guarantees Uniqueness
for Graphs with Different Sizes (10 ≤ n ≤ 10100). All graphs are generated by the
preferential attachment model and the k values are caluclated according to Theorem
3: k = lnn.

signature length k that will be unique for graphs with different sizes (10 ≤ n ≤ 10100)

generated by the preferential attachment process.

We also evaluate Theorem 3 empirically by generating many graphs using the

preferential attachment model. We generate 5,000 graphs that range from n = 100

nodes to n = 50, 000 nodes, with increments of 100 nodes. These graphs are generated

using the CONTENT toolbox [116]. For each graph size (n), we generate 10 graphs.

For each graph, we compute the k at which social signatures become unique in the

graph. Finally, we take the average among the 10 graphs of the same size. We also

compute the expected theoretical lower-bound for social signature uniqueness from

theorem 3: k = dlnne. The results are provided in Figure 2.6. In the Figure, the solid

line represents simulation results and the dashed line is the theoretical lower-bound.

We notice two observations in this figure. First, the general trend of the Figure 2.6

matches the trend observed in Figure 2.5. Second, the theoretical bound generated

by k = dlnne matches closely to the simulation results.
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Figure 2.6: Simulating 500 preferential attachment graphs with 100 ≤ n ≤ 50, 000
and increments of 100 nodes. The solid line provides the uniqueness limit for social
signatures and the dashed line is computed using Theorem 3: k = lnn.

Next, we will prove general results that apply to any graph with a power-law

degree distribution.

Uniqueness in Real-World Networks

Here, we investigate the uniqueness of social signatures in graphs with power-law

degree distribution. In particular, we will prove the following theorem:

Theorem 4. For a power-law graph with n nodes such that p(k) = ck−α, the social

signature of a node is unique when its degree k ≈ eW (lnn), where W is the Lambert

function (product logarithm).

Proof. The proof follows a similar argument to the proof of Theorem 3.

p(d1, d2, . . . , dk|k) ≈ p(d1|k)p(d2|k) . . . p(dk|k). (2.36)

The conditional probability p(d|k) can be upper-bounded,

p(d|k) ≤ p(k) = ck−α ≤ k−α. (2.37)

Substituting Equation 2.37 in Equation 2.36, we get

p(d1, d2, . . . , dk|k) ≤ (
1

kα
)k ≤ (

1

k
)k, (2.38)
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Figure 2.7: The Uniqueness Value k = eW (lnn) for Graphs with Different Sizes
(10 ≤ n ≤ 10100)

where last inequality is a result of α > 1. Similarly, for uniqueness, we require

(
1

k
)k =

1

n
, (2.39)

which when solved for k results in

k = eW (lnn), (2.40)

where W is the Lambert function (product logarithm). This concludes the proof.

The Lambert function can only be numerically approximated; however, once sim-

ulated (Figure 2.7), a curve similar to the uniqueness curve simulated for the pref-

erential attachment model (Figure 2.5) is observed. In fact, for graph size n, the

predicted uniqueness value by eW (lnn) is always smaller than lnn, predicted for the

graphs generated by the preferential-attachment model. For instance, for n = 10100,

eW (lnn) ≈ 56 < 230 = lnn. This shows that in a power-law network of 10100 users,

users that have only having 56 or more friends, have unique social signatures. Simi-

larly, for Facebook-size networks, n ≤ 1010, only 10 friends is enough to have a unique
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Figure 2.8: The Uniqueness of Social Signatures for Real-World Graphs

social signature. Figure 2.7 depicts the value k = eW (lnn) for graphs with different

sizes 10 ≤ n ≤ 10100.

Our empirical results confirm the results of Theorem 4. As most social networks

have less than n = 1010 users, we expect social signatures to become unique when

users have eW (ln 1010) = 10 or more friends. By manually measuring the uniqueness

of social signatures, we notice that social signatures are almost always unique for

users in these real-world networks that have 10 or more friends. Figure 2.8 shows the

uniqueness of social signature for large-scale real-world networks listed in Table 2.5.

While our results show uniqueness for different n, they do not show how the

probability of observing a social signature approaches uniqueness. Our next theorem

measures that.

Theorem 5. For a social signature {d1, d2, . . . , dk} with length k and when n > kk,

the probability of the signature being unique is ( n
kk

)e1−Ω( n
kk

).

Proof. Let X1, X2, . . . , Xnp(k) be independent poison trials, each for one of the users

with degree k. Assume that P (Xi = 1) = p(d1, d2, . . . , dk|k). Let X =
∑

iXi denote

the number of users having social signature {d1, d2, . . . , dk} and µ be E[X]. Then,
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using Chernoff bound (lower tails), for any δ ∈ (0, 1], we have

P (X < (1− δ)µ) < (
e−δ

(1− δ)(1−δ) )µ. (2.41)

Setting (1− δ)µ = 1, we get

δ =
µ− 1

µ
. (2.42)

Substituting it in Equation 2.41, we get

P (X < 1) < µe1−µ. (2.43)

As δ ∈ (0, 1], from Equation 2.42, we have µ > 1. From theorem 4, we know that

p(d1, d2, . . . , dk|k) is upper-bounded by ( 1
k
)k; therefore,

µ = np(k)p(d1, d2, . . . , dk|k) ≤ np(k)(
1

k
)k ≤ n

kk
∈ Ω(

n

kk
). (2.44)

Replacing this term in Equation 2.43, we get

P (X < 1) < (
n

kk
)e1−Ω( n

kk
), (2.45)

which completes the proof.

Similarly, we can bound the probability of being non-unique after the social sig-

natures are supposed to be unique:

Theorem 6. For a social signature {d1, d2, . . . , dk} with length k and when n < kk,

the probability of the signature being non-unique is less than n
kk
e1−Ω( n

kk
).

Proof. We skip the details as the proof is similar to that of Theorem 5. The only

difference is that upper tail Chernoff bound is used.

Note that as n < kk, the bound provided in Theorem 6 can be made simpler, yet

weaker,

P (X > 1) < e(
n

kk
). (2.46)
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We have proved the uniqueness conditions for social signatures in synthetic and

real-world networks. We have also shown how social signatures approach uniqueness

and presented how non-unique they can be after they are supposed to be unique.

Both bounds in Theorems 5 and 6 show that social signatures approach uniqueness

exponentially and their non-uniqueness drops exponentially after they are supposed

to be unique. Next, we will demonstrate how these results can be used in different

applications.

2.4.5 Applications of Social Signatures

We have shown uniqueness properties for social signatures and when social sig-

natures become unique. In this section, we introduce two applications for social

signatures. First is graph reconstruction. In the second application, we come back to

identifying users across social media sites.

Graph Reconstruction

Consider a graph where edge information is unavailable, but for all vertices, the so-

cial signatures are available. This is a typical example in virus propagation networks,

where local neighbors are known, but the general graph structure is unknown. An-

other example is the power grid, where scanning at the consumer level is possible,

yet network topology is often protected due to security concerns. Can we reconstruct

the network with social signatures?

For graph reconstruction, we can use property 4 in Section 2.4.3. We restate that

property as a corollary here for clarity:

Corollary 7. Consider two vertices v1 and v2 with degrees v1 and v2, respectively. If

there is an edge between v1 and v2, then v1 ∈ S(v2) and v2 ∈ S(v1).
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Corollary 7 shows that if v1 6∈ S(v2) or v2 6∈ S(v1), nodes v1 and v2 cannot be

connected. As power-law graphs are sparse, this can help predict many edges that do

not exist in such graphs. When v1 ∈ S(v2) and v2 ∈ S(v1), there is a chance that v1

and v2 are not connected.

Consider two vertices v1 and v2 with degrees d1 and d2, respectively. Assume that

d1 ∈ S(v2) and d2 ∈ S(v1). Assume the two social signatures share a set of unique

degrees. Denote this set as U = {u1, u2, . . . , uk}, where ui ∈ S(v1), ui ∈ S(v2), for

1 ≤ i ≤ k. Let C1 = (c1
1, c

1
2, . . . , c

1
k) denote the number of times each member of

U is repeated in S1. Similarly, let C2 = (c2
1, c

2
2, . . . , c

2
k) denote the number of times

members of U are repeated in S2. Furthermore, let nk denote the number of times a

node of degree k is observed in the graph. This can be computed using np(k) from the

degree distribution. Alternatively, one can compute nk from social signatures using

Equation 2.18 (Section 2.4.3, property 2). Let N = (nu1 , nu2 , . . . , nuk) denote the

number of times unique degrees shared are observed in the whole graph. Then the

probability of v1 being connected to v2 can be approximated using the next theorem.

Theorem 8. The probability P of two vertices v1 and v2 being connected is bounded

by

max
i
pi ≤ P ≤ min(1,

k∑
i=1

pi), (2.47)

where

pi =


1−

(
nu1−c11
c21

)

(
nu1
c21

)
c1

1 + c2
1 ≤ nu1 ;

1 Otherwise

(2.48)

Proof. The proof follows a simple combinatorial construction. Consider a degree that

is shared ui, with counts c1
i and c2

i in the first and second social signature, respectively.
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The probability of both vertices v1 and v2 selecting different ui is(nu1
c11

)(nu1−c11
c21

)(nu1
c11

)(nu1
c21

) =

(nu1−c11
c21

)(nu1
c21

) . (2.49)

Therefore, the probability of being connected is:

1−

(nu1−c11
c21

)(nu1
c21

) . (2.50)

Clearly, this only holds when there is a chance of being connected to different

nodes c1
1 + c2

1 ≤ nu1 ; otherwise, based on pigeon-hole principle, the two nodes will be

connected.

Two nodes are connected if one of the pi’s is 1. In other words, only if one of

the shared degrees represent the same node in the network, two nodes are connected.

So, pi’s represent the probabilities of disjunct events. Hence, from Boole-Frechet

inequalities, the probability P of two nodes v1 and v2 being connected is bounded by

max
i
pi ≤ P ≤ min(1,

k∑
i=1

pi), (2.51)

which completes the proof.

Theorem 8 provides bounds on the probability that nodes v1 and v2 are connected

and corollary 7 provides conditions under which they are not connected. The next

step is to utilize these results and recover the adjacency matrix.

Let W ∈ Rn×n denote the symmetric matrix containing all the zeros computed

using corollary 7 and probabilities (lower-bound, upper-bound, or a convex combina-

tion) computed using Theorem 8. Then, we can recover the binary adjacency matrix

A using the following optimization:
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max
A∈B

∑
ij AijWij (2.52)

s.t.
∑

j Aij = di (2.53)

Aii = 0, (2.54)

Aij = Aji,∀i, j ∈ 1, . . . , n. (2.55)

This is known as the generalized matching problem (also known as b-matching).

The optimization problem can be solved using balanced network flow [66] or more

efficiently using loopy belief propagation [63]. Depending on the execution algorithm

the running time is expected to range from O(bn3) to O(min(|E| log |V |, |V |2)|V |b),

where b is the maximum degree in the graph.

To demonstrate the feasibility of graph reconstruction using social signatures, we

measure graph reconstruction accuracy for some well-known graphs. We compute

the zeros in the adjacency matrix using Corollary 7 and use the lower-bound for

connection probability in Theorem 8 as the connection probability. We test two

well-known graphs: the Zachary’s karate club dataset [135] and the dolphin social

network [85]. For both networks, we reconstruct the graph using the social signatures

alone. We then estimate the error by computing the hamming distance between the

original adjacency matrix and the reconstructed one. For the Karate Club dataset,

we recover the graph with 98.3% accuracy and for the Dolphin Social Network, the

accuracy is 97.6%. The reconstruction accuracy demonstrates the feasibility and

accuracy of graph reconstruction using social signatures. Next, we study a different

application where we investigate the possibility of identifying users across sites with

social signatures.
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Figure 2.9: User Uniqueness across Networks with Social Signatures

Identifying Users across Sites

Consider the space of real people in the world. Each person has account on different

social media sites and for each site, the user has a number of friends. We can consider

a hyper-graph in the space of real people connecting each user to the accounts that

user owns on different sites. This way the social signature of the user is the number

of friends the user has on different sites. As we discussed, social signatures are unique

for power-law graphs. This means as long as the numbers of accounts that the users

have follow a power-law distribution, we can uniquely identify users across sites.

We show in Chapter 5 that the number of accounts users have across sites follows

a power-law distribution; therefore, their social signatures have to be unique. We

verify this by collecting a set of 96,194 users on around 20 websites and collect their

friends on these sites. Based on Theorem 4, we require social signatures to be of

length eW (ln 96,194) ≈ 6.25 to be unique. We notice the same pattern when empirically

measuring uniqueness of social signatures in this dataset. Figure 2.9 demonstrates

the uniqueness of social signatures across sites. As the figure shows, social signatures

become unique as expected when users have joined 6 or more sites.

While this result is promising, our experiment was limited to around 100k users.

In reality, we have billions of users on social media. Even for one billion, as we have
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shown before, we need around eW (ln 109) ≈ 9.29 accounts to be able to uniquely identify

users. In chapter 5, we show that the number of accounts that users have is most

of the time less than 5; therefore, while possible to some degree, it is challenging to

uniquely identify users across sites with social signatures alone. In fact, in Chapter

5, we show that the performance of such methods is around 40% when using social

signatures alone, combined with machine learning techniques.

2.5 Related Work

To the best of our knowledge, the work presented in this chapter is unique. How-

ever, there are studies similar to the work presented here. Perhaps the most similar

study is the seminal works of Hay et al. [61, 62]. Hay and Colleagues investigate

degree signatures in different graphs and show the power of these degree signatures

for re-identification of masked nodes in graphs. In fact, the definition of H2 in their

papers, matches exactly with the social signature definition in this chapter. However,

their study considers properties of these degree signatures that are different from

the study presented here. For instance, the authors consider how growing these de-

gree signatures to more than 1 hop (as in social signatures) can help better uniquely

identify nodes. They also theoretically investigate uniqueness properties of these de-

gree signatures in graphs with distribution other that those discussed here (random

graphs, random graphs with power-law distribution, etc.). The results provided in

this study are complementary to those provided by Hay et al. In our study we not

only analyze social signatures for general power-law graphs, but also discuss when

they become unique and provide concentration results before and after the phase

transition of becoming unique. In addition, while Hay and colleagues also provide

some similar graph reconstruction results, the results assume that some adversary

has access to the topology of the network (see Michael Hay’s PhD thesis [60]). Here,
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there are no assumption on the knowledge of graph topology and the combinatorial

approach to graph reconstruction works for any graph with power-law degree distri-

bution. The name social signature has been previously used in other settings. In

particular, the name has been used in human communication networks for identify-

ing individuals [109]; however, the study is different and is dedicated to how human

communication is divided between friends and how these communication patterns are

consistent over time.

2.6 Summary

In this chapter, we have investigated the possibility of utilizing minimum link

information for identifying users across sites. We first studied the possibility of utiliz-

ing heuristic-based methods for identifying users across sites. We showed that these

methods are not efficient in social media sites, particularly due to the way users are

embedded in networks across sites. Our results show that counter-intuitively, link

information is not sufficient for identifying individuals across networks when using

mapping information or graph structure. Next, we further investigated the mini-

mum information in networks. We started with degrees and showed that degrees are

nonunique in large power-law graphs. By adding information, we introduced social

signatures. We proved social signatures are unique for graphs generated by prefer-

ential attachment model and general power-law graphs. Finally, we introduced two

applications for social signatures: graph reconstruction and identifying users across

sites. As uniqueness of social signatures requires users to be members of more sites,

the performance is not highly accurate. In addition to the challenges discussed in

this chapter, link information might not be always available across sites for a general

solution to the problem of user identification across sites. Therefore, we consider

using content information to identify individuals in the next chapter.
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Chapter 3

UTILIZING MINIMUM CONTENT INFORMATION

Perhaps the less we have, the

more we are required to brag.

John Steinbeck

In Chapter 2, we investigated the possibility of user identification with link in-

formation. This chapter, investigates the same possibility with content information.

To use content information to identify users across social networks, we introduce a

methodology (MOBIUS) [139] for finding the mapping among identities across social

media sites. Our methodology is based on behavioral patterns that users exhibit

in social media, and has roots in behavioral theories in sociology and psychology.

Unique behaviors due to environment, personality, or even human limitations can

create redundant information across social media sites. Our methodology exploits

such redundancies for identifying users across social media sites. We use the mini-

mum amount of content information available across sites and discuss how additional

information can be added.

3.1 Content-based User Identification

Let us begin by formulating our problem in terms of content information. Infor-

mation shared by users on social media sites provides a social fingerprint of them and

can help identify users across different sites. We start with the minimum amount of

The content in this chapter has been published at ICWSM 2009 [136], KDD 2013 [139], and in

the TKDD journal [145].
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information that is available on all sites. Later on, in Section 3.4, we will discuss how

one can add extra information to this minimum as it becomes available across sites.

In terms of information availability, usernames seem to be the minimum common

factor available on all social media sites. Usernames are often alphanumeric strings

or email addresses, without which users are incapable of joining sites. Usernames are

unique on each site and can help identify individuals, whereas most personal infor-

mation, even “first name + last name” combination, are non-unique. We formalize

our problem using usernames as the atomic entities available across all sites. Other

profile attributes, such as gender, location, interests, profile pictures, language, etc.,

when added to usernames, should help better identify individuals; however, the lack

of consistency in the available information across all social media, directs us toward

formulating with usernames. When considering usernames, two general problems

need to be solved for user identification:

I. Given two usernames u1 and u2, can we determine if they belong to the same

individual?

II. Given a single username u from individual I, can we find other usernames of

I?

Question II can be answered via a two-stage process: 1) we find the set of all

usernames C that are likely to belong to individual I. We denote set C as candidate

usernames and, 2) for all candidate usernames c ∈ C, we check if c and u belong

to the same individual. Therefore, if candidate usernames C are known, question II

reduces to question I. Now, where can we find these candidate usernames?

We will discuss this later in our discussion section (Section 3.4) and from now

on, we focus on question I. One can answer question I by learning an identification

55



function f(u, c),

f(u, c) =

 1 If c and u belong to same I ;

0 Otherwise.
(3.1)

Without loss of generality, we can assume that username u is known to be owned

by some individual I and c is the candidate username whose ownership by I we

would like to verify. In other words, u is the prior information (history) provided for

I. Our function can be generalized by assuming that our prior is a set 1 of usernames

U = {u1, u2, . . . , un} (hereafter referred to as “prior usernames”). Informally, the

usernames of an individual on some sites are given and we have a candidate username

on another site whose ownership we need to verify; e.g., usernames ut and uf of

someone are given on Twitter and Facebook, respectively; can we verify if c is her

username on Flickr?

Definition. Content-Based User Identification. Given a set of n usernames

(prior usernames) U = {u1, u2, . . . , un}, owned by individual I and a candidate user-

name c, a user identification procedure attempts to learn an identification function

f(.) such that

f(U, c) =

 1 If c and set U belong to I ;

0 Otherwise.
(3.2)

Our methodology for MOdeling Behavior for Identifying Users across Sites

(MOBIUS) 2 is outlined in Figure 3.1. When individuals select usernames, they ex-

1Mathematically, a set can only contain distinct values; however, here a user may use the same

username on more than one site. In our definition of username set, it is implied that usernames are

distinct when used on different sites, even though they can consist of the same character sequence.
2The resemblance to the Möbius strip comes from its single-boundary (representing a single

individual) and its connectedness (representing connected identities of the individual across social

media).
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Figure 3.1: MOBIUS: Modeling Behavior for Identifying Users across Sites

hibit certain behavioral patterns. This often leads to information redundancy, helping

learn the identification function. In MOBIUS, these redundancies can be captured

in terms of data features. Following the tradition in machine learning and data min-

ing research, the identification function can be learned by employing a supervised

learning framework that utilizes these features and prior information (labeled data),

in our case, sets of usernames with known owners. Supervised learning in MOBIUS

can be performed via either classification or regression. Depending on the learning

framework, one can even learn the probability that an individual owns the candidate

username, generalizing our binary f function to a probabilistic model (f(U, c) = p).

This probability can help select the most likely individual who owns the candidate

username. The learning component of MOBIUS is the most straightforward. Hence,

we next elaborate how to analyze behavioral patterns related to user identification

and how features can be constructed to capture information redundancies due to these

patterns. To summarize, MOBIUS contains 1) behavioral patterns, 2) features con-

structed to capture information redundancies due to these patterns, and 3) a learning

framework. Given the interdependent nature of behaviors and feature construction,

we discuss them together next.
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3.2 MOBIUS: Behavioral Patterns and Feature Construction

Individuals often exhibit consistent behavioral patterns while selecting their user-

names. These patterns result in information redundancies that help identify individ-

uals across social media sites.

Individuals can avoid such redundancies by selecting usernames on different sites

in a way such that they are completely different from their other usernames. In other

words, their usernames are so different that given one username, no information

can be extracted regarding the others. Theoretically, to achieve these independent

usernames, one needs to select a username with Maximum Entropy [34]. That is, a

long username string, as long as the site allows, with characters from those that the

system permits, with no redundancy - an entirely random string.

Unfortunately, all of these requirements are contrary to human abilities [129]. Hu-

mans have difficulty storing long sequences with short-term memory capacity of 7±2

items [93]. Human memory also has limited capability in storing random content and

often, selectively stores content that contains familiar items known as “chunks” [93].

Finally, human memory thrives on redundancy, and humans can remember material

that can be encoded in multiple ways [105]. These limitations result in individuals

selecting usernames that are generally not long, not random, and have abundant re-

dundancy. These properties can be captured using specific features which in turn

can help learn an identification function. In this study, we find a set of consistent

behavioral patterns among individuals while selecting usernames. These behavioral

patterns can be categorized as follows:

1. Patterns due to Human Limitations

2. Exogenous Factors
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3. Endogenous Factors

The features designed to capture information generated by these patterns can be

divided into three categories:

1. (Candidate) Username Features: these features are extracted directly from

the candidate username c, e.g., its length,

2. Prior-Usernames Features: these features describe the set of prior user-

names of an individual, e.g., the number of observed prior usernames, and

3. Username↔Prior-Usernames Features: these features describe the rela-

tion between the candidate username and prior usernames, e.g., their similarity.

