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ABSTRACT 

 

The need for rapid, specific and sensitive assays that provide a detection of 

bacterial indicators are important for monitoring water quality.  Rapid detection using 

biosensor is a novel approach for microbiological testing applications.  Besides, 

validation of rapid methods is an obstacle in adoption of such new bio-sensing 

technologies.  In this study, the strategy developed is based on using the compound 4-

methylumbelliferyl glucuronide (MUG), which is hydrolyzed rapidly by the action of  

E. coli β-D-glucuronidase (GUD) enzyme to yield a fluorogenic product that can be 

quantified and directly related to the number of E. coli cells present in water samples.  

The detection time required for the biosensor response ranged from 30 to 120 minutes, 

depending on the number of bacteria.  The specificity of the MUG based biosensor 

platform assay for the detection of E. coli was examined by pure cultures of non-target 

bacterial genera and also non-target substrates.  GUD activity was found to be specific 

for E. coli and no such enzymatic activity was detected in other species.  Moreover, the 

sensitivity of rapid enzymatic assays was investigated and repeatedly determined to be 

less than 10 E. coli cells per reaction vial concentrated from 100 mL of water samples.  

The applicability of the method was tested by performing fluorescence assays under pure 

and mixed bacterial flora in environmental samples.  In addition, the procedural QA/QC 

for routine monitoring of drinking water samples have been validated by comparing the 

performance of the biosensor platform for the detection of E. coli and culture-based 

standard techniques such as Membrane Filtration (MF).  The results of this study 
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indicated that the fluorescence signals generated in samples using specific substrate 

molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in 

drinking water.  The procedural QA/QC of the biosensor will provide both industry and 

regulatory authorities a useful tool for near real-time monitoring of E. coli in drinking 

water samples.  Furthermore, this system can be applied independently or in conjunction 

with other methods as a part of an array of biochemical assays in order to reliably detect  

E. coli in water. 
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CHAPTER 1  

BACKGROUND 

 

1.1 Introduction  

Despite significant improvements in water treatment and disinfection processes, 

there are still concerns about the microbiological safety of drinking water.  To protect and 

maintain water quality from the source to the tap, it is critically important to consider a 

rapid method to identify indicator and pathogenic bacteria in drinking water.  The 

standard techniques used for the detection and enumeration of Total Coliforms (TC) and 

Fecal Coliforms (FC) require 18 to 24 hours to obtain results.  This delay in providing 

information regarding water quality makes it difficult to make timely decisions for 

protecting public health.  Another limitation of these techniques is the inability to detect 

viable but non-culturable bacteria (George et al. 2000).  Hence, rapid, sensitive and 

specific assays that provide a near real-time detection of bacterial indicators are of 

primary importance for monitoring microbiological quality of water.  

Direct enzyme-based assays circumvent the time consuming cultivation period 

and enable the exploitation of a range of enzyme substrates to both improve sensitivity 

and practicality of the detection of bacterial cells (Bascomb 1988; Manafi et al. 1991). 

Moreover, the abundance of fluorogenic substrates available and the fast developments of 

biosensing technology allowed the application of fluorescence techniques to study 

bacterial activities in various water systems.  Rapid assays to estimate the GUD activity 

of E. coli have been performed without any cultivation step where direct measurements 
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of GUD activity were successfully applied to river, sea and waste water samples 

(Farnleitner et al. 2001; Garcia‐Armisen et al. 2005; Fiksdal and Tryland 2008; Nikaeen 

et al. 2009).  The GUD is a specific marker for E. coli and 4-methylumbelliferone-β-D-

glucuronide (MUG), a sensitive substrate for determining the presence of E. coli in a 

sample.  Approximately 97% of E. coli strains have GUD activity and almost all other 

coliform bacteria lack this enzyme (Caruso et al. 2002).  The hydrolysis of MUG releases 

fluorescent 4-methylumbelliferyl (4MU) and the intensity of the measured fluorescent 

signal is proportionate to the amount of enzyme present, showing a correlation to the 

number of E. coli present in the sample (Fiksdal and Tryland 2008).  However, current 

procedures are laboratory-based and require bench-top fluorometers for the measurement 

of fluorescence resulting from the enzyme–substrate reaction.  In our previous study, we 

have developed bacterial enzymatic-biochemical signatures and shown the utility of a 

custom designed opto-electronic biosensor platform for the detection of E. coli and other 

bacterial cells in biofilm samples (Elzein et al. 2013). The biosensor detects bacterial 

enzymatic response of specific fluorogenic substrates.  

 

1.2 Objectives 

The main objective of this study is to develop a rapid detection method to analyze 

samples on a direct GUD assay for E. coli in drinking water samples.  The hypotheses of 

this study are: 1) the opto-electronic biosensor can be used independently or in 

conjunction with other methods as part of MUG-based assays to reliably detect E. coli in 

water, 2) the presence of non-target bacteria will not impact the specificity of MUG for 
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the detection of E. coli, 3) the standard curve generated using laboratory reagents would 

be similar to the standard curve generated using tap water.  The specific objectives of the 

study are to develop procedural quality assurance (QA) and quality control (QC) for 

routine monitoring of drinking water samples and to validate the performance of the 

biosensor platform for the detection of E. coli by culture-based standard techniques.  This 

study is aimed to provide both industry and regulatory authorities a useful tool for real-

time monitoring of E. coli in drinking water samples. 
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CHAPTER 2 

 LITERATURE REVIEW 

 

2.1 Detection of E. coli in Drinking Water: Current Methods and Emerging Approaches 

E. coli is the most common coliform among the intestinal flora of warm-blooded 

animals and its presence may be related to fecal contamination.  Therefore no E. coli can 

be present in drinking water.  The U.S. Environmental Protection Agency (EPA) has 

approved several methods for coliform detection such as the multiple-tube fermentation 

(MTF) and the membrane filtration (MF) techniques (Rompré et al. 2002). 

MTF is labor intensive since many dilutions have to be employed for each water 

sample.  This method is extremely time-consuming, requiring 48 hours for presumptive 

results, and necessitates a subculture stage for confirmation, which could take up an 

additional 48 hours.  The results of the MTF technique are expressed in terms of the most 

probable number (MPN) of microorganisms present (Rompré et al. 2002). This number is 

a statistical estimate of the mean number of coliforms in the sample.  As a consequence, 

this technique offers a semi-quantitative enumeration of coliforms.  However, the 

precision of the estimation is low and depends on the number of tubes used for the 

analysis.  Many factors may significantly affect coliform bacteria detection by MTF, 

especially during the presumptive phase.  Interference by high numbers of non-coliform 

bacteria (Evans et al. 1981; Means and Olson 1981; Seidler et al. 1981) as well as the 

inhibitory nature of the media (Elzein 2005) have been identified as factors contributing 

to underestimates of coliform abundance. 
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MF consists of filtering a water sample on a sterile filter with a 0.45 µm pore size 

which retains bacteria, incubating this filter on a selective medium and enumerating 

typical colonies on the filter.  The main concern about MF is its inability to recover 

stressed or injured coliforms.  A number of chemical and physical factors involved in 

drinking water treatment, including disinfection, can cause sublethal injury to coliform 

bacteria, resulting in a damaged cell unable to form a colony on a selective state (Rompré 

et al. 2002). 

However both methods have limitations, such as duration of incubation, 

organisms’ interference, lack of specificity to the coliform group and a weak level of 

detection of slow-growing or stressed coliforms.  Hence, the principal challenges for the 

development of new coliform detection methods are to improve the specificity of the 

method, which could eliminate the time-consuming confirmation step, to take into 

account stressed and injured cells and to reduce the analysis time (Rompré et al. 2002). 

Based on the enzymatic properties of coliforms, a defined substrate method was 

developed to overcome some limitations of the MTF and MF techniques.  Unlike these 

methods, which eliminate the growth of non-coliform bacteria with inhibitory chemicals, 

the defined substrate technology is based on the principle that only the target microbes 

(TC and E. coli) are fed and no substrates are provided for other bacteria.  A defined 

substrate is used as a main nutrient source for the target microbe(s).  During the process 

of substrate utilization, a chromogen or a fluorochrome is released from the defined 

substrate, indicating the presence of the target microorganisms. 
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One of the recent enzyme-substrate technologies that has been approved by the 

EPA is the IDEXX Quanti-Tray, which provides easy, rapid and accurate counts of 

coliforms, E. coli, enterococci and Pseudomonas aeruginosa.  This method is designed to 

give quantitated bacterial counts of 100 mL samples using IDEXX reagent products.  The 

IDEXX Quanti-Tray is a semi-automated quantification method based on the standard 

method MPN (IDEXX 2011b; a).  

