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ABSTRACT

Quadratic growth curves of 2nd degree polynomial are widely used in longitudinal

studies. For a 2nd degree polynomial, the vertex represents the location of the curve in

the XY plane. For a quadratic growth curve, we propose an approximate confidence

region as well as the confidence interval for x and y-coordinates of the vertex using two

methods, the gradient method and the delta method. Under some models, an indirect

test on the location of the curve can be based on the intercept and slope parameters,

but in other models, a direct test on the vertex is required. We present a quadratic-

form statistic for a test of the null hypothesis that there is no shift in the location

of the vertex in a linear mixed model. The statistic has an asymptotic chi-squared

distribution. For 2nd degree polynomials of two independent samples, we present an

approximate confidence region for the difference of vertices of two quadratic growth

curves using the modified gradient method and delta method. Another chi-square test

statistic is derived for a direct test on the vertex and is compared to an F test statistic

for the indirect test. Power functions are derived for both the indirect F test and the

direct chi-square test. We calculate the theoretical power and present a simulation

study to investigate the power of the tests. We also present a simulation study to

assess the influence of sample size, measurement occasions and nature of the random

effects. The test statistics will be applied to the Tell Efficacy longitudinal study,

in which sound identification scores and language protocol scores for children are

modeled as quadratic growth curves for two independent groups, TELL and control

curriculum. The interpretation of shift in the location of the vertices is also presented.
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Chapter 1

INTRODUCTION

Many longitudinal studies are designed to investigate a characteristic of an indi-

vidual, where the characteristic is measured repeatedly over the occasions for each

study subject. Often the observations are considerably correlated across time points.

A multivariate model with a general unrestricted covariance structure may be applied

to analyze the correlated data, whereas the growth curve model is usually considered.

The analysis of growth curves focuses on the explanation of within-individual varia-

tion by the aging process or natural development. In some longitudinal studies, the

relation between the time measurement and response cannot be adequately described

by a linear trend model. Adding a square term of the fixed effect time t to the model

gives a quadratic growth curve model, which often describes the true unknown model

better. The coefficient parameters of the fixed effect are necessary to determine the

growth curve. The vertex of a quadratic curve provides the location of such a curve,

which is interesting. By all means reasonable, it is important to derive the confidence

region of the parabola’s vertex as well as the confidence interval of x-coordinate and

y-coordinate.

For two independent groups, such as control and treatment, the confidence region

as well as the confidence interval for the difference of vertices of two quadratic growth

curves are useful. Both the x-coordinate and y-coordinate of the vertex are given by a

non-linear combination of the model fixed regression coefficients, not simply only one

of them. However, common statistical computer packages usually display statistical

inferences for the fixed regression coefficient, but not for any of their functions.
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For a one-sample study, the test of the null hypothesis of no shift in the location

can be performed indirectly with an F test on the model parameters. The location

of the vertex is a function of the model parameters, and a statistic for a direct test

on the location of the vertex is also presented. Power calculations are proposed to

investigate the performance of the indirect F test and the direct test. For a two-

sample study, the null hypothesis of no difference in the location of the vertices can

sometimes be conducted with the indirect F test, but sometimes only the direct test is

available. Power calculations for comparing the F test and direct test are performed

for the two-sample study.

Two models, linear mixed effects model and growth curve model, and three meth-

ods, the gradient method, the delta method and mean response method are reviewed

in Chapter 2. For a one-sample quadratic growth curve, test statistics for confidence

region and confidence interval of the vertex are derived. To show the validity of the

statistics, simulations using different models, parameters and sample sizes as well as

power analysis for testing non-vertex points are performed in Chapter 3. For two in-

dependent samples, modified test statistics for confidence region and confidence inter-

val of the difference of vertices are obtained and simulations for testing the updated

statistics are conducted in Chapter 4, as well as the comparison of the theoretical

power and simulated power for both the direct and indirect test. In Chapter 5, an

application of analysis, TELL Efficacy Study, using the derived statistics is presented.

The conclusion and discussion for future research are presented in Chapter 6.
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Chapter 2

LITERATURE REVIEW

2.1 Longitudinal Study

The defining feature of a longitudinal study is that it involves repeated obser-

vations of the same variable over long periods of time, thereby allowing the direct

study of change over time. The fundamental objective of a longitudinal analysis

is the assessment of within-individual changes in the response and the explanation

of systematic differences among individuals in their changes. Rao (1965) described a

two conceptually distinct stages for longitudinal analysis of within-individual changes.

Stage 1, within-individual change in the response is characterized in terms of some

appropriate summary of the changes in the repeated measurements on each indi-

vidual during the occasions. Stage 2, the relationship between theses estimates of

within-individual changes and the inter-individual differences in selected covariates

(Bijleveld et al., 1999). The goal of a longitudinal analysis is to determine whether

the individuals have higher or lower values on selected covariates provided that cer-

tain individuals change more or less than others. It may also be interesting to make

predictions about how specific subjects change over time in some longitudinal studies.

In the second situation, the prediction of longitudinal studies are more reliable since

they borrow the information form all individuals to give a better prediction of the

within-individual change over time for a specific subject.

A distinctive feature of longitudinal data is that the data are clustered. Clustering

is grouping a set of observations in such a way that observations in the same cluster

are more similar to each other than to those in other clusters. In longitudinal studies
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Figure 2.1: Nested Structure for Students within Classrooms

clusters are composed of the repeated measurements obtained from a single individual

at different occasions. Observations within a cluster will typically exhibit positive

correlation, and this correlation must be accounted for in the analysis. Longitudinal

data also have a temporal order; the first time point within a cluster necessarily comes

before the second time point, and so on. The ordering of the repeated measures has

important implications for analysis. When all the individuals are measured at a

commons set of occasions and there are no missing values, the longitudinal data are

balanced and complete. However, it is more common that the longitudinal data are

unbalanced and/or incomplete. As a consequence, to be of real practical use, methods

for the analysis of longitudinal data must be able to handle data that are unbalanced

over time and possibly incomplete (Fitzmaurice et al., 2004). For instance a two-stage

nested design, it is often used in analyzing processes to identify the main sources of

variability. In a two-stage nested design, the levels of one factor are nested under

the levels of the other factor, such as students nested within classrooms or patients

nested within physicians. Figure 2.1 shows the concept of a nested model intuitively.

2.2 Linear Mixed Model and Growth Curve

A mixed model is a statistical model containing mixed effects, where the mixed

effects consists of both fixed effects and random effects. They are appropriate in
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settings where repeated measurements are provided on the same individual, or where

measurements are made on clusters of related individuals. Random effects models

were first introduced by Fisher (1919) to study the correlations of trait values between

relatives. Afterwards, the best linear unbiased estimates (BLUE) for fixed effects

and best linear unbiased predictions (BLUP) for random effects were provided by

Henderson et al. (1959). Subsequently, mixed modeling has become a major area

of statistical research, including work in many fields, such as computing maximum

likelihood estimates, missing data in mixed effects models, non-linear mixed effect

models, and Bayesian estimation of mixed effects models. Mixed models are applied in

many disciplines where multiple correlated measurements are made on each individual

of interest.

Mixed models are based on explicit identification of individual and population

characteristics; most mixed models in the literature can be described either as growth

models or as repeated-measures models. Growth-curve analyses emphasize the ex-

planation of within-subject variation by the nature developmental or aging process

(Ware, 1985). These analyses often compare growth characteristics for different pop-

ulations, emphasizing the contribution of experimental conditions to between-subject

variability (Laird and Ware, 1982).

A linear mixed model for longitudinal data can be expressed in matrix notation,

yi = Xiβ +Ziαi + εi, (2.1)

where,

yi is a known vector of observations for subject i, Y ′ = [y′1, · · · ,y′N ],

Xi and Zi are known model matrices of regressors for subject i relating the ob-

servations yi to β and αi, X
′ = [X ′1, · · · ,X ′N ],

β is an unknown vector of fixed effects parameters,
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αi is an unknown vector of random effects with mean E(αi) = 0 and covariance

Cov(αi) = G; the covariance matrix G is usually identical for all the subjects,

εi is an unknown vector of random error terms with mean E(εi) = 0 and covariance

Cov(εi) = Ri; the set of unknown parameters in Ri do not depend on the subject i,

only the dimension of Ri depends on the subject i,

αi and εi are independent, Cov(αi, εi) = 0, that is,

E

 αi

εi

 =

 0

0

 , Cov

 αi

εi

 =

 G 0

0 Ri

 .

Assuming the random effect αi is known, the conditional distribution of yi given

αi is multivariate normal,

yi|αi ∼Nn(Xiβ +Ziα,Ri).

Further, αi is assumed to be normally distributed with mean 0 and covariance matrix

G. Then the marginal density function of the random vector yi is given by (Verbeke

and Molenberghs, 2009),

f(yi) =

∫
f(yi|αi)f(αi)dαi

which is multivariate normally distributed with the dimension of time measurements

n, i.e. the marginal model of yi is,

yi ∼Nn(Xiβ,ZiGZ
′
i +Ri).

When all the covariance parameters are known, the maximum likelihood (ML) func-

tion of θ = (β,αi)
′ is (Verbeke and Molenberghs, 2009),

LML(θ)

=

N∏
i=1

{
(−2π)−n/2 |ZiGZ ′i +Ri|

−1/2 × exp

(
n∑
i=1

(yi −Xiβ̂ML)′(ZiGZ
′
i +Ri)

−1(yi −Xiβ̂ML)

)}
,
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where N is the sample size. The ML estimator for fixed regression coefficients and

their variance are (Laird and Ware, 1982),

β̂ML =

(
N∑
i=1

X ′i(ZiGZ
′
i +Ri)

−1Xi

)−1( N∑
i=1

X ′i(ZiGZ
′
i +Ri)

−1yi

)
(2.2)

Σβ̂ML
=

(
N∑
i=1

X ′i(ZiGZ
′
i +Ri)

−1Xi

)−1

. (2.3)

Denote ζ as the vector of variance and covariance parameters found inRi andG. The

restricted maximum likelihood (REML) function of ζ is (Verbeke and Molenberghs,

2009),

LREML(ζ) =(2π)−(n−k)/2

∣∣∣∣∣
N∑
i=1

X ′iXi

∣∣∣∣∣
1/2

×

∣∣∣∣∣
N∑
i=1

X ′i(ZiGZ
′
i +Ri)

−1Xi

∣∣∣∣∣
−1/2 N∏

i=1

|ZiGZ
′
i +Ri|−1/2

× exp

{
−1

2

n∑
i=1

(yi −Xiβ̂ML)′(ZiGZ
′
i +Ri)

−1(yi −Xiβ̂ML)

}
.

The ζ is a function of a set of error contrasts U = A′Y where A is any (n× (n− k))

full-rank matrix with columns orthogonal to the columns of the X matrix (Verbeke

and Molenberghs, 2009). Then for each individual i, the REML estimator through

an empirical bayesian algorithm for the random effect and its variance are (Laird and

Ware, 1982),

α̂i(REML) = GZ ′i(ZiGZ
′
i +Ri)

−1(yi −Xiβ̂ML) (2.4)

Σα̂i(REML)
= GZ ′i

{
(ZiGZ

′
i +Ri)

−1 − (ZiGZ
′
i +Ri)

−1XiΣ̂β̂ML
X ′i(ZiGZ

′
i +Ri)

−1
}
ZiG,

assuming that the necessary matrix inverses exist when it is implied. For the case

of less than full rank, we could work out the relevant formulas using generalized in-

verses. When the covariance matrices are unknown, the literature on the estimation
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of variance components is extensive. By default, the estimation method for the co-

variance parameters used in SAS is REML through expectation and maximization

(EM) algorithm (Laird and Ware, 1982).

The θ = (β,αi)
′ is the parameter vector and let yi be a function of θ, say

yi = f(θ), yi ∈ Rs. If θ∗ denotes the true parameter vector, under H0 : θ∗ ∈ Θ0 ⊂ Rs,

then the regularity conditions for the delta method, used frequently to obtain the

asymptotic distributions, and maximum likelihood estimators (MLE) for the linear

mixed model can be stated as follows,

1. yi, i = 1, ...N are independently and identically distributed (i.i.d.) with proba-

bility density function f(yi;θ).

2. The probability distribution is identifiable. That is, the probability distribution

are distinct for different parameters θ; if θ 6= θ′, then f(yi;θ) 6= f(yi;θ
′).

3. The parameter space Θ0 is compact and there exists a θ∗ ∈ Interior(Θ0) such

that Eθ∗ log f(yi;θ) exists and θ∗ = argmax
θ∈Θ

Eθ∗ log f(yi;θ).

4. The probability density function is positive, i.e. f(yi;θ) > 0 and is three times

continuously differentiable in θ in some neighborhood of θ∗.

5. The integration and differential operators are interchangeable.

6. The Jacobian matrix ∂f(θ∗)
∂θ

is of full rank.

7. The mapping f : Θ0 7→ yi is continuous at every point θ ∈ Θ0.

8. The fisher information matrix I(θ∗) = Eθ∗
(
∂2log f(yi;θ

∗)
∂θ∂θ′

)
exists and is nonsin-

gular.

9. The first and second derivative of the log-likelihood function log f(yi;θ) are

defined and the boundary is
∣∣∣∂3log f(yi;θ)

∂θ3

∣∣∣ 6M(yi) with E(M(yi)) <∞.
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2.3 Modeling the Covariance

Approaches for appropriately modeling the covariance or time dependence among

the repeated measures obtained on the same individuals must be considered because

of the correlated feature of longitudinal data. When an appropriate structure for

the covariance has been achieved, correct standard errors are obtained and inferences

about the regression parameters can be made (Fitzmaurice et al., 2004). In this

dissertation, three covariance structures are considered; they are compound symmetry

(CS), autoregressive one (AR(1)) and unstructured (UN).

One of the earliest covariance pattern models considered historically for the anal-

ysis of repeated measures data was compound symmetry. The compound symmetry

covariance structure has a randomization justification in certain repeated measures

designs. It assumes the correlation between any pair of measurements is the same

regardless of the time interval between the measurements, which is a quite strong as-

sumption. Therefore, with a compound symmetry covariance structure, the variance

is constant across occasions, say σ2
e (0 < σ2

e <∞), and the correlation of any two re-

sponses at different occasions, j and j′, for the same individual i is Corr(yi,j, yi,j′) = ρ

for |ρ| 6 1,

Cov(yi) = Σyi = σ2
e



1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ 1 · · · ρ

...
...

...
. . . ρ

ρ ρ ρ · · · 1


,

where yij denotes the response variable for the ith individual at jth occasion and yi

denotes the response vector of individual i at all occasions as before.
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The autoregressive covariance structure is a parsimonious as compound symmetry,

since it also has only two parameters, regardless of the number of time points. In

the autoregressive model, it is assumed that the variance is constant across occasions,

say σ2
e , and the correlation of any two responses at different occasions for the same

individual i is Corr(yi,j, yi,j′) = ρ|j
′−j| for all j and j′, and ρ,

Cov(yi) = Σyi = σ2
e



1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · 1


.

When the number of time points is relatively small and all individuals are mea-

sured at the same set of time points, it maybe reasonable to consider the unstructured

covariance structure which allows the covariance matrix to be arbitrary, with all of its

elements unconstrained. Let the covariance matrix be symmetric and positive-definite

is the only formal requirement. The main advantage of an unstructured covariance

is that no assumptions are made about the structure of variances and covariances.

One potential drawback is that the number of covariance parameters to be estimated

grows rapidly with the number of measurement occasions (Fitzmaurice et al., 2004).

For each individual i with n measurement occasions, the unstructured covariance ma-

trix has n×(n+1)
2

parameters, the n variances at each occasion and the n×(n−1)
2

pairwise

covariances,

Cov(yi) = Σyi



σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n


,

where Var(yij) = σ2
j and Cov(yi,j, yi,j′) = σjj′ ; the correlation is Corr(yi,j, yi,j′) =

σjj′

σjσj′
.
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Given different models, the correlation ρ between two responses with respect to

the same individual at different occasions may be different. Given the correlation

ρ, different covariance structures can be expressed for specific models. To make

a selection among models with different types of covariance structure, information

criteria can be applied. To compare non-nested models, Akaike Information Criterion

(AIC), Akaike (1974), is one of the earliest proposed information criteria. According

to the AIC, given a set of competing models for the covariance, the model should be

selected with minimum

AIC = −2(l̂ − c),

where l̂ is the maximized REML log-likelihood and c is the number of covariance

parameters. The preferred model is the one with the minimum AIC value, given

a set of candidate models. Hence AIC not only rewards goodness of fit, but also

includes a penalty that is an increasing function of the number of estimated param-

eters. However, Woodroofe (1982) showed that AIC is not theoretically consistent;

consequently, the correct model will not be selected when sample size (N) approaches

infinity. AICc, is AIC with a finite population correction, is produced as

AICc = AIC +
2c(c+ 1)

N − c− 1
,

and AICc is similar to AIC with a greater penalty for extra parameters. Burnham

and Anderson (2002) strongly recommend using AICc, rather than AIC, if N is small

or c is large even though AICc is also not consistent (Eslamian, 2014). Since AICc

converges to AIC as N gets large, AICc generally should be employed. Another valu-

able criterion is Bayesian Information Criterion (BIC). Schwarz et al. (1978) proposed

that when choosing competing models for the covariance structure, the model should

be selected with minimum
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BIC = −2(l̂ − c log
√
N).

Bozdogan (1987) proved BIC is consistent when the sample size approaches infinity.

2.4 Vertex of Quadratic Curve

The vertex of a quadratic growth curve provides the location of the curve, which

is interesting to be investigated. In the geometry of curves, a vertex is defined as a

point where the first derivative of curvature is zero (Agoston, 2005). This is typically

a local maximum or minimum of curvature in the optimization field (Gibson, 2001).

A quadratic function, in mathematics, is a polynomial function of the form

f(x) = ax2 + bx+ c, a 6= 0.

where a, b and c denote coefficients for quadratic term, linear term and intercept

respectively. The graph of a quadratic function is a parabola whose axis of symmetry

is parallel to the y−axis. The expression ax2 + bx+ c in the definition of a quadratic

function is a polynomial of degree 2 or second order, or a 2nd degree polynomial,

because the highest exponent of x is the second degree.

The vertex of a quadratic curve is also called the turning point since it is the

location when the curve turns. By the method of completing the square, the standard

form of a quadratic function can be expressed as

f(x) = a

(
x+

b

2a

)2

− b2 − 4ac

4a
, a 6= 0,

thus the vertex of the curve in the vector form is(
− b

2a
,−b

2 − 4ac

4a

)
. (2.5)

If a < 0, the vertex is the maximum point; otherwise, if a > 0, the vertex is the

minimum point. The vertex point can be also be obtained by finding the roots of the
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first derivative using calculus:

f ′(x) = 2ax+ b,

with the corresponding function value,

f(x) = a

(
− b

2a

)2

+ b

(
− b

2a

)
+ c = −b

2 − 4ac

4a
,

therefore again the vertex point can be expressed as
(
− b

2a
,− b2−4ac

4a

)
. The vertical line

x = − b
2a

that passes through the vertex is also the axis of symmetry of the quadratic

curve.

2.5 Delta Method

The delta method is a method for deriving an approximate probability distribution

for a function of an asymptotically normal statistical estimator from knowledge of the

limiting variance of that estimator. More broadly, the delta method is known as a

generalization of the Central Limit Theorem using Taylor series approximations for

mean and variance. Using a Taylor series expansion if a function g(Y ) has derivatives

of order r, that is, gr(Y ) = dr

dyr
g(Y ) exists, then for any constant a, Casella and

Berger (2002) displayed the Taylor polynomial of order r about a as,

Tr(Y ) =
r∑
i=0

g(i)(a)

i!
(Y − a)i.

The major of Taylor theorem is that the remainder from the approximation, g(Y )−

Tr(Y ) always tends to zero faster than the highest-order explicit term, namely,

limx→a
g(Y )− Tr(Y )

(Y − a)
= 0.

Hence we can drop the higher-order terms to give the first-order approximation,

g(Y ) ≈ g(a) + g′(a)(Y − a) .
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Let a = µ, the mean of random variable Y , a Taylor series expansion of g(Y ) about

µ gives the approximation,

g(Y ) = g(µ) + g′(µ)(Y − µ) .

Taking the variance of both sides yields,

Var(g(Y )) ≈ (g′(µ))2Var(Y ) .

For the univariate delta method (Casella and Berger, 2002), the function g(Y ) is

a real-valued continuous function of Y . Let YN be a sequence of random variables

that satisfies
√
N(YN − µ)

D→ N(0, σ2), 0 < σ2 < ∞. For a given function g and a

specific value of µ, suppose that g′(µ) exists and is not 0, then

√
N(g(YN)− g(µ))

D→ N(0, σ2(g′(µ))2).

For the multivariate delta method (Casella and Berger, 2002), define the random

vector Y = (Y1, ..., Yp) with mean µ = (µ1, ..., µp) and covariances Cov(Yi, Yj) = σij.

An i.i.d random sample of size N from the population of Y can be observed and

denote these observations as Y (1), ...,Y (N). Furthermore, let the sample means for

each element of the vector Y be Ȳi =

N∑
k=1

Y
(k)
i

N
, i = 1, ..., p and Ȳ = (Ȳ1, ..., Ȳp) be

the vector of sample means. Consequently, we consider the multivariate function

g : R 7→ R with g(Y ) = g(Y1, ..., Yp), and use a Taylor series expansion to write

(Rencher and Schaalje, 2008)

g(Ȳ1, ..., Ȳp) ≈ g(µ1, ...µp) +

p∑
i=1

g′i(µi)(Ȳi − µi).

In vector notation (Papanicolaou, 2009),

g(Ȳ ) ≈ g(µ) +∇′g(µ)(Ȳ − µ), (2.6)
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with the notation ∇′g(µ) = (∇′g(Y ))|Y =µ. The multivariate delta method in vector

form is, let Y (1), ...,Y (N) be a random sample with E(Y (k)) = µ and covariance

matrix E(Y (k) − µ)(Y (k) − µ)′ = Σ. For a given function g with continuous first

partial derivatives and a specific value of µ for which τ 2 = ∇′g(µ)Σ∇g(µ) > 0,

√
N(g(Ȳ )− g(µ))

D→ Np(0, τ
2). (2.7)

2.6 Interval Estimation for Mean Response

When the x-coordinate of the vertex of a quadratic growth curve is obtained, the

y-coordinate of the vertex can be estimated as the mean response of the X value.

Denote Xh the level of X for which we would like to estimate the mean response.

Then Xh may be a value which occurred in the sample, or it may be some other value

within the scope of the data. The mean response is denoted by E{Yh} at X = Xh.

If repeated samples were selected, each holding the levels of the variable X = Xh,

the sampling distribution of Ŷh with regard to the different values of Ŷh that would

be obtained by calculating Ŷh for each sample. For the normal error fixed effects

model with i.i.d. observation, the sampling distribution of Ŷh is normal, with mean

E{Ŷh} = E{Yh} and variance Var{Ŷh} = σ2
[

1
N

+ (Xh−X̄)2

Σ(Xi−X̄)2

]
(Kutner et al., 2005).

When the mean square error (MSE) is substituted for σ2, the estimated variance of

Ŷh, s
2{Ŷh}, is

s2{Ŷh} = MSE

[
1

N
+

(Xh − X̄)2

Σ(Xi − X̄)2

]
.

Then the positive square root of s2{Ŷh} is s{Ŷh}, the estimated standard deviation

of Ŷh. Hence,

Ŷh − E{Yh}
s{Ŷh}

is distributed as t distribution with (N − p) degrees of freedom (2.8)
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where p is the number of fixed regression coefficients. A confidence interval for E{Yh}

is constructed using the t distribution. The (1− α)% confidence limits are,

Ŷh ± t(1− α/2;N − p)s{Ŷh},

where α is the type I error rate (Kutner et al., 2005). For a quadratic model, if

the vertex V ′ = (Vx, Vy) exists and the value of x-coordinate Vx is known, we could

estimate the value of y-coordinate V̂y by substituting Vx in the regression model and

the standard deviation s{V̂y} = MSE
[

1
N

+ (Vx−X̄)2

Σ(Xi−X̄)2

]
. Using distribution (2.8), the

(1− α)% confidence limits of V̂y are,

V̂y ± t(1− α/2;N − p)s{V̂y} .

We consider the confidence interval for a mixed linear model will be given in Chapter

3.

2.7 Confidence Set for X-Coordinate With a Given Gradient

Bachmaier (2009) proposed an exact confidence set for the x−coordinate for fixed

effects quadratic model with a given gradient; the model is given by

yi = β0 + β1xi + β2x
2
i + εi , (2.9)

where yi denotes the response variable, β0, β1 and β2 are fixed regression coefficients,

N is the number of observations, and the errors, εi, are assumed to be independent

and normally distributed random variables with an expected value 0 and a common

unknown variance σ2 > 0, i.e. εi ∼ N(0, σ2). The function E(yi) = β0 +β1xi+β2x
2
i is

a parabola with respect to xi. The x-coordinate where this function has given gradient

m leads to

xgigrad =
m− β1

2β2

if β2 6= 0 . (2.10)
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A point estimate of (2.10) is x̂gigrad = (m − b1)/(2b2), where b1 and b2 are the least

squares estimates of β1 and β2.

An exact (1 − α)-confidence set for xgigrad is obtained as a solution of function

(2.11), where x0 is any point in the confidence set and t2N−3,1−α/2 denotes the squared

t-quantile with N − 3 degrees of freedom, (Bachmaier, 2009):

x0 ∈ C(xgigrad)

⇔ (b1 −m+ 2x0b2)2

V̂ar(b1) + 4x0Ĉov(b1, b2) + 4x2
0V̂ar(b2)

6 t2N−3,1−α/2

⇔ (b1 −m+ 2x0b2)2 6 [V̂ar(b1) + 4x0Ĉov(b1, b2) + 4x2
0V̂ar(b2)] · t2N−3,1−α/2

⇔ A · x2
0 +B · x2

0 + C 6 0 .

(2.11)

where, A = b2
2 − V̂ar(b2) · t2N−3,1−α/2

B = (b1 −m)b2 − Ĉov(b1, b2) · t2N−3,1−α/2

C =
1

4
((b1 −m)2 − V̂ar(b1) · t2N−3,1−α/2) .

Only if the denominator in expression (2.11) is positive, the medium equivalent sign

can be applied; this is satisfied if the mean square error is positive. The mean

square error equals to zero only occurs with probability 0, therefore an optional

confidence interval for this case is chosen without violating the coverage probability

of the confidence interval. To solve the inequality, if A 6= 0, then A · x2
0 + B · x2

0 + C

is a quadratic function; it has two solutions if the discriminant Dis = B2 − 4AC is

positive. With regard to the numerical stability concerning small values of 4AC, we

compute either zero in two different ways (Bachmaier, 2009):

x01 =


−2C

B−
√
B2−4AC

when B < 0,

−B−
√
B2−4AC
2A

when B > 0.

x02 =


−B+

√
B2−4AC
2A

when B 6 0,

−2C
B+
√
B2−4AC

when B > 0.

Therefore when A > 0 and Dis > 0, this leads to a two-sided confidence inter-

val [x01, x02]. When A < 0 and Dis > 0, the exact confidence interval goes to

17



(−∞, x02]
⋃

[x01,+∞). The confidence interval for a mixed linear model will be given

in Chapter 3.

2.8 Confidence Set for the Difference of the X-Coordinates of Two Vertices

Bachmaier (2010) published the confidence set for the difference of the x−coordinate

of two quadratic regression models. For two independent samples, such as control and

treatment groups, the quadratic regression model given in Bachmaier’s paper is,

yi = β
(mid)
0 + β

(eff)
0 Ii + β

(mid)
1 xi + β

(eff)
1 Iixi + β

(mid)
2 x2

i + β
(eff)
2 Iix

2
i + εi (2.12)

where

Ii =


−1 if yi comes from control group C,

+1 if yi comes from treatment group T.

is a dummy variable to indicate the group, and other parameters are defined as

explained in model (2.9). From model (2.12), the distinct models for control and

treatment groups are,

yi = β
(C)
0 + β

(C)
1 xi + β

(C)
2 x2

i + εi for group C,

yi = β
(T)
0 + β

(T)
1 xi + β

(T)
2 x2

i + εi for group T,

with the coefficients,

β
(C)
k = β

(mid)
k − β(eff)

k for k = 0, 1, 2,

β
(T)
k = β

(mid)
k + β

(eff)
k for k = 0, 1, 2.

The difference of x−coordinates of vertices from two groups can be tested for

model (2.12). In order to obtain an exact F -test or t-test for testing the vertices

and the corresponding confidence set within the framework of general linear models,

linearity of the difference of x-coordinate of the vertices with respect to regression
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coefficients is required. Therefore one more assumption is needed, which is equal

quadratic coefficients in both groups, i.e.,

β
(C)
2 = β

(T)
2 , or equivalent, β

(eff)
2 = 0.

Denote V (C)′ = (V
(C)
x , V

(C)
y ) and V (T)′ = (V

(T)
x , V

(T)
y ) as the vectors of vertices for

the two groups respectively. With the additional assumption, the point estimates of

the x-coordinate are,

V̂x
(C)

=
−b(C)

1

2b
(C)
2

=
−(b

(mid)
1 − b(eff)

1 )

2b
(mid)
2

, V̂x
(T)

=
−b(T)

1

2b
(T)
2

=
−(b

(mid)
1 + b

(eff)
1 )

2b
(mid)
2

.

where b
(mid)
1 , b

(eff)
1 , and b

(mid)
2 are the least squares estimates of fixed regression coeffi-

cients. The difference of x-coordinate of vertices, V
(diff)
x = V

(T)
x − V (C)

x = 0 is equiva-

lent to β
(eff)
1 +β2V

(diff)
x = 0, which is a linear combination of β’s. Then β

(eff)
1 +β2V

(diff)
x

distributes as a t distribution with N − 5 degrees of freedom, where N is the sample

size and the lost 5 degrees of freedom is with regard to the number of regression

coefficients β’s, the confidence interval for V
(diff)
x is (Bachmaier, 2010):

V (diff)
x ∈ C(V (T)

x − V (C)
x )

⇔

(
b

(eff)
1 + b2V

(diff)
x

)2

V̂ar(b
(eff)
1 ) + 2V

(diff)
x Ĉov(b

(eff)
1 , b2) +

[
V

(diff)
x

]2

V̂ar(b2)
6 t2N−5,1−α/2

⇔
(
b

(eff)
1 + b2V

(diff)
x

)2

6(
V̂ar(b

(eff)
1 ) + 2V (diff)

x Ĉov(b
(eff)
1 , b2) +

[
V (diff)
x

]2
V̂ar(b2)

)
· t2N−5,1−α/2

⇔ A ·
[
V (diff)
x

]2
+B · V (diff)

x + C 6 0,

(2.13)

where, A = b2
2 − V̂ar(b2) · t2N−5,1−α/2

B = 2b
(eff)
1 b2 − 2Ĉov(b

(eff)
1 , b2) · t2N−5,1−α/2

C =
[
b

(eff)
1

]2

− V̂ar(b
(eff)
1 ) · t2N−5,1−α/2 .
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The inequality in (2.13) reveals the isotonicity of the confidence interval with regard

to the confidence level. The terms in the brackets of the right-hand side give a

variance, which cannot be negative, hence the right side is monotone increasing with

the confidence level. To solve this inequality (2.13), if A 6= 0, then A ·
[
V

(diff)
x

]2

+B ·

V
(diff)
x +C is a quadratic function. It has two roots if the discriminant Dis = B2−4AC

is positive. With respect to the numerical stability concerning small values of 4AC,

we compute either root in two different ways (Bachmaier, 2010):

x01 =


−2C

B−
√
B2−4AC

when B < 0,

−B−
√
B2−4AC
2A

when B > 0.

x02 =


−B+

√
B2−4AC
2A

when B 6 0,

−2C
B+
√
B2−4AC

when B > 0.

