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ABSTRACT

In this thesis, a FORTRAN code is rewritten in C++ with an object oriented ap-

proach. There are several reasons for this purpose. The first reason is to establish

the basis of a GPU programming. To write programs that utilize GPU hardware,

CUDA or OpenCL is used which only support C and C++. FORTRAN has a feature

that lets its programs to call C/C++ functions. FORTRAN sends relevant data to

C/C++, which in turn sends that data to OpenCL. Although this approach works,

it makes the code messy and bulky and in the end more difficult to deal with. More-

over, there is a slight performance decrease from the additional data copy. This is

the motivation to have the code entirely written in C++ to make it more uniform,

efficient and clean. The second reason is the object oriented feature of the C++. The

“abstraction”, “inheritance” and “run-time polymorphism” features of C++ provide

some form of classes and objects, the ability to build new abstractions, and some

form of run-time binding, respectively. In recent years, some of popular codes has

been rewritten in C++ which were initially in FORTRAN. One of these softwares is

LAMMPS.

In this code the level set equation is solved by RLSG method to track the interface in

two phase flow. In gas/fluid flows, the surface tension is important and only exists at

the interface. Therefore, the location and some geometric features of interface need

to be evaluated which can be achieved by solving the level set equation.
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Chapter 1

INTRODUCTION

1.1 Motivation

In this thesis, a FORTRAN code is rewritten in C++ with object oriented ap-

proach. The purpose is to establish the basis of GPU programming. To write pro-

grams that utilize GPU hardware, CUDA or OpenCL are used which only support C

and C++. We can use a fortran feature that lets FORTRAN programs call C/C++

functions. FORTRAN sends relevant data to to C/C++, which in turn sends that

data to OpenCL. This works, but makes the code messy and bulky and more dif-

ficult to deal with. Moreover, there is in turn a slight performance decrease from

the additional data copy. Thus, that is the motivation to have the code entirely

rewritten in C++ to make it more uniform, efficient and clean. The second reason

is the object oriented feature of the C++. There are lots of definitions of ”object-

oriented programming”. According to Stroustrup (2013), a language or technique is

object-oriented if it supports:

1. Abstarction - Some form of classes and objects provides only essential informa-

tion for user and hide the details.

2. Inheritence - The ability to build new classes out of existing classes.

3. Run-time polymorphism - The ability to have several forms of a class.

In recent years, some popular codes has been rewritten in C++ which were initially

in FORTRAN. One of these softwares is LAMMPS.

By the inheritence feature of C++, other method of interface tracking such as Volume

1



Figure 1.1: Chopp(2012)

of Fluid could be implemented without needing to code from scratch. The data

structures that are used in code could be also changed without a need to change a

significant part of the code. In this code the level set equation (1.1) is solved to track

the interface.

1.2 Level Set Equation and Approaches to Solve It

Basically in this code we solve the initial value level set equation:

∂φ

∂t
+ (~v.∇)φ = 0 (1.1)

The level set method developed by Sethian and Osher is the analyzing of the move-

ment of an interface. Assume that there is a surface which seperates two areas. The

level set approach is to reperesent the surface as the zero level set of some higher

dimensional function φ. It is desirable to define the level set function as a signed

distance function. If Γ reperesents the surface in region Ω (figure 1.1) the signed

ditance level set function for the domain is:

φ(x) = sign(−π +

∫
Γ

arg(y(s)− x) )
y∈Γ

min‖x− y‖Chopp (2012) (1.2)

where y(s) is a parameter to define the interface with respect to an origin and x is

the position of the other points in the Ω .

2



The sign of φ at time t is defined as equation 1.6
φ(x, t) > 0 if x− y < 0

φ(x, t) = 0 if x− y = 0

φ(x, t) < 0 if x− y > 0

(1.3)

To initialize the level set function, the distance from interface is computed at first.

To do so, the y(s) is discretized where ‖y(sk+1 − y(sk))‖ < ∆x and ∆x is the mesh

size. Then the grid points near the y(sk) is marked and the distance is calculated.

The smallest value of ‖xi,j − y(sm)‖, (m = k − n, ..., k + n) is the distance between

the interface and grid point xi,j. To calculate the initial level set values of grid points

far from interface, the fast marching equation F‖∇φ‖ = 1 can be solved Sethian

(1999a). F is the velocity and can be chosen as 1 for this purpose. However, when

the parametric function of initial interface is known such as circle the distance can

be computed by the geometric equations. For instance, when the interface is circle

with an origin of x0 and y0, the level set value for grid point xi and yj outside of

the interface is
√

(xi − x0)2 + (yj − y0)2 − R and R is the radius of the circle. The

evolution of the level set equation in time will be discussed later.

There are a lot of applications for level set method. Our purpose is to track the inter-

face in multiphase flow. In liquid/gas flows, surface tension is important. Computa-

tionally, since the surface tension is only active on the interface, it poses singularity.

Moreover, as the material propeties change, discontinuity exists at the same location.

We will show the the level set values by G rather that φ. The interface location is

represented by a level set G where G(xf , t) = 0. We define G(xf , t) < 0 for outside

of the interface and G(xf , t) > 0 for inside the interface.

As mentioned above, it is preferable that, G(xf , t) be a signed distance function.

|G(xf , t)| = 1

3



For numerical accuracy, level set values must always be:

0 < c < |∇G| < C Penget al. (1999)

1.3 Algorithms to Solve The Level Set Equation

In some applications such as image processing, all the level set values are important

and we need to have the scalar values of G for entire domain. It is straightforward to

implement parallel algorithm in this cases (Sethian (1999b)). However, in multiphase

flow application we are only interested in zero level set scalar which reperesents the

phase interface. In the next sections, some algorithms will be discussed to solve the

level set equations only in a particular distance of the interface rather than the entire

domain.

1.3.1 Narrow Band Approach(Chopp (1993))

When one is interested in a specific level set value such as the zero level set (in

our case: interface), there are several disadvantages to solve the equation for entire

dimain. If the equation is solved for entire grid, each grid point will contain the value

of the level set function at that point and all counters will exist. Whereas, only one

of them is the zero level set which we are interested(Sethian (1999b)). Thus, if we

choose the grids only near the interface it will be more efficient(figure 1.2). There are

several reasons for that:

• Speed: The computation cost for a three dimensional grid over the entire domain

is O(N3) where N is the number of grid points in a side. However, if we work

only in a neighborhood of the zero level set the computation cost will be O(kN2).

