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ABSTRACT

Browsing Twitter users, or browsers, often [5] find it increasingly cumbersome to at-

tach meaning to tweets that are displayed on their timeline as they follow more and more

users or pages. The tweets being browsed are created by Twitter users called originators,

and are of some significance to the browser who has chosen to subscribe to the tweets

from the originator by following the originator. Although, hashtags are used to tag tweets

in an effort to attach context to the tweets, many tweets do not have a hashtag. Such

tweets are called orphan tweets and they adversely affect the experience of a browser.

A hashtag [6] is a type of label or meta-data tag used in social networks and micro-

blogging services which makes it easier for users to find messages with a specific theme

or content. The context of a tweet can be defined as a set of one or more hashtags. Users

often do not use hashtags to tag their tweets. This leads to the problem of missing context

for tweets. To address the problem of missing hashtags, a statistical method was proposed

[21] which predicts most likely hashtags based on the social circle of an originator.

In this thesis, we propose to improve on the existing context recovery system by se-

lectively limiting the candidate set of hashtags to be derived from the intimate circle of

the originator rather than from every user in the social network of the originator. This

helps in reducing the computation, increasing speed of prediction, scaling the system to

originators with large social networks while still preserving most of the accuracy of the

predictions. We also propose to not only derive the candidate hashtags from the social

network of the originator but also derive the candidate hashtags based on the content of

the tweet. We further propose to learn personalized statistical models according to the

adoption patterns of different originators. This helps in not only identifying the person-

alized candidate set of hashtags based on the social circle and content of the tweets but

also in customizing the hashtag adoption pattern to the originator of the tweet.
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Chapter 1

INTRODUCTION

1.1 Motivation

Twitter allows registered users to share and read short text messages. Twitter users

started tagging their tweets with hashtags to bring order to the abounding tweet messages

and thus organize tweets. The # symbol, sometimes called a hash character, is used to

mark keywords or topics in a tweet called a hashtag. Hashtags were created by Twitter

users as a way to categorize messages [18]. It has been pointed out that the users engage

twice as much whenever a tweet is tagged with a hashtag [12].

Twitter has 302 million monthly active users and over 500 million tweets sent per

day [20]. The number of tweets that have hashtags is low. In our dataset, the percentage

of tweets that have hashtags is less than 24%. Therefore, Twitter browsers often find it

difficult to understand the topic of a tweet without any hashtags that appear on their

time-line. Such tweets without hashtags are defined as orphan tweets.

In the recent past, Twitter launched a new feature to introduce random tweets into

browsers’ tweet feed based on an external algorithm [14] making the timeline of the

browser more cluttered. This has made it more difficult for the Twitter users to derive

meaning out of their time-line [3].

1.2 Problem Statement

Many users find it difficult to attach meaning to their tweet feed appearing on their

time-line. Figure 1.1 [21] contrasts between orphan and non-orphan tweets. It is difficult

to find the context for every orphan tweet that can appear on a browser’s timeline. If a

1



browser has to react to a tweet, the browser needs to find the context of the tweet. Finding

the context becomes difficult as the average length of a single post is about 14 words or 78

characters [9]. The number of tweets per day, the diversity of the topics of discussion,

the growing social network of the browser and the originator make it even more difficult

to decipher the context of a tweet.

The problem of recovering context of a tweet is different than the problem of recom-

mending hashtags. Here, the time taken to recover hashtags given a tweet is not as crucial.

However, the accuracy of recommendations is much more important.

Figure 1.1: Example of Orphan and Non-orphan Tweets

2



1.3 Proposed Approach

Creating a tweet with a set of hashtags that attach context to it can be done in three

ways.

• Originators can adopt a hashtag from their social circle.

• Originators can create tweets related to a set of one or more hashtags that may not

be popular in their social circle but popular outside their respective social circles.

• Originator can create a tweet and attach new hashtags to it.

A Twitter originator can use any combination of the above model to create a tweet

with a context. The existing system called TweetSense proposed by Manikandan Vi-

jayakumar [21], accommodates the first way of tagging tweets. We are proposing to ex-

tend the existing system to incorporate the second way of tagging tweets with hashtags.

To further aid this model, we have added few more features to improve predictions for the

second way of attaching hashtag to tweets. Addressing the third way of tagging tweets is

out of the scope of this thesis.