Therefore when A > 0 and Dis > 0, this leads to a two-sided confidence inter-

val [x01, x02]. When A < 0 and Dis > 0, the exact confidence interval goes to

(−∞, x02]
⋃

[x01,+∞). The confidence set for a mixed linear model will be given

in Chapter 4.
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Chapter 3

A TEST AND CONFIDENCE SET FOR THE LOCATION OF A QUADRATIC

GROWTH CURVE

3.1 Two Quadratic Growth Curve Models

In this dissertation, growth curves with random parameters are studied. Since the

responses for each individual are measured repeatedly over time, the models may be

polynomial growth curves. Two specific quadratic models for the growth curves from

model (2.1) are explored, one is a mixed model with second-order polynomial and

random intercept, named the random intercept model; the other is a mixed model

with second-order polynomial and both random intercept and random slope, named

the random slope model. They are defined as follows:

Second-order mixed model with random intercept (random intercept

model),

yij = β0 + β1tij + β2t
2
ij + α0i + εij i = 1, ..., N j = 1, ..., ni (3.1)

where,

N is the number of individuals, ni is the number of occasions for the ith individual,

β0, β1 and β2 are fixed regression coefficients, assuming β2 6= 0

α0i is random effect of the ith individual, α0i ∼ N(0, σ2
α0

),

εij is the random error term of the ith individual at the jth occasion, εij ∼ N(0, σ2
e),

α0i and εij are independent, i.e. Cov(α0i, εij) = 0 for all i,

yij is the response at jth occasion of ith individual, and tij is a time measurement.
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In matrix notation, model (3.1) can be written as,

yi = Xiβ +Ziαi + εi

where,

Xi is the model matrix of regressors for individual i, andXi =



1 ti1 t2i1

1 ti2 t2i2
...

...
...

1 ti,ni t2i,ni


,

Zi is matrix known model matrix, and Z ′i = (1, 1, · · · , 1),

β is an unknown vector of fixed effects, and β′ = (β0, β1, β2),

αi is an unknown vector of random effect, αi = α0i and Cov(α0i) = G(1×1) = σ2
α0

,

0 < σ2
α0
<∞,

εi is an unknown vector of random errors for individual i with mean E(εi) = 0

and covariance Cov(εi) = Ri, and Ri(ni×ni) = σ2
eI(ni×ni), 0 < σ2

e < ∞, αi and εi are

independent,

yi is a known vector of observations for individual i, with mean E(yi) = Xiβ

and covariance Σyi = ZiGZ
′
i +Ri, because of the normality derivation of marginal

distribution of yi in Section 2.2.

To derive the covariance structure for the random intercept model (3.1), the vari-

ance for each response is,

Var(yij) = Var(Xijβ + α0i + εij) = σ2
α0

+ σ2
e .

Similarly, the marginal covariance and correlation between any pair of responses, yi,j

and yi,j′ , are,

Cov(yi,j, yi,j′) = Cov(Xijβ + α0i + εij, Xij′β + α1i + εij′) = σ2
α0
,

and

ρ = Corr(yi,j, yi,j′) =
σ2
α0

σ2
α0

+ σ2
e

.
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Therefore the marginal covariance matrix of the repeated measurements has the fol-

lowing compound symmetry pattern,

Σyi =



σ2
α0

+ σ2
e σ2

α0
σ2
α0

· · · σ2
α0

σ2
α0

σ2
α0

+ σ2
e σ2

α0
· · · σ2

α0

σ2
α0

σ2
α0

σ2
α0

+ σ2
e · · · σ2

α0

...
...

...
. . .

...

σ2
α0

σ2
α0

σ2
α0

· · · σ2
α0

+ σ2
e


= σ2

eI + σ2
α0
J .

Second-order mixed model with random intercept and random slope

(random slope model),

yij = β0 + β1tij + β2t
2
ij + α0i + α1itij + εij i = 1, ..., N j = 1, ..., ni (3.2)

where,

α0i and α1i are random effects of individual i, α0i ∼ N(0, σ2
α0

), α1i ∼ N(0, σ2
α1

)

and Cov(α0i, α1i) = σα0α1 ,

εij, β0, β1, β2, ni, N , yij and tij are defined the same as in model (3.1),

α0i, and α1i are independent of εij, i.e. Cov(α0i, εij) = 0 and Cov(α1i, εij) = 0 for

all i.

In matrix notation, model (3.2) can be written as,

yi = Xiβ +Ziαi + εi

where,

Xi is model matrix of regressors for individual i, and Xi =



1 ti1 t2i1

1 ti2 t2i2
...

...
...

1 ti,ni t2i,ni


,

Zi is matrix known model matrix, and Z ′i =

 1 1 · · · 1

ti1 ti2 · · · ti,ni

,
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β is an unknown vector of fixed effects, and β′ = (β0, β1, β2),

αi is an unknown vector of random effects, α′i = (α0i, α1i), and Cov(αi) =

G(2×2) =

 σ2
α0

σα0α1

σα0α1 σ2
α1

,

εi is an unknown vector of random errors for individual i with mean E(εi) = 0

and covariance Cov(εi) = Ri, and Ri(ni×ni) = σ2
eI(ni×ni), αi and εi are independent,

yi is a known vector of observations for individual i, with mean E(yi) = Xiβ and

covariance Σyi = ZiGZ
′
i +Ri.

To derive the covariance structure for the random slope model (3.2), the variance

of each response is

Var(yij) = Var(Xijβ +Zijαi + εij) = g11 + 2tijg12 + t2ijg22 + σ2
e , (3.3)

where Var(εij) = σ2
e , g11 = σ2

α0
, g22 = σ2

α1
and g12 = σα0α1 ; g11 and g22 are the

diagonal elements of G, and g12 is the off diagonal element of G. Similarly, the

marginal covariance and correlation between any pair of responses, yi,j and yi,k, are

Cov(yi,j, yi,k) = Cov(Xijβ+Zijαi+εij, Xikβ+Zikαi+εik) = g11+(tij+tik)g12+tijtikg22,

(3.4)

and

ρ = Corr(Yi,j, Yi,k) =
g11 + (tij + tik)g12 + tijtikg22√

g11 + 2tijg12 + t2ijg22 + σ2
√
g11 + 2tikg12 + t2ikg22 + σ2

which is close to the unstructured covariance pattern.

For the random intercept model (3.1) and the random slope model (3.2), denote

b′ = (b0, b1, b2) as the maximum likelihood estimator (MLE) , defined in equation

(2.2), of fixed regression coefficients β′ = (β0, β1, β2). As proved in Section 2.2,

under some situations such as all the covariance parameters of random effects are

known, the distribution of b is exactly normal. More generally, such as the covariance

24



parameters of random effects are unknown, b is approximately normally distributed

in large samples with mean β and covariance Σb, defined in equation (2.3),

Σb =


σ2
b0

σb0b1 σb0b2

σb0b1 σ2
b1

σb1b2

σb0b2 σb1b2 σ2
b2

 =

(∑
i

X ′iΣ
−1
yi
Xi

)−1

, (3.5)

The corresponding estimated covariance of Σb is,

Σ̂b =


σ̂2
b0

σ̂b0b1 σ̂b0b2

σ̂b0b1 σ̂2
b1

σ̂b1b2

σ̂b0b2 σ̂b1b2 σ̂2
b2

 =

(∑
i

X ′iΣ̂
−1
yi
Xi

)−1

. (3.6)

Denote Ωb = 1
N

(∑
i

X ′iΣ
−1
yi
Xi

)−1

, then

√
N(b− β)

L→ N3(0,Ωb). (3.7)

3.2 Methods for Confidence Intervals and Region

Let V ′ = (Vx, Vy) be the vertex of a quadratic growth curve; the vertex can be

expressed as a non-linear function of β, as shown in formula (2.4),

Vx(β1, β2) = −1

2
β1β

−1
2 , Vy(β0, β1, β2) = β0 −

1

4
β2

1β
−1
2 . (3.8)

Denote V̂ ′ = (V̂x, V̂y) as an estimate of the vertex V , V̂ ′ = (V̂x, V̂y) can be expressed

using the estimator of β,

V̂x(b1, b2) = −1

2
b1b
−1
2 , V̂y(b0, b1, b2) = b0 −

1

4
b2

1b
−1
2 .

In order to obtain the confidence set of the vertex through the fixed regression coef-

ficients β’s, the first-order partial derivative of V with respect to β is required. For

the vertex V ,

∂V

∂β
= D =

 ∂Vx
∂β0

∂Vx
∂β1

∂Vx
∂β2

∂Vy
∂β0

∂Vy
∂β1

∂Vy
∂β2

 =

 0 −1
2
β−1

2
1
2
β1β

−2
2

1 −1
2
β1β

−1
2

1
4
β2

1β
−2
2

 . (3.9)

25



Similarly, for the estimated vertex V̂ , the first-order partial derivative evaluated at

β = b is,

∂V

∂β
|
β=b

= D̂ =

 0 −1
2
b−1

2
1
2
b1b
−2
2

1 −1
2
b1b
−1
2

1
4
b2

1b
−2
2

 .

Methods for confidence set of the vertex through β will be presented in Section 3.2.1.

3.2.1 Delta Method for Confidence Intervals of Coordinates X and Y

Statistical software routinely compute estimates and inference of the fixed regres-

sion coefficients β, but not usually for non-linear functions of β. The vertex of the

quadratic growth curve given equation (3.8) is obviously a non-linear function of β.

The mean and covariance matrix of the estimated vertex can be obtained through b

by large sample theory. The multivariate delta method (2.6) applies by satisfying all

the conditions. As sample size N tends to infinity, V̂ (b) converges to V in probability

and the asymptotic covariance is,

ACov(V̂ ) = ΣV̂ = DΣbD
′ =

 σ2
V̂x

σV̂xV̂y

σV̂xV̂y σ2
V̂y

 ,

where D and Σb come from equations (3.9) and (3.5). The estimated asymptotic

covariance of estimated vertex, ˆACov(V̂ ), is obtained at β = b,

ˆACov(V̂ ) = Σ̂V̂ = D̂Σ̂bD̂
′ =

 σ̂2
V̂x

σ̂V̂xV̂y

σ̂V̂xV̂y σ̂2
V̂y

 , (3.10)

where,

σ̂2
V̂x

= (0, −1

2
b−1

2 ,
1

2
b1b
−2
2 ) · Σ̂b · (0, −

1

2
b−1

2 ,
1

2
b1b
−2
2 )′ ,

σ̂2
V̂y

= (1, −1

2
b1b
−1
2 ,

1

4
b2

1b
−2
2 ) · Σ̂b · (1, −

1

2
b1b
−1
2 ,

1

4
b2

1b
−2
2 )′ .

(3.11)

Since the estimated regression coefficients b are approximately normally distributed

(3.7) and the estimated vertex V̂ is a function of b, by the delta method, V̂ is approx-

imately multivariate normal with mean V (β) and covariance ΣV̂ when the sample
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size N is large. Define ΩV̂ = DΩbD
′, then ΣV̂ = NΩV̂ and

√
N(V̂ − V )

L→ N2(0,ΩV̂ ). (3.12)

Based on linear model theory, each variable of a multivariate normal vector is normal,

therefore V̂x is approximately normally distributed with mean Vx and variance σ2
V̂x

, i.e.

V̂x
a∼ N(Vx, σ

2
V̂x

), where symbol
a∼ is defined as asyptotically distributed. Similarly,

V̂y is approximately normally distributed with mean Vy and variance σ2
V̂y

, i.e. V̂y
a∼

N(Vy, σ
2
V̂y

). Hence, the approximate (1− α)% confidence interval of V̂x is,

(V̂x − Z1−α/2σ̂V̂x , V̂x + Z1−α/2σ̂V̂x).

The approximate (1− α)% confidence interval of V̂y is,

(V̂y − Z1−α/2σ̂V̂y , V̂y + Z1−α/2σ̂V̂y).

where α is the type I error rate, σ̂V̂x and σ̂V̂y are given in equation (3.11).

3.2.2 Gradient Method for Confidence Interval of Coordinate X

Bachmaier (2009) presented the confidence set for the x-coordinate where a

quadratic regression model has a given gradient, as reviewed in Section 2.7; Inequality

(2.11) can be used to compute a confidence interval for x-coordinate with a given

gradient. For the vertex of a quadratic growth curve, the specific gradient equals

zero, i.e. m = 0. If the covariance parameters are unknown, we have shown that

the estimated vertex, V̂ , is approximate normal as the sample size tends to infinity.

Hence, to form an approximate asymptotic confidence interval of the x-coordinate of

the vertex of a quadratic growth curve, the normal approximation is applied. The

adjusted method is,

x0 ∈ C(Vx)
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⇔ (b1 + 2x0b2)2

σ̂2
b1

+ 4x0σ̂b1b2 + 4x2
0σ̂

2
b2

6 Z2
1−α/2

⇔ (b1 + 2x0b2)2 6 [σ̂2
b1

+ 4x0σ̂b1b2 + 4x2
0σ̂

2
b2

] · Z2
1−α/2

⇔ A · x2
0 +B · x2

0 + C 6 0 .

(3.13)

where, A = b2
2 − σ̂2

b2
· Z2

1−α/2

B = b1b2 − σ̂b1b2 · Z2
1−α/2

C =
1

4
(b2

1 − σ̂2
b1
· Z2

1−α/2) .

To solve the inequality, if A 6= 0, then A · x2
0 + B · x2

0 + C in inequality (3.13) is

a parabola. It has two roots if the discriminant D = B2 − 4AC is positive. With

regard to the numerical stability concerning small values of 4AC, root is computed

in either two different ways:

x01 =


−2C

B−
√
B2−4AC

when B < 0

−B−
√
B2−4AC
2A

when B > 0

, x02 =


−B+

√
B2−4AC
2A

when B 6 0

−2C
B+
√
B2−4AC

when B > 0

(3.14)

Hence when A > 0 and D > 0, this leads to a two-sided confidence interval [x01, x02].

When A < 0 and D > 0, the confidence interval goes to (−∞, x02]
⋃

[x01,+∞). In

this dissertation, only the first situation is considered. An approximate (1 − α)%

confidence interval for coordinate x of the estimated vertex, V̂x, is [x01, x02] given in

equation (3.14).

3.2.3 Mean Response Method for Confidence Interval of Coordinate Y

If the x−coordinate of vertex Vx is given and substituted into the regression model

ŷij = b0 + b1xij + b2x
2
ij,

Then Vy = C ′b, where C = (1, Vx, V
2
x ), where V̂y is treated as a mean response of

y at x = Vx. The variance of y−coordinate of the vertex is σ2
V̂y

= C ′ΣbC, and the
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estimated variance is σ̂2
V̂y

= C ′Σ̂bC. Then,

V̂y − Vy
σ̂2
V̂y

∼ N(0, 1) .

Therefore the (1− α)% confidence interval for the y−coordinate of vertex is

(V̂y − Z1−α/2σ̂V̂y , V̂y + Z1−α/2σ̂V̂y).

If the x−coordinate of the vertex V̂x is estimated, the y−coordinate of vertex V̂y can

be calculated V̂y = b0 + b1 · V̂x + b2 · V̂x
2
. Using the equations V̂x = −1

2
b1b
−1
2 and

V̂ 2
x = 1

4
b2

1b
−2
2 ,

σ̂2
V̂y

= (1, −1

2
b1b
−1
2 ,

1

4
b2

1b
−2
2 ) · Σ̂b · (1, −

1

2
b1b
−1
2 ,

1

4
b2

1b
−2
2 )′ ,

it is same as the estimated variance of V̂y from the delta method. Therefore, in this

condition, the mean response method becomes the delta method.

3.2.4 Confidence Region for Vertex

As defined in equation (3.8), the vertex of a quadratic growth curve is a two-

dimensional vector; the two elements are the x-coordinate and the y-coordinate and

they are related. In order to find the confidence region for the vertex, the large sample

distribution of a quadratic form can be applied. Consider the chi-square distribution

with k degrees of freedom, defined as the distribution of a sum of the squares of k in-

dependent standard normal random variables. It was proven in (3.12) that the V̂ has

an approximate bivariate normal distribution, hence
(
V̂ − V

)
Σ
−1/2

V̂

a∼ N2(0, I(2×2)).

Let z =
(
V̂ − V

)
Σ
−1/2

V̂
, by definition z′z is χ2

(2) (Rencher and Nchaalh, 2007). In

the quadratic form notation, V̂x − Vx

V̂y − Vy


′

Σ−1

V̂

 V̂x − Vx

V̂y − Vy

 ∼ χ2
(2) .

29



Because Σ̂V̂ is a consistent statistic for ΣV̂ , by large sample theory an approximate

chi-square distribution with 2 degrees of freedom is obtained, V̂x − Vx

V̂y − Vy


′

Σ̂−1

V̂

 V̂x − Vx

V̂y − Vy

 a∼ χ2
(2) .

Therefore the approximate (1− α)% confidence region of the vertex is V̂x − Vx

V̂y − Vy


′

Σ̂−1

V̂

 V̂x − Vx

V̂y − Vy

 6 χ2
1−α,2 , (3.15)

where α is the type I error rate and χ2
1−α,2 is the critical value. The confidence region

for the vertex is the area covered by an ellipse, since (3.15) with equality is an elliptic

equation.

3.3 Power Analysis

Power analysis plays an important role to reject the null hypothesis if it specifies

a vertex point that is actually not the true vertex point for quadratic growth curve.

Consider the hypotheses,

H0 : V = V0 v.s. Ha : V = Va (3.16)

where Va is the true vertex and V0 is the hypothesized vertex point under the null

hypothesis. The power function of a statistical test is the probability that the test

statistic falls in the rejection region R (Kenward and Roger, 1997). The approxima-

tion (3.15) can be used to obtain a direct method to test the hypothesis (3.16). The

power function of the direct chi-square test will be presented in Section 3.3.3.

An indirect method to test the hypotheses (3.16) would use an F statistic with

respect to β’s, since the x and y-coordinates of the vertex (3.8) are nonlinear functions

of β’s. Transform the hypotheses (3.16) to the hypotheses with regard to β’s; the
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new hypotheses are stated as follows,

H0 :

 Vx

Vy

 =

 −1
2
β0,1β

−1
0,2

β0 − 1
4
β2

0,1β
−1
0,2

 vs

 Vx

Vy

 6=
 −1

2
β0,1β

−1
0,2

β0 − 1
4
β2

0,1β
−1
0,2


where Vx and Vy are the coordinates of V . Alternatively, the null hypothesis may be

simply stated as,

H0 : β = β0, (3.17)

where β′0 = (β0,0, β0,1, β0,2) and V0x = −1
2
β0,1β

−1
0,2 and V0y = β0,0 − 1

4
β2

0,1β
−1
0,2 . Power

functions of the indirect F test will be presented in Section 3.3.1 and Section 3.3.2

for the random intercept model (3.1) and the random slope model (3.2).

The two null hypotheses (3.16) and (3.17) are not necessarily equivalent. For

the x−coordinate of the vertex, Vx = −1
2
β1β

−1
2 , if β2 is shifted by amount ∆, Vx

can remain unchanged by changing β1 with certain amount ∆ , i.e. the change of

β2 can be offset by the change of β1. Similarly, for the y−coordinate of the vertex,

Vy = β0 − 1
4
β2

1β
−1
2 , if the ratio β2

1β
−1
2 is shifted amount ∆, Vy can remain the same

by shifting the same amount ∆ for β0, i.e. the change of ratio β2
1β
−1
2 can be offset

by the change of β0. The explanation is also shown in Figure 3.1; different quadratic

functions with different coefficients β’s share the same vertex V . In conclusion,

“do not reject H0 : β = β0” implies “do not reject H0 : V = V0”, while “reject

H0 : β = β0” does not necessarily imply “reject H0 : V = V0”.

3.3.1 Power Function of F Test for Random Intercept Model

To derive the power function for testing the hypothesis (3.17) with respect to β

for the random intercept model (3.1), a randomized block design with random block

can be presented since it is applicable to model the longitudinal data. Repeated mea-

surements on a single sample from a population can be represented by a randomized
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Figure 3.1: Different Quadratic Functions with Same Vertex

block model,

yij = µ.. + α0i + τj + εij (3.18)

where,

yij is the response at jth occasion for ith subject with E(yij) = µ.. + τj ,

µ.. is a constant for grand mean of all the observations,

α0i is the random effect, and α0i are independent N(0, σ2
α0

),

τj is the fixed effect, and τj’s are constants subject to the restriction Στj = 0,

εij are independent N(0, σ2
e), and independent of the α0i,

i = 1, 2, ..., N ; j = 1, 2, ...ni. N is sample size, and ni is number of occasions

assuming to be same for all the subjects as n.

Testing hypothesis (3.17) for random intercept model (3.1) is equivalent to testing

a potential quadratic trend for the randomized block model (3.18). The null hypoth-

esis of no potential trend for model (3.18) can be stated as H0 : τ = 0. Under the as-

sumption of the compound symmetry covariance structure, Σyi = σ2
e ·In×n+σ2

α0
·Jn×n,

the test statistic for H0 : τ = 0 is an F statistic based on sum of squares error and
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sum of squares treatment (occasion), where

SS(Occasion) = N ·
∑
j

(ȳ.j − ȳ..)2 SS(Error) =
∑
i

∑
j

(yij − ȳi. − ȳ.j + ȳ..)
2 .

The F statistic is exact and uniformly most powerful (UMP); a UMP test is a hy-

pothesis test which has the greatest power among all possible tests of a given Type I

error rate α (Casella and Berger, 2002). Sum of squares occasion can be partitioned

into sum of squares for polynomial trend using Gram-Schmidt orthonormalization or

the Cholesky factorization of X ′iXi, where Xi is the model matrix for subject i. The

Cholesky factor produces orthonormalization, however it is less numerically stable. A

specific example of Cholesky factorization is illustrated to test quadratic trend for the

randomized block model. Consider the number of occasion, n = 3, then the design

matrix Xi for the randomized block model is,

Xi =


1 1 0 0

1 0 1 0

1 0 0 1

 .

The equivalent 2nd order random intercept model (3.1) is,

yij = β0 + β1tij + β2t
2
ij + α0i + εij

where tij is the time measurement, β0, β1 and β2 are parameters of regression coeffi-

cients, α0i is the random effect and normally distributed, α0i ∼ N(0, σ2
α0

), yij and εij

are same as denoted in model (3.18).

The design matrix Xi for the random intercept model and matrix K = X ′iXi

are,

Xi =


1 1 1

1 2 4

1 3 9

 , K = X ′iXi =


3 6 14

6 14 36

14 36 98

 .
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The Cholesky factor S of matrix K based on the regression model is lower triangular

with positive diagonal elements such that K = SS′. In this example,

S =


√

3 0 0

6/
√

3
√

2 0

14/
√

3 8/
√

2
√

2/
√

3

 .

In general, the design matrix Xi for randomized block design and the random inter-

cept model with up to (q − 1)th order polynomial are,

Xi =



1 1 0 · · · 0

1 0 1 · · · 0

1 0 0 · · · 0

...
...

...
. . .

...

1 0 0 · · · 1


, Xi =



1 1 12 · · · 1q−1

1 2 22 · · · 2q−1

1 3 32 · · · 3q−1

...
...

...
. . .

...

1 n n2 · · · nq−1


.

The assumption of equally spaced intervals for time measurements has to be satisfied,

otherwise, the columns for the design matrix should be the actual values of occasions.

The Cholesky factorization algorithm is usable to obtain the Cholesky factor of matrix

K = X ′iXi from the random intercept model (Johnson et al., 1992);

1. Partition matrices K = SS′ as,

H =

 a11 K ′21

K21 K22

 =

 s11 0

S21 S22


 s11 S′21

0 S′22


=

 s2
11 s11S

′
21

s11S21 S21S
′
21 + S22S

′
22

 .

2. Determine s11 and S21:

s11 =
√
a11, S21 =

1

s11

K21 .
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3. Compute S22 from

k22 − S21S
′
21 = S22S

′
22

this is a Cholesky factorization of order n− 1.

The null hypothesis H0 : βq×1 = β0, testing a potential (q−1)th order polynomial

trend, is a component of the null hypothesis H0 : τ = 0, testing all polynomial

trends; then sum of squares for H0 : β = β0 can be obtained from H0 : Lτ = 0 by

reparametrization, where L contains coefficients for orthogonal polynomial contrasts.

Denote lm as the mth row for L, the sum of squares for each contrast is,

SS(Contrastk) =

N · (
∑
j

lmj ȳ.j)
2∑

j

l2mj
=
(
Lβ̂
)′ (
L(X ′X)−1L′

)−1
(
Lβ̂
)
.

SS(Contrastk)/σ
2 ∼ χ2(n, λ), where λ =

(
Lβ̂
)′

(L(X ′X)−1L′)
−1
(
Lβ̂
)
/(2σ2) Then

the test is based on F = MS(Contrastk)
MS(Error)

; it is an exact test (Khuri et al., 2011).

For the random intercept model, the generalized F statistic for testing H0 : βq×1 =

β0 is,

F =

(b− β0)′

((∑
i

X ′iΣ
−1
yi
Xi

)−1
)−1

(b− β0)

q
, (3.19)

where the numerator degrees of freedom is ndf1 = q and the denominator degrees of

freedom is ddf1 = N · (n− 1)− (q− 1); it is an approximate test. The non-centrality

parameter, λ1, is

λ1 = (β − β0)′

(∑
i

X ′iΣ
−1
yi
Xi

)−1
−1

(β − β0).

Under H0, λ1 = 0; on the other hand, given Ha is true, λ1 > 0. Therefore the power

function is

Power ≈ Prob{F (ndf1, ddf2, λ1) > F1−α, ndf1, ddf1}
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where λ1 is the value of the non-centrality parameter and F1−α is the critical value of

the central F at the designated α level. Comparison of the central F and non-central

F distribution is displayed in Figure 3.2. In Figure 3.2(a), the probability density

function (pdf) for the central F distribution is the red curve and pdf for the non-

central F distribution is the blue curve. In Figure 3.2(b), given the critical value,

vertical orange line, the yellow area represents the rejection region under central F

distribution and the sum of yellow and green area is power for the test under non-

central F distribution.

(a) PDF of Central and Non-Central F Distribution (b) Power for F Test

Figure 3.2: Power for Non-Central F Distribution

3.3.2 Power Function of F Test for Random Slope Model

For random slope model (3.2), the variance of each response and covariance be-

tween any two responses of same subject are given in equation (3.3) and (3.4). The

test of H0 : β = β0 using a F-type statistic (3.19) is an approximate test in that

the denominator degrees of freedom ddf1a is not exact. The power function for the

approximated F test is

Power ≈ Prob{F (ndf1, ddf1a, λ1) > F1−α, ndf1, ddf1a}
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where F1−α is the critical value of the central F distribution with the approximate

denominator degrees of freedom. Two main methods for computing denominator

degrees of freedom for longitudinal studies, Satterthwaite and Kenward-Roger, are

briefly illustrated. As defined, θ is the vector of unknown parameters in Σyi which

includes all fixed regression coefficients β and variance components, and suppose

C =

(∑
i

X ′iΣyiXi

)−
, where M− denotes a generalized inverse of matrix M . Let Ĉ

and θ̂ be the corresponding estimates. For an estimable contrast matrix Lh×p with

the rank of LĈL′, q > 1. The Satterthwaite denominator degrees of freedom for

the F statistic are computed by first performing the spectral decomposition LĈL′ =

P ′DP , where P is an orthogonal matrix of eigenvectors and D is a diagonal matrix

of eigenvalues, both of dimension q × q. Define lm to be the mth row of L, and let

vm =
2(Dm)2

g′mMgm

where Dm is the mth diagonal element of D, gm is the gradient of lmClm with respect

to θ, evaluated at θ̂ and M is the asymptotic covariance matrix of θ̂ obtained from

the second derivative matrix of the likelihood equations. Then let

E =

q∑
m=1

vm
vm − 2

I(vm > 2)

where the indicator function eliminates terms for which vm 6 2. The degrees of

freedom for F are then computed as

v =
2E

E − q

provided E > q; otherwise v is set to zero.

Kenward and Roger (1997) derived another approximation for denominator de-

grees of freedom,

v = 4 +
h+ 2

h× u− 1
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where u = Var(F )
2E(F )2 , E(F ) and Var(F ) are the mean and variance for test statistic

F (ndf1, ddf1a, λ1). The observed information matrix of the covariance parameter es-

timates is used in the calculations. For covariance structures that have nonzero second

derivatives with regard to the covariance parameters, the Kenward-Roger covariance

matrix adjustment includes a second order term.

3.3.3 Power Function for Chi-Square Test

The non-central chi-square distribution can be applied to compute power for the

hypotheses (3.16), H0 : V = V0 vs Ha : V = Va, since V has an asymptotic

multivariate normal distribution as proven in (3.12). Using Theorem 5.5 in textbook

Rencher and Schaalje (2008), V̂ ′Σ−1

V̂
V̂ distributes as a non-central chi-square with 2

degrees of freedom with the non-centrality parameter

λ2 = (V − V0)′Σ−1

V̂
(V − V0)

=

 Vx − V0x

Vy − V0y


′

Σ−1

V̂

 Vx − V0x

Vy − V0y


=

 −1
2
β1β

−1
2 − V0x

β0 − 1
4
β2

1β
−1
2 − V0y


′

Σ−1

V̂

 −1
2
β1β

−1
2 − V0x

β0 − 1
4
β2

1β
−1
2 − V0y

 .

Namely, V̂ ′Σ−1

V̂
V̂ ∼ χ2

2,λ2
. Under the null hypothesis, the non-centrality parameter

λ2 = 0, an approximate distribution with 2 degrees of freedom follows: V̂x − V0x

V̂y − V0y


′

Σ̂−1

V̂

 V̂x − V0x

V̂y − V0y

 a∼ χ2
(2),λ2

.

where estimated covariance Σ̂V̂ is the consistent statistic for ΣV̂ . Therefore the

decision rule is reject the null hypothesis if V̂x − V0x

V̂y − V0y


′

Σ̂−1

V̂

 V̂x − V0x

V̂y − V0y

 > χ2
1−α,2 , (3.20)

38



otherwise do not reject the null hypothesis, where χ2
1−α,2 is the critical value given test

size level α. Comparing the confidence region for the vertex (3.15) and the rejection

region in (3.20), both are obtained through the approximate chi-square distribution

with 2 degrees of freedom in a quadratic form; the only difference is the reversed

inequality sign. The relationship between the confidence region and power analysis

will be shown in Section 3.4. The power function for the test is

Power ≈ Prob
{
χ2(2, λ2) > χ2

1−α,2
}
.