• Calculating extension variables: The level set approach requires the velocity V .

In some cases, the velocity in the entire domain is not known and if the equation

4



Figure 1.2: Chopp(2012)

is solved for the whole grid, extrapolation will be needed to get the velocity for

that points. Extrapolation is difficult and has its errors. However, in narrow

band approach the extrapolation will only be for some specific points near the

interface.

• Time steps: If the equation is solved for entire domain, it needs a time step

that satisfies the CFL condition with respect to maximum velocity of the whole

domain. In narrow band approach, since only the grids near the interface is

studied, it is more possible(correct) to get a bigger stable time step(Sethian

(1999b)).

To implement the idea, all grid points are given two labels depending on their position.

The first label represents band name. If for grid point xi,j, |Gi,j| ≤ k∆x, it is called

narrow band point. If for grid point xi,j, k∆x < |Gi,j| ≤ k∆X, it is called barrier

band point.

The second label, represents that, whether all the neighbors of a grid point either in

5



Figure 1.3: Chopp(2012)

the narrow band or barrier band. If so, it is called interiror point, otherwise it is a

boundary point. It is necessary to calculate the derivatives.(Chopp (2012))

There are several ways to code this method. For comrarison we assume that each

grid point needs to store M variables on a N × N grid. There are 4kN grid points

that need to be updated. The normal level set method needs N2M variables and the

computation cost for that is O(N2). However according to D. Chopp, different data

structures can be impelemented for that such as:

1. If there is a two dimensional mesh, the sequential lists include N2M + 4kN

variables. This is greater than the normal level set. However the complexity is

O(N).

2. If there is a two dimensional mesh, but the mesh is a mesh of pointers. The

storage requirement for this is N2 + 4kNM . The cost is almost O(N).

3. If there is no uderlying mesh, instead, there are only pointers for each spatioal

6



Figure 1.4: The Linked List Forward

grid and they can identify their neighbors. The storage cost is 4kN(M + 8)

where 8 comes from extra pointers. Since the data is not storaged sequentially,

there is some performance loss in this case. The advantages of this method is

that, when the interface is advanced and the previous interior and barrier points

are deleted and new interior and barrier points are added, it is faster. This is

similar to linked list data structure(Chopp (2012)).

1.3.2 Linked List

In linked list data structure objects are arranged in linear order and the order is

determined by pointers. Figure 1.4) illustrates a linked list forward. Assume that each

item is a ”Node” class. This class has two variables, ”link” and ”data”. ”link” stores

the address of the next node and ”info” stroes the relavent information. Therefore,

the order of the nodes is determined by the address, called ”link”. Linked list supports

all the properties of search, insert and delete (Cormen et al. (2009)). The linked list

data structure is fast to remove and add an element. However, it is not appropriate

for random access. The following algorithms show how an element can be inserted

and deleted in linked list.

Assume that, we want to create a new node called ”newNode” with the value of ”val”

and insert it after node ”p”. The following algorithm shows how to do this.

Node ∗newNode = new Node ;

newNode−>i n f o = va l ;

newNode−>l i n k = p−>l i n k ;

7



p−>l i n k ;

The computational cost to insert an element in list is O(1). Now assume that we

want to remove an element from list which is located after node ”p”. The following

algorithm illustrates how to do this.

p−>l i n k = p−>l i nk−>l i n k ;

The computational cost to remove an element in worse case is O(N) where N is the

number of elements.

1.4 Refined Level Set Grid Method

In this section the RLSG method(Herrmann (2008)) is explained.

1.4.1 The Idea of The RLSG Method

In this code the refined level set grid method(RLSG) is implemented. The level

set equations are solved on a seperate equidistant Cartesian grid. Since the G grid is

different from flow solver grid, it can be independantly refined. Equation 1.1 and the

following two equations are solved all together:

n =
∇G
|∇G|

(1.4)

κ = ∇.n (1.5)

To implement this method, firstly the G grid is constructed by super grid cells. The

super grid cells that include a part of the interface or are within a specific distance

from the interface are called ”active”(figure 1.5) These active cells are stored in an

array. Each processor stores a copy of i, j, k value of the active super grids if the cell

is local for the processor and stores a negative number if the super grid is not local.

8



Figure 1.5: Herrmann(2008)

Then each active block is dicretized. The size of new cells are hG. These cells are

called local cells. Agian those cells that are part of the interface or within a specific

distance of the interface are called ”active” and stored in linked list data structure.

In the code each block stores a pointer to the next block such as following:

c l a s s b l o c k t {

pub l i c :

some v a r i a b l e s to s t o r e the geometry

and number o f c e l l s in each band ;

b l o c k t ∗next ;

}

This approach resembles the narrow band approach. It reduces the computational

cost from O(N3) to O(N2) where N is the number of cells in each direction. It also

decrease the memory usage.

In the the figure 1.6 the algorithm for the ”RLSG” method is showed.

9



Figure 1.6: Herrmann(2008)

Figure 1.7: Herrmann(2008)

1.4.2 Band Generation

As mentioned before, all the level set equations are solved in a specific band. As

the interface moves, the narrow band needs to be updated. It means that, in each

time step we need to clean some parts of the previous band and add some new cells

to our narrow band. The figures 1.7 and 1.8 illustrate the band generation algorithm.

In this method, all the cells that are part of the narrow band are marked as body

and shown by B . The current layer after B is skin and shown by S . The new band

layer that is going to be brought to the narrow band is called cloth, shown by C.

As we see in the figure 1.8, all the cells that are intercepted by the interface are marked

as S . These are the cells where Gi,j,kGi±1,j,k ≤ 0, Gi,j,kGi,j±1,k ≤ 0 or Gi,j,kGi,j,k±1 ≤ 0.

