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ABASTRACT 

A NOVEL NONLOCAL LATTICE PARTICLE FRAMEWORK FOR MODELING OF SOLIDS 

Fracture phenomena have been extensively studied in the last several decades. Continuum 

mechanics-based approaches, such as finite element methods and extended finite element 

methods, are widely used for fracture simulation. One well-known issue of these approaches is 

the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement 

of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, 

also poses some challenges. Comparing to the continuum based formulation, the discrete 

approaches, such as lattice spring method, discrete element method, and peridynamics, have 

certain advantages when modeling various fracture problems due to their intrinsic characteristics 

in modeling discontinuities. 

A novel, alternative, and systematic framework based on a nonlocal lattice particle model is 

proposed in this study. The uniqueness of the proposed model is the inclusion of both pair-wise 

local and multi-body nonlocal potentials in the formulation. First, the basic ideas of the proposed 

framework for 2D isotropic solid are presented. Derivations for triangular and square lattice 

structure are discussed in detail. Both mechanical deformation and fracture process are 

simulated and model verification and validation are performed with existing analytical solutions 

and experimental observations. Following this, the extension to general 3D isotropic solids based 

on the proposed local and nonlocal potentials is given. Three cubic lattice structures are 

discussed in detail. Failure predictions using the 3D simulation are compared with experimental 

testing results and very good agreement is observed. Next, a lattice rotation scheme is proposed 

to account for the material orientation in modeling anisotropic solids. The consistency and 

difference compared to the classical material tangent stiffness transformation method are 

discussed in detail. The implicit and explicit solution methods for the proposed lattice particle 

model are also discussed. Finally, some conclusions and discussions based on the current study 

are drawn at the end. 
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CHAPTER 

1. INTRODUCTION 

1.1 Overview 

Existing numerical methods for mechanical analysis of solid materials can be generally 

categorized into two groups: continuum-based approaches and discrete approaches. The 

continuum-based approaches assume the material under study is continuous throughout the 

entire simulation domain. Thus, the spatial derivatives always exist at every material point. 

Numerical methods such as finite element methods (FEM), finite difference methods (FDM), and 

many other schemes belong to this category. On the other hand, the discrete approaches allow 

discontinuities to exist in the simulation domain and the concept of spatial derivative is not 

employed in their formulation. Numerical methods such as discrete element methods (DEM) [1], 

lattice spring methods (LSM) [2], Peridynamics [3], and other discrete formulations belong to this 

category. Another distinction between these two categories is the interaction range, i.e., local 

versus non-local. In classical Continuum Mechanics, the material points can only interact with its 

nearest surrounding material points. While in discrete formulations, the interaction can be 

nonlocal. 

The continuum-based approaches have advantages in problems not involving discontinuities, 

such as elasticity and plasticity. They are usually computationally more efficient and close form 

solutions may be available [4]. On the other hand, the non-continuum-based approaches are 

usually less efficient and no analytical solution is available even for simple problems. Due to the 

intrinsic formulation difference, the non-continuum-based approaches usually have some other 

problems, such as fixed Poisson’s ratio. But these types of issues can be solved with refined 

formulation mechanisms. 

For problems involving discontinuities, such as defects in materials, the continuum-based 

approaches have the singularity issue due to the spatial derivative at the discontinuities. Some 

special treatments are required before these approaches can yield meaning simulation results. 
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The adaptive remeshing technique [5], cohesive element[6], the level set methods and crack 

tip/front enrichment [7] are among the most frequently used techniques in continuum-based 

approaches. With these schemes, the performance of the continuum-based approaches 

improves, but it is still heavily based on the requirement of externally developed failure criteria for 

various cracking behaviors, such as initiation and propagation. On the other hand, the non-

continuum-based approaches are, in principle, more suitable for this type of problem [8]. The non-

continuum-based methods represent the material as an assemblage of independent elements 

(also called units, particles or grains), which are interacting with each other with different types of 

interaction potentials. The fracture process in these types of approaches is the natural “loss of 

interaction” between “particles”. The crack propagation is the natural outcome of the breakage of 

the connecting bonds. Only a bond based crack initiation criterion is required and is usually 

simpler comparing to the continuum mechanics-based methods. 

The lattice spring model is of special interest in this study. This approach was initially applied to 

atomic systems and later to larger scales as well. For isotropic materials, the restriction on 

effective Poisson’s ratio of materials is a well-known issue for models of this kind. For lattice 

spring model using only normal springs [9], due to the inefficiency of material characterization 

using only one spring parameter, the Poisson’s ratio in the limit of infinite numbers of particles is 

fixed to 1/4 for plane strain and 1/3 for plane stress. With the introduction of shear/angular springs 

[2], [10], the limitation on Poisson’s ratio can be removed, but the full range of Poisson’s ratio 

cannot be modeled with physically meaningful stiffness parameter for shear springs, i.e., the 

stiffness parameter of the shear springs become negative when the Poisson’s ratio greater than 

1/4 for plane strain case and 1/3 for plane stress case. Alternative approaches have also been 

proposed to remove this restriction, such as the hybrid formulation using both particle methods 

and finite element method [11]. 

One intrinsic issue of the lattice models for fracture simulation is the crack path preference due to 

the regular lattice configuration [12], [13]. Two major approaches have been proposed to address 

this issue. One is to use the random/irregular network [14]. The irregular lattice models exhibit 
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less crack path preference and offer freedom in domain discretization, but require certain scaling 

technique to obtain elastic uniformity. Another possible solution is to use multiple neighbors [15]. 

By introducing multiple neighbors, the lattice symmetry will be enhanced and the crack path 

preference will be eliminated or reduced. This is similar to the concept of “horizon” used in 

Peridynamics [3]. 

After reviewing the pros and cons of current major numerical models for mechanical analysis of 

solid materials, it’s the objective of this work to develop a lattice based discrete model which can 

handle linear and nonlinear responses of isotropic and anisotropic materials under static and 

dynamic mechanical loadings. 
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1.2 Outlines 

The content of this dissertation is organized as follows: 

In Chapter 1, the frequently used numerical approaches for fracture simulation are briefly 

reviewed. The pros and cons of these various numerical approaches are briefly discussed. The 

motivation for current work is outlined. Some basic concepts from continuum mechanics are also 

reviewed in this chapter. 

In Chapter 2, the details on the formulation of the lattice particle framework for both 2D and 3D 

homogeneous isotropic solid materials are discussed. The focus is on developing a nonlocal 

potential and deriving the relationship between the model parameters and the material constants. 

A one-dimensional spring based failure criterion for fracture simulation is proposed. Some 

numerical results to show the validity and performance of the proposed model are presented. 

Conclusions on modeling isotropic materials using the proposed model are drawn at the end. 

In Chapter 3, the lattice particle model is extended to simulate anisotropic solids. The derivation 

procedure follows that of the isotropic case. A lattice structure rotation scheme is proposed to 

account for the material orientation. The extended spring based fracture criterion is also 

discussed. Simulation results are compared with both literature solutions and experimental 

findings. Conclusions on modeling anisotropic materials using the proposed model are drawn at 

the end. 

In Chapter 4, the implicit and explicit solutions schemes to solve the proposed lattice particle 

method are discussed. The coupling between the lattice particle model and FEM based on the 

implicit solution method is briefly discussed. Application of the proposed lattice particle model to 

study the particle reinforced composite system is presented. 

Chapter 5 is devoted to the conclusion and scope of future work. A brief comparison of the lattice 

particle model with other numerical approaches is given. 

The analytical derivations on the equivalency between lattice structure rotation and material 

stiffness transformation to account for the material orientation of anisotropic materials is given in 
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APPENDIX A. The analytical proof of the frame independence of the 3D formulation for isotropic 

materials is given in APPENDIX B. 
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1.3 Basic Concepts from Continuum Mechanics 

In this section, some basic concepts from continuum mechanics are reviewed, including the 

definition of strains, Hooke’s law, and the strain energy. These concepts serve as the basis for 

the development of the lattice particle model. 