Comparison of central chi-square and non-central chi-square distributions is displayed

in Figure 3.3. In Figure 3.3 (a), the pdf for the central chi-square distribution is

the red curve and the pdf for the non-central chi-square distribution is the blue

curve. In Figure 3.3 (b), given the critical value, the vertical orange line, the yellow

area represents the rejection region under central chi-square distribution and the

sum of yellow and green area is power for the test under the non-central chi-square

distribution.

(a) PDF of Central and Non-Central Chi-Square Dis-

tribution

(b) Power for Chi-Square Test

Figure 3.3: Power for Non-Central Chi-Square Distribution
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3.3.4 Leverage Value for the Vertex

The hat matrix H , plays an important role in diagnostics for linear regression

analysis. The hat matrix, sometimes also called the influence matrix and projection

matrix, maps the vector of observed values to the vector of predicted values. It

describes the influence each observed value has on each predicted value, ∂ŷ/∂y, where

y is the known vector of response of all the observations and ŷ is the estimated vector

of response. Suppose that a linear model is solved using ordinary least squares (OLS),

the estimator for the regression coefficient is β̂ = (X ′X)−1X ′y and the predicted

value is ŷ = X(X ′X)−1X ′y, whereX is the model matrix. Therefore the hat matrix

for OLS is HOLS = X(X ′X)−1X ′. The leverage hii, the diagonal element of the hat

matrix H , is commonly used to diagnose influential observations for linear regression;

it identifies observations whose distance from the center of the data causes them to

have a potentially large effect on the fitted values. In OLS regression, the leverage

values are always between 0 and 1; the trace of the hat matrix HOLS is q, then the

average value of leverage is q/N , where where q is the number of regression coefficients

β′s and N is sample size. The larger the leverage, the more likely that the observed

value is an outlier with respect to x direction (Kutner et al., 2005).

Leverage for subject i, ∂ŷi/∂y
′
i, is also an important diagnostic tool for longitu-

dinal studies. Unlike the value of leverage for OLS, the leverage for generalized least

square (GLS) is a matrix quantity (Gruttola et al., 1987). As illustrated in equation

(2.2) and (2.3) for mixed model, the estimate for the regression coefficient and the

predicted value using the MLE method are β̂ =

(
N∑
i=1
X ′iΣ

−1
yi Xi

)−1( N∑
i=1
X ′iΣ

−1
yi yi

)
and

Σβ̂ =

(
N∑
i=1

X ′iΣ
−1
yi
Xi

)−1

, then the estimated response for subject i is, ŷi = Xiβ̂ =

Xi

(
N∑
i=1

X ′iΣ
−1
yi
Xi

)−1( N∑
i=1

X ′iΣ
−1
yi
yi

)
. Therefore the leverage matrix for subject i
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is H∗i = ∂ŷi/∂y
′
i = Xi

(
N∑
i=1

X ′iΣ
−1
yi
Xi

)−1

X ′iΣ
−1
yi

given the covariance matrix held

fixed. The leverage at jth occasion for ith subject is the partial derivative of the fitted

value, ∂ŷij/∂yij; it may be positive or negative. If the correlation between observa-

tions is high, it is particularly likely to be a negative leverage; otherwise, if the sample

correlation is 0, the leverage are always positive.

For the quadratic growth curve, since Vx(β1, β2) = −1
2
β1β

−1
2 , the x−coordinate

of the vertex maybe far away from the scope of the studied occassion values if β2 is

small in magnitude compared to β1. Moreover, ∂Vy
∂β1

= −1
2
β1β

−1
2 , so both σ2

V̂x
and σ2

V̂y

may become large if −1
2
β1β

−1
2 is large, and the power of the test H0 : V = V0 will

decrease as Vx = −1
2
β1β

−1
2 becomes large. It is proposed to use the leverage value of

the x−coordinate of V as a measure of the distance from the scope of the studied

occasion values to the vertex. Power for the chi-square test of H0 : V = V0 is related

to the leverage. The model matrix Xi with x−coordinate of the vertex for the ith

subject of random intercept model (3.1) and random slope model (3.2) is,

Xi,((ni+1)×3) =



1 t1 t21

1 t2 t22
...

...
...

1 tni t2ni

1 Vx V 2
x


.

Then the leverageH∗i for subject i is,H∗i,((ni+1)×(ni+1)) = Xi

(
N∑
i=1

X ′iΣ
−1
yi
Xi

)−1

X ′iΣ
−1
yi

;

the leverage on the vertex point V is,

H∗i,(ni+1,ni+1) = (1 Vx V
2
x )

(
N∑
i=1

X ′iΣ
−1
yi
Xi

)−1

(1 Vx V
2
x )′(Σ−1

yi
)(ni+1,ni+1) (3.21)

As deduced in Section 3.3.3, the non-centrality parameter for chi-square distribution
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for computing power is,

λ2 = ∆V ′Σ−1

V̂
∆V = ∆V ′

D( N∑
i=1

X ′iΣ
−1
yi
Xi

)−1

D′

−1

∆V , (3.22)

where D is the derivative of V with regard to the regression coefficients β defined

in equation (3.9), and ∆V = V − V0, the difference between true vertex V and

hypothesized vertex V0. Keeping the difference ∆V fixed, the influence of the leverage

on the vertex point (3.21) can be seen in the non-centrality parameter (3.22). When

the vertex is farther outside the scope of the occasions, the x-coordinate of the vertex

point Vx = −1
2
β1β

−1
2 , an element in D matrix, becomes large, which results in smaller

λ2 and greater H∗i,(ni+1,ni+1). Therefore as Vx is further outside the scope of occasions,

the lower the non-centrality parameter, the greater the leverage on the vertex point,

the lower the power.

3.4 Studies of Coverage and Power

To test the validity of test statistics presented in this chapter, Monte Carlo sim-

ulation studies were performed for two growth curves, random intercept model (3.1)

and random slope model (3.2) For each model, we construct the confidence intervals

for the x and y coordinates of the vertex using two different methods; the gradient

method and the delta method for x-coordinate and the delta method and mean re-

sponse method for y-coordinate respectively. As proved that the delta method and

the mean response method are identical, the simulation results are only presented

once. Confidence region and power analysis are also provided. Since some methods

in this dissertation assume large sample, the validity of these methods are examined

for small sample size. Thus different sample sizes are selected for the simulation stud-

ies across different type I error rates. Six occasions are chosen for the growth curve,

that is, each individual is measure at six different time points, assuming no missing
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data. In order to investigate the influence of the leverage of the vertex, different

models with vertex within and outside the scope of occasion are examined.

3.4.1 Random Intercept Model, X-coordinate of Vertex Within Scope of Occasions

For random intercept model (3.1), 1000 data sets are generated with regression

coefficients β′ = (β0, β1, β2) = (2, 8,−1) and variances of random effect σ2
α0

= 1, σ2
e =

0.5 for three different sample sizes 100, 50 and 25. These parameters are chosen for

easy explanation. The true model is,

yij = 2 + 8tij − t2ij + α0i + εij, i = 1, 2, ..., N j = 1, 2, ..., 6.

The true vertex of this quadratic growth curve is V ′ = (4, 18), where Vx = 4 is within

the scope of occasions, [0, 5]. Profile plots and smoothed profile plots of 1000 data

sets are shown in Figure 3.4 for sample size 20, 50 and 100; the figure indicates the

quadratic trend of the growth curve. The larger the sample size, the narrower the

width of all the curves.

The chi-square QQ plots of the response variable y are also provided in Figure

3.5 for sample size 20, 50 and 100. In the figure, when the sample size is relatively

large, 50 or 100, the points are around the straight line, which reveals the variables

are multivariate normal. However, when the sample size is small, 20, the chi-square

QQ plot reflects the minor violation of the normality assumption, since the points are

not around or on a straight line.

Simulation Results for Confidence Intervals and Confidence Region

The results of the simulation for confidence intervals of x-coordinate are shown in

Table 3.1, where symbol D and G represent delta method and gradient method re-

spectively. The table includes the empirical coverage p as well as the lower bound,
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(a) Profile Plot for N = 20 (b) Profile Plot for N = 50 (c) Profile Plot for N = 100

(d) Smoothed Plot for N = 20 (e) Smoothed Plot for N = 50 (f) Smoothed Plot for N = 100

Figure 3.4: Profile and Smoothed Profile Plots for Random Intercept Model

(a) N = 20 (b) N = 50 (c) N = 100

Figure 3.5: Chi-square QQ Plot for Random Intercept Model

upper bound and the width of the empirical coverage, where the empirical coverage

is the count that the computed confidence interval contains the true Vx divided by

1000, the number of data sets, and the lower and upper bounds are computed using

Wald-type confidence interval (Brown et al., 2001). For each data set, if the com-

puted confidence interval contains the true value, it is coded as 1, otherwise 0. Using

the count divided by the total number of data sets 1000, we obtain the empirical
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coverage p = count
1000

. Because of only two possible outcomes, 0 or 1, the count has a

binomial distribution of 1000 independent experiments, each of which yields success

with probability 1 − α. The mean and variance of this binomial distribution are

1000 · p and 1000 · p · (1− p). Hence the standard deviation of coverage is
√

(α)(1−α)
1000

and the approximate bounds using normal approximation of the true coverage are

p± Z1−α/2

√
(α)(1−α)

1000
. The width is the mean of the difference of the upper and lower

limits of interval for 1000 data sets. From Table 3.1, only one of the 18 conditions

has the nominal coverage outside of the bounds; it is sample size 50 with α level

0.05 for the delta method. The width shows that the difference between the delta

method and gradient method is small, since all widths are less than 0.3. All coverages

are slightly low which may be due to relatively small sample sizes. The conclusion

is drawn that both methods are applicable to obtain the confidence interval of the

estimated x-coordinate of the vertex for different sample sizes tested.

The results of simulation for confidence intervals of y-coordinate are shown in

Table 3.2. The two methods, the delta method and the mean response method, are

identical, hence only one result is shown in the table. Similar to Table 3.1, Table

3.2 includes the empirical coverage, the count that the computed confidence interval

contains the true Vy divided by the number of data sets 1000, as well as lower bound,

upper bound and width for the empirical coverage. From the table, one of the 9

conditions have nominal coverage outside the bound, sample size 20 and α level 0.1.

However, for the other four conditions, sample size 20 and α level 0.01 and 0.05, the

method gives reasonable results. We conclude that the method is valid for computing

the confidence interval of y−coordinate of the vertex.

The confidence region (3.15) has an elliptic shape, as discussed in Section 3.2.4.

Figure 3.6 displays the true quadratic curve, y = 2 + 8x + x2, and the ellipse for

the confidence region. For the graph, the value of chi-square, 599, 100 times 5.99
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Table 3.1: Confidence Intervals for X-Coordinate of the Vertex

α Sample Empirical lower upper width Empirical lower upper width

Size Coverage D bound D bound D D Coverage G bound G bound G G

0.01 100 0.985 0.9751 0.9949 0.099 0.984 0.97378 0.99422 0.099

0.01 50 0.984 0.97378 0.99422 0.141 0.987 0.97778 0.99622 0.141

0.01 20 0.984 0.97378 0.99422 0.223 0.983 0.97247 0.99353 0.224

0.05 100 0.940 0.92528 0.95472 0.076 0.937 0.92194 0.95206 0.076

7 0.05 50 0.932 0.9164 0.9476 0.107 0.935 0.91972 0.95028 0.107

0.05 20 0.944 0.92975 0.95825 0.170 0.945 0.93087 0.95913 0.170

0.1 100 0.887 0.87053 0.90347 0.064 0.890 0.87372 0.90628 0.064

0.1 50 0.888 0.87159 0.90441 0.090 0.886 0.86947 0.90253 0.090

0.1 20 0.888 0.87159 0.90441 0.142 0.890 0.87372 0.90628 0.143

* Random intercept model, when x-coordinate of vertex is within occasions for one sample

* D represents the delta method, and G represents the gradient method

Figure 3.6: Confidence Region of Vertex

(the critical value of chi-square distribution with two degrees of freedom when α level

equals 0.05) is chosen to make the ellipse clearer to see. If the chosen critical value is

small, the ellipse in the figure reduces to a dot.

The results of the simulation for the confidence region based on delta method of

the vertex are shown in Table 3.3. The table includes the empirical coverage, the

count of confidence regions containing the true vertex divided by the number of data
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Table 3.2: Confidence Intervals for Y -Coordinate of the Vertex

α Sample Size Empirical Coverage lower bound upper bound width

0.01 100 0.990 0.98190 0.99810 0.554

0.01 50 0.981 0.96988 0.99212 0.778

0.01 20 0.984 0.97378 0.99422 1.223

0.05 100 0.942 0.92751 0.95649 0.422

0.05 50 0.945 0.93087 0.95913 0.592

0.05 20 0.941 0.92640 0.95560 0.931

0.1 100 0.896 0.88012 0.91188 0.354

0.1 50 0.899 0.88333 0.91467 0.497

7 0.1 20 0.88 0.86310 0.89690 0.781

* Random intercept model, when x-coordinate of vertex is within occasions for one sample

sets 1000, as well as lower bound and upper bound for the empirical coverage. From

Table 3.3, only one of the 9 conditions has the nominal coverage outside the bounds;

it is sample size 100 and α level 0.05. Although the chi-square distribution with

two degrees of freedom applied to compute the confidence region is approximate, we

conclude that the method is practicable for the confidence region for different sample

sizes tested. A before, empirical coverage is slightly low for all conditions.

Results for Power

To compare the simulated power and the theoretical power, calculated using power

functions derived in Section 3.3, hypothesized points as shown in Table 3.4 are tested;

the results are also displayed in Table 3.4. The hypothesized points are selected due

to the medium effect size. As proved, there is an unique solution for the vertex if β is

fixed, however there are infinite many solutions for β if the vertex is given. Therefore
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Table 3.3: Confidence Region of the Vertex

Type I Sample Empirical lower upper

Error Size Coverage bound bound

0.01 100 0.988 0.97913 0.99687

0.01 50 0.985 0.97510 0.99490

0.01 20 0.98 0.96860 0.99140

7 0.05 100 0.933 0.91750 0.94850

0.05 50 0.936 0.92083 0.95117

0.05 20 0.941 0.92640 0.95560

0.1 100 0.889 0.87266 0.90534

0.1 50 0.884 0.86734 0.90066

0.1 20 0.886 0.86947 0.90253

* Random intercept model, when x-coordinate of vertex is within occasions for one sample

the fixed regression parameters β are chosen initially, then the vertex is computed

using the selected β to obtain the unique solution. In the table, the theoretical power

for chi-square and F test are displayed as well as the simulated power with the lower

and upper bounds for chi-square and F test respectively. The result shows that the

confidence intervals of simulated power for chi-square test contain all the chi-square

theoretical power; only 2 of 15 confidence intervals of simulated power for F test not

include the F theoretical power. Further more, 13 of 15 theoretical power for F test

are no less than the theoretical power for chi-square test. Roughly, we conclude that

the power for F test is greater than that for chi-square test.
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The simulation result for power of the chi-square test are also presented in Table

3.5. The hypothesized vertex value is chosen directly depending on the distance of

0.05 and 0.1 for x-coordinate and y-coordinate between the tested point and the true

vertex. All the pairwise combinations of these points are tested. The results include

the empirical power, the count of samples which reject the null hypothesis divided by

1000, the total number of data sets, as well as lower bound and upper bound for the

interval around the empirical power.

From the table, when we keep V0x at the true value, the change of V0y does not

affect the power much. However, when we keep V0y at the true value, the change of

V0x affects the power much more. The result shows that the x-coordinate is more

sensitive than y-coordinate. It can be explained on the width of confidence interval;

the widths of y-coordinate confidence interval are commonly larger than x-coordinate

confidence interval, which means that the variation of y-coordinate is larger than

x-coordinate. The reason is that the number of time points we choose for t is only

six, i.e. the domain of t is {0, 1, 2, 3, 4, 5}, however the range of y-coordinate is much

wider. At last, if the true vertex is tested, and the empirical power is nearly equal

to the size of the test, 0.05. For a non-vertex point, there is a positive relationship

between power and sample size, i.e. the larger the sample size, the greater the power.

Simulation results reveal that all the methods and statistics perform reasonably

for the random intercept model when the x-coordinate of the true vertex is within

the domain of the data.

3.4.2 Random Slope Model, X-coordinate of Vertex Within Scope of Occasions

For random intercept model (3.2), 1000 data sets are generated with the fixed

coefficient parameters β′ = (β0, β1, β2) = (2, 8,−1) and variances of random effect

σ2
α0

= 1, σ2
α1

= 0.5, σα0,α1 = 0, σ2
e = 0.5 for three sample sizes 100, 50 and 20. The
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Table 3.5: Power Analysis for Chi-square Test (α = 0.05)

N = 100 N = 50 N = 20
V0x V0y SPower LB UB SPower LB UB SPower LB UB
3.9 18.05 0.999 0.99704 1.00096 0.93 0.91419 0.94581 0.56 0.52923 0.59007
3.9 17.95 0.999 0.99704 1.00096 0.936 0.92083 0.95117 0.57 0.53931 0.60069
3.9 18.1 0.999 0.99704 1.00096 0.932 0.91640 0.94760 0.569 .53831 0.59969
3.9 17.9 0.999 0.99704 1.00096 0.982 0.91198 0.94402 0.558 0.52722 0.58878
3.95 18.05 0.671 0.64188 0.70012 0.346 0.31652 0.37548 0.169 0.14577 0.19223
3.95 17.95 0.657 0.62758 0.68642 0.339 0.30966 0.37548 0.172 0.14861 0.19539
3.95 18.1 0.712 0.68393 0.74007 0.389 0.35878 0.41922 0.183 0.15903 0.20697
3.95 17.9 0.694 0.66544 0.72256 0.372 0.34204 0.40196 0.812 0.15809 0.20591
4.05 18.05 0.644 0.61432 0.67368 0.37 0.34008 0.39992 0.198 0.17330 0.22270
4.05 17.95 0.653 0.62350 0.68250 0.392 0.36174 0.42226 0.217 0.19145 0.24255
4.05 18.1 0.673 0.64392 0.70208 0.382 0.35189 0.41211 0.205 0.17998 0.23002
4.05 17.9 0.7 0.6716 0.7284 0.417 0.38644 0.44756 0.215 0.18954 0.24046
4.1 18.05 0.994 0.98921 0.99879 0.894 0.87492 0.91308 0.53 0.49907 0.56093
4.1 17.95 0.995 0.99063 0.99937 0.9 0.88141 0.91859 0.534 0.50308 0.56492
4.1 18.1 0.994 0.98921 0.99879 0.895 0.87600 0.91400 0.54 0.50911 0.57089
4.1 17.9 0.995 0.99063 0.99937 0.909 0.89117 0.92683 0.549 0.51816 0.57984
4 18 0.067 0.05150 0.08250 0.064 0.04883 0.07917 0.059 0.04440 0.07360

* SPower = Simulated Power, LU = Lower Bound, UB = Upper Bound
* random intercept model, when x-coordinate of vertex is within occasions for one sample

true model is,

yij = 2 + 8tij − t2ij + α0i + α1itij + εij, i = 1, 2, ..., N j = 1, 2, ..., 6.

Then,

E{yij} = 2 + 8tij − t2ij, i = 1, 2, ..., N j = 1, 2, ..., 6.

The true vertex of the quadratic growth curve is V ′ = (4, 18), where Vx = 4 is within

the scope of occasions [0, 5]. Profile plots of 1000 data sets are displayed in Figure

3.7 for sample size 20, 50 and 100 as well as the smoothed profile plots. The figure

suggests the quadratic trend intuitively; the width of the graph becomes more narrow

as the sample size increases. Comparing profile plots for the random slope model 3.7

to random intercept model 3.4, the former curves are wider even for larger sample

size.

The chi-square QQ plots of the response variable y for sample sizes 20, 50, and

100 are displayed in Figure 3.8. Similar findings are drawn from the figure: if the

sample size is relatively large, the normality assumption is satisfied; if the sample size

is small, the normality assumption is violated slightly.
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(a) Profile Plot for N = 20 (b) Profile Plot for N = 50 (c) Profile Plot for N = 100

(d) Smoothed Plot for N = 20 (e) Smoothed Plot for N = 50 (f) Smoothed Plot for N = 100

Figure 3.7: Profile and Smoothed Profile Plots for Random Slope

(a) N = 20 (b) N = 50 (c) N = 100

Figure 3.8: Chi-square QQ Plot for Random Slope Model

Simulation Results for Confidence Interval and Confidence Region

The results of simulation for confidence intervals of the x-coordinate with two covari-

ance structures, UN and CS, are displayed in Table 3.6; UN is the more appropriate

covariance structure. The results include the empirical coverage as well as lower

bound, upper bound and width for the empirical coverage. In Table 3.6 (a), four of
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the 18 conditions have nominal coverage outside the bounds; they are sample size 100

and α level 0.1, both methods, and sample size 20 and α level 0.1, both methods. The

widths indicate that the variation of the two methods is small. In Table 3.6 (b), the

unreasonably high empirical coverage of all the tests result from the inappropriate

covariance structure. To sum up, we conclude that both the methods are appropriate

for the confidence interval of x-coordinate of the estimated vertex for different sample

sizes tested if the covariance structure is correctly specified.

Comparing the two different covariance structures, the coverage for the model with

covariance structure CS is extremely high. The reason is that the number of estimated

covariance parameters for compound symmetry structure is only 2; it does not match

the random slope model as provided in Section 3.1. That is, the strong assumption

that the correlation between any pair of measurements is the same regardless of the

time interval between the measurements is not satisfied for the random intercept

model. Simulation results also illustrate that the covariance structure UN is more

reasonable than CS.

The results of simulation for confidence intervals of the y-coordinate of the esti-

mated vertex with covariance structure UN and CS are shown in Table 3.7. Only one

result is shown, since the mean response method and the delta method are equiva-

lent. The tables include the empirical coverage as well as lower bound, upper bound

and width for the empirical coverage. In Table 3.7 (a), two of the 9 conditions have

nominal coverage that is not within the bounds; they are sample size 100 and α level

0.1, and sample size 20 and α level 0.05. In Table 3.7 (b), all the conditions have the

nominal coverage within the bounds. In conclusion, the method performs well for the

confidence interval of y-coordinate of vertex for different sample sizes tested.

Comparing the two different covariance structures as for x-coordinate, the nominal

coverage obtained from covariance structure CS is always large. As stated, there are
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Table 3.6: Confidence Intervals for X-Coordinate

a) Covariance Structure Unstructured
α Sample Empirical lower upper width Empirical lower upper width

Size Coverage D bound D bound D D Coverage G bound G bound G G
0.01 100 0.984 0.97378 0.99422 0.207 0.985 0.97510 0.99490 0.207
0.01 50 0.983 0.97247 0.99353 0.291 0.982 0.97117 0.99283 0.291
0.01 20 0.986 0.97643 0.99557 0.459 0.985 0.97510 0.99490 0.460
0.05 100 0.945 0.93087 0.95913 0.157 0.944 0.92975 0.95825 0.157
0.05 50 0.94 0.92528 0.95472 0.221 0.939 0.92417 0.95383 0.221
0.05 20 0.938 0.92305 0.95295 0.349 0.937 0.92194 0.95206 0.350
7 0.1 100 0.879 0.86204 0.89596 0.132 0.876 0.85886 0.89314 0.132
0.1 50 0.89 0.87372 0.90628 0.186 0.889 0.87266 0.90534 0.186

7 0.1 20 0.882 0.86522 0.89878 0.293 0.882 0.86522 0.89878 0.294

b) Covariance Structure Compound Symmetry
α Sample Empirical lower upper width Empirical lower upper width

Size Coverage D bound D bound D D Coverage G bound G bound G G
0.01 100 0.992 0.98475 0.99925 0.234 0.993 0.98621 0.99979 0.234
0.01 50 0.991 0.98331 0.99869 0.329 0.99 0.98190 0.99810 0.329
0.01 20 0.99 0.98190 0.99810 0.522 0.99 0.98190 0.99810 0.524
0.05 100 0.991 0.98515 0.99685 0.240 0.99 0.98383 0.99617 0.240
0.05 50 0.968 0.95709 0.97891 0.250 0.966 0.95477 0.97723 0.250
0.05 20 0.962 0.95015 0.97385 0.340 0.964 0.95245 0.97555 0.340
0.1 100 0.93 0.91673 0.94327 0.150 0.929 0.91564 0.94236 0.150
0.1 50 0.926 0.91238 0.93962 0.210 0.923 0.90913 0.93687 0.210
0.1 20 0.93 0.91673 0.94327 0.334 0.93 0.91673 0.94327 0.334

* Random slope model, when x-coordinate of vertex is within occasions for one sample
* D represents the delta method, and G represents the gradient method

only two parameters for CS which is not appropriate for the random slope model.

The same conclusion is drawn that covariance structure UN is more applicable than

CS.

The simulation results for confidence region of the vertex with covariance structure

UN and CS are displayed in Table 3.8. The tables include the empirical coverage as

well as lower bound and upper bound for the empirical coverage. From Table 3.8 (a),

only one of the 9 conditions had nominal coverage outside the bounds; it is sample

size 50 and α level 0.1. In Table 3.8 (b), all 9 conditions result in good empirical

coverage. We conclude that the approximate chi-square distribution employed for

confidence region is valid for different sample sizes tested.

Results for Power

We investigate power analysis with covariance structure UN only, since UN has been

shown to be more appropriate than CS using the simulation results of confidence
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Table 3.7: Confidence Intervals for Y -Coordinate

a) Covariance Structure Unstructured

α Sample Empirical lower upper width
Size Coverage bound bound

0.01 100 0.989 0.98051 0.99749 1.550
0.01 50 0.991 0.98331 0.99869 2.178
0.01 20 0.984 0.97378 0.99422 3.430
0.05 100 0.941 0.92640 0.95560 1.180
0.05 50 0.938 0.92305 0.95295 1.658

7 0.05 20 0.933 0.91750 0.94850 2.610
7 0.1 100 0.88 0.86310 0.89690 0.990
0.1 50 0.892 0.87585 0.90815 1.392
0.1 20 0.889 0.87266 0.90534 2.191

b) Covariance Structure Compound Symmetry

α Sample Empirical lower upper width
Size Coverage bound bound

0.01 100 0.994 0.98771 1.00029 1.756
0.01 50 0.998 0.99436 1.00164 2.465
0.01 20 0.992 0.98475 0.99925 3.917
0.05 100 0.983 0.97499 0.99101 2.035
0.05 50 0.965 0.95361 0.97639 1.876
0.05 20 0.963 0.95130 0.97470 2.981
0.1 100 0.926 0.91238 0.93962 1.122
0.1 50 0.927 0.91347 0.94053 1.574
0.1 20 0.931 0.91782 0.94418 2.502

* Random slope model, when x-coordinate of vertex is within occasions for one sample

interval and confidence region. Values of β and V under H0 are given in Table

3.9; the results for comparing the theoretical power and simulated power for both

chi-square test and F test are also displayed in the table. As illustrated, the fixed

regression parameters β are selected first, then the vertex is computed using the β to

obtain the solution. From the table, the theoretical power for the chi-square and F

tests are displayed as well as the simulated power with the lower and upper bounds

for chi-square and F test respectively. Only 2 of 15 confidence intervals of simulated

power for the chi-square test do not contain the chi-square theoretical power; Seven of

15 confidence intervals of simulated power for F test do not include the F theoretical

power. Comparing Table 3.4 and 3.9, both theoretical and simulated power for chi-

square test and F test decreases when the random slope term is added in the model.
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Table 3.8: Confidence Region of the Vertex

a) Covariance Structure Unstructured

α Sample Empirical lower upper
Size Coverage bound bound

0.01 100 0.99 0.98190 0.99810
0.01 50 0.986 0.97643 0.99557
0.01 20 0.984 0.97378 0.99422
0.05 100 0.936 0.92083 0.95117
0.05 50 0.936 0.92083 0.95117
0.05 20 0.94 0.92528 0.95472
0.1 100 0.886 0.86947 0.90253

7 0.1 50 0.875 0.85780 0.89220
0.1 20 0.885 0.86840 0.90160

b) Covariance Structure Compound Symmetry

α Sample Empirical lower upper
Size Coverage bound bound

0.01 100 0.992 0.98475 0.99925
0.01 50 0.99 0.98190 0.99810
0.01 20 0.989 0.98051 0.99749
0.05 100 0.951 0.93762 0.96438
0.05 50 0.949 0.93536 0.96264
0.05 20 0.954 0.94102 0.96698
0.1 100 0.903 0.88760 0.91840
0.1 50 0.894 0.87799 0.91001
0.1 20 0.913 0.89834 0.92766

* Random slope model, when x-coordinate of vertex is within occasions for one sample
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The results of power for chi-square test by directly choosing the hypothesized

vertex points are displayed in Table 3.10. The points to be tested are chosen based

on the distance of 0.05 and 0.1 between the hypothesized point and true vertex, for

both the x and y direction. The table includes the power as well as lower bound and

upper bound for the interval around the empirical power.

From the table, when V0x is kept equal to the true value, a change of V0y does

not affect the power dramatically. However, when we keep V0y equal to the true

value, a change of V0x extremely affects the results. It indicates that the x-coordinate

is more sensitive than the y-coordinate; the reason is similar as shown for random

intercept model. Checking the width from the confidence interval tables, the width of

y-coordinate confidence interval is commonly larger than that of x-coordinate, which

means that the variation of y-coordinate is larger than x-coordinate. It is because the

number of occasions for the x-coordinate is only six, however the range of y-coordinate

is much broader than x-coordinate. Finally, the true vertex point is tested, the result

shows the empirical power is nearly equal to the size of the test. One more conclusion

is that the relationship between sample size and power is positive.