All unmarked cells in the neighborhood of the S marked as C. When the method is

impelemnted in parallel, since the cloth layer can grow across the supergrid boundary,

10



Figure 1.8: Herrmann(2008)

these ghost cells are copied to the neighbor super grid. If that super grid does not

exist, it is activated and appended to the active super grid cells. At the end, the

skin layers are changed to body layers and cloth layers are changed to skin layers. In

this method four different bands are constructed, T, N, W, X . T band is used for

transport, N band is the reinitialization band and W band is the WENO band. X

band is the flow solver band where the volume integration is implemented. In next

sections, the transport, re initialization and WENO scheme are discussed.

1.4.3 Level Set Transport

The level set equation is a Hamilton- Jacobi equation. Fifth order WENO(Jiang

and Peng (2000)) is used to advance the level set scalar in space. For time integeration

TVD-RK3(Shu (1988)) is used. The level set equation is only solved in transport

band(T). It is suggested that, V is replaced by

Vcut = c(G)V
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with the following condition(Peng et al. (1999)):

c(G) =


1 : α ≤ −3

2
27
α3 + 1

3
α2 : −3 < α ≤ 0

0 : α > 0

(1.6)

and

α =
|φ|
∆x
− nT

where nT is the nomber of cells in T band. Thus, the velocity will be zero at the

boundary of the transport and WENO band.

1.4.4 WENO Scheme

For the Hamilton-Jacobi equation(1.7)

Gt +H(x, t, G,DG) = 0, G0(x) = G(x, 0) (1.7)

The ENO (Essentially Non-Oscillatory) scheme is (Harten et al. (1987)):

G−x,i =


G−,0x,i |∆−∆+Gi−1| < |∆−∆+Gi| and |∆−∆−∆+Gi−1| < |∆+∆−∆+Gi−1|

G−,2x,i |∆−∆+Gi−1| > |∆−∆+Gi| and |∆−∆−∆+Gi| > |∆+∆−∆+Gi|

G−,1x,i otherwise

(1.8)

where: 
G−,0x,i = 1

3
∆+Gi−3

∆x
− 7

6
∆+Gi−2

∆x
+ 11

6
∆+Gi−1

∆x

G−,1x,i = −1
6

∆+Gi−2

∆x
+ 5

6
∆+Gi−1

∆x
+ 1

3
∆+Gi

∆x

G−,2x,i = 1
3

∆+Gi−1

∆x
+ 5

6
∆+Gi

∆x
− 1

6
∆+Gi+1

∆x

(1.9)
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and:

∆+φk = φk+1 − φk, ∆−φk = φk − φk−1 (1.10)

The WENO(Weighted Essentially Non-Oscillatory) scheme is a weighted averarage

of G−,n(n=0,1,2)Jiang and Peng (2000).

The WENO approximation of Gx,i on a left-biased stecile is:

φ−x,i =
1

12

(
∆+φi−2

∆x
+ 7

∆+φi−1

∆x
+ 7

∆+φi

∆x
− ∆+φi+1

∆x

)

−ΦWENO

(
∆−∆+φi−2

∆x
,
∆−∆+φi−1

∆x
,
∆−∆+φi

∆x
,
∆−∆+φi+1

∆x

) (1.11)

where:

ΦWENO(a, b, c, d) =
1

3
ω0(a− 2b+ c) +

1

6
(ω2 −

1

2
)(b− 2c+ d) (1.12)

and:

ω0 =
α0

α0 + α1 + α2

, ω2 =
α2

α0 + α1 + α2

(1.13)

and the α values are:

α0 =
1

(ε+ IS0)2
, α1 =

6

(ε+ IS1)2
, α2 =

3

(ε+ IS2)2
(1.14)

where:

IS0 = 13(a− b)2 + 3(a− 3b)2

IS1 = 13(b− c)2 + 3(b+ c)2

IS2 = 13(c− d)2 + 3(3c− d)2

(1.15)

ε is used to have a nonzero denominator.

1.4.5 TVD-RK3

To solve the Gt+aGx = 0 TVD(Total-Variation-Diminishing) schemes Shu (1988)

are used. To solve the equation 1.1, the WENO scheme is combined with 3 step

13



Runge-Kutta TVD time integration.

The m-step Runge-Kutta TVD time integration for timestep n+ 1 is:

step 0 : G
(0)
i = Gn

i

step 1 : G
(1)
i = G

(0)
i − α1,0

(
a∆t∂G

(0)

∂x

∣∣∣∣−
i

)
step 2 : G

(2)
i = G

(1)
i − α2,0

(
a∆t∂G

(0)

∂x

∣∣∣∣−
i

)
− α2, 1

(
a∆t∂G

(1)

∂x

∣∣∣∣−
i

)
step m : G(m) = Gm−1

i −
m−1∑
r=0

αm,r

(
a∆t∂G

(r)

∂x

∣∣∣∣−
i

)
(1.16)

where n is the nth time step. For 3 step Runge-Kutta:

α0,1 = 1, α2,0 = −3

4
, α2,1 =

1

4
, α3,0 = − 1

12
, α3,1 = − 1

12
, α3,2 =

2

3
(1.17)

1.4.6 Reinitialization

While the solution is advanced, an initially smooth solution starts to get unstable

and G loses its distance function behaviour. However, if the level set values are

reconstructed like initial condition, unstable solution can be prevented Chopp (2012).

The other reason is in evaluating the curvature. To calculate the curvature the corerct

G values are necessary not only for G0. For this purposes the reinitialization is used.

One of the following conditions can be implemented:

|∇G| = 1 (1.18)

or the PDE reinitialization (Sussman et al. (1994)):

∂G

∂t∗
+ S0(|∇G| − 1) = 0 (1.19)

S0 =
G√

G2 + |∇G|2h2
G

and hG : grid size (1.20)

In the RLSG the PDE reinitialization is used.

Although for the reasons mentioned above the reinitialization is necessary, it is not
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mass conservative. In other words, if the reinitialization is done frequently, due to

the error in reinitialization equation the G0 values will change and causes volume

and mass change. Thus, the reinitialization is not done in every time step and it is

restricted to be done only under the following conditions:

min(|∇G|) < 10−4, max(|∇G|) > 2 (1.21)

This condition is checked inside the N band and if it is satisfied the iteration for the

PDE reinitialization equation is stoped.