1.3.1 Strains 

For elastic material under small deformation, the components of strain vector are defined in terms 

of the displacements as 

( ), ,
1 1
2 2

JI
IJ I J J I

J I

uu u u
x x

ε
 ∂∂

= + = + ∂ ∂ 
       (1.3.1) 

By this definition, the strain tensor is symmetric. And its components with respect to the 

( )1 2 3, ,e e e  coordinate system can be expressed as 

[ ]
11 12 31

12 22 23

31 23 33

ε ε ε
ε ε ε ε

ε ε ε

 
 =  
  

         (1.3.2) 

The strain matrix can be transformed under the same rule of matrix transformation. For the 

rotation of axes, the transformed strains are 

[ ] [ ][ ][ ]ˆ TQ Qε ε=          (1.3.3) 

  where [ ]Q is a transformation matrix. 

The volumetric strain, or the dilatation, is the trace of the strain vector. 

11 22 33
0

v
V

V
ε ε ε ε∆

= = + +         (1.3.4) 

The strain vector { }e  across a surface with normal vector { }n is 

11 12 311 1

2 12 22 23 2

3 331 23 33

e n
e n
e n

ε ε ε
ε ε ε
ε ε ε

       =     
        

        (1.3.5) 
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The one dimensional engineering strain is defined as 

0

l
l

ε ∆
=            (1.3.6) 

where l∆  is the elongation, and 0l  is the original length. 

Under plane strain assumption, the out-of-plane components of the strain matrix 31ε , 23ε , 33ε  are 

assumed to be zero. Thus, the strain matrix reduces to an in-plane case. 

[ ]
11 12

12 22

0
0

0 0 0

ε ε
ε ε ε

 
 =  
  

         (1.3.7) 

The transformed strains for plane strain case are 

11 22 11 22
11 12

11 22 11 22
11 12

11 22
12 12

ˆ cos 2 sin 2
2 2

ˆ cos 2 sin 2
2 2

ˆ sin 2 cos 2
2

ε ε ε εε θ ε θ

ε ε ε εε θ ε θ

ε εε θ ε θ

+ −   = + +   
   

+ −   = − −   
   

− = − + 
 

      (1.3.8) 

where θ  is the rotation angle. 

1.3.2 Hooke’s Law 

The general constitutive relationship between the stresses and strains of a linear elastic material 

is 

IJ IJKL KLCσ ε=           (1.3.9) 

where IJKLC  is the 6 6×  stiffness matrix which is a fourth-order tensor. The number of 

independent material constant for determination of IJKLC  is dependent on the material symmetry. 

Triclinic Linearly Elastic Solids 
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If a linearly elastic solid has no plane of material symmetry, it is called a triclinic material. For 

material of this kind, there are 21 independent coefficients. The expression of the stiffness matrix 

can be generally written as 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

C C C C C C
C C C C C

C C C C
C C C

sym C C
C

 
 
 
 

=  
 
 
 
  

C        (1.3.10) 

Monoclinic Linearly Elastic Solids 

If a linearly elastic solid has one plane of material symmetry, it is called a monoclinic material. For 

materials of this kind, there are 13 independent coefficients. 

In terms of the compliance matrix, the constitutive relationship between the stresses and strains 

for the case where 1e  plane is the plane of symmetry is 

1 21 2 31 3 41 411 11

12 1 2 32 3 42 422 22

13 1 23 2 3 43 433 33

14 1 24 2 34 3 423

5 65 613

56 5 612

1 / / / / 0 0
/ 1 / / / 0 0
/ / 1 / / 0 0
/ / / 1 / 0 0
0 0 0 0 1/ / G
0 0 0 0 / G 1/ G

E v E v E G
v E E v E G
v E v E E G

E E E G
G

ηε σ
ηε σ
ηε σ

η η ηγ
µγ

µγ

− −  
   − −  
   − −  =   
  
  
  
     

23

13

12

σ
σ
σ

 
 
 
  
 
 
 
 
  

  (1.3.11) 

The 13 independent constants are 1E , 2E , 3E , 4G , 5G , 6G , 12v , 23v , 13v , 14η , 24η , 34η , and 

56µ . 

Orthotropic Linearly Elastic Solids 

If a linearly elastic solid has two mutually perpendicular planes of material symmetry, then 

automatically the third plane is also a plane of material symmetry. The material is called 

orthotropic elastic material. For material of this kind, there are only 9 independent elastic 

coefficients. 
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In terms of the compliance matrix, the constitutive relationship between the stresses and strains 

is 

11 1 21 2 31 3 11

22 12 1 2 32 3 22

33 13 1 23 2 3 33

23 23 23

13 31 13

12 12 12

1 / / / 0 0 0
/ 1 / / 0 0 0
/ / 1 / 0 0 0

0 0 0 1/ 0 0
0 0 0 0 1/ 0
0 0 0 0 0 1/ G

E v E v E
v E E v E
v E v E E

G
G

ε σ
ε σ
ε σ
γ σ
γ σ
γ σ

− −     
     − −     
     − −   =     

    
    
    
         

   (1.3.12) 

 The nine independent constants are 1E , 2E , 3E , 12G , 23G , 31G , 12v , 23v , and 13v . 

Transverse Linearly Elastic Solids 

If there exists a plane such that every plane perpendicular to it is a plane of symmetry, then the 

material is called a transversely isotropic material. That plane is called plane of isotropy. For 

material of this kind, the number of independent coefficients reduces to 5. 

In terms of the compliance matrix, the constitutive relationship between the stresses and strains 

is 

11 1 21 1 31 3 11

22 21 1 2 31 3 22

33 13 1 13 1 3 33

23 13 23

13 13 13

12 12 12

1 / / / 0 0 0
/ 1 / / 0 0 0
/ / 1 / 0 0 0

0 0 0 1/ G 0 0
0 0 0 0 1/ G 0
0 0 0 0 0 1/

E v E v E
v E E v E
v E v E E

G

ε σ
ε σ
ε σ
γ σ
γ σ
γ σ

− −     
     − −     
     − −   =     

    
    
    
         

   (1.3.13) 

where 
( )

1
12

212 1
EG

v
=

+
. 

The five independent constants are 1E , 3E , 12G , 13G , and 13v . 

Isotropic Linearly Elastic Solids 

If the material’s property is independent of the direction, then the materials is called an isotropic 

material. For an isotropic material, the number of independent coefficients reduces to 2. The 

compliance matrix has the simplest form as 
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( )
( )

( )

11 11

22 22

33 33

23 23

31 31

12 12

1 0 0 0
1 0 0 0

1 0 0 01
0 0 0 2 1 0 0
0 0 0 0 2 1 0
0 0 0 0 0 2 1

v v
v v
v v

vE
v

v

ε σ
ε σ
ε σ
λ σ
γ σ
γ σ

− −    
− −    
 − −   =    +

    +    +    

     (1.3.14) 

The reverse relation is 

( )( ) ( )
( )

( )

11 11

22 22

33 33

23 23

31 31

12 12

1 0 0 0
1 0 0 0

1 0 0 0
0 0 0 1 2 / 2 0 01 1 2
0 0 0 0 1 2 / 2 0
0 0 0 0 0 1 2 / 2

v v v
v v v
v v vE

vv v
v

v

σ ε
σ ε
σ ε
σ λ
σ γ
σ γ

−    
−    

 −   =    −+ −    −    −    

  (1.3.15) 

Under plane stress and plane strain conditions, the Hooke’s law for isotropic material has 

following distinct form as 

for plane stress: 

( )
11 11

22 222
12 12

1 0
1 0

1 0 0 1 / 2

vE v
v v

σ ε
σ ε
σ γ

        =   
−  −       

       (1.3.16) 

for plane strain: 

( )( ) ( )
11 11

22 22

12 12

1 0
1 0

1 1 2 0 0 1 2 / 2

v vE v v
v v v

σ ε
σ ε
σ γ

 −       = −   
+ −  −       

     (1.3.17) 

1.3.3 Strain Energy 

For elastic materials, the strain energy is defined as the area under the stress-strain curve. 