Table 3.10: Power Analysis for Chi-square Test (α = 0.05, UN)

N = 100 N = 50 N = 20
V0x V0y SPower LB UB SPower LB UB SPower LB UB
3.9 18.05 0.994 0.98921 0.99879 0.854 0.83211 0.87589 0.439 0.40824 0.46976
3.9 18.1 0.997 0.99361 1.00039 0.894 0.87492 0.91308 0.484 0.45303 0.51497
3.9 17.9 0.964 0.95245 0.97555 0.711 0.68290 0.73910 0.32 0.29109 0.34891
3.9 17.95 0.977 0.96771 0.98629 0.763 0.73664 0.78936 0.352 0.32240 0.38160
3.95 18.05 0.594 0.56356 0.62444 0.341 0.31162 0.37038 0.153 0.13069 0.17531
3.95 17.95 0.397 0.36667 0.42733 0.241 0.21449 0.26751 0.104 0.08508 0.12292
3.95 18.1 0.689 0.66031 0.71769 0.396 0.36569 0.42631 0.178 0.15429 0.20171
3.95 17.9 0.326 0.29695 0.35505 0.192 0.16759 0.21641 0.094 0.075912 0.11209
4.05 18.05 0.442 0.41122 0.47278 0.247 0.22027 0.27373 0.149 0.12693 0.17107
4.05 18.1 0.348 0.31848 0.37752 0.207 0.18189 0.23211 0.137 0.11569 0.15831
4.05 17.95 0.604 0.57369 0.63431 0.351 0.32142 0.38058 0.183 0.15903 0.20697
4.05 17.9 0.69 0.66133 0.71867 0.413 0.38248 0.44352 0.215 0.18954 0.24046
4.1 18.05 0.952 0.93875 0.96525 0.752 0.72523 0.77877 0.408 0.37754 0.43846
4.1 18.1 0.935 0.91972 0.95028 0.71 0.68188 0.73812 0.378 0.34795 0.40805
4.1 17.95 0.984 0.97622 0.99178 0.827 0.80356 0.85044 0.476 0.44505 0.50695
4.1 17.9 0.993 0.98783 0.99817 0.86 0.83849 0.88151 0.509 0.47801 0.53999
4 18 0.064 0.04883 0.07917 0.064 0.04883 0.07917 0.06 0.04528 0.07472

* SPower = Simulated Power, LU = Lower Bound, UB = Upper Bound
* Random slope model, when x-coordinate of vertex is within occasions for one sample
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In conclusion, simulation results illustrate that the methods and statistics perform

reasonably for the random slope model when the x-coordinate of vertex is within the

scope of occasions.

3.4.3 Random Intercept Model, X-coordinate of Vertex Outside Scope of Occasions

In the this section, a vertex with the x-coordinate outside the scope of occasions is

examined for the random intercept model (3.1). One thousand data sets are generated

with regression coefficients β′ = (β0, β1, β2) = (3, 2.5,−0.2), variances for random

effect and error σ2
α0

= 1, σ2
e = 0.5 for three sample sizes 50, 25 and 10. The true

model is,

yij = 3 + 2.5tij − 0.2t2ij + α0i + εij, i = 1, 2, ..., N j = 1, 2, ..., 6.

The true vertex of this quadratic growth curve is V ′ = (6.25, 10.8125), where Vx =

6.25 is outside the scope of occasions, [0, 5]. Profile plots for 1000 data sets are shown

in Figure 3.9 for sample size 10, 25 and 50 and smoothed profile plots as well. The

width of graph tends to be narrower as the sample size increases. From these plots,

intuitively vertices of quadratic curves are outside the scope of the occasions, since

the curves always increase along the whole range of occasions and never turn.

The chi-square QQ plots of the response variable y for sample size 10, 25, and

50 are displayed in Figure 3.10. The plots for sample size 25 and 50 support the

assumption of normality, however the plot for sample size 10 violates the normality

assumption severally. We would expect the simulation result for sample size 10 may

not be good enough due to the small sample size, the following simulation results

confirm it.
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(a) Profile Plot for N = 10 (b) Profile Plot for N = 25 (c) Profile Plot for N = 50

(d) Smoothed Plot for N = 10 (e) Smoothed Plot for N = 25 (f) Smoothed Plot for N = 50

Figure 3.9: Profile and Smoothed Plots for Mixed Model with Random Intercept

(a) N = 10 (b) N = 25 (c) N = 50

Figure 3.10: Chi-square QQ Plot for Random Intercept Model

Simulation Results for Confidence Interval and Confidence Region

The results of the simulation for confidence intervals of x-coordinate are displayed in

Table 3.11. The table contains the empirical coverage p as well as the lower bound,

upper bound and the width of the empirical coverage. Only one of the 18 conditions

has the bounds that do not include the nominal coverage; it is sample size 10 and
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α level 0.01. The width becomes smaller as sample sizes are larger, however the

widths of two methods are similar which indicates the similarity of these methods.

In conclusion, both methods are applicable to derive the confidence interval of the

estimated x-coordinate of vertex for different sample sizes tested.

Table 3.11: Confidence Intervals for X-Coordinate of the Vertex

α Sample Empirical lower upper width Empirical lower upper width
Size Coverage D bound D bound D D Coverage G bound G bound G G

0.01 50 0.991 0.98331 0.99869 1.634 0.991 0.98331 0.99869 1.712
0.01 25 0.986 0.97642 0.99557 2.386 0.989 0.98051 0.99749 2.649

7 0.01 10 0.97 0.95611 0.98389 4.033 0.982 0.97117 0.99283 6.336
0.05 50 0.954 0.94102 0.96698 1.244 0.948 0.93424 0.96176 1.278
0.05 25 0.95 0.93649 0.96351 1.816 0.956 0.94329 0.96871 1.926
0.05 10 0.943 0.92863 0.95737 3.070 0.937 0.92194 0.95206 4.013
0.1 50 0.912 0.89726 0.92674 1.044 0.908 0.89297 0.92303 1.064
0.1 25 0.913 0.89834 0.92766 1.524 0.898 0.88226 0.91374 1.588
0.1 10 0.901 0.88546 0.91654 2.577 0.902 0.88654 0.91747 2.998

* Random intercept model, when x-coordinate of vertex is outside occasions for one sample
* D represents the delta method, and G represents the gradient method

Table 3.12 shows the simulation results for confidence intervals of the y-coordinate.

Similarly as in Table 3.11, Table 3.12 includes the empirical coverage, the count for the

computed confidence interval contains the true Vy divided by total 1000 data sets,

as well as lower bound, upper bound and width for the empirical coverage. From

the table, three of the 9 conditions do not contain the nominal coverage within the

bounds; they are sample size 50 with α level 0.05 and 0.1 and sample size 25 with α

level 0.1. For the simulated width, it decreases as sample size increases as usual.

Table 3.12: Confidence Intervals for Y -Coordinate of the Vertex

α Sample Empirical lower upper width
Size Coverage bound bound

0.01 50 0.987 0.97778 0.99622 1.410
0.01 25 0.993 0.98621 0.99979 2.048
0.01 10 0.981 0.96988 0.99212 3.438

7 0.05 50 0.963 0.95130 0.97470 1.074
0.05 25 0.958 0.94557 0.97043 1.559
0.05 10 0.946 0.93199 0.96001 2.617
7 0.1 50 0.927 0.91347 0.94053 0.901
7 0.1 25 0.921 0.90697 0.93503 1.309
0.1 10 0.912 0.89726 0.92674 2.196

* Random intercept model, when x-coordinate of vertex is outside occasions for one sample
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The results of the simulation for the confidence region of the vertex using the

delta method are displayed in Table 3.13. The table includes the empirical coverage,

as well as lower bound and upper bound for the empirical coverage. From Table 3.13,

three of the 9 conditions have the nominal coverage outside the bounds; They are

sample size 10 with α level 0.01, 0.05 and 0.1. Due to the approximate chi-square

distribution we applied in the method, sample size 10 is too low to satisfy the large

sample assumption. The conclusion is drawn that the chi-square distribution with

two degrees of freedom is practical to compute the confidence region, however small

sample size must be paid special attention to.

Table 3.13: Confidence Region of the Vertex

α Sample Empirical lower upper
Size Coverage bound bound

0.01 50 0.99 0.98190 0.99810
0.01 25 0.98 0.96860 0.99140

7 0.01 10 0.953 0.93577 0.97023
0.05 50 0.943 0.92863 0.95737
0.05 25 0.943 0.92863 0.95737

7 0.05 10 0.899 0.88032 0.91768
0.1 50 0.901 0.88546 0.91654
0.1 25 0.89 0.87372 0.90628

7 0.1 10 0.842 0.82303 0.86097

* Random intercept model, when x-coordinate of vertex is outside occasions for one sample

Results for Power

The hypothesized points as shown in Table 3.14 are tested in order to compare the

theoretical power and simulated power for both chi-square test and F test; the results

are also given in Table 3.14. Again, the fixed regression parameters β are selected

first, then the vertex is computed using β to obtain the solution. From the table, the

theoretical power for chi-square and F tests are presented as well as the simulated

power with the lower and upper bounds for chi-square and F tests. Seven of 15

confidence intervals for simulated power for the chi-square test not contain the chi-
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square theoretical power, especially for sample size 10. The result may be due to the

violation of normality assumption as shown by the chi-square QQ plot. Only two of

15 confidence intervals for simulated power of the F test not include the F theoretical

power. Furthermore, the theoretical power for F test is greater than the theoretical

power for chi-square test under all conditions.
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The results of simulation for power are shown in Table 3.15. The points under

null hypothesis are chosen based on the difference of 0.5 for both x-coordinate and y-

coordinate between the non-vertex tested point and the true vertex. All the pairwise

combinations of these points are tested. Even though all the tested x-coordinates are

out the scope of occasions, these tested points are assumed to be reasonable. The

results include the power, the count, which is the number of rejecting null hypothesis

when the tested point is non-vertex point, divided by the total 1000 data sets, and

the lower bound and upper bound for the interval around the empirical power. From

the table, when we keep V0x fixed, a change of V0y affects the power dramatically.

Similarly, when we keep V0y fixed, a change of V0x also affects the power much. At

last, the true vertex is tested, and the empirical power is nearly equal to the size

of the test. For a non-vertex point, there is a strongly positive relationship between

power and sample size, i.e. power increases remarkably as sample size increases.

Table 3.15: Power Analysis for Chi-square Test (α = 0.05)

N = 50 N = 25 N = 10
V0x V0y SPower LB UB SPower LB UB SPower LB UB
5.25 9.8125 0.987 0.97998 0.99402 0.703 0.67468 0.73132 0.19 0.16568 0.21432
5.25 10.3125 0.954 0.94102 0.96698 0.539 0.50810 0.56990 0.127 0.10636 0.14764
5.25 11.3125 1 1 1 0.999 0.99704 1.00096 0.743 0.71592 0.77008
5.25 11.8125 1 1 1 1 1 1 0.955 0.94215 0.96785
5.75 9.8125 0.966 0.95477 0.97723 0.692 0.66339 0.72061 0.321 0.29206 0.34994
5.75 10.3125 0.327 0.29792 0.35608 0.124 0.10357 0.14443 0.077 0.060476 0.093524
5.75 11.3125 0.986 0.97872 0.99328 0.827 0.80356 0.85044 0.449 0.41817 0.47983
5.75 11.8125 1 1 1 0.998 0.99523 1.00077 0.789 0.76371 0.81429
6.75 9.8125 1 1 1 0.995 0.99063 0.99937 0.811 0.78673 0.83527
6.75 10.3125 0.993 0/98783 0.99817 0.826 0.80250 0.84950 0.502 0.47101 0.53299
6.75 11.3125 0.39 0.35977 0.42023 0.291 0.26285 0.31915 0.221 0.19528 0.24672
6.75 11.8125 0.955 0.94215 0.96785 0.725 0.69732 0.75268 0.452 0.42115 0.48285
7.25 9.8125 1 1 1 0.995 0.99063 0.99937 0.961 0.94900 0.97300
7.25 10.3125 1 1 1 0.987 0.97998 0.99402 0.788 0.76267 0.81333
7.25 11.3125 0.793 0.76789 0.81811 0.535 0.50409 0.56591 0.372 0.34204 0.40196
7.25 11.8125 0.89 0.87061 0.90939 0.632 0.60211 0.66189 0.441 0.41023 0.47177
6.25 10.8125 0.057 0.04263 0.07137 0.057 0.04263 0.07137 0.101 0.08232 0.11968

* SPower = Simulated Power, LU = Lower Bound, UB = Upper Bound
* Random intercept model, when x-coordinate of vertex is outside occasions for one sample

Simulation results indicate that all the methods and statistics performs reason-

ably for the random intercept model when the x-coordinate of vertex is outside the

occasions.
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3.4.4 Random Slope Model, X-coordinate of Vertex Outside Scope of Occasions

For the random slope model (3.2), 1000 data sets are generated with the fixed

coefficient parameters β′ = (β0, β1, β2) = (3, 2.5,−0.2), and covariances for random

effects and error σ2
α0

= 1.5, σ2
α1

= 1, σα0,α1 = 0, σ2
e = 0.5 for sample size 100, 50 and

20. The true model is,

yij = 3 + 2.5tij − 0.2t2ij + α0i + α1itij + εij, i = 1, 2, ..., N j = 1, 2, ..., 6.

Then,

E{yij} = 3 + 2.5tij − 0.2t2ij, i = 1, 2, ..., N j = 1, 2, ..., 6.

The true vertex of the quadratic growth curve is V ′ = (6.25, 10.8125), where the x-

coordinate of vertex Vx = 6.25 is outside the scope of occasions [0, 5]. Profile plots and

the smoothed profile plots of 1000 data sets are displayed in Figure 3.11 for sample

size 20, 50 and 100. As before, the larger the sample size, the narrower the width.

From the plots, vertices of quadratic growth curves are out the scope of occasions.

The profile plots for random slope model are much wider than those for random

intercept model.

The chi-square QQ plots of the response variable y for sample size 20, 50, and

100 are displayed in Figure 3.12. As previous, we conclude that if the sample size is

large enough, the assumption of normality is satisfied. However, due to the random

linear term in the true model, all three plots seem to reveal a heavy tail.

Simulation Results for Confidence Interval and Confidence Region

The results of simulation for confidence intervals of x-coordinate with covariance

structure UN are displayed in Table 3.16. The results include the empirical coverage

as well as lower bound, upper bound and width for the empirical coverage. In Table
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(a) Profile Plot for N = 20 (b) Profile Plot for N = 50 (c) Profile Plot for N = 100

(d) Smoothed Plot for N = 20 (e) Smoothed Plot for N = 50 (f) Smoothed Plot for N = 100

Figure 3.11: Profile Plots for Mixed Model with Random Intercept and Slope

(a) N = 20 (b) N = 50 (c) N = 100

Figure 3.12: Chi-square QQ Plot for Random Slope Model

3.16, none of the 18 conditions has the nominal coverage outside the bounds. Width

for each method becomes wider as the sample size decreases. Simulation results are

reasonable which indicates the validity of both methods.

Table 3.17 displays the simulation results for confidence intervals of the y-coordinate

of the estimated vertex with covariance structure UN. In the table, the empirical cov-

erage is shown as well as lower bound, upper bound and width for the empirical
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Table 3.16: Confidence Intervals for X-Coordinate

α Sample Empirical lower upper width Empirical lower upper width
Size Coverage D bound D bound D D Coverage G bound G bound G G

0.01 100 0.99 0.98190 0.99810 1.728 0.989 0.98051 0.99749 1.757
0.01 50 0.99 0.98190 0.99810 2.461 0.992 0.98475 0.99925 2.546
0.01 20 0.988 0.97913 0.99687 3.965 0.991 0.98331 0.99869 4.390
0.05 100 0.957 0.94443 0.96957 1.315 0.955 0.94215 0.96785 1.328
0.05 50 0.95 0.93649 0.96351 1.873 0.96 0.94785 0.97215 1.910
0.05 20 0.952 0.93875 0.96525 3.018 0.956 0.94329 0.96871 3.193
0.1 100 0.907 0.89189 0.92211 1.104 0.9 0.88439 0.91561 1.111
0.1 50 0.903 0.88760 0.91840 1.572 0.892 0.87585 0.90815 1.594
0.1 20 0.9 0.88439 0.91561 2.533 0.902 0.88653 0.91747 2.634

* Random slope model, when x-coordinate of vertex is outside occasions for one sample
* D represents the delta method, and G represents the gradient method

coverage. None of the 9 conditions has the nominal coverage outside the bound. In

conclusion, the method is appropriate given the relatively large sample size.

Table 3.17: Confidence Intervals for Y -Coordinate

α Sample Empirical lower upper width
Size Coverage bound bound

0.01 100 0.994 0.98771 1.00029 3.371
0.01 50 0.980 0.96860 0.99140 4.782
0.01 20 0.985 0.97510 0.99490 7.539
0.05 100 0.958 0.94557 0.97043 2.566
0.05 50 0.944 0.92975 0.95825 3.64
0.05 20 0.941 0.92640 0.95560 5.738
0.1 100 0.906 0.89082 0.92118 2.154
0.1 50 0.891 0.87479 0.90721 3.055
0.1 20 0.902 0.88653 0.91747 4.816

* Random slope model, when x-coordinate of vertex is outside occasions for one sample

The simulation results for confidence region of the vertex with covariance structure

UN are shown in Table 3.18. The table includes the empirical coverage as well as lower

bound and upper bound for the empirical coverage. From Table 3.18, none of the 9

conditions had the nominal coverage outside the bounds. Similarly the appropriate

results obtained for α level suggest the properness of the approximate chi-squared

distribution.
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Table 3.18: Confidence Region of the Vertex

α Sample Empirical lower upper
Size Coverage bound bound

0.01 100 0.987 0.97778 0.99622
0.01 50 0.985 0.97510 0.99490
0.01 20 0.986 0.97643 0.99557
0.5 100 0.947 0.93311 0.96089
0.5 50 0.944 0.92975 0.95825
0.5 20 0.936 0.92083 0.95117
0.1 100 0.903 0.88760 0.91840
0.1 50 0.900 0.88439 0.91561
0.1 20 0.888 0.87159 0.90441

* Random slope model, when x-coordinate of vertex is within occasions for one sample

Results for Power

We investigate power of both direct chi-square test and indirect F test with covariance

structure UN. Values for β and V under H0 are given in Table 3.19. Results for

comparing the theoretical power and simulated power for chi-square and F test are

also displayed in Table 3.19. As illustrated, initially the fixed regression parameters

β are selected, then the vertex is computed using the β to obtain the solution. In

the table, the theoretical power for chi-square and F tests are displayed as well as the

simulated power with the lower and upper bounds for chi-square and F tests. From

the table, six of 15 confidence intervals of simulated power for chi-square test contain

the chi-square theoretical power; it may because that the true vertex is far outside

the scope of model. Four of 15 confidence intervals of simulated power for F test do

not include the F theoretical power. Further more, most of theoretical powers for F

test are no greater than the theoretical power for chi-square test but not always.
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Power is smaller in Table 3.19 than in Table 3.14, which reveals that adding the

random slope term in the model leads to power reduction.

The results of power for the chi-square test by directly selecting the hypothesized

vertex points are displayed in Table 3.20. The points to be tested are chosen based

on the difference of 0.5 for both x and y-coordinates between the point under the

null hypothesis and true vertex. We examine all the pairwise combinations of these

points. The table includes the power as well as lower bound and upper bound for

the interval around the empirical power. From the table, when V0x is kept fixed, a

change of V0y influences the power noticeably. Similarly, if V0y is fixed, a change of V0x

extremely affects the results. Finally, when the true vertex point is tested, the result

shows the empirical power is nearly equal to the size of the test. The relationship

between sample size and power is strongly positive.

Table 3.20: Power Analysis for Chi-square Test (α = 0.05, UN)

N = 100 N = 50 N = 20
V0x V0y SPower LB UB SPower LB UB SPower LB UB
5.25 9.8125 0.964 0.95245 0.97555 0.673 0.64392 0.70208 0.137 0.11569 0.15831
5.25 10.3125 0.999 0.99704 1.00096 0.926 0.90978 0.94222 0.341 0.31162 0.37038
5.25 11.3125 1 1 1 1 1 1 0.918 0.90099 0.93501
5.25 11.8125 1 1 1 1 1 1 0.984 0.97622 0.99178
5.75 9.8125 0.236 0.20968 0.26232 0.109 0.08968 0.95383 0.047 0.03388 0.06012
5.75 10.3125 0.297 0.26868 0.32532 0.118 0.09801 0.77684 0.049 0.03562 0.06238
5.75 11.3125 0.981 0.97254 0.98946 0.802 0.77730 0.82670 0.313 0.28426 0.34174
5.75 11.8125 1 1 1 0.974 0.96414 0.98386 0.64 0.61025 0.66975
6.75 9.8125 0.999 0.99704 1.00096 0.939 0.92417 0.95383 0.611 0.58078 0.64122
6.75 10.3125 0.965 0.95361 0.97639 0.75 0.72316 0.77684 0.444 0.41320 0.47480
6.75 11.3125 0.395 0.36470 0.42530 0.246 0.21931 0.27269 0.18 0.15619 0.20381
6.75 11.8125 0.336 0.30672 0.36528 0.205 0.17998 0.23002 0.157 0.13445 0.17955
7.25 9.8125 1 1 1 0.997 0.99361 1.00039 0.884 0.86415 0.90385
7.25 10.3125 1 1 1 0.984 0.97622 0.99178 0.763 0.73664 0.78936
7.25 11.3125 0.965 0.95361 0.97639 0.78 0.75432 0.80568 0.485 0.45402 0.51598
7.25 11.8125 0.859 0.83743 0.88057 0.599 0.56862 0.62938 0.386 0.35583 0.41617
6.25 10.8125 0.053 0.03911 0.06689 0.056 0.04175 0.07025 0.064 0.04883 0.07917

* SPower = Simulated Power, LU = Lower Bound, UB = Upper Bound
* Random slope model, when x-coordinate of vertex is outside occasions for one sample

In conclusion, simulation results illustrate that the methods and statistics perform

reasonably for the random slope model when the x-coordinate of the vertex is outside

the occasions.
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3.4.5 Theoretical Power Analysis for Chi-Square Test

As illustrated in Section 3.3.4, the larger the leverage on the vertex point, the

lower the power. Tables 3.21, 3.22 and 3.23 present additional results on the effect of

leverage. These tables contain the leverage, non-centrality parameter and power with

different x-coordinates of the vertex outside the scope of occasions for sample size 100,

50 and 20 respectively. The variance of the random linear term for quadratic growth

curve, σ2
α1

, changes from 0 to 0.5 in the table; the random slope model with variance

for the random linear term equal to zero reduces to the random intercept model.

From the tables, if the difference ∆V of the true vertex and the hypothesized vertex

is unchanged, when the x−coordinate of vertex is further from the scope of occasions,

the leverage on vertex point increases; simultaneously, the non-centrality parameter

of the chi-square test decreases and the power decreases. When the variance of the

random linear term becomes higher, the power tends to be lower.

For the random intercept model (3.1), we also explore the relationship between the

intraclass correlation coefficient (ICC) ρ =
σ2
α0

σ2
α0

+σ2
e

and the theoretical power of the chi-

square test. The results are displayed in Table 3.24 and 3.25 for variance of random

effect σ2
α0

= 1, with the x−coordinate of vertex within the scope of occasions and the

with x−coordinate of the vertex outside the range. From the tables, if the difference

∆V between the true vertex and hypothesized vertex remains the same, increasing

the intraclass correlation coefficient results in a larger non-centrality parameter and

power. When the variance of error σ2
e = 0.5 is unchanged, Table 3.26 and 3.27 show

the simulation result for the x-value of the vertex within the scope of time points and

for the x-value of the vertex outside the occasions. The results show that keeping

∆V the same, increasing the intraclass correlation coefficient leads to decreasing of

the non-centrality parameter and power.
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Table 3.21: Leverage and Theoretical Power for Chi-Square Test (N = 100)

σ2
α1

= 0 σ2
α1

= 0.25 σ2
α1

= 0.5

Vx Vy Leverage λ2 Power Leverage λ2 Power Leverage λ2 Power

5.0000 9.2500 0.0071 19.8117 0.98442 0.00438 5.16708 0.51768 0.00439 3.68243 0.38608

5.2083 9.5104 0.0096 19.4672 0.98287 0.00536 4.87036 0.49264 0.00536 3.39589 0.35918

5.4348 9.7935 0.0132 19.1172 0.98114 0.00671 4.57919 0.46739 0.00667 3.12384 0.33335

5.6818 10.1023 0.0185 18.7571 0.97919 0.00853 4.29353 0.44204 0.00845 2.86617 0.30870

5.9524 10.4405 0.0262 18.3821 0.97696 0.01100 4.01325 0.41664 0.01084 2.62254 0.28530

6.2500 10.8125 0.0372 17.9869 0.97437 0.01431 3.73819 0.39127 0.01405 2.39244 0.26316

6.5789 11.2237 0.0534 17.5652 0.97131 0.01876 3.46819 0.36600 0.01834 2.17527 0.24231

6.9444 11.6806 0.0770 17.1103 0.96762 0.02471 3.20311 0.34090 0.02405 1.97034 0.22272

7.3529 12.1912 0.1119 16.6140 0.96310 0.03267 2.94291 0.31606 0.03166 1.77695 0.20435

7.8125 12.7656 0.1641 16.0673 0.95744 0.04332 2.68761 0.29155 0.04181 1.59442 0.18716

8.3333 13.4167 0.2430 15.4599 0.95021 0.05761 2.43737 0.26748 0.05536 1.42211 0.17111

8.9286 14.1607 0.3644 14.7802 0.94081 0.07683 2.19247 0.24396 0.07352 1.25947 0.15614

9.6154 15.0192 0.5550 14.0158 0.92830 0.10282 1.95340 0.22110 0.09799 1.10605 0.14221

10.4167 16.0208 0.8614 13.1537 0.91138 0.13827 1.72081 0.19904 0.13125 0.96149 0.12929

11.3636 17.2045 1.3688 12.1817 0.88807 0.18712 1.49558 0.17793 0.17696 0.82559 0.11733

12.5000 18.6250 2.2390 11.0902 0.85562 0.25548 1.27882 0.15791 0.24073 0.69828 0.10632

13.8889 20.3611 3.7975 9.8752 0.81027 0.35307 1.07187 0.13914 0.33158 0.57966 0.09625

15.6250 22.5313 6.7444 8.5429 0.74749 0.49623 0.87637 0.12178 0.46459 0.46997 0.08710

17.8571 25.3214 12.7130 7.1147 0.66303 0.71402 0.69419 0.10597 0.66667 0.36964 0.07888

20.8333 29.0417 25.9401 5.6324 0.55550 1.06228 0.52748 0.09187 0.98946 0.27926 0.07161

* x-coordinate of vertex outside the occasions

* Scope of occasions [0, 5]

* Parameters β′ = (3, 2.5,−0.25), σ2
α0

= 1, σ2
e = 0.5, and σα0α1

= 0

3.5 Discussion

This chapter describes several methods for obtaining confidence intervals and

a confidence region for the vertex of a quadratic growth curve model, including

the x-coordinate of the vertex within and outside the time domain. Initially, the

delta method and gradient method were performed for the confidence interval of

x-coordinate of the vertex, while delta method and mean response method are equiv-

alent for the y-coordinate. The approximate chi-square distribution with two degrees

of freedom was derived for the confidence region analysis and power analysis. Fur-

thermore, in the power and simulation studies, two models, random intercept model

and random slope model, were considered. For each model, three different sample
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Table 3.22: Leverage and Theoretical Power for Chi-Square Test (N = 50)

σ2
α1

= 0 σ2
α1

= 0.25 σ2
α1

= 0.5

Vx Vy Leverage λ2 Power Leverage λ2 Power Leverage λ2 Power

5.0000 9.2500 0.0142 9.90583 0.81154 0.00877 2.58354 0.28154 0.00879 1.84122 0.21044

5.2083 9.5104 0.0192 9.73362 0.80428 0.01073 2.43518 0.26727 0.01071 1.69794 0.19689

5.4348 9.7935 0.0265 9.55858 0.79666 0.01341 2.28960 0.25328 0.01334 1.56192 0.18412

5.6818 10.1023 0.0370 9.37853 0.78856 0.01706 2.14677 0.23958 0.01690 1.43309 0.17212

5.9524 10.4405 0.0523 9.19105 0.77985 0.02199 2.00663 0.22618 0.02169 1.31127 0.16088

6.2500 10.8125 0.0745 8.99343 0.77036 0.02862 1.86910 0.21308 0.02811 1.19622 0.15037

6.5789 11.2237 0.1068 8.78262 0.75987 0.03751 1.73409 0.20030 0.03667 1.08763 0.14055

6.9444 11.6806 0.1541 8.55514 0.74813 0.04942 1.60156 0.18783 0.04810 0.98517 0.13139

7.3529 12.1912 0.2239 8.30699 0.73481 0.06534 1.47146 0.17568 0.06332 0.88847 0.12284

7.8125 12.7656 0.3282 8.03365 0.71950 0.08664 1.34381 0.16387 0.08361 0.79721 0.11486

8.3333 13.4167 0.4860 7.72993 0.70169 0.11521 1.21868 0.15242 0.11071 0.71106 0.10742

8.9286 14.1607 0.7288 7.39010 0.68077 0.15365 1.09624 0.14133 0.14703 0.62974 0.10048

9.6154 15.0192 1.1100 7.00789 0.65596 0.20564 0.97670 0.13064 0.19599 0.55302 0.09401

10.4167 16.0208 1.7229 6.57684 0.62636 0.27653 0.86041 0.12038 0.26250 0.48074 0.08799

11.3636 17.2045 2.7376 6.09084 0.59091 0.37424 0.74779 0.11058 0.35391 0.41279 0.08240

12.5000 18.6250 4.4779 5.54509 0.54855 0.51096 0.63941 0.10130 0.48146 0.34914 0.07722

13.8889 20.3611 7.5951 4.93762 0.49838 0.70614 0.53594 0.09258 0.66315 0.28983 0.07245

15.6250 22.5313 13.4888 4.27147 0.44006 0.99245 0.43819 0.08448 0.92918 0.23499 0.06809

17.8571 25.3214 25.4259 3.55734 0.37438 1.42804 0.34710 0.07705 1.33333 0.18482 0.06415

20.8333 29.0417 51.8801 2.81620 0.30391 2.12455 0.26374 0.07037 1.97893 0.13963 0.06063

* x-coordinate of vertex outside the occasions

* Scope of occasions [0, 5]

* Parameters β′ = (3, 2.5,−0.25), σ2
α0

= 1, σ2
e = 0.5, and σα0α1

= 0

sizes were selected in order to examine the influence of sample size for all the methods.