The Colilert 18/Quanti-Tray is based on defined substrate technology and is a 

colorimetric, specific and selective method for the detection and enumeration of GUD of 

Escherichia coli and GAL of coliforms in drinking water.  U.S. EPA approves the use of 

IDEXX Colilert-18 for the detection and enumeration of FC in water and wastewater 

samples when used the Quanti-Tray system and incubated at 44.5° C.  For the detection 

of β-D-galactosidase (GAL), Colilert-18 utilizes the chromogenic nutrient indicator 

ortho-nitrophenyl-β-D-galactopyranoside (ONPG) which produces a distinct yellow color 

after incubation at 44.5 ±0.2°C at 18 hours and up to 22 hours when hydrolyzed by GAL.  

After the incubation, the positive wells, which are yellow, will be counted and using the 

MPN table the bacterial number will be reported per 100 ml of sample.  The IDEXX 

Quanti-Tray provides 95% confidence limits better than 5- or 10-tube MPN and 95% 

confidence limits better than or comparable to MF (ISHA 2010; IDEXX 2011a; b; 2013).  

In conclusion, tests based on the defined-substrate technology using chromogenic 

and fluorogenic substrates are applicable for the detection and enumeration of coliforms 

and E. coli in drinking water and have improved the sensitivity of these methods.  These 

tests are easy to use and give a more rapid and more accurate estimate (especially in the 
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presence of chlorine residual) of indicators of bacteriological contamination of waters 

than classical identification methods.  In all cases, enzymatic methods require less labor 

intensive and consequently their cost in terms of commercial value is lower (Rompré et 

al. 2002). 

2.1.1 Application of Rapid Enzymatic Assays for Bacterial Detection 

The biochemical tests used for bacterial identification and enumeration in 

classical culture methods are generally based on metabolic reactions.  For this reason, 

they are not fully specific and many further tests are sometimes required to obtain 

accurate confirmation.  The use of microbial enzyme profiles to detect indicator bacteria 

is an attractive alternative to classical methods.  In addition, reactions are rapid and 

sensitive.  Therefore, the possibility of detecting and enumerating coliforms through 

specific enzymatic activities has been under investigation for many years now (Rompré et 

al. 2002). 

 Rapid enzymatic assays are based on bacterial hydrolysis of added substrates and 

detection of hydrolysis products that are released into the medium.  Enzymatic activity is 

determined (1) in the water sample itself after addition of substrate or (2) after collecting 

the cells by filtration, transfer of the filtered cells to an assay solution and addition of 

substrate (Farnleitner et al. 2001).  The activity of all micro-organisms that contain the 

actual enzyme is measured, but the assay does not give information at the single cell 

level.  Enzymatic activity is determined at fixed intervals and calculated as released 

hydrolysis product per time unit.  Correlation curves between enzyme activity and 

culturable bacterial numbers can then be established.  These assays avoid a cultivation 



 

 8 

step and utilize the GALase activity of coliforms and GLUase activity of E. coli.  They 

are simple to perform and do not require expensive instrumentation.  Such assays are in 

demand for risk assessment of water supply systems for early warning of high FC 

concentrations, for example by monitoring of raw water quality (Tryland et al. 2001), 

assessment of treatment efficiency, monitoring of finished water quality as well as 

recreational waters. They also have been recently exploited for daily monitoring of beach 

water quality (Lebaron et al. 2005). Less than four hours was chosen as ‘rapid’ by Noble 

and Weisberg (Noble and Weisberg 2005) in a recent review of rapid detection 

technologies for bacteria in recreational waters. 

GAL and GUD properties of TC and E. coli have been exploited on freshwater 

(Berg and Fiksdal 1988; Tryland and Fiksdal 1998; George et al. 2000; Fiksdal and 

Tryland 2008) and seawater (Davies et al. 1995) samples in rapid assays without any 

cultivation steps.  George et al. (2000) finalized a protocol based on the fluorogenic 

substrates 4-methylumbelliferyl-β-D-galactopyranoside (MUGal) and 4-

methylumbelliferyl-β-D-glucuronide (MUG) for a direct enzymatic detection of FC in 

freshwaters in 30 min.  These methods allow a rapid and direct estimate of the level of 

microbiological contamination of surface water.  

 

2.2 Biosensor Definition 

Biosensing is the process of detecting cellular and biological activities through 

molecular or ionic interaction, binding, transformation, and products.  In this process, a 

biosensor functions as a detection tool that requires the amount of analyte be transduced 
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into a measurable signal.  To be useful in the cellular context, it is desired that the sensor 

follow some simple criteria such as selectivity, sensitivity, reproducibility, and ease of 

signal transport and delivery (Elzein 2005). 

 

2.2.1 Bacterial Cell Enzymes as Biosensing Materials 

Bacteria possess several enzymes that are important in the metabolic processes 

and are considered as the biocatalytic recognition elements in microbial biosensors 

(Davies et al. 1995). Microbial biosensors are less sensitive to inhibitors present in the 

sample, more tolerant to pH and temperature variations, and generally have a longer 

lifetime (Mello and Kubota 2002). The use of enzymes in a living system may overcome 

the problems of selectivity and slow response times in the detection process (Davies et al. 

1995).  

In enzyme-based fluorescence biosensors, it is necessary that the fluorogenic 

substrate should diffuse through the solution matrix and reach the enzymatic reaction site.  

The enzyme recognizes specific target sites of the fluorogenic substrate and selectively 

catalyzes the covalent linkage of substrate-fluorophore molecules, thereby triggering an 

emitted fluorescence signal, which can be picked up by the fiber optic transducer.  The 

resulting response of the biosensor to the addition of a substrate is determined by the 

concentration of fluorescence product of the enzymatic reaction and controlled by the 

rates of two conjugated processes, substrate enzymatic conversion and product diffusion 

in the bulk solution (Evtugyn et al. 1998). Bacterial enzymes should be permeable to the 

substrate and non-reactive in reaction media.  It is desirable to have uniform, oriented 
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mono layers with defect free and molecules that are closely packed in such a way that 

enzymes assume an orientation with their active sites facing the target substrate 

molecules in the solution phase (Phadke 1992).  

Viable microbial cells have a number of advantages as biological sensing 

materials over purified enzymes in the fabrication of biosensors.  Their enzymes are 

present ubiquitously and are able to metabolize a wide range of chemical compounds.  In 

intact microbial cells, enzymes remain active, and stable, which allows viable microbes 

to adapt to adverse conditions and develop the ability to degrade different molecules with 

time (Elzein 2005).  

Over 90% of the enzymes known to date are intracellular (D'souza 2001).  In this 

respect, the utilization of whole cells as a source of intracellular enzymes has been shown 

to be a better alternative to purified enzymes, which are more expensive, in various 

industrial processes (Bickerstaff Jr 1997).  Whole cells also provide a multipurpose 

catalyst especially when the process requires the participation of a number of enzymes in 

sequence (D'souza 2001).  Viable cells are gaining considerable importance in the 

fabrication of biosensors (Burlage and Kuo 1994; Riedel et al. 1998; Simonian et al. 

1998).  The major limitation to the use of whole cells is the diffusion of substrate and 

products through the cell wall resulting in a slow response as compared to enzyme-based 

sensors (Rainina et al. 1996).  

The enzymatic detection of the indicator of fecal contamination E. coli via its 

marker enzymes GUD and the marker for coliforms, GAL, have been widely used (Kilian 

and Bülo 1976; Edberg and Kontnick 1986; Berg and Fiksdal 1988; Rice et al. 1990; 
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Hattenberger et al. 2001).  Considering that E. coli is employed as an indicative 

microorganism of wastewater and sewage contamination, the GUD-based assays and 

rapid tests are important in environmental monitoring where test simplicity and speed 

coupled with high sensitivity are critical features.  

GUD is an enzyme which catalyzes the hydrolysis of β-D-glucopyranosiduronic 

derivatives into their corresponding aglycons and β-D-glucuronic acid.  Although this 

bacterial enzyme was discovered first in E. coli, its relative specificity for identifying this 

microorganism was not apparent until Kilian and Bulow (1976) surveyed the 

Enterobacteriaceae and reported that glucuronidase activity was mostly limited to E. coli 

(Kilian and Bülo 1976).  The prevalence of this enzyme and its utility in the detection of 

E. coli in water were later reviewed by Hartman (1989) (Feng and Hartman 1982).  

GUD-positive reactions were observed in 94–97% of the E. coli isolates tested (Kilian 

and Bülo 1976; Feng and Hartman 1982; Edberg and Kontnick 1986), while Chang et al. 