TweetSense system helps in recovering the context of a tweet by finding a missing

hashtag for a tweet. TweetSense captures the most relevant data from a given user’s social

graph in order to recover hashtag(s) for a given tweet. The system however, cannot be used

to recover hashtags for originators with large social circles comprising of more than 300

users as the time taken to process increases greatly with the size of the social circle making

the system unusable for originators with larger social circles. We propose to remove this

limitation by carefully filtering users from the social circle which also helps in reducing

the computation time.

We further propose individual statistical models to learn pattern adoption by different

users rather than a single model for all Twitter users. We verify the effectiveness of the

3



proposed system by evaluating the proposed system internally as well as externally against

TweetSense.

1.4 Organization of Thesis

In the next chapter, we present the related work. In chapter 3, we present the re-

construction of the state-of-the-art system called TweetSense, and discuss the limitations

of the system. In chapter 4, we present the details of the improved system. Chapter 5 and

6 explain the experimental setup and evaluation of the system, followed by the conclusion

and scope for future work in chapter 7.
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Chapter 2

RELATED WORK

A problem that is related to the context recovery problem is that of recommending

a hashtag for a tweet that the originator is about to post. There has been some previous

work on the hashtag recommendation problem. Eva et al. [22] present a recommender

system that aims at creating a more homogeneous set of hashtags by considering simi-

larity of tweet text. This candidate recommendation list is later refined using recently

used hashtags, popularity of hashtags within the recommendation list, and popularity of

a hashtag within the underlying data set. Jieying She et al. [13] propose a Topic MOdel-

based Hashtag recommendation (TOMOHA) solution. The model learns whether the

topic of a tweet is related to a topic which is local to the user or to a global background

topic of the corpus. The trained model is used to recommend the most probable hash-

tags for a tweet. Wei Fang et al. [8] propose a Personalized Hashtag Recommendation

system which suggests both content-relevant and user-relevant hashtags when users are

composing tweets. The hashtag-relevant features are also used to create hybrid versions

of the two systems.

In the hashtag recovery problem, the time taken to predict a hashtag is not as critical as

compared to a recommender system. The accuracy of prediction is more important in the

problem of context recovery as we are aiding in finding the topic of the tweet rather than

suggesting possible topics for the tweet being composed. In this case, the temporal infor-

mation corresponding to the orphan tweet and its creator becomes very important.The

problem of recovering a hashtag for tweets on a user’s timeline has so far not been ad-

dressed.

5



In contrast to other existing systems, the proposed system and its predecessor Tweet-

Sense, learn the relationship between tweets and their originators that share a hashtag as

against the relationship between a tweet and the corresponding hashtag and/or its orig-

inators. This allows us to reuse the same statistical model across various tweets as the

model is independent of the candidate hashtags.

6



Chapter 3

TWEETSENSE - BACKGROUND

Given a query tweet Qx , without a context created by an originator Oy appearing on

the time-line of a browsing user on Twitter, TweetSense tracks a set of candidate tweets

(containing hashtags) - 〈C Txi ,C Hx j 〉 extracted from the social circle of the originator

Oy . If U is the creator of 〈C Txi ,C Hx j 〉, we want to compute P (C Hx j |Qx ,C Txi ,Oy , U ),

which is the probability that hashtag C Hx j of tweet C Txi from the candidate set C Tx is

actually the context of Qx . We estimate the probability discriminatively, using a Logistic

Regression model. The features for prediction are derived from the tweet Qx and C Txi ,

users Oy and U as shown in the Figure 3.1. TweetSense uses the following set of tweet-

content related features and user related features:

3.1 Tweet-Content Related Features

Similarity Score: Cosine similarity between the text content of the tweet Qx and the

tweets contained in the set of candidate tweets C Tx is used as a measure to find hashtags

that share similar tweet text.

Recency Score: Hashtags that are temporally close to the tweet Qx get a higher rank-

ing as it is more likely that a user would talk about recent affairs. The exponential de-

cay function is used to compute the recency score of a hashtag: e−
C R(Qx )−C R(C Txi )

t , where

t = 60× 103 [21], to compute the recency score.

Trend Score: The trend score corresponds to the popularity of hashtags within the

candidate hashtag set derived based on the originator’s social circle.

7



Figure 3.1: Flow Diagram for TweetSense

3.2 User Related Features

Attention Score: Attention from the user Oy to the user U is defined as the set of

all tweets which has @mentions and replies [19] from Oy to U . Attention score between

two users is computed as the weighted average of Attention from Oy to the user U and

Attention from U to the user Oy .

Favorite Score: is the Jaccard’s similarity [11] on the set of all favorite tweets of users

Oy and U .