We will discuss behaviors in each of the above mentioned categories, and features

that can be designed to harness the information hidden in usernames as a result of

the pattern’s existence. Note that these features may or may not help in learning an

identification function. As long as these features could be obtained for learning the

identification function, they are added to our feature set. Later on in Section 3.3,

we will analyze the effectiveness of all features, and if it is necessary to find as many

features as possible.

3.2.1 Patterns due to Human Limitations

In general, as humans, we have 1) limited time and memory and 2) limited knowl-

edge. Both create biases that can affect our username selection behavior.

1. Limitations in Time and Memory

Selecting the Same Username. As studied recently [136], 59% of individuals

prefer to use the same username(s) repeatedly, mostly for ease of remembering.
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Therefore, when a candidate username c is among prior usernames U , that is a

strong indication that it may be owned by the same individual who also owns

the prior usernames. As a result, we consider the number of times candidate

username c is repeated in prior usernames as a feature.

Username Length Likelihood. Similarly, users commonly have a limited set

of potential usernames from which they select one, once asked to create a new

username. These usernames have different lengths and, as a result, a length

distribution L. Let lc be the candidate username length and lu be the length

for username u ∈ U (prior usernames). We believe that for any new username,

it is more likely to have,

min
u∈U

lu ≤ lc ≤ max
u∈U

lu; (3.3)

For example, if an individual is inclined to select usernames of length 8 or 9, it

is unlikely for the individual to consider creating usernames with lengths longer

or shorter than that. Therefore, we consider the candidate username’s length

lc and the length distribution L for prior usernames as features. The length

distribution can be compactly represented by a fixed number of features. We

describe distribution L, observed via discrete values {lu}u∈U as a 5-tuple feature,

(E[lu], σ[lu],med[lu],min
u∈U

lu,max
u∈U

lu), (3.4)

where E is the mean, σ is the standard deviation, and med is the median of the

values {lu}u∈U , respectively. Note that this procedure for compressing distribu-

tions as a fixed number of features can be employed for discrete distributions

D, observed via discrete values {di}ni=1.

Unique Username Creation Likelihood. Users often prefer not to create

new usernames. One might be interested in the effort users are willing to put
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into creating new usernames. This can be approximated by the number of

unique usernames (uniq(U)) among prior usernames U ,

uniqueness =
|uniq(U)|
|U |

. (3.5)

Uniqueness is a feature in our feature set. One can think of 1/uniqueness

as an individual’s username capacity, i.e., the average number of times an indi-

vidual employs a username on different sites before deciding to create a new one.

2. Knowledge Limitation

Limited Vocabulary. Our vocabulary is limited in any language. It is highly

likely for native speakers of a language to know more words in that language

than individuals speaking it as a second language. We assume the individual’s

vocabulary size in a language is a feature for identifying them, and as a result,

we consider the number of dictionary words that are substrings of the username

as a feature. Similar to username length feature, the number of dictionary words

in the candidate username is a scalar; however, when counting dictionary words

in prior usernames, the outcome is a distribution of numbers. We employ the

technique outlined in Eq. (3.4) for compressing distributions to represent this

distribution as features.

Limited Alphabet. Unfortunately, it is a tedious task to consider dictionary

words in all languages, and this feature can be used for a handful of languages.

Fortunately, we observe that the alphabet letters used in the usernames are

highly dependent on language. For instance, while letter x is common when a

Chinese speaker selects a username, it is rarely used by an Arabic speaker, since
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no Arabic word transliterated in English contains letter x [58]. So, we consider

the number of alphabet letters used as a feature, both for the candidate user-

name as well as prior usernames.

3.2.2 Exogenous Factors

Exogenous factors are behaviors observed due to cultural affects or the environ-

ment that the user is living in.

Typing Patterns. One can think of keyboards as a general constraint imposed by

the environment. It has been shown [42] that the layout of the keyboard significantly

impacts how random usernames are selected; e.g., qwer1234 and aoeusnth are two

well-known passwords commonly selected by QWERTY and DVORAK users, respec-

tively. Most people use one of two well-known keyboards DVORAK and QWERTY

(or slight variants such as QWERTZ or AZERTY) [125]. To capture keyboard-related

regularities, we construct the following 15 features for each keyboard layout (a total

of 30 for both),

1. (1 feature) The percentage of keys typed using the same hand used for the

previous key. The higher this value the less users had to change hands for

typing.

2. (1 feature) Percentage of keys typed using the same finger used for the previous

key.

3. (8 features) The percentage of keys typed using each finger. Thumbs are not

included.

4. (4 features) The percentage of keys pressed on rows: Top Row, Home Row,

Bottom Row, and Number Row. Space bar is not included.

5. (1 feature) The approximate distance (in meters) traveled for typing a username.
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Normal typing keys are assumed to be (1.8cm)2 (including gap between keys).

We construct these features for candidate username and each prior username.

Thus, over all prior usernames, each feature has a set of values. Adopting the tech-

nique outlined in Eq. (3.4) for compressing distributions as features, we construct

15× 5 = 75 additional features for prior usernames.

Language Patterns. In addition to environmental factors, cultural priors such as

language also affect the username selection procedure. Users often use the same or the

same set of languages when selecting usernames. Therefore, when detecting languages

of different usernames belonging to the same individual, one expects fairly consistent

results. We consider the language of the username as a feature in our dataset. To

detect the language, we trained an n-gram statistical language detector [44] over

the European Parliament Proceedings Parallel Corpus 3, which consists of text in 21

European languages (Bulgarian, Czech, Danish, German, Greek, English, Spanish,

Estonian, Finnish, French, Hungarian, Italian, Lithuanian, Latvian, Dutch, Polish,

Portuguese, Romanian, Slovak, Slovene, and Swedish) from 1996-2006 with more than

40 million words per language. The trained model detects the candidate username

language, which is a feature in our feature set. The language detector is also used

on prior usernames, providing us with a language distribution for prior usernames,

which again is compressed as features using Eq. (3.4). The detected language feature is

limited to European languages. Our language detector will not detect other languages.

The language detector is also challenged when dealing with words that may not follow

the statistical patterns of a language, such as location names, etc. However, these

issues can be tackled from a different angle as we discuss next.

3http://www.statmt.org/europarl/
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3.2.3 Endogenous Factors

Endogenous factors play a major role when individuals select usernames. Some of

these factors are due to 1) personal attributes (name, age, gender, roles and positions,

etc.) and 2) characteristics, e.g., a female selecting username fungirl09, a father

selecting geekdad, or a PlayStation 3 fan selecting PS3lover2009. Others are due to

3) habits such as abbreviating usernames or adding prefixes/suffixes.

1. Personal Attributes and Personality Traits

Personal Information. As mentioned, our language detection model is inca-

pable of detecting several languages, as well as specific names, such as locations,

or others that are of specific interest to the individual selecting the username.

For instance, the language detection model is incapable of detecting the lan-

guage of usernames Kalambo, a waterfall in Zambia, or K2 and Rakaposhi, both

mountains in Pakistan. However, the patterns in these words can be captured

by analyzing the alphabet distribution. For instance, a user selecting username

Kalambo most of the time will create an alphabet distribution where letter ‘a’

is repeated twice more than other letters. Hence, we save the alphabet distri-

bution of both candidate username and prior usernames as features. This will

easily capture patterns like an excessive use of ‘i’ in languages such as Arabic or

Tajik [35, 50], where language detection fails. Another benefit of using alphabet

distribution is that not only it is language-independent, but it can also capture

words that are meaningful only to the user.

Username Randomness. As mentioned before, individuals who select totally

random usernames generate no information redundancy. One can quantify the

randomness of usernames of an individual and consider that as a feature that
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can describe individuals and help identify them. For measuring randomness, we

consider the entropy [34] of the candidate username’s alphabet distribution as

a feature. We also measure entropy for each prior username. This results in an

entropy distribution that is encoded as features using aforementioned technique

in Eq. (3.4).

2. Habits

“Old habits, die hard”, and these habits have a significant effect on how user-

names are created. Common habits are,

Username Modification. Individuals often select new usernames by changing

their previous usernames. Some,

(a) add prefixes or suffixes,

• e.g., mark.brown → mark.brown2008,

(b) abbreviate their usernames,

• e.g., ivan.sears → isears, or

(c) change characters or add characters in between.

• e.g., beth.smith → b3th.smith.

Any combination of these operations is also possible. The following approaches

are taken to capture the modifications:

• To detect added prefixes or suffixes, one can check if one username is

the substring of the other. Hence, we consider the length of the Longest

Common Substring (LCS) as an informative feature about how similar the

username is to prior usernames. We perform a pairwise computation of
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LCS length between the candidate username and all prior usernames. This

will generate a distribution of LCS length values, quantizied as features

using Eq. (3.4). To get values in range [0,1], we also perform a normalized

LCS (normalized by the maximum length of the two strings) and store the

distribution as a feature as well.

• For detecting abbreviations, Longest Common Subsequence length, is used

since it can detect non-consecutive letters that match in two strings. We

perform a pairwise calculation of it between the candidate username and

prior usernames and store the distribution as features using aforementioned

technique in Eq. (3.4). We also store the normalized version as another

distribution feature.

• For swapped letters and added letters, we use the normalized and unnor-

malized versions of both Edit (Levenshtein) Distance, and Dynamic Time

Warping (DTW) [98] distance as measures. Again, the end results are

distributions, that are saved as features.

Generating Similar Usernames. Users tend to generate similar usernames.

The similarity between usernames is sometimes hard to capture using approaches

discussed for detecting username modification. For instance, gateman and

nametag are highly similar due to one being the other spelled backward, but

their similarity is not recognized by discussed methods. Since we store the al-

phabet distribution for both the candidate username and prior usernames, we

can compare these using different similarity measures. The Kullback-Liebler di-

vergence (KL) [34] is commonly the measure of choice; however, since KL isn’t a

metric, comparison among values becomes difficult. To compare distributions,

we use the Jensen-Shannon divergence (JS) [81], which is computed from KL
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and is a metric,

JS(P ||Q) =
1

2
[KL(P ||M) +KL(Q||M)], (3.6)

where M = 1
2
(P +Q), and KL divergence is,

KL(P ||Q) =
∑|P |

i=1
Pi · log(

Pi
Qi

). (3.7)

Here, P and Q are the alphabet distributions for candidate username and prior

usernames. As an alternative, we also consider cosine similarity between the

two distributions as a feature. Note that Jensen-Shannon divergence does not

measure the overlap between the alphabets. To compute alphabet overlaps, we

add Jaccard Distance as a feature.

Username Observation Likelihood. Finally, we believe the order in which

users juxtapose letters to create usernames depends on their prior knowledge.

Given this prior knowledge, we can estimate the probability of observing can-

didate username. Prior knowledge can be gleaned based on how letters come

after one another in prior usernames. In statistical language modeling, the

probability of observing username u, denoted in characters as u = c1c2 . . . cn, is,

p(u) = Πn
i=1p(ci|c1c2 . . . ci−1). (3.8)

We approximate this probability using an n-gram model,

p(u) ≈ Πn
i=1p(ci|ci−(n−1) . . . ci−1). (3.9)

Commonly, to denote the beginning and the end of a word special symbols are

added: ? and •. So, for username sara, the probability approximated using a

2-gram model is,

p(sara) ≈ p(s|?)p(a|s)p(r|a)p(a|r)p(•|a). (3.10)
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To estimate the observation probability of the candidate username using an

n-gram model, we first need to compute the probability of observing its com-

prising n-grams. The probability of observing these n-grams can be computed

using prior usernames. These probabilities are often hard to estimate, since

some letters never occur after others in prior usernames while appearing in the

candidate username. For instance, for candidate username test12 and prior

usernames {test, testing}, the probability of p(1| ? test) = 0 and therefore

p(test12) = 0, which seems unreasonable. To estimate probabilities of unob-

served n-grams, a smoothing technique can be used. We use the state-of-the-

art Modified Kneser-Ney (MKN) smoothing technique [27], which has discount

parameters for n-grams observed once, twice, and three times or more. The dis-

counted values are then distributed among unobserved n-grams. The model has

demonstrated excellent performance in various domains [27]. We include the

candidate username observation probability, estimated by an MKN-smoothed

6-gram model, as a feature.

We have demonstrated how behavioral patterns can be translated to meaningful

features for the task of user identification. These features are constructed to mine in-

formation hidden in usernames due to individual behaviors when creating usernames.

Overall, we construct 414 features for the candidate username and prior usernames.

Figure 3.2 depicts a summary of these behavioral patterns observed in individuals

when selecting usernames.

Clearly, our features do not cover all aspects of username creation, and with more

theories and behaviors in place, more features can be constructed. We will empirically

study if it is necessary to use all features and the effect of adding more features on

learning performance of user identification.
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Figure 3.2: Individual Behavioral Patterns when Selecting Usernames

Following MOBIUS methodology, the feature values are computed over labeled

data, and the effectiveness of MOBIUS is verified by learning an identification func-

tion. Next, experiments for evaluating MOBIUS are detailed.

3.3 Experiments

The MOBIUS methodology is systematically evaluated in this section. First,

we verify if MOBIUS can learn an accurate identification function, comparing with

some baselines. Second, we examine if different learning algorithms make significant

difference in learning performance using acquired features. Then, we perform feature

importance analysis, and investigate how the number of usernames and the number of

features impact learning performance. Before we present our experiments, we detail

how experimental data is collected.
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3.3.1 Data Preparation

A simple method for gathering identities across social networks is to conduct

surveys and ask users to provide their usernames across social networks. This method

can be expensive in terms of resource consumption, and the amount of gathered data

is often limited. Companies such as Yahoo! or Facebook ask users to provide this

kind of information 4; however, this information is not publicly available.

Another method for identifying usernames across sites is by finding users manually.

Users, more often than not provide personal information such as their real names,

E-mail addresses, location, gender, profile photos, and age on these websites. This

information can be employed to map users on different sites to the same individual.

However, manually finding users on sites can be quite challenging.

Fortunately, there exist websites where users have the opportunity of listing their

identities (user accounts) on different sites. This can be thought of as labeled data

for our learning task, providing a mapping between identities. In particular, we find

social networking sites, blogging and blog advertisement portals, and forums to be

valuable sources for collecting multiple identities of the same user.

Social Networking Sites. On most social networking sites such as Google+ or

Facebook, users can list their IDs on other sites. This provides usernames of the

same individual on different sites.

Blogging and Blog Advertisement Portals: To advertise their blogs, individuals

often join blog cataloging sites to list not only blogs, but also their profiles on other

sites. For instance, users in BlogCatalog are provided with a feature called “My

Communities”. This feature allows users to list their usernames in other social media

sites.

4http://mashable.com/2010/10/17/y-connect-yahoo/
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Forums: Many forums use generic Content Management Systems (CMS), designed

specifically for creating forums. These applications usually allow users to add their

usernames on social media sites to their profiles. Examples of these applications that

contain this feature include, but are not limited to: vBulletin, phpBB, and Phorum.

We utilize these sources for collecting usernames, guaranteed to belong to the

same individual. Overall, 100,179 (c-U) pairs are collected, where c is a username

and U is the set of prior usernames. Both c and U belong to the same individual.

The dataset contains usernames from 32 sites such as: Flickr, Reddit, StumbleUpon,

and YouTube. This dataset contains all the usernames (nodes) collected in Section

2.2.1 as well as additional usernames to make our results comparable.

The collected pairs are considered as positive instances in our dataset. For negative

instances, we construct instances by randomly creating pairs (ci-Uj) such that ci is

from one positive instance and Uj is from a different positive instance (i 6= j) to

guarantee that they are not from the same individual. We generated different numbers

of negative instances (up to 1 million instances), but its effect on the accuracy of

learning the identification function was negligible. By further investigation we noticed

that this phenomenon takes placed due to feature values for negative instances being

far different from that of positive instances. Thus, we continue with a dataset where

the class balance is 50% for each label (100,179 positive + 100,179 negative ≈200,000

instances). Then, we compute our 414 feature values for this data and employ this

dataset for our learning framework.

3.3.2 Learning the Identification Function

To evaluate MOBIUS, the first step is to verify if it can learn an accurate identi-

fication function. Given our labeled dataset where all feature values are calculated,

learning the identification function can be realized by performing supervised learning
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Table 3.1: MOBIUS Performance Compared to Content-Based Methods and Base-
lines

Technique Accuracy

MOBIUS (Naive Bayes) 91.38%

Method of Zafarani et al. [136] 66.00%

Method of Perito et al. [106] 77.59%

Baseline b1: Exact Username Match 77.00%

Baseline b2: Substring Matching 63.12%

Baseline b3: Patterns in Letters 49.25%

on our dataset. We mentioned earlier that a probabilistic classifier can generalize our

binary identification function to a probabilistic one, where the probability of a can-

didate username belonging to an individual is measured. Probabilistic classification

can be achieved by a variety of Bayesian approaches. We select Naive Bayes. Naive

Bayes, using 10-fold cross validation, correctly classifies 91.38% of our data instances.

There is a need to compare MOBIUS performance to other content- and link-based

methods. To the best of our knowledge, methods from Zafarani et al. [136] and Perito

et al. [106] are the only content-based methods that tackle the same problem with

usernames. The ad hoc method of Zafarani et al. employs two features: 1) exact

match between usernames and 2) substring match between usernames. Perito et

al.’s method uses a single feature. This feature, similar to our username-observation

likelihood, utilizes a 5-gram model to compute the username observation probability.

Table 3.1 reports the performance of these techniques over our datasets. Our method

outperforms the method of Zafarani et al. by 38% and the method of Perito et al.

by 18%. The key difference between MOBIUS and the methods in comparison is

that MOBIUS takes a behavioral modeling approach that systematically generates

features for effective user identification.
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Table 3.2: MOBIUS Performance Compared to Link-Based Reference Points

Technique AUC

MOBIUS (Naive Bayes) 0.937

Reference Point 1: Common Neighbors 0.504

Reference Point 1: Jaccard Coefficient 0.503

Reference Point 1: Adamic/Adar 0.501

To evaluate the effectiveness of MOBIUS, we also devise three content-based base-

line methods for comparison. When people are asked to match usernames of individ-

uals, commonly used methods are “exact username matching”, “substring matching”,

or finding “patterns in letters”. Hence, they form our three baselines b1, b2, and b3:

b1: Exact Username Match. It considers an instance positive if the candidate

username is an exact match to α% of the prior usernames. To set α accurately, we

computed the percentage of prior usernames that are exact matches to the candidate

username in each of our positive instances and averaged it over all positive instances

to get α, α ≈ 54%. To further analyze the impact, we set 50% ≤ α ≤ 100%. Among

all α values, b1 does not perform better than 77%.

b2: Substring Matching. It considers an instance positive if the mean of the can-

didate username’s normalized longest common substring distance to prior usernames

is below some threshold θ. We conduct the experiment for the range 0 ≤ θ ≤ 1. In

the best case, b2 achieves 63.12% accuracy.

b3: Patterns in Letters. For finding letter patterns, b3 uses the alphabet distribu-

tion for the candidate username and the prior usernames as features. Using our data

labels, we perform logistic regression. b3 achieves 49.25% accuracy.

Our proposed technique outperforms baseline b1, b2, and b3 by 19%, 45%, and

86%, respectively. The performance for MOBIUS trained by Naive Bayes, other
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content-based methods, and baselines are summarized in Table 3.1.

To evaluate MOBIUS against link-based methods, we compare it to well-known

unsupervised link prediction methods. As MOBIUS does not use link information, the

performance of link-based methods only serve as reference points and no improvement

will be reported. The methods included as reference points are Common Neighbors,

Jaccard Coefficient, and Adamic/Adar [80]5. Comparison between MOBIUS and the

link-based reference points are provided in Table 3.2. Now, we would like to see if

different learning algorithms can further improve the learning performance.

3.3.3 Choice of Learning Algorithm

To evaluate the choice of learning algorithm, we perform the classification task

using a range of learning techniques and 10-fold cross validation. The AUCs and

accuracy rates are available in Table 3.3. These techniques have different learning

biases, and one expects to observe different performances for the same task. As seen

in the table, results are not significantly different among these methods. This shows

that when sufficient information is available in features, the user identification task

becomes reasonably accurate and is not sensitive to the choice of learning algorithm.

In our experiments, `1-Regularized Logistic Regression is shown to be the most ac-

curate method and hence, we use it in the following experiments as the method of

choice. The classification employs all 414 features. Designing 414 features and com-

puting their values is computationally expensive. Therefore, we try to empirically

determine: 1) whether all features are necessary, and 2) whether it makes economic

sense to add more features, in Sections 3.3.3 and 3.3.4.

5As our dataset lacks link information, we report the best performances obtained across networks

using [146]
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Table 3.3: MOBIUS Performance for Different Classification Techniques

Technique AUC Accuracy

J48 Decision Tree Learning 0.894 90.87%

Naive Bayes 0.937 91.38%

Random Forest 0.957 93.59%

`2-Regularized `2-Loss SVM 0.950 93.70%

`1-Regularized `2-Loss SVM 0.951 93.71%

`2-Regularized Logistic Regression 0.950 93.77%

`1-Regularized Logistic Regression 0.951 93.80%

Feature Importance Analysis

Feature Importance Analysis analyzes how important different features are in learning

the identification function. First, for each behavior we have identified, we group the

respective features and measure their impact on the classification task. That is we

only use those features in MOBIUS for classification. We previously provided the

hierarchy of these behaviors in Figure 3.2. For each node in this hierarchy (other

than the root), we create a feature set and train MOBIUS using only those features.