(1989) found a higher proportion of GUD negative E. coli (a median of 15% from E. coli 

isolated from human fecal samples) (Chang et al. 1989).  In contrast, GUD activity is less 

common in other Enterobacteriaceae genus, such as Shigella (44 to 58%), Salmonella (20 

to 29%) and Yersinia strains and in Flavobacteria (Kilian and Bülo 1976; Feng and 

Hartman 1982; Hartman 1989; Frampton and Restaino 1993).  GAL catalyzes the 

breakdown of lactose into galactose and glucose and has been used mostly for 

enumerating the coliform group within the Enterobacteriaceae family. 
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2.2.2 Biosensors Types and Signal Transaction Methods  

Various signal transduction techniques in the different biosensor types can be 

described as calorimetric, acoustic, electrochemical, and optical (Surface Plasmon and 

Fiber Optics) (Elzein 2005).  The strategy developed in this study is based on a series of 

fluorescence assays using specific fluorogenic substrate.  The biochemical properties and 

the enzymatic machinery of bacterial cells are used as the biological sensing elements in 

the biosensing process.  The generated fluorescence signals are detected using a custom 

designed fiber optic based biosensor.  This strategy relies on the rapid detection of 

bacterial biochemical activities in drinking water.  
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CHAPTER 3 

DEVELOPMETNT OF A BIOSENSOR PLATFROM FOR RAPID DETETION OF  

E. COLI IN DRINKING WATER 

 

3.1 Abstract 

The need for rapid, specific and sensitive assays for the detection of bacterial 

indicators are important for monitoring water quality.  In this study, the strategy 

developed is based on using the compound 4-methylumbelliferyl-β-D-glucuronide 

(MUG), which is hydrolyzed rapidly by the action of E. coli β-D-glucuronidase (GUD) 

enzyme to yield a fluorogenic product that can be quantified to the number of E. coli cells 

present in water samples.  The detection time required for the biosensor response ranged 

from 20 to 120 minutes, depending on the number of bacteria in the reaction vial.  The 

specificity of the MUG based biosensor platform assay was examined by pure cultures of 

non-target bacterial genera such as Klebsiella, Salmonella, Enterobacter and Bacillus and 

also non-target substrates: 4-methylumbelliferyl-β-D-galactopyranoside (MUGal), or L-

Leucine β-Naphthylamide Aminopeptidase (LLβ-N), to identify patterns of enzymatic 

activities of E. coli.  GUD activity was found to be specific for E. coli and no enzymatic 

activity was detected by other species.  Then, fluorescence assays were performed for the 

detection of E. coli to generate standard curves.  In addition, the sensitivity of rapid 

enzymatic assays was investigated and repeatedly determined to be less than 10 E. coli 

cells per reaction vial concentrated from 100 mL of water samples.  The applicability of 

the method was tested by performing fluorescence assays under pure and mixed bacterial 
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flora in environmental samples.  The results of this study showed that the fluorescence 

signals generated in samples using specific substrate molecules can be utilized to develop 

a bio-sensing platform for the detection of E. coli in drinking water.  Furthermore, this 

system can be applied independently or in conjunction with other methods as part of an 

array of biochemical assays in order to reliably detect E. coli in water. 

 

3.2 Introduction 

β-D-glucuronidase (GUD) activity is characteristic of most strains of E. coli and, 

hence, has been widely used to monitor the presence of this indicator organism in 

environmental samples, particularly water (Berg and Fiksdal 1988; Edberg et al. 2000; 

Caruso et al. 2002).  Approximately 97% of E. coli strains have GUD activity and almost 

all other coliform bacteria lack this enzyme (Caruso et al. 2002).  Studies have shown 

that E. coli can preserves an active metabolism without being able to grow on culture 

media (Roszak and Colwell 1987; George et al. 2001). However, GUD-based assays for 

the detection of E. coli includes the important fraction of viable but non-culturable 

(VBNC) organisms that would be missed by culture-based methods (Fiksdal and Tryland 

2008; Servais et al. 2009). MUG is a specific substrate for determining the presence of E. 

coli in a sample.  The hydrolysis of MUG releases fluorescent 4-methylumbelliferone 

(4MU) and the intensity of the measured fluorescent signal is proportionate to the amount 

of enzymatic activities, showing a correlation to the number of E. coli present in the 

sample (Fiksdal and Tryland 2008).  
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Many chromogenic and fluorogenic substrates exist for the specific detection of 

bacterial enzymatic activities, and various commercial tests based on these substrates are 

available.  To detect the presence of GUD in E. coli, the following chromogenic 

substrates have been previously used: indoxyl-β-D-glucuronide (IBDG) (Brenner et al. 

1993), the phenolphthalein-mono-β-D-glucuronide complex and 5-bromo-4-chloro-3-

indolyl-β-D-glucuronide (X-Glu) (Watkins et al. 1988).  Although there are several 

fluorescence-based glycoside enzyme substrates available, substrates based on 4MU have 

been more extensively used in diagnostic microbiology for the detection of bacterial 

enzymes (Dahlén and Linde 1973; Feng and Hartman 1982; Bascomb 1988; Manafi et al. 

1991; Chilvers et al. 2001).  Rapid assays to estimate the GUD activity of E. coli have 

been performed without any cultivation step where direct measurements of GUD activity 

were successfully applied to river, sea and waste water samples (Farnleitner et al. 2001; 

Garcia‐Armisen et al. 2005; Fiksdal and Tryland 2008; Nikaeen et al. 2009).  However, 

current procedures are laboratory-based and require bench-top fluorometers for the 

measurement of fluorescence resulting from the enzyme–substrate reaction. 

Isopropyl β-D-Thiogalactoside (IPTG) is known to be a noncompetitive inducer, 

i.e. non-hydrolysable substrate by GAL (Herzenberg 1959) but the possible effect of 

MetGlu on GLUase activity has not been tested previously.  GAL and GUD are well 

known to be inducible enzymes (Herzenberg 1959; Pardee and Prestidge 1961).  IPTG 

has been used commonly in cloning procedures that require induction of β-galactosidase 

activity, but recently have been used for induction of β-glucuronidase activity (Liu et al. 

2012).   
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 In our previous study, we have developed method for detecting bacterial 

enzymatic-biochemical signatures and have shown the utility of a custom designed opto-

electronic biosensor platform for the detection of E. coli and other bacterial cells in 

biofilm samples (Elzein et al. 2013).  In this study, rapid assays for the detection of in 

water were developed by using the compound MUG, which is hydrolyzed by the specific 

GUD enzyme to yield a fluorogenic product that can be quantified to the number of E. 

coli cells in water samples.  At the ASU Environmental Microbiology laboratory, the 

biosensor instrumentation was assembled and customized for detecting the response of 

bacterial enzymatic machinery to the added specific fluorogenic substrate to rapidly 

determine bacterial water quality.  In order to optimize the assay, fluorescent reagents 

were optimized to determine the detection limit and the working concentration range for 

the fluorescence assays.  The present study introduces a biosensor designed to directly 

analyze samples for GUD activities for developing a rapid detection method for E. coli 

cells in water samples.  The results obtained were substantiated by culture-based assays 

indicating comparable data.  

 

3.3 Materials and Method 

All experiments were conducted under laboratory conditions using aseptic 

techniques.  First, all assays were optimized using pure chemical reagents and standards.  

Standard curves were generated to evaluate each assay working range of concentrations 

and detection limits.  In the second step of optimization, increasing concentrations of 

pure E. coli culture which were obtained from American Type Culture Collection 
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(ATCC, Manassas, VA) were used as a model for bacterial biochemical and cultural 

assays.  For confirmation, culture-based assays were performed to determine Colony 

Forming Unit (CFU)s per reaction before and after the assays in duplicate using selective 

agar media and to make sure the bacteria were viable.  To rapidly quantify E. coli, the 

activity of GUD was exploited using the soluble fluorescent substrate MUG and 

measured the resulting fluorescence by the BDS1000 fluorescence detector (Figure 1).  

The results have been also compared and evaluated with the performance of the reference 

instrument Aqualoq benchtop fluorometer (Horiba, Kyoto, Japan), the only simultaneous 

absorbance and fluorescence system for water quality analysis, which measures both 

absorbance spectra and fluorescence excitation-emission matrices.  

 

 

Figure 1: Custom Designed Touch Screen Biosensor BDS1000 

 

The assay was performed by adding 3 mL of a representative water sample to 0.1 

mL of the MUG and 0.9 mL of 0.1 M N-[2-hydroxyethyl] piperazine-N'-[2- 

ethanesulfonic acid] Buffer (HEPES), (VWR, Chester, PA) at pH 8.0 in a 4.0 mL 
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reaction cuvette.  The cuvette was then placed in the Custom Designed Biosensor 

BDS1000 at Arizona State University (ASU) Environmental Microbiology laboratory.  