8



Mutual Friends Score: is computed as the Jaccard’s coefficient on the set of all fol-

lowing/friends [16] of users Oy and U .

Mutual Followers Score: is computed as the Jaccard’s coefficient on the set of all

followers [16] of users Oy and U .

Common Hashtags Score: is computed as the Jaccard’s coefficient on the set of all

previously used hashtags of users Oy and U .

Reciprocal Score: The users who follow each other will receive a fixed score of 1.0,

and 0.5 other wise.

3.3 Statistical Model

Training dataset: As shown in Figure 3.1, the training data set is constructed by con-

sidering many training tweets, Q, that belong to different users Oy . The corresponding

set of candidate tweet and hashtag pairs 〈C Tx ,C Hx〉 is identified. Here, the candidate

set of tweets are the tweets from the timeline of the user Oy who posted the tweet Qx

containing the hashtag C Hx . For each pair - 〈C Txi ,C Hx j 〉 created by user U in the can-

didate tweet set, the feature scores are computed with respect to the Qx , and user Oy . The

training dataset is a feature matrix containing the feature vectors of all 〈C Txi ,C Hx j 〉 pair

corresponding to each training tweet Qx . The class label for a feature vector is 1 if the

hashtag C Hx j in the candidate set of tweets is equal to the hashtag in Qx , the tweet under

consideration, and 0 otherwise.

Classifier Learning: A Logistic regression to learn a statistical model from the train-

ing dataset to predict the probabilities of the top K most promising hashtags for a given

test tweet. Logistic regression assumes that all data points share the same parameter vector

with the test tweet.

Using the Classifier: When the test dataset is passed to the logistic regression model,

the model predicts the maximum likelihood probability for each entry of candidate hash-

9



All Features Exp1 Exp2 Exp3 Exp4

Similarity Score 0.0942 0.1123 0.1134 N/A

Recency Score 0.0022 0.0024 0.0026 N/A

Social Trend Score 0.0017 0.0017 0.0016 N/A

Attention Score 0 0 0 N/A

Favorite Score 0.2837 0.24 0.2112 N/A

Mutual Friends Score 13538.65 N/A N/A 0.2081

Mutual Followers Score 0.0923 3.115 N/A N/A

Common Hashtag Score 0 0 0 N/A

Reciprocal Score 0.7144 0.7717 N/A N/A

Table 3.1: Estimation of Odds Ratio by Feature Selection

tags C Hx j in tweet hashtag pairs 〈C Txi ,C Hx j 〉 corresponding to the tweet Qx . The can-

didate hashtags with predicated class label as 1 are then ranked using the probability of

the prediction.

3.4 Results of TweetSense

TweetSense was able to recommend correct hashtags for 59% of the tweets. Tweet-

Sense also indicates that the “Mutual Friends” feature is the most important feature amongst

all the features considered. This means that the predictions depend on the user in the so-

cial network to whom the candidate hashtag corresponds to.

3.5 Limitations of TweetSense

Content Based Candidate Set: Users on Twitter not only adopt the hashtags from

their social circle but also adopt it from outside their social circle due to external influences

or even create a new hashtag as described in the generative model. TweetSense addresses

only the first aspect and derives the candidate hashtags based on the content of the tweet.
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Odds ratio of Features: TweetSense has evaluated the relative importance of its

features by using a odds ratio as shown in Table 5.1. TweetSense also claims that content

of the tweet is not at all important according to Exp3 where a model is built without

the two most important social features. Since all the candidate set of tweets are derived

from the social network of the originator, and there is only one content based feature, the

results are justified but may be biased towards user related features.

Note: A value of N/A in Table 5.1 shows that the feature was not considered while

building the model

Scaling to Originators with Large Social Circle: TweetSense can only address users

who have a small social circle of friends. This is a constraint imposed by TweetSense on

the kind of originators for which it can predict hashtags, that is, the social circle or a

originator should not be greater than 300 users.

Personalizing Hashtag Adoption Patterns: TweetSense learns the adoption pattern

based on a randomly picked set of 18 users called the training set of users. The training

instances from all these users may not be representative of all users on Twitter or their

hashtag adoption patterns.

Recommending More Than One Hashtag: TweetSense outputs a list of hashtags as

the most suitable context for a tweet. It does not predict multiple hashtags for the same

tweet.