{ } { }1
2

T

V

U dVσ ε= ∫          (1.3.18) 

The strain energy density is the strain energy per unit volume, 

{ } { }1
2

T

V
s

dV
UU
V V

σ ε
= =

∫
        (1.3.19) 
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Since the strain energy of an elastic material is conservative, the stresses can be derived given 

the strain energy and strains as 

s
IJ

IJ

U
σ

ε
∂

=
∂

          (1.3.20)  

And the same is for the strains given the strain energy and the stresses. 

The stiffness matrix IJKLC  can be further obtained from the strain energy as 

2
s

IJKL
IJ KL

UC
ε ε
∂

=
∂ ∂

         (1.3.21) 

1.3.4 Plastic strains 

The first and fundamental assumption of plasticity theory is that the strains can be additively 

decomposed into elastic and plastic parts: 

e p
IJ IJ IJε ε ε= +           (1.3.22) 

The elastic strains e
IJε  can be specified by the displacements as described in Eq. (1.3.1). The 

plastic strains are of a different nature, and are defined in quite a different way. 

1.3.5 Yield Criteria 

Two frequently used yield criteria are the von Mises and the Tresca yield criteria. The von Mises 

yield criterion suggests that the yielding of materials begins when the second deviatoric stress 

invariant 2J  reaches a critical value. It applies best to ductile materials, such as metals. The yield 

function for von Mises yield criterion in terms of the stress matrix is 

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2
11 22 22 33 11 33 23 31 12

1 6
2IJ Yf σ σ σ σ σ σ σ σ σ σ σ = − + − + − + + + −    (1.3.23)  

The Tresca, or maximum shear stress, criterion specifies that a material would flow plastically if 

the maximum shear stress reaches a critical value. The yield function for Tresca yield criterion in 

terms of the principal stresses is 

( ) ( )1 2 2 3 3 1
1 1max , ,
2 2I Yf σ σ σ σ σ σ σ σ= − − − −      (1.3.24) 
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1.3.6 Yield Surface and Strain Hardening 

A yield surface is a surface in the stress space, defined through the yield function by 

( ), 0IJf σ = . The yield function indicates that it’s not only depend on the stress but also some 

other variables. Changes in plastic strain can occur only if the stress point lies on the yield 

surface, i.e., ( ), 0IJf σ = . If the stress point falls within the yield surface ( ( ), 0IJf σ < ), then 

there is no plastic strain increments as within the yield surface. The 2D von Mises and Tresca 

yield surfaces for plane stress ( 3 0σ =  ) are shown in Fig. 1.3.1. 

 

Figure 1.3.1. The Von Mises and Tresca Yield Surface in Plane Stress 

If the yield surface expands (or contracts) but does not translate as plastic straining occurs, then 

this is said to be isotropic hardening (or softening). See Fig. 1.3.2(a). 

On the other hand, if the yield surface translates, but does not change in size, as plastic strain 

occurs, then this is said to be kinematic hardening. See Fig. 1.3.2(b). 

  

a). Isotropic hardening b). Kinematic hardening 

Figure 1.3.2. One Dimensional Strain Hardening Laws 
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CHAPTER 

2. THE LATTICE PARTICLE MODEL FOR ISOTROPIC SOLIDS 

2.1 Introduction 

The idea of employing discrete one-dimensional bonds, e.g., springs or beams, to study the 

different phenomena of solids dates back to the work of Hrennikoff [16], in which the elastic 

properties of solids is firstly investigated using the lattice method. Successive studies can be 

found, e.g., in [17], [2], [18], [19]. The lattice models can be classified into different categories 

according to how the lattice sites interact via the connecting bonds. The simplest and one of the 

most popular forms of interaction is through the central force (or axial) springs [9]. This type of 

model has the issue of the fixed Poisson’s ratio. With the introduction of the bond rotation as 

additional degree of freedom [20], the Poisson’s ratio can be modified. The Born model [21] 

introduces a non-central two-body interaction, but this model is not rotationally invariant. Keating 

[10] discussed the rotationally invariant requirement and proposed a bond-bending model, in 

which the angle change between two adjacent connecting bonds is considered as an additional 

component of the system energy. The beam model [12] removes the limitation on the Poisson’s 

ratio by considering both the forces and the moments (i.e., rotational degrees of freedom) at each 

lattice site. Another lattice model introduces a volumetric term in the potential which can avoid the 

Poisson’s ratio issue and the rotational invariant requirement is guaranteed [22]. 

One of the intrinsic issue of the lattice models for fracture simulation is the crack path preference 

due to the regular lattice configuration [12], [13]. This directional preference of the crack path is 

also related to the anisotropy of the failure surface that has been investigated in [15]. Two major 

approaches have been proposed to address this issue. One is to use the random/irregular 

network. The irregular lattice models exhibit less crack path preference and offer freedom in 

domain discretization, but require certain scaling technique [14] to obtain elastic uniformity. 

Another possible solution is to use multiple neighbors. By introducing multiple neighbors, the 

lattice symmetry will be enhanced and the crack path preference will be eliminated or reduced. 
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In this chapter, a novel nonlocal lattice particle is proposed to overcome the challenges while 

using lattice spring model for homogeneous isotropic materials. The content of this chapter is 

organized as follows: in Section 2.2, detailed formulations of the proposed lattice particle model 

based on triangular and square packing for two dimensional homogeneous isotropic solids is 

presented. The concept of energy equivalency between discrete element and its continuum 

counterpart is introduced. Extension of the elastic framework to model elasto-plastic materials is 

discussed. The validity of the proposed model is verified against classical solution and FEM 

solution. In Section 2.3, a detailed study on fracture modeling using the proposed model is 

investigated. The bond dependency of the crack path is studied by rotating the underlying 

topological lattice structure. A generalized lattice particle framework including arbitrary neighbors 

is proposed for triangular packing to remove or reduce the bond dependency for fracture 

modeling. The validity of the generalized lattice particle model is verified with experimental 

findings. Section 2.4 is devoted to the formulation of the three-dimensional lattice particle model. 

Three cubic lattice structures are used and the corresponding model parameters are derived in 

terms of materials constants following the same procedure as in 2D case. The 3D lattice model is 

verified with analytical and numerical solution from the literature whenever available. The fracture 

modeling using the 3D lattice particle model is verified with experimental findings. 
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2.2 2D Elasticity and Plasticity 

The study of the deformation and fracture of two dimensional solids using the proposed lattice 

particle model is presented in this section. In this proposed lattice particle model, two potentials 

are introduced to model the interactions between material particles, i.e., a local pair-wise potential 

and a non-local multi-body potential. The local pair-wise potential is utilized to account for the 

constitutive relationship within the connecting bonds between particles while the non-local multi-

body potential is employed for considering the volumetric effects under general mechanical 

loadings. The potential coefficients are determined by matching the potential energy stored in a 

discrete unit cell to the strain energy at the classical continuum level. A volume conservation 

scheme is proposed to model the plastic deformation. The validity of the proposed model is 

verified against the classical elasticity and elasto-plasticity solutions before it was applied to 

fracture problems. Several conclusions are drawn based on the proposed study. 

2.2.1. Introduction 

Existing numerical methods for analysis of solid mechanics can be generally grouped into two 

categories: the continuum-based approach and the discontinuous approach. The continuum-

based approach includes classical finite element methods, extended finite element method, and 

many other schemes based on the continuum mechanics. The discontinuous approach includes 

discrete element method, lattice methods, particle methods, and other non-continuum-based 

methods. For discontinuous problems, such as cracking in materials, the classical continuum-

based theories have the singularity issue, while the discontinuous approach is, in principle, more 

suitable for this type of problem. Before the application to general fracture and damage analysis 

of solids, the discontinuous approach must be verified to be consistent with classical continuum 

theory for general elasticity and plasticity analysis, which is the focus of the present study. Since 

the proposed method belongs to the discontinuous approach and the following discussion is 

mainly made for the discontinuous approaches. 
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One of the most common discontinuous methods is the lattice model. The idea of introducing 

lattice models, or spring network models, to simulate elastic solids dates back to Hrennikoff [16]. 