1.4.7 Curvature Calculation in RLSG

The mean curvature is conventially calculated by the following equation Sethian

(1999b):

κ = ∇. ∇G
|∇G|

=
(Gyy +Gzz)G

2
x + (Gxx +Gzz)G2

y + (Gxx +Gyy)G
2
z

G2
x +G2

y +G2
z

−2
GxGyGxy +GxGzGxz +GyGzGyz

G2
x +G2

y +G2
z

(1.22)

1.4.8 Parallel Implementation of RLSG, Domain Decomposition and Load

Balancing

For partitioning the domain, at the begining of the simulation all the super grid

cells are assigned to a processor. In the super grid look up table a negative value of the

processors rank that contain the super grid block is stored. If a band grows to a super

grid cell that was not active previously, a new processor is assigned to that super grid.

However, this can cause load imbalancing. When the load-imbalance trigger is active,

the processor with the most active super grid cells send its data to the processor with

smallest active super grid cells. This is how the domain is decomposed for parallel

purpose. The PARMETIS can be used for domain decomposotion. In next section

the PARMETIS is discussed briefly.
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1.4.9 PARMETIS

PARMETIS is a MPI-based library that implements several algorithm for par-

titioning the graphs. PARMETIS is appropriate for parallel numerical simulations

with large meshes. It decreases the time in communication by computing mesh de-

composition(Chevalier and Pellegrini (2008)).

In this code the ”ParMETIS V3 PartKway” function can be used for mesh decom-

position. This function is as following:

int ParMTIS V3 PartKway(idx t *vtxdist, idx t *xadj, idx t *adjncy, idx t *vwgt,

idx t *adjwgt, idx t *wgtflag, idx t *numflag, idx t *ncon, idx t *nparts, real t *tp-

wgts, real t *ubvec, idx t *options, idx t *edgecut, idx t *part, MPI Comm *comm)

Chevalier and Pellegrini (2008)

This function uses multilevel k-way partitioning algorithm to compute a k-way par-

titioning of graph on ”p” processors. The k-way partition devides the graph(mesh)

into k smaller parts (figure 1.9).

Parameters:

• vtxdist: The distribution of verrtices of graph among the processor

• xadj, adjncy: These arrays stores the adjancy of graph at each processor

• vwgt, adjwgt: The weight of the vertices

• wgtflag: A flag to check if the graph is weighted

• numflag: Indicates the numbering scheme. It is zero for C style

• ncon: Number of vertex that each vertex has

• nparts: Number of subdomains
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Figure 1.9: ”k-way” Partitioning Chevalier and Pellegrini (2008)

• tpwgts: An array of size ncon ∗ nparts

• ubvec: Used for imbalance tolerance

• options: Used to pass additional parameters

• edgecut: The number edges that are cut is written to this variable

• part: The partitioned vertices is written to this array

• comm: A pointer to MPI communicator

The ”real t” data type is for storing the double precision and ”idx t” is to store the

signed integer. In the finite difference and finite element the vertices is the nodes

of the cells and elements. The edges(2D) and faces(3D) are the connections among

these nodes.
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Chapter 2

THE C++ IMPLEMENTATION

2.1 Introduction

To write the code in C++, first all data in the FORTRAN modules are gathered

and classified in specific classes. Almost, 36 classes are used for different purposes in

this code. To use the members of classes inside other functions and classes, a unique

pointer is defined and allocated where ever a particular member or function of a class

is needed. In FORTRAN the data in the modules has static behavior. Thus, to have

same behavior, some of the members in some particular classes are defined as static

variables. Assume that the following code is a FORTRAN code in ”file m.f90”

module mod1

some v a r i a b l e s and types

.

.

.

c onta in s :

subrout ine S1 ( the argument l i s t )

subrout ine S2 ( the argument l i s t )

subrout ine S3 ( the argument l i s t )

subrout ine S4 ( the argument l i s t )

end module mod1

In C++ the equivalent file of ”file m.f90” is written as ”file.h” which containes:

c l a s s A1{
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pub l i c :

void S1 ( the argument l i s t ) ;

void S2 ( the argument l i s t ) ;

.

.

.

s t a t i c some v a r i a b l e s ;

p r i v a t e :

some v a r i a b l e s ;

} ;

c l a s s A2{

pub l i c :

void S3 ( the argument l i s t ) ;

void S4 ( the argument l i s t ) ;

.

.

.

s t a t i c some v a r i a b l e s ;

p r i v a t e :

some v a r i a b l e s ;

} ;

where the members in module ”mod1” with particular purposes are classified in ”class

A1” and ”class A2”. Now, consider the ”file1.h” is defined as following:

c l a s s A{

pub l i c :
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void fun1 ( the argument l i s t ) ;

s t a t i c some o b j e c t s or v a r i a b l e s ;

p r i v a t e :

some o b j e c t s or v a r i a b l e s ;

} ;

To use the ”calss A” and its members in ”class B” which is in an other file, the

following procedure is done:

void B : : func t i on2 ( the argument l i s t ){

std : : un ique ptr<A> upA(new A) ;

.

.

.

upA−>f unc t i on1 ( the argument l i s t ) ;

.

.

.

upA−>(some s t a t i c v a r i a b l e in c l a s s A o f f i l e 1 ) ;

}

For one dimensional arrays in C++ the ”array” class from standard library is used.