This thesis attempts to address the above limitations of TweetSense and to improve

the efficiency of the context recovery system.
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Chapter 4

IMPROVEMENTS TO TWEETSENSE

A Twitter user can be influenced by multiple sources to post a tweet. The assumption

made in TweetSense is that the originator is mostly influenced by his social circle on Twit-

ter, and rarely by any external sources [21]. However, in this thesis, the effect of external

influence is approximated to the influence caused by the Twitter users who are not in the

originator’s social circle. To account for this external influence, we propose to use the

content of the tweet to derive a set of tweets from the Twitter corpus.

We have described the generative model for creating a tweet with hashtag(s) in sec-

tion 1 subsection 1.3 . The source of influence could be the social circle, therefore we

gather candidate hashtags from the social circle of the originator based on the strength of

ties with users in the social circle. We derive candidate set of hashtags from the tweets

collection (which in our case is approximately 8 million tweets) to incorporate hashtag

recommendations based on the originator’s new interests which is not acquired from the

social circle on Twitter. We do not address the issue of creating new hashtags as this is out

of the scope of this thesis.

4.1 Scaling the System for Users with Large Social Circles

According to the table 5.1, TweetSense demonstrates that “mutual friend rank” is the

most important feature in predicting hashtags based on the social circle of the user. This

indicates that the originator shares interests with people in her network and tends to adopt

hashtags from users in the network. We have further exploited the fact that Twitter users

have many declared set of friends whilst their actual set of friends is a much smaller num-

ber [10]. We use “mutual friend” score to rank the users in the social network of the

12



Figure 4.1: Improved TweetSense - Candidate Set Derived Based on the Content and
the Social Circle of the Originator

originator and limit the collection of candidate hashtags from users that actually matter,

that is, to users who share more common friends with the originator. By experimenta-

tion, we have found that limiting this number to 50 preserves the accuracy of hashtag

prediction for most users (results are presented in 6.1). The other feature identified by

TweetSense to be of utmost importance in predicting hashtags is the “mutual follower"

score. We also rank users in the social network of the originator according to the “mu-

tual follower” score and extract tweets from top 20 users. TweetSense collects up-to 1500

tweets per user U in the social circle of the originator as the candidate set of hashtags

from that user U . In the new system, we are limiting this number to 100 tweets per user

U . These 100 tweets are the most recent tweets corresponding to the user U which were

created before the tweet Qx . This helps in choosing the most influential temporal tweets.

Limiting the number of candidate set of hashtags and limiting the users from whom
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All Features Odds Ratio

Similarity Score 0.79

Recency Score 0.0133

Social Trend Score 0.0145

Attention Score 0

Favorite Score 1.7231

Mutual Friends Score 3.5792

Mutual Followers Score 0.0003

Common Hashtag Score 0

Reciprocal Score 20.5079

LDA based similarity 1

Table 4.1: Odds Ratio for LDA

to derive the candidate set from, not only allows us to scale the system to originators

with larger social circles, but also helps in improving the time efficiency by reducing the

computational effort of deriving candidate tweets and extracting the feature scores from

them.

4.2 Improving Tweet-Content Related Feature Set

TweetSense uses cosine similarity as the tweet-content related feature that deals with

the content (excluding the hashtag related features) of a tweet. To study the effectiveness

of this feature, an experiment was designed to add an additional feature which is the dis-

tance between the tweet Qx and each of the candidate tweets in the reduced dimension

space. LDA is used to represent tweets in the reduced dimensions. The odds ratio of the

system with an additional feature is presented in the table 4.1. Although, there was a very

minor improvement in the similarity based on the reduced space of terms, this was not a

sufficiently large gain.
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An originator of a tweet can also be influenced by external sources and post tweets

based on these influences. To address this aspect of the generative model, candidate hash-

tags are derived from the corpus of tweets based solely on the content of the tweet. The

crawled tweets are indexed using elasticsearch [15]. The “search” API [2] is used to fetch

tweets based on the content of the tweet.

TweetSense uses cosine similarity scores as a feature to measure similarity between

two tweets. We propose to use three more features to strengthen predictions based on the

content of the tweet. These features are defined only for the candidate hashtags derived

based on the content and are defined as follows:

Similarity with bag of words corresponding to a hashtag: Tweets are very short

text documents with very few words. Therefore, the cosine distance between two tweets

may not be the best measure to rank candidate hashtags. We define a new measure as

follows.

The bag of words corresponding to a hashtag is defined as the collection of all the

words that have occurred with the hashtag in our Twitter dataset. All the stop words are

eliminated and only the root of a word is preserved to get better results.