Three different Type I error rates were chosen as well for the purpose of making the

methods more convincing. Given the simulation results, a conclusion can be drawn

that all methods described in this study for the confidence region of the vertex of

growth curves of 2nd degree polynomial are applicable for different sample sizes, dif-

ferent Type I error rates and different models. For the power analysis, non-vertex

points were tested to show the power of the tests as well as the relationship between

confidence region and power. The theoretical power does not conform well to empir-

ical power for the direct chi-square test when the x−coordinate of the vertex is far

outside the scope of occasions.
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Table 3.23: Leverage and Theoretical Power for Chi-Square Test (N = 20)

σ2
α1

= 0 σ2
α1

= 0.25 σ2
α1

= 0.5

Vx Vy Leverage λ2 Power Leverage λ2 Power Leverage λ2 Power

5.0000 9.2500 0.036 3.96233 0.41197 0.02191 1.03342 0.13569 0.02197 0.73649 0.10961

5.2083 9.5104 0.048 3.89345 0.40564 0.02682 0.97407 0.13040 0.02679 0.67918 0.10469

5.4348 9.7935 0.066 3.82343 0.39918 0.03354 0.91584 0.12525 0.03336 0.62477 0.10006

5.6818 10.1023 0.093 3.75141 0.39250 0.04266 0.85871 0.12023 0.04226 0.57323 0.09571

5.9524 10.4405 0.131 3.67642 0.38552 0.05498 0.80265 0.11533 0.05422 0.52451 0.09163

6.2500 10.8125 0.186 3.59737 0.37813 0.07155 0.74764 0.11057 0.07026 0.47849 0.08780

6.5789 11.2237 0.267 3.51305 0.37022 0.09378 0.69364 0.10593 0.09169 0.43505 0.08422

6.9444 11.6806 0.385 3.42205 0.36165 0.12354 0.64062 0.10140 0.12025 0.39407 0.08087

7.3529 12.1912 0.560 3.32280 0.35227 0.16334 0.58858 0.09700 0.15831 0.35539 0.07772

7.8125 12.7656 0.820 3.21346 0.34189 0.21661 0.53752 0.09271 0.20904 0.31888 0.07478

8.3333 13.4167 1.215 3.09197 0.33031 0.28803 0.48747 0.08855 0.27678 0.28442 0.07202

8.9286 14.1607 1.822 2.95604 0.31732 0.38413 0.43849 0.08450 0.36759 0.25189 0.06943

9.6154 15.0192 2.775 2.80315 0.30266 0.51411 0.39068 0.08059 0.48997 0.22121 0.06701

10.4167 16.0208 4.307 2.63074 0.28608 0.69133 0.34416 0.07682 0.65626 0.19230 0.06474

11.3636 17.2045 6.844 2.43634 0.26738 0.93561 0.29912 0.07319 0.88478 0.16512 0.06261

12.5000 18.6250 11.195 2.21804 0.24641 1.27740 0.25576 0.06974 1.20366 0.13966 0.06064

13.8889 20.3611 18.988 1.97505 0.22316 1.76536 0.21437 0.06647 1.65789 0.11593 0.05881

15.6250 22.5313 33.722 1.70859 0.19789 2.48113 0.17527 0.06340 2.32295 0.09399 0.05712

17.8571 25.3214 63.565 1.42293 0.17118 3.57009 0.13884 0.06057 3.33333 0.07393 0.05559

20.8333 29.0417 129.700 1.12648 0.14405 5.31138 0.10550 0.05800 4.94732 0.05585 0.05421

* x-coordinate of vertex outside the occasions

* Scope of occasions [0, 5]

* Parameters β′ = (3, 2.5,−0.25), σ2
α0

= 1, σ2
e = 0.5, and σα0α1

= 0

In the next chapter, we will investigate confidence intervals and test statistics for

two independent samples, such as treatment and control groups. A test for difference

in the location of the vertices will be developed. Power functions for testing the

difference between two vertices from two groups will be derived.
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Table 3.24: Intraclass Correlation and Theoretical Power for Chi-Square Test

N = 100 N = 50 N = 20

ρ λ2 Power λ2 Power λ2 Power

0.05 3.7118 0.38882 1.8559 0.21183 0.7424 0.11011

0.10 6.7838 0.64079 3.3919 0.3919 1.3568 0.16507

0.15 9.3882 0.78900 4.6941 0.47743 1.8776 0.21389

0.20 11.6450 0.87302 5.8225 0.57041 2.3290 0.25707

0.25 13.6417 0.92136 6.8209 0.64333 2.7283 0.29547

0.30 15.4451 0.95002 7.7225 0.70125 3.0890 0.33003

0.35 17.1088 0.96761 8.5544 0.74809 3.4218 0.36162

0.40 18.6790 0.97875 9.3395 0.78677 3.7358 0.39105

0.45 20.1987 0.98601 10.0994 0.81944 4.0397 0.41906

0.50 21.7119 0.99086 10.8560 0.84768 4.3424 0.44641

0.55 23.2690 0.99415 11.6345 0.87271 4.6538 0.47392

0.60 24.9341 0.99640 12.4670 0.89542 4.9868 0.50255

0.65 26.7977 0.99794 13.3989 0.91652 5.3595 0.53355

0.70 29.0019 0.99894 14.5010 0.93649 5.8004 0.56869

0.75 31.7936 0.99956 15.8968 0.95551 6.3587 0.61072

0.80 35.6581 0.99987 17.8291 0.97326 7.1316 0.66414

0.85 41.7184 0.99998 20.8592 0.98837 8.3437 0.73681

0.90 53.3322 1.00000 26.6661 0.99785 10.6664 0.84099

0.95 87.2698 1.00000 43.6349 0.99999 17.4540 0.97045

* Random intercept model with x-coordinate of vertex within the occasions

* Parameters β′ = (2, 8,−1), V ′ = (4, 18), ∆V ′ = (0.05, 0.5) and σ2
α0

= 1
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Table 3.25: Intraclass Correlation and Theoretical Power for Chi-Square Test

N = 100 N = 50 N = 20

ρ λ2 Power λ2 Power λ2 Power

0.05 3.0613 0.32738 1.5306 0.18120 0.61225 0.09900

0.10 5.6328 0.55553 2.8164 0.30393 1.12656 0.14406

0.15 7.8239 0.70729 3.9119 0.40734 1.56478 0.18438

0.20 9.7136 0.80342 4.8568 0.49147 1.94272 0.22008

0.25 11.3607 0.86435 5.6803 0.55929 2.27214 0.25160

0.30 12.8097 0.90368 6.4048 0.61406 2.56193 0.27947

0.35 14.0950 0.92970 7.0475 0.65860 2.81899 0.30418

0.40 15.2437 0.94738 7.6218 0.69515 3.04874 0.32618

0.45 16.2775 0.95970 8.1388 0.72546 3.25551 0.34588

0.50 17.2143 0.96850 8.6071 0.75085 3.44286 0.36361

0.55 18.0687 0.97493 9.0343 0.77235 3.61374 0.37966

0.60 18.8535 0.97973 9.4268 0.79076 3.77070 0.39429

0.65 19.5803 0.98339 9.7902 0.80669 3.91607 0.40772

0.70 20.2605 0.98625 10.1303 0.82067 4.05210 0.42019

0.75 20.0969 0.98852 10.4534 0.83316 4.18137 0.43193

0.80 21.5374 0.99039 10.7687 0.84463 4.30747 0.44329

0.85 22.1856 0.99201 11.0928 0.85571 4.43711 0.45485

0.90 22.9416 0.99357 11.4708 0.86776 4.58833 0.46820

0.95 24.2391 0.99559 12.1196 0.88642 4.84783 0.49071

* Random intercept model with x-coordinate of vertex outside the occasions

* Parameters β′ = (3, 2.5,−0.25), V ′ = (5, 9.25), ∆V ′ = (0.05, 0.5) and σ2
α0

= 1
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Table 3.26: Intraclass Correlation and Theoretical Power for Chi-Square Test

N = 100 N = 50 N = 20

ρ λ2 Power λ2 Power λ2 Power

0.05 70.5245 1.00000 35.2623 0.99985 14.1049 0.92988

0.10 61.0543 1.00000 30.5272 0.99934 12.2109 0.88885

0.15 53.1999 1.00000 26.5999 0.99781 10.6400 0.84003

0.20 46.5801 1.00000 23.2901 0.99419 9.3160 0.78569

0.25 40.9252 0.99998 20.4626 0.98700 8.1850 0.72806

0.30 36.0386 0.99988 18.0193 0.97460 7.2077 0.66910

0.35 31.7735 0.99955 15.8867 0.95540 6.3547 0.61042

0.40 28.0185 0.99857 14.0093 0.92819 5.6037 0.55322

0.45 24.6873 0.99613 12.3437 0.89230 4.9375 0.49836

0.50 21.7119 0.99086 10.8560 0.84768 4.3424 0.44641

0.55 19.0383 0.98073 9.5192 0.79491 3.8077 0.39772

0.60 16.6227 0.96318 8.3114 0.73505 3.3245 0.35243

0.65 14.4295 0.93534 7.2148 0.66956 2.8859 0.31060

0.70 12.4294 0.89448 6.2147 0.60015 2.4859 0.27215

0.75 10.5979 0.83850 5.2989 0.52859 2.1196 0.23697

0.80 8.9145 0.76648 4.4573 0.45664 1.7829 0.20491

0.85 7.3621 0.67900 3.6810 0.38595 1.4724 0.17577

0.90 5.9258 0.57838 2.9629 0.31797 1.1852 0.14937

0.95 4.5931 0.46862 2.2966 0.25395 0.9186 0.12550

* Random intercept model with x-coordinate of vertex within the occasions

* Parameters β′ = (2, 8,−1), V ′ = (4, 18), ∆V ′ = (0.05, 0.5) and σ2
e = 0.5
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Table 3.27: Intraclass Correlation and Theoretical Power for Chi-Square Test

N = 100 N = 50 N = 20

ρ λ2 Power λ2 Power λ2 Power

0.05 58.1640 1.00000 29.0820 0.99897 11.6328 0.87266

0.10 50.6952 1.00000 25.3476 0.99682 10.1390 0.82102

0.15 44.3353 0.99999 22.1677 0.99197 8.8671 0.76412

0.20 38.8544 0.99995 19.4272 0.98268 7.7709 0.70414

0.25 34.0821 0.99978 17.0410 0.96702 6.8164 0.64303

0.30 29.8892 0.99920 14.9446 0.94322 5.9778 0.58235

0.35 26.1763 0.99751 13.0882 0.90995 5.2353 0.52334

0.40 22.8655 0.99343 11.4328 0.86659 4.5731 0.46686

0.45 19.8948 0.98478 9.9474 0.81326 3.9790 0.41350

0.50 17.2143 0.96850 8.6071 0.75085 3.4429 0.36361

0.55 14.7835 0.94085 7.3917 0.68088 2.9567 0.31738

0.60 12.5690 0.89794 6.2845 0.60529 2.5138 0.27484

0.65 10.5433 0.83650 5.2716 0.52634 2.1087 0.23593

0.70 8.6831 0.75479 4.3415 0.44634 1.7366 0.20053

0.75 6.9690 0.65336 3.4845 0.36753 1.3938 0.16849

0.80 5.3843 0.53557 2.6922 0.29199 1.0769 0.13959

0.85 3.9151 0.40763 1.9576 0.22150 0.7830 0.11363

0.90 2.5491 0.27823 1.2745 0.15752 0.5098 0.09040

0.95 1.2757 0.15763 0.6379 0.10117 0.2551 0.06969

* Random intercept model with x-coordinate of vertex outside the occasions

* Parameters β′ = (3, 2.5,−0.25), V ′ = (5, 9.25), ∆V ′ = (0.05, 0.5) and σ2
e = 0.5
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Chapter 4

A TEST AND CONFIDENCE SET FOR THE DIFFERENCE OF LOCATION OF

TWO QUADRATIC GROWTH CURVES

4.1 Models and Methods for Confidence Set

The confidence region of the vertex for one growth curve has been discussed in

Chapter 3. In this chapter, we investigate the confidence region for the difference

of vertices for growth curves from two independent samples, such as the control

and treatment groups. Similar to the one sample case, two growth curve models

are explored; one is the second-order random intercept model, and the other is the

second-order random slope model. They are defined as follows,

Second-order mixed model with random intercept (random intercept

model),

yij = β
(mid)
0 + β

(eff)
0 Ii + β

(mid)
1 tij + β

(eff)
1 Iitij + β

(mid)
2 t2ij + β

(eff)
2 Iit

2
ij + α0i + εij (4.1)

where

Ii =


−1 if yij comes from control group C,

+1 if yij comes from treatment group T.

is a dummy variable to indicate the group,

i = 1, ..., N, j = 1, ..., ni, N = N1 +N2 is the total number of individuals, N1 and

N2 are sample sizes for treatment group and control group, ni is the number of time

measurements for subject i,

β’s are fixed regression coefficients,

α0i is a random effect, α0i ∼ N(0, σ2
α0

), 0 < σ2
α0
< ∞, assuming the variance for

individual across groups are same, i.e. homogeneous variances,
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εij is the random error term for the ith individual at the jth occasion, εij ∼

N(0, σ2
e), 0 < σ2

e <∞,

α0i and εij are independent, Cov(α0i, εij) = 0 for all i,

yij denotes response at jth occasion for the ith individual, and tij is the time

measurement.

From model (4.1), the distinct models for the control and the treatment groups

are

yij = β
(C)
0 + β

(C)
1 tij + β

(C)
2 t2ij + α0i + εij for group C,

yij = β
(T)
0 + β

(T)
1 tij + β

(T)
2 t2ij + α0i + εij for group T,

where

β
(C)
k = β

(mid)
k − β(eff)

k for k = 0, 1, 2,

β
(T)
k = β

(mid)
k + β

(eff)
k for k = 0, 1, 2.

In matrix notation,

yi = Xiβ +Ziαi + εi,

where

Xi is the model matrix of regressors for individual i, and

X
(C)
i =



1 0 ti1 0 t2i1 0

1 0 ti2 0 t2i2 0

...
...

...
...

...
...

1 0 ti,ni 0 t2i,ni 0


, X

(T)
i =



0 1 0 ti1 0 t2i1

0 1 0 ti2 0 t2i2
...

...
...

...
...

...

0 1 0 ti,ni 0 t2i,ni


,

X ′(N ·ni)×6 =

((
X

(C)
1

)′
, · · · ,

(
X

(C)
N1

)′
,
(
X

(T)
1

)′
, · · · ,

(
X

(T)
N2

)′)
Zi is a known model matrix, and Z ′i = (1, 1, · · · , 1),

β is an unknown vector of fixed effects, and β′ = (β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β

(C)
2 , β

(T)
2 ),

αi is an unknown vector of random effects, αi = α0i and Cov(α0i) = G(1×1) = σ2
α0

,
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εi is an unknown vector of random errors for individual i with mean E(εi) = 0

and covariance Cov(εi) = Ri, and Ri(ni×ni) = σ2
eI(ni×ni), αi and εi are independent,

yi is a known vector of observations for individual i, with mean E(yi) = Xiβ and

covariance Σyi = ZiGZ
′
i +Ri.

Second-order mixed model with random intercept and random slope

(random slope model),

yij = β
(mid)
0 +β

(eff)
0 Ii+β

(mid)
1 tij+β

(eff)
1 Iitij+β

(mid)
2 t2ij+β

(eff)
2 Iit

2
ij+α0i+α1itij+εij, (4.2)

where

Ii =


−1 if yij comes from control group C,

+1 if yij comes from treatment group T,

is a dummy variable to indicate the group.

α0i and α1i are random effects, α0i ∼ N(0, σ2
α0

), α1i ∼ N(0, σ2
α1

), 0 < σ2
α0
< ∞,

assuming the variances for individual are homogeneous.

εij, β0’s, n, N , yij and tij are defined the same as in model (4.1),

α0i, α1i are independent of εij, Cov(α0i, εij) = 0, and Cov(α1i, εij) = 0.

From model (4.2), the distinct models for control and treatment group are,

yij = β
(C)
0 + β

(C)
1 tij + β

(C)
2 t2ij + α0i + α1itij + εij for group C,

yij = β
(T)
0 + β

(T)
1 tij + β

(T)
2 t2ij + α0i + α1itij + εij for group T,

where

β
(C)
k = β

(mid)
k − β(eff)

k for k = 0, 1, 2,

β
(T)
k = β

(mid)
k + β

(eff)
k for k = 0, 1, 2.

In matrix notation, random slope model (4.2) is,

yi = Xiβ +Ziαi + εi
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where

Xi is model matrix of regressors for individual i, and

X
(C)
i =



1 0 ti1 0 t2i1 0

1 0 ti2 0 t2i2 0

...
...

...
...

...
...

1 0 ti,ni 0 t2i,ni 0


, X

(T)
i =



0 1 0 ti1 0 t2i1

0 1 0 ti2 0 t2i2
...

...
...

...
...

...

0 1 0 ti,ni 0 t2i,ni


,

X ′(N ·ni)×6 =

((
X

(C)
1

)′
, · · · ,

(
X

(C)
N1

)′
,
(
X

(T)
1

)′
, · · · ,

(
X

(T)
N2

)′)

Zi is a known model matrix, and Z ′i =

 1 1 · · · 1

ti1 ti2 · · · tini

,

β is an unknown vector of fixed effects, and β′ = (β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β

(C)
2 , β

(T)
2 ),

αi is an unknown vector of random effect, α′i = (α0i, α1i) and Cov(αi) = G(2×2) = σ2
α0

σα0α1

σα0α1 σα1

,

εi is an unknown vector of random errors for individual i with mean E(εi) = 0

and covariance Cov(εi) = Ri, and Ri(ni×ni) = σ2
eI(ni×ni), αi and εi are independent,

yi is a known vector of observations for individual i, with mean E(yi) = Xiβ and

covariance matrix Σyi = ZiGZ
′
i +Ri.

4.1.1 Covariance Matrix for the Difference of Vertices

The second-order random intercept model for control and treatment groups is

defined in expression (4.1); the second-order random slope model for control and

treatment groups is presented in expression (4.2). For models (4.1) and (4.2), denote

b′ = (b
(C)
0 , b

(T)
0 , b

(C)
1 , b

(T)
1 , b

(C)
2 , b

(T)
2 ) as the maximum likelihood estimator (MLE) of

the regression coefficients β′ = (β
(C)
0 , β

(T)
0 , β

(T)
1 , β

(T)
1 , β

(C)
2 , β

(C)
2 ). Provided that the

covariance parameters of random effects are known, b is normally distributed with
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mean β and covariance Σb,i.e.
√
N(b− β)→ N6(0,Ωb), where Ωb = 1

N
Σb and

Σb =



σ2

b
(C)
0

0 σ
b
(C)
0 b

(C)
1

0 σ
b
(C)
0 b

(C)
2

0

0 σ2

b
(T)
0

0 σ
b
(T)
0 b

(T)
1

0 σ
b
(T)
0 b

(T)
2

σ
b
(C)
0 b

(C)
1

0 σ2

b
(C)
1

0 σ
b
(C)
1 b

(C)
2

0

0 σ
b
(T)
0 b

(T)
1

0 σ2

b
(T)
1

0 σ
b
(T)
1 b

(T)
2

σ
b
(C)
0 b

(C)
2

0 σ
b
(C)
1 b

(C)
2

0 σ2

b
(C)
2

0

0 σ
b
(T)
0 b

(T)
2

0 σ
b
(T)
1 b

(T)
2

0 σ2

b
(T)
2


=

(
N∑
i=1

X ′iΣ
−1
yi Xi

)−1

.

If the covariance parameters are unknown, b is approximately normal. The estimated

covariance matrix Σ̂b is,

Σ̂b =



σ̂2

b
(C)
0

0 σ̂
b
(C)
0 b

(C)
1

0 σ̂
b
(C)
0 b

(C)
2

0

0 σ̂2

b
(T)
0

0 σ̂
b
(T)
0 b

(T)
1

0 σ̂
b
(T)
0 b

(T)
2

σ̂
b
(C)
0 b

(C)
1

0 σ̂2

b
(C)
1

0 σ̂
b
(C)
1 b

(C)
2

0

0 σ̂
b
(T)
0 b

(T)
1

0 σ̂2

b
(T)
1

0 σ̂
b
(T)
1 b

(T)
2

σ̂
b
(C)
0 b

(C)
2

0 σ̂
b
(C)
1 b

(C)
2

0 σ̂2

b
(C)
2

0

0 σ̂
b
(T)
0 b

(T)
2

0 σ̂
b
(T)
1 b

(T)
2

0 σ̂2

b
(T)
2


=

(
N∑
i=1

X ′iΣ̂
−1
yi Xi

)−1

.

The distinct estimated covariance matrices for control and treatment groups are

Σ̂b(T) =


σ̂2

b
(T)
0

σ̂
b
(T)
0 b

(T)
1

σ̂
b
(T)
0 b

(T)
2

σ̂
b
(T)
0 b

(T)
1

σ̂2

b
(T)
1

σ̂
b
(T)
1 b

(T)
2

σ̂
b
(T)
0 b

(T)
2

σ̂
b
(T)
1 b

(T)
2

σ̂2

b
(T)
2

 , Σ̂b(C) =


σ̂2

b
(C)
0

σ̂
b
(C)
0 b

(C)
1

σ̂
b
(C)
0 b

(C)
2

σ̂
b
(C)
0 b

(T)
1

σ̂2

b
(C)
1

σ̂
b
(C)
1 b

(C)
2

σ̂
b
(C)
0 b

(T)
2

σ̂
b
(C)
1 b

(C)
2

σ̂2

b
(C)
2

 .

Denote V (C)′ = (V
(C)
x , V

(C)
y ) and V (T)′ = (V

(T)
x , V

(T)
y ) as the vertices of the control

and treatment groups respectively, then V (C),V (T) and their estimates V̂ (C), V̂ (T)

are given by,

V (C)
x =

−β(C)
1

2β
(C)
2

, V (C)
y = β

(C)
0 −

[β
(C)
1 ]2

4β
(C)
2

, V (T)
x =

−β(T)
1

2β
(T)
2

, V (T)
y = β

(T)
0 −

[β
(T)
1 ]2

4β
(T)
2

.

V̂ (C)
x =

−b(C)
1

2b
(C)
2

, V̂ (C)
y = b

(C)
0 − [b

(C)
1 ]2

4b
(C)
2

, V̂ (T)
x =

−b(T)
1

2b
(T)
2

, V̂ (T)
y = b

(T)
0 − [b

(T)
1 ]2

4b
(T)
2

.
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For the treatment group, the first-order partial derivative of V̂ (T) with respect to

β(T) =
(
β

(T)
0 , β

(T)
1 , β

(T)
2

)′
evaluated at β(T) = b(T) =

(
b

(T)
0 , b

(T)
1 , b

(T)
2

)′
is,

∂V (T)

∂β(T)
|
β(T)=b(T)

= D̂(T) =


∂V

(T)
x

∂β
(T)
0

∂V
(T)
x

∂β
(T)
1

∂V
(T)
x

∂β
(T)
2

∂V
(T)
y

∂β
(T)
0

∂V
(T)
y

∂β
(T)
1

∂V
(T)
y

∂β
(T)
2

 |β(T)=b(T)
=

 0 − 1
2

[b
(T)
2 ]−1 1

2
b
(T)
1 [b

(T)
2 ]−2

1 − 1
2
b
(T)
1 [b

(T)
2 ]−1 1

4
b
(T)2
1 [b

(T)
2 ]−2

 .

For the control group, the first-order partial derivative of V̂ (C) with regard to β(C) =(
β

(C)
0 , β

(C)
1 , β

(C)
2

)′
evaluated at β(C) = b(C) =

(
b

(C)
0 , b

(C)
1 , b

(C)
2

)′
is,

∂V (C)

∂β(C)
|
β(C)=b(C)

= D̂(C) =


∂V

(C)
x

∂β
(C)
0

∂V
(C)
x

∂β
(C)
1

∂V
(C)
x

∂β
(C)
2

∂V
(C)
y

∂β
(C)
0

∂V
(C)
y

∂β
(C)
1

∂V
(C)
y

∂β
(C)
2

 |β(C)=b(C)
=

 0 − 1
2

[b
(C)
2 ]−1 1

2
b
(C)
1 [b

(C)
2 ]−2

1 − 1
2
b
(C)
1 [b

(C)
2 ]−1 1

4
b
(C)2
1 [b

(C)
2 ]−2

 .

4.1.2 Delta Method for the Difference of X- Coordinates

For the one sample case in Section 3.3.1, when the sample size tends to infinity,

by the multivariate delta method (2.6), V̂ (T), the estimate of V (T) for the treatment

group, is approximately multivariate normal with mean V (T) and covariance ΣV̂ (T) ,

i.e.,
√
N1(V̂ (T) − V (T))

L→ MVN2(0,ΩV̂ (T)), where ΩV̂ (T) = 1
N1

ΣV̂ (T) . Using the

estimated covariance Σ̂V̂ (T) ,

Σ̂V̂ (T) = D(T)Σ̂b(T)D(T)′ =

 σ̂2

V̂
(T)
x

σ̂
V̂

(T)
x V̂

(T)
y

σ̂
V̂

(T)
x V̂

(T)
y

σ̂2

V̂
(T)
y


V̂

(T)
x is approximately normally distributed with mean V

(T)
x and variance σ2

V̂
(T)
x

, i.e.

V̂
(T)
x

a∼ N
(
V

(T)
x , σ2

V̂
(T)
x

)
. V̂

(T)
y is approximately normally distributed with mean V

(T)
y

and variance σ2

V̂
(T)
y

, i.e. V̂
(T)
y

a∼ N
(
V

(T)
y , σ2

V̂
(T)
y

)
. Similarly, the estimated vertex for

the control group
√
N2(V̂ (C)−V (C))

L→MVN2(0,ΩV̂ (C)) and V̂
(C)
x

a∼ N
(
V

(C)
x , σ2

V̂
(C)
x

)
,

V̂
(C)
y

a∼ N
(
V

(C)
y , σ2

V̂
(C)
y

)
, where ΩV̂ (C) = 1

N2
ΣV̂ (C) and

Σ̂V̂ (C) = D(C)Σ̂b(C)D(C)′ =

 σ̂2

V̂
(C)
x

σ̂
V̂

(C)
x V̂

(C)
y

σ̂
V̂

(C)
x V̂

(C)
y

σ̂2

V̂
(C)
y


The summation of two independent normal distribution (Casella and Berger 2002),

is normal with the summation of mean and variance. Define the difference between
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the two vertices of the control and treatment group, V (diff)′ = V (T)′ − V (C)′ =

(V
(diff)
x , V

(diff)
y ). Suppose that the control group and the treatment groups are in-

dependent, the covariance of V (diff) is ΣV (diff) = ΣV (C) + ΣV (T) . The distribution

for the difference of x−coordinates, V
(diff)
x = V

(T)
x − V

(C)
x , and the difference of

y−coordinates, V
(diff)
y = V

(T)
y − V

(C)
y , are approximate normal. Namely, V̂

(diff)
x

a∼

N
(

(V
(T)
x − V (C)

x ), (σ2

V̂
(T)
x

+ σ2

V̂
(C)
x

)
)

and V̂
(diff)
y

a∼ N
(

(V
(T)
y − V (C)

y ), (σ2

V̂
(T)
y

+ σ2

V̂
(C)
y

)
)

.

Therefore, the approximate (1− α)% confidence interval of V̂
(diff)
x is

(V̂ (diff)
x − Z1−α/2σ̂V̂ (diff)

x
, V̂ (diff)

x + Z1−α/2σ̂V̂ (diff)
x

).

Similarly, the approximate (1− α)% confidence interval of V̂
(diff)
y is

(V̂ (diff)
y − Z1−α/2σ̂V̂ (diff)

y
, V̂ (diff)

y + Z1−α/2σ̂V̂ (diff)
y

).

4.1.3 Gradient Method for the Difference of X- Coordinates with Common

Quadratic Term

When assuming the quadratic terms of two growth curves are the same, β
(C)
2 =

β
(T)
2 = β2, for mixed models (4.1) and (4.2), the x−coordinates of vertices for control

and treatment groups become,

V (C)
x =

−β(C)
1

2β
(C)
2

=
−(β

(mid)
1 − β(eff)

1 )

2β2

, V (T)
x =

−β(T)
1

2β
(T)
2

=
−(β

(mid)
1 + β

(eff)
1 )

2β2

,

V̂ (C)
x =

−b(C)
1

2b
(C)
2

=
−(b

(mid)
1 − b(eff)

1 )

2b2

, V̂ (T)
x =

−b(T)
1

2b
(T)
2

=
−(b

(mid)
1 + b

(eff)
1 )

2b2

.

For large samples the distribution for the estimator of the difference of the two ver-

tices, V̂ (diff), is approximately bivariate normal. Since the estimator vector b is ap-

proximately multivariate normal, using a large sample approximation,

V (diff)
x ∈ C(V (T)

x − V (C)
x )
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⇔ (b
(eff)
1 + b2V

(diff)
x )2

V̂ar(b
(eff)
1 ) + 2V

(diff)
x Ĉov(b

(eff)
1 , b2) + [V

(diff)
x ]2V̂ar(b2)

6 Z2
1−α/2

⇔ (b
(eff)
1 + b2V

(diff)
x )2 6(

V̂ar(b
(eff)
1 ) + 2V (diff)

x Ĉov(b
(eff)
1 , b2) + [V (diff)

x ]2V̂ar(b2)
)
· Z2

1−α/2

⇔ A · [V (diff)
x ]2 +B · V (diff)

x + C 6 0,

(4.3)

where, A = b2
2 − V̂ar(b2) · Z2

1−α/2

B = 2b
(eff)
1 b2 − 2Ĉov(b

(eff)
1 , b2) · Z2

1−α/2

C = [b
(eff)
1 ]2 − V̂ar(b

(eff)
1 ) · Z2

1−α/2 .

To solve the inequality (4.3), if A 6= 0, then A · x2
0 + B · x0 + C is a parabola. It

has two solutions if the discriminant D = B2 − 4AC is positive. With regard to the

numerical stability concerning small values of 4AC, we compute either root in two

different ways:

x01 =


−2C

B−
√
B2−4AC

when B < 0,

−B−
√
B2−4AC
2A

when B > 0.

x02 =


−B+

√
B2−4AC
2A

when B 6 0,

−2C
B+
√
B2−4AC

when B > 0.

Therefore when A > 0 and D > 0, this leads to a two-sided confidence interval

[x01, x02]. WhenA < 0 andD > 0, the confidence interval goes to (−∞, x02]
⋃

[x01,+∞).

In this dissertation, only the first situation is applied; then the confidence interval for

the difference of x-coordinates for vertices V̂
(diff)
x is [x01, x02].

4.1.4 Mean Response Method for the Difference of Y-Coordinates

The mean response given a set of values of regressors for the OLS model is reviewed

in Section 2.6. The variance of V̂
(diff)
y is not the same when V

(T)
x and V

(C)
x are known

and when they are estimated, where V̂
(diff)
y is treated as a difference of the mean

responses V̂
(C)
y and V̂

(T)
y . When the x−coordinates of two vertices for the control and

treatment groups V̂
(C)
x and V̂

(T)
x are given, the difference of y−coordinate of vertex
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V̂
(diff)
y can be calculated as,

V̂ (diff)
y = V̂ (T)

y −V̂ (C)
y =

(
b
(T)
0 + b

(T)
1 · V (T)

x + b
(T)
2 · V (T)2

x

)
−
(
b
(C)
0 + b

(C)
1 · V (C)

x + b
(C)
2 · V (C)2

x

)
= C ′b,

where C ′ =
(

1, V
(T)
x , [V

(T)
x ]2, −1, −V (C)

x , −[V
(C)
x ]2

)
. Then σ2

V̂
(diff)
y

= C ′Σb̂C, and

σ̂2

V̂
(diff)
y

= C ′Σ̂b̂C, and the difference of y−coordinate of vertex V̂
(diff)
y distributes

approximately normally,

V̂
(diff)
y − V (diff)

y

σ̂2

V̂
(diff)
y

a∼ N(0, 1) ,

Therefore the (1− α)% confidence interval of V
(diff)
y is

(V̂ (diff)
y − Z1−α/2σ̂V̂ (diff)

y
, V̂ (diff)

y + Z1−α/2σ̂V̂ (diff)
y

).