Many subsequent developments have been done by researchers in engineering and material 

science, e.g., [23] [24] [22] [25] [26] [27] [28]. This approach was initially applied to atomic 

systems and later to larger scales as well. The restriction on Poisson’s ratio of materials is a well-

known issue for lattice spring models. For 2D model employing only the normal springs, the 

Poisson’s ratio in the limit of infinite numbers of particles is fixed to 1/4 for plane strain and 1/3 for 

plane stress. With the introduction of additional shear springs [2], the limitation on Poisson’s ratio 

can be removed, but it still cannot model the full range of Poisson’s ratio with positive stiffness 

parameter for shear springs, i.e., the stiffness parameter of the shear springs become negative 

when the Poisson’s ratio greater than 1/4 for plane strain case and 1/3 for plane stress case. For 

3D regular lattices model with normal and shear springs, it can only represents isotropic materials 

with zero Poisson’s ratio [26]. Jivkov and Yates [28] proposed a specific bi-regular lattice model 

which can be calibrated for a wide range of Poisson’s ratios with beam elements. Alternative 

approaches have also been proposed for removing this restriction, such as Lattice Discrete 

Particle Model (LDPM) [27] [29], Confinement-Shear Lattice model (CSL) [24] and Distinct Lattice 

Spring Model (DLSM) [11]. 

Another well cited discontinuous approach is the Virtual Internal Bond method (VIB) proposed by 

Gao and Klein [30]. In the VIB method, the continuum is treated as a randomized network of 

material points, interconnected by bonds, which obeys a cohesive law. The macroscopic 

collective behavior of this random bond network is obtained through the Cauchy-Born rule[21] of 

crystal elasticity and theory of hyper-elasticity. The key element in VIB method is the 

determination of the function for the cohesive force law, which is calibrated in a 

phenomenological sense from the stress-strain curve in a uniaxial tensile experiment. The original 

VIB model only considered the bond stretching effect and thus also has a fixed Poisson’s ratio 

issue, i.e., 1/4 for plane strain case and 1/3 for plane stress case. In order to make VIB applicable 

to a wider range of materials, Volokh and Gao [31] proposed a decomposition of the Green-
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Lagrangian strain tensor into spherical and deviatoric parts with separate contributions to the 

strain energy of the bonds. Another recently developed discontinuous method is the peridynamics 

method proposed by Silling [3]. The peridynamics uses the interaction among a group of particles 

(e.g., within the horizon radius) to describe the mechanical behaviors of solids. In peridynamics, 

an iterative trial-and-error calibration process is required to determine the model parameters for 

the force density function. The original peridynamics formulation also has the restriction of the 

applicable Poisson’s ratios. With the introduction of the state-based formulation, the restriction on 

the Poisson’s ratio can be removed but the computation process is complex [3]. 

Most existing discontinuous methods have been mostly applied to model brittle/quasi brittle 

fracture problems. For some materials, such as concrete and rocks, the plastic deformation can 

be ignored and simulation assuming brittle or quasi-brittle behavior is sufficient. But the plastic 

deformation plays an important role for many other engineering materials and thus cannot be 

ignored in order to obtain a fully understanding of failure mechanism of these materials. Although 

several attempts to include plasticity have been made [32] [33] [34], relatively few studies have 

been made for general plasticity analysis using the discontinuous approach compared to its wide 

applications to elastic problems. Buxton [32] included plasticity into the classical Born spring 

model and Thiagarajan and Huang [33] extended the hyperelastic to elasto-viscoplastic material 

modeling using the VIB method by incorporating the continuum-based plasticity theories. Both 

above attempts are based on the classical lattice theories and the restriction on the Poisson’s 

ratio still exists. Foster [34] extended the peridynamics to model viscoplastic material, which is 

also based on the classical continuum-based plasticity theories. As can be observed, most 

existing implementation of plastic deformation into the discontinuous approach still relies on the 

continuum-based plasticity theory, which requires the transformation between the particle system 

and the continuum domain throughout the analysis (i.e., transformation between the particle 

displacement/force to continuum strain/stress). To the best knowledge of the authors’, no 

systematic studies have been proposed to simultaneously consider the arbitrary Poisson’s ratio in 
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elastic and elastic-plastic deformations by only employing the pair-wise particle interactions in the 

open literature. 

Lattice models have been dominantly applied to model fracture phenomenon of brittle materials 

due to its easiness of simulating crack initiation and propagation by bond breaking and removal 

[4, 35]. Several bond breaking rules can be applied at the bond level, such as the critical energy, 

critical force and critical elongation criteria. For regular lattice based models, however, it’s shown 

that the lattice regularity results in the preference of certain crack propagation direction [13] [12]. 

This directional preference intrinsically comes from the anisotropy of the failure surface [15]. 

Based on the work of Monette and Anderson [15], the degree of anisotropy of the failure surface 

can be decreased by employing more particles as the neighbors of the centered particle, which 

essentially is the same as the concept of horizon used in peridynamics [3]. In this paper, the 

major objectives are to propose a new discrete simulation framework under elasticity and 

plasticity, which is of critical importance before a comprehensive fracture study using the 

proposed framework. One demonstration example for fracture is shown to see the capability of 

the proposed new framework. 

Based on the above discussions, the objectives of the proposed study is to develop a novel lattice 

particle model, which can handle the arbitrary Poisson’s ratio effect and the plastic deformation 

which does not rely on the classical plasticity theories. The key idea in the proposed lattice 

particle model is to include two potential descriptions for the particle system interaction. In 

addition to the local pair-wise potential used in the classical lattice spring models, a non-local 

multi-body potential is introduced to account for the volume change of particles. The restriction on 

the Poisson’s ratio is completely removed by using the volumetric potential term, i.e., the non-

local multi-body potential. The proposed model is capable of simulating elastic-plastic 

deformation by considering the conservation of volume under the general plastic deformation. 

The content of this section is organized as follows. First, details on the formulation of the 

proposed lattice particle model is given, includes particle packing selection, derivation of the 

coefficients of potential functions. Next, the proposed methodology is extended to model elastic-
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plastic materials according to the volume conservation during the plastic deformation. Following 

this, a critical elongation failure criterion is proposed and used for fracture modeling. Then, some 

benchmark problems of solid mechanics are used to verify the validity of the proposed 

methodology. Some discussions and conclusions are presented based on the current study at the 

very end. 

2.2.2. Lattice Particle Model: formulation 

In this section, detailed formulation of the proposed lattice particle model is given, including 

particle packing selection, determination of potential coefficients for elasticity and plasticity, and 

failure criterion. The solution methods used to obtain the final solution in lattice particle model is 

presented in Chapter 4. 

Particle packing 

Similar to all particle-based simulation methods, particle packing also directly affects the 

formulation and model parameter determination in lattice particle model. Two possible packing 

types, e.g., the hexagonal packing and the square packing are investigated in detail in this study. 

The schematic plots for different packing are shown in Fig. 2.2.1. 

  

a). Hexagonal packing b). Square packing 
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c). Unit cell for hexagonal packing d). Unit cell for square packing 

Figure 2.2.1. Schematic Illustration for 2D Particle Packing 

In classical lattice models, both packing (Fig. 2.2.1) have been investigated and the restriction on 

Poisson’s ratio exists in both cases [36]. For these two packing only considering the nearest 

neighbors, they both satisfy the isotropic condition which is required for modeling isotropic 

homogeneous materials. But for the square packing, there is no shear contribution from the 

nearest neighbors. By taking the second nearest neighbors into consideration, shear can be 

introduced into the square packing. More details are shown in section 2.2.1. 

Once the particle packing is selected, a unit cell that periodically repeating in the discrete model 

is chosen to calculate the potential energy. Two typical unit cells for both hexagonal and square 

packing are shown in Fig. 2.2.1 c) and Fig. 2.2.1 d), respectively. The strain energy of a unit cell 

can be calculated based on the classical lattice theory, in which the normal vectors of each pair of 

particles are required. A normal vector is the direction vector between a centered particle and its 

neighboring particles. The normal vectors of a typical unit cell are listed in Table 2.2.1 for both 

packing. These definitions will be used in the derivation shown in the next section. 