This similarity measure is based on the content of the tweet and the bag of words

describing a candidate hashtag. BM25 [1] is used to find the distance between the tweet

Qx and the bag of words corresponding to the candidate hashtag 〈C Hx j 〉.

Distance from the cluster of hashtags: Bag of words corresponding to hashtags

are clustered using BM25 [1]. These clusters are used to compute the distance between a

tweet and the corresponding cluster to which the candidate hashtag of the candidate tweet

belongs. This measure is called the hashtag cluster distance.

Hashtag popularity: This measures the popularity of hashtags within the candidate

set of hashtags derived based on the content of the tweet. The “trend” score used by

TweetSense differs from this feature as the popularity is assigned only within the candidate

15



hashtag set derived from the content of the query tweet, Qx and the candidate set based

on the social circle is not used. This feature captures the most popular candidate hashtags

based on just the content.

For the purposes of efficiency, the candidate tweets are first derived from the social

circle and this set is mutually exclusive from the set of candidate hashtags derived based

on the content of the tweet.

Figure 4.1 depicts the above scheme of deriving candidate set of hashtags to build a

model and also depicts the testing process which is similar to that of TweetSense.

4.3 Personalization of Hashtag Adoption Pattern

The adoption pattern of hashtags varies from user to user. The pattern can also vary

with time. So far, we have handled personalizing hashtags according to the user, his social

circle, and content of the tweet. In this section, we propose to build personalized models

based on the originator’s own history of tweets and hashtag adoption pattern rather than

employing a single model for all users as proposed by TweetSense. It eases the stress on

finding all kinds of training instances indicative of all kinds of adoption patterns that can

apply for Twitter users. Therefore, we propose to employ an individual model based

on the originator’s own set of tweets to predict hashtags for the originator’s set of test

tweets. The figure 4.2 depicts the proposed system for a single user. Here, the set of

tweets belonging to a originator is divided into a set of test tweets and a set of training

tweets. The logistic model is built using this set of training tweets. The model is tested

with the set of test tweets of the originator.
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Figure 4.2: Personalized Classifier for a Single User
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Chapter 5

EXPERIMENTAL SETUP

5.1 Dataset Description

The proposed approach called E-TweetSense and TweetSense are tested with the same

dataset. The dataset contains up to 1,500 user timeline tweets per user. The API limits the

number of friends and followers for a user that can be crawled to 5000 users. The favorite

tweets are limited to the recent 200 tweets per user.

The dataset contains following 7,945,253 million tweets. Further details about the

dataset can be found in Table5.1.

Characteristics Value Percentage

Total number of originators 63 N/A

Total Tweets Crawled 7,945,253 100%

Tweets with Hashtags 1,883,086 23.70%

Tweets without Hashtags 6,062,167 76.30%

Tweets with exactly one Hashtag 1,322,237 16.64%

Tweets with at least one Hashtag 560,849 7.06%

Total number of Favorite Tweets 716,738 9.02%

Total number of tweets with user @mentions 4,658,659 58.63%

Total number of tweets with Retweets 1,375,194 17.31%

Table 5.1: Characteristics About the Dataset Used for the Experiment

5.2 Evaluation Method

Evaluation for one model for all originators is described below:

18



• Divide the set of originators for training and testing.

• Build the statistical model corresponding to the set of tweets corresponding to the

training set of users.

• For each originator in the test set, pick the tweets with a hashtag and deliberately

remove the hashtag for evaluation.

• Run the system to get the recovered list of hashtags.

• Verify if the ground truth hashtag exists in the list.

Evaluation for personalized models for each originator is described below:

• Divide the set of tweets of originators into training and testing tweets

• For each originator, build a statistical model with the set of training tweets created

by her.

• For each test tweet of the originator, deliberately remove the hashtag for evaluation.

• Run the system to get the recovered list of hashtags.

• Verify if the ground truth hashtag exist in the list.
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Chapter 6

EVALUATION AND DISCUSSION

In this chapter, we present an internal and external evaluation of the proposed system.

Table 6.1 lists the different experiments conducted by limiting the social circle of the

originator.

6.1 Internal Evaluation

The system is tested internally using precision at N by varying N , and also by varying

the size of the social circle. One of the variations, “Limited_5020 Social Circle Only”,

limits the derivation of the candidate set to the social circle of the originator, and it does

not derive any tweets based on the tweet content. A precision score of 1 is assigned to

the prediction if the hashtag is predicted correctly at any rank position of N between and

including 1 and 20. The association between an exposure and an outcome is studied using

odds ratio computed on the learned statistical model.