Each set of assays consisted of a negative control of 3.0 mL of 0.1 X Phosphate Buffered 

Saline (PBS) containing 0.9 mL of 0.1 M HEPES and 0.1 mL of 8.52 mM MUG.  Assays 

were performed in triplicate by simultaneously processing three aliquots of E. coli 

suspension in three separate cuvettes and examined using the biosensor.  The enzymatic 

activity data were collected for less than 120 minutes and after a desired linearity was 

achieved (R2 = 0.90 or higher), the fluorescence signals were subtracted from the blank 

signal and reported as the final results.  Raw biosensor data were analyzed for correlation 

between different parameters in order to confirm the functionality of the biosensor. 

 

3.3.1 Custom Designed Touch Screen Biosensor BDS1000 

The biosensor instrumentation was assembled and customized at ASU 

Environmental Microbiology laboratory for detecting the response of bacterial enzymatic 

machinery to the added specific fluorogenic substrates.  The optical and spectrometer 

components for the biosensor were obtained from Ocean Optics (Model # HR 2000, 

Ocean Optics, Dunedin, FL).  The Light-Emitting Diode (LED) based light source 

provided filtered excitation light at specific wavelengths to allow single excitation, single 

emission detection of a specific fluorophore in each enzymatic assay.  The excitation 

light spectrum appeared to have a ± 10 nm range around the peak maxima.  This allowed 

all fluorescence assays to be carried out at a single excitation wavelength (350 ± 10 nm).  

The fluorescence signals were collected as Relative Fluorescence Unit (RFU) at single 
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excitation, dual emission wavelength (SEDEW) settings.  Readings were taken by 

placing cuvettes in the reaction chamber of the biosensor.  

 

3.3.2 Stock Culture Preparation 

Pure culture of E. coli (ATCC 25922) was grown in Tryptic Soy Broth (TSB) 

(Becton, Dickinson, Sparks, MD).  Log phase bacterial stocks were prepared by 

incubating the bacterial suspension at 37°C in a C24 shaker-incubator (New Brunswick 

Scientific, Edison, NJ) at 150 rpm.  The log phase bacterial cultures were stored at 4°C 

for at least 24 hours and then used for assays.  Bacterial stocks were diluted in 0.1 X PBS 

in a range of 10-108 CFU counts per mL of E. coli.  

 

3.3.3 Fluorometric Assay Reagents 

Methylumbelliferone (MUF-β) Standard Preparation  

For the GUD assays, substrate stock was prepared by placing 0.030 g MUG 

(Sigma Chemical Co., St. Louis, MO) in a sterile 15 mL centrifuge tube and completely 

dissolved in 5.0 mL of pure ethanol.  After all the crystals were completely dissolved, an 

amount of 5.0 mL of sterile distilled water (DI water) was added to the homogenized 

solution.  The tube was capped and labeled as 8.52 mM stock MUG substrate solution.  

The solution was protected from light and stored at 4°C.  For every test, 0.1 mL of this 

substrate was used.  



 

 20 

Preparation of 0.1M HEPES Buffer, pH 8.0 

HEPES buffer was prepared by dissolving 23.83g of HEPES in 500 mL of 

autoclaved DI water.  The pH of HEPES solution was adjusted to 0.8 using sodium 

hydroxide solution.  The final volume was adjusted to 500 mL with DI water and 

sterilized using 0.2 µm filters.  For each assay, 0.9 mL of this buffer was used.  The 

solution was protected from light, and kept at room temperature.  The HEPES buffer 

solution was prepared fresh before performing the assays. 

 

3.3.4 Culture-Based Assays 

At the start and end of each assay, samples of E. coli were enumerated by plate 

count using Membrane Filtration (MF).  This was done by filtering 1 mL of the 

appropriate dilution through a 0.45 µm membrane (Millipore SAS, Billerica, MA) and 

plating them on Brilliance (Oxoid LTD, Basingstoke, England) or mEndo (Becton, 

Dickinson and company) media followed by incubation at 37°C for 24 hours.  This step 

was performed to achieve CFUs before and after the assay and to make sure the bacteria 

were viable and culturable. 

 

3.3.5 Development of Standard Curves using GUS Reporter Kit 

The calibration curves for MUG were generated by using a GUD reporter kit 

which was purchased from Marker Gene Technologies, Inc., (Eugene, OR), and Aqualog 

fluorometer were employed.  A series of MUG concentrations were prepared by taking 

different volumes of the GUS assay buffer, GUD extraction buffer, and blank solution 
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(extraction buffer) were utilized for this assay (Table 1).  This step was taken in order to 

determine the optimum MUG response concentration to the added number of E. coli 

cells. 

 

Table 1: Assay Conditions for Generating MUG Calibration Curve 

[MUG] GUD Assay Buffer 

(0.1 mM MUG) 

GUS 

Extraction Buffer 

Enzyme or Blank Solution 

0.08 mM 80 µL 10 µL 10 µL 

0.06 mM 60 µL 30 µL 10 µL 

0.04 mM 40 µL 50 µL 10 µL 

0.02 mM 20 µL 70 µL 10 µL 

0.01 mM 10 µL 80 µL 10 µL 

 

A black 96-well plate and Synergy H1 Hybrid Multi-Mode Microplate Reader 

(BioTek, Winooski, VT) was also employed to create the calibration curve for 

comparison.  Four wells were allocated for each concentration of MUG.  The 96-well 

plate was incubated at ~38°C for 10 min, and then placed in the plate reader at room 

temperature.  The fluorescence intensity values were averaged and compared to the 

blank. 
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3.3.6 Specificity of MUG Assays for the Detection of E. coli  

3.3.6.1 Impact of Non-Target Substrates on the Detection of E. coli  

The impact of different substrates, 4-methylumbelliferyl-β-D-galactopyranoside 

(MUGal) and L-Leucine β-Naphthylamide Aminopeptidase (LLβ-N) aminopeptidase on 

the detection of E. coli was investigated.   

a) Methylumbelliferyl-β-D-Galactopyranoside 

In the galactosidase assays, substrate stock was prepared by completely dissolving 

15 µmol of MUGal (Sigma Chemical Co.) in 0.2 mL of Dimethyl Sulfoxide (DMSO) 

which was purchased from Mallinckrodt Baker Inc, Paris, KY.  Then the solution was 

diluted to 10 mL with 0.5 X PBS at pH 7.3 and prepared according to the method of 

(Maddocks and Greenan 1975). The solution was protected from light and stored at 4°C.  

For every test, an amount of 100 µL of this MUGal stock was used. 

b) L-Leucine β-Naphthylamide Aminopeptidase (LLβ-N)  

Stock solution (40 mM) LLβ-N substrate (Sigma-L1635) was prepared in 

analytical grade ethanol and the pH was adjusted to 7.5 using HEPES buffer.  For the 

proteolytic enzymatic assays, 0.100g LLβ-N was weighed and dissolved in 9.75 mL of 

pure ethanol in a sterile 15 mL centrifuge tube.  The content was mixed at room 

temperature until dissolved.  The tube was capped and labeled as 40 mM LLβ-N Stock 

substrate solution.  The solution was protected from light and stored at 4°C. 

 

3.3.6.2 Impact of Non-Target Bacteria on the Detection of E. coli 

The specificity of the MUG based biosensor platform assay was examined by 

using pure and mixed cultures of non-target bacterial genera.  All bacterial cells were 
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obtained from ATCC.  Enterobacter, Bacillus, Klebsiella, and Salmonella, cultures were 

grown in TSB.  A volume of 1.0 mL of each strain was taken from pure stocks and 

suspended in 9.0 mL of the corresponding broth media.  The bacterial suspensions were 

incubated in a shaker-incubator (New Brunswick Scientific C24, Edison, NJ) (150 RPM 

at 37°C) to achieve a log phase bacterial culture which ranged between 3-8 hours, 

depending on the bacteria used. 

 

3.3.7 Sensitivity (Detection Limit) of Rapid Enzymatic Assays 

The applicability of the biosensor method was tested using both environmental 

and tap water. 