Table 2.2.1. Normal Vectors Associated with a Typical Unit Cell for Two Packing 
Normal vector Hexagonal packing Square packing 

0n  ( )1,0,0  ( )1,0,0  

1n  ( )1/ 2, 3 / 2,0  ( )0,1,0  

2n  ( )1/ 2, 3 / 2,0−  ( )1,0,0−  

3n  ( )1,0,0−  ( )0, 1,0−  
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4n  ( )1/ 2, 3 / 2,0− −  ( )2 / 2, 2 / 2,0  

5n  ( )1/ 2, 3 / 2,0−  ( )2 / 2, 2 / 2,0−  

6n  N/A ( )2 / 2, 2 / 2,0− −  

7n  N/A ( )2 / 2, 2 / 2,0−  

Model development and potential coefficients determination 

The key idea of the proposed lattice particle model is that two potential terms are used to 

describe the strain energy cellU  stored in a unit cell: the energy stored in the local pair-wise 

neighboring springs sU  and the energy associated with the volume change of a unit cell vU . 

Note that only a half spring is used in each unit cell while calculating the strain energy, which 

avoids overlapping. Mathematically, the above hypothesis can be expressed as 

cell s vU U U= +           (2.2.1) 

Both hexagonal packing and square packing share the same derivation process. Without loss of 

generality, following derivation is based on the hexagonal packing. Some specific issues related 

to square packing will be addressed later. The local pair-wise potential function sU of the 

hexagonal packing is 

5
2

1
0

1 ( )
2

h h
s IJ

J
U k lδ

=

= ∑          (2.2.2) 

where superscript h  indicates hexagonal packing. IJlδ  is the length change of a half spring, 1
hk  is 

the stiffness parameter for springs connecting the center particle with its nearest neighbor. 

( ) ( )2 2 0
IJ I J I J IJL x x y y Lδ = − + − −        (2.2.3) 

where ( ),I Ix y  is the position vector of particle I for 2D case and 0
IJL  is the original length of the 

connecting bond. 

Based on the assumption that the displacement field of a spring is linearly distributed, the strain 

of a spring connecting particle I   and J  can be expressed as 
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2
IJ IJ

IJ
L l
R R

δ δ
ε = =          (2.2.4) 

where IJLδ is the length change of an entire spring, i.e., 2IJ IJL lδ δ= .  

The relationship between the strain IJε of a spring and the strain tensor of a unit cell in the 

Cartesian coordinate system is 

IJ ij j in nε ε=           (2.2.5) 

with , 1,2,3i j = . 

Based on Eq. (2.2.5), the strain energy stored in the springs of a unit cell can be further 

formulated as 

25 5 5
2 2 2 2

1 1 1
0 0 0

1 1 1
2 2 2

h h h h N N N NIJ
s IJ i ij j m mn n

J J N

lU R k R k R k n n n n
R
δ

ε ε ε
= = =

 = = = 
 

∑ ∑ ∑    (2.2.6) 

with , , , 1,2,3i j m n = , J
in indicates the i th component of the normal vector N  listed in Table 2.2.1. 

I , J is the particle indices. 

From Eq. (2.2.6) and the normal vectors listed in Table 2.2.1, the strain energy stored in springs 

associated with a unit cell can be obtained as 

2 2 2 2
1 11 22 12 11 22

1 9 9 3 3
2 4 4 4 2

h h
sU R k ε ε γ ε ε = + + + 

 
      (2.2.7) 

Unlike the local pair-wise potential energy, the energy of volume change is introduced via the 

volumetric strain of a unit cell. For 2D case, the volumetric strain is different in the plane strain 

and plane stress cases. The general formula for the non-local multi-body potential function vU  is 

( )21
2

h h h h
v vU V T ε=          (2.2.8) 

where hV is the volume of a unit cell, hT  is the non-local multi-body potential parameter and h
vε  

is the volumetric strain of a unit cell. For hexagonal packing, the volume of a unit cell is 

22 3hV R= , where R  is the radius of a particle as shown in Fig. 2.2.1(a). 
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Under the plane strain assumption (i.e., the out-of-plane strains are all zeros), the volumetric 

strain in terms of the normal strains under Cartesian Coordinates is 

11 22vε ε ε= +           (2.2.9) 

Thus, the non-local multi-body potential for volume change of a unit cell is,  

( ) ( )2 2 2 2
11 11 22 22

1 3 2
2

h h h h h
v vU V T R Tε ε ε ε ε= = + +      (2.2.10) 

Given Eqs. (2.2.7) and (2.2.10), the total strain energy of a unit cell in terms of the strains in the 

Cartesian Coordinates can be expressed as 

2 2 2 2 2 2 2
1 11 1 22 1 11 22 1 12

9 9 3 33 3 2 3
8 8 4 8

h h h h h h h h
cellU R k T R k T R k T R kε ε ε ε γ       = + + + + + +       

       
 (2.2.11) 

Using the characteristic of elastic material that the strain energy is conservative, the stiffness 

tensor can be obtained in the Voigt form as 

21 h
cell

ijkl h
ij kl

UC
V ε ε

∂
=

∂ ∂
         (2.2.12) 

Expanding terms using Eq. (2.2.11), the stiffness matrix can be further expressed as 

1 1

1 1

1

3 3 3 0
8 8
3 3 3 0
8 8

30 0
8

h h
h h

h h
h h

h

k kT T

k kT T

k

 
+ + 

 
 

= + + 
 
 
 
  

C       (2.2.13) 

Comparing this stiffness matrix with that of 2D isotropic homogeneous material, the parameters of 

the potential function 1
hk  and hT can be solved in terms of the material constants E (Young’s 

modulus) and v (Poisson’s ratio) uniquely as 

1
4

3(1 )
h Ek

v
=

+
, (4 1)

2(1 )(1 2 )
h E vT

v v
−

=
+ −

       (2.2.14) 

Eq. (2.2.14) is the expression of the coefficients of the potential function. Next, the interaction 

force within each spring needs to be calculated which will be used for the particle dynamics 
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simulation. The interaction force within a spring given certain length change IJlδ  can be obtained 

by taking derivative of the totally energy of a unit cell h
cellU  with respect to the length change of 

such spring IJlδ  as 

( )
h
cell

IJ
IJ

Uf
lδ

∂
=
∂

          (2.2.15) 

In order to do so, the potential energy needs to be expressed as a function of the spring length 

change IJlδ . By definition, the volumetric strain of a unit cell can be approximated by the strains 

of all the neighboring springs as 

5 5

0 0
2

2 3
3

32 3

IJ IJ
h J J
v

R l l
V

V RR

δ δ
ε = =∆

= ≈ =
∑ ∑

       (2.2.16) 

Given Eq. (2.2.16), the total strain energy of a unit cell can be rewritten in terms of the spring 

length change IJlδ  as 

25 5
2

1
0 0

1 3( )
2 9

h h h
cell IJ IJ

J J
U k l T lδ δ

= =

 
= +  

 
∑ ∑        (2.2.17) 

It is shown in Eq. (2.2.17) that the potential energy stored within the springs is a local pair-wise 

potential and that of the volume change is a non-local multi-body potential. 

Based on Eqs. (2.2.15) and (2.2.17), the interaction force within a half spring given certain length 

change IJlδ  can be obtained as 

5

1
0

2 3
9

h h
IJ IJ IJ

J
f k l T lδ δ

=

= + ∑         (2.2.18) 

For plane stress case, the volumetric strain can be expressed using the in-plane normal strains in 

the Cartesian Coordinates as 

( )11 22 33 11 22
1 2
1v

v
v

ε ε ε ε ε ε−
= + + = +

−
       (2.2.19) 

Follow the same procedure as that in the plane strain case, the potential coefficients can be 

obtained as 
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Comparing Eq. (2.2.14) with Eq. (2.2.20), the spring stiffness parameters are the same while the 

multi-body potential parameters are different for plane strain and plane stress cases. 

The volumetric strain of a unit cell in the plane stress condition can be approximated from its 

definition as 
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where 33d  is the thickness change. 