Experiment Limited_1 Limited_3010 Limited_5020 Limited_5020 Baseline

Social Circle Only

Number of

Mutual friends

0 30 50 50 N/A

Number

of Mutual

followers

0 10 20 20 N/A

Social Circle

Size

1 41 71 71 all

Table 6.1: Description of the Constraints on the Social Circle
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6.1.1 Internal Evaluation Using Precision at N

Figure 6.1: Ratio of Test Tweets Correctly Predicted with Varying Social Circle

The system is evaluated internally using precision at N= 5, 10, 15, and 20. Figure 6.1

shows the precision of the system as a ratio of the number of tweets for which a system has

correctly predicted the hashtags to the total number of test tweets. The table 6.1 shows

the description of each of the variations of the system in the figure 6.1.

Observations: Most of the correct predictions are achieved by considering tweets be-

longing to the originator. This is expected as the originator tends to reuse hashtags. The

social circle provides a scope to bring in the candidate tweets from the social circle of the

originator, which as shown in the graph 6.1, can help in improving the accuracy of predic-

tions compared to Limited_1 case. It also indicates that the first set of 40 (Limited_3010)

users contribute more to the gain in accuracy of predictions than the next set of 30 users

(Limited_5020).

It can also be observed that removing the content based candidate set and the addi-

tional content based features (section 4.2) can reduce the accuracy further.
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All Features Limited_1 Limited_3010 Limited_5020

Similarity Score 0.0287 0.0644 0.1072

Recency Score 0.007 0.0268 0.0284

Social Trend Score 0.0023 0.0033 0.0029

Attention Score 662.2701 1024905461.3103 113323.9782

Favorite Score 0.0977 0.0184 0.1673

Mutual Friends Score 0.0128 0.4902 0.4204

Mutual Followers Score 0.0025 0.0002 0.0001

Common Hashtag Score 0 0 0

Reciprocal Score 0.1803 0.5569 0.9341

Hashtag Distance 2.7785 9.2444 1.1451

Hashtag Cluster Distance 0.2848 0.0582 0.7017

Hashtag Popularity 3.9263 5.1198 7.2272

Table 6.2: Estimation of Odds Ratio by Feature Selection

6.1.2 Feature Importance Using Odds Ratio

The Table 6.2 shows the most important features in predicting the hashtags according

to the learned model. The table shows the important features by varying the social circle

as well.

Observations: According to TweetSense, “Mutual Friends” score followed by “Mu-

tual Followers” score are the two most important features in predicting the correct hash-

tags. The new system takes advantage of this fact to filter out the tweets from users that

do not necessarily impact the hashtag adoption pattern of the originator. The new sys-

tem learns from the other features like the “Attention” score followed by the “Hashtag

Distance” or “Hashtag Popularity” (with the tweets derived based on the content of the

tweet). It can be noted that the features “Hashtag Distance” or “Hashtag Popularity” are
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Experiment 1 2 3 4 5

Baseline 0.1193 0.195 0.2359 0.2754 0.2982

Limited_5020 0.2178 0.2627 0.2868 0.3049 0.3156

Table 6.3: Precision at N = 1,2,3,4,5

better at capturing tweet-related signals than the “Similarity” feature which was being used

by TweetSense.

6.2 External Evaluation

The system is evaluated by comparing the system with the baseline which is the Tweet-

Sense system [21]. The accuracy and the ranking quality of the system is compared using

precision at N . We also provide external evaluation results with respect to the time taken

for prediction by comparing the number of candidate tweet-hashtag pairs and the actual

time taken to extract features from the candidate hashtags. We also compare the impor-

tance placed by the learned statistical models on the features for predictions using odds

ratio as a measure.

6.2.1 Precision @ N as Compared with the Baseline

Observations:

The table 6.3 shows that E-TweetSense performs much better than TweetSense in

the early predictions. This indicates that the system effectively removes noisy candidate

tweets while still preserving the important candidate tweet-hashtag pairs.

Figure 6.2 is plotted by altering the definition of “Precision” score as the ratio or

tweets that are predicted correctly to the ratio of tweets that have a candidate hashtag

that matches the ground truth. The graph confirms that limiting the social circle is not

adversely affecting the accuracy of the system. However, limiting the social circle does

reduce the number of tweets for which the candidate set has a matching ground truth.
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Figure 6.2: Precision E-TweetSense Versus TweetSense

Figure 6.2 shows the precision curve with respect to all test tweets. Total number of

test tweets considered is 1492 tweets which corresponds to 29 different users.