When the V̂
(C)
x and V̂

(T)
x are estimated, then they are random. For the treatment

group, V̂
((T))
y = b

(T)
0 + b

(T)
1 V̂

(T)
x + b

(T)
2 (V̂

(T)
x )2. Substitute V̂

(T)
x = − b

(T)
1

2b
(T)
2

, then use the

delta method, σ̂2

V̂
(T)
y

can be computed. Similarly, σ̂2

V̂
(C)
y

can be obtained using the delta

method by substituting V̂
(C)
x = − b

(C)
1

2b
(C)
2

. Therefore the estimated variance of V
(diff)
y for

the mean response method, σ̂2

V̂
(diff)
y

= σ̂2

V̂
(T)
y

+ σ̂2

V̂
(C)
y

, is equivalent to the estimated

variance from the delta method if the x-coordinate of the vertices are estimated.

Hence the conclusion is drawn that the two methods provide identical results.

4.1.5 Confidence Region for the Difference of Vertices

In order to compute a confidence region for the difference of vertices, the ap-

proximate chi-square distribution for a quadratic form is employed. The chi-square

distribution with p degrees of freedom is the distribution of a sum of the squares of p

independent standard normal random variables. As proved, the estimated difference

of the vertices follows an approximate bivariate normal distribution,

V̂ (diff) a∼ N2

(
V (diff), ΣV̂ (diff)

)
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where ΣV̂ (diff) = ΣV̂ (T) + ΣV̂ (C) . For the bivariate standard normal distribution in

vector form, the sum of the squares of two independent standard normal variables is

chi-square distribution with two degrees of freedom, V̂
(diff)
x − V (diff)

x

V̂
(diff)
y − V (diff)

y


′

Σ−1

V̂ (diff)

 V̂
(diff)
x − V (diff)

x

V̂
(diff)
y − V (diff)

y

 ∼ χ2
(2) .

As Σ̂V̂ (diff) = Σ̂V̂ (T) + Σ̂V̂ (C) is consistent for ΣV̂ (diff) , an approximate chi-square dis-

tribution with two degrees of freedom follows, V̂
(diff)
x − V (diff)

x

V̂
(diff)
y − V (diff)

y


′

Σ̂−1

V̂ (diff)

 V̂
(diff)
x − V (diff)

x

V̂
(diff)
y − V (diff)

y

 a∼ χ2
(2) . (4.4)

Therefore the approximate (1−α)% confidence region for the difference of the vertices

for two groups is V̂
(diff)
x − V (diff)

x

V̂
(diff)
y − V (diff)

y


′

Σ̂−1

V̂ (diff)

 V̂
(diff)
x − V (diff)

x

V̂
(diff)
y − V (diff)

y

 6 χ2
1−α,2 , (4.5)

The confidence region is the area of an ellipse since it is an elliptic equation with

equality sign in (4.5).

4.2 Analysis of Simulation Results for Confidence Interval and Confidence Region

4.2.1 Simulation Results: Two Quadratic Growth Curves With Common

Quadratic Term

In this section, the quadratic terms of two growth curves are assumed to be iden-

tical. For the two-sample random intercept model (4.1), two combinations of datasets

are generated; they are mixed model with x-coordinate of the vertex within and out-

side the scope of occasions; each condition contains both the control and treatment
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group. For the case x-coordinate of vertex within occasions, 1000 data sets are gener-

ated with the regression parameters β′ = (β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β2) = (2, 2, 8, 8.1,−1)

and variances for random effect and error σ2
α0

= 1, σ2
e = 0.5 for sample size 20 and

100. Then the true model for the control group is

yij = 2 + 8tij − t2ij + α0i + εij,

and the true model for the treatment group is

yij = 2 + 8.1tij − t2ij + α0i + εij.

The true vertex of control group is V ′ = (4, 18) and the vertex of treatment groups

is V ′ = (4.05, 18.4025), and V (diff)′ = (0.05, 0.4025). The time points are tij =

0, 1, 2, 3, 4, 5, then the x-coordinates for both vertices, V
(C)
x = 4 and V

(T)
x = 4.05

are within the scope of occasions, [0,5]. The profile plots and smoothed profile plots

are shown in Figure 4.1. For a better display, only 100 datasets are randomly selected

from each group; red represents treatment and blue is for control group. The quadratic

trend is intuitively suggested from the figure. The red curves are above the blue

curves which indicates the y-value of vertex for treatment group is higher than that

for control group.

The results of simulations for the confidence interval of difference of x-coordinates

are shown in Table 4.1. In this table, symbol D represents the delta method and sym-

bol G represents the gradient method. The results include the empirical coverage as

well as lower bound and upper bound for the empirical coverage, where the lower and

upper bounds are computed using Wald-type confidence interval. From the columns

of the empirical coverage, only 2 conditions had the nominal coverage outside the

bounds; they are α level 0.1, sample size 20, for both methods. Bias results from

the small sample size; for sample size 100, both methods perform reasonably for the

90



(a) Profile Plot for N = 20 (b) Smoothed Plot for N = 20

(c) Profile Plot for N = 100 (d) Smoothed Plot for N = 100

Figure 4.1: Profile and Smoothed Plots for Random Intercept Model

different α levels. The conclusion is that both the delta method and the gradient

method are applicable for the confidence interval of the difference of x-coordinates.

The results of the simulation for confidence intervals for the difference of y-

coordinates are displayed in Table 4.2. The table contains the empirical coverage

as well as lower bound and upper bound for the empirical coverage. From the table,

all 18 conditions had the nominal coverage within the bounds. Therefore, the delta

method is appropriate to compare the difference of y-coordinates.

Table 4.3 shows the simulation results of the confidence region for the difference of

vertices. The table includes the empirical coverage as well as lower bound and upper

bound for the empirical coverage. From the table, one condition has the nominal

coverage outside the bounds; it is sample size 20 with α level 0.1. The approximate
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Table 4.1: Confidence Interval for Difference of X-Coordinates

α Sample Empirical lower upper Empirical lower upper
Size Coverage D bound bound Coverage G bound bound

0.01 100 0.993 0.98621 0.99979 0.994 0.98771 1.00029
0.01 20 0.991 0.98331 0.99869 0.991 0.98331 0.99869
0.05 100 0.955 0.94215 0.96785 0.955 0.94215 0.96785
0.05 20 0.959 0.94671 0.97129 0.961 0.94900 0.97300
0.1 100 0.91 0.89511 0.92489 0.91 0.89511 0.92489

7 0.1 20 0.931 0.91782 0.94418 0.931 0.91782 0.94418

* Random intercept model, when x-coordinates of vertices are within occasions for two samples
* D represents the delta method and G represents the gradient method

Table 4.2: Confidence Interval for Difference of Y -Coordinates

α Sample Empirical lower upper
Size Coverage bound bound

0.01 100 0.987 0.97778 0.99622
0.01 20 0.986 0.97643 0.99557
0.05 100 0.94 0.92528 0.95472
0.05 20 0.954 0.94102 0.96698
0.1 100 0.893 0.87692 0.90908
0.1 20 0.906 0.89082 0.92118

* Random intercept model, when x-coordinates of vertices are within occasions for two samples

chi-square distribution with two degrees of freedom applied to obtain the confidence

region for the difference of vertices seems practicable.

Table 4.3: Confidence Region of Difference of Two Vertices

α Sample Empirical lower upper
Size Coverage bound bound

0.01 100 0.992 0.98475 0.99925
0.01 20 0.989 0.98051 0.99749
0.05 100 0.956 0.94329 0.96871
0.05 20 0.95 0.93649 0.96351
0.1 100 0.897 0.88119 0.91281

7 0.1 20 0.916 0.90157 0.93043

* Random intercept model, when x-coordinates of vertices are within occasions for two samples

For the random intercept model with x-coordinate of vertex outside the scope

of occasions, 1000 data sets are generated with the fixed regression coefficients β′ =

(β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β2) = (3.73, 2.98, 1.41, 2.29,−0.062), and variances σ2

α0
= 1.44, σ2

e =

2 with sample size 20 and 100. The time points are tij = 0, 1, 2, 3, 4, 5. The true
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models for control and treatment groups are,

yij = 3.73 + 1.41tij − 0.062t2ij + α0i + εij,

yij = 2.98 + 2.29tij − 0.062t2ij + α0i + εij.

With the vertices for the control and treatment groups, V ′ = (11.37, 11.75) and V ′ =

(18.47, 24.13), the difference is V (diff)′ = (7.1, 12.38). Obviously, the x-coordinates

for both vertices, Vxc = 11.37 and Vxt = 18.47 are far outside the scope of occasions,

[0, 5]. The profile plots and smoothed profile plots are shown in Figure 4.2. For a

clearer display, only 100 datasets are randomly chosen from each group; red represents

treatment and blue is for control group. The quadratic trend is not intuitive in the

figure; actually the vertices are far away from the highest time point in the figure.

The red curves are higher than the blue curves which indicates the y-coordinate of

vertex for treatment group is greater than that for control group.

The results of simulations for the confidence interval of the difference of x and y

coordinates are shown in Table 4.4 and Table 4.5. In Table 4.4, symbol D is for delta

method and symbol G represents gradient method. The empirical coverage as well

as lower bound and upper bound for the empirical coverage is displayed in the table.

For sample size 100, three conditions have the nominal coverage outside the bounds.

While for sample size 20, both methods seem inappropriate, especially the gradient

method. The smoothed profile plot is flat which shows a small quadratic term. The

reason for lower empirical coverage is that the variance of β̂2 is too large compared

to the square of the β2 estimate. Table 4.5 contains the empirical coverage as well as

the lower bound and upper bound for the empirical coverage. For sample size 100,

one case has the nominal coverage within the bounds; it is α level 0.1. However,

for sample size 20, none of the three conditions had the nominal coverage within

the bounds due to the flatness of the curves. We conclude that delta method and
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(a) Profile Plot for N = 20 (b) Smoothed Plot for N = 20

(c) Profile Plot for N = 100 (d) Smoothed Plot for N = 100

Figure 4.2: Profile and Smoothed Plots for Random Intercept Model

gradient method are suitable to compute the difference of x-coordinates for quadratic

growth curves with large sample size. If the curve is nearly flat, the delta method is

applicable to investigate the confidence interval of the difference of y-coordinates for

large sample size.

Table 4.6 shows the simulation results of the confidence region for the difference

of vertices. The table includes the empirical coverage as well as lower bound and

upper bound for the empirical coverage. Once more, the approximate chi-square

distribution with two degrees of freedom performs better for the confidence region of

the difference of vertices with larger sample size than that with smaller sample size.

For random slope model (4.2), two cases are generated; they are mixed model with

x-coordinate of vertex within and outside the scope of time points. Initially, 1000
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Table 4.4: Confidence Interval for Difference of X-Coordinates

α Sample Empirical lower upper Empirical lower upper
Size Coverage D bound bound Coverage G bound bound

7 0.01 100 0.963 0.94763 0.97837 0.878 0.85135 0.90465
7 0.01 20 0.913 0.89005 0.93593 0.195 0.16274 0.22726
7 0.05 100 0.931 0.91529 0.94671 0.942 0.92751 0.95649
7 0.05 20 0.871 0.85022 0.89178 0.368 0.33811 0.39789

0.1 100 0.901 0.88546 0.91654 0.893 0.87692 0.90908
7 0.1 20 0.850 0.83143 0.86857 0.46 0.43407 0.48593

* Random intercept model, when x-coordinates of vertices are outside occasions for two samples
* D represents the delta method and G represents the gradient method

Table 4.5: Confidence Interval for Difference of Y -Coordinates

α Sample Empirical lower upper
Size Coverage bound bound

7 0.01 100 0.969 0.95489 0.98311
7 0.01 20 0.920 0.89791 0.94209
7 0.05 100 0.921 0.90428 0.93772
7 0.05 20 0.873 0.85236 0.89364

0.1 100 0.904 0.88868 0.91932
7 0.1 20 0.856 0.83774 0.87426

* Random intercept model, when x-coordinates of vertices are outside occasions for two samples

data sets are generated for random slope model with x-coordinate of vertex within

occasions. The parameters are regression coefficients β′ = (β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β2) =

(2, 2, 8, 8.1,−1) and covariance coefficients σ2
α0

= 1, σ2
α1

= 0.5 and σ2
e = 0.5. The true

models for control and treatment group are

yij = 2 + 8tij − t2ij + α0i + α1itij + εij,

Table 4.6: Confidence Region of Difference of Two Vertices

α Sample Empirical lower upper
Size Coverage bound bound

7 0.01 100 0.97 0.95611 0.98389
7 0.01 20 0.929 0.90809 0.94991
7 0.05 100 0.928 0.91198 0.94402
7 0.05 20 0.876 0.85557 0.89643

0.1 100 0.890 0.87372 0.90628
7 0.1 20 0.837 0.81779 0.85621

* Random intercept model, when x-coordinates of vertices are outside occasions for two samples
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and

yij = 2 + 8.1tij − t2ij + α0i + α1itij + εij.

With the vertex of the control group V ′ = (4, 18), and the vertex of the treatment

group V ′ = (4.05, 18.4025), the difference is V (diff)′ = (0.05, 0.4025). The time points

are tij = 0, 1, 2, 3, 4, 5, then the x-coordinates for both vertices, V
(C)
x = 4 and

V
(T)
x = 4.05 are within the scope of occasions, [0,5]. The profile plots and smoothed

profile plots are shown in Figure 4.3. For a better display, only 100 datasets are

randomly selected from each group; red represents treatment and blue is for control

group. The quadratic trend is intuitively suggested from the figure. The red curves

are roughly above the blue curves which indicates the y-coordinate of vertex for

treatment group maybe larger than that for control group.

The results of the simulation for confidence intervals of difference of x-values of

vertices are shown in Table 4.7. In this table, symbol D represents delta method and

symbol G represents gradient method. The results include the empirical coverage as

well as lower bound and upper bound for the empirical coverage. From the columns

of the empirical coverage, none of the 12 conditions had the nominal coverage outside

the bounds. The simulation results under the same method for different sample sizes

are close; both the delta method and the gradient method are applicable for the

confidence interval of the difference for x-coordinates.

The results of simulations for confidence interval for the difference of y-coordinates

of vertices are displayed in Table 4.8. The table contains the empirical coverage as

well as lower bound and upper bound for the empirical coverage. From the table,

all 18 conditions had the nominal coverage within the bounds. Therefore, the delta

method is appropriate to compare the difference of y-values.

Table 4.9 shows the simulation results of the confidence region for the difference

of vertices. The table includes the empirical coverage as well as the lower bound and
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(a) Profile Plot for N = 20 (b) Smoothed Plot for N = 20

(c) Profile Plot for N = 100 (d) Smoothed Plot for N = 100

Figure 4.3: Profile and Smoothed Plots for Random Slope Model

upper bound for the empirical coverage. From the table, only one condition has the

nominal coverage outside the bounds; it is sample size 20 with α level 0.1. Hence, the

approximate chi-square distribution with two degrees of freedom applied to obtain

the confidence region for the difference of vertices is useful.

For the random slope model with x-coordinate of the vertex outside the scope

of occasions, 1000 data sets are generated with the regression parameters β′ =

(β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β2) = (3.73, 2.98, 1.41, 2.29,−0.062) and variances σ2

α0
= 1.44,

σ2
α1

= 0.5, and σ2
e = 2 with sample size 20 and 100. The time measurements are

tij = 0, 1, 2, 3, 4, 5. The true distinct model for control group is

yij = 3.73 + 1.41tij − 0.062t2ij + α0i + α1itij + εij,
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Table 4.7: Confidence Interval for Difference of X-Coordinates

α Sample Empirical lower upper Empirical lower upper
Size Coverage D bound bound Coverage G bound bound

0.01 100 0.982 0.97117 0.99283 0.982 0.97117 0.99283
0.01 20 0.984 0.97378 0.99422 0.984 0.97378 0.99422
0.05 100 0.944 0.92975 0.95825 0.944 0.92975 0.95825
0.05 20 0.944 0.92975 0.95825 0.944 0.92975 0.95825
0.1 100 0.896 0.88012 0.91188 0.896 0.88012 0.91188
0.1 20 0.895 0.87905 0.91095 0.894 0.87799 0.91001

* Random intercept model, when x-coordinates of vertices are within occasions for two samples
* D represents the delta method and G represents the gradient method

Table 4.8: Confidence Interval for Difference of Y -Coordinates

α Sample Empirical lower upper
Size Coverage bound bound

0.01 100 0.986 0.97643 0.99557
0.01 20 0.985 0.97510 0.99490
0.05 100 0.949 0.93536 0.96264
0.05 20 0.944 0.92975 0.95825
0.1 100 0.905 0.88975 0.92025
0.1 20 0.893 0.87692 0.90908

* Random slope model, when x-coordinates of vertices are within occasions for two samples

The true model for treatment group is

yij = 2.98 + 2.29tij − 0.062t2ij + α0i + α1itij + εij.

With the vertices for the control and treatment groups, V ′ = (11.37, 11.75) and V ′ =

(18.47, 24.13), the difference is V (diff)′ = (7.1, 12.38). Obviously, the x-coordinates for

both vertices, V
(C)
x = 11.37 and V

(T)
x = 18.47 are far outside the scope of occasions,

[0, 5]. The profile plots and smoothed profile plots are shown in Figure 4.4. For a

clearer display, only 100 datasets are randomly chosen from each group; red repre-

sents treatment and blue is for control group. Quadratic trend is not intuitive in the

figure, actually the vertices are far away from the largest occasion in the figure. The

red curves are higher than the blue curves which indicates the y-value of vertex for

treatment group is greater than that for control group.
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Table 4.9: Confidence Region of Difference of Two Vertices

α Sample Empirical lower upper
Size Coverage bound bound

0.01 100 0.987 0.97778 0.99622
0.01 20 0.988 0.97913 0.99687
0.05 100 0.946 0.93199 0.96001
0.05 20 0.936 0.92083 0.95117
0.1 100 0.898 0.88226 0.91374

7 0.1 20 0.872 0.85462 0.88938

* Random slope model, when x-coordinates of vertices are within occasions for two samples

Table 4.10 show the results of simulations for confidence interval of the difference

of x-coordinates of vertices. In this table, symbol D represents delta method and

symbol G represents gradient method. The empirical coverage as well as lower bound

and upper bound for the empirical coverage is displayed in the table. For sample

size 100, only one condition has the nominal coverage within the bounds; it is α level

0.1 for the delta method. However, the empirical coverage of other 5 conditions are

close to the nominal coverage. For sample size 20, both methods seems inappropriate,

especially the gradient method, due to a small quadratic term. Therefore only the

delta method is suitable to compute the difference of x-coordinates for quadratic

growth curves with large sample size.

Table 4.10: Confidence Interval for Difference of X-Coordinates

α Sample Empirical lower upper Empirical lower upper
Size Coverage D bound bound Coverage G bound bound

7 0.01 100 0.963 0.94763 0.97837 0.885 0.85902 0.91098
7 0.01 20 0.932 0.91150 0.95250 0.185 0.15338 0.21662
7 0.05 100 0.928 0.91198 0.94402 0.929 0.91308 0.94492
7 0.05 20 0.895 0.87600 0.91400 0.366 0.33614 0.39586
7 0.1 100 0.896 0.88012 0.91188 0.893 0.87692 0.90908
7 0.1 20 0.867 0.84934 0.88466 0.472 0.44603 0.49797

* Random slope model, when x-coordinates of vertices are outside occasions for two samples
* D represents the delta method and G represents the gradient method

The simulation results for confidence intervals for the difference of y-coordinates

are displayed in Table 4.11. The results contains the empirical coverage as well as
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(a) Profile Plot for N = 20 (b) Smoothed Plot for N = 20

(c) Profile Plot for N = 100 (d) Smoothed Plot for N = 100

Figure 4.4: Profile and Smoothed Plots for Random Slope Model

lower bound and upper bound for the empirical coverage. For sample size 100, only

one condition has the nominal coverage inside the bounds. However, the empirical

coverage of other conditions are slightly lower than the nominal coverage. For sample

size 20, none of condition has the nominal coverage within the bounds due to the

flatness of the curves. To sum the conclusion, the method is applicable to compute

the confidence interval of difference of y-values of vertices for large sample size.

Table 4.12 shows the simulation results of the confidence region for the difference

of vertices. The table includes the empirical coverage as well as lower bound and

upper bound for the empirical coverage. From the table, the approximate chi-square

distribution with two degrees of freedom performs better for the confidence region
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Table 4.11: Confidence Interval for Difference of Y -Coordinates

α Sample Empirical lower upper
Size Coverage bound bound

0.01 100 0.968 0.95367 0.98233
7 0.01 20 0.948 0.92992 0.96608
7 0.05 100 0.934 0.91861 0.94939
7 0.05 20 0.909 0.89117 0.92683
7 0.1 100 0.91 0.89511 0.92489
7 0.1 20 0.879 0.86204 0.89596

* Random slope model, when x-coordinates of vertices are outside occasions for two samples

with larger sample size than that with smaller sample size, but the method does not

perform well if the location is far outside the scope of occasions which happens when

the curve is nearly flat.

Table 4.12: Confidence Region of Difference of Two Vertices

α Sample Empirical lower upper
Size Coverage bound bound

7 0.01 100 0.957 0.94048 0.97352
7 0.01 20 0.922 0.90016 0.94384
7 0.05 100 0.924 0.90758 0.94024
7 0.05 20 0.861 0.83956 0.88244
7 0.1 100 0.877 0.85991 0.89409
7 0.1 20 0.825 0.80523 0.84477

* Random slope model, when x-coordinates of vertices are outside occasions for two samples

4.2.2 Simulation Results: Two Quadratic Growth Curves With Heterogeneous

Quadratic Terms

Quadratic growth curves without parameter restrictions for the control and treat-

ment groups will be investigated in this section. As well as the quadratic growth

curves with distinct quadratic term, two situations are discussed: random intercept

models with x-values of vertex within and outside the scope of time measurements.

For x-coordinate within the scope of the time measurements, 1000 data sets are

generated with the regression parameters β′ = (β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β

(C)
2 , β

(T)
2 ) =
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(2, 2.1, 8, 8.1,−1,−0.9) and variances parameters σ2
α0

= 1 and σ2
e = 0.5, with sample

size 20 and 100. The true model for the control group is

yij = 2 + 8tij − t2ij + α0i + εij.

And the true model for the treatment group is

yij = 2.1 + 8.1tij − 0.9t2ij + α0i + εij.

The true vertices for control and treatment group are V ′ = (4, 18) and V ′ =

(4.5, 20.325); the difference between them is V (diff)′ = (0.5, 2.325). The time points

are tij = 0, 1, 2, 3, 4, 5, obviously, the x-coordinates for both vertices, V
(C)
x = 4 and

V
(T)
x = 4.5 are within the scope of occasions, [0, 5]. The profile plots and smoothed

profile plots are displayed in Figure 4.5. For a clearer view, only 100 datasets are

randomly selected from each group; color red represents treatment and blue is for

control group; quadratic trend is intuitive in the figure. The blue curves are below

the red curves which indicates that the y-coordinate of vertex for control group is

smaller than that for the treatment group.

The results of simulations for the confidence interval of difference of x and y-

coordinates of vertices are shown in Table 4.13. The empirical coverage as well as

lower bound and upper bound for the empirical coverage are displayed in the tables.

For the x-coordinate, only the delta method is examined since the gradient method is

not applicable when the quadratic terms of two groups are different; all six conditions

had the nominal coverage within the bounds. For the y-coordinate, one condition has

the nominal coverage outside the bounds; it is α level 0.1 for sample size 100. We

conclude that the the delta method is suitable for computing the difference of x and

y-coordinates.

Table 4.14 displays the simulation results of the confidence region for the difference

of two vertices. The table includes the empirical coverage as well as lower bound and

102



(a) Profile Plot for N = 20 (b) Smoothed Plot for N = 20

(c) Profile Plot for N = 100 (d) Smoothed Plot for N = 100

Figure 4.5: Profile and Smoothed Plots for Random Intercept Model

upper bound for the empirical coverage. The approximate chi-square distribution

with two degrees of freedom is valid for the confidence region of the difference of

vertices as shown in the table for different α level and sample size, since all the

bounds of empirical coverage contain the nominal value.

For x−coordinate outside the scope of the time measurements, 1000 data sets are

generated with the fixed regression parameters β′ = (β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β

(C)
2 , β

(T)
2 ) =

(4, 3, 1.5, 2.5,−0.15,−0.2) and variances σ2
α0

= 1.5 and σ2
e = 0.5, with sample size 20

and 100.

The true distinct model for the control group is

yij = 4 + 1.5tij − 0.15t2ij + α0i + εij,
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Table 4.13: Confidence Interval for Difference of X and Y -Coordinates

x-coordinate y-coordinate
α Sample Empirical lower upper Empirical lower upper

Size Coverage bound bound Coverage bound bound
0.01 100 0.991 0.98331 0.99869 0.991 0.98331 0.99869
0.01 20 0.987 0.9778 0.99622 0.994 0.98771 1.00000
0.05 100 0.947 0.93311 0.96089 0.955 0.94215 0.96785
0.05 20 0.95 0.93649 0.96351 0.953 0.93988 0.96612
7 0.1 100 0.899 0.88333 0.91467 0.915 0.90049 0.92951
0.1 20 0.898 0.88226 0.91374 0.9 0.88439 0.91561

* Random intercept model, when x-coordinates of vertices are within occasions for two samples

Table 4.14: Confidence Region of Difference of Two Vertices

α Sample Size Empirical Coverage lower bound upper bound
0.01 100 0.995 0.98926 1.00074
0.01 20 0.992 0.98475 0.99925
0.05 100 0.953 0.93988 0.96612
0.05 20 0.947 0.93311 0.96089
0.1 100 0.901 0.88546 0.91654
0.1 20 0.893 0.87692 0.90908

* Mixed model with random intercept, when x-coordinates of vertices are within occasions for
two samples

And the true model for the treatment group is

yij = 3 + 2.5tij − 0.2t2ij + α0i + εij.

The true vertices for control and treatment group are V ′ = (5, 7.75) and V ′ =

(6.25, 10.8125); the difference between them is V (diff)′ = (1.25, 3.0625). The time

points are tij = 0, 1, 2, 3, 4, 5, then the x-coordinate of the vertex for control

group, Vxc = 5, is the largest time measurement while the x-coordinate of vertex for

treatment group, Vxt = 6.25, is slightly outside the scope of occasion, [0, 5]. The

profile plots and smoothed profile plots are displayed in Figure 4.6. For a better

view, only 100 datasets are randomly selected out of 1000 datasets from each group;

color red is for treatment while color blue represents control group; quadratic trend is

intuitive in the figure. The blue curves are below the red curves which indicates that

the y-coordinate of vertex for control group is much less than the treatment group.
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(a) Profile Plot for N = 20 (b) Smoothed Plot for N = 20

(c) Profile Plot for N = 100 (d) Smoothed Plot for N = 100

Figure 4.6: Profile and Smoothed Plots for Random Intercept Model

The results of simulations for the confidence interval of the difference of x and

y-coordinates of vertices are displayed in Table 4.15. The empirical coverage as well

as lower bound and upper bound for the empirical coverage are displayed in the

table for the delta method. For the x-coodinate, five conditions have the nominal

coverage higher than the upper bound, the only exception is α level 0.01 for sample

size 100. For the y-coordinate, only one condition have the nominal coverage outside

the bounds; it is α level 0.01 for sample size 100. We conclude that the delta method

is applicable for the confidence interval of the difference of y-coordinates.

Table 4.16 shows the simulation results of the confidence region for the difference

of two vertices from two groups. The table includes the empirical coverage as well

as lower bound and upper bound for the empirical coverage. Five conditions have
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Table 4.15: Confidence Interval for Difference of X and Y -Coordinates

x-coordinate y-coordinate
α Sample Empirical lower upper Empirical lower upper

Size Coverage bound bound Coverage bound bound
7 0.01 100 0.995 0.98926 1.00074 0.996 0.99086 1.00114
7 0.01 20 1 1 1 0.991 0.98331 0.99869
7 0.05 100 0.972 0.96177 0.98223 0.952 0.93875 0.96525
7 0.05 20 0.982 0.97376 0.99024 0.949 0.93536 0.96246
7 0.1 100 0.922 0.90805 0.93595 0.908 0.89297 0.92303
7 0.1 20 0.933 0.91999 0.94601 0.902 0.88653 0.91747

* Random intercept model, when x-coordinates of vertices are outside occasions for two samples

the nominal coverage within the bounds in the table. Therefore the approximate

chi-square distribution with two degrees of freedom is valid for the confidence region

of the difference of vertices given that the growth curves have a fairly steep rate of

change.

Table 4.16: Confidence Region of Difference of Two Vertices

α Sample Size Empirical Coverage lower bound upper bound
0.01 100 0.993 0.98621 0.99979
0.01 20 0.991 0.98331 0.99869
0.05 100 0.96 0.94785 0.97215
0.05 20 0.956 0.94329 0.96871
7 0.1 100 0.917 0.90265 0.93135
0.1 20 0.909 0.89404 0.92396

* Random intercept model, when x-coordinates of vertices are outside occasions for two samples

For the random slope model (4.2), two situations are discussed; they are x-values

of vertices within and outside the scope of time measurements. For x−coordinate

within the scope of the time measurements, 1000 data sets are generated with the fixed

regression parameters β′ = (β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β

(C)
2 , β

(T)
2 ) = (2, 2.1, 8, 8.1,−1,−0.9)

and variances σ2
α0

= 1, σ2
α1

= 0.5 and σ2
e = 0.5, with sample size 20 and 100. The

true distinct models for the control and the treatment groups are

yij = 2 + 8tij − t2ij + α0i + α1itij + εij,

and

yij = 2.1 + 8.1tij − 0.9t2ij + α0i + α1itij + εij.
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The true vertices for control and treatment groups are V ′ = (4, 18) and V ′ =

(4.5, 20.325); the difference between them is V (diff)′ = (0.5, 2.325). The time points

are tij = 0, 1, 2, 3, 4, 5, then the x-coordinates for both vertices, V
(C)
x = 4 and

V
(T)
x = 4.5 are within the scope of occasions, [0, 5]. The profile plots and smoothed

profile plots are displayed in Figure 4.7. For a clearer view, only 100 datasets are

randomly selected from each group; color red represents treatment and blue is for

control group; quadratic trend is intuitive in the figure. The blue curves are below

the red curves which indicates that the y-coordinate of vertex for control group is

smaller than that for treatment group.

(a) Profile Plot for N = 20 (b) Smoothed Plot for N = 20

(c) Profile Plot for N = 100 (d) Smoothed Plot for N = 100

Figure 4.7: Profile and Smoothed Plots for Random Slope Model

The results of simulations for confidence interval of the difference of x and y-

coordinates of vertices are shown in Table 4.17. The empirical coverage as well as
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lower bound and upper bound for the empirical coverage are displayed in the table.

For the x−coordinate of the vertex, the delta method is examined. All six conditions

have the nominal coverage within the bounds in the table. For y-coordinate of the

vertex, none of 12 conditions have the nominal coverage outside the bounds. Therefore

the delta method is suitable for computing confidence intervals for the difference of

x and y-coordinates of vertices when the vertices are inside the scope of occasions.