Tap Water: 

In order to investigate the sensitivity of the assay, 1000 mL of tap water was 

collected and 1 mL of 1% w/v solution of Sodium Thiosulfate at was added to 

dechlorinate the water sample prior to the assay.  After complete mixing, an amount of 

200 mL of water was taken from the 1000 mL of the water sample and approximately 30-

40 E. coli cells were added to the sample.  The mixture was vortexed and divided into 

two 100 mL parts.  The first part was analyzed by filtering 100 mL through a 0.45 µm 

membrane and plating it on Brilliance or mEndo media, followed by incubation at 37°C 

for 24 hours.  This step was performed to achieve CFU counts so as to be compared with 

the other 100 mL after the concentration.  The second 100 mL sample was concentrated 

in 250 mL centrifuge tubes at 1500 × G for 15 minutes.  Using a Pasteur Pipette, the 

supernatant was carefully aspirated to a final volume of 3 mL above the pellet.  Extra 
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care was taken to avoid aspirating E. coli cells during this step.  The centrifuge tube was 

vortexed vigorously until the pellet was completely resuspended.  At the end, a pipette 

was used to collect any residual volume that dripped down to the bottom of the tube to 

ensure that as much of the sample volume was recovered as possible.  After transferring 3 

mL of the sample from the centrifuge tube to the cuvette, MUG and HEPES were added 

to the sample. 

Lake Water: 

The water samples were taken from different points of Tempe Town Lake, 

transported to the laboratory on ice for processing within 8 hours and tested for the 

presence of E. coli.  The water was first analyzed by filtering 1 mL of the appropriate 

dilution through a 0.45 µm membrane and plating on mEndo and Tryptic Soy Agar 

(TSA) media (Becton, Dickinson, Sparks, MD), followed by incubation at 37°C for 24 

hours.  This step was performed to determine CFU counts.  The MUG was added to the 3 

mL of water sample in order to examine the specificity of the MUG assays for detection 

of E. coli.  Each subsequent reading as the blank providing baseline fluorescence 

intensity, then, 3 mL of the tap water was taken and approximately 100 E. coli cells were 

added to the sample and the previous steps were followed to take readings.   

 

3.3.8 IPTG Effect on the Environmental Samples 

Impact of different concentrations of IPTG on GUD activities was investigated in 

this study.  According to Liu et al. 2012, the induction condition for the optimum 

production of the β-glucuronidase gene (AtGUS) protein is at ~0.5 µM IPTG (Liu et al. 
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2012), hence, two different concentrations of IPTG have been used for the assessment as 

following:  

0.5 µM IPTG: 

 Stock solution (20 mM) IPTG (Sigma-16758-1G) was prepared in sterile 

nonopure deionized water.  An amount of 23.83 mg IPTG was weighed and dissolved in 

5 mL sterile nonopure deionized water in a sterile 15 mL centrifuge tube.  The content 

was mixed at room temperature until dissolved.  The tube was capped and labeled as 25 

mM IPTG Stock substrate solution.  The solution was protected from light and stored at -

20°C.  For every test 100 µL of this added to the samples. 

1 µM IPTG:  

Stock solution (40 mM) IPTG was prepared in sterile nonopure deionized water.  

An amount of 47.66 mg IPTG was weighed and dissolved in 5 mL sterile nonopure 

deionized water in a sterile 15 mL centrifuge tube.  The content was mixed at room 

temperature until dissolved.  The tube was capped and labeled as 25 mM IPTG Stock 

substrate solution.  The solution was protected from light and stored at -20°C. 

IPTG effect has been studied both on tap and environmental water samples and 

results were compared for the GUD activities in the absence of IPTG.  The environmental 

water samples were taken from different points of consolidated canals in Mesa, AZ, 

transported to the laboratory on ice for processing and tested for E. coli presence within 8 

hours.  The water was analyzed by filtering 1 mL of the appropriate dilution through a 

0.45 µm membrane and plating on mEndo and TSA media, followed by incubation at 

37°C for 24 hours.  This step was performed to achieve CFU counts.  The MUG was 
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added to the 3 mL of water sample in order examine the specificity of the MUG assays 

for detection of E. coli.  Each subsequent reading as the blank providing baseline 

fluorescence intensity, then, 3 mL of the tap water was taken and approximately 100 E. 

coli cells were added to the sample and the previous steps were followed to take readings.   

 

3.4 Results and Discussion 

The feasibility of the direct assay for sensitive biochemical detection of E. coli 

was evaluated using serially diluted cultivated bacteria.  Figure 2 provides the results 

obtained for E. coli concentrations at approximately 10, 100, and 1,000 CFU/ mL in the 

reaction cell.  The direct MUG assay analyzed with BDS1000 showed a good linearity of 

the fluorescent signal with increasing number of E. coli (Figure 2).  As concentrations of 

bacteria increase, more MUG molecule are broken per unit of time and higher 

fluorescence intensity is measured.  The fluorescence intensity (arbitrary units) is directly 

related to the number of bacteria and MUG concentrations.  In addition, the reaction time 

needed to detect E. coli was directly proportional to the bacterial cell numbers (Figure 2).  

Using our biosensor, all optimized assays resulted in positive linear response of 

fluorescence signals in the range of bacterial concentrations of 10-108 E. coli per mL.  

This is comparable with the sensitivity of the previously reported hand-held confocal 

fluorescence detector FLUO SENS SD (ESE GmbH, Stockach, Germany), which showed 

increasing trend of the fluorescent signal with increasing number of E. coli in a range of 

10–108 CFU per mL of the water sample (Wildeboer et al. 2010).  However, the hand-
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held sensor-based assay required incubation of samples with the substrate for 30 min 

prior to the assay (Wildeboer et al. 2010). 

Bacterial biochemical activities for all assays, if present, generally appear to 

increase with time and with increase in concentration of the bacterial cells (Figure 2).  As 

time passes, bacteria have more time to cleave MUG molecules.  For a fixed number of 

bacteria, the fluorescent signal increases with time as bacteria continue to hydrolyze 

MUG molecules over time (Figure 2).  This increase in activity might be explained by the 

adaptation and survival of E. coli to the environmental conditions such as water quality 

parameters, reaction buffers and substrate consumptions in the reaction cell (cuvette).  

The detection time required for the biosensor response versus the culture methods ranges 

from 20 to 120 minutes and 24 to 48 hours, respectively.  The sensitivity of the method is 

such that it enables rapid detection, well within the 4 hours which is the period defined as 

rapid (Noble and Weisberg 2005). No increasing trend in the relative progression of GUD 

activities was noted and data is not plotted here. 
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Figure 2: Time Series Hydrolyses of MUG by Different Concentrations of E. coli 

 

Since overnight cultures of E. coli cells were stored at 4°C, the cells were at 

stationary phase prior to use.  The high levels of activity observed in some cultures may 

indicate that their starved metabolic state lead to an increase in bacterial enzymatic 

activities hydrolyzing the fluorogenic substrate rapidly.  Caruso et al. (2002) reported that 

full development of enzymatic activities start at lag phase and is required for the enzyme 

expression. 

 

3.4.1 Calibration Curves and Comparison Study 

Comparison study was performed between BDS1000 and Aqualoq fluorometer.  

The calibration curves were used to determine the sensitivity of the enz-bio assay using 

the reference instrument, Aqualog fluorometer (Figure 3).  GUD assay fluorescence 

signals produced a linear response with a correlation coefficient higher than 0.90 (Figure 

3).  The lower detection limit was 0.01 mM of MUG as determined by three standard 
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deviations of the blank, however the results for MUG at 0.01, 0.05 and 0.08 mM are 

plotted in Figure 3.  Though, the optimum MUG response was found at a concentration 

of 0.08 mM.  This result was confirmed for the ~10 to 1000 CFU per mL of E. coli.  As a 

result, MUG at concentration of 0.08 mM was selected as the working substrate 

concentration.  The assay range and sensitivity for the enzyme using the BDS1000 was 

identical to the results obtained when measuring the same samples with the Aqualog 

benchtop fluorometer.  This optimum concentration was confirmed using Synergy H1 

Hybrid Multi-Mode Microplate Reader.  The resulting graph for the different 

concentration of MUG substrate is shown in Figure 4.  Linearity obtained for this 

calibration curve ranged from 0.01mM to 0.08mM at ~10000 CFU/mL (Figure 4). 

 

 

Figure 3: Comparison of the MUG Calibration Curves by Using BDS1000 and 

Aqualog Fluorometer 

Note: Comparing the calibration curve using the BDS1000 and Aqualog benchtop fluorometer; 

graphs show representative data for three independent experiments; the fluorescence intensity is 

arbitrary units; note the different scales of the two instruments. 
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Figure 4: MUG Calibration Curve using 96-well Plate Reader 

 

3.4.2 Specificity of MUG Assays for the Detection of Non-Target Bacteria and Substrates 

In this study, the specificity of the MUG assay was examined by using pure and 

mixed cultures of non-target bacterial genera such as Klebsiella, Salmonella, 

Enterobacter, Bacillus and E. coli (Figure 5).  The Fecal Coliform (FC) group mainly 

consists of E. coli and Klebsiella (Edberg et al. 1997).  No GUD activities were observed 

for the non-target bacteria and this finding is in the agreement with the previous research 

that “species of Klebsiella do not normally express GLUase activity” (Brenner et al. 