6.2.2 Results for Feature Scores Comparison Using Odds Ratio

Here, we present the most important feature in predicting hashtags according to the

TweetSense system and the proposed system. TweetSense placed the most importance on

the “mutual friends” of the originator. The new system places most of the importance

on the “attention” followed by the “hashtag distance” or “hashtag popularity” features

according to the odds ratio in table 6.2

6.2.3 Size of the Candidate Set

The figure 6.3 shows the average, minimum, and maximum number of candidate

tweet-hashtag pairs that are considered per tweet Qx .

Observations: There is a trade-off between the accuracy of predictions and the time

taken to extract the features. TweetSense can take a very long time to process the candidate
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Figure 6.3: Number of Test Tweets Correctly Predicted with Varying Social Circle

Experiment Limited_1 Limited_3010 Limited_5020 Baseline

Minimum 1090 1640 2231 1728

Maximum 3064 6374 9184 62349

Average 2323.79 4281.75 5654.44 21731.03

Standard deviation 411.00 1183.03 1841.37 15549.0216905914

Table 6.4: Description of the Constraints on the Social Circle

set of tweet-hashtag pairs depending on the size of the social circle. The improved system

reduces computational effort by selectively choosing users to acquire candidate tweets

from. Table ?? shows that by considering 70 users from the social circle, and 100 tweets

per user, the number of candidate tweets based on the social circle, on an average, gets

reduced by more than 3 times.

Note: The candidate set of tweet-hashtags pairs include the candidate set derived based

on the content of the tweet (up-to 2000 tweets) for Limited_1, Limited_3010, Limited_5020.
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6.2.4 Time Taken to Extract Features

The time taken to extract features from a candidate set per tweet Qx , has reduced by

98% on an average as shown in the table 6.6.

TweetSense has a constraint imposed on the originator that the originator can have ut-

most 300 friends. TweetSense considers up to 1500 tweets per friend. This can potentially

cause a scalability issue to extract features from a single tweet Qx . Twitter allows every

user to follow/befriend 2000 followers [17] by default. This is a potential problem in scal-

ing TweetSense to originators who have a social circle that includes more than 150 users

as the article [7] shows that average number of followers and following is approximately

350 for 82% of the users.

The proposed system limits the possible number of candidate tweets to 100 tweets per

user and utmost 71 users. Thus, there is an upper limit on the time taken to process a

single tweet. The feature extraction by TweetSense could take over 8 minutes for a user

with the social circle size between 250 and 300 users. As the social circle size increases, the

number of candidate tweets to be acquired by TweetSense increases linearly with a steep

slope. As the social circle size increases the number of candidate tweets to be acquired by

E-TweetSense increases linearly till the social circle size is below 71 users and then becomes

constant.

On average, it takes about 0.3 minutes to derive and to extract the features for candi-

date tweets based on the content of the tweet Qx . Most of the time is consumed in looking

up the elasticsearch index to retrieve tweets based on the content. The percentage reduc-

tion in computation time is about 91% on average and 88% in the worst case.
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Size of social circle Baseline Limited Social Circle Percentage Reduction

<100 2.0059 0.0535 97.33%

100-150 3.6115 0.0492 98.63%

150-200 3.2364 0.0462 98.57%

200-250 3.7256 0.0718 98.07%

250-300 8.5415 0.0998 98.83%

Average 4.2242 0.0641 98.48%

Maximum 8.5415 0.0998 98.83%

Table 6.5: Time Taken (in minutes) for Extracting Features per Test Tweet

Limited Social Circle

Baseline with Content Based Derivation Percentage Reduction

Average 4.2242 0.3641 91.38%

Maximum 8.5415 0.9998 88.29%

Table 6.6: Time Taken (in minutes)

6.2.5 Personalization of Hashtag Adoption Pattern

The data from Limited_5020 is used to verify this method. The sets of tweets corre-

sponding to a user is split into testing (25%) and training (75%) tweets. A Personalized

model is built using the training set of tweets for a user as shown in figure 4.2. The built

model is used for testing. The accuracy of prediction is measured using precision at N and

are tabulated in the table 6.7. It can be observed that the personalized models perform

better when compared with the performance of a single statistical model at lower values

of N . However, with this approach, there is an overhead of maintaining and updating

personalized models for every originator on Twitter.
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N 1 2 3 4 5

Personalized model 0.230 0.26 0.28 0.295 0.308

Single model 0.157 0.224 0.2731 0.303 0.317

Table 6.7: Precision
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Chapter 7

CONCLUSION

We have improved the time taken to construct the candidate hashtag set by carefully

picking users from the social circle of the originator. The accuracy of suggestions was

preserved for most users as compared to the baseline system. Further, the accuracy of

the system is improved for earlier predictions as the improved system eliminates noisy

candidates. To further personalize the hashtags for context recovery, we proposed to use

a custom classifier for a user.