Table 4.17: Confidence Interval for Difference of X and Y -Coordinates

x-coordinate y-coordinate
α Sample Empirical lower upper Empirical lower upper

Size Coverage bound bound Coverage bound bound
0.01 100 0.989 0.98051 0.99749 0.989 0.98051 0.99749
0.01 20 0.991 0.98331 0.99869 0.983 0.97247 0.99353
0.05 100 0.954 0.94102 0.96698 0.943 0.92863 0.95737
0.05 20 0.957 0.94443 0.96957 0.94 0.92528 0.95471
0.1 100 0.901 0.88546 0.91654 0.894 0.87799 0.91001
0.1 20 0.903 0.88760 0.91840 0.893 0.87692 0.90908

* Random slope model, when x-coordinates of vertices are within occasions for two samples

Table 4.18 displays the simulation results of the confidence region for the difference

of two vertices. The table includes the empirical coverage as well as lower and upper

bounds for the empirical coverage. Since the bounds of empirical coverage contain

the nominal value for all conditions, the approximate chi-square distribution with two

degrees of freedom is valid for the confidence region of the difference of vertices as

shown in the table.

For x−coordinate outside the scope of occasions, 1000 data sets are generated

with the fixed regression parameters β
(C)
0 , β

(T)
0 , β

(C)
1 , β

(T)
1 , β

(C)
2 β

(T)
2 equal to 4, 3, 1.5,

2.5, -0.15, -0.2, and variances σ2
α0

= 1.5, σ2
α1

= 0.5 and σ2
e = 0.5, with sample size 20

and 100. The distinct models for control and treatment groups are

yij = 4 + 1.5tij − 0.15t2ij + α0i + α1itij + εij,

and

yij = 3 + 2.5tij − 0.2t2ij + α0i + α1itij + εij.
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V ′ = (5, 7.75) and V ′ = (6.25, 10.8125) are the vertices for control and treatment

group; the difference between them is V (diff)′ = (1.25, 3.0625). The time points are

tij = 0, 1, 2, 3, 4, 5, then the x-coordinate of the vertex for control group, V
(C)
x = 5,

is the largest time measurement while the x-coordinate of vertex for treatment group,

V
(T)
x = 6.25, is slightly outside the scope of occasion, [0, 5]. The profile plots and

smoothed profile plots are displayed in Figure 4.8. For a better view, only 100 datasets

are randomly selected out of 1000 datasets from each group; color red is for treatment

while color blue represents control group; quadratic trend is intuitive in the figure.

Most of the blue curves are below the red curves which indicates that the y-coordinate

of vertex for control group is much less than that for treatment group.

Table 4.18: Confidence Region of Difference of Two Vertices

α Sample Size Empirical Coverage lower bound upper bound
0.01 100 0.988 0.97913 0.99687
0.01 20 0.989 0.98051 0.99749
0.05 100 0.948 0.93424 0.96176
0.05 20 0.938 0.92305 0.95295
0.1 100 0.902 0.88653 0.91747
0.1 20 0.897 0.88119 0.91281

* Random slope model, when x-coordinates of vertices are within occasions for two samples

The results of simulations for confidence intervals of the difference of x and y-

coordinates of vertices are displayed in Table 4.19. The empirical coverage as well as

lower bound and upper bound for the empirical coverage are displayed in the table

only for the delta method. For the x-coordinate of the vertex, all three conditions for

sample size 20 have nominal coverage higher than the upper bound, while the delta

method is appropriate for sample size 100. For the y-coordinate of the vertex, none of

12 conditions have the nominal coverage outside the bounds. Hence the delta method

is applicable for the confidence interval of the difference of y-coordinates.
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(a) Profile Plot for N = 20 (b) Smoothed Plot for N = 20

(c) Profile Plot for N = 100 (d) Smoothed Plot for N = 100

Figure 4.8: Profile and Smoothed Plots for Random Slope Model

Table 4.20 shows the simulation results of the confidence region for the difference

of two vertices from two groups. The table includes the empirical coverage as well

as lower bound and upper bound for the empirical coverage. Five conditions have

the nominal coverage within the bounds in the table; therefore the approximate chi-

square distribution with two degrees of freedom is valid for the confidence region

of the difference of vertices if the vertex is not far from the scope of occasions. In

section 4.2.1, when the x−coordinate of the vertex was outside the scope of occasions,

coverage for confidence intervals and confidence region was not large enough compared

to the α level. In this section, the x−coordinate of the vertex is only slightly outside

the scope of occasions, and coverage for confidence intervals and confidence region is

acceptable. Therefore we conclude that when the curve is almost flat, the methods for

110



confidence interval and confidence region are less reliable than the intuitive quadratic

curve.

Table 4.19: Confidence Interval for Difference of X and Y -Coordinates

x-coordinate y-coordinate
α Sample Empirical lower upper Empirical lower upper

Size Coverage bound bound Coverage bound bound
0.01 100 0.988 0.97913 0.99687 0.998 0.97913 0.99687

7 0.01 20 0.999 0.99643 1.00157 0.992 0.98475 0.99925
0.05 100 0.952 0.93875 0.96525 0.949 0.93536 0.96264

7 0.05 20 0.966 0.95477 0.97723 0.951 0.93762 0.96438
0.1 100 0.909 0.89404 0.92396 0.897 0.88119 0.91281

7 0.1 20 0.93 0.91673 0.94327 0.894 0.87799 0.91001

* Random slope model, when x-coordinates of vertices are outside occasions for two samples

Table 4.20: Confidence Region of Difference of Two Vertices

α Sample Size Empirical Coverage lower bound upper bound
0.01 100 0.988 0.97913 0.99687
0.01 20 0.995 0.98926 1.00074
0.05 100 0.952 0.93875 0.96525
0.05 20 0.957 0.94443 0.96957
0.1 100 0.906 0.89082 0.92118

7 0.1 20 0.918 0.90373 0.93227

* Random slope model, when x-coordinates of vertices are outside occasions for two samples

4.3 Power Analysis

Power analysis plays an important role to reject the null hypothesis of identical

vertex for two groups given that the vertices of two groups are actually different. The

power function is interesting to be developed for testing the difference of two vertices.

Consider the null hypothesis,

H0 : V (C) = V (T) v.s. Ha : V (C) 6= V (T) (4.6)
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where V (C) and V (T) are distinct vertices of control and treatment groups. Since the

vertices are nonlinear functions of β, the null hypothesis can also be expressed as

H0 :

 −β(C)
1

2β
(C)
2

β
(C)
0 − [β

(C)
1 ]2

4β
(C)
2

 =

 −β(T)
1

2β
(T)
2

β
(T)
0 − [β

(T)
1 ]2

4β
(T)
2

 .

Under some conditions,

H0 : β(C) = β(T) v.s. Ha : β(C) 6= β(T) (4.7)

is equivalent. Therefore the difference of two vertices may be tested either indirectly

by an F test with respect to regression coefficients β’s or directly by a chi-square test

with regard to vertices V ’s.

Comparing the hypotheses (4.6) and (4.7), provided that the quadratic terms of

two populations are equal, β
(C)
2 = β

(T)
2 = β2, the null hypothesis (4.7) becomes

H0 :

 −β(C)
1

2β2

β
(C)
0 − [β

(C)
1 ]2

4β2

 =

 −β(T)
1

2β2

β
(T)
0 − [β

(T)
1 ]2

4β2

 .

For the x−coordinate of the vertex, if β
(C)
1 = β

(T)
1 , then V

(C)
x = V

(T)
x and vice versa.

Similarly, for the y−coordinate of the vertex, if the β
(C)
1 = β

(T)
1 and β

(C)
0 = β

(T)
0 then

V
(C)
y = V

(T)
y . Therefore the two null hypotheses H0 : β(C) = β(T) and H0 : V (C) =

V (T) are necessarily equivalent. More specifically, comparing a chi-square statistic χ2
p

with p degrees of freedom, and a F statistic Fp, q with numerator degrees of freedom

p and denominator degrees of freedom q, when q tends to infinity, χ2
p → p · Fp, q

(Casella and Berger, 2002). On the other hand, if the quadratic terms of two samples

are different, β
(C)
2 6= β

(T)
2 , the two null hypothesis H0 : β(C) = β(T) and H0 : V (C) =

V (T) are not necessarily equivalent. Since for the x−coordinate of vertex, the ratio

β
(C)
1

β
(C)
2

=
β

(T)
1

β
(T)
2

leads to V
(C)
x = V

(T)
x , i.e. even β

(C)
1 6= β

(T)
1 and β

(C)
2 6= β

(T)
2 may result

in V
(C)
x = V

(T)
x . Similarly, for the y−coordinate of the vertex, the difference of the
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ratios
[β

(C)
1 ]2

β2
and

[β
(T)
1 ]2

β2
can be offset by the difference of β

(C)
0 and β

(T)
0 . Namely, even

β
(C)
0 6= β

(T)
0 , β

(C)
1 6= β

(T)
1 and β

(C)
2 6= β

(T)
2 may not preclude V

(C)
y = V

(T)
y .

4.3.1 Power Function of F Test for Growth Curves with Common Quadratic Term

Repeated measurements on two independent samples, control and treatment, can

be presented by a split plot design model,

yijk = µ... + α0i(k) + τj + γk + (τγ)jk + εijk, (4.8)

where

yijk is the response at jth occasion for ith subject from group k,

µ... is a constant for grand mean of all the observations,

α0i(k) is the random effect for subject i nested within group k, and α0i(k) ∼

N(0, σ2
α0

),

τj is the fixed time effect and τj’s are constants subject to the restriction
∑
τj = 0,

γk is the fixed group effect and γk’s are constants subject to the restriction
∑
γk =

0,

εijk ∼ N(0, σ2
e), and independent of the α0i(k),

i = 1, 2, ..., N ; N = N1 + N2; j = 1, 2, ...ni; and k = 1, 2. N is the total sample

size, N1 and N2 are sample sizes for control and treatment groups and ni is the number

of occasions assuming to be same for all the subjects as n.

The corresponding 2nd order random intercept model with compound symmetry

covariance structure with respect to model (4.8) is model (4.1), Given the common

quadratic term for control and treatment groups, β
(C)
2 = β

(T)
2 = β2, the equivalent

null hypothesis to test H0 : β(C) = β(T) with regard to the F test is H0 : C1β = 0,
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where

C1 =

 1 0 −1 0 0

0 1 0 −1 0

 , β =



β
(C)
0

β
(C)
1

β
(T)
0

β
(T)
1

β2


The F test statistic is,

F =

(C1β̂)′

[
C1

(∑
i

X ′iΣ̂
−1
yi
Xi

)−1

C ′1

]−1

(C1β̂)

rank(C1)
, (4.9)

with the non-centrality parameter

λ3 = (C1β)′

C1

(∑
i

X ′iΣ
−1
yi
Xi

)−1

C ′1

−1

(C1β),

where Σyi = σ2
e · In×n + σ2

α0
· Jn×n and Xi is the model matrix for control group and

treatment group,

X
(C)
i =



1 ti1 0 0 t2i1

1 ti2 0 0 t2i2

1 ti3 0 0 t2i3
...

...
...

...
...

1 tin 0 0 t2in


, X

(T)
i =



0 0 1 ti1 t2i1

0 0 1 ti2 t2i2

0 0 1 ti3 t2i3
...

...
...

...
...

0 0 1 tin t2in


.

The numerator degrees of freedom is ndf2 = rank(C1), and the between-within de-

nominator degrees of freedom ddf2 = N · (n− 1)− rank(C1), and the power function

is,

Power ≈ Prob {F (ndf2, ddf2, λ3) > F1−α, ndf2, ddf2} ,

where F1−α is the critical value for the central F distribution with Type I error rate

α.

114



For the 2nd order random slope model (4.2), the test of H0 : β(C) = β(T) using

an F -type statistic (4.9) is approximate since the denominator degrees of freedom

ddf2a are not known. As reviewed in Section 3.3.2, the commonly used methods to

compute the denominator degrees of freedom are Satterthwaite and Kenward-Roger.

The power function for the approximate F test is

Power ≈ Prob {F (ndf2, ddf2a, λ3) > F1−α, ndf2, ddf2a} ,

where F1−α is the critical value of the central F distribution with the approximate

denominator degrees of freedom.

4.3.2 Power Function of F Test for Growth Curves with Heterogeneity of the

Quadratic Term

Assume the quadratic terms of two growth curves are not identical, β
(C)
2 6= β

(T)
2 ,

for the 2nd order random intercept model (4.1), the equivalent null hypothesis to test

H0 : β(C) = β(T) is H0 : C2β = 0 where

C2 =


1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

 , β =



β
(C)
0

β
(C)
1

β
(C)
2

β
(T)
0

β
(T)
1

β
(T)
2


The F test statistic and the corresponding non-centrality parameter is,

F =

(C2β̂)′

[
C2

(∑
i

X ′iΣ̂
−1
yi
Xi

)−1

C ′

]−1

(C2β̂)

rank(C2)
, (4.10)

λ4 = (C2β)′

C2

(∑
i

X ′iΣ
−1
yi
Xi

)−1

C ′2

−1

(C2β),
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where Σyi = σ2
e · In×n + σ2

α0
· Jn×n and Xi is the model matrix for control group or

treatment group,

X
(C)
i =



1 ti1 t2i1 0 0 0

1 ti2 t2i2 0 0 0

1 ti3 t2i3 0 0 0

...
...

...
...

...
...

1 tin t2in 0 0 0


, X

(T)
i =



0 0 0 1 ti1 t2i1

0 0 0 1 ti2 t2i2

0 0 0 1 ti3 t2i3
...

...
...

...
...

...

0 0 0 1 tin t2in


.

The numerator degrees of freedom is ndf3 = rank(C2), and the denominator degrees

of freedom ddf3 = N · (n− 1)− rank(C2) for between-within method (Schluchter and

Elashoff, 1990), and the power function is,

Power ≈ Prob {F (ndf3, ddf3, λ4) > F1−α, ndf3, ddf3} ,

where F1−α is the critical value for the central F distribution with Type I error rate

α.

For the 2nd order random slope model (4.2), the F distribution for test statistic

(4.10) becomes approximate in that the denominator degrees of freedom is not exact.

The approximate power function is,

Power ≈ Prob {F (ndf3, ddf3a, λ4) > F1−α, ndf3, ddf3a} ,

where ddf3a is the approximate denominator degrees of freedom that can be calculated

by the Satterthwaite or Kenward-Roger method.

4.3.3 Power Function for Chi-Square Test

The non-central chi-square distribution is used to compute power for the null hy-

pothesis for a direct test H0 : V (C) = V (T). As proved in Section 4.1.1, V̂ (diff) a∼
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N2

(
V (diff),ΣV̂ (diff)

)
, then V̂ (diff)′Σ−1

V̂ (diff)
V̂ (diff) distributes approximately as a non-

central chi-square with 2 degrees of freedom with the non-centrality parameter

λ5 = V (diff)′Σ−1

V̂ (diff)
V (diff)

=

 V
(T)
x − V (C)

x

V
(T)
y − V (C)

y


′

Σ−1

V̂ (diff)

 V
(T)
x − V (C)

x

V
(T)
y − V (C)

y


=

 −β(T)
1

2β
(T)
2

− −β
(C)
1

2β
(C)
2

β
(T)
0 − β

(T)2
1

4β
(T)
2

− β(C)
0 +

β
(C)2
1

4β
(C)
2


′

Σ−1

V̂ (diff)

 −β(T)
1

2β
(T)
2

− −β
(C)
1

2β
(C)
2

β
(T)
0 − β

(T)2
1

4β
(T)
2

− β(C)
0 +

β
(C)2
1

4β
(C)
2

 .

That is, V̂ (diff)′Σ−1

V̂ (diff)
V̂ (diff) a∼ χ2

2,λ5
. Under the null hypothesis, the non-centrality

parameter λ5 = 0. The approximate power function is,

Power ≈ Prob
{
χ2(2, λ5) > χ2

1−α,2
}
,

where χ2
1−α,2 is the critical value given test size level α. Using Σ̂V̂ (diff) , the consistent

statistic for ΣV̂ (diff) , the decision rule is, reject the null hypothesis if V
(T)
x − V (C)

x

V
(T)
y − V (C)

y


′

Σ̂−1

V̂ (diff)

 V
(T)
x − V (C)

x

V
(T)
y − V (C)

y

 > χ2
1−α,2,

otherwise do not reject the null hypothesis.

4.3.4 Power Results for Growth Curves with Common Quadratic Term

In this section, we investigate the indirect F test for H0 : β(C) = β(T) and the

direct chi-square test for H0 : V C = V (T), assuming β
(C)
2 = β

(T)
2 . For the random

intercept model (4.1) and parameter sets I, II, and III as shown in Table B.1, twelve

combination of datasets are considered with different regression coefficients, variances

of random effect, sample sizes, but the same time points. The six time points are tij =

0, 1, 2, 3, 4, 5; and sample sizes are selected to be 20 and 50. Two variance parameters
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chosen for the random effect are 10 and 80 with apparent difference between them.

The vertices for parameter sets I, II, and III are outside the scope of occasions; while

the vertices for parameter set IV is within the scope of occasions. The fixed regression

coefficients for control and treatment groups, and vertex, are listed in Table B.1.

Table 4.21: Parameters for Power Analysis

β0 β1 β2 Vertex Within

Parameter I
Control 6.05 3.0 -0.2 (7.5, 17.3) No

Treatment 4.5 3.3 -0.2 (8.25, 18.1125) No

Parameter II
Control 5 1.7 -0.1 (8.5, 12.225) No

Treatment 4 1.9 -0.1 (9.5, 13.025) No

Parameter III
Control 10 1.15 -0.06 (9.5833, 15.51) No

Treatment 9.5 1.45 -0.06 (12.0833, 18.26) No

Parameter IV
Control 2 8 -1 (4, 18) Yes

Treatment 2 8.1 -1 (4.05, 18.4025) Yes

The simulated power and confidence intervals as well as the theoretical power are

displayed in Table 4.22 and 4.23. In the table, parameter sets (a) have the variances

σ2
α0

= 10, σ2
e = 5, and parameter sets (b) have σ2

α0
= 80, σ2

e = 5. For parameter

sets I, II, and III, with the smaller random effect variance σ2
α0

= 10, the F test has

higher power than the chi-square test for every combination. When the variance of

the random effect is larger, σ2
α0

= 80, it is more obvious that the F test has higher

power than the chi-square test for every combination; and the power for both the

F and the chi-square tests increases. Then, the increase of the variance σ2
α0

would

result in a decrease of power for both F and chi-square test. Parameter set IV is for a

random intercept model with x-value of the vertex within the scope of the model. In

this condition, the results show that there is a small difference between the theoretical
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power of the chi-square test and the F test even for small sample size. However, for

parameter sets I, II, and III, with vertices outside the scope of the occasions, all the

asymptotic F power are greater than the power of the chi-square test. As the vertices

move further away from parameter set I to parameter set III, the power for both the

F test and the chi-square test become lower. Hence the further the vertices are away

from the scope of the occasions, the F and chi-square power becomes smaller; and

it affects the chi-square power more. The theoretical power of the F test is always

between the lower and upper bounds of the simulated power, for the vertex both

within and outside the scope of occasions. As the sample size increases, the power

will increase as a consequence. However, the theoretical power of chi-square test is

between the lower and upper bounds of the simulated power only when the vertex is

within the scope of the model. Even worse, when the vertex is further outside the

occasions, the simulated power of the chi-square test decreases dramatically; and the

difference between the simulated power and the theoretical power of chi-square test

is very large. Therefore, when the vertex is far away from the scope of occasions,

the use of chi-square test should be given more attention. For all the conditions,

increasing sample size will lead to an increase in power. Table 4.22 and 4.23 provide

little useful information to compare the denominator degrees of freedom for F test,

since the simulated model is random intercept model which has an exact denominator

degrees of freedom; the three different degrees of freedom methods, between-within,

Satterthwaite and Kenward-Roger, provide similar power.

The random slope models (4.2) are generated using the fixed regression parameters

listed in Table B.1 with variances σ2
e = 5, σ2

α0
= 10, and σ2

α1
= 5. The results are

displayed in Table 4.24. Compared to Table 4.22 and 4.23, in all the conditions,

the theoretical power and simulated power decrease simutaneously. Hence, adding a

random slope term in the model results in a decrease of power for both the F and
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chi-square tests. Other findings are similar; the theoretical power of F test is higher

than the chi-square test when the vertex is outside the scope of occasions, while the

theoretical power of chi-square test is competitive with the F test otherwise. The

theoretical power of F test is within the lower and upper bounds of the simulated

power in all conditions. However, the lower and upper bounds of the simulated power

of chi-square test only contain the theoretical power when the vertex is within the

scope of occasions.
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Table 4.22: Power for Random Intercept Model with Common Quadratic Term

Parameters Sample Size Method Simulated Power Lower Bound Upper Bound Theoretical Power

I (a)

N = 20

BWF 0.374 0.344 0.404 0.386

KRF 0.366 0.336 0.396 0.379

SATF 0.369 0.339 0.399 0.376

Chisq 0.208 0.183 0.233 0.329

N = 50

BWF 0.771 0.745 0.797 0.785

KRF 0.763 0.737 0.789 0.781

SATF 0.766 0.739 0.792 0.767

Chisq 0.708 0.680 0.736 0.700

I (b)

N = 20

BWF 0.339 0.310 0.368 0.339

KRF 0.327 0.298 0.356 0.333

SATF 0.326 0.297 0.355 0.330

Chisq 0.165 0.142 0.188 0.280

N = 50

BWF 0.725 0.697 0.753 0.718

KRF 0.718 0.690 0.746 0.715

SATF 0.718 0.690 0.746 0.714

Chisq 0.635 0.605 0.665 0.616

II (a)

N = 20

BWF 0.212 0.187 0.237 0.188

KRF 0.204 0.179 0.229 0.185

SATF 0.207 0.182 0.232 0.184

Chisq 0.061 0.046 0.076 0.149

N = 50

BWF 0.431 0.400 0.462 0.420

KRF 0.428 0.397 0.459 0.417

SATF 0.429 0.398 0.460 0.406

Chisq 0.163 0.140 0.186 0.317

II (b)

N = 20

BWF 0.169 0.146 0.192 0.170

KRF 0.160 0.137 0.183 0.167

SATF 0.160 0.137 0.183 0.166

Chisq 0.042 0.030 0.054 0.131

N = 50

BWF 0.374 0.344 0.404 0.374

KRF 0.370 0.109 0.151 0.372

SATF 0.369 0.339 0.399 0.370

Chisq 0.130 0.109 0.151 0.270
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Table 4.23: Power for Random Intercept Model with Common Quadratic Term

Parameters Sample Size Method Simulated Power Lower Bound Upper Bound Theoretical Power

III (a)

N = 20

BWF 0.345 0.315 0.275 0.337

KRF 0.333 0.304 0.362 0.331

SATF 0.335 0.306 0.364 0.328

Chisq 0.025 0.015 0.035 0.120

N = 50

BWF 0.720 0.692 0.748 0.716

KRF 0.714 0.686 0.742 0.712

SATF 0.716 0.688 0.744 0.698

Chisq 0.110 0.091 0.129 0.239

III (b)

N = 20

BWF 0.359 0.329 0.389 0.332

KRF 0.346 0.316 0.376 0.326

SATF 0.345 0.315 0.375 0.323

Chisq 0.043 0.030 0.056 0.116

N = 50

BWF 0.716 0.688 0.744 0.708

KRF 0.711 0.683 0.739 0.705

SATF 0.711 0.683 0.739 0.703

Chisq 0.089 0.071 0.107 0.228

IV (a)

N = 20

BWF 0.080 0.063 0.097 0.081

KRF 0.079 0.058 0.090 0.081

SATF 0.077 0.060 0.094 0.081

Chisq 0.079 0.062 0.096 0.082

N = 50

BWF 0.141 0.119 0.163 0.134

KRF 0.135 0.114 0.156 0.133

SATF 0.137 0.116 0.158 0.133

Chisq 0.142 0.120 0.164 0.134

IV (b)

N = 20

BWF 0.082 0.065 0.099 0.077

KRF 0.074 0.058 0.090 0.077

SATF 0.074 0.058 0.090 0.077

Chisq 0.083 0.066 0.100 0.078

N = 50

BWF 0.129 0.108 0.150 0.123

KRF 0.129 0.108 0.150 0.122

SATF 0.128 0.107 0.149 0.122

Chisq 0.131 0.110 0.152 0.123
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Table 4.24: Power for Random Slope Model with Common Quadratic Term

Parameters Sample Size Method Simulated Power Lower Bound Upper Bound Theoretical Power

I (a)

N = 20

BWF 0.227 0.200 0.253 0.222

KRF 0.186 0.161 0.210 0.210

SATF 0.190 0.166 0.214 0.210

Chisq 0.091 0.073 0.109 0.208

N = 50

BWF 0.482 0.451 0.513 0.499

KRF 0.470 0.439 0.501 0.489

SATF 0.476 0.445 0.507 0.489

Chisq 0.375 0.345 0.405 0.463

II (a)

N = 20

BWF 0.166 0.143 0.189 0.117

KRF 0.140 0.118 0.162 0.112

SATF 0.148 0.126 0.170 0.112

Chisq 0.028 0.018 0.038 0.107

N = 50

BWF 0.247 0.220 0.274 0.232

KRF 0.247 0.220 0.247 0.227

SATF 0.239 0.213 0.265 0.227

Chisq 0.075 0.059 0.091 0.204

III (a)

N = 20

BWF 0.074 0.058 0.090 0.076

KRF 0.061 0.046 0.076 0.074

SATF 0.064 0.049 0.079 0.074

Chisq 0.004 0.001 0.008 0.065

N = 50

BWF 0.124 0.104 0.144 0.119

KRF 0.111 0.091 0.131 0.117

SATF 0.116 0.096 0.136 0.117

Chisq 0.012 0.005 0.019 0.090

IV (a)

N = 20

BWF 0.066 0.051 0.081 0.051

KRF 0.057 0.043 0.072 0.051

SATF 0.060 0.045 0.075 0.051

Chisq 0.061 0.046 0.076 0.051

N = 50

BWF 0.058 0.043 0.073 0.053

KRF 0.054 0.040 0.068 0.053

SATF 0.054 0.040 0.068 0.053

Chisq 0.058 0.043 0.073 0.054
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Chapter 5

APPLICATION

We apply the statistics derived in Chapter 3 and 4 for vertices on a study of

growth of language and early literacy skills in preschoolers who have developmental

speech and language impairment. The confidence intervals and confidence region for

the difference of vertices from the control and treatment groups are conducted. The

direct F test and the indirect chi-square test are also provided.

5.1 Description of Study: Tell Language Efficacy for Preschoolers with

Developmental Speech and Language Impairment

U.S. Department of Education data for the Individuals with Disabilities Education

Act (IDEA) reported that 13% of four-year olds and five-year olds are receiving special

education services in preschool and that 82% of these children show developmental

speech and language impairment (DSLI) as a primary diagnosis (Wilcox et al., 2011).

Young children with DSLI often fail to develop crucial pre-literacy skills, which will

place those children at high risk for later reading failure and literacy difficulties. Some

researchers have pointed out that preschoolers with DSLI demonstrate persistently

depressed academic achievement, lower rates of post-secondary school attendance and

greater grade retention than their normally-developing peers. Due to these potential

risks, it is necessary to address children’s early literacy skills and oral language during

the preschool years and to increase their ability to benefit from reading and writing

instruction in elementary school. Some intervention studies have been performed on

children with DSLI, including targeting code-related early literacy skills, inferential

language skills and oral language or curriculum supplements based on shared read-
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ing. Studies on evaluating an effectiveness of an early childhood intervention with

respect to improving early literacy and oral language skills for young children with

DSLI are also performed by researchers. One of these studies is examining the effi-

cacy of “Teaching Early Literacy and Language”(TELL) curriculum in promoting the

early literacy and oral language growth trajectories of preschoolers with DSLI. The

variables in the TELL curriculum include a series of instructions, scripted teaching

activities, materials for implementation of oral language and early literacy activities,

and professional development for teachers. They targeted one specific skill ( e.g.,

vocabulary, identification of beginning sounds in a word) or small set of skills ( e.g.,

inferential language, print concepts, letter sounds and identification) over a relatively

short period of time ( e.g., weeks). The TELL curriculum has shown positive results

in oral language and early literacy activities in an earlier small randomized controlled

trial. Researchers compare those trajectories of children who were enrolled in the

TELL curriculum with those who were randomly assigned to control classes (Wilcox

et al., 2011).

5.2 Comparison of Vertices for TELL Curriculum and Control Group for Letter

Sound Identification Score

First of all, we focused on one specific item from TELL curriculum, Curricu-

lum Based Measurement (CBM) Letter Sound Identification (SoundID) in year 2011.

Fifty-seven children with DSLI nested under teacher are randomly assigned to offer

the TELL curriculum or accept those with business as usual (BAU). The efficacy vari-

able, SoundID test score, was obtained by six follow-up time measurements (1, 2.25,

3.5, 5.25, 6.5, 7.75 months). The mean and standard deviation of SoundID scores for

both children with DSLI from TELL and BAU curriculum are displayed in Table 5.1.

On average, compared to the children received BAU, children who were enrolled in
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the TELL curriculum have higher SoundID scores starting at the second time point.

The profile plot and smoothed profile plot for children with DSLI receiving TELL

curriculum and BAU are shown in Figure 5.1, which indicate the quadratic curve

for the trend; red curve represents the TELL curriculum and blue curve is for BAU

curriculum.

Table 5.1: Sound Identification Score by Group (TELL vs. Control): Mean, Standard

Deviations at Each Occasion

Variables TELL (N1 = 32) Control (N2 = 25)

Mean (SD) Mean (SD)

SoundID (T1) Scores 3.970 (4.730) 6.917 (9.180)

SoundID (T2) Scores 9.120 (7.310) 6.920 (8.524)

SoundID (T3) Scores 10.260 (8.080) 8.720 (9.095)

SoundID (T4) Scores 14.148 (8.023) 10.714 (9.670)

SoundID (T5) Scores 15.741 (7.744) 10.955 (8.666)

SoundID (T6) Scores 17.692 (8.480) 9.429 (8.818)

(a) Profile Plot for TELL Efficacy Example (b) Smoothed Plot for TELL Efficacy Example

Figure 5.1: Profile and Smoothed Plots for TELL Efficacy Example
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Table 5.2: Model Selection for Children Received TELL Curriculum

Information Criteria Random Intercept Model Random Slope Model

AIC 982.1 3 951.2

AICc 982.3 3 951.4

BIC 983.8 3 953.4

In order to apply the methods for one sample case derived in Chapter 3, the single

group was analyzed initially. The model for children enrolled in the TELL curriculum

was conducted; two models are compared, they are random intercept model

yijk = β0 + β1tijk + β2t
2
ijk + βc1x1ij + γ0j + α0i(j) + εijk,

and random slope model

yijk = β0 + β1tijk + β2t
2
ijk + βc1x1ij + γ0j + α0i(j) + α1i(j)tijk + εijk.

Where,

yijk is the sound identification score at the kth time point for child i nested under

teacher j; x1ij is a covariate of mother’s education for child i nested under teacher j;

γ0j is the random intercept effect of jth teacher, γ0j ∼ N(0, σ2
γ0

); α0i(j) and α1i(j)

are the random intercept and random slope effects of ith children nested under jth

teacher, α0i(j) ∼ N(0, σ2
α0

) and α1i(j) ∼ N(0, σ2
α1

); εijk is the random error term,

εijk ∼ N(0, σ2
e). Based on the three criteria AIC, AICc and BIC displayed in Table

5.2, the random slope model is selected because of the smaller values of the criteria.