1993).  Furthermore, studies have been performed on the GUD activities of the 

Enterobacteriaceae and E. coli and confirmed that GUD activity was mostly limited to 

(Kilian and Bülo 1976).  In the Enterobacteriaceae genus, only 20% to 29% of the 

Salmonella isolates tested showed GUD positive activities (Kilian and Bülo 1976; 

Massenti et al. 1980; Feng and Hartman 1982; Frampton and Restaino 1993). 

  In addition, the specificity of the MUG to E. coli was assessed by performing 

experiments using non-target substrates, MUGal and LLβ-N, to detect other enzymatic 
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activities of in pure cultures (Townsend and Chen 2002; Kim and Han 2013). GAL, 

catalyzes the breakdown of lactose into galactose and glucose and has been used mostly 

for enumerating the coliform group within the Enterobacteriaceae family.  Chromogenic 

substrates such as MUGal were used to detect the presence of GAL produced by 

coliforms (Rompré et al. 2002).  The results showed that no galactosidic or proteolytic 

enzyme activities were detected in (Figure 6).  In Figures 5 and 6, assays performed using 

0.08 mM of MUG and spiked water samples contained 100 CFU/mL of each type of 

bacteria. 
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Figure 5:  Specificity of MUG Assay on Pure Cultures of Non-target Bacterial 

Genera 

 

 

Figure 6: Impact of Non-target Substrates on the Detection of E. coli 

 

3.4.3 Sensitivity Determination of Different Environmental Water Samples 

The applicability of the method was tested using environmental and tap waters.  

No fluorescence seen by enzymatic assays (Figure 7), since no E. coli was present as 

tested using mEndo plates in both types of sample but other types of bacterial colonies 
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were present on TSA plates.  When both samples were spiked by adding the same 

number of E. coli cells to each sample, the tap water sample showed more fluorescence 

generation than the environmental sample.  The lower fluorescence signal in the 

environmental samples could be due to either the inhibition of enzymatic activity by 

other types of bacteria or chemical contamination.  Studies have shown that in the 

enzymatic assay, microorganisms other than E. coli, or algae or plants, may contribute to 

GUD activities but their possible interference on enzyme determination depends on their 

concentrations (Davies et al. 1994).  This is greater when they are present in high 

numbers or in conditions of low contamination, while the interference becomes negligible 

in heavily polluted conditions (Davies et al. 1994; Tryland and Fiksdal 1998).   

However, in our study interference by these compounds would be detected in the blank 

reading and thus subtracted from the sample reading.  In addition, the presence of copper 

at a concentration of 1ppm in Tempe Town Lake could inhibit the enzymatic reaction of 

E. coli.  Nevertheless, the blank values found in the samples studied were very low, 

suggesting that no significant interference from non-GUD sources in the water samples 

existed.  The fluorescence measurements carried out on serial dilutions of E. coli cultures 

have shown a sensitivity threshold of less than 10 E. coli cells per reaction vial 

concentrated from 100 mL of water samples.  Assays were performed using 0.08 mM of 

MUG and spiked water samples containing 100 CFU/mL E. coli.  A distinct signal above 

background was obtained even at the minimum detection limit, demonstrating the high 

sensitivity of the BDS1000 that was comparable to the sensitivity of the hand-held 

fluorescence detector, where the detection limit was less than 10 CFU/mL using river 
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water samples (Wildeboer et al. 2010).  Moreover, this detection limit and the rapid 

response of the biosensor should be sufficient to meet the requirement of most of the 

monitoring standards for environmental water samples. 

 

 

Figure 7: Application of Biosensor in Environmental Samples 

 

3.4.4 IPTG Effect on Tap Water and Environmental Samples  

No E. coli with green sheen were detected on mEndo plates in the environmental 

samples, but other type of colonies from non-target bacteria were present on TSA plates.  

There was no obvious change in the level of GUD activity after the addition of inducer 

IPTG neither in tap water nor in environmental samples (Figures 8 and 9).  However, 

starting point of GUD activities was higher by adding IPTG.  The results for addition of 

0.5 µM IPTG and 1 µM IPTG to the samples were compared and higher enzymatic 

activity was observed using 0.5 µM (data not shown) which confirmed previous study 

which states that the induction condition for the optimum production of the AtGUS 
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protein is at ~0.5 µM IPTG (Liu et al. 2012).   All the data points are the average of three 

replicates of each sample.  Spiked water samples contained 100 CFU/mL E. coli and 100 

µL of 0.5 µM IPTG.  Spiked water samples contained 100 CFU/mL E. coli and 100 µL 

of 0.5 µM IPTG (Figures 8 and 9). 

 

 

Figure 8: IPTG Effect on Tap Water 

Note: All the data points are the average of three replicates of each sample.  
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Figure 9: IPTG Effect on Environmental Samples 

Note: Samples were collected from different points at the middle and head of consolidated canals 

in Mesa, AZ.  At least duplicate samples were taken from each location.  All the data points are 

the average of three replicates of each sample. 

 

3.5 Conclusions 

In the present study, a rapid procedure has been developed by incorporating a 

biochemical reaction in a biosensor fluorescent detector.  Rapid assays for the detection 

of E. coli were developed by using MUG, which is hydrolyzed by the specific E. coli 

GUD enzyme yielding a quantifiable fluorogenic product that directly proportional to the 

number of E. coli cells in water samples.  The system is based on monitoring the response 

of bacterial enzymatic machinery to the added specific fluorogenic substrates. 

The data obtained in this study demonstrate that biosensor BDS1000 can be used 

to directly (without processing or concentration steps) analyze the presence of E. coli in 

drinking water samples.  Biosensors that are capable of simple and rapid detection of E. 

coli will allow utilities to respond to water quality issues in a timely manner.  To the best 
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of our knowledge, enzymatic and physiological processes of E. coli have not been 

investigated to develop biosensors to rapidly detect E. coli in water samples.  The 

biosensor in this study can be used independently or in conjunction with other methods as 

a part of an array of biochemical assays in order to reliably detect E. coli in water.  In 

addition, the specific substrate molecule used in the design of this biosensor can be 

utilized as a platform to monitor bacterial quality in water samples. 
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CHAPTER 4  

QUALITY CONTROL AND QUALITY ASSURANCE FOR THE APPLICABILITY 

OF A NEW BIOSENOR IN RAPID DETECTION OF E.COLI IN DRINKING WATER 

 

4.1 Abstract 

Rapid detection using biosensor is a novel approach for microbiological testing 

applications.  Validation of rapid methods is an obstacle in adoption of such new bio-

sensing technologies.  Therefore, establishing a Quality Assurance and Quality Control 

(QA/QC) for the new biosensor will demonstrate accuracy and reliability of the new 

method and generate acceptable precision to detect indicator bacteria in drinking water.  

In this study, first, different fluorescent reagents and assay conditions such as different 

temperatures, holding time, E. coli strains, dissolving agents, and quality of substrates 

from different 4-methylumbelliferyl glucuronide (MUG) vendors have been evaluated for 

the assay optimization and documentation.  On the other hand, the procedural QA/QC for 

routine monitoring of drinking water samples has been created for validating the 

performance of the biosensor platform for the detection of E. coli by culture-based 

standard techniques such as Membrane Filtration (MF).  The key components of QA/QC 

for this project examined mainly include: reference instrument, methods comparison, 

NaCl and pH effects on the assay.  The established procedural QA/QC for the biosensor 

will provide both industry and regulatory authorities a useful tool for near real-time 

monitoring of E. coli in drinking water samples. 
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4.2 Introduction 

Rapid detection using biosensor is a novel approach for microbiological testing 

applications.  Microbiological testing can provide important information only if sampling 

plans and methodology are properly designed and performed.  Validation of rapid 

methods is an obstacle in adoption of such new bio-sensing technologies.  Therefore, a 

validated rapid method to detect indicator bacteria in drinking water is of primary 

importance for monitoring microbiological activities and water quality from the source to 

the tap.  Establishing a procedural Quality Assurance and Quality Control (QA/QC) for 

the new biosensor will demonstrate accuracy and reliability of the new method and 

generate acceptable precision.   