Table 3.4 provides the performance of MOBIUS with these feature sets. As shown

in the Table, features that describe endogenous factors or human limitations are the

most effective for user identification. In terms of human limitations, features that

capture limitations in time and memory are most suitable for user identification.

Similarly, features that capture typing patterns and habits are most suitable from

exogenous and endogenous factors, respectively. Finally, the most effective features

for user identification are those that capture users’ habits.

This analysis does not show individual features that contribute the most to the

classification task. Next, we find these individual features. This can be performed
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Table 3.4: MOBIUS Performance for Different Behaviors

Set of Features Accuracy

I. Human Limitations 87.70

- Limitations in Time and Memory 87.70

— Selecting the Same Username 52.42

— Username Length Likelihood 55.88

— Username Creation Likelihood 60.81

- Knowledge Limitations 51.17

— Limited Vocabulary 51.24

— Limited Alphabet 48.55

II. Exogenous Factors 57.37

- Typing Patterns 57.43

- Language Patterns 51.40

III. Endogenous Factors 93.78

- Personal Information 49.25

- Username Randomness 56.00

- Habits 93.65

— Username Modification 93.64

— Generating Similar Usernames 78.37

— Username Observation Likelihood 48.54

by standard feature selection measures such as Information Gain, χ2, among others.

We utilize odds-ratios (logistic regression coefficients) for feature importance analysis

and ranking features. The top 10 important features are as follows:

1. Standard deviation of normalized edit distance between the candidate username

and prior usernames,

2. Standard deviation of normalized longest common substring between the user-
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name and prior usernames,

3. Username observation likelihood,

4. Uniqueness of prior usernames,

5. Exact match: number of times candidate username is seen among prior user-

names,

6. Jaccard similarity between the alphabet distribution of the candidate username

and prior usernames,

7. Standard deviation of the distance traveled when typing prior usernames using

the QWERTY keyboard,

8. Distance traveled when typing the candidate username using the QWERTY

keyboard,

9. Standard deviation of the longest common substring between the username and

prior usernames, and

10. Median of the longest common subsequence between the candidate username

and prior usernames.

In fact, a classification using only these 10 features and logistic regression provides

an accuracy of 92.72%, which is very close to that of using the entire feature set. We

also notice that in our ranked features,

• Numbers [0-9] are on average ranked higher than English alphabet letters

[a-z], showing that numbers in usernames help better identify individuals,

and

• Non-English alphabet letters or special characters, e.g., Â,Ã,+, or &, are among

the features that could easily help identify individuals across sites, i.e., have

higher odds-ratios on average.

Although these 10 features perform reasonably well, it is of practical importance to

77



0 5 10 15 20 25 30
90

92

94

96

98

100

Number of Usernames

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Figure 3.3: User Identification Performance for Users with Different Number of
Usernames

analyze how we can further improve the performance of our methodology in different

scenarios, such as by adding usernames or features.

3.3.4 Diminishing Returns for Adding More Usernames and More Features

It is often assumed that when more prior usernames of an individual are known,

the task of identifying the individual becomes easier. If true, to improve identification

performance, we need to provide MOBIUS with extra prior information (known user-

names). In our dataset, users have from 1 to a maximum of 30 prior usernames. To

verify helpfulness of adding prior usernames, we partition the dataset into 30 datasets

{di}30
i=1, where dataset di contains individuals that have i prior usernames. The user

identification accuracy on these 30 datasets are shown in Figure 3.3. We observe a

monotonically increasing trend in identification performance, and even for a single

prior username, the identification is 90.72% accurate and approaches 100% when 25

or more usernames are available. Note that the identification task is hardest when

only a single prior username is available.

Rarely are 25 prior usernames of an individual available across sites. It is more

practical to know the minimum number of usernames required for user identification
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Figure 3.4: Relative User Identification Performance Improvement with respect to
Number of Usernames

such that further improvements are nominal. The relative performance improvement

with respect to number of usernames can help us measure this minimum. Figure

3.4 shows this improvement for adding usernames. We observe a diminishing return

property, where the improvement becomes marginal as we add usernames and is

negligible for more than 7 usernames. A power function (g(x) = 2.44x−1.79), found

with 95% confidence, fits to this curve with adjusted R2 = 0.976. The exponent

-1.79 denotes that the relative improvement by adding n usersnames is ≈ 1/n1.79

times smaller than that by adding a single username, e.g., for 7 usernames, relative

identification performance improvement is ≈ 1/33 times smaller than that of a

single username.

Similar to adding more prior usernames, one can change number of features. More

practically, we would like to analyze how adding features correlates with adding prior

usernames. For instance, if we double the number of prior usernames, how many

features should we construct (or can be removed) to guarantee reaching a required

performance?

To measure this, for each number of prior usernames n, we compute the average

number of features such that MOBIUS can achieve fixed accuracy θ. We set θ to the
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Figure 3.5: Relative Change in Number of Features Required with respect to Num-
ber of Usernames

minimum accuracy achievable, independent of number of usernames (90% here). Then

we compute the relative change in the number of required features when usernames

are added.

Figure 3.5 plots this relationship. We observe the same diminishing return prop-

erty, and as one adds more usernames, fewer features are required to achieve a fixed

accuracy. A power function (g(x) = 0.1359x−0.875), found with 95% confidence, fits to

this curve with adjusted R2 = 0.987. The exponent -0.875 denotes that the number

of features required for n usersnames is ≈ 1/n0.875 times smaller than that of a single

username.

Finally, if one is left with a set of usernames and a set of features, should we

aim at adding more usernames or construct better features? Let f(n, k) denote the

performance of our method for n usernames and k features. Let,

δ(n, k) =
f(n+ 1, k)− f(n, k)

f(n, k + 1)− f(n, k)
. (3.11)

The δ function is a finite difference approximation for the derivative ratio with

respect to n and k. When δ(n, k) > 1, adding usernames improves performance more

and when δ(n, k) < 1, adding features is better. To compute f(n, k), for different

values of n, we select random subsets of size k. We denote the average performance
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Figure 3.6: The δ(n, k) function, for n usernames and k features. Values larger than
1 show that adding usernames will improve performance more and values smaller than
1 show adding features is better.

over these random subsets as f(n, k). Figure 3.6 plots the δ(n, k) function. We plot

plane z = 1 to better show where adding features is more helpful and where usernames

are more beneficial. We observe that for small values of n and k, i.e., when fewer

usernames and features are available, features help best, but for all other cases adding

usernames is more beneficial.

3.4 Discussion

We demonstrated that MOBIUS can exploit information redundancies due to user

behaviors to identify individuals across sites. The empirical evaluation shows that

MOBIUS is effective in across-site user identification.

Back to our initial questions, although we can tell if a username belongs to a

username set, but given a username-set, where can we find the candidate usernames?

Furthermore, as MOBIUS operates on usernames, a natural question is if there is

additional information available such as location, how we can represent and integrate

it into MOBIUS. These are practical questions that need to be answered to complete

the task of identification
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3.4.1 Finding Candidate Usernames

The candidate username needs to be found using the available tools and infor-

mation. To most users, unless they have access to the deep or hidden web, the only

gateway to find information is the public web and in particular, with tools such as

web search engines; therefore, we focus on finding usernames on the public web via

web search engines. In our experiments, we had several interesting observations that

can lead to finding candidate usernames.

We found that for any two usernames, u1 and u2 of the same individual, there is

a high chance of co-occurrence of these two in search engine results. To verify this,

from our dataset we generated around 100,000 username-username pairs < u1, u2 >

where both u1 and u2 belonged to the same individual. We found using Google with

query “u1 u2” that usernames co-occur in nearly 68% of the cases in web search

engine results. This finding suggests that we can perform a web search using one

of the usernames and then perform keyword extraction on the retrieved webpages to

discover the other usernames; however, though sufficiently accurate, in some cases, the

retrieved pages are many and long and keyword extraction can be quite tedious and

will generate many candidate usernames. Our other observations lead to a solution

to mitigate this problem. We will review them first before coming back to a solution

to this problem.

We observed that for any social media site s and for all its usernames, there exists

URLs on the Registered Domain Name of s that contain the username. These URLs

are most commonly pointing to the profile/homepage of the users on that site. Denote

these URLs as Profile URLs. As an example, consider how the profile page URLs of

a fictional user test can be reached on some of the most popular social networking

sites in Table 3.5. We have analyzed 32 online sites in our dataset and surprisingly,
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Table 3.5: Profile URLs for Popular Social Media Sites

Site Profile URL Pattern

YouTube http://www.youtube.com/test

Flickr http://www.flickr.com/photos/test

Reddit http://www.reddit.com/user/test

Del.icio.us http://del.icio.us/test

in all 32, the site’s profile URLs contains the username.

Back to our original problem, interestingly, users often list their other usernames

on Profile URLs. For instance, on their profile pages, they list their email addresses,

where its part before the @ sign, is a commonly employed username of the individual.

In other words, for two usernames u1 and u2 of the same individual, it is sufficiently

likely for u1 to exist in the URL of the webpages retrieved using popular search

engines, such that the page itself contains u2, i.e., u1 profile page contains u2.

To verify this, we used our 100,000 username-username pairs and for each pair

< u1, u2 >, two separate queries were sent to Google (first username occurring on

second username’s profile, and vice versa). In Google, the queries can be formulated

in the following format: “inurl:u1 u2” and “inurl:u2 u1”. This phenomenon holds

in nearly 38% of the situations. Likewise our previous observation, this suggests that

we can perform a web search using one of the usernames and then perform keyword

extraction on the URLs of the webpages retrieved to discover other usernames.

3.4.2 Adding More Information

MOBIUS can use other types of information that is available on social media

sites. In general, we can follow the following procedure to integrate new types of

information: 1) determine the behavioral patterns that humans exhibit regarding
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that information, and 2) construct features to capture information redundancies due

to behavioral patterns. For example, we have information beyond username such

as individual’s location that is often available on profile pages. Corresponding to

candidate username (c) and prior usernames (U), we have candidate location and

prior locations. One behavioral pattern associated with location is that individuals

rarely change their locations. In fact, locations change much less than usernames.

Therefore, based on this behavioral pattern, we can have an exact location match

feature that counts the number of times candidate location is observed among prior

locations. One can design additional features to capture similarity between candidate

location and prior locations. For example, APIs such as the Google Maps API can

be used to convert locations to latitude-longitude pairs and then distances between

locations can be used to measure similarity.

As the availability of different types of information varies, such information is not

as universally available as usernames. However, we believe more information should

help identify users better and further investigation is needed to analyze performance

gains due to additional information.

3.4.3 Data Collection Limitations

The data collection approaches discussed in this and previous chapter have some

inherent limitations:

1. Completeness. It is not clear how complete the cross-media data that gathered

in this study is. In other words, can we guarantee that we have sufficient

data that describes all user behavior across sites? To approach this problem

systematically we require complete ground truth about such data across sites.

While we haven’t approached this problem systematically, we will introduce an

evaluation approach, similar to bootstrapping, in Chapter 7 that can be help
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evaluate without ground truth. Similarly, techniques discussed in [143] can

help evaluate when there is not ground truth in social media research.

2. Bias. There is an inherent bias in the data that we have collected as it is

selectively reported by users across sites. It is therefore necessary to determine

the amount and the statistics of user accounts across sites that are non-reported.

Using a large ground truth dataset of user accounts across sites, one can measure

this type of bias in our data.

3.5 Related Work

In this section, we focus on summarizing research related to identifying individuals

in social media. We provided a review of directly relevant techniques to our study

in Section 3.3. In addition to those, the methods of Iofciu et al. [64] and Liu et

al. [82] approach the same problem but with extra information. Iofciu et al. utilize

tag information in addition to a single username feature and Liu et al. use profile

metadata, friendship network information, and content based features. Both methods

rely on the availability of information that may not be available on social media. Our

method only uses username information across sites.

In addition to these methods, there exists related research about 1) identifying

content produced by an individual on the web or 2) identifying individuals in a single

social network.

Identifying Content Authorship. In [12], the authors look at the content gen-

eration behavior of the same individuals in several collections of documents. Based

on the overlap between contributions, they propose a method for detecting pages

created by the same individual across different collections of documents. They use

a method called detection by compression, where Normalized Compression Distance
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(NCD) [29] is used to compare the similarity between the documents already known

to be authored by the individual and other documents. Author detection has been

well discussed in restricted domains. In particular, machine learning and data min-

ing techniques have been employed to detect authors in online messages [147], online

message boards [2, 103], blogs [70], and in E-mails [39]. Although, one can think of

usernames as the content generated by individuals across sites; however, in content

authorship detection, it is common to assume large collections of documents, with

thousands of words, available for each user, whereas for usernames, the information

available is limited to one word.

User Identification on One Site. Deanonymization6 is an avenue of research

related to identifying individuals on a single site. Social networks are commonly

represented using graphs where nodes are the users and edges are the connections.

To preserve privacy, an anonymization process replaces these users with meaningless,

randomly generated, unique IDs. To identify these masked users, a deanonymiza-

tion technique is performed. Deanonymization of social networks is tightly cou-

pled with the research in privacy preserving data mining [9] or Identity Theft at-

tacks [22]. In [15], Backstrom et al. present such process where one can identify

individuals in these anonymized networks by either manipulating networks before

they are anonymized or by having a priori knowledge about certain anonymized

nodes. Narayanan and Shmatikov in [99] present statistical deanonymization tech-

nique against high-dimensional data. They argue that given little information about

an individual one can easily identify the individual’s record in the dataset. They

demonstrate the performance of their method by uncovering some users on the Net-

6Deanonymization is tightly coupled with the research in privacy preserving data mining (see

[6, 7, 9, 41, 48])
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flix prize dataset using IMDB information as their source for background knowledge.

Our work differs from these techniques as it deals with multiple sites. Moreover, it

avoids using link information, which is not always available on different social media

sites.

3.6 Summary

In this chapter, we have demonstrated a methodology for connecting individuals

across social media sites (MOBIUS). MOBIUS takes a behavioral modeling approach

for systematic feature construction and assessment, which allows integration of ad-

ditional features when required. MOBIUS employs minimal information available

on all social media sites (usernames) to derive a large number of features that can

be used by supervised learning to effectively connect users across sites. Users often

exhibit certain behavioral patterns when selecting usernames. The proposed behav-

ioral modeling approach exploits information redundancy due to these behavioral

patterns. We categorize these behavioral patterns into (1) human limitations, (2)

exogenous factors, and (3) endogenous factors. In each category of behaviors, vari-

ous features are constructed to capture information redundancy. MOBIUS employs

supervised learning to connect users. Our empirical results show the advantages of

this principled, behavioral modeling approach over earlier methods. The experiments

demonstrate that (1) constructed features contain sufficient information for user iden-

tification; (2) importance or relevance of features can be assessed, thus features can

be selected based on particular application needs; and (3) adding more features can

further improve learning performance but with diminishing returns, hence, facing a

limited budget, one can make informed decisions on what additional features should

be added.
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Chapter 4

UTILIZING MINIMUM INFORMATION IN APPLICATIONS

My powers are ordinary. Only

my application brings me success.

Isaac Newton

In previous chapters, we have shown how minimum link or content information

can help identify users across sites. In this chapter, we demonstrate how minimum

content information can be used in other applications on the web. We focus on two

fundamental problems on social media: friends recommendation and malicious user

detection. Both problem are significant to most social media sites as they guarantee

revenue and protect sites against malicious users. The approach discussed for both

problems utilizes only minimum information.

4.1 Friend Recommendation with Minimum Information

With the rise of social media and the growth of modern technology, millions of

sites are at our fingertips. With so many choices, our attention spans are decreasing

rapidly. An average user spends less than a minute on an average site [1]. The

problem becomes more challenging for commercial sites, especially for new sites that

are desperately trying to attract new users and hoping to keep them active. This lack

of interest in users was clearly observed in the early years of sites such as Twitter or

Facebook with around 60% of their users quitting within the first month [26].

The content in this chapter has been published at SDM 2014 [140] and CIKM 2015 [142].
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As consumers of social media, we are constantly seeking sites that can keep us

engaged. User engagement can come from interesting content as well as from our

social interactions. It is known that the existence of friends, relatives, or colleagues

on sites, provides a sense of comfort, piques our interest on the site, and increases

the likelihood of joining sites [16]. Finding users’ friends on sites increases users’

engagement and improves user retention rates, both directly contributing to more

revenue for the sites. So, how can we find friends of users?

Finding or recommending friends is not a new problem [80]. It is well-studied in

social media research. Often, link or content information, or a combination of both,

is used to predict and recommend friends to users.

When using link information, we use the current friends of an individual to rec-

ommend new friends. For instance, we find potential friends for John by finding

friends-of-friends of John that are still not his friends. Hence, we find users that

are 2 hops away in the friendship network. We can improve recommendations by

recommending users that are more than two hops away in the friendship network.

Unfortunately, recommending friends using link information fails when the user has

no friends. This can happen right after a user joins a new site, when the user is a

disconnected node in the friendship graph. Sites such as Twitter or LinkedIn, tackle

this issue by asking users to provide access to their email contacts to help recommend

friends. Aside from its privacy concerns, this clearly requires an extra effort from the

user’s side, and motivates users, with their short attention spans, to abandon the site.

When using content information, friend recommendation techniques identify po-

tential friends for a user by finding others that are highly similar in terms of the

content that they generate. This content can be profile information, tweets, reviews,

blogposts, or even the products bought. However, right after a user joins a new site,

the user hasn’t had the chance to complete profile information or exhibit any activity.
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Hence, findings friends with no link and content information is challenge for all

social media sites and for all users, right after they join the sites. A variant of this

problem is often referred to as the cold start problem.

The cold start is well-studied in the literature [110]; however, the solution often

assumes that either link or content information is available. However, when a user

joins a new site, link information (friends) or content information (bio, posts, etc.) is

unavailable; therefore, relying on either type of information is impossible. In practice,

sites such as Twitter address this problem by recommending individuals that have

many friends such as celebrities or political figures in the United States to newly-

joined users. Some users may find these recommendation interesting, but it can be

repelling to users that are from other countries or have limited English knowledge.

Ultimately, for a new user and without link or content information, finding friends

in a site with one million members boils down to random recommendations of a few

users from a search space of one million potential friends. Alas, recommending friends

uniformly at random from this space is extremely unlikely to find any friends.

In this section, we demonstrate a methodology to find friends for a new user when

link or content information is unavailable. Relying on social forces that result in

friendships, we demonstrate how one can employ minimum user information to sig-

nificantly reduce the set of potential friends; hence, increasing the likelihood of finding

friends. We demonstrate how this minimum information can increase friend finding

performance sometimes by four orders of magnitude (Section 4.1.4). The proposed

methodology can help sites introduce the very first few friends more accurately. This

will increase the chance for users to add friends, which in turn provides sufficient link

information for more advanced link prediction techniques to recommend more friends.

Section 4.1.1 formally presents the problem of finding friends in social media sites

with minimum information. Section 4.1.2 outlines how different social forces result in
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friendships and how one can utilize the outcome of these forces to tackle our problem.

Section 4.1.4 outlines our experiments and Section 4.1.5 reviews some related work.

4.1.1 Problem Statement

Consider a new site S with n users. When an individual joins S with no content

or link information, the site has probability p = 1/n to correctly recommend a single

friend and a search space of n to search for that friend. Given the enormous size of

current social media sites such as Twitter and Facebook, we can safely assume that

a new user has some potential friends on the site.

Let set U = {u1, u2, . . . , un} represent the set of current users on site S and unew,

the newly-joined user. Consider a k-partitioning of current users π(U),

π(U) = (X1, X2, . . . , Xk), (4.1)

∪ki=1Xi = U, (4.2)

Xi ∩Xj = ∅, i 6= j. (4.3)

To realistically model the problem in social media, and without loss of generality,

we assume link information is available for current users ui ∈ U , and unavailable for

unew. Assume link information is provided as an adjacency matrix A ∈ Rn×n, where

Ai,j =

 1 ui is a friend of uj;

0 Otherwise
(4.4)

Consider friendship matching function f

f : u→ Xj, u ∈ U ∪ {unew}, 1 ≤ j ≤ k. (4.5)

The friendship matching function maps the new or current users to a partition

Xj, 1 ≤ j ≤ k. We assume that the partition user u is mapped to f(u) = Xj is a
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partition in which it is highly likely to find friends for u. Thus, we denote partition

Xj = f(u) as the friendship search space for u.

Let M(Xj) = {u|u ∈ U, f(u) = Xj} denote the set of matched users to partition

Xj from U . As all members of M(Xj) are likely to have friends in Xj, we are implicitly

assuming some similarity between M(Xj) members.

In our problem, the goal is to find the friendship search space f(unew) for unew. To

find f(unew), one needs to determine the partitioning π(U) and friendship matching

function f . Assume both are known and f(unew) = Xj is the friendship search space

for unew. As link information for unew is unavailable, how can we verify if unew has

friends in Xj?

One solution is to follow a training/testing framework in data mining and assume

that the probability of unew having friends in Xj can be approximated using current

matched users to Xj: M(Xj), for whom we have link information. This probabil-

ity, denoted as Pf (Xj), approximates link prediction accuracy and is the fraction of

matched users that have a friend in set Xj,

Pf (Xj) =
| {ui| ui ∈M(Xj),

∑
uk∈Xj Ai,k ≥ 1} |

| M(Xj) |
. (4.6)

Let XRand
j ⊆ U denote a random subset of equal size to Xj, i.e., |Xj| = |XRand

j |.