One dimensional arrays that are dynamically allocated in FORTRAN during run-time

are defined as ”vector” class in C++ from standard library. The vector is more effi-

cient than arrays for adding an element to the end of the list. Moreover, deallocation

is not required when ”vector” is used and it will be automatically deallocated in ap-

propriate place and time. However, for multi-dimensional arrays it is not reasonable

to use multi-dimensional vectors. To preserve the pushing efficiency of the ”vector”,
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compilers reserves some free spaces in memory. For instance, ”gcc” complier reserve

three spaces for this purpose. Assume that, there is an array of 500 × 500 × 500

of doubles which requires 1GB of memory. If a three dimensional ”vector” is used

for this array, since there are three spaces in the back of the each dimension of the

vector 1GB × 9 + 3 × 8 = 9GB amount of memory will be consumed. Therefore, it

is not efficient and practical to define multi-dimensional ”vector”. The other way to

have a ”vector” for multi-dimensional arrays is to use an algorithm which access to

the elements of multi-dimensional array through a one-dimensional vector. Consider

array ”arr” of dimension d1×d1×d3. If we desire to access the elements of this array

to do some operation on them three ”for loop” is needed such as following:

f o r ( auto i =0; i<d1l i ++){

f o r ( auto j =0; j<d2 ; j++){

f o r ( auto k=0; k<d3 ; k++){

ar r [ i ] [ j ] [ k ] = some operat i on here ;

}

}

}

To define a one-dimensional ”vector” to get access to all the elements of the arr the

following algorithm can be used:

vec<double>(d1∗d2∗d3 ) ;

f o r ( auto i =0; i<d1l i ++){

f o r ( auto j =0; j<d2 ; j++){

f o r ( auto k=0; k<d3 ; k++){

vec [ i + j ∗d1 + k∗d1∗d2 ] = some operat i on here ;

}
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}

}

Although it is more convenient to define all the multi-dimensional arrays as one-

dimensional ”vector” through this algorithm, it is not efficient. To test it, 500MB

of memory is used to define a 3-dimensional array and do some operation on each

of its elements. The speed is much faster than when a one-dimensional ”vector” is

defined for this goal using the above algorithm. Thus, for multi-dimensional arrays

in FORTRAN the C-type multi-dimensional arrays is used in C++.

One of the other problems with the FORTRAN code is the array bands. In FOR-

TRAN the lower band of arrays can be started from any number such as −7 or 11.

Hence, it is required to shift the lower band of this arrays in C++ code. Since it is

difficult to identify all the arrays with this behaviour it causes problem and bugs in

the C++ code. To solve this problem, a tempelate class in C++ could be defined

such as following.

template<c l a s s T1 , i n t st> c l a s s s h i f t {

pub l i c :

t1& operator [ ] ( i n t idx )

} ;

t1& s h i f t : : operator [ ] ( i n t idx ){

r e turn t1 [ idx−s t ] ;

}

This method only works for one-dimensional arrays and for multi-dimensional arrays

the overloading of ”[]” operator is complex. For instance, to implement a 3D array

access ”a[i][j][k]=sn” operator ”[]” has to return a reference to a 2D array which needs
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to have its own operator[] that returns a reference to a 1D array which has to have

operator[] that returns a reference to the element.

To run the test cases a directory is built and test cases is run in that directory. For

this purpose, the ”test.h” file is defined as following.

namespace l i t t e s t s {

c l a s s t e s t s {

v i r t u a l void s e t V e l o c i t y (){} ;

} ;

} ;

Then in ”test case.h” file a ”test” function is defined.

namespace l i t t e s t s {

void t e s t 0 1 ( ) ;

void t e s t 0 2 ( ) ;

void t e s t 0 3 ( ) ;

void t e s t 0 4 ( ) ;

s t a t i c void r u n t e s t ( const s t r i n g &s ) {

auto word s p l i t ( s ) ;

bool a l l = word[1]==” a l l ” ;

i n t myrank ;

MPI Comm rank(MPI COMM WORLD, &myrank ) ;

i f ( myrank==0){

i f ( a l l | | ” t e s t 0 1 ”) t e s t 0 1 ( ) ;

i f ( a l l | | ” t e s t 0 2 ”) t e s t 0 2 ( ) ;

i f ( a l l | | ” t e s t 0 3 ”) t e s t 0 3 ( ) ;

i f ( a l l | | ” t e s t 0 4 ”) t e s t 0 4 ( ) ;
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}

}

} ;

Then inside the other files the ”tese01()”, ”test02()”, etc. functions are defined and

for each test the ”setVelocity” function is different. If in input file ”test” is specified

the ”run test” function will be run and execute one of the test files.

2.1.1 Files and Classes

In this section some of the most important classes will be introduced in the code.

The first class that is used in all other classes is the ”global variable” class defined

in the ”datag” file. In this class the most common data and variables are collected.

This class contains members that are frequently used almost in all parts of the code.

The members such as the number of distinct G bands around G = G0, size of each

band, G values for outermost T band cell, the array that stores either the rank of

supergrid cell or the local block number, member to mark the active supergrid cells,

and some other members to store number of global blocks, number of local blockes,

size of supergrid global structure, size of local blocks, the size of narrow bands, grid

coordinates, cell faces, grid sizes, start and end x, y, z coordinates of supergrid cells

and minimum and maximum allowed curvature. It also contains variables that are

used for dumping the solution and some pointers to other classes. Moreover, several

functions are defined within the ”global variable” such as ”setBlockPointers”. In this

function some pointers are set for short hand access to block variables and assign a

value to the pointers defined in the class.

Within this file the other classes that are defined are, ”block t”, ”block p t”, ”Gn-

ode t”, ”Gnode short t” and ”shape t”. ”block t” class stands for local block struc-
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tures. It holds some members that store size of block in i, j and k direction, boundary

of ghost cell index shift, start and end global index of block, number of G nodes that

are transported, reinitialized, used in WENO stenciles and velocity/volume update(in

flow solver band). It also hold a variable called ”next” which points to the ”block t”,

necessary in the linked list data structure.

”block p t” class only includes a pointer to the ”block t” class.

Class ”Gnode t” holds some members that store level set scalar values, velocity vector

and i, j, k coordinates. The other class, ”Gnode short t” only contains level set scalar

values and i, j, k coordinates.

The last class in this file is ”shap t”. This class is used for initial interface shape

data. It has some members to store the number of real and integer data that are used

to define the shape of the initial interface.

The ”advection” file has a class called ”advection”. This class includes some func-

tions such as ”lit advection” which used for advection. Various methods are defined

in this function for advection. First order upwind, 5th order upwind centeral(UC-5),

7th order upwind centeral(UC-7), 9th order upwind centeral(UC-9), 11th order upwind

centeral(UC-11), WENO-3 and WENO-5 are defined. It also contains some private

members such as WENO order for advection and parameters used for TVD-RK3

method.