U.S. EPA states, “compliance monitoring is one of the key components the 

Agency uses to protect human health and the environment by ensuring that the regulated 

community obeys environmental laws/regulations through on-site visits by qualified 

inspectors, and a review of the information EPA or a state/tribe requires to be submitted” 

(USEPA 2005).  Contrary to QC, which is a reactive system that emphases on legal 

requirements and focuses on statistically appropriate measurements, QA is a preventive 

approach that emphasizes operational procedures  (Caprita and Caprita 2005).  In order to 

insure that compliance monitoring standards are met, several procedures must be 

followed.  Formal QA programs assess each laboratory’s ability to process 

documentation.  QA programs are also used to evaluate instrument and equipment 

maintenance and performance as well as quality of reagents. 



 

 40 

In addition, by emerging new sophisticated detection methods in water quality 

analysis, the need for new monitoring technologies and the expertise levels of a 

microbiology QA/QC laboratory will increase.  While biosensing technologies will allow 

for faster, sensitive detection capabilities, they increase the need for internal quality 

control and personnel who are adequately trained to ensure accuracy and proper 

interpretation of their results.  Regulatory approval of molecular methods imply that strict 

QA/QC performance and inter-laboratory validation (Ziprin et al. 2008). 

Appropriate QA/QC measures are not limited to biosensing technologies and are 

necessary by using any monitoring system to ensure reliability of the analytical data 

generated and increase confidence in the relevance of possible responses.  Preliminary 

detection results should be confirmed because false-positives may be affiliated with 

monitoring instrumentation or improper reports.  Measurements such as complete 

checking the result’s QA/QC, resampling and repeating the analysis, and performing 

more-accurate or more precise alternative methods of analysis may be included as the 

confirmation process (Gullick et al. 2003).   

In some molecular techniques such as PCR-based methods the QA/QC procedures 

include the integration of internal spiked sample controls and the sequencing of PCR 

products (Ziprin et al. 2008).  In some other detection techniques such as Mass 

Spectrometry (MS) the necessary QA/QC can be more time consuming than that for 

some of the simpler analyses, however this step is very essential for confirmation of the 

results providing accurate identification of organic in select samples (Gullick et al. 2003). 
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The present study attempts to establish the ability to demonstrate quality control 

over the biosensor by creating a set of QA/QC requirements for the routine monitoring of 

drinking water samples and to generate an acceptable precision and recovery.  The 

following sections will discuss the importance of the parameters that have been 

considered for establishing the biosensor procedure in the present study: 

Reagents and Assay Conditions 

Enzyme activities are subject to the physiological status of bacteria and that under 

nutritional and light stresses, a fraction of cells may gradually lose its culturability, 

although remaining metabolically active (Caruso et al. 2002).  Besides, E. coli β-D-

glucuronidase (GUD) activities are very sensitive to temperature.  As reported by Caruso, 

that “the specificity and selectivity of the enzyme assays towards E. coli are strongly 

related to the temperature of incubation” (Caruso et al. 2002).  In the present study, in 

order to assess different assay conditions and reagents, different temperature, holding 

time, E. coli strains, dissolving agents at different concentrations, quality of substrates 

from different 4-methylumbelliferyl glucuronide (MUG) vendors, water versus 

Phosphate Buffered Saline (PBS) and environmental samples have been evaluated for 

optimization and documentation.   

NaCl and pH Effect on the assay 

It is generally observed that the microbial growth is impacted by adding salt, 

therefore this factor has been also evaluated in this study.  On the other hand, the 

alkalinity of the GUD assays have been reported previously by Caruso et al. (2002) in 

freshwater; however the present study investigates this parameter in drinking water.  
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Validation 

Collilert-18 (IDEXX, Westbrook, ME) has been applied as a GUD validation tool 

prior to the assay in this research.  Colilert-18 is a new standard in coliform/E. coli 

detection which is known as QC procedure based on IDEXX’s patented Defined 

Substrate Technology (DST).  When E. coli metabolizes Colilert-18’s nutrient-indicator, 

MUG, the sample also fluoresces.  This method is able to detect a single viable coliform 

or E. coli per sample and also eliminates false positive detection of non-target organisms 

(Bascomb 1988; Geary et al. 2011; IDEXX 2011a; b; 2013).  The requirements 

mentioned above were adapted as a guideline for establishing QA/QC for the biosensor 

procedure. 

 

4.3 Materials and Method 

4.3.1 Different Reagents and Enzymatic Assay Conditions  

E. coli cultures used for the assays kept at 4°C for the different time periods.  

Also, samples were divided into two different temperatures, room temperature ~24°C and 

37°C.  For every assay, samples were incubated at 37°C in a hot plate in 10 minutes 

intervals prior to each measurements.   

The enzymatic activity measured for the sample aliquots from the same E. coli 

stock preparation with the substrate purchased from different MUG vendors such as, 

Sigma Chemical Co. (St. Louis, MO), EMD Millipore (Billerica, MA) and Bioworld 

(Dublin, Ohio) for the quality comparison.  For the comparison, the substrate was 

dissolved in Dimethyl Sulfoxide (DMSO) and in ethanol according to the MUG 

suppliers’ preparation instruction.  In addition, E. coli was diluted in 10 mL of 0.1, 0.5 
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and 1 X PBS at pH 7.3 and the results were compared for GUD activities.  Furthermore, 

two additional E. coli strains, ATCC 35218 and 11175 (Manassas, VA) were compared 

with the reference strain ATCC 25922.   

 

4.3.2 pH Adjustment and NaCl Effect 

Alkalinity of the sample was increased by adding NaOH to N-[2-hydroxyethyl] 

piperazine-N'-[2- ethanesulfonic acid] Buffer (HEPES) and adjusted to pH 8 or 9 before 

testing.  Furthermore, samples were prepared by dissolving 5 g of NaCl in 1 L of the 

water sample and the results were compared with the samples without adding salt.  Each 

set of assays consisted of 3.7 mL of a representative sample containing 5% NaCl.   

 

4.3.3 Validation 

Collilert-18 was used as a positive control for confirming each of E. coli strains 

with GUD activities before starting the assay.  For each test, contents of one pack of 

collilert-18 was added to a 100 mL sample in a sterile, transparent, non-fluorescing vessel 

and then was capped and shaken.  One mL of overnight culture of E. coli stock was 

added to the 100 mL of sample and then incubated at 37°C for 18 hours to confirm GUD 

activities.  When E. coli metabolized colilert-18’s nutrient-indicator, ortho-Nitrophenyl-

β-galactoside (ONPG), the sample turned yellow under UV light. 
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4.4 Results and Discussion 

In the present study, the procedural QA/QC for routine monitoring of drinking 

water samples have been validated for the performance of the biosensor platform for the 

detection of E. coli by culture-based standard techniques such as MF.  The key 

components of QA/QC examined included: media preparation, E. coli cultures, triplicate 

sampling, blanks (method blank and negative control samples), holding time and 

condition, reference instruments, validation methods, different MUG reagents from 

different suppliers, the effects of NaCl, pH and documentation.  Other considerations for 

the biosensor procedural QA/QC includes: lab equipment’s quality control (such as 

annual micropipette and balance calibrations) and lab records.  QC per each new lot of 

every reagent and standards of the assay such as the substrate and buffers have been also 

investigated.  The optimization steps were performed in order to determine that under 

which assay condition, the highest GUD activity would be produced and then the 

optimum reagent concentration or assay conditions were selected and used as part of the 

new procedural QA/QC. 

 

4.4.1 Reagents and Different Enzymatic Assay Conditions 

Temperature Effect 

The results proved that for the sample aliquots from the same E. coli stock 

preparation incubated at 37°C showed higher enzymatic activity than the samples kept at 

room temperature (Figure 10).  This finding is in agreement with the previous studies that 

have shown increased selectivity related to the higher temperature which may have 

inhibited the growth of injured or stressed cells (Caruso et al. 2002). Assays performed 
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using 0.08 mM of MUG and spiked water samples contained 100 CFU/mL E. coli 

(Figures 10 to 13). 

 

  

Figure 10: Incubation Effect on GUD activities 

Note: Samples were incubated at 37°C prior to the measurements by placing cuvettes in the 

biosensor.  The cuvettes were again incubated at 37°C for 10 min between each measurement. 

 

MUG Quality 

 The results of the comparison between MUG purchased from different suppliers 

showed significant difference in fluorescent intensity (Sigma vs. EMD) and (Sigma vs. 

Bioworld).  MUG purchased in May 2014 (lot# BCBH7903V) from Sigma resulted in 

non-reproducible data.  MUG purchased from Bioworld produced similar fluorescent 

intensity as previously obtained by MUG purchased from Sigma prior to May 2014 

(Figure 11).   
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Figure 11: Comparison of MUG Quality from Different Suppliers 

Note: For the control samples, no increasing trend in the RFU was noted and data is not presented 

here.  All the data points are the average of three replicates.   
 