Users in XRand
j are selected uniformly at random. Hence, the probability that a user

in M(Xj) has a friend in XRand
j , which we denote as PRand

f (Xj), is

PRand
f (Xj) =

|XRand
j |
|U |

=
|Xj|
|U |

. (4.7)

PRand
f (Xj) approximates random prediction accuracy for link prediction. Our

goal in this study is to find friends by seeking partitions such as Xj, in which the

probability of finding friends is much higher than random, i.e.,

βXj =
Pf (Xj)

PRand
f (Xj)

> 1, (4.8)
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where βXj denotes the significance ratio1, which quantifies the rate at which partition

Xj increases the friend finding likelihood for members of M(Xj) over random predic-

tions. Note that the search space is reduced by 1/βXj . Clearly, when no information

is available, one cannot go beyond random: βXj = 1. The value for βXj is maximized

when all users in M(Xj) have at least one friend inside Xj. Thus, when sites such as

Twitter recommend individuals with many friends to new users (e.g., Xj ={celebrities

or political figures}), they are providing a relaxed solution to finding an optimal Xj.

The value of βXj can become deceiving, since for small values of |M(Xj)|, Pf (Xj)

can become large (see Equation (4.6)); therefore, extremely larger than PRand
f (Xj).

Furthermore, since unew (and users joining later) can be matched to different parti-

tions, one needs to compute the significance ratio for different partitions. Both issues

can be addressed by computing the expected β for a partitioning2 π(U),

E(β) =
∑
j

βXj
|M(Xj)|
|U |

. (4.9)

Thus, our goal is to find a partitioning of the users π(U) and a friendship matching

function f such that E(β) > 1. To go beyond random prediction E(β) = 1, we only

use minimum information available on sites for users. As discussed in Chapter 3, the

minimum amount of information available for a user on a site is the individual’s user-

name. Usernames are alphanumeric strings or email addresses without which users

are incapable of joining sites. Therefore, we formulate our problem with usernames.

Definition. Finding Friends with Minimum Information. In a site with n

users represented by their usernames U = {u1, u2, . . . , un} and their friendship adja-

1Following the statistical convention of assuming PRand
f (Xj) as the null hypothesis, this ratio

indicates how significant partition Xj is in predicting friends.

2The more accurate version of this Equation is E(β) =
∑

j βXj

|M(Xj)|∑
j |M(Xj)| . In later sections, we

assume that ∪ki=1M(Xi) = U and M(Xi) ∩M(Xj) = ∅, i.e.,
∑

j |M(Xj)| = |U |. Hence, to avoid

confusion in future sections, the term
∑

j |M(Xj)| is substituted with |U |.
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cency matrix A ∈ Rn×n, finding friends with minimum information can be achieved

by finding a partitioning of U , π(U) = (X1, X2, . . . , Xk), and a friendship matching

function f such that E(β) > 1.

Hence, to find friends with minimum information, one has to determine (1) a

partitioning of the usernames and a (2) matching of usernames to those partition

such that E(β) > 1. To find a solution, we analyze how friends are formed from a

social science perspective.

4.1.2 Social Forces behind Friendships

In general, three major social forces result in friendships: (1) homophily ; (2) con-

founding ; and (3) influence. Homophily, or the social principle that “birds of a feather

flock together,” is observed when similar individuals become friends. The similarity

between users is often observed in their interests (e.g., field of study), their personal

attributes (e.g., gender), and the like. Fans of the same movie director becoming

friends is an example of friendships formed by homophily. Confounding is observed

when friendships are formed due to user similarities caused by the environment users

live in. Friend formed by confounding are often in close proximity or speak the same

language. Finally, influence is observed when users form friendships due to external

factors, such as the authority of others. Befriending a public figure is an example of

friendships formed by influence.

Interestingly, signs of similarity between users are observed in friendships formed

by all three social forces. In homophily, friends are similar in terms of non-environmental

attributes such as their interests. In confounding, friends are similar in terms of their

environmental attributes such as their mother tongue or location. In influence, a

user who befriends an influential user can be different from the influential in terms

of the environmental or non-environmental attributes. However, the user often fits

94



well within the crowd who has already befriended the influential. For instance, users

who befriend a famous tennis player are often similar in terms of liking tennis. Thus,

in influence, the user befriending the influential is similar to the crowd that has be-

friended the influential. Due to these similarities, friends of the user are likely to have

the exact same attribute value. Hence, to find friends one should aim at predicting

user attributes, and in our situation, from usernames.

User attributes are non-random and leave digital traces in usernames [139]. These

digital traces in usernames can be captured using data features. For instance, we

expect individuals who speak the same language to shard statistical language pattern

that can be gleaned from their usernames. Following the tradition in data mining

research, we employ supervised learning to predict personal attributes of users solely

from their usernames. For each social force, we select a corresponding user attribute

for prediction that can best demonstrate the effect of friendships formed by that force.

Next, we elaborate how specific user attributes are selected for each social force to be

predicted from usernames.

4.1.3 Predicting Individual Attributes

As discussed, friendships are formed by three general social forces: homophily,

confounding, and influence. Our goal is to predict user attributes that represent

each social force from usernames. Our goal here is to demonstrate how simple user

attributes that represent each social force can be predicted using only usernames.

Later in our experiments, we measure how these predicted attributes help better find

friends and show the effect of each social force on predicting friendships.
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Homophily-based Friendships

Homophily is observed when similar individuals befriend others. User similarities

in homophily are exhibited in non-environmental user attributes. A major non-

environmental user attribute that is known to result in friendships is the user’s age.

One often observes that users in the same age range are more likely to befriend each

other. This has been observed in numerous recent studies [100, 119]. For instance,

Ugander et al. [119] noticed that younger users have less diverse friends in terms of

age range, while older users exhibit a higher diversity. Among the attributes that

result in homophily-based friendships, we select age due to to its strong influence on

friendships. If the ages of individuals can be predicted from their usernames, one

expects users in the same age range to have higher friendship likelihoods.

By predicting ages for current users of the site from their usernames, we are

partitioning the site users into different sets, each set representing users in an age

range. For a new user, once the age range is predicted from the username, one

expects the user to be more likely to be connected to others in the partition of users

in the same age range. Here, π(U) represents partitions of different age ranges and

f(ui) = Xj indicates that the predicted age range for ui is the same as that of all

members of Xj. Hence, M(Xi) = Xi, meaning that matched users to the partition

are within the partition itself. But, how can we predict the age from the username?

An analysis of US social security records3 for birth names since 1879 shows that

name frequencies change over time. For instance, in Figure 4.1, we depict the popu-

larity of first names: Jennifer and Jacob over time. For each year, the popularity of

the first name is shown on a scale of [0,1]. Jennifer was the most popular female name

between [1970-1984] whereas Jacob was the most popular male name from 1991 to

3http://www.ssa.gov/oact/babynames/
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Figure 4.1: Popularity of First Names: Jennifer and Jacob over Time. Higher
Values Depict more Popularity.

2012. Similar patterns can be observed for different English and non-English names

given the diversity of the US population. This leads us to believe that given a name,

one can provide an estimation of a likely age.

Personal attributes such as names are known to partially or completely exist in

usernames and can be detected using the alphabet distribution of usernames [136,

139]. For instance, in our example, the probability of observing double n’s in Jennifer

is higher whereas, the probability of observing c and b is higher in Jacob. Hence,

the n-grams in usernames change depending on the age of the user. This is not only

because of the popularity of names, but also because individuals of different ages

have different vocabularies and interests that are exhibited in their usernames [139].

Thus, one can employ statistical language processing techniques to estimate ages of

individuals from their usernames.

Confounding-based Friendships

We select two of the most prominent attributes from the attributes that are related to

the environment that the users are living in: language and location. Similar to the age

of individuals, we expect users living in close proximity or sharing the same language
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to have a higher chance of becoming friends. Similar to the age attribute, π(U)

becomes the partitions of different locations (or languages), f(ui) matches ui to the

partition Xj, where members of Xj are in the same location as ui, and M(Xi) = Xi,

meaning that matched users are within the partition itself.

The language of individuals can significantly impact their chosen usernames. The

language patterns can be easily observed both in the alphabet distribution as well

as the n-grams of the username. For instance, while letter x is common when a

Chinese speaker selects a username, it is rarely used by an Arabic speaker, since no

Arabic word transliterated in English contains letter x. Similarly, excessive use of ‘i’

in languages such as Persian or Tajik [35, 50], can be easily detected in usernames.

Similarly, individuals from specific locations often have tendencies to utilize location-

specific words or statistical patterns. While natives of Zambia, may use Kalambo,

referring to a waterfall in Zambia, it is highly unlikely for users from elsewhere to

include this word in their usernames.

Thus, to predict the location and language of the individuals one can utilize sta-

tistically significant alphabetical patterns in their usernames.

Influence-based Friendships

In friendships formed by influence, influential users attract friends. Hence, we can

partition users attracting others in terms of the types of friends they are attracting

and compare each partition with the new user for whom we are searching for friends.

In general, we believe the deciding factor in becoming a member of the crowd that

has befriended an influential is how the user fits in that crowd. We assume that a

user fits in a crowd when at least one member of the crowd is similar to the user

in terms of some attribute (environmental/non-environmental). We use all three

attributes discussed so far: age, location, and language. Here, f(ui) matches ui to
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a partition Xj where each [influential] member of Xj has a friend with the same

language, location, or age as ui.

4.1.4 Experiments

The friendship search space reduction is systematically evaluated in this section.

We determine the accuracy of finding friends for each one of the social forces, rep-

resented by their predicted attributes. Before we present our experiments, we detail

how experimental data is collected.

Data Preparation

To analyze friendships, we collected a friendship graph of 135 million friendships from

Reddit. These friendships are among 1.6 million users. For each friendship in this

graph, we have the two usernames that are connected. We also collected separate

datasets for predicting age and location of usernames.

1. Age Dataset. To predict age and to remove any bias associated with Reddit

usernames, we collected a set 226,588 usernames from LiveJournal. In Live-

Journal, users can list their ages. Among these users, 82,011 users have listed

their age. This formed our training dataset for age prediction. The usernames

in this dataset were vectorized using their alphabet distribution and frequent

letter bigrams and their weights were normalized using TF-IDF. The ages were

also divided into ten categories using an equal frequency binning and used as

labels for this dataset. The age ranges in years are: [0, 21.9], [22, 23), [23, 25),

[25, 26.5), [26.5, 28), [28, 30), [30, 33), [33, 36), [36, 42), [42,∞).

2. Location Dataset. Similar to the age dataset, to remove bias for location

prediction, we collected a dataset from Twitter. On Twitter, tweets can be geo-
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located; that is, users carrying GPS-enabled devices can report their location

with their tweets, which includes their usernames. The location is reported

in (latitude,longitude) format. From Twitter, we collected a set of 36 million

geo-located usernames with their latitudes and longitudes. Using a shapefile of

all country borders and reverse geocoding, we determined the country for each

username. Clearly, some countries have more geo-located tweets than others. To

account for this imbalance, we clustered our dataset of latitudes and longitudes

with k-means clustering.

For countries with less than 1,000 usernames we considered the whole country

as one cluster. For all others, we clustered the geographical coordinates within

the country using k-means with different k values until the obtained clusters

had small enough radius. A recent study on Facebook [119] shows that users

are more likely to befriend users that are within their 50 miles distance; thus,

we ensured that the distance between any two members of the same cluster is

close to this value. In our dataset, we found that by finding around 395 clusters,

the clusters become well-balanced in size and small in radius across countries.

The clustering of the usernames from the United States, including Alaska and

Hawaii, is shown in Figure 4.2.

Although some clusters were still smaller than others, for most clusters, the dif-

ference is negligible, with the average datapoint distance to the cluster centroid

being ≈ 36 miles. Since users in the same cluster are geographically close, we ex-

pect these users to have higher friendship likelihood. In this dataset, we use the

cluster label as the class label for our training. Similar to our age dataset, the

usernames are vectorized using their alphabet distribution and frequent letter

bigrams and their weights are normalized using TF-IDF.
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Figure 4.2: Usernames Clustered based on Location for the United States. Colors
Represent Cluster Labels.

Learning Age, Location, and Language Predictors

We discuss how we train different classifiers to predict age, location, and language.

Note that we are agnostic to the performance of these classifiers as long as these

classifiers can reasonably predict the attributes. This is due to our goal to demonstrate

the feasibility of finding friends by training such classifiers. Clearly, if our classifiers

are capable of helping find friends, further classification improvements can further

improve the friend recommendation. We leave classification improvement as a line of

future research.

I. Predicting Language from Usernames. As usernames are often transliterated

in Latin alphabet, one can more accurately predict the language of usernames for

languages that employ Latin alphabets. We train an n-gram statistical language de-

tector [44] over the European Parliament Proceedings Parallel Corpus4, which consists

4http://www.statmt.org/europarl/
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of text in 21 European languages (Bulgarian, Czech, Danish, German, Greek, En-

glish, Spanish, Estonian, Finnish, French, Hungarian, Italian, Lithuanian, Latvian,

Dutch, Polish, Portuguese, Romanian, Slovak, Slovene, and Swedish) from 1996-2006

with more than 40 million words per language. The trained model can detects a

username’s language by decomposing it into different n-grams.

II. Predicting the Age from Usernames. Given our prepared dataset for the

age. We trained a regularized logistic regression model that is able to predict the age

of a username by decomposing it into n-grams. The model can predict age from a

username.

III. Predicting Location from Usernames. The location dataset was clustered

based on latitude-longitude values and cluster labels were used as class labels. We

trained a regularized logistic regression model for this dataset. The trained model

is capable of detecting the location of the username as one of the 395 classes that

represent different locations.

Measuring Significance Ratios

With our trained classifiers, we predict age, location, and language for all 1.6 mil-

lions users. Then, for attributes representing each social social force, we measure

significance ratios. For homophily and confounding, we measure significance ratios

by measuring how many friends are of the same age, have the same location, or

language. For influence, for user ui and user uj (represented using usernames), we

measure how username ui fits among the friends of uj. We perform this separately

for each of the three predicted attributes. In our experiments, we assume user ui fits

in friends of uj, if at least one individual among friends of uj has the same attribute

value (age, location, or language) as ui.
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I. Homophily Significance

Among the set of 135 million friendships, we measure significance ratios for all

age categories in our dataset: [0, 21.9], [22, 23), [23, 25), [25, 26.5), [26.5, 28), [28, 30),

[30, 33), [33, 36), [36, 42), [42,∞). The significance ratios are plotted in Figure 4.3(a).

As shown in the figure, for all categories β > 1. This means that for example, when

the predicted age of a username is between [28 − 33], by recommending only other

usernames where their ages are predicted to be in [28− 33], we are 7 times more ac-

curate than randomly finding a friend. Note the significance of this result, compared

to state of the art link prediction techniques that perform on average 2.4-54.4 times

better than random prediction [80]; however, with access to link information. Our

technique has no link information for the user for whom we are finding friends.

II. Confounding Significance

Similarly, we measure the significance ratios for different languages. We observe

that for all languages β > 1. More importantly, we observe that when the language is

detected as English, then β is minimum among all languages. This has two reasons.

First, the majority of usernames are in English; therefore, conveying less information

about friends. Secondly, lower similarity is observed among English users, as English

is widely spoken across the globe and there is less likelihood for these speakers to

befriend each other. In direct contrast are eastern European languages such as Ro-

manian (β = 48.6) or more commonly spoken languages such as French (β = 10.6)

that significantly improve friend finding performance.

We also measure the significance ratios for the location of usernames. Due to the

large number of locations, we plot the histogram and the cumulative distribution (red

line) of β values in Figure 4.3(b).

103



(a) Age (b) Location

(c) Language

Figure 4.3: Significance Ratios (β) for Different Attributes

As shown in the figure, for more than 55% of locations we cannot predict any bet-

ter than random. At the same time, for some predicted locations one can achieve as

much as β ≈ 325. After further investigation, we found that for the locations where

β = 1, either the radius of the location cluster was larger than 50 miles or the size of

the username cluster was small (few training instances). This in particular happens

for countries where not many usernames are in our dataset. Thus, to better under-

stand if there is any significance with respect to location, as well as other attributes,

one needs to compute the expected value E(β). We will measure the expected values

later where we compare different social forces in terms of friend finding performance.

III. Influence Significance

We measure significance ratio for influence using age, location, and language.
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(a) Age (b) Location

(c) Language

Figure 4.4: Influence Significance Ratios (β) for Different Attributes

These ratios are demonstrated in Figures 4.4. Comparing Figure 4.4 to Figure 4.3,

we observe that in general finding friends based on influence (similarity to the friends

of an individual) is much easier compared to homophily or confounding. On average,

when finding friends based on influence, and using attribute age, the friend finding

performance is improved by a factor of 1.79. Similarly, it is improved by a factor 5.14

when using the language attribute and a factor of 11.72 when considering locations.

Hence, it seems that users prefer befriending individuals that have friends in their

region over individuals who have friends sharing their language or are of the same age.

To further analyze the effect of each social force, we measure the expected significance

in finding friends for each social force next.
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Table 4.1: Expected Improvement in Finding Friends over Random Predictions
(E(β)) for Different Social Forces.

Friend Finding Technique E(β)

Homophily - Age 5.49

Confounding - Location 6.19

Confounding - Language 5.19

Influence - Age 9.79

Influence - Language 16.29

Influence - Location 31.04

Comparison between Social Forces

As discussed in Section 4.1.1, the significance ratio at times can become deceiving.

To mitigate this issue, we compute the expected β for homophily (age attribute),

confounding (language or location attribute), and influence (for age, location, and

language). The results are available in Table 4.1, showing an expected improvement

factor between [5.49-31.04]. The table shows that though all forces can help find

friends, influence-based friendships that are identified are at most 6 times more ac-

curate compared to friends identified based on other social forces. Contrary to the

common belief that similarity between users is the gist of forming friendships, this

suggests that individual have far more tendencies to befriend a potential user when

they feel welcomed in the crowd of friends of the potential user. We observe no

significant difference between homophily and confounding in finding friends.

4.1.5 Related Work

To the best of our knowledge, the study presented in this section is the first to

help find friends when link or content information is unavailable. However, one can

find similar supervised or unsupervised link prediction methods when link or content
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information is available.

Assuming usernames are content generated by users, one can compute the sim-

ilarity between individuals and the similarity between their friends. In this case,

well-established link prediction methods that use node similarity or neighborhood

similarity such as the common neighbors [80], Adamic-Adar [4], Jaccard’s Coefficient

[80], or preferential attachment[80] are applicable. Note that when using contents

generated by users, it is common to assume large collections of documents, with

thousands of words, available for each user, whereas for usernames, the information

available is limited to one word. Our technique, employs the knowledge of how social

forces influence friendships and additional information such as age, language, and

location that represent these social forces to reduce friendship search space, helping

better predict future friends.

We have discussed a methodology to find friends with minimum information.

Next, we investigate how minimum information can be used to detect malicious users.

4.2 Finding Malicious Users with Minimum Information

Social media sites are inundated with malevolent users. In June 2012, Facebook

reported that 83 million of its user accounts are fake [123]; that is roughly the size of

Egypt’s population and larger than the population of 230 countries in the world [126].

Facebook reports that one-sixth of this population, that is 1.5% of total Facebook

users, are “undesirable” accounts that are created for malevolent purposes. Twitter

faces similar challenges. In its security filings, Twitter claims 5% of its users are

fake [46]; however, researchers estimate the percentage of its fake accounts to be as

high as 10% [46]. These fake accounts are mostly sold for malicious purposes on black

market for as low as $0.05 [46].

Malicious accounts may be created for different purposes. According to Cao et
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al. [25], some malicious accounts are created for profitable activities, such as click

fraud, identity fraud, and malware distribution. Others are created for social purposes

such as pranks, stalking, cyberbullying, or identity concealing. The latter is often

used in social online games. Online service providers find detecting and subsequently,

suspending malicious accounts vital in order to protect their normal users against

external threats.

Detecting malicious accounts dates back to the onset of social media. Compre-

hensive feature-based techniques, human-in-the-loop approaches, or techniques that

use social-graphs are devised (see a review in Section 4.2.1). These techniques assume

that a good amount of information about malicious users has been gathered. This

information includes (1) the content that malicious users generate, (2) the activities

they exhibit, or (3) the users they befriend. In short, their content, activity, or links.

On the contrary, malicious users often do not have an incentive to generate content,

exhibit activity, or befriend others. In addition, as malicious users join new sites, they

lack sufficient content, link (i.e., friends), or activity to help detect them. Thus, there

is a pressing need for detecting malicious users when only minimum information

is available.

The study in this section aims to fill this gap by detecting malicious users when

minimum information is available. In particular, we make the following contributions:

1. We introduce the first methodology to detect malicious users with minimum

information. This methodology can be used as the first line of combat against

malicious users on the web.

2. We identify five general characteristics of malicious activity and demonstrate

how these characteristics are exhibited in the user generated content online.

3. We demonstrate that with as little as 10 bits of information, one can distinguish

between normal and malicious users.

108



4. We show via experiments that the methodology is robust and at least as effective

as techniques that have access to more information.

In Section 4.2.1, we review the malicious user detection literature. We formally

define the malicious user detection problem with minimum information in Section

4.2.2. We detail characteristics of malicious activity and how one can identify such

characteristics in user content in Section 4.2.3. We detail our experiments in Section

4.2.4.

4.2.1 Literature on Malicious User Detection

While detecting malicious users with minimum information is unexplored, identi-

fying malicious users in general is not a new topic. Often, to identify malicious users,

(1) feature-based techniques, (2) human-in-the-loop techniques, or (3) techniques that

use social graphs are used. We review representative techniques for each category and

discuss how the current work relates to these techniques.

Feature-based Techniques. In Feature-based techniques, different features are con-

structed to describe the behavior of the malicious user. These features are then used to

construct a dataset that is trained by a supervised learning framework. For instance,

Xie et al. [128], develop the AutoRe framework that identifies botnet campaigns.