Using Eqs. (2.2.19) and (2.2.21), the strain in the thickness direction 33ε  can be solved as 
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Thus, the interaction force for half spring can be obtained as 

1 2 3h h h
IJ IJf k l T eδ= +          (2.2.23) 

where 
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The above discussion is for the parameters of the potential functions for hexagonal packing. For 

those parameters of square packing, the same derivation scheme can be applied. For simplicity, 

the results are directly given with some special notes. 

The strain energy stored in the springs has a different form from the hexagonal packing since two 

types of spring is adopted in square packing. The strain energy s
sU  is 
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where superscript s  indicated the square packing, 1
sk and 2

sk  are the spring stiffness parameters 

for springs connecting a center particle with the nearest and the second nearest neighbors, 

respectively. 

The strain energy with the volume change of a unit cell is the same as that of the hexagonal 

packing, except the volume of a unit cell is 24sV R= for square packing. 

For plane strain case, the strain energy of volume change of a unit cell is 

( ) ( )2 2 2 2
11 11 22 22

1 2 2
2

s s s s s
v vU V T R Tε ε ε ε ε= = + +       (2.2.26) 

Using Eq. (2.2.12), the stiffness matrix for square packing under plane strain assumption is 
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Comparing the components with the stiffness matrix of 2D isotropic homogeneous materials, the 

potential coefficients can be determined uniquely as  
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By definition, the volumetric strain of a unit cell in square packing can be approximated as 
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Thus, the total strain energy of a unit cell in square packing can be rewritten in terms of the length 

change of a half spring as 
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From Eq. (2.2.15), the interaction force within half spring can be obtained as 
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For plane stress case of the square packing, the derived expression of the potential coefficients is 
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The volumetric strain for the square packing under plane stress condition can be approximated as 
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The strain in the thickness direction can be solved from Eqs. (2.2.19) and (2.2.33) as 
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Thus, the interaction force for half spring can be obtained as 
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where 
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As a short summary, the model parameters under 2D elastic cases have been derived for both 

packing. In the following section, the developed model is extended to elastic-plastic deformations. 

Extension to plasticity 
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Plastic deformation is a path-dependent problem from the perspective of energy, which means 

the parameters derived by equating the strain energy between the discrete model and the 

continuum model is no longer valid for the case of elastic-plastic deformation. It is known that the 

plastic deformation is primarily a distortion and the volume change is negligible. From this 

perspective, instead of equating the strain energies, a volume conservation scheme is proposed 

to extend the lattice particle model from elastic to plastic deformations. 

Volume conservation 

The interaction force between a particle pair for an elastic media has been derived as shown in 

Eqs. (2.2.18) and (2.2.31). A modified equation is proposed to model general elastic-plastic 

materials and can be expressed as 

( )
( ) ( )

e e Y
e IJ e IJ IJ IJ

IJ e e p Y
e IJ e IJ p IJ IJ IJ

k l T Q l l l
f

k l T Q l T Q l l l

δ δ δ δ

δ δ δ δ δ

 + ≤= 
+ + >

     (2.2.37) 

where ek  is the spring stiffness parameter of the elastic deformation and pk is that of plastic 

deformation, as shown in Fig. 2.2.2, e
IJlδ is the elastic part of the length change of a half spring 

and p
IJlδ is the plastic part, Y

IJlδ is the yielding displacement of the connecting bond, eT  is the 

multi-body potential parameter for elastic deformation, pT  is the multi-body potential parameter 

for plastic deformation, and ( )Q ⋅  is a function of the strains as shown in Eq. (2.2.18). It should be 

noted that Eq. (2.2.37) is for bi-linear plastic model (see Fig. 2.2.2) and more complex plastic 

models can be developed based on the similar procedures. 

In the Eq. (2.2.37), the length change of a typical bond is additively decomposed into two parts, 

the elastic part and the plastic part, in a similar way as have been done in classical continuum 

mechanics for strains.  

e p
IJ IJ IJl l lδ δ δ= +          (2.2.38) 

For plastic deformation, parameters of the potential function, as shown in Eqs. (2.2.17) and 

(2.2.30), are calculated based on the Poisson’s ratio and the tangent modulus at the 
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corresponding plastic deformation. Given the material’s tangent modulus and Poisson’s ratio at 

the plastic deformation stage, the model parameters (in the case of hexagonal packing) can be 

determined as 

( )1

4
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p
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E
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v
=

+
, ( ) (4 1)

2(1 )(1 2 )
p ph

p
p p

E v
T

v v
−

=
+ −

      (2.2.39) 

in which the subscript p  indicates the plastic deformation. The same model parameters updating 

is for square packing. If the elastic deformation at the plastic deformation stage is negligible, then 

0.5pv = . Given the updated model parameters, the interaction force within each bond can be 

calculated from the elastic and plastic deformations using Eq. (2.2.37). The remaining question is 

to determine the yielding condition of the bond, i.e., Y
IJlδ  in Eq. (2.2.37). Details are shown below. 

  

a). A typical bilinear stress-strain curve in 

continuum model  

b). A typical pairwise force vs. length change 

curve for a bond 

Figure 2.2.2. Bilinear Constitutive Model in Lattice Particle Model 

Equivalent yield condition 

Classical continuum-based plasticity theory needs to define the yield surface for the general 

plasticity analysis. The proposed lattice particle only uses the one-dimensional bond potential to 

describe the plastic deformation. The yielding condition is derived by considering the force 

exerted on a unit cell. The force state is shown in Fig. 2.2.3 for both packing. 
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Figure 2.2.3. Forces Exerted on a Unit Cell from Neighboring Springs 

As shown in Fig. 2.2.3, for hexagonal packing, the force on a unit cell in the horizontal direction is 

( )2 sin 60 3hF F F= × =         (2.2.40) 

Equating the above net forces with the yielding force in the continuum model, the following 

equation can be obtained, 
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Using Eq. (2.2.14), and Eq. (2.2.41), the yielding length change of a bond can be obtained as, 
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The same procedure is applied to the square packing, and the critical length change of a spring 

can be obtained as, for the springs connecting the nearest neighbors and the center particle, 
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(2.2.43) 

and for the springs connecting the second nearest neighbors and the center particle, 



 

 

31 

 

( ) ( ) ( ) ( )
7 7 2

0 0

2

4 1 4 12 3 2 2 2 3 2 2
2 1 2 2 1 2

Y Y
IJ s

IJIM IM

M MIJ IK IK

l R
kll lv v

v l l lv

σδ
δδ δ

δ δ δ= =

=
   − − + − + + −      − −    

∑ ∑
 (2.2.44) 

As can be seen, elastic-plastic material modeling in the proposed lattice particle model only uses 

the modified bond potentials. For general plastic analysis, no stresses and strains transformation 

to the continuum and the determination of yielding surface are needed, which differentiates the 

lattice particle model from most existing discontinuous approaches as discussed in the first 

section. 

Fracture criterion 

As discussed at the beginning, the fracture simulation if one of the most important advantages of 

the discrete approach. Detailed study on the fracture simulation needs significant future study. In 

the current study, only a simple scheme is used to demonstrate the capability of the proposed 

methodology. The fracture criterion used in the proposed lattice particle model is bond-based, 

which make the simulation process much easier. Critical energy/force/elongation criteria can be 

derived based on different material properties, such as fracture toughness and material strength. 

For demonstration purpose, a bond-based critical elongation criterion is given below. 

For springs of triangular packing, the critical elongation can be expressed as  
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For the springs connecting the nearest neighbors and the center particle in square packing, the 

critical elongation can be expressed as 
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For the springs connecting the second nearest neighbors and the center particle in the square 

packing, the critical elongation can be expressed as 
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where Rσ  is the rupture strength of a material. Once the critical elongation is reached by a bond 

during the simulation step, the bond is considered broken and removed from future simulation 

steps. The entire fracture process can be tracked by the bond breaking process as used in most 

existing discrete approaches. 

2.2.3. Numerical Examples 

Elasticity and elastic-plasticity 

The benchmark problems used in this section to examine the validity of the proposed lattice 

particle model share two types of geometric dimensions: one rectangular plate with centered hole 

and one without. The dimensions of the two plates are shown in Fig. 2.2.4. The unit for the 

geometric dimension is meter (m). Several different loading conditions are considered. The 

boundary conditions are specified in each example. The material properties are listed in Table 

2.2.2. 