The next file is ”band”. This file containes classes relevant to narrow band gener-

ation, maintenance and regeneration. It has two classes. The first class in ”band”

which includes some functions to generate, regenerate, expand and delete the narrow

bands. It also contains some private members to store the number of skin cells, cloth

cells and total cells in band. The second class in this file is ”ghostcloth bl t”. This

class contains members relevant to ghost cells in super grids. It is used to gather

data in sending and recieving among the processors when some super grids need to

25



get active due to band growth.

The ”bl” file includes a class called ”bl”. In this class some functions relevant to

supergrid cells are defined. In the ”bl init” function we initialize block by initial level

set distribution. The ”bl clear all ghosts” is used to clear and free the block’s ghost

node storage. The ”bl remove from list” is used to deallocate a block from the block

list. The ”bl activate new” sets some general data for a newly created block that are

required to calculate initial G and determine if block is active.

The ”bound” file stands for boundary provides the ghost nodes update routines. It

inculdes several functions and variables. Some members are used as marker for what

type of boundary condition is used such as Neumann or Periodic. Some other variables

are used as number of cells to be sent and recieved through MPI functions. Generally

in ”* m init” functions in the code the static variables of the class are initialized.

Through ”bound m init” function some variables are allocated used in sending and

recieving. In ”PrepareGhostNodes” function the ghost nodes of the bands or blocks

are recognized and prepared. In ”UpdateGhostNodes” the ghost nodes are updated

due to band grow and regeneration. In the ”get bound normals” the nodes in neigh-

bourhood of a node are identified.

The next file in the code is ”gnodes”. In this file several functions such as ”en-

largenGnodes”, ”shortenGnodes”, ”addGnode” and ”ensureSizeGnodes” are defined

and used to change the ”Gnodes” size.

In ”init” file the G values of Gnode class are initialized. In this file through the

”init geometry” function the size of the cells, size of the super grid structure are cal-

culated and weights for WENO and upwind centeral schemes used to discretize the

space are set. In ”G init value” the G values are initialized for the different shapes

of inteface geometry such as plane, notched circle, circle, column, ring, rod, sphere,
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cylinder, bubble, etc.

The routines to read input and dump the solutions are defined in the ”io” file. In this

file through the ”read input” function the input file is read and parsed and variables

such as the start and end points for the grid, number of super grid cells, number

of local cells, the shape of the geomtry and its initial position, variables to be writ-

ten as output, advection sceheme and reinitialization scheme are extracted. In the

”dumpSolution” function the procedure of dumping the solution is begun. Ensight

Gold format is used to write the binary files. Inside this function the ”dumpEnsight”

function is called. In the ”dumpEnsight” function first, the binary file of the geom-

etry which stores the position of the nodes and number of the elements is written.

The ”MPI Write file” function is used to write this binary file. Then the function

”writeEnsightScalar” and ”writeEnsightVector” are called. These two functions are

used to dump the scalar outputs such as level set values and vector values such as

velocity, respectively. To read the file in Paraview, ”writeCaseFileHeader” function

is used to write a case file which is read by Paraview. The case file is shown in figure

2.1.

The Ensight Gold format for writing the geometry, scalar and vector variables are

discussed in next sections.

The nxet file is ”litBuffer”. In this file some functions are defined to allocate and

deallocate multidimensional arrays.

The core file of the code is ”lit coupler”. In this file four functions of ”lit initialize”,

”lit initialize2”, ”litRunIteration” and ”lit finalize” are called. In the first function

MPI Init function and some other functions for preparing the files to monitor the

running procedure of the code are called. In the ”lit initialize2” function all the

prequisites before the advection are initialized. In the ”litRunIteration” the advec-

tion and reinitialization are done. Finally, through this file, ”lit finalize” function is
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Figure 2.1: Case File That Is Read By Paraview

called which is used as the last function in the ”main.cpp”. Through this function

all the bands are cleaned up and the ”MPI Finalize” is called. In the ”param” file

some functions are defined to parse the input file. In the ”redist” file ”lit redist pde”

routine is defined for redistribution of vectors in the interface normal direction. This

function is used in filtering the velocity.

In the ”reinit” file, the routines for reinitialization of the level set scalar values are

defined. Through this file, the pde reinitialization and the routine for calculation of

the sign are defined.

The ”sg” file contains functions used for the super grid global structure. In this file

the super grid global structure are built up. We also control the band regeneration

and identify the active super grid cells. The functions to balance the load are also

defined in this file. Two load balancing function are defined. One of them is a func-

tion that balance the load manually and the other one uses Parmetis to balance the
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Figure 2.2: The Main Branch of The Code

load among the processors.

There are some other files that are used in the code. In the ”timeStep” file the stable

time step is calculated. In the ”toolbox” file several functions are used such as heavy-

side, curvature and normal which are used in different parts of the code to solve the

level set equation and calculate the curvature and surface tension. In the ”weno” file

the WENO scheme is defined. In the ”string” file some tools are defined to compare

two strings, convert the string to uppercase or lowecase and trim the string.

2.2 The Map of The Code

In this section we explain how the code works. The figure 2.2 shows how the func-

tions are called through the main function. Inside the main function, ”lit initialize”

is called first. The figure 2.3 illustrate how this function works. In this function the
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Figure 2.3: The ”lit initialize” Function

MPI in initialized by calling MPI Init. The dumping directory is also created for the

solution. Then MPI Barrier is called to allow all processors to reach this point of the

code.

Then the ”lit initialize2” function is called. Figure 2.5 shows how the functions are

called in this function. Through this function, first the time and date of running the

code are set to monitor them in the monitor files. Then ”io init” function is called. In

this function the input file is read. Input file format is shown in figure 2.4. In first and

second lines the start and end points of the grid are read. At third and fourth lines

the number of supergrid cells and local block cells are read in x, y and z direction,

respectively. Then the minimum and maximum value of gradient of G are read to

use in the reinitialization. In next line the initial geometry of the interface and the

parameters that is needed to define it are read. In the last line of the input file, the

output format and the variables that will be written as output to be visualized in

paraview, are read.

Then by calling the ”init geometry” fuction, size of Cartesion grid cell in each di-

rection, volume of cells, minimum grid size, minimum and maximum value of allowed
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Figure 2.4: The Input File Format

curvature, size of super grid structure, size of global structure, size of local blocks, grid

coordinates and cell faces are initialized. Then the ”band m init” function is called.