Their framework identifies traffic that is bursty and distributed. These features of

traffic help identify botnets. The bursty and distributed nature of unwanted content

is also used in detecting malicious posts on Facebook [52]. Wang [122] introduces

a method that detects spam on Twitter using network features such as the number

of followers or friends and content features such as duplicated tweets. Feature-based

techniques have been discussed extensively for detecting unwanted content in social

tagging systems [75, 89], social networks [112], email [77], online videos [20], and
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microblogging sites [19, 132]. Our work differs from the existing work in two as-

pects. First, current techniques for identifying malicious users often employ content

or link information. Thus, one often needs a large collection of data instances to ob-

tain guaranteed performances. Our approach employs minimum information across

sites. Second, current literature is often context-dependent (e.g., site specific). Our

method employs the minimum information that is universally available across sites

and is robust even when information is collected from multiple sites.

Human-in-the-loop Methods. One approach of identifying malicious users is to

employ human experts. Humans can naturally identify malicious users by their ac-

tivities. Alternatively, one can combat malicious activities by technologies such as

CAPTCHAs [121] or photo-based authentications [25] that are only solvable by hu-

mans. Although specific attacks are proposed for human-in-the-loop methods [97,

130], they are in general considered effective. Unfortunately, verifying accounts by

humans is time consuming. For example, Tuenti, a Spain-based social networking

service, hires humans to process reported users and block malicious ones [25]. An

employee can only process 250 to 300 reports an hour from the daily 12,000 reports

received. This issue makes human-in-the-loop processes infeasible for large-scale net-

works. Our approach in this section is automatic and can easily scale to billions of

users.

Social Graph-based Techniques. In social-graph based methods, the informa-

tion about the links (i.e., friendships) that the malicious individual has created helps

identify the malicious user. For instance, Yang and colleagues [131] identify more

than 100,000 fake accounts using social network features on RenRen social network.

In particular, they find that invitation frequency, outgoing requests accepted, in-

coming requests accepted, and network clustering coefficient can help identify fake
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accounts. In other works, probabilistic, combinatorial, or random walk models have

been applied to network information to identify malicious users. Examples include,

Sybilguard [133], Gatekeeper [118], SybilInfer [38], SumUp [117], and Sybillimit [134].

These methods or variants can be applied on sites such as Twitter to identify mali-

cious users [53]. Mislove et al. [120] show that most techniques in this area function

by finding local communities around trusted nodes. Assuming the existence of a so-

cial graph is a strong assumption. One often requires specific privacy permission to

obtain such graphs and in specific cases, this graph is not available. In cases where

there is no social graph, our methodology is still easily applicable.

4.2.2 Malicious User Detection with Minimum Information

Who is a malicious user? The definition varies in the literature from users that

harass other users to users that jeopardize the privacy of others, and the like [25].

We consider malicious users on a site, those whom normal users consider malicious.

Clearly, the opinion of normal users can be subjective and has to be verified by experts.

In section 4.2.4, we demonstrate how such human-verified data can be collected.

Humans are known to be accurate in detecting malicious users on social media [59, 65,

104]. However, as discussed in our literature review, human-in-the-loop approaches

are time consuming and expensive for large-scale networks. Hence, by investigating

how humans detect malicious users, one can not only scale detection of malicious

users, but can also protect against a wide spectrum of malicious activities that are

exhibited on social media [25, 28].

Our goal in this study is to identify such malicious users. Malicious users often

provide little or no information. Hence, a method that can be universally employed

on different sites is constrained to use the minimum information available on all sites.

Usernames seem to be the minimum information available on all social media sites.

111



Often, usernames are alphanumeric strings or email addresses, without which users

cannot join sites. Because of their unique characteristics, usernames are shown to

be surprisingly effective for identifying individuals [139]. We formalize our problem

using usernames as the minimum information available on all sites. Other content,

link, or activity information such as user profile information or friends, when added

to usernames, should help better identify malicious individuals. However, the lack of

consistency in the availability of such information on all social media sites, directs us

toward formulating our problem with usernames.

When using usernames, the goal is to detecting malicious users from their user-

names. Hence, one can learn a function M(.) that given a username u, predicts

whether the username belongs to a malicious user or not. We denote the M function

as the malicious user detection function. Formally,

Definition. Malicious User Detection. Given a username u, a malicious user

detection procedure attempts to learn a malicious user detection function M(.), where

M(u) =

 1 If u belongs to a malicious user;

0 Otherwise.

Malicious activities have distinctive characteristics. These characteristics leave

traces in the usernames of malicious users in terms of information redundancies.

These redundancies can be captured using data features. Following the common

machine learning and data mining practice, the malicious user detection function can

be learned by employing a supervised learning framework that utilizes these features

and labeled data. In our problem, labeled data includes usernames that are known

to be malicious or normal. For supervised learning, either classification or regression

can be performed. Depending on the malicious user detection task at hand, one can

even learn the probability that a username is malicious, generalizing our binary M
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function to a probabilistic one (M(u) = p). This probability can help select the most

likely malicious username. The learning of the malicious user detection function is

the most straightforward. Therefore, we next elaborate on different characteristics

of malicious activities and how features can be constructed to capture information

redundancies introduced in usernames due to these characteristics. Note that the

designed features may or may not help in the learning framework and are included

as as long as they could be obtained. Later on in Section 4.2.4, we will analyze the

effectiveness of all features, and if it is necessary to find as many features as possible.

In summary, to detect malicious users, we (1) identify characteristics of mali-

cious activities, (2) construct features to identify traces of these characteristics in

usernames, and (3) train a learning model to detect malicious users. Due to the

interdependent nature of these characteristics and feature construction, we discuss

them together next.

4.2.3 Characteristics of Malicious Activities

Humans detect malicious users on social media by the type of behavior these users

exhibit. By reviewing related literature from computer science, security, criminology,

among other fields [25, 47, 112, 120, 128, 131], we identified five general character-

istics of malicious activities. Malicious users can exhibit one (or a combination) of

these characteristics in their activities. Note that as more characteristics of malicious

activities are identified by researchers on social media, our methodology can be ex-

tended with these characteristics and the corresponding features that can capture the

information redundancies introduced by them.
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Malicious Activity is Complex and Diverse

Malicious users often generate complex and diverse information to ensure their anonymity.

To measure complexity of usernames, it is natural to borrow techniques from com-

plexity theory. We employ Kolmogorov complexity to determine the complexity of a

username. Kolmogorov complexity was proposed in 1965 by Andrey N. Kolmogorov

to determine the randomness of strings in a concrete mathematical form.

Let x represent a string. We denote the Kolmogorov complexity of string x as

K(x). K(x) is defined as the length of the shortest program capable of reproducing

string x on a universal computer such as a Turing Machine. Hence, Kolmogorov

complexity is the absolute minimum information required to reproduce x on the Tur-

ing machine. While Kolmogorov complexity defines the complexity (or information)

available in a string, it is well-known that its exact value cannot be computed [70].

Having said that, the following theorem provides the means to compute the expected

Kolmogorov complexity for a distribution of strings P :

Theorem 9. (from [79]) The value of the [Shannon] entropy H(P ) for distribution

P equals the expected value of the Kolmogorov complexity Ex(K(x)) on P , plus a

constant term that only depends on P .

Hence, by computing the entropy of the username distribution, one can approxi-

mate the expected Kolmogorov complexity of the distribution. However, the theorem

discusses the entropy of a username distribution and it is not clear how one can con-

nect this theorem to properties of a specific username. For connecting the properties

of specific usernames to the entropy of the distribution, we can employ the concept

of information surprise [33].

Let x denote a username and p(x) denote the probability of observing x. We
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denote information surprise, or self-information, for x as

I(x) = − log2(p(x)). (4.10)

Hence, for a rare username x with a small observation probability p(x), informa-

tion surprise I(x) is much higher than that of a common username with a higher

probability of observance. It is well-known that information surprise is deeply con-

nected to entropy:

Theorem 10. (from [33]) The expected value of information surprise E(I(X)) for a

random variable X is equivalent to its entropy H(X).

So, by combining Theorems 1 and 2, one can approximate the expected Kol-

mogorov complexity of usernames by computing the expected information surprise

in them. The information surprise for a username x is computed by measuring

I(x) = − log2(p(x)), which requires the probability of observing username x. The

probability of observing username x, denoted in characters as x = c1c2 . . . cn, is

p(x) = Πn
i=1p(ci|c1c2 . . . ci−1). (4.11)

We approximate this probability using an n-gram model,

p(x) ≈ Πn
i=1p(ci|ci−(n−1) . . . ci−1). (4.12)

Often, to denote the beginning and the end of a word special symbols are added such

as ? and •. So, for username sara, the probability approximated using a 2-gram

model is

p(sara) ≈ p(s|?)p(a|s)p(r|a)p(a|r)p(•|a). (4.13)

To estimate the probability of a username using an n-gram model, one needs to

compute the probability of its comprising n-grams. The probability of these n-grams
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can be computed using a large set of usernames. For that, we use a dataset of 158

million Facebook usernames (later discussed in Section 4.2.4) to train a 6-gram model.

This n-gram model was employed to compute the probability of a username and in

turn, its information surprise.

Figure 4.5 plots the empirical probability density function (Kaplan-Meier esti-

mate) of information surprise values for normal and malicious users. The process

followed to collect these usernames is later discussed in Section 4.2.4.

The black solid line in Figure 4.5 demonstrates the distribution of surprise values

for normal usernames and the black dashed line depicts the distribution for malicious

usernames. As shown in the figure, malicious usernames are more complex with the

expected information surprise (i.e., expected Kolmogorov complexity) value of 23.11

bits and more diverse, ranging from 4.14 bits to 232.64 bits.

Unlike malicious usernames, normal usernames are less surprising and more con-

centrated around a mean value, with a mean of 12.49 bits and the information surprise

value ranging from 3.90 to 31.93 bits. The figure shows that these distributions are

well separated indicating that by using the information surprise of a username, one

might be able to accurately classify usernames into malicious or normal.

In Figure 4.5, the gray line depicts the curve for the malicious usernames sub-

tracted by the curve for the the normal usernames. Hence, when this gray line is

above zero, it shows that for a specific information surprise value, the username is

more likely to be malicious and whenever the gray line is below zero, we observe the

opposite. We notice that for values between 3.91 and 17.96 the curve is below the zero

line, showing usernames are more likely to be normal. In this range, the mean value

is 10.9 bits. Thus, when the information surprise for a username is approximately 10

bits, the username is more likely to be normal.

We include the information surprise of the username (i.e., its complexity) as an-
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Figure 4.5: Probability Density Function for Information Surprise Values of Mali-
cious and Normal Users.

other feature in our dataset. In addition, a common pattern for malicious users for

providing diverse information is to generate usernames that include digits. Therefore,

we include the number of digits in the username as a feature. We also include the

proportion of digits in the username as another feature in our feature set.

Malicious Activity is Demographically Biased

The malicious activity is the act of a malicious user. In the criminology literature [47],

it is well-known that crime correlates with demographic information. Thus, one ex-

pects to better detect malicious users by determining their demographics. Following

the diffusion of innovations terminology [87], a malicious user has internal demo-

graphic attributes, external demographic attributes, or a combination of internal and

external (i.e., mixed) attributes.

Internal attributes are endogenous attributes that the user has no control over

such as his or her age. External attributes are attributes due to the environment that

the malicious user lives in such as the language that the malicious user speaks. The

level of knowledge that the malicious user has is an example of a user attribute that is
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mixed (internal+external). This is because it depends on both the environment that

the malicious user lives in and on the internal attributes of a user such as his interests.

To concretely profile a malicious user, one has to consider all these attributes. We

select gender from internal attributes, language from external attributes, and knowl-

edge (i.e., vocabulary size) from mixed demographic attributes to be predicted from

usernames. Clearly, with more internal/external/mixed demographic attributes, one

should better profile malicious users. We leave that as a future direction for this

work. But, how can we detect gender, language, or other attributes of individuals

from their usernames?

Psychological studies [56] show that users leave traces of their personal informa-

tion and attributes in the information they generate such as their usernames. For

example, we showed in Section 4.1.3 that personal information such as first name

influences usernames. Hence, given a name, one can estimate the most likely age.

Names, interests, as well as other personal attributes are often abbreviated or used

in usernames [139]. We use these information traces in usernames to predict gender,

language, among other attributes.

I. Malicious User Gender. To predict gender from usernames, we train a classifier.

The classifier decomposes a username into character n-grams and estimates the gender

likelihood based on these n-grams. This classifier is trained on the n-grams of a labeled

dataset of usernames, in which the gender for each username is known. We collect

our labeled dataset from Facebook. Our labeled dataset contains a set of 4 millions

usernames with their corresponding gender. The classifier predicts the gender of a

username with up to 80% accuracy. Notice that because malicious users tend to hide

their identity and gender; instead of the actual prediction, we include the classifier’s

confidence in the predicted gender as the feature.
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II. Malicious User Language. To detect the language of the username, we train an

n-gram statistical language detector [44] over the European Parliament Proceedings

Parallel Corpus5, which consists of text in 21 European languages (Bulgarian, Czech,

Danish, German, Greek, English, Spanish, Estonian, Finnish, French, Hungarian,

Italian, Lithuanian, Latvian, Dutch, Polish, Portuguese, Romanian, Slovak, Slovene,

and Swedish) from 1996-2006 with more than 40 million words per language. The

trained model detects the username’s language, which is a feature in our feature

set. The detected language feature is limited to European languages. Our language

detector will not detect other languages. The language detector is also challenged

when dealing with words that may not follow the statistical patterns of a language,

such as location names, etc. This issue can be tackled by including the distribution

of alphabet letters in usernames as features [139]. Thus, in addition to predicted

language, we include the alphabet distribution of the username as a feature.

III. Malicious User Knowledge. To approximate the level of knowledge of a

malicious user, we can compute his or her vocabulary size. The vocabulary size can

be computed by counting the number of words in a large dictionary that are substrings

of the username [139]. This approach captures different possible interpretations of the

username and approximates the level of knowledge of the malicious user. We include

the vocabulary size as a feature.

Malicious Activity is Anonymous

Malicious activity often requires a level of anonymity [18]. Theoretically, the max-

imum level of anonymity can be achieved with a string that has the maximum en-

tropy [129]. We compute the entropy of the alphabet distribution of the username

5http://www.statmt.org/europarl/
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as well as its normalized entropy to measure its level of anonymity. To normalize

entropy, we divide it by log n, where n is the number of unique alphabet letters used

in the username. Moreover, we measure the uniqueness of letters in the username –

that is, the number of unique letters used in the username divided by the username

length. We include entropy, normalized entropy, and uniqueness as features.

Malicious Activities are Similar

Malicious activities can be similar. For instance, individuals marketing an illegal

product Dangerous-Pill all share the name of the product Dangerous-Pill in the

marketing content. This malicious content similarity can be captured in usernames

by identifying specific (1) language patterns and (2) words in the usernames.

Language Patterns

To find finer grain language patterns of users, we employ character-level n-grams.

Character-level n-grams have shown to be effective in detecting unwanted content [67,

68] and connecting users across social media sites [106]. We compute the normalized

character-level bigrams of usernames and include them as features. Bigram features

are normalized using TF-IDF. Bigrams allow for a language-agnostic solution [139]

that can detect common patterns of malicious users conveniently.

For coarser grain language patterns, we investigate common habits of malicious

users. For instance, it is known that the use of digits is an indication of unwanted

content [75]. In particular, we notice that malicious users tend to start their user-

names with digits; therefore, we include the number of digits at the beginning of the

username as a feature. We also notice that malicious users repeat character letters

more often that normal users. This strategy allows them to circumvent widely used

statistical malware blockers [127]. Hence, we include the maximum number of times

a letter has been repeated in the username as another feature.
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Word Patterns

A well-known approach to identify malicious users or content is by finding specific

keywords in the content generated by these users. Hence, we denote the existence

of these specific keywords in usernames as an indication of malicious activity. We

utilize two dictionaries, one containing keywords related to malicious activities and

the other for offensive keywords6. For each dictionary, we count the number of words

in the dictionary that appear as the substring of the username. We include these two

counts for the aforementioned two dictionaries as features.

Malicious Activity is Efficient

In contrast with complex malicious activities (Section 4.2.3), some malicious activities

demand efficiency. This is because the malicious user is interested in performing

the malicious activity frequently, quickly, and at large-scale. For instance, when

performing click-fraud, the malicious user is interested in creating many accounts,

each clicking on specific ads. This efficiency can be observed in usernames in terms of

(1) the username length; and (2) the number of unique alphabet letters in usernames.

We include both as features. In addition, we can observe efficiency by determining

the typing patterns of the malicious user.

Most people use one of the two well-known DVORAK and QWERTY keyboards,

or slight variants such as QWERTZ or AZERTY [125]. It has been shown that the

keyboard layout significantly impacts how random usernames are selected [42]. For

example, qwer1234 and aoeusnth are two well-known passwords commonly selected

by QWERTY and DVORAK users, respectively. To model typing patterns of mali-

cious users, for each username we construct the following 15 features for each keyboard

6Available at http://www.cs.cmu.edu/∼biglou/resources/
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layout (a total of 30 for both keyboard layouts),

1. (1 feature) The percentage of keys typed using the same hand that was used

for the previous key. The higher this percentage the less users had to change

hands for typing.

2. (1 feature) The percentage of keys typed using the same finger that was used

for the previous key.

3. (8 features) The percentage of keys typed using each finger. Thumbs are not

included.

4. (4 features) The percentage of keys pressed on rows: Top Row, Home Row,

Bottom Row, and Number Row. Space bar is not included.

5. (1 feature) The approximate distance (in meters) traveled for typing a username.

Normal typing keys are assumed to be (1.8cm)2 (including gap between keys).

We construct 15× 2 = 30 features that capture the typing patterns of usernames

for both keyboards and include them in our feature set.

We have detailed how characteristics of malicious activities can be captured by

meaningful features. These features help identify traces of malicious activities in

usernames. Overall, for each username, we construct 1,413 features.

Clearly, not all aspects of malicious activities are covered by our features, and

with more theories on characteristics of malicious activity, more features can be con-

structed. We will empirically study if it is necessary to use all features and the effect

of using different features on learning performance of detecting malicious users.

Following our approach, we compute the feature values over labeled data, and

verify the effectiveness of our methodology by learning the malicious user detection

function. Next, experiments for evaluating our methodology are detailed.

122



4.2.4 Experiments

We evaluate our methodology to detect malicious users in this section. First, we

verify if our proposed approach can identify malicious users well. Next, we verify if

different learning algorithms can influence the prediction task. Then, we determine

the sensitivity of our approach to different conditions. Finally, we perform feature

importance analysis and determine how features designed for each characteristic of

malicious activity influence the detection outcome. Before we present the experiment

details, we detail how experimental data was collected for this research.

Data Preparation

Our approach to detect malicious users employs a supervised learning framework.

Hence, labeled data is required. This labeled data consists of usernames and their

corresponding label: malicious or normal.

To collect malicious usernames, we refer to sites such as dronebl.org, ahbl.org,

among others (for a complete list see [90]). These sites gather lists of usernames that

have been reported by other normal users for malicious purposes. Once reported,

these accounts are manually verified by domain owners to be malicious. These lists

are published to help sites promote their security. We collect a set of 32 million

usernames that are manually reported as malicious by users across the web and for

different types of sites. This set forms our negative examples.

For collecting normal users, we require users that are manually labeled as nor-

mal. For that, we refer to Twitter verified accounts, all manually verified by Twitter

employees. These accounts are all followed by the Twitter handle verified7. By

crawling all the users this account follows, we collect a set of 45,953 usernames guar-

7http://twitter.com/verified
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anteed to be normal. These usernames form our positive examples. To diversify the

types of usernames we have collected, we also collect a set of 158 million usernames

from Facebook, that is, 1 in 8 Facebook users in the world are included in our dataset.

Note that the Facebook dataset is not completely normal as Facebook expects around

1.5% to be malicious. We employ this dataset later in our experiments for analyzing

the sensitivity of our approach to different conditions.

In addition, we collect a different set of 4 million Facebook users for which we have

the gender information. This dataset was used in our gender prediction classifier in

Section 4.2.3 to predict gender of the Facebook users.

After collecting positive and negative usernames8, we compute the corresponding

1,413 features for both sets and employ them in our experiments.

Learning the Malicious User Detection Function

Once the negative and positive examples are prepared, learning the malicious user

detection function can be achieved by training a classifier. Because our collected

negative examples are more, we subsample the negative examples to have the same

size as the positive examples. This way we create a dataset that has 50% positive

examples and 50% negative ones. Using this dataset, we train a classifier. The

random prediction on this dataset cannot achieve more than 50% accuracy. We train

an `2-Regularized Logistic Regression using 10-fold cross validation and obtain an

accuracy of 96.42%, an AUC of 0.9932, and an F1-measure of 0.9644.

As there are no comparable methods, we evaluate the effectiveness of our approach

by devising three baseline methods for comparison. When individuals are asked to

8We ensure that the alphabet used in both sets of usernames match. To avoid site-enforced

specific patterns on how usernames should be created, we filter out usernames that are not in ASCII

or alphanumeric. Our experiments show that this procedure does not influence our results.
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detect malicious users based on their usernames, they often look for specific “key-

words”, verify if the username looks “random”, or look for “repetition of letters”.

Hence, they form our three baselines b1, b2, and b3:

• Baseline b1: Keyword Detection. We consider a username malicious if it

contains a specific keyword. We use the same set of keywords used in Section

4.2.3 and train a classifier based on the single feature. b1 results in an AUC of

0.5140 and F1-measure of 0.66.

• Baseline b2: Username Randomness. For finding username randomness,

b2 uses the entropy of the username as a feature. Using our data labels, we

perform logistic regression. b2 achieves an AUC of 0.700 and F1-measure of

≈ 0.

• Baseline b3: Letter Repetition. Similar to the procedure followed in baseline

b2, in b3, we use the maximum number of times a letter is repeated in the

username as a feature and train a logistic regression model using our data

labels. b3 achieves an AUC of 0.61 and an F1-measure of ≈ 0.