Table 2.2.2. Material Constants for 2D Elasticity and Plasticity 
Material constants Value 

Young’s modulus ( E ) (Pa) 6.9 x1010 
Mass density ( ρ ) (kg/m3) 2.7 x103 
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Yielding strength ( Yσ ) (Pa) 2.0 x108 
Poisson’s ratio ( v  ) Vary 

 

  

Rectangular plate 1 Rectangular plate 2, with centered hole 

Figure 2.2.4. The Dimensions of the Two Plates 

Elastic problems 

Various loading conditions are utilized to test the validity of lattice particle model for modeling the 

elastic deformation of isotropic materials. The physical model used for all elastic examples is the 

rectangular plate 1, without centered hole. The boundary conditions for each example may 

different. A more detailed specification is given in each example. 

Verification of Poisson’s Ratio 

The plate left edge (edge a) is fixed in the x direction while free in the y direction. A displacement 

boundary condition is applied on the right edge (edge c) in the positive x direction, with value of 

1.0 x10-5 m. The testing results are shown in Fig. 2.2.5, in which the fixed Poisson’s ratios in 

classical lattice models are also provided for comparison. 

 

Figure 2.2.5. The Verification of Poisson’s Ratio for 2D Isotropic Materials 

Clamped plate under tension 
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Theoretical value
Plane stress(Classical)
Plane strain(Classical)
Plane stress(Hex packing)
Plane strain(Hex packing)
Plane stress(Sqr packing)
Plane strain(Sqr packing)
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The rectangular plate 1 is stretched in the positive x direction with force of value 2000 newton. 

The left edge (edge a) is clamped, i.e., the motions in both x and y directions are fixed. Due to 

symmetry, only a half model is used. The plane stress assumption is adopted. The Poisson’s ratio 

is 0.25. The results for the displacement distribution are compared in Fig. 2.2.6. The simulation 

results using two different packing and the solution from FEM using ABAQUS are compared. 

  

a). Hexagonal packing Ux b). Hexagonal packing Uy  

  

c). Square packing Ux d). Square packing Uy 

  

e). FEM Ux f). FEM Uy 

Figure 2.2.6. Displacements Distribution for Tensile Loading 

Cantilever beam 1 

For the beam in this case, the left edge (edge a) is clamped. An external shear force with value of 

2000 newton is applied on the right edge (edge c) in the negative y direction. Due to symmetry of 
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the physical model, only a half model is used. The plane strain assumption is made for this 

example. The Poisson’s ratio is 0.33. The deformation results are shown in Fig. 2.2.7. 

  

a). Hexagonal packing Ux d). Hexagonal packing Uy 

  

b). Square packing Ux e). Square packing Uy 

  

c). FEM Ux f). FEM Uy 

Figure 2.2.7. Displacements Distribution for Shear Loading 

A convergence study is also performed using this example. The L2 norm error is defined as 

        (2.2.48) 



 

 

36 

 

where pN  is the total number of particles and the exact solution from Timoshenko [37] under 

plane stress assumption is 

( )

( ) ( ) ( )
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− − −
= + − +

      (2.2.49) 

with the plate length 0.03L =  and height 0.01D = , and the moment of inertia of the cross 

section of the plate 
3

12
DI =  . 

The convergence plot is shown in Fig. 2.2.8. As can be seen, a good convergence rate is 

achieved in the proposed model. 

 
Figure 2.2.8. The Convergence Characteristic of Hexagonal Packing  

Cantilever beam 2 

For this example, the left edge (edge a) is clamped. A uniformly distributed force is applied on the 

top edge (edge b) with a resultant force of 2000 newton in the negative y direction. The plane 

strain assumption is also made for this case. The Poisson’s ratio for this case is 0.3. The results 

are shown in Fig. 2.2.9. 
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a). Hexagonal packing Ux b). Hexagonal packing Uy 

  

c). Square packing Ux d). Square packing Uy 

  

e). FEM Ux f). FEM Uy 

Figure 2.2.9. Displacements Distribution for Uniformly Distributed Loading 

Based on the above verification for linear elastic cases, it is observed that the proposed lattice 

particle model can accurately predict the deformation behavior for different Poisson’s ratios under 

different loading conditions. The two different packing give similar results compared to the 

classical FEM results. 

Elastic-plastic problems 

For problems in this section, the displacement boundary conditions are used and applied at a 

very low speed so as to obtain a quasi-static solution. Dynamic solution method is used and no 

damping strategy is used in this section. 
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As mentioned in the previous section, the strain measures adopted in the lattice particle model 

have the meaning of engineering strains. In order to compare the results with FEM results 

obtained from the ABAQUS package, the engineering stress-strain curve needs to be translated 

into the true stress-strain curve. For the bilinear engineering stress-strain curve shown in Fig. 

2.2.10, the tangent moduli are 6.9 x1010 Pa and 6.9 x108 Pa for elastic and plastic stages, 

respectively. The yielding strength of the material is 2.0 x108 Pa, as listed in Table 2.2.2. The 

engineering stress-strain curve and the converted true stress-strain curve are shown in Fig. 

2.2.10. These curves are used for both examples in this section. 

 

Figure 2.2.10. Engineering and Translated True Stress-Strain Curves 

Uniaxial tension 

The rectangular plate with a center-hole is used in this example. Both geometrical and material 

nonlinearities are involved. The left edge (edge a) is clamped. A displacement boundary condition 

is applied on the right edge (edge c) in the positive x direction, with value of 5.0 x10-4 m. The 

example is tested for various Poisson’s ratio so as to show the validity of the proposed lattice 

particle model for elastic-plastic materials. The Poisson’s ratios for all cases are assumed to be 

0.499 at the plastic deformation. For simplicity, the plots are made only for the case of initial 

Poisson’s ratio of 0.4. The lateral deformation results are shown in Fig. 2.2.11 a)-c), with d) is the 

history of the reaction force at the right edge (edge c). The results for other cases are listed in 

Table 2.2.3. 
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a). Hexagonal packing Uy b). Square packing Uy 

 
 

c). FEM Uy d). Reaction force on the right edge (edge c) 

Figure 2.2.11. Distribution of Uy and Reaction Force Fx 

Table 2.2.3. Displacement Uy and Reaction Force Fx for Various Poisson’s Ratio 
Poisson’s 

Ratio 
Uy (x10-4 m) Fx (x106 N) 

Hexagonal Square FEM Hexagonal Square FEM 

0.40 +2.169 
-2.169 

+2.214 
-2.214 

+2.264 
-2.270 -1.663 -1.661 -1.660 

0.33 +2.158 
-2.158 

+2.194 
-2.194 

+2.229 
-2.234 -1.656 -1.656 -1.652 

0.30 +2.152 
-2.152 

+2.191 
-2.191 

+2.215 
-2.220 -1.651 -1.650 -1.650 

0.25 +2.164 
-2.164 

+2.187 
-2.187 

+2.193 
-2.197 -1.649 -1.648 -1.646 

 
Cantilever beam 1: shear loading 

The physical model used in this example is the rectangular plate without the hole. The left edge 

(edge a) is clamped and a displacement boundary condition is applied on the right edge (edge c) 

in the negative y direction with value of -2.0 x10-3 m. The stress-strain curve is the same as the 

one used in the uniaxial tension test. Comparing to the geometrical dimension, the model used in 
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this example undergoes a large deformation. For simplicity, only the results for Poisson’s ratio of 

0.4 are given here. The final displacement distributions and the reaction force history on the right 

edge (edge c) are shown in Fig. 2.2.12. 

  

a). Hexagonal Packing Ux b). Square packing Ux 

 
 

c). FEM Ux d). Reaction force on the right edge (edge c) 

Figure 2.2.12. Distribution of Ux and Reaction Force Fy 

Uniaxial tension, Unloading 

In order to differentiate the elastic-plastic response from the nonlinear elastic response of 

materials, an unloading case is studied here, i.e., elastic unloading forward plastic reloading. The 

model used in this subsection is the same as the one in the uniaxial tension test, except that an 

unloading process is applied after the plate is loaded to certain plastic deformation. Only the 

results of the hexagonal packing are provided. The history of the external applied displacement 

boundary conditions and the reaction force on edge C are shown in Fig. 2.2.13. The oscillation 

during the elastic unloading and reloading is due to the nature of dynamic formulation. The final 

displacements distributions are shown in Fig. 2.2.14. 