Substituting the estimates of fixed regression parameters, the estimated model is,

ŷijk = 1.803 + 2.923 · tijk − 0.115 · t2ijk + 1.445 · x1ij

with the estimates of variance components, σ2
γ0

= 5.675, σ2
α0

= 18.016, σ2
α1

= 0.833,

and σ2
e = 9.214.
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Table 5.3: Confidence Intervals of Vertex for Children with DSLI Who Received

TELL Curriculum

Method Vertex Lower Limit Upper Limit

Delta for x-coordinate 12.745 4.731 20.759

Gradient for x-coordinate 12.475 8.503 127.986

Delta for y-coordinate 20.430 11.842 29.019

The proposed methods for the confidence interval of vertex are applied, the esti-

mated vertex, lower and upper limits are displayed in Table 5.3. The delta method

confidence interval of x-coordinate is (4.731, 20.759), while the gradient method ob-

tains the confidence interval (8.503, 127.986) which is too wide to be useful. The

delta method confidence interval of y-coordinate is (11.842, 29.019). The confidence

region for the vertex V ′ = (Vx, Vy) is the area under the ellipse, 12.745− Vx

20.430− Vy


′ 0.309 −0.259

−0.259 0.269


 12.745− Vx

20.430− Vy

 6 5.991 .

Similar model analysis are also applied for children with DSLI enrolled in BAU.

The estimated model is

ŷijk = 2.631 + 2.011 · tijk − 0.135 · t2ijk + 1.735 · x1ij

with the estimates of variance components, σ2
γ0

= 0, σ2
α0

= 60.841, σ2
α1

= 0.332, and

σ2
e = 4.587. The random intercept effect of teacher can be removed from the model,

since it is too small to be significant. The results for model selection and confidence

interval are displayed in Table 5.4 and Table 5.5. For x-coordinate of the estimated

vertex, confidence interval from the delta method is (5.109, 9.839) while that from

gradient method is (5.979, 15.281). For the y-coordinate of the estimated vertex,
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confidence interval from the delta method is (6.520, 13.771). The confidence region

for the vertex V ′ = (Vx, Vy) is 7.474− Vx

10.145− Vy


′ 0.758 −0.151

−0.151 0.322


 7.474− Vx

10.145− Vy

 6 5.991,

it is the area within an ellipse.

Table 5.4: Model Selection for Children Received BAU

Information Criteria Random Intercept Model Random Slope Model

AIC 692.8 3 682.4

AICc 692.9 3 682.6

BIC 693.4 3 683.4

Table 5.5: Confidence Intervals of Vertex for Children with DSLI Who Received BAU

Method Vertex Lower Limit Upper Limit

Delta for x-coordinate 7.474 5.109 9.839

Gradient for x-coordinate 7.474 5.979 15.281

Delta for y-coordinate 10.145 6.520 13.771

For the letter sound identification of children with DSLI who received the TELL

curriculum, the estimated vertex is 20.43 letters at time 50 weeks, while for children

with DSLI enrolled in BAU, the estimated vertex is 10.145 letters at 30 weeks. The

TELL curriculum treatment produced a shift up to 10.285 letters and a shift to the

right of 20 weeks. The vertex of TELL group is outside the scope of the occasions, and

results can be interpreted that children from BAU class have reached a plateau at 30

weeks but that children enrolled in the TELL curriculum would continue to increase
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proficiency after week 30. In order to test the difference of locations between the two

groups, methods for confidence set for difference of vertices derived in Chapter 4 are

applied. The joint random slope model for the TELL and control group is

yijkl =β
(mid)
0 + β

(eff)
0 · Il + β

(mid)
1 · tijkl + β

(eff)
0 · Il · tijkl + β

(mid)
2 · t2ijkl + β

(eff)
2 · Il · t2ijkl

+ βc1 · x1ijl + γ0j(l) + α0i(jl) + α1i(jl)tijkl + εijkl,

where,

Il =


1 if yijkl comes from the control group,

0 if yijkl comes from the TELL group.

yijkl is the sound identification score at the kth time point for child i under teacher j

and curriculum l; x1ijl is a covariate of mother’s education for child i under teacher

j and curriculum l; γ0j(l) is the random effect of jth teacher nested under curriculum,

γ0j(l) ∼ N(0, σ2
γ0

); α0i(jl) and α1i(jl) are the random intercept and random slope

effects of ith children nested under jth teacher and lth curriculum, α0i(jl) ∼ N(0, σ2
α0

)

and α1i(jl) ∼ N(0, σ2
α1

); εijkl is the random error term, εijkl ∼ N(0, σ2
e). The fitted

regression model is

ŷijkl = 1.766+1.109 ·Il+2.914 ·tijkl−0.996 ·Il ·tijkl−0.113 ·t2ijk−0.011 ·Il ·t2ijk+1.573 ·x1ijl,

with the estimates of variance components, σ2
γ0

= 0, σ2
α0

= 38.209, σ2
α1

= 0.666,

and σ2
e = 7.136. The results of the confidence interval for difference of the vertices

from the TELL and control group are displayed in Table 5.6. For the difference of x-

coordinates of the vertices, the gradient method is not applicable since the quadratic

term for control children and TELL children are not equal, which is against the

assumption. The analysis illustrates that the time for children reach the plateau

is not significantly different while the sound identification of letters is significantly

different, which indicates the advantages of the TELL curriculum. The confidence
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region for the difference of the vertices from the TELL and BAU groups is, 5.271− V (diff)
x

10.285− V (diff)
y


′ 0.174 −0.129

−0.129 0.140


 5.271− V (diff)

x

10.285− V (diff)
y

 6 5.991

Table 5.6: Confidence Intervals for difference of Vertices for Control and TELL Chil-

dren

Method Difference of Vertices Lower Limit Upper Limit

Delta for x-coordinates 5.271 -3.084 13.626

Delta for y-coordinates 10.285 0.963 19.607

To compare the vertices from the TELL and the BAU groups for sound identifi-

cation score, hypothesis testing is performed for a direct chi-square test H0 : V (C) =

V (T), and a indirect F test H0 : β(C) = β(T). The test statistic of the chi-square test

is χ2
2 = 6.482 with 2 degrees of freedom; and the p-value of the test is 0.039. At the

significance level α = 0.05, we reject the null hypothesis that the vertices from con-

trol and TELL group are identical, since the p-value is less than α. The test statistic

of the F test is shown in Table 5.7 with different denominator degrees of freedom

methods. All three p-values are less than the significance level α = 0.05, therefore we

reject the null hypothesis that the fixed regression coefficients of TELL and control

group are equivalent. The chi-square and F tests conclude the identical result.

5.3 Comparison of Vertices for TELL Curriculum and Control Group for Language

Protocol Score

Furthermore, we compared another specific item from TELL curriculum, Curricu-

lum Based Measurement (CBM) Language protocol (LPT) in year 2011, 2012, and

2013. There are 162 children with DSLI nested under teacher who are randomly
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Table 5.7: F Test for the Difference of Vertices for Control and TELL Children

DDFM Test Statistic NDF DDF P-value

Between-Within 5.38 3 261 0.0013

Kenward-Roger 5.31 3 112 0.0019

Satterthwaite 5.38 3 112 0.0017

assigned to offer the TELL curriculum or accept those with BAU. The mean and

standard deviation of LPT scores for both children with DSLI from the TELL and

BAU groups are displayed in Table 5.8; the six follow-up time measurements are 1,

2.25, 3.5, 5.25, 6.5 and 7.75 months. On average, compared to children who received

BAU, children who enrolled in the TELL curriculum have higher LPT scores from

the beginning.

Table 5.8: Language Protocol Score by Group (TELL Curriculum vs. Control):

Mean, Standard Deviations at Each Occasion

Variables TELL (N1 = 82) Control (N2 = 80)

Mean (SD) Mean (SD)

LPT (T1) Scores 2.263 (2.029) 1.413 (1.821)

LPT (T2) Scores 3.338 (2.016) 2.700 (1.958)

LPT (T3) Scores 3.413 (1.904) 2.45 (1.813)

LPT (T4) Scores 3.886 (1.556) 2.845 (1.600)

LPT (T5) Scores 5.400 (2.216) 3.214 (2.028)

LPT (T6) Scores 4.732 (2.348) 2.956 (1.807)

The profile plot and smoothed profile plot for children with DSLI enrolled in the

TELL curriculum and BAU are shown in Figure 5.2, which indicate the quadratic
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curve for the trend; red curve represents the TELL curriculum and blue curve is for

BAU curriculum. The red curve is greater than the blue curve at all time measure-

ments. The joint fitted regression model for the TELL and control group is,

ŷijkl = 1.693−0.469 ·Il+0.651 ·tijkl−0.073 ·Il ·tijkl−0.029 ·t2ijk−0.017 ·Il ·t2ijk+0.055 ·x1ijl,

with the estimates of variance components, σ2
γ0

= 0.582, σ2
α0

= 0.999, σ2
α1

= 0.008,

and σ2
e = 2.076. Where yijkl is the language protocol score at kth time point of child i

under teacher j and curriculum l, and x1ijl is the mother’s education of child i under

teacher j and curriculum l.

The vertices for TELL and BAU groups are (11.352, 5.382) and (6.368, 3.069), and

the difference is (4.985, 2.314). The confidence interval for difference of two vertices

for LPT are displayed in Table 5.9. For the difference of x-coordinates of vertices, the

gradient method is not applicable since the quadratic term for control children and

TELL children are not equal, which violates the assumption. The results illustrate

that the time for children reach the plateau is not significantly different while the CBM

language protocol scores are significantly different, which indicates the advantages of

the TELL curriculum. The confidence region, an ellipse, of difference of the two

vertices are shown in (5.1).

 4.985− V (diff)
x

2.314− V (diff)
y


′ 0.322 −1.459

−1.459 8.304


 4.985− V (diff)

x

2.314− V (diff)
y

 6 5.991 (5.1)

To compare the vertices from the TELL and the BAU groups for language protocol

score, hypothesis testing is performed for a direct chi-square test H0 : V (C) = V (T),

and a indirect F test H0 : β(C) = β(T). The test statistic of the chi-square test is χ2
2 =

19.016 with 2 degrees of freedom; and the p-value of the test is 0+. At the significance

level α = 0.05, there is a strong evidence to reject the null hypothesis, therefore the
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(a) Profile Plot for TELL Efficacy Example (b) Smoothed Plot for TELL Efficacy Example

Figure 5.2: Profile and Smoothed Plots for TELL Efficacy Example

Table 5.9: Confidence Intervals for difference of Vertices for Control and TELL Chil-

dren for LPT

Method Difference of Vertices Lower Limit Upper Limit

Delta for x-coordinates 4.985 -2.835 12.804

Delta for y-coordinates 2.314 0.766 3.861

difference of the vertices from control and TELL curriculum are significantly different.

The test statistic of the F test is shown in Table 5.10 with different denominator

degrees of freedom methods. All p-values are far less than the significance level

α = 0.05, therefore there is a strong evidence to reject the null hypothesis that the

difference between the fixed regression coefficients is not significant. In this example,

the chi-square test and F test provide the identical conclusion.

To conclude, the methods of confidence set for vertex of one sample and the

methods of confidence set for the difference of vertices of the two independent samples

can be applied to analyze the TELL Efficacy example. The F test statistic and chi-

square test statistic can also be computed to test the difference of the vertices of

TELL and control group.
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Table 5.10: F Test for the Difference of Vertices for Control and TELL Children

DDFM Test Statistic NDF DDF P-value

Between-Within 12.90 3 773 0+

Kenward-Roger 12.77 3 224 0+

Satterthwaite 12.90 3 230 0+
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Chapter 6

DISCUSSION

6.1 Conclusion

Initially methods for the confidence interval and confidence region for the vertex

of one quadratic growth curve model were discussed in this dissertation. The delta

method and the gradient method were developed for the confidence interval of the

x-coordinate of the vertex, while delta method was developed for the y-coordinate.

An approximate chi-square distribution with two degrees of freedom was derived for

the confidence region analysis. Power functions for direct chi-square test and indirect

F test on the location of the vertex were also derived. In the simulation studies,

random intercept model and random slope model were investigated. For each model,

different sample sizes were chosen in order to examine the influence of sample size for

all methods. Three different Type I error rates were selected as well for the purpose

of making the results more convincing. For the power analysis, both theoretical and

simulated power were computed. Depending on all the simulation results, a conclusion

is drawn that all methods described in this study for confidence region of the location

of quadratic growth curves of 2nd degree polynomial are applicable for different sample

sizes, different Type I error rates and different models when the location of the vertex

is inside the scope of occasions.

Furthermore, methods for a confidence interval, confidence region, and hypothesis

test for the difference of vertices from two independent groups with quadratic growth

curves were discussed in this dissertation. The delta method and the gradient method

were developed for confidence interval of the difference of x-coordinates for the ver-

136



tices, while the delta method and the mean response method were developed for the

difference of y-coordinates. The delta method was used for the confidence region

when the curve is almost flat, and the vertex is far outside the scope of occasions, the

methods for confidence intervals and confidence region may have low reliability.

Power functions were also obtained for the test of difference of vertices. Different

power functions for chi-square and F test are applicable for quadratic growth curves.

Simulation studies were conducted for two independent quadratic growth curves as

well to verify the validity of the methods. The conclusions are that when the vertices

are within the scope of occasions, both the F test and the chi-square test are valid

to test the equality of the vertices of two groups. When the vertex is outside the

scope of the model, the use of chi-square test should be given more attention, since

the simulated power was much smaller than the theoretical power. For the random

intercept model, the larger the variance of random intercept, σ2
α0

, the lower the power

for both F and chi-square tests. Increasing the sample size will always help to increase

the power of both tests. For the random slope model, adding a random slope variance,

σ2
α0

, the power of both tests will decrease as a consequence. When the fixed quadratic

term, β2, is close to zero, the vertex of the quadratic growth curve will be further

away outside the occasions which will lead to reduce of power for both the F and the

chi-square tests.

Finally, using the TELL Efficacy Study, the provided methods for investigating

the vertex were demonstrated. We conclude that the delta method is appropriate for

both x and y-coordinates of vertex regardless with one or two samples when the vertex

is within the scope of occasions. The gradient method is useful for the x-coordinate

of the vertex for one samples and two sample with common quadratic term.
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6.2 Future Research

An interesting topic for further research can be dealing with vertices of quadratic

growth curves under heterogeneity in the random effects population. The linear mixed

model (2.1) yi = Xiβ + Ziαi + εi is the homogeneity model, since this model can

be seen as a hierarchical Bayes model where αi|µ ∼ N(µ,G), µ equals zero with

probability 1. Normality for the random effects and error structure are assumptions to

the model. Butler and Louis (1992) showed that this assumption has little effect on the

fixed effects estimates. However, sometimes the impact of the normality assumption

on the estimates of the random effects is severe and very difficulty to examine. For

longitudinal data where the systematic part has been misspecified due to the omission

of a categorical variable, it might result in a mixture in the distribution of the random

effects which violates the normality assumption. Each category for the categorical

variable could be a latent subgroup. For instance, studies on the evolution of the blood

pressure of patients treated with an antihypertensive drug often report “responders”

and “non-responders” to medication, since responders and non responders could be

two groups with different normal distributions i.e. the types, “responders” and “non-

responders” could be the latent subgroups. In the educational application, there may

be responser and non-responder to the TELL curriculum.

Assume that the random effects are sampled from a mixture of g normal distri-

butions with means µk and covariance matrix G∗, the linear mixed model can be

extended to accommodate clustered αi. A cluster is presented by each component

of the mixture and it contains a proportion pk from the population,
g∑

k=1

pk = 1. The

additional constraint is E(αi) =
g∑

k=1

pkµk = 0 to assure that E(yi) = Xiβ. Then the
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marginal distribution of the response variable yi is

yi ∼
g∑

k=1

pk N(Xiβ +Ziµk,ZiG
∗Z ′i +Ri). (6.1)

Opposite to the homogeneity model, model (6.1) is called the heterogeneity model

by Verbeke and Lesaffre (1996) because it can be seen as a hierarchical Bayes model

where αi|µ ∼ N(µ, G∗) and the distribution of µ is assumed to be discrete with

probabilities pk at support points µk, k = 1, ...g. To calculate the maximum likelihood

estimates for all parameters in model (6.1), the EM algorithm can be applied. Let π

denote the vector of component probabilities, π′ = (p1, · · · , pg), let θ be the vector

containing the remaining parameters and assume that Ψ ′ = (π′,θ)′. Denote pik the

posterior probability for the ith individual to belong to the kth component of the

mixture as,

pik = pik(Ψ) =
pkfk(yi|θ)

g∑
m=1

pmfm(yi|θ)

where pmfm(yi|θ) is the density function of a multivariate normal distribution with

mean Xiβ + Ziµm and covariance matrix Vi. The empirical Bayes estimate for the

random effect αi is then

α̂i = E(αi|yi, Ψ) = G∗Z ′i(ZiG
∗Z ′i +Ri)

−1(yi −Xiβ̂) +Ai

g∑
k=1

pik(Ψ)µk, (6.2)

where Ai = Ii−G∗Z ′i(ZiG
∗Z ′i +Ri)Zi. For (6.2), the first component has the same

expression as the estimate for αi obtained in (2.4) under the normality assumption.

However, the overall covariance matrix for the random effect G has been replaced

by the within-cluster covariance matrix G∗. The second component of (6.2) can

be treated as a correction term toward the component means, proportional to the

posterior probability of belonging to each of the components. In the case of univariate

random effects, Ai can be seen as an increasing function of σ2
e(ZiZ

′
i)
−1 satisfying

0 < Ai < 1. Therefore the correction term will receive more weight in those cases for
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which the random effect is poorly estimated under the homogeneity model. The choice

of the appropriate number g of mixture components is the one of the main issues in

deciding on the correct random effects distributions. The test of heterogeneity for a

mixed model can be performed using a likelihood ratio test and goodness of fit test.

In this topic, two quadratic growth curves with heterogeneity in the random effects

population will be studied. They are stated as follows.

Second-order mixed model with random intercept for latent subgroup

k,

yijk = β0 + β1tij + β2t
2
ij + pkµ0ik + εijk (6.3)

where,

i = 1, 2, ..., N , j = 1, 2, ..., ni

ni is the number of occasions for subject i, N is the number of individuals, and

Nk is the number of observations in subgroup k.

β0, β1 and β2 are regression coefficients of fixed effect,

µ0ik is random effect for each individual i in latent group k, µ0ik ∼ N(µ0k, σ
2
µ0

)

i.e. G∗ = σ2
µ0

,

εijk is the random error term at the jth occasion for the ith individual in latent

group k, εijk ∼ N(0, σ2
e) i.e. Ri = σ2

eIni×ni ,

µ0ik and εijk are independent,

pk is the proportion for latent group k from the population,

yijk denotes the response variable for ith individual at jth occasion in kth latent

group, E(yijk) = β0 + β1tij + β2t
2
ij + pkµ0ik.

Second-order mixed model with random intercept and random slope

for latent subgroup k,

yijk = β0 + β1tij + β2t
2
ij + pk(µ0ik + µ1iktij) + εijk (6.4)
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where,

µ0ik and µ1ik are independent random effects for individual i in group k, µ0ik ∼

N(µ0k, σ
2
µ0

), µ1ik ∼ N(µ1k, σ
2
µ1

) and Cov(µ0ik, µ1ik) = σµ0µ1 , i.e. G∗ =

 σ2
µ0

σµ0µ1

σµ0µ1 σ2
µ1

 ,

εijk, β0, β1, β2, ni, N and Nk are defined same as in model (6.3),

µ0ik, µ1ik and εijk are independent, i.e. Cov(µ0ik, εijk) = 0 and Cov(µ1ik, εijk) = 0.

yijk denotes the response variable at jth occasion for the ith individual in the kth

latent group, E(yijk) = β0 + β1tij + β2t
2
ij + pk(µ0ik + µ1iktij).

Denote b′ = (b0, b1, b2) the maximum likelihood estimator (MLE) of fixed regres-

sion coefficients β′ = (β0, β1, β2) and let V ′k = (Vx, Vy) be the vertex of quadratic

growth curve for latent subgroup k and V̂ ′k = (V̂xk, V̂yk) be the estimated vertex. For

a random intercept model (6.3), the vertex and its estimate for subgroup k are,

Vxk(β1, β2) = −1

2
β1β

−1
2 , Vyk(β0, β1, β2, pk, µ0ik) = (β0 + pkµ0k)−

1

4
β2

1β
−1
2 ,

V̂xk(b1, b2) = −1

2
b1b
−1
2 , V̂yk(b0, b1, b2, pk, µ0k) = (b0 + pkµ0k)−

1

4
b2

1b
−1
2 .

For a random slope model (6.4), the vertex and its estimate for subgroup k are,

Vxk(β1, β2, pk, µ1ik) = −1

2
(β1 + pkµ1ik)β

−1
2 ,

Vyk(β0, β1, β2, pk, µ0ik, µ1ik) = (β0 + pkµ0k)−
1

4
(β1 + pkµ1ik)

2β−1
2 ,

V̂xk(b1, b2, pk, µ1k) = −1

2
(b1 + pkµ1k)b

−1
2 ,

V̂yk(b0, b1, b2, pk, µ0k, µ1k) = (b0 + pkµ0k)−
1

4
(b1 + pkµ1k)

2b−1
2 .

In future work, for a quadratic growth curve with heterogeneity in the ran-

dom effects population, the methods for confidence interval for x−coordinate and

y−coordinate for the vertex as well as the confidence region for the vertex are inter-

esting to be conducted. Furthermore, the confidence intervals and confidence region

for the difference of the vertices from different latent populations can also be tested.
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Finally, power function and power analysis for testing the difference of locations of

the latent populations can be performed.
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MODEL SELECTION USING CRITERIA
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Table A.1: Selection of Covariance Structure for Random Intercept Model

Information N = 20 N = 50 N = 100
Criteria CS AR(1) UN CS AR(1) UN CS AR(1) UN

AIC 966 6 28 989 0 11 994 0 6
AICc 991 7 2 997 0 3 996 0 4
BIC 993 7 0 1000 0 0 1000 0 0

* Mixed model with random intercept, when x-coordinate of vertex is within occasions for one
sample

Table A.2: Selection of Covariance Structure for Random Slope Model

Information N = 20 N = 50 N = 100
Criteria CS AR(1) UN CS AR(1) UN CS AR(1) UN

AIC 256 260 484 143 144 713 36 27 937
AICc 265 237 462 148 148 704 37 27 936
BIC 314 329 357 232 240 528 118 108 774

* Mixed model with random intercept and random slope, when x-coordinate of vertex is within
occasions for one sample

Table A.3: Selection of Covariance Structure for Random Intercept Model

Information N = 10 N = 25 N = 50
Criteria CS AR(1) UN CS AR(1) UN CS AR(1) UN

AIC 865 32 103 982 4 14 991 0 9
AICc 964 35 1 996 4 0 997 0 3
BIC 927 32 41 996 4 0 1000 0 0

* Mixed model with random intercept, when x-coordinate of vertex is outside occasions for one
sample
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Table A.4: Selection of Covariance Structure for Random Slope Model

Information N = 20 N = 50 N = 100
Criteria CS AR(1) UN CS AR(1) UN CS AR(1) UN

AIC 0 2 998 0 0 1000 0 0 1000
AICc 0 11 989 0 0 1000 0 0 1000
BIC 0 42 958 0 0 1000 0 0 1000

* Mixed model with random intercept and random slope, when x-coordinate of vertex is outside
occasions for one sample

Table A.5: Selection of Covariance Structure for Random Slope Model

Information N = 20 N = 100
Criteria CS AR(1) UN CS AR(1) UN

AIC 982 0 18 993 0 7
AICc 997 0 3 995 0 5
BIC 1000 0 0 1000 0 0

* Mixed model with random intercept, when x-coordinates of vertices are within occasions for
two samples

* Same quadratic term β
(C)
2 = β

(T )
2

Table A.6: Selection of Covariance Structure for Random Intercept Model

Information N = 20 N = 100
Criteria CS AR(1) UN CS AR(1) UN

AIC 984 3 13 995 0 5
AICc 992 3 5 995 0 5
BIC 997 3 0 1000 0 0

* Mixed model with random intercept, when x-coordinates of vertices are outside occasions for
two samples

* Same quadratic term β
(C)
2 = β

(T )
2

Table A.7: Selection of Covariance Structure for Random Slope Model

Information N = 20 N = 100
Criteria CS AR(1) UN CS AR(1) UN

AIC 153 155 691 0 1 999
AICc 157 160 682 0 1 999
BIC 255 252 492 16 15 969

* Mixed model with random intercept and random slope, when x-coordinates of vertices are
within occasions for two samples

* Same quadratic term β
(C)
2 = β

(T )
2
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Table A.8: Selection of Covariance Structure for Random Slope Model

Information N = 20 N = 100
Criteria CS AR(1) UN CS AR(1) UN

AIC 222 247 531 6 10 984
AICc 228 254 518 6 11 983
BIC 310 354 336 58 48 893

* Mixed model with random intercept and random slope, when x-coordinates of vertices are
outside occasions for two samples

* Same quadratic term β
(C)
2 = β

(T )
2

Table A.9: Selection of Covariance Structure for Random Intercept Model

Information N = 20 N = 100
Criteria CS AR(1) UN CS AR(1) UN

AIC 988 0 12 993 0 7
AICc 999 0 1 993 0 7
BIC 1000 0 0 1000 0 0

* Mixed model with random intercept, when x-coordinates of vertices are within occasions for
two samples

* Different quadratic terms β
(C)
2 6= β

(T )
2

Table A.10: Selection of Covariance Structure for Random Intercept Model

Information N =20 N = 100
Criteria CS AR(1) UN CS AR(1) UN

AIC 986 0 14 992 0 8
AICc 996 0 4 992 0 8
BIC 1000 0 0 1000 0 0

* Mixed model with random intercept, when x-coordinates of vertices are outside occasions for
two samples

* Different quadratic terms β
(C)
2 6= β

(T )
2

Table A.11: Selection of Covariance Structure for Random Slope Model

Information N = 20 N = 100
Criteria CS AR(1) UN CS AR(1) UN

AIC 0 1 999 0 0 1000
AICc 0 1 999 0 0 1000
BIC 0 39 961 0 0 1000

* Mixed model with random intercept and random slope, when x-coordinates of vertices are
within occasions for two samples

* Different quadratic terms β
(C)
2 6= β

(T )
2
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Table A.12: Selection of Covariance Structure for Random Slope Model

Information N =20 N = 100
Criteria CS AR(1) UN CS AR(1) UN

AIC 0 0 1000 0 0 1000
AICc 0 1 999 0 0 1000
BIC 0 70 930 0 0 1000

* Mixed model with random intercept and random slope, when x-coordinates of vertices are
outside occasions for two samples

* Different quadratic terms β
(C)
2 6= β

(T )
2
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Table B.1: Parameters for Power Analysis

β0 β1 β2 Vertex

Parameter I
Control 6.05 3.0 -0.2 (7.5, 17.3)

Treatment 4.5 3.3 -0.2 (8.25, 18.1125)

Parameter II
Control 5 1.7 -0.1 (8.5, 12.225)

Treatment 4 1.9 -0.1 (9.5, 13.025)

Parameter III
Control 10 1.15 -0.06 (9.5833, 15.51)

Treatment 9.5 1.45 -0.06 (12.0833, 18.26)

Table B.2: Power Analysis for Random Intercept Model with Same Quadratic Term

Parameters Sample Size Method Simulated Power Lower Bound Upper Bound Theoretical Power

I (a)

N = 20

BWF 0.374 0.344 0.404 0.386
KRF 0.366 0.336 0.396 0.379
SATF 0.369 0.339 0.399 0.383
Chisq 0.208 0.183 0.233 0.329

N = 50

BWF 0.771 0.745 0.797 0.785
KRF 0.763 0.737 0.789 0.781
SATF 0.766 0.739 0.792 0.783
Chisq 0.708 0.680 0.736 0.700

I (b)

N = 20

BWF 0.200 0.175 0.225 0.190
KRF 0.190 0.166 0.214 0.187
SATF 0.190 0.166 0.214 0.192
Chisq 0.073 0.057 0.089 0.162

N = 50

BWF 0.440 0.409 0.471 0.425
KRF 0.436 0.405 0.467 0.422
SATF 0.435 0.404 0.466 0.424
Chisq 0.240 0.213 0.267 0.351

II (a)

N = 20

BWF 0.212 0.187 0.237 0.188
KRF 0.204 0.179 0.229 0.185
SATF 0.207 0.182 0.232 0.187
Chisq 0.061 0.046 0.076 0.149

N = 50

BWF 0.431 0.400 0.462 0.420
KRF 0.428 0.397 0.459 0.417
SATF 0.429 0.398 0.460 0.419
Chisq 0.163 0.140 0.186 0.317

II (b)

N = 20

BWF 0.117 0.097 0.137 0.108
KRF 0.114 0.094 0.134 0.107
SATF 0.114 0.094 0.134 0.108
Chisq 0.030 0.019 0.041 0.090

N = 50

BWF 0.217 0.191 0.243 0.208
KRF 0.215 0.189 0.241 0.207
SATF 0.215 0.189 0.241 0.207
Chisq 0.059 0.044 0.074 0.157

III (a)

N = 20

BWF 0.345 0.315 0.275 0.337
KRF 0.333 0.304 0.362 0.331
SATF 0.335 0.306 0.364 0.334
Chisq 0.025 0.015 0.035 0.120

N = 50

BWF 0.720 0.692 0.748 0.716
KRF 0.714 0.686 0.742 0.712
SATF 0.716 0.688 0.744 0.714
Chisq 0.110 0.091 0.129 0.239

III (b)

N = 20

BWF 0.198 0.173 0.223 0.184
KRF 0.186 0.162 0.210 0.181
SATF 0.186 0.162 0.210 0.183
Chisq 0.032 0.021 0.043 0.082

N = 50

BWF 0.408 0.377 0.439 0.409
KRF 0.401 0.371 0.431 0.406
SATF 0.401 0.371 0.431 0.408
Chisq 0.032 0.021 0.043 0.135

IV

N = 20

BWF 0.412 0.381 0.443 0.417
KRF 0.397 0.367 0.427 0.409
SATF 0.400 0.370 0.430 0.413
Chisq 0.417 0.386 0.448 0.422

N = 100

BWF 0.987 0.980 0.994 0.986
KRF 0.987 0.980 0.994 0.986
SATF 0.987 0.980 0.994 0.986
Chisq 0.987 0.980 0.994 0.987

* (a): σ2
e = 5, σ2

α0
= 10. * (b): σ2

e = 10, σ2
α0

= 80.

* Parameters IV: β(C)′ = (2, 8,−1), β(T )′ = (2, 8.1,−1), tij = (0, 1, 2, 3, 4, 5), σ2
e = 0.5, σ2

α0
= 1.
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