While the baseline performances demonstrate the difficulty of our problem, the

proposed approach outperforms all baselines by at least 41%. The performance for

our approach, and baselines are summarized in Table 4.2. As reference points, we also

include in the table the performance of recent state-of-the-art techniques for detecting

malicious users. These techniques have access to more information compared to our

methodology and do not employ usernames; therefore, no improvement percentage

will be reported. Our approach, with usernames only, outperforms these techniques.

Next, we investigate if different learning algorithms can further improve the learning

performance.
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Table 4.2: Malicious User Detection Performance

Technique AUC F1

Our Approach 0.9932 0.9644

Baseline b1: Keyword Detection 0.51 0.66

Baseline b2: Username Randomness 0.70 ≈ 0

Baseline b3: Letter Repetition 0.61 ≈ 0

Reference Point r1: Markines et al. [89] 0.984 0.983

Reference Point r2: Gao et al. [52] 0.945 N/A

Reference Point r3: Wang [122] 0.917 0.917

Choice of Learning Algorithm

To evaluate the choice of learning algorithm, we perform the classification task using

a range of learning algorithms and 10-fold cross validation. The AUCs and accuracy

rates are available in Table 4.3. These algorithms have different learning biases, and

one expects to observe different performances for the same task. While we observe a

slight increase in the performance, as shown in the table, results are not significantly

different across algorithms. This shows that when sufficient information is available

in features, the performance is not sensitive to the choice of learning algorithm.

In our experiments, `1-Regularized Logistic Regression is shown to be the most

accurate method; therefore, we use it in the following experiments as the method of

choice.

In our previous experiments, we assumed that there is no class imbalance between

malicious and normal users. In reality this distribution is skewed. Furthermore,

because all of our normal users are from one source (Twitter verified accounts), one

needs to verify the effect that this has on our method. We analyze the sensitivity of
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Table 4.3: Malicious User Detection Performance for Different Classification Tech-
niques

Technique AUC Accuracy

`2-Regularized `1-Loss SVM 0.9966 97.05%

`2-Regularized `2-Loss SVM 0.9913 96.05%

`2-Regularized Logistic Regression 0.9923 96.25%

`1-Regularized Logistic Regression 0.9971 97.26%

our approach to the class imbalance and the distribution of normal users next.

Sensitivity Analysis

Sensitivity to Class Imbalance

In real-world networks such as Facebook and Twitter, the percentage of malicious

users in the population is approximated to be at most 10% [46, 123]. In other words,

for every 9 normal users there exists at most 1 malicious user. This rate could be

different across networks. Thus, we perform a sensitivity analysis with respect to

different ratios of malicious users. We construct datasets, where α percent of the

dataset consists of malicious users and change α in the range 5 ≤ α ≤ 50. Values

larger than 50 were not selected, because then we are assuming that malicious users

are more than the normal ones.

Because we collected more negative examples, we sample the negative examples

many times to guarantee that each negative example is seen at least once. Thus,

for each α, many datasets are created. For each one of these datasets, we perform

classification and average the performance metrics over all datasets created for a
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Figure 4.6: Performance (AUC, F1, and Accuracy) of our Methodology for Different
Percentages of Malicious Users.

specific α.

Figure 4.6 depicts the average performance (accuracy, AUC, and F1-measure) of

our methodology with different percentages of malicious users. As shown in the Fig-

ure, as the number of malicious users increase, AUC remains stable and F1-measure

and accuracy slightly drop, but in all cases, all measures stay above 0.97.

Sensitivity to the Distribution of Normal Users

To verify the sensitivity of our classifier to the distribution of normal users, we

use an equally-sized sample of Facebook users instead of our normal users. Note that

unlike our original positive instances, Facebook approximates that around 1.5% of

its user population are malicious users [123]. Thus, if our algorithm is capable of

detecting these users, then its performance using the sampled Facebook dataset is

expected to slightly decrease. Thus, for all datasets that have at most 50% negative

examples (malicious users), one expects at most a decrease of 50% × 1.5% = 0.0075

in accuracy. Our experiments verify this expected outcome. We notice a slight

drop in performance for all measures, but the performance remains high for different
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Figure 4.7: Performance Measures (F1, AUC, and Accuracy) of our Methodology for
Different Percentages of Malicious Users when Facebook Identities were used instead
of Normal Users.

percentages of malicious users and never drops below 0.9671. Figure 4.7 depicts the

performance (accuracy, AUC, F1-measure) of the algorithm with different percentages

of malicious users and using Facebook users as positive examples. For comparison,

we include the performance measures for normal users. Comparing the performance

measures with those of normal users, we notice that the accuracy drops by at most

0.0035 (less than the expected maximum: 0.0075), AUC drops by at most 0.0012,

and F1-measure drops by at most 0.0036.

In our experiments, we employ all 1,413 features to detect malicious users. Design-

ing 1,413 features and computing their values is computationally expensive. Hence,

we empirically determine whether all features are necessary next.

Feature Importance Analysis

In this section, we analyze how important different features are in learning the de-

tection function. In other words, we find features that contribute the most to the

classification task. This can be performed by standard feature selection measures
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such as Information Gain, χ2, among others. Here, we use the χ2 statistic to find the

top features. The top 10 features in decreasing order of importance are:

1. The information surprise of the username

2. The number of digits used in the username.

3. The percentage of keys pressed on the top row of a QWERTY keyboard when

typing the username.

4. The percentage of keys pressed on the top row of a DVORAK keyboard when

typing the username.

5. The proportion of digits used in the username.

6. The approximate distance (in meters) traveled for typing a username with a

DVORAK keyboard.

7. The percentage of keys pressed on the home row of QWERTY keyboard when

typing the username.

8. The approximate distance (in meters) traveled for typing a username with a

QWERTY keyboard.

9. The percentage of keys pressed on the bottom row of a DVORAK keyboard

when typing the username.

10. Entropy of the username.

We notice that the complexity of the username is the most important feature and

that 6 of the top 10 features are features that capture typing patterns. Using only

these 10 features, we trained a logistic regression model and achieved an accuracy of

92.95% and an AUC of 0.973.
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Table 4.4: Malicious User Detection Performance for Different Groups of Features

Feature Groups AUC Accuracy

Complexity-based 0.8032 83.16%

Demographic-based 0.9342 86.78%

Anonymity-based 0.7219 63.26%

Similarity-based 0.9933 95.86%

Efficiency-based 0.9299 87.19%

We also determine groups of features that contribute most to the classification.

We divide features into groups based on the malicious activity characteristic they

represent. We denote these features based on the discussion in Section 4.2.3 as

(1) Complexity-based, (2) Demographic-based, (3) Anonymity-based, (4) Similarity-

based, and (5) Efficiency-based. Table 4.4 summarizes the classification performance

obtained using only these groups of features.

We observe that similarity-based features work the best and anonymity-based

features are least effective. Note that similarity-based features are in general hard

to construct as they require n-gram constructions. Surprisingly, efficiency-based or

complexity-based features that are easier to compute, can classify malicious users

accurately, with up to 87% accuracy. Our observations in this section allows users

with limited time and resources to take informed decisions on the features and groups

of features to construct.

4.3 Summary

In this chapter, we proposed two applications for finding friends and detecting

malicious users with minimum information.

Our approach for finding friends is applicable when link or content information
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is unavailable. This problem exists in all social media sites and for all new users, as

they have no friends or have not generated any content. Under these constraints, sites

are often forced to recommend randomly chosen influential users, hoping that users

by befriending some, provide sufficient information for link prediction techniques for

further recommendations.

Friendships in social media are often formed due to three social forces: homophily,

confounding, and influence. We show how minimum content information available on

all social media sites (usernames) can be employed to determine friendships due to

these forces. In particular, we employed usernames to predict personal attributes

such as age, location, and language that in turn can be used to find friends and

measure the effect of each social force. Our empirical results show the advantages

of this principled approach by improving friend finding performance by an expected

factor of 5.49-31.04 over random prediction. This is comparable to the state of the art

link-prediction techniques that perform 2.4-54.4 times better than random prediction

[80]. Our results also show that while by employing each social force, one can improve

friend finding performance at least by a factor of 5.49, influence can help best find

friends. This suggests that individuals have a higher tendency to befriends others with

similar friends (influence), than those who are more similar to them (homophily) or

share an environment (confounding). Our results show an improvement of, at least

6 times, over random predictions when link or content information is unavailable.

Note that using our method personalized recommendations are performed since for

example, users identified as French are more likely to be recommended French users.

In the second section of this chapter, we have introduced a methodology that

can identify malicious users with minimum information. Our methodology looks into

different characteristics of malicious activities and systematically constructs features

that can capture traces of malicious behaviors. With new theories on characteristics
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of malicious activities, new features can be introduced into our methodology.

We categorize characteristics of malicious activities into 5 general categories. In

particular, malicious activities can be (1) complex and diverse, (2) demographically

biased, (3) anonymous, (4) self-similar, and (5) efficient. A malicious activity can

exhibit one or a combination of these characteristics. By introducing comprehensive

features across these five categories, we train a learning framework that can detect

malicious users. The evaluation of this framework demonstrates the effectiveness of

this systematic approach.

We notice some interesting observations. First, we notice that usernames that

carry approximately 10 bits of information surprise are more likely owned by normal

users. Second, with only minimum information, one can achieve an accuracy of

97%, an AUC of 0.9971, and robust performances with different class imbalances and

irrespective of the learning algorithm. Finally, we identify that in case of limited

time or resources, one can implement a limited set of features and obtain reasonable

accuracy rates.

Our findings in the second section have many implications. First, we note that

our methodology is in general easy to implement with minimum dependency on the

availability of information. Second, our methodology works with usernames from

different sites. This is empirically shown in our experiments with usernames collected

from a variety of sites. Finally, our methodology performs with reasonable accuracy,

compared to state-of-the-art techniques that have access to additional information.
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Chapter 5

DISTRIBUTION AND PATTERNS ACROSS SITES

Nobody comes here anymore,

it’s too crowded.

Yogi Berra

Our life in social media is no longer limited to a single site. We post on Reddit,

like on Facebook, tweet on Twitter, watch on YouTube, listen on Pandora, along with

many other activities exhibited by social media users. This chapter is the first of three

chapters that discuss user behavior across sites. In this chapter, we will discuss how

users are distributed across sites and their joining patterns across sites. Next two

chapters will discuss how user behavior changes across sites and specific behaviors

that are only observed across sites.

With the constant rise of new sites and advancement of communication technology,

thousands of social media sites are at our fingertips. With so many choices, our

attention spans are decreasing rapidly. On average, a user spends less than a minute

on an average site [1]. With our limited time and short attention span, we often face

a dilemma of choosing a handful of sites over others. How do we select these sites?

As social media consumers, we are constantly seeking sites that can keep our

attentions glued to our screens by providing engaging content, especially content

generated by our friends. It is well-known that the likelihood of engaging in an

activity is increased as more friends become engaged in that activity [16]. Thus,

it is natural to assume that users select sites where they find more friends on. On

The content in this chapter has been published at ICWSM 2014 [141].

134



average, sites with more members are expected to contain more friends for an average

individual; hence, it is expected for the users’ site selection to be statistically biased

toward more popular sites.

In this chapter, we analyze users joining multiple sites. We show how users are

dispersed across sites. By studying users across sites, we show that while there

is a tendency to join popular sites, users exhibit a variety of site selection patterns.

Finally, we evaluate the obtained users’ site selection patterns with an application that

recommends new sites to users for joining. Our evaluation demonstrates promising

results and reveals additional interesting user joining patterns.

We first detail the data collection for our research. Next, we analyze user distribu-

tion across sites. Then, we outline membership patterns across sites, followed by our

evaluation of these patterns. Finally, we conclude this chapter with a brief literature

review and summary.

5.1 Data Preparation

To study user memberships across sites, one needs to gather sites that users have

joined on social media. Unfortunately, this information is not readily available. One

can simply survey individuals and ask for the list of sites they have joined. This

approach can be expensive and the data collected is often limited. Another method

for identifying sites that users have joined is to find users manually across sites.

Users, more often than not provide personal information such as their real names,

E-mail addresses, location, gender, profile photos, and age on these websites. This

information can be employed to find the same individual on different sites. However,

finding users manually on sites can be challenging and time consuming. Automatic

approaches are also possible that can connect corresponding users across different sites

using minimum information such as their usernames [139]. A more straightforward
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(a) Probability Distribution

(b) Cumulative Probability Distribution and Empirical Cumulative Distribution

Figure 5.1: Distribution of Users across Sites

approach is to use websites where users have the opportunity to list the sites they have

joined. In particular, we find social networking sites, blogging and blog advertisement

portals, and forums to be valuable sources for collecting the sites users have joined.

For example, on most social networking sites such as Google+ or Facebook, users

can list their IDs on other sites. Similarly, on blogging portals and forums, users are

often provided with a feature that allows users to list their usernames in other social

media sites.
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We utilized these sources for collecting sites that users have joined. Overall, we

collected a set of 96,194 users, each having accounts on a subset of 20 social media

sites. The sites included in our dataset are BlogCatalog, BrightKite, Del.icio.us, Digg,

Flickr, iLike, IntenseDebate, Jaiku, Last.fm, LinkedIn, Mixx, MySpace, MyBlogLog,

Pandora, Sphinn, StumbleUpon, Twitter, Yelp, YouTube, and Vimeo. The data was

collected in 2008. In 2008, MySpace was the most important social networking site,

BlogCatalog was one of the most popular blogging sites with social networking capa-

bilities, and LinkedIn and Yelp were quite unpopular. At the time, Yelp had only 3

million users and LinkedIn was an order of magnitude smaller.

5.2 User Membership Distribution across Sites

First, we determine how users are distributed across sites. A natural way to

determine the user distribution is to compute the proportion of users that have joined

different number of sites. Figure 5.1(a) shows how users are distributed with respect to

the number of sites they have joined. Figure 5.1(b) plots the cumulative distribution

function and the empirical cumulative distribution function (Kaplan-Meier estimate)

for the distribution in Figure 5.1(a). These figures show that more than 97% of users

have joined at most 5 sites and users exist on as many as 16 sites.

A power function, g(x) = 0.6761x−2.157, found with 95% confidence, fits to the

distribution curve in Figure 5.1(a) with adjusted R2 = 0.9978. The exponent −2.157

denotes that individuals that are members of n sites are 1/n2.157 less likely than

individuals that are members of only one site. For example, users that are members

of n = 7 sites are ≈ 1/66 times less likely than users that are members of only one

site. The power function fit is highly correlated to our data, indicating the possibility

of a power-law distribution. To investigate this possibility, we follow the systematic

procedure outlined in [30] to determine whether the user distribution across sites
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follows a power-law distribution. For integer values, the power-law distribution is

defined as

p(x) = x−α

ζ(α,xmin)
, (5.1)

where, ζ(α, xmin) =
∑∞

n=0(n+ xmin)−α is the generalized Hurwitz zeta function, α is

the power-law exponent and xmin is the minimum value for which for all x ≥ xmin, the

power-law distribution holds. We estimate α and xmin using the maximum likelihood

method outlined in [30]. Our results shows that the value of α is slightly larger than

the initially obtained exponent of 2.157 and is around 2.34. To verify the validity of

our power-law fit, we calculate p-value using the Kolmogorov-Smirnov goodness-of-fit

test. We obtain p ≈ 0, rejecting the null hypothesis, showing that users across sites

are distributed according to a power-law distribution.

5.3 User Membership Patterns across Sites

We showed that user distribution across sites is power-law. However, it is still

unknown how users select sites to join. A common perception is that users are more

likely to join most popular sites. Here, we show that this is not true in general. While

there is a tendency to join popular sites, users exhibit different site selection patterns

on social media.

Assume that sites are represented using a complete weighted graph G(V,E,O).

In this graph, nodes v ∈ V represent sites. Let |V | = n. In our data, n = 20. An

edge exists between all pairs of nodes, i.e., E = V × V . Edge eij ∈ E between two

sites (nodes) i and j has weight Oij ∈ O, where O ∈ Rn×n. Weight Oij denotes the

number of users that are members of both sites i and j. Let Oii = 0.

Our collected dataset can be represented using a matrix U ∈ Rl×n, where l is the

number of users. Uij = 1, when user i is a member of site j and Uij = 0, otherwise.
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Clearly, O matrix can be written in terms of U matrix,

O = (Jn − In) ◦ UTU, (5.2)

where Jn ∈ Rn×n is the matrix of all ones, In is the identity of size n, and ◦ is the

Hadamard (entrywise) product.

For site v, let dv represent the number of users that are on site v.1 We can

estimate2 dv as dv ≈
∑

iOvi.

For two sites i and j, we compute the number of users that are expected to be

members of both. Assume that users randomly join a site with a probability that is

proportional to its popularity. For any user in site i, the probability that the user

joins site j is
dj∑
k dk

=
dj
2m

, where m = 1
2

∑
k dk. As site i has di users, the expected

number of members of both sites is
didj
2m

. The actual number of members of both sites

is given in our data as Oij. The distance between this actual number and its expected

value (Oij − didj
2m

) indicates how non-random joining both i and j is. We expect the

users’ site selection behavior to be non-random. Thus, we can find communities of

sites such that this distance is maximized for the sites in each community. These

communities represent sites that users often join together. Let P = (P1, P2, . . . , Pk)

denote a partitioning of the sites in V into k partitions. For partition Px, this distance

can be defined as ∑
i,j∈Px(Oij − didj

2m
). (5.3)

This distance can be generalized for the partitioning P ,

∑k
x=1

∑
i,j∈Px(Oij − didj

2m
). (5.4)

1This is equivalent to a node’s degree in an unweighted graph.
2The estimation performs well in our setting and is close to the actual dv; however, it considers

independence among site overlaps.
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This summation term takes a maximum value of
∑

ij Oij ≈
∑

k dk = 2m; therefore,

the normalized version of this distance is defined as

Q = 1
2m

[
∑k

x=1

∑
i,j∈Px(Oij − didj

2m
) ]. (5.5)

This is in fact a weighted version of the modularity measure defined by New-

man [102]. We define the modularity matrix as B = O−ddT/2m, where d ∈ Rn×1 is

a vector that contains the number of members for all sites. Then, weighted modularity

can be reformulated as

Q = 1
2m

Tr(XTBX), (5.6)

where X ∈ Rn×k is the partition membership matrix, i.e., Xij = 1 iff. vi ∈ Pj. This

objective can be maximized such that the best membership function is obtained with

respect to weighted modularity. Unfortunately, the problem is NP-Hard. Relaxing X

to X̂ that has an orthogonal structure (X̂T X̂ = Ik), the optimal X̂ can be computed

using the top k eigenvectors of B corresponding to positive eigenvalues.

Even when maximizing weighted modularity on our data, we obtain a negative

value. The negative modularity denotes that users on average have other preferences

when joining new sites than just selecting random popular sites.

Figure 5.2 shows the categorization of sites obtained using weighted modularity

maximization. We observe several patterns in this figure. First, we notice that there

are popular sites that users become members of all (or most). These sites are shown

on the top right part of the figure in light orange. This cluster is MySpace, Blog-

Catalog, Twitter, and YouTube. For instance, we become members of Facebook to

socialize with our friends, Twitter to post microblogging messages, YouTube to watch

videos, and WordPress to write blogs. Back in 2008, MySpace and BlogCatalog were

exemplars of prominent social networking and blogging sites. We believe this cluster

of sites represent the average behavior of most users that are members of a few sites
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to satisfy their basic needs. The second group of sites are shown in the bottom part

of the figure using green and red nodes. Green nodes represent audio/video/photo

sharing sites such as online radios or video sharing sites that consumers often join all

to be able to access the content that becomes available on each one of them. Simi-

larly, the red nodes represent social tagging/social news/content sharing sites where

individuals visit all to obtain interesting content. Reddit is a current popular exam-

ple of these sites. The final group of sites shown in Blue, are unknown or unpopular

sites that users rarely join. These are sites that are often joined by early adopters

who wish to explore more and find new content or sites. Note that Yelp and LinkedIn

were members of this cluster in 2008, which is due to their less popularity at that

time. Note that these patterns are based on sites that are joined together; therefore,

they are not mutually exclusive. A user can join sites in one or all of these clusters.

Furthermore, a user should not necessarily be a member of all sites in each cluster,

but can be a member of a subset of the sites.

After user membership patterns are obtained, it is imperative to validate these

patterns. Because ground truth of the patterns is unavailable, one way of evaluating

is to check if the patterns can help in some applications such as prediction or rec-

ommendation. In the following, we adopt the recommendation task as an evaluation

strategy. As we will see, this approach leads to the further discovery of interesting

patterns on how users select sites to join.

5.3.1 Evaluating via Recommending Sites to Users

If site selection patterns are not true patterns (i.e., random patterns), one should

not be able to observe their effect in recommending sites to users. By identifying the

types of site selection patterns a user has exhibited in the past, one can recommend

sites to the user in the future. By outperforming baseline methods that use no user
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Figure 5.2: Site Categorization based on Sites that are Commonly Joined by Users.

patterns, once can safely conclude that the obtained patterns are true patterns.

For any user in our dataset that has joined n sites, we assume that given the

category (node color in Figure 5.2) of n − 1 of these sites, the category of the nth

site should be predictable. We use categories instead of the sites as this introduces a

generalizable recommendation algorithm as new sites appear on social media. Thus,

for each user that has joined n sites, we generate all the
(
n
n−1

)
= n combinations of

n−1 sites as historical data. For each combination of n−1 sites, we construct a data

instance of 4 features by counting the number of sites in each category that the user

has joined in the past. This instance describes the amount of interest the user has

expressed in each category in the past. We set the class label as the category of the

nth site (i.e., a value in {1,2,3,4}). We generate 73,001 instances. Our initial attempt
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Table 5.1: Site Recommendation Performance

Technique AUC Accuracy

J48 Decision Tree Learning 0.880 79.25%

Random Forest 0.895 79.17%

Logistic Regression 0.886 79.14%

SMO (Sequential Minimal Optimization) 0.728 78.92%

Naive Bayes 0.869 76.66%

to predict the class label in this dataset using Naive Bayes classifier recommends a new

site with an accuracy of 76.66% and an AUC of 0.869. To determine the sensitivity of

our results to the learning bias of different algorithms, we test a variety of classification

techniques. The results are provided in Table 5.1. We observe minimal sensitivity

to the learning bias. J48 performs the best with 79.25% accuracy in predicting the

correct site category and an AUC of 0.88. Thus, J48 is used for the rest of our

experiments.