There are many ways this work can be further extended. The individual model for

each user needs to be updated. The evidence for the effectiveness of personalization of

models needs to established. The frequency of updation of an individual model can be

learned for different users based on their activeness on Twitter can be explored. Address-

ing the third way of tagging according to the generative model can be explored.
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APPENDIX A

RECOVERING MORE THAN ONE HASHTAG
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TweetSense recommends many hashtags as a possible hashtag to a tweet. However, it
does not attempt to recommend more than one hashtag as the context of a tweet. For-
mally, given a tweet Qx and a set of hashtag(s) as the possible context to the tweet Qx ,
recovering more hashtags based on this tweet and the additional information which is the
recovered hashtag.

A system was developed to accept ε - set of recovered hashtag(s) (which was produced
by TweetSense) and the corresponding tweet Qx as input to the system to recover more
hashtags. The additional information in this case is the ε - set of recovered hashtag(s).

Pre-processing: To address the problem of recovering more than one hashtag(s), hash-
tag co-occurrence frequency was learned for each hashtag in our corpus. Most popular
words occur with co-occurring pairs of hashtags were also learned form the corpus.

To test the potential of this approach, a simplified version of a multiple-hashtag recovery
system was built to experiment the feasibility of recommending more than one hashtag
per tweet. For each hashtag in the set ε a set of 10 more hashtags were recovered as the
possible set of hashtags for the tweet Qx based on the co-occurrence frequency and the
co-occurring word frequency. The set of 10 hashtags were determined by using a simple
normalized ranking of the co-occurrence frequencies.

This method did not yield feasible results to further improve the multiple hashtag recov-
ery system. The following were identified to be the road blocks to solving this problem:

• The limit on the number of characters per tweet is 140 characters this limits the
number of words. As a result the tweets have fewer words.

• Hashtags are the important words in a tweet. When the ground truth hashtags
are removed from a tweet, the important words are removed from the tweet. And
the tweets is left with fewer unimportant words that may not be of much help in
determining context especially when multiple ground truth hashtags are removed
for the purposes of evaluation.

• The tagging of hashtags to a tweet is very sensitive to the originator.

The figure A.1 shows the example tweets that correspond to a few popular hashtags
on Twitter. The figure illustrates the above listed issues.
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Figure A.1: Tweets with Multiple Hashtags
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Figure A.2: Tweets with Multiple Hashtags (continued)
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APPENDIX B

TWEETSENSE WITH SUPPORT VECTOR MACHINES (SVM)
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All Features SVM Model Odds Ratio
Similarity Score 0.4144
Recency Score 3.3033
Social Trend Score 3.5399
Attention Score 4.9359
Favorite Score -0.9085
Mutual Friends Score -3.2752
Mutual Followers Score 3.3581
Common Hashtag Score 7.7232
Reciprocal Score 0.124

Table B.1: Estimation of Odds Ratio by Feature Selection

TweetSense used Logistic Regression to build a statistical model, we conducted an
experiment to compare the performance of TweetSense by using a different method. The
figure B.1 shows the flow chart of TweetSense by using Support Vector Machines as the
algorithm to build the statistical model. Table B.1 shows the odds ratio for the build
model

Figure B.1: TweetSense Using SVM

The prediction accuracy by using this model was lower when compared to the model
build using logistic regression. The accuracy of the models are compared using precision
at N = 5, 20 in the table B.2.

The number of input training samples is of the order 10 million instances. Therefore,
batch mode variation of the stochastic gradient decent API [4] was used to build the
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N 5 20
Logistic Regression 0.2982573727 0.3840482574
Support Vector Machines 0.1655495979 0.3016085791

Table B.2: Accuracy Comparison between Logistic Regression and SVM Models for
TweetSense

above SVM model. Given, the number of training instances and lower accuracy of the
batch mode SVM, Logistic Regression is used for experimentation in this thesis.
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