Dissolving Agents 

Two dissolution agent, ethanol and DMSO were tested for the impact on the 

sensitivity of the assay using the sample aliquots from the same E. coli stock preparation.  

DMSO resulted in lower fluorescent intensity than ethanol (Figure 12).  In addition, 

higher enzymatic activity was observed when lower strength of PBS was used (Figure 

13).  
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Figure 12: Comparison of Dissolution Agents for MUG Preparation 

 

 

Figure 13: Impact of Buffer Strength on Fluorescence Intensity of MUG 

 

Holding Time 

 Since overnight cultures of E. coli cells were stored at 4oC, the cells were at 

stationary phase prior to use.  The high levels of GUD activity observed in some cultures 

may indicate that their starved metabolic state lead to an increase in bacterial enzymatic 
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activities hydrolyzing the fluorogenic substrate rapidly.  Caruso et al., (2002) reported 

that full development of enzymatic activities start at lag phase and is required for the 

enzyme expression.  The results confirmed the previous studies that E. coli stored more 

than a week and to a month at 4oC have higher enzymatic activities hydrolyzing MUG 

substrate (data not shown).   

Also, other reagents such as substrate stock and HEPES storage time play a very 

important role in the enzymatic assay and fluorescence generation.  The quality of MUG 

substrate and HEPES buffer decrease after one week of the preparation date.  For the 

MUG substrate, there is a possibility to be crystalized which causes a significant drop in 

the fluorescence generation.  Therefore, it is suggested to prepare these per each time of 

use and keep them for no more than one week (data not shown).  MUG and HEPES are 

light-sensitive chemicals so this also should be considered in their storage and use 

conditions.  In summary, QC per each new lot of the reagents and standards 

recommended prior to use in order to insure that compliance monitoring standards are 

met.  Table 2 represents the outline of QC for each new lot. 

 

Table 2: QC for each New Lot Prior to Use 

Reagents and Standards 

Bacterial Cultures Reagents –substrates/enzyme Buffers – HEPES 

QC for media 

Reference strain -ATCC 

QC for batch QC for batch 
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pH Adjustment and NaCl Effect on the Assay 

 As seen in Figure 14, the sample aliquots from the same E. coli stock preparation 

yielded higher enzymatic activity at pH 9 and this is in agreement with previous studies 

reported by Caruso et al. 2002, addition of NaOH before the spectro-fluorometric 

measurement entails an increase in fluorescence (Caruso et al. 2002; Garcia‐Armisen et 

al. 2005).  Furthermore, pH 9 was suggested by Hoppe et al. 1993 as optimum pH value 

at which MU reaches its peak of fluorescence intensity (Hoppe 1993). Also, samples 

which contained 0.05% NaCl exhibited higher fluorescent measurements (Figure 14). 

 

 

Figure 14: Different pH and NaCl Effect on the Assay 

Note: Spiked water samples contained 1000 CFU/mL E. coli and 100 µL of 0.5 µM IPTG. 

 

In this study, statistical analysis was performed to compare effect of different 

reagents concentrations and assay conditions on GUD activities.  For each variable, the 

average of GUD activity [with lower and upper 95% Confidence Intervals (CI)] is 
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presented in Table 3.  As far as the impact of incubation temperature, GUD activity 

increased remarkably over time by incubation of the samples at 37oC, with 116 and 225 

average relative fluorescence units (RFU) for 24°C and 37°C, respectively.  Similar 

impact was recoded for dissolution agents, with 131 and 208 averages RFU for DMSO 

and ethanol, respectively.  Other variables that impacted fluorescence intensity were pH 

(100 and 130 RFU for pH 8 and 9, respectively) and PBS strength (131 and 208 RFU for 

0.5 X and 0.1 X, respectively).  Additionally, MUG from different sources (EMD and 

Bioworld and Sigma) also showed variable level of fluorescent activity when tested at the 

same concentrations.  The obtained data for all the different assay conditions provided the 

desired linearity (R2 = 0.90 or higher) otherwise the assays were repeated.  According to 

this analysis, as part of establishing the procedural QA/QC, for every assay, the baseline 

assay conditions were MUG purchased from Bioworld dissolved in Ethanol and samples  

incubated at 37°C prior to the assay.  All the samples were diluted in 0.1 X PBS and the 

reaction pH was adjusted at 9. 
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Table 3: Effect of Different Experimental Conditions on Fluorescence Intensity  

Parameter Study  Lower CI Average Upper CI 

Incubation  

37°C 166 225 283 

~24° (Room 

Temperature) 
83 116 150 

MUG Suppliers 

Sigma 102 217 158 

EMD 82 118 153 

Bio World 140 175 210 

MUG Dissolving 

Agents 

Ethanol  152 208 263 

DMSO 98 131 164 

PBS Strength 
0.5 X  98 131 164 

0.1 X 152 208 263 

pH Adjustment 
8 79 100 122 

9 102 130 158 

Note: The results have been obtained based on three replicates of each sample from three 

independent experiments; the units are RFU (arbitrary units) samples contained 100 CFU/mL E. 

coli. 

 

Other Parameters Evaluation 

GUD activities by three different E. coli cultures, ATCC 25922, 358218 and 

1175, were validated using collilert-18 kit.  The findings were in the agreement with the 

previous research (Maheux et al. 2008) and proved that E. coli 25922 produces the 

highest GUD activities (Figure 15).  Furthermore, different units of turbidity and TSB 

added to the samples which resulted in decrease of GUD expression as turbidity 

increased (data not shown).  On the other hand, the impact of E. coli stored in PBS or tap 

water at 4°C with subsequent dilutions in PBS or tap water under the same laboratory 

conditions were examined.  As seen in Figure 16, storing E. coli in PBS with dilutions in 

water resulted in higher fluorescence measurements.  Spiked water samples contained 

100 CFU/mL E. coli (Figures 15 and 16). 
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Figure 15: Time Series of Hydrolysis of MUG by Different Strains of E. coli  

 

 

Figure 16: Effect of Storage Condition of E. coli on GUD activities 

Note: Samples diluted in 0.1 X PBS and spiked tap water samples contained 0.05% NaCl.  
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4.5 Conclusions 

A set of QA/QC requirements have been established for the routine monitoring of 

drinking water samples using biosensor BDS1000.  The key components of QA/QC for 

this project examined included: reference instrument, methods comparison, MUG 

purchased from different suppliers, the effect of NaCl, temperature, pH and IPTG.  This 

method was compared with accepted biochemical and reference microbiological 

procedures.  Figure 17 indicates the summary of QA/QC for the biosensor procedure. 

 

 

Figure 17: QC/QA for Biosensor Procedure 

 

In addition, the specific substrate molecule used in the design of this biosensor 

can be utilized as a platform to monitor bacterial quality in water samples.  The 

procedural QA/QC of the biosensor will ensure the quality data by both industry and 

regulatory authorities by using biosensor for near real-time monitoring of E. coli in 

drinking water samples. 
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Based on the lessons learned from these experiments, improvements for the 

procedural QA/QC can be made to enhance accuracy and reliability of the new method 

and to achieve acceptable precision to detect indicator bacteria in drinking water.  Some 

other factors that should be incorporated into future experimental plans include the 

kinetic studies to identify binding preferences of GUD to better optimize the reaction.  

Additionally, it is essential to evaluate the performance of the biosensor with more 

reference instruments and improve the procedural steps for the sample processing to 

increase the sensitivity of the method and reproducibility of the results. 
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APPENDIX A 

REFERENCE INSTRUMENTS  
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Figure A1: Aqualoq benchtop fluorometer 

 

Figure A2: Synergy H1 Hybrid Multi-Mode Microplate Reader 
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APPENDIX B 

CALIBRATION CURVES 
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A calibration curve was generated for 0.08 mM MUG for different concentrations 

of E. coli ranged between 10 to 108 CFU per mL (Figure B1).  Synergy H1 Hybrid Multi-

Mode Microplate Reader was employed for creating MUG calibration curves.  The effect 

of incubation of 96- plates and also the extraction buffer have been assessed.  The 

procedure for creating the calibration curve was followed according to Table 1.  As seen 

in the Figures B2 and B3, the incubation of the samples increased the fluorescence 

generation and the effect of extraction buffer was not significant. 

 

Figure B1: Correlation between the Concentration of E. coli and GUD Production 
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Figure B2: MUG Calibration Curve with Incubation at 37°C 

 

 

Figure B3: MUG Calibration Curve without Incubation at 37°C 
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