To verify the influence of historical data on our results, we select 11 subsets of

our dataset. Subset i, 0 ≤ i ≤ 10 contains the set of users that have already joined i

sites. We perform the same classification for each set. Figure 5.3 shows the prediction

results for different number of already joined sites. The figure also shows as a dashed

line the majority class predictor for each set. We observe from this figure that the

performance is the highest (97%) when users haven’t joined any sites, and is decreased

as users join more sites until 4 sites are joined. After which the performance starts

to increase as more information about the user joining patterns becomes available to

the algorithm.

Although the classifier performs the best when users haven’t joined any sites,

however, at this point the majority class prediction performs almost as well. The
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Figure 5.3: Recommendation Performance when the User has Already Joined some
Sites.

majority class in this case is the class of most popular sites. In other words, when

users haven’t joined any sites, they often just select the most popular sites; therefore,

recommending these sites is most successful. We notice that as users join more sites,

the effect of majority is reduced and when users have already joined 10 sites, the

majority prediction is no different from random prediction (25% = 1
4
). In other

words, as users join more sites, peer pressure of joining popular sites is reduced and

preference plays an important role. In this case, while the majority fails at predicting

more than 30% correctly, our recommendation can perform as accurate as 60%.

5.4 Related Work

Studying multiple networks has been the subject of a number of recent studies; see

[21, 86] for two such studies. The focus of these studies has been on how network dy-

namics and user behavior changes across networks irrespective of the users that these

networks share or how behavior changes across networks after users join, irrespective

of how these users select the sites in the first place. The work in this chapter is dif-

ferent from these studies as it analyzes individuals that are shared across networks,
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their distribution, and membership patterns.

5.5 Summary

We have studied the user membership behavior across social media sites. We

showed that user distribution across sites is a power-law distribution with an exponent

of α = 2.34. Using a weighted modularity measure, we computed the categories

of sites that users join together. We show that users join some sites due to their

popularity (YouTube, Twitter, etc.). There are also sites that users join all due to

media (online radios/audio sharing/video sharing) and content (Social tagging/social

bookmarking/social news) consumption purposes. The last category of sites that

users join are new or relatively unknown sites. These are joined by early adopters

who wish to explore and find new content. To evaluate these site selection patterns, we

designed a site recommendation algorithm for users. We showed that while for users

that are members of no site, recommending popular sites performs the best, users

that have joined a few sites are more likely to select sites based on their preference.
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Chapter 6

VARIATIONS ACROSS SITES

You think because you

understand ‘one’ you must

also understand ‘two’,

because one and one make

two. But you must also

understand ‘and.’

Rumi

In chapter 4, we discussed how users are distributed across sites and different

joining patterns that users exhibit across social media. In this chapter, we take a

further step towards understanding users across sites by investigating whether infor-

mation generated by the same user varies across sites. And if it does, how much does

this information vary across sites. The answers to these question are critical for a

systematic user study across sites. Our goal in this chapter is to tackle this question.

As friends are the fundamental building blocks of social media sites [138], we focus

on how friends and friendship behavior varies across sites. Friendship behavior and

friends are naturally connected to the concept of popularity. Often, an intuitive mech-

anism to achieve popularity is to befriend others. Friends introduce a more pleasant

social media experience and having more friends is perceived as a sign of popularity.

For example, on social media, some individuals befriend random individuals in order

to increase their popularity. Hence, we extend our study by analyzing both friendship

The content in this chapter has been published in Information Fusion journal [144].
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behavior and popularity variations across sites. We show how friends are dispersed

across sites and how this distribution shifts as users join more sites. We show how

joining more sites influences the number of friends individuals have across them, as

well as their popularity. Finally, we demonstrate how the findings of this study can

be used to predict the popularity of users on new sites.

We first discuss the social media sites that users join. Next, we analyze how

friends are distributed across sites. Then, we study how popularity varies across sites

and detail our approach to predict user popularity across sites. Finally, we review

related research to this study and conclude this chapter with a summary.

6.1 Social Media Sites that Users Join

To understand user friendships and popularity across sites, one needs to gather the

list of sites that users have joined on social media. Social media sites are developed

for different purposes; therefore, to systematically study friendships and popularity,

one has to consider different types of sites. According to recent studies [5, 69], sites in

social media can be categorized into seven general categories: (1) Blogs and Blogging

Portals, (2) Media Sharing (Photo, Audio, or Video), (3) Microblogging, (4) Social

Bookmarking, (5) Social Friendship networks, (6) Social News and Search, and (7)

Location-Based Networks. We select 20 sites that cover these categories and are of

different popularity on social media to study user friendships. Selected sites are Blog-

Catalog, BrightKite, Del.icio.us, Digg, Flickr, iLike, IntenseDebate, Jaiku, Last.fm,

LinkedIn, Mixx, MySpace, MyBlogLog, Pandora, Sphinn, StumbleUpon, Twitter, Yelp,

YouTube, and Vimeo. Next, we gather users that have joined some of these 20 sites.

Unfortunately, information about sites that users joined is not readily available.

One can survey individuals and ask for the list of sites they have joined. This approach

can be expensive and the data collected is often limited. Another method for identi-
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fying sites users have joined is to find users manually across sites. Users often provide

personal information such as their real names, E-mail addresses, location, gender,

profile photos, and age on different websites. This information can be employed to

find the same individual on different sites. However, finding users manually on sites

can be challenging and time consuming. Automatic approaches are also possible that

can connect corresponding users across different sites [64, 73, 83, 88, 106, 136, 139]. A

more straightforward approach is to use websites where users voluntarily list the sites

they have joined. In particular, we find social networking sites, blogging and blog

advertisement portals, and forums to be credible sources for collecting the sites users

have joined. For example, on social networking sites such as Google+ or Facebook,

users can list their IDs on other sites. Similarly, on blogging portals and forums, users

are often provided with a feature that allows users to list their usernames in other

social media sites.

We utilize these sources for collecting sites users have joined. Overall, we collect

a set of 96,194 users, each having accounts on some of the aforementioned 20 social

media sites. For each of the 20 sites, we develop a crawler that extracts the number

of friends each individual has on the site. Hence, for each individual in our dataset,

we have the number of friends a user has across different sites.

6.2 How Friendship Behavior Varies across Sites

One naturally expects that as users join more sites, it becomes more likely for

them to find sites that contain more of their friends; therefore, befriending more

individuals. Our data confirms this. Figure 6.1(a) plots the average maximum friend

count for users that have joined different numbers of sites. We observe that as users

join more sites, their maximum friend count across sites on average increases. A

linear line (g(x) = 309.8x − 0.005177), found with 95% confidence, fits to the curve
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with adjusted R2 = 0.9978. Hence, the expected maximum friend count across sites

for users that have joined n sites is approximately n times more than that of users

that have joined a single site. Similarly, one expects that as users join more sites, it

becomes more likely for them to become inactive on some sites. Our data also confirms

this. Figure 6.1(b) shows the average minimum numbers of individuals befriended

across sites as users join more sites. We observe a decrease in the minimum number of

friends across sites as users join more sites. A power function (g(x) = 65.03x−1.251),

found with 95% confidence, fits this curve with adjusted R2 = 0.9878. In other words,

unlike the likelihood of having many friends that increases linearly as users join sites,

the probability of having a few friends increases exponentially. Having said that,

one can conjecture that (1) as the minimum friend count across sites is decreasing

more sharply than the maximum, one should expect a decrease in the average number

of friends individuals have across sites. As an alternative, one can conjecture that

(2) the average number of friends should increase because the maximum number of

friends individuals have across sites is much higher than the (few) number of friends

they have on sites that they are inactive.

Our data shows that neither of these conjectures are valid for average numbers

of friends across sites. Figure 6.2 shows the average numbers of friends users have

across sites as they join more sites. The figure shows that as users join more sites

their average number of friends increases; however, once they join around 6 sites this

average converges at around 400 friends. This average does not change much as users

join new sites. This finding is in line with previous [43] and recent [55, 72, 94] literature

on human cognitive limitations in maintaining communication and friendship with

large groups of individuals.

There could be different explanations why the average of a distribution converges

as we add more data points. For instance, by adding equally dispersed data points
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(a) Average Maximum Numbers of Friends.

(b) Average Minimum Numbers of Friends.

Figure 6.1: Average Minimum and Maximum Numbers of Friends for Users that
have Joined Different Numbers of Sites.

one can maintain the mean. To understand better how users befriend others, it

is natural to observe how standardized moments of the friend count distribution

changes. In particular, skewness [51], the third standardized moment (E[(X−µ
σ

)3]), and

kurtosis [37, 40], the forth standardized moment (E[(X−µ
σ

)4]), can help us understand

why the average number of friends converges as users join more sites.

Skewness shows where the mass of the distribution is concentrated and whether
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Figure 6.2: Average Numbers of Friends for Users that have Joined Different Num-
bers of Sites.

the left or right tail of the distribution is longer. Skewness of 0 demonstrates a normal

distribution where the mean is equal to the median. A positive skewness shows that

while extreme values exist to the right of the distribution, the mass of the distribution

is concentrated on the left of it. Negative skewness shows the opposite. For example,

sample: {1,2,3,1000} has a positive skewness and sample: {1,1001,1002,1003} has a

negative skewness. To account for small-sample bias, we compute the bias-corrected

skewness for sample x = (x1, x2, . . . , xn) as follows:

s =

√
n(n− 1)

n− 2

1
n

∑n
i=1(xi − x̄)3

(
√

1
n

∑n
i=1(xi − x̄)2)3

, (6.1)

where x̄ is the mean for x. For each user, we compute the skewness of the user’s friend

counts across sites. Figure 6.3 shows the empirical cumulative distribution function

(Kaplan-Meier estimate) for these user skewness values for users that have joined

different numbers of sites. We observe that most of the skewness values are positive

showing that while there are extreme friend count values, the mass of the friend count

distribution is concentrated on the left. Furthermore, we see that as users join more
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Figure 6.3: Empirical Cumulative Distribution for Skewness of Friend Distribution
as Users Join More Sites.

sites, the cumulative distribution function (CDF) moves to the right, showing that as

users join more sites, the proportion of sites where they have fewer friends increases.

In other words, users that have joined a few sites are more likely to be highly active

on some sites compared to those users that joined more sites. Although we now know

that users are more likely to have fewer friends on most sites they join, it is not known

how these fewer friend counts are distributed. To observe where these fewer friend

count values are concentrated, we measure the kurtosis of the distribution.

Kurtosis value of a distribution measures the peakedness of a probability distribu-

tion and how heavy-tailed it is. We use the bias-corrected kurtosis for small sample

x = (x1, x2, . . . , xn):

k =
n− 1

(n− 2)(n− 3)
((n+ 1)k0 − 3(n− 1)) + 3, (6.2)

where k0 is

k0 =
1
n

∑n
i=1(xi − x̄)4

( 1
n

∑n
i=1(xi − x̄)2)2

. (6.3)

A kurtosis value of 3 shows a normal distribution and a value greater than 3
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Figure 6.4: Empirical Cumulative Distribution for Kurtosis of Friend Distribution
as Users Join More Sites.

shows a leptokurtic distribution that has a more acute peak around the mean and

more heavy tails. Similarly, a negative kurtosis value shows a platykurtic distribution

with a less pronounced and wider peak. For each user, we compute the kurtosis

of the user’s friend counts across sites. Figure 6.4 shows the empirical cumulative

distribution (Kaplan-Meier estimate) for these user kurtosis values for users that

have joined different numbers of sites. The graph shows that most kurtosis values are

more than 3, denoting that the users’ friend counts are more concentrated around the

mean than normally expected. Furthermore, we observe that the CDF curves move

to the right for users that have joined more sites. In other words, users’ friend counts

across sites tend to concentrate more around the mean value as users join more sites.

Since we know from skewness analysis that users befriend a few others on most sites

they join, this shows that the number of few individuals befriended are concentrated

around a mean value. In other words, each user has almost the same number of

friends (e.g., 10 friends) across most sites. The mean value varies for different users.

The initial increase in the average number of friends shows that when users join a
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few sites, it is more likely for them to get engaged while befriending many; however,

as they join more sites, they start to become inactive in those sites and the average

converges.

6.3 How Popularity Changes across Sites

We have analyzed how the number of friends varies across sites. In this section, we

perform similar experiments to analyze how user popularity changes across sites. To

measure popularity we note that users with many friends are often considered pop-

ular users. So, a natural way to quantify popularity on a site is to use individual’s

friend count. However, the same number of friends on different social networks im-

plies different levels of popularity due to different distributions of friend counts. For

comparison, one can simply convert the friend count to the probability of observing

the friend count, which is comparable across sites. A lower probability indicates a

higher popularity. It is well known that the distribution of friend counts in a social

media site often follows a power-law distribution [17, 100]. Hence, we perform the

systematic procedure outlined in [30] for each of our 20 sites to determine their param-

eters for the power-law distribution. For integer values, the power-law distribution is

defined as

p(x) =
x−α

ζ(α, xmin)
, (6.4)

where,

ζ(α, xmin) =
∞∑
n=0

(n+ xmin)−α (6.5)

is the generalized Hurwitz zeta function, α is the power-law exponent and xmin is

the minimum value for which for all x ≥ xmin, the power-law distribution holds.

We estimate α and xmin using a finite sample correction bias using the maximum

likelihood method outlined in [30]. Given these parameters, for any friend count
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f ≥ xmin, we estimate the probability of observing f (i.e., p(x = f)) using Equation

6.4.

Recent studies show that using the power-law distribution may not be always

appropriate for modeling the friend count distribution of social networks [54, 119].

Hence, when f < xmin, instead of using Equation 6.4, we use the maximum likelihood

estimate of p(f),

p(f) =
nf
n
, (6.6)

where nf is the number of users on the site with f friends and n is the total number

of users on the site.

Following this approach, we estimate the probability of observing all friend counts

in our dataset; hence, having the popularity of all users in our data across sites.

Given these user popularity values across sites, we first measure how the average

popularity varies across sites. Figure 6.5 provides average popularity for users that

have joined different numbers of sites. Notice that convergence also takes place for

user popularities. Users are least popular when they have joined a single site and

they are most popular, when they have two or more accounts. Popularity saturates

much faster and as users join sites, their average popularity remains unchanged.

While the average popularity shows how users popularity changes across sites on

average, it does not show how a user’s popularity changes as he or she joins new sites.

This is because we have no temporal information on what sites were joined first and

how popularity increased or decreased over time. However, one can approach this

problem by computing the expected popularity change over time.

Consider a user for whom we have his or her number of friends on n sites. Let

f1, f2, . . . , fn denote the number of friends of this user on these sites. Among the n

sites that the user has joined, there must be a site that is joined after all others. Since

we have no temporal information, the last site could be any of the n sites. We consider
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Figure 6.5: Average Popularity for Users that have Joined Different Numbers of
Sites.

n cases. In each case, we consider one of the sites as the last site that the user has

joined and the other n − 1 sites as the sites that the user has joined in the past. In

case 1 ≤ i ≤ n, we consider that the user in the n− 1 sites has f i1, f
i
2, . . . , f

i
n−1 friends

and f in friends on the last site. The popularity values can be estimated by computing

the probability of observing each friend count: p(f i1), p(f i2), . . . , p(f in). For the n − 1

sites that the user has joined, the maximum popularity that the user achieved is

min( p(f i1), p(f i2), . . . , p(f in) ). The user has become more popular on the nth site if

and only if,

min( p(f i1), p(f i2), . . . , p(f in) ) < p(f in). (6.7)

Thus, we measure popularity increase for case i as

p(f in)−min( p(f i1), p(f i2), . . . , p(f in) ). (6.8)

Since, the last site that a user joined is not known, we compute the expected

popularity increase as

156



Figure 6.6: Average Popularity Increase for Users that have Joined Different Num-
bers of Sites.

1

n

n∑
i=1

[ p(f in)−min( p(f i1), p(f i2), . . . , p(f in) ) ]. (6.9)

The average expected popularity increase for users that have joined different num-

bers of sites is provided in Figure 6.6. The figure shows that users tend to increase

their popularity faster as they join more sites; however, there is a cap to the level at

most a user can increase his or her popularity and this level is as users join 7 sites.

6.4 Predicting User Popularity

We have demonstrated that user friendships and popularity exhibits specific pat-

terns as users join sites. This brings about a challenging, yet unexplored question:

can one predict user’s popularity on a new site?

Predicting user’s popularity can not only help recommend new sites to users as

they search for new sites on the web, but more importantly, can help sites identify

users that are more likely to be interested in joining and becoming active on them.

One expects a rather complicated solution to this problem. An approach that has
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access to different types of information and users’ interests and a matching procedure

that identifies sites on which users are most likely to become active. Even then,

one needs to know if the site includes friends of an individual for better popularity

prediction.

If the popularity patterns is our data were meaningless, one should not be able to

observe their effect in predicting user’s popularity. By extracting popularity patterns

a user has exhibited in the past, one can predict the popularity of a user in the

future. In this section, we demonstrate how one can use only popularity patterns

and outperform baseline methods that use no popularity patterns, safely concluding

that the obtained popularity patterns can be used to predict user’s popularity.

For any user in our dataset that has joined n sites, we assume that given the

user’s popularity level on n− 1 of these sites, the popularity of the nth site should be

predictable. To determine the popularity level of users in sites, we divide the users

on each site into five categories. These categories are based on the level of popu-

larity and their proportion are inspired by the diffusion of innovations theory [108],

where individuals depending on their time of adopting a new product are categorized

into 5 categories: innovators (top 2.5%), early adopters (next 13.5%), early majority

(next 34%), late majority (next 34%), and laggards (last 16%). For each site, we di-

vide users into 5 categories based on their level of popularity: elites, highly popular,

averagely popular, averagely unpopular, and unpopular users. We use popularity cat-

egories instead of the actual probability as this introduces a generalizable prediction

algorithm as users with different probabilities and new sites appear on social media.

Thus, for each user that has joined n sites, we generate all the
(
n
n−1

)
= n combinations

of n− 1 sites as historical data. For each combination, we construct a data instance

of 5 features, each representing a popularity level. For each popularity level, we count

the number of sites the user has joined in the past among his or her n− 1 sites and
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Table 6.1: Popularity Prediction Performance

Technique AUC Accuracy

Logistic Regression 0.627 39.26%

SMO (sequential minimal optimization) 0.574 38.84%

J48 Decision Tree Learning 0.604 38.82%

Random Forest 0.612 38.63%

Naive Bayes 0.618 38.50%

has expressed that level of popularity. We set the class label as the popularity level

for the user in the nth site (i.e., a value in {1,2,3,4,5}). We generate 39,130 instances.

Our initial attempt to predict the class label in this dataset using Naive Bayes clas-

sifier predicts user popularity with an accuracy of 38.50% and an AUC of 0.618. To

determine the sensitivity of our results to the learning bias of different algorithms, we

test a variety of classification techniques. The results are provided in Table 6.1. We

observe minimal sensitivity to learning bias, showing that one can reasonably predict

user’s popularity regardless of the classification algorithm. Logistic Regression per-

forms the best with 39.26% accuracy in predicting user popularity and an AUC of

0.627. Thus, logistic regression is used for the rest of our experiments.

In our data, users have joined different numbers of sites. To verify helpfulness of

adding more sites on user popularity prediction, we partition our dataset. Partition i

contains the set of users that have already joined i sites. We perform popularity pre-

diction for each partition. Figure 6.7(a) shows that the prediction results (accuracy)

for each partition does not variate much. The figure also shows as a dashed line the

majority class predictor for each partition and the random prediction results. Since

the partitions were slightly imbalanced, we also computed the AUC and found that it

was mostly fixed with an average AUC of 0.6273. The same figure shows that for all
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(a) Popularity Prediction Accuracy as Users Join Different Numbers of Sites.

(b) Performance Improvement over Baseline.

Figure 6.7: Performance for Popularity Prediction.

cases, we outperform the majority predictor, proving that popularity patterns across

sites can help predict the popularity of a user on a new site.

Figure 6.7(a) also shows that as users join more sites and more information be-

comes available the gap between the prediction outcome and the majority class starts

to increase. The gap increase is provided in Figure 6.7(b). The gap increases expo-
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nentially, fitting a power function (g(x) = 8.65 × 10−5x5.068 + 7.506) with adjusted

R2 = 0.9494. In other words, as more popularity patterns of a user becomes available

to the prediction algorithm, one can predict user’s popularity exponentially better.

Similar to the methodology used in Chapter 4, we are in fact using social signatures

to predict popularity. However, we are discretizing social signature values to represent

popularity level.

6.5 Related Work

Studying friendships and popularity on social media sites has a long history. The

friendship network and popularity is often studied on a single site. Other related

areas to the work presented in this chapter are (1) analyzing dynamics of multiple

networks and (2) analyzing user behavior across social media. We briefly review re-

lated research from each of these three areas and outline how the work represented

in this chapter stands compared to its related work.

Single-Site Friendship and Popularity Analysis. When considering only the

number of friends individuals have, the analysis boils down to analyzing the degree

distribution of social networks [24, 71]. It has been shown multiple times that the

degree distribution of these social networks follows a power-law distribution [45, 49].