Through this function static variables in the band class such as band sizes(number of

cells in each band) for A, T, N, W and X band are allocated and initialized. Then the

G values are set for the first and last band cell that need to be advected, maximum

number of subsycles before reinitialization, band node start and end indices and ghost

nodes start and end indices(each node has 26 point at its neighbourhood). The next

step is calling the ”reinit m init” function. Through this function the static variables

in the ”reinit” class are initialized. The time step, maximum number of iteration to

solve the reinitialization equation 1.19 and the α values for RK method are initial-

ized. The next functions that are called in the ”lit initialize2” are ”redist m init”

function, ”timestep” function, ”toolbox m init” function and ”sg m init” function.

Then by calling the ”sg init” function, the initial super grid structure is built up. In

this function the array for super grid structure is allocated and all active blocks in-

side the domain are identified. At the end of this function by calling ”sg calc active”

function the active supergrid cells are calculated. Then by calling the ”band init”
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Figure 2.5: The ”lit initialize2” Function
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Figure 2.6: The ”litRunIteration” Function

function the band structures from the intial settinig function of G are generated and

initialized. At the end, ”sg load balance” is called to decompose the domain. The

next step is dumping the solutions. This function is called two times. By calling it

for first time inside the ”lit initialize2” function, the case file is created and solution

is written at time = 0. After the ”lit initialize2” function, the ”setVelocity” function

is called to initialize the velocity field at time = 0. Then inside a time loop, for each

time step the velocity is set and the function ”litRunIteration” is called. Figure 2.6

shows how this function works. Through this function, by calling ”lit timestep” the

advection(marching in time) and reinitialization (if ”trigger reinitializatuion” is ac-

tive) are done. This function also computes the stable time step using CFL in narrow

bands. At the end by calling ”dumpSolution” function for some specific time steps

the binary file for the output variables such as level set scalar values and velocity

vectors are written.
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2.3 ”Ensight Gold” Format

To visualize the results with Paraview, the solution is written in Ensight Gold

format. Ensight Gold data includes the following files:

• case: Includes all other required files including model geometry and variables.

• sources of Ensight Gold format data: All the files including the geometry and

variables wich can be written either in binary or ASCII.

The case file is an ASCII format file that includes all the files and names for model,

variable and time. It contains five sections of, ”FORMAT”, ”GEOMETRY”, ”VARI-

ABLE”, ”TIME” and ”FILE”. Figure 2.1 is a case file in Ensight Gold format the is

used in the code.

Figure 2.7 illustrates the binary format for geometry in Ensight Gold. where:

• # = A part number

• nn = Total number of nodes in part

• ne = Number of elements of a given type

• np = Number of nodes per element for a given element type

• nf = Number of faces per element

• id * = Node or element id number

• x * = x component

• y * = y component

• z * = z component

34



Figure 2.7: The ”GEOMETRY” File Format in Ensight Gold
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Figure 2.8: The ”SCALAR” File Format in Ensight Gold

• n* e* = Node number for element

• f* e* = Face number for an element

• [] = Optional portion

Figure 2.8 shows the procedure of writing the scalar such as level set scalar values(G)

in Ensight Gold format. Figure 2.9 shows the procesure of writing a vector such as

velocity in Ensight Gold format.

Figure 2.9: The ”VECTOR” File Format in Ensight Gold
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Chapter 3

RESULTS

In this chapter, the results for some test cases are shown. The results are shown for

interface (zero level set), ”T” band and ”X” band.

3.1 Vertical Plane

In this test, the code is run for a vertical plane initially located at x = 0.1. The

velocity of the field is u(x, t) = (1.0, 0.0) and hG = 1/256.

Figures 3.1, 3.2 and 3.3 show the results for interface(zero level set), ”T” band and

”X” band, respectively with hG = 1/256.
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(a) t = 0.0s (b) t = 0.1s

(c) t = 0.2s (d) t = 0.3s

(e) t = 0.4s (f) t = 0.5s

(g) t = 0.6s (h) t = 0.7s

Figure 3.1: Zero Level Set for Vertical Plane
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(a) t = 0.0s (b) t = 0.1s

(c) t = 0.2s (d) t = 0.3s

(e) t = 0.4s (f) t = 0.5s

(g) t = 0.6s (h) t = 0.7s

Figure 3.2: Level Set Values in ”T” Band for Vertical Plane
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(a) t = 0.0s (b) t = 0.1s

(c) t = 0.2s (d) t = 0.3s

(e) t = 0.4s (f) t = 0.5s

(g) t = 0.6s (h) t = 0.7s

Figure 3.3: Level Set Values in ”X” Band for Vertical Plane
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3.2 Horizontal Plane

In this test, the code is run for a horizontal plane initially located at y = 0.1. The

velocity of the field is u(x, t) = (0.0, 1.0) and hG = 1/256. Figures 3.4, 3.5 and 3.6

show the results for interface(zero level set), ”T” band and ”X” band, respectively

with hG = 1/256.
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(a) t = 0.0s (b) t = 0.1s

(c) t = 0.2s (d) t = 0.3s

(e) t = 0.4s (f) t = 0.5s

(g) t = 0.6s (h) t = 0.7s

Figure 3.4: Zero Level Set for Horizontal Plane
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(a) t = 0.0s (b) t = 0.1s

(c) t = 0.2s (d) t = 0.3s

(e) t = 0.4s (f) t = 0.5s

(g) t = 0.6s (h) t = 0.7s

Figure 3.5: Level Set Values in ”T” Band for Horizontal Plane
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(a) t = 0.0s (b) t = 0.1s

(c) t = 0.2s (d) t = 0.3s

(e) t = 0.4s (f) t = 0.5s

(g) t = 0.6s (h) t = 0.7s

Figure 3.6: Level Set Values in ”X” Band for Horizontal Plane
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3.3 Zalesak’s Disk

In this section the code is teseted for solid body rotation of a notched circle, also

known as Zalesak’s disk. A disk of redius 0.15 notch width 0.15 and notch height

”0.25” is placed in a 1× 1 box. The velocity field is u(x, t) = (0.5− y, x− 0.5). The

time step is ∆t = 2π/628.