This study follows a similar approach; however, at a multi-site level, where we ana-

lyze how number of friends (degrees) changes across sites. Unlike the common degree

distribution analysis where millions of nodes are analyzed to determine the degree

distribution, with multiple sites, the number of available samples is limited to a few

numbers. Hence, we take a different approach in this chapter by observing how the

number of friends change across sites with the help of statistical measures.
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Analyzing Dynamics of Multiple Networks. Comparing network characteristics

of multiple networks has been the subject of recent studies [78, 95, 111]. For instance,

Mislove et al. [95] analyze 4 networks: Flickr, YouTube, LiveJournal, and Orkut and

demonstrate that these networks exhibit various properties such as being scale-free

and having a densely connected core of high-degree nodes. Although these studies

analyze multiple networks, the analysis is performed irrespective of the users that are

shared across networks. The study in this chapter focuses on how friends of shared

users across networks are distributed and how popularity for the users changes across

social media sites.

Analyzing User Behavior Across Sites. Considering befriending as a behavior of

individuals, the recent studies that analyze user behavior across sites becomes relevant

to the study presented in this chapter. Some studies analyze how a specific behavior

changes across sites without considering users that are shared across sites [21]. Other

recent studies consider a specific behavior across sites such as Tagging [3, 92], but

for users that are shared across sites. Our study is related to both as it analyzes the

variation of an unexplored behavior (i.e., befriending) and user popularity across sites

for users shared across sites.

6.6 Summary

Social media users are members of multiple sites. For a systematic study of users

on social media one has to combine their information across sites. In this chapter, we

investigate how this information varies across sites. We focus on the most fundamental

information available across social media sites: user friends and their popularity.

By studying user friendships and popularity across sites, we showed that the

maximum number of friends individuals have across sites increases linearly as users
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join sites and their minimum drops exponentially. Furthermore, we noticed that as

users join sites their average number of friends converges to a value near 400. We

investigated this phenomenon even further and showed that as users join sites, the

likelihood of observing fewer friend counts increases and at the same time, users

frequently exhibit their mean behavior, such as always befriending 10 people. This

frequent behavior of befriending a few friends on most sites leads to users converging

to an average of 400 friends across sites.

By computing the power-law distribution parameters for these sites, we computed

user popularity on sites. We found that popularity follows the same trend as in

friend counts, converging to an average value. This result shows that users joining

multiple sites cannot increase their average popularity and that the average popularity

converges to a fixed value as users join sites. We also demonstrated that as users

join sites, the amount their popularity can increase has a constant upper bound.

Finally, we showed how the popularity patterns of users can be used to determine

their popularity on future sites. Using discretized social signatures and a straight-

forward approach we showed that as patterns of popularity become available to the

popularity prediction algorithm, the algorithm gains exponential performance gain

over baselines.
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Chapter 7

ACTIVITIES ACROSS SITES

I’m an idealist. I don’t know where

I’m going, but I’m on my way.

Carl Sandburg

In last two chapters, we discussed how user behavior can vary across sites. In

particular, we investigated how users are distributed across sites and different joining

patterns that are exhibited by different users. Furthermore, we demonstrated how

friendships and popularity changes across sites. This shows how degrees, the most

fundamental property of a node in a graph, vary across sites. However, once users

across sites are identified, not only their variations in behavior, but also specific

behaviors that are solely observable across sites can be analyzed. In this chapter, as

a case study, we study one such challenging behavior.

Social media have shown considerable growth over the past years. With new sites

launching everyday, Internet citizens, with their limited time and resources, are forced

to select a few sites to spend their time online.

Social media sites must retain their existing users while continuing to attract new

ones; therefore, Understanding user migration patterns in social media has several

implications. It allows sites to (1) generate higher revenue from targeted advertising;

(2) increase traffic to shared media, which in turn improves marketing outcomes; and

(3) grow their base of long term customers, which in turn will increase brand loyalty.

Moreover, understanding why users migrate is critical for preventing migrations.

The content in this chapter has been published at AAAI 2011 [76].

164



These implications motivate us to study the migration of users across different

social media sites. These migrations can even take place within sites in the same

social media category (social bookmarking, social networking, social media sharing,

among others). In this chapter, we study the migration patterns of users across social

media sites through a study of users from 7 popular social media sites. We propose

a formal definition of migration and a framework for analyzing it. In particular, we

show that

• Migration in social media can indeed be studied;

• There are clear user migration patterns across social media; and

• Specific categories of social media have fewer users migrating from.

The rest of the chapter is organized as follows: we first present the problem

definition. Then, we describe how migration can be studied. The following section

discusses the data collection process, the way migration patterns are obtained, and

how their reliability is verified.

7.1 Problem Statement and Definitions

In this section, we formally define different types of migration and introduce other

important definitions that will be used in the study.

Definition of Migration

Migration is the movement of users away from one location and towards another,

either due to necessity, or attraction to the new environment. In the context of social

media, we define two types of migration, site migration and attention migration. Let

Us1 be the set of members of site s1 and Us2 be the set of members of site s2. Then,
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the site migration of user u from social media sites s1 to s2, in a universe of two sites,

can be defined as follows:

Definition 2 (Site Migration). Let u ∈ Us1 and u 6∈ Us2 at time ti, if u 6∈ Us1 and

u ∈ Us2 at time tj > ti, then for user u, a site migration has taken place between s1

and s2.

Site migrations for an individual can be determined by checking the presence of a

user’s profile on sites s1 and s2 over time. A user’s profile can be absent for different

reasons, namely: profile removal, profile deletion, and account suspension.

• Profile Removal. Social media sites often remove the profiles of individuals

who have been inactive for a long period. Profiles are also commonly removed

for violating the site’s code of conduct, such as posting inappropriate content

on the site.

• Profile Deletion. At times, it is the user’s decision to abandon a site. Many

sites allow users to delete their profiles along with any content they might have

uploaded on the site.

• Account Suspension. A user’s account can also get suspended (but, not

removed) for violating the code of conduct. In this case, the profile information

is not accessible. Sites often allow suspended accounts to be re-instated by

following specific procedures.

Among the three, account suspension is the least likely cause for the nonexistence

of profile pages. Social media sites avoid suspending user accounts as much as pos-

sible to maintain their popularity and activity level. Using Twitter as an example,

we illustrate how to estimate the number of users whose account was suspended.

Using the API, we can only determine the existence of a user on the site and not
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his suspension status. However, in Twitter, suspended profile pages contains the

message “Sorry, the profile you are trying to view has been suspended.”

Therefore, by HTML scraping and searching for this message, one can determine

whether an account is suspended or not. We found that approximately 2.8% of the

users whose accounts could not be found during a crawl, had a suspended account.

Most of these profiles have been suspended for more than a year. Hence, the likelihood

of an account being suspended is small. While site migrations are possible, a more

realistic scenario is for the attention to migrate. In this case the user account is not

deleted, but the individuals abandons the site and becomes inactive. The attention

migration of user u from social media sites s1 to s2 can be defined as

Definition 3 (Attention Migration). Let u ∈ Us1 and u ∈ Us2 at time ti and u be

active at time ti at s1 and s2. If u is inactive at s1 and active at s2 at time tj > ti,

then the user’s attention is said to have migrated away from site s1 and towards site

s2.

The activity (or inactivity) of a user is determined using the following,

Definition 4 (User Activity). Given a site s, a user u ∈ Us, times tj > ti, and time

interval δ = tj − ti, u is active on s at time tj, if the user has performed an action

on the site since time ti. Otherwise, the user is considered inactive.

The interval δ could be measured at different granularity levels, such as days,

weeks, months, and years. The user’s actions could be one of the many possible ones

on site, such as submitting a news story, posting a status message, uploading a video,

or the like. For instance, a Delicious user is considered active in July, 2014, if she has

submitted at least one bookmark since June, 2014. Here, δ = 1 month.

In summary, the attention migration of a user on site s is the inactivity of the

user for a time period δ on s. Attention migration can be considered as a short term
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migration of the individual, which might lead to a site migration after prolonged in-

activity by the user.

7.2 Studying Migration Patterns

There is a growing interest to determine the extent to which social media sites are

capable of attracting individuals. This can help us determine the “green pastures”

in social media. These “green pastures” are sites which have the features necessary

to attract users and hence cause migration. These features could be their appealing

functionalities that could be extracted and utilized by other sites as guidelines for

improvement.

For migration studies, three general steps have to be taken. First, reliable data

needs to collected. Then, migration patterns should be obtained. Finally, these

patterns should be validated. Nest, we discuss these steps in separate sections.

7.3 Data Collection

We present a brief overview of our data collection methodology for the experiments

and describe the important characteristics of the data. There are hundreds of social

media sites and new ones are launching every year. Not only it is impossible to

analyze all, it would also be impractical. Suitable social media sites for this kind of

study should have the following characteristics:

• The sites should have sufficient user activity for measuring migration.

• The sites should have sufficient number of users to be worthwhile to study.

• They should have been launched at different times to enable the observation of

user movement across them.

• Sites should preferably cover the major categories of social media, such as social
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Snapshot 1
March, 2010

Snapshot 2
April, 2010

Snapshot 3
May, 2010

Phase 1 Phase 2

Figure 7.1: Data Collection Timeline for the Migration Dataset

bookmarking, media sharing, micro-blogging, among others.

These requirements impose significant challenges to data collection. In addition,

there exists the problem of resolving user identities across social media sites as previ-

ously discussed in Chapter 3. We selected 7 popular and representative sites for this

study: Delicious, Digg, Flickr, Reddit, StumbleUpon, Twitter, and YouTube. We col-

lected more than 17,798 users who had at least 2 identities in one of these 7 popular

social media sites.

To study user migration between social media sites we need the activity informa-

tion of the users on these 7 sites. Using APIs when available and screen scraping

in other cases, we collected the activity and user profile information of these users

in the identified 7 popular social media sites. The collection of user information on

these sites was carried out in March 2010, April 2010, and May 2010. The data for

each month corresponds to a snapshot and the value of the time window parameter

δ can be used to control the time difference between two snapshots. In this study, we

set δ = 1 month. We obtain two phases of user data across these social media sites,

where each phase is defined as the data from two consecutive snapshots. In this case,

Phase 1 spans March and April data while Phase 2 spans April and May data. A

descriptive figure showing this procedure is presented in Figure 7.1. The information
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Table 7.1: Migration Dataset

Site No of Users Profile Attributes

Delicious 8,483 10

Digg 9,161 20

Flickr 5,363 11

Reddit 2,392 5

StumbleUpon 8,935 13

Twitter 13,819 15

YouTube 7,801 19

collected from a user’s profile on these sites include real name, age, location, status

messages, friends, followers, among other attributes.

The number of users who had an account on on each one of these sites along with

the number of their collected profile attributes are presented in Table 7.1.

Next, we present how migration patterns were obtained using the migration dataset.

7.4 Obtaining Migration Patterns

Here, our goal is to find (1) how users migrate across social media sites, (2) social

media categories that rank higher with respect to migration, and (3) the migration

trend of users across social media sites, and the social media sites from where users

migrate.

As site migrations are highly improbable, we focus on attention migrations that

are more likely. We identify sites that are able to retain the attention of their users

and the ones that are losing their attention over time. More importantly, we identify

sites toward which users are migrating.

We first measure the number of users whose attention migrates away from a site.
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(a) Delicious (b) Digg (c) Flickr

(d) Reddit (e) StumbleUpon (f) Twitter

(g) YouTube

Figure 7.2: Pairwise Attention Migration Patterns between Different Social Media
Sites

We also identify where their attention diverts to. We use data from the three snap-

shots to identify the trend of attention migration in each of the 7 social media sites.

We select those users whose attention migrated away from a site to another. We

examined their activity on all sites to identify sites toward which their attention mi-

grated. Our results are presented in Figure 7.2 in the form of radar charts. Each

radar chart corresponds to the migration of individuals from a site towards other so-

cial media sites. Each spoke in the chart represents a social media site and the value

of the radii represents the migrating tendency toward the site represented by the

spoke. The charts show that attention migration does exist between the social media
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sites. Otherwise, all the points in the corresponding radar chart would just be a dot

in the center, marking 0. The summation of these radii values do not necessarily sum

up to 1 as a single user may migrate to several sites. From the results in Figure 7.2,

it is clear that the general trend of attention migration of users from most sites is to-

wards Twitter and StumbleUpon. Reddit users had the highest amount of migration

to other sites. The number of users migrating to Reddit was also the smallest among

all social media sites observed. The most significant fraction of Reddit’s population

(16% of the users) migrated to Digg. Digg is another social news site where users can

“digg” a news story and make it popular. Then, these popular storied are promoted

to the front page. Similarly, we see a significant migration between StumbleUpon and

Delicious. Our observations show that migration is more localized within the social

media category, as users have a tendency to migrate to other sites within a category

that offer similar functionalities but are more appealing. Herd behavior could be

another possible explanation for these migrations.

7.5 Reliability of Migration Patterns

Although we identify specific migration patterns, it can be argued that given the

size of our dataset, patterns could be fortuitous. To validate migration patterns, we

perform statistical tests. We first create a reference point to compare our results with.

In our case, this would be the random migration of individuals. We assume that only

the migration of individuals with specific characteristics can lead to the results we

have observed. Given any other set of randomly selected individuals, we would not

expect to observe patterns such as migration between competing sites, like Delicious

and StumbleUpon. Thus, we formulate our null hypothesis as

H0: The migration of individuals is random and no correlation exists

between their user attributes such as their network activity on a site
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and their migration

Inspired by the shuffle test proposed in [13], we can create shuffled datasets in

which we can guarantee that user attributes did not result in migrations. To construct

shuffled dataset, for each site we randomly select the same number of users from the

potential migration population (overlapping users between the active users of phase

1 and 2) an assume that they have migrated. We construct 10 such shuffled datasets

for each site. To compare the outcome of the shuffled datasets and the true migrating

users, we need to measure the distance between their observed patterns. One way to

measure this distance is to compare how the relationship of a user’s attributes to his

migration behavior varies across datasets. The relationship between attributes and

migration behavior can be determined using techniques such as logistic regression:

Ym =
ez

1 + ez
, (7.1)

where z = αx+β. We use the boolean variable Ym, which indicates whether a user

has migrated away from a site, as the class attribute. The coefficient α represents the

correlation of the attribute x with the class attribute. In our case, we used attributes

that represent user’s Activity A (e.g., number of tweets), user’s network activity N

(e.g., number of friends), and user’s rank R (user’s rank in Google search results) as

the features. This procedure can be similarly applied to each shuffled dataset for a

site. We can then obtain the average of the logistic regression coefficients for each

user attribute and for all of the sites in our 10 shuffled datasets. Using the observed

regression coefficients, we evaluate the null hypothesis using the χ2-statistic as follows,

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
, (7.2)

where n is the number of regression coefficients, Oi is the observed coefficient

value from the dataset, and Ei is the coefficients obtained from the shuffled dataset.
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Table 7.2: χ2 Test Results on Observed and Shuffled Data

Site Observed Coefficients Shuffled Coefficients p-value Statistical

Significance

N A R N A R

Delicious 0.2858 0.4585 - 0.6029 0.5921 - 0.65 Not significant

Digg 0.4796 0.8066 - 0.52 0.5340 - 0.70 Not significant

Flickr 1 1 0.9797 0.2922 0.2759 0.4982 0.13 Not significant

Reddit 0.5385 0.6065 - 0.4846 0.6410 - 0.92 Not significant

StumbleUpon 1 1 - 0.4191 0.2059 - 0.0492 Significant

Twitter 0.5215 1 0.5335 0.2811 0.0365 0.4009 0.0001 Significant

YouTube 0 1 0.1644 0.7219 0.0040 0.4835 0.0001 Significant

Table 7.2, shows the results of applying chi-square test on the observed and the

shuffled dataset. Missing coefficients for the Google rank of users is represented using

the symbol −, because for some sites all the users had a value of 0 for this attribute.

The p-values indicates how random the obtained migration patterns are. We

consider, the result to be statistically significant if p < 0.05. From Table 7.2, we

notice that the migration patterns for users from sites Delicious, Digg, and Reddit

are highly similar to the shuffled dataset. On further investigation, we identified that

this was due to the small size of the potential migration population which was used to

select the individuals who migrated. We also notice that the Flickr dataset, although

not statistically significant, is still quite different from the shuffled datasets and has a

low p-value. On the other hand, StumbleUpon, Twitter, and YouTube strongly reject

our null hypothesis and the patterns from these datasets are clearly distinct from

those of the shuffled dataset. These results also support our earlier observations that

show that a majority of the user migration is towards StumbleUpon and Twitter. In

addition, during our experiments, we observe that user activity has a high correlation

with the migration of an individual away from a site.
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7.6 Summary

In this chapter, we show that (1) studying migration across social media is feasible,

and (2) migration patterns can be identified across social media. To study migration

patterns, we define two types of migration. We analyze users migrating from 7 popular

social media sites. Using a variety of social media sites, we identify migration patterns

that demand further research on solutions to prevent or encourage migrations. For

example, social news sites such as Digg or Reddit have the highest number of users

migrating away (low user retention rates). Identifying these migration patterns are

valuable to social media sites in several ways. For example, by designing features

to recapture user attention before the exodus begins and learning to avoid similar

pitfalls when launching new social media sites.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

No book can ever be finished.

While working on it we learn just

enough to find it immature the

moment we turn away from it.

Karl Popper

In this chapter, we conclude this dissertation with a summary of our contributions

and a review of our future work.

8.1 Contributions

In this section, we summarize the contribution in this dissertation:

1. Identifying User with Minimum Information: we develop methods that

can identify users across social media sites with minimum information. In par-

ticular, we investigate both link- and content-based method.

(a) Link-Based Identification: we introduce link-based techniques that em-

ploy minimum link information across sites. We investigate why (sub)graph

isomorphism-based methods fail in social networks and demonstrate prop-

erties of social networks that make (sub)graph isomorphsim challenging.

Finally, we introduce social signatures as different way of tackling user

identification. In addition, we show how social signatures can be used to

reconstruct graphs
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(b) Content-Based Identification: we introduce behavioral modeling, a

strategy for gleaning digital traces of human behavior in the content that

they generate. Behavioral modeling has been in different applications such

as sarcasm detection on social media [107]. In addition, we introduce MO-

BIUS, a content-based methodology that uses behavioral modeling for user

identification with minimum information. We show that user identification

with minimum content information is highly effective. Inspired by stud-

ies in psychology and sociology, we introduce a large set of computational

features for efficient user identification with content information.

2. Applications of Minimum Information: Considering that users on social

media are either normal or malicious, we investigate two representative applica-

tions that utilize minimum information for each category of users. For normal

users, we investigate friend recommendation and show that minimum content

information, combined with features that can detect social forces that result in

friendships (homophily, influence, among others) can help detect future friends

with performance comparable to state-of-the-art link prediction that has ac-

cess to more information. For malicious users, we investigate literature from

psychology and criminology, and combine that with machine learning and com-

plexity theory, to efficiently detect malicious users, yet with minimum informa-

tion. Our results show that the information complexity of malicious users makes

them distinguishable from normal users. The performance of the methodology

for detecting malicious users is comparable to that of state-of-the-art malicious

user detection techniques that have access to extra information.

3. Analyzing User Behavior across Sites: By identifying users across sites,

we study (1) patterns, (2) variations, and (3) behaviors across sites.
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(a) Patterns across Sites. We investigate the basic patterns of users that

are clearly visible across sites. In particular, we demonstrate how users

select sites to join across social media and how joining patterns can be

used to predict future sites that users will join. In addition, we show the

statistical distributions that govern how individuals are distributed across

social media.

(b) Variations across Sites. We investigate how users behavior varies across

sites. In particular, we focus on the fundamental question of how friend-

ships vary across sites and how the degree distribution changes across sites.

In addition, we show how the average number of friends changes across

sites. Our findings are aligned with studies in evolutionary psychology.

(c) Behaviors across Sites. We investigate specific behaviors that are only

observable across sites. In particular, we demonstrate how user migrations

can be analyzed across sites and introduce a randomization-test based

method for detecting migrations without ground truth. The method can

be used in other domains and social media research, when ground truth is

unavailable [143].

8.2 Future Directions

Our work opens the door to many interesting theoretical problems and applica-

tions. In particular, we find the following of interest:

1. Considering Minimum Information in other Domains. While we inves-

tigated minimum content and link information for user identification in social

media, it is worth investigating what the absolute minimum information re-

quired to perform a task with a given accuracy is in social media research. For
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instance, this minimum information could be a profile picture or a click on a

link.

2. Systematic Improvement to Minimum Information. How can we sys-

tematically add information such that specific performance guarantees are met?

That is given specific applications, how can we determine the minimum infor-

mation that does not sacrifice accuracy.

3. Improving Link-Prediction with Minimum Information. Building upon

the work presented in Chapter 4, promising directions for future work include

(1) studying addition of other information and (2) analyzing how combining

the proposed approach with traditional link prediction can further improve the

performance of link prediction. Future work also includes analyzing how social

forces can be combined (instead of considering them independently) to further

improve friend finding performance. While we demonstrate that all social forces

are beneficial for finding friends, the comparison between forces can be influ-

enced by the performance of the classifiers. We leave verifying our findings with

labeled data in which age, location, or language is known as another part of our

future work.

4. Integrating Extra information for Malicious User Detection. That is

integrating additional information available across sites in a principled manner.

However, this extension requires considering the heterogeneity of data available

across sites. In addition, similar to the observation we had regarding the infor-

mation surprise values of usernames, we are interested in how surprise values

change for other content generated by users.

5. Content Variation across Sites. We have analyzed link variations across
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sites. A promising future direction is to investigate content variations across

sites. While data collection for our study was challenging, we believe with more

data, especially content information, regarding the behavior and interests of

users across sites, one should be able to obtain deeper insights into how users

change behavior across sites.

6. Predicting/Analyzing Temporal Popularity across sites. While we showed

how popularity changes across sites, the temporal information was missing. A

future direction is to analyze how popularity changes across sites over time.

Furthermore, determining the types of popularity patterns of users and the

number of different clusters of people with respect to their popularity patterns

are of interest.
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