Figures 3.7, 3.8 and 3.9 show the results for interface(zero level set), ”T” band

and ”X” band, respectively with hG = 1/100.
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.7: Zero Level Set for Zalesak’s Disk With hG = 1/100
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.8: Level Set Values for Zalesak’s Disk in ”T” Band With hG = 1/00
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.9: Level Set Values for Zalesak’s Disk in ”X” Band With hG = 1/100
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Figures 3.10, 3.11 and 3.12 show the results for interface(zero level set), ”T” band

and ”X” band, respectively with hG = 1/200.
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.10: Zero Level Set for Zalesak’s Disk With hG = 1/200
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.11: Level Set Values for Zalesak’s Disk in ”T” Band With hG = 1/200
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.12: Level Set Values for Zalesak’s Disk in ”X” Band With hG = 1/200
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Figures 3.13, 3.14 and 3.15 show the results for interface(zero levelset), ”T” band

and ”X” band, respectively with hG = 1/400.
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.13: Zero Level Set for Zalesak’s Disk With hG = 1/400
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.14: Level Set Values for Zalesak’s Disk in ”T” Band With hG = 1/400
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(a) t = 0.0s (b) t = π/2s

(c) t = πs (d) t = 3π/2s

(e) t = 2πs

Figure 3.15: Level Set Values for Zalesak’s Disk in ”X” Band With hG = 1/400
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3.4 Circle in a Deformation Field

In this section the code is teseted for a circle in a deformation field. A circle of

redius 0.15 and center (x, y) = (0.5, 0.75) is placed inside a 1 × 1 box. The velocity

field is :

u(x, t) = −2.0sin2(πx)sin(πy)cos(πy)cos(πt/T )

v(x, t) = −2.0sin2(πy)sin(πx)cos(πx)cos(πt/T )

The time step is ∆t = 1/256.

Figures 3.16, 3.17 and 3.18 show the results for interface(zero level set), ”T” band

and ”X” band, respectively with hG = 1/128.
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.16: Zero Level Set for Circle in Deformation Field With hG = 1/128
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.17: Level Set Values in ”T” Band for Circle in Deformation Field With hG = 1/128
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.18: Level Set Values in ”X” Band for Circle in Deformation Field With hG = 1/128
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Figures 3.19, 3.20 and 3.21 show the results for interface(zero level set), ”T” band

and ”X” band, respectively with hG = 1/256.
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.19: Zero Level Set for Circle in Deformation Field With hG = 1/256
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.20: Level Set Values in ”T” Band for Circle in Deformation Field With hG = 1/256
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s
(h) t = 7.0s

(i) t = 8.0s

Figure 3.21: Level Set Values in ”X” Band for Circle in Deformation Field With hG = 1/256
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Figures 3.22, 3.23 and 3.24 show the results for interface(zero level set), ”T” band

and ”X” band, respectively with hG = 1/512.
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.22: Zero Level Set for Circle in Deformation Field With hG = 1/512

73



(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.23: Level Set Values in ”T” Band for Circle in Deformation Field With hG = 1/512

75



(a) t = 0.0s
(b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.24: Level Set Values in ”X” Band for Circle in Deformation Field With hG = 1/512
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3.5 Plane in A Deformation Field

In this section the code is teseted for a plane in a deformation field. A vecrtical

plane at (x, y) = (0.5, 0.5) is placed inside a 1× 1 box. The velocity field is :

u(x, t) = −2.0sin2(πx)sin(πy)cos(πy)cos(πt/T )

v(x, t) = −2.0sin2(πy)sin(πx)cos(πx)cos(πt/T )

The time step is ∆t = 1/256 and hG = 1/256.

Figures 3.25, 3.26 and 3.27 show the results for interface(zero level set), ”T” band

and ”X” band, respectively with hG = 1/256.
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.25: Zero Level Set for Plane in Deformation Field With hG = 1/256
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.26: Level Set Values in ”T” Band for Plane in Deformation Field With hG = 1/256
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(a) t = 0.0s (b) t = 1.0s

(c) t = 2.0s (d) t = 3.0s

(e) t = 4.0s (f) t = 5.0s
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(g) t = 6.0s (h) t = 7.0s

(i) t = 8.0s

Figure 3.27: Level Set Values in ”X” Band for Plane in Deformation Field With hG = 1/256
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Chapter 4

CONCLUSION

In this thesis 33,000 lines of FORTRN code were rewritten in C++. The C++ code

was tested for different test cases such as veritical and hoizontal plane in a pure hor-

izontal and vertical velocity field, respectively, Zalesak’s disk in a rotational velocity

field and circle in a deformation field. The code is fast and the results are exactly

matched with FORTRAN code.

There were several challenges in this work. The C++ code was written in object-

oriented form. To do this, first the variables and functions in FORTRAN difined for

a particular purpose, are identified. Then these variables and fnctions are gathered

in particular classes. Thus, in C++ code we work with user defined objects rather

than variables. This helps to hide the unncessary data and modify the code without

changing a larg part of that. Moreover, the C++ code can be easily combined with

the other C++ codes such as flow solver code.

Working with multi-dimensional arrays in FORTRAN is more convenient. The C++

standard tempelate library such as containers and smart pointers which make the

memory handling easier, are used. In FORTRAN the lower limit of the arrays can

be specified as any integer value. For instance, the first index of an array can be

−11 or 9. In C++, arrays always starts from zero. In FORTRAN code these types

of arrays are used frequently. Recognizing and shifting the arrays’ lower band was a

challeng and caused many bugs in the code. By overloading ”[]” operator the C++

arrays can have a similar behaviour as FORTRAN. However, it is not efficient and

the arrays indexes should be shifted by subtracting the lower band. The MPI library

functions are different for FORTRAN and C++. The MPI functions in C++ usually
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get the pointers as their arguments. While in FORTRAN the arguments are direcly

passed to the MPI functions by value. In C++ working with the strings are better

and parsing the input file is easier.

For the future work, speed-up and scalability test will be implemented for the

C++ code to study the efficiency and ablitiy of the code in parallel. The results

will be compared to the FORTRAN code. The code will be also implemented on the

GPU.
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