Based the above verification for elastic-plastic analysis, it is observed that the proposed lattice 

particle model and volume conservation scheme can successfully predict the elastic-plastic 
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deformation under loading and geometry induced plasticity (i.e., due to bending and stress 

concentration). The results agree well with classical FEM results based on von-Misses yielding 

criterion. Both packing have similar results compared to the FEM results, which indicates that the 

proposed lattice particle model is independent of the packing selection, at least for the 

investigated two packing patterns. It should be noted that the above plastic analysis using the 

lattice particle model only depends on the one dimensional pair-wise bond potentials and no yield 

surface as used in the classical continuum-based plasticity theory is required. This greatly 

facilitates the implementation of nonlinear material behavior in the proposed lattice particle model, 

e.g., damage-induced stiffness degradation. Future study is required to fully verify this for general 

3D cases under general loading conditions. 

  

a). Applied displacement  b). Reaction force 

Figure 2.2.13. History of the Applied Displacement and Reaction Force on Edge c 
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a). Hexagonal packing Ux b). Hexagonal packing Uy 

  

c). FEM Ux b). FEM Uy 

Figure 2.2.14. Displacements Distribution for 2D Elasto-Plastic Materials 

Fracture simulation 

A three-point-bending test is simulated in this section to show the capability of the proposed 

model for fracture modeling using the triangular packing lattice. The geometry and the loading 

condition of the specimen are shown in Fig. 2.2.15. A centered point loading is applied on the top 

edge of the specimen and the crack length is 0.002 m. Two points, 0.028 m away from each 

other, on the bottom edge are fixed in the y-direction. The material property in this problem is the 

same as those listed in the Table 2.2.2. The Poisson’s ratio is 0.2. The simulation results using 

the triangular packing are given in Fig. 2.2.16. 

 

Figure 2.2.15. Configurations of the Three-Point-Bending Test Specimen 
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1t   2t   

Figure 2.2.16. Snapshots of the Fracture Processes at Two Different Time Steps 

It can be observed that a typical mode I crack growth is simulated in this example, which is 

expected from the continuum theory. It should be noted that this demonstration example is only 

used to illustrate the feasibility of fracture simulation using the proposed new framework. Detailed 

investigation of fracture analysis using the proposed approach needs further study. 

2.2.4. Discussion and Conclusion 

A novel lattice particle model is proposed for the general analysis of 2D isotropic solids, i.e., 

elasticity, elastic-plasticity and fracture. The proposed method is verified with the classical 

continuum-based solutions. 

For some discrete approach using both normal and shear springs, the stiffness of the shear 

spring will become negative for some special Poisson’s ratios [2]. In this approach, both springs 

are physical springs corresponding to different displacements. It is hard to justify the negative 

stiffness for a macro level spring element under elastic deformation, although some physical 

explanations have been given in [11]. In the proposed approach, the volumetric parameter T will 

be negative for certain range of Poisson’s ratio, i.e. smaller than 0.25 for plane strain and 0.33 for 

plane stress. This parameter does not have any physical meaning and is used to compensate the 

energy representation in the classical axial spring model. For the plane strain case, when the 

Poisson’s ratio is larger than 0.25, the strain energy stored in a unit cell will become smaller than 

that of the corresponding continuum theory. The volumetric energy term is introduced to 

compensate this difference such that the energy equivalence can be achieved for arbitrary 

Poisson’s ratios. 
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In the plasticity examples, the maximum strain level is about 10% which is considered large for 

most engineering materials and structures. As long as the lattice distortion is not significant, the 

proposed framework can be directly applied to large displacement problems. If the lattice 

distortion is significant, a geometric nonlinearity tracking algorithm needs to be used to update the 

lattice configuration at each simulation step, which is similar to classical FEM implementations to 

include the geometric nonlinearity. Thus, the proposed framework is possible for large 

displacement, but needs additional studies for highly distorted particle systems. 

The lattice beam model introduces “micropolarity” and can improve the Poisson’s ratio limitations 

of the classical lattice spring model. There are two distinct differences between the beam element 

approach and the proposed model. First, the degree of freedom of the proposed framework is 

very different from the beam element method since only nodal displacement at the particle 

locations are considered as DOF (i.e., no rotational DOF). This difference can be significant for 

large particle systems and can impact the solution efficiency. Second, the fracture simulation for 

beam elements needs to consider the multi-axial force/displacement while the proposed method 

only uses the axial force/displacement. This difference will have very different effects in the 

fracture simulations. Detailed comparison between the proposed framework and the beam 

element method will be very interesting and needs further study. The pros and cons of each 

method should be investigated in detail. Nevertheless, the proposed framework offers a new, 

systematic, and alternative way for the discrete method simulation of solids. 

Several major conclusions are drawn based on the current investigation: 

1). Introducing the local pair-wise and non-local multi-body volumetric potentials successfully 

reproduces all Poisson’s ratios using the proposed particle method; 

2). The volume conservation scheme in the proposed lattice particle model is able to analyze the 

nonlinear elastic-plastic deformation of 2D solids; 

3). Only one-dimensional pair-wise potential needs to be determined for the plastic deformation 

and general plasticity analysis can be performed, which greatly facilitates the plasticity analysis; 
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4). Fracture phenomenon can be simulated using the proposed model with suitable bond 

breaking rules; 

5). Both hexagonal packing and square packing yield similar results compared to the classical 

continuum-based methods; 

6). For the modeling of continuous materials, the proposed lattice particle model is not 

computational as efficient as the classical finite elements.  

The current study focuses on the 2D analysis and is extendable to general 3D cases. Future work 

on the theoretical development and model validation on 3D conditions is ongoing. More detailed 

study on the damage and fracture modeling using the proposed lattice particle model is also 

required. Applications of the proposed methodology to complex loadings and anisotropic and 

non-homogeneous materials need additional theoretical and experimental studies. 
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2.3 2D Generalized Lattice Particle Model for Fracture Simulation 

In this section, a generalized 2D non-local lattice particle model is presented for the study of 

fracture phenomena of homogeneous isotropic solids. In the proposed model, both the pairwise 

local and the multi-body non-local interaction force among particles are considered. Special focus 

is on the investigation of the failure anisotropy or directional preference of the crack path while 

modeling fracture phenomena within the framework of regular lattice spring models. Different 

from random network models, a generalized regular lattice framework to include multiple non-

local forces from neighboring particles is proposed to eliminate/reduce this well-known failure 

anisotropy issue. Several benchmarks are tested to assess the performance of the proposed 

methodology. Discussions and conclusions are drawn based on the current study. 

2.3.1. Introduction 

The idea of employing discrete one-dimensional bonds, e.g., springs or beams, to study the 

different phenomena of solids dates back to the work of Hrennikoff [16], in which the elastic 

properties of solids is firstly investigated using the lattice method. Successive studies can be 

found, e.g., in [17], [2], [18], [19]. The lattice models can be classified into different categories 

according to how the lattice sites interact via the connecting bonds. The simplest and one of the 

most popular forms of interaction is through the central force (or axial) springs [9]. This type of 

model has the issue of the fixed Poisson’s ratio. With the introduction of the bond rotation as 

additional degree of freedom [20], the Poisson’s ratio can be modified. The Born model [21] 

introduces a non-central two-body interaction, but this model is not rotationally invariant. Keating 

[10] discussed the rotationally invariant requirement and proposed a bond-bending model, in 

which the angle change between two adjacent connecting bonds is considered as an additional 

component of the system energy. The beam model [12] removes the limitation on the Poisson’s 

ratio by considering both the forces and the moments (i.e., rotational degrees of freedom) at each 

lattice site. Another lattice model introduces a volumetric term in the potential which can avoid the 

Poisson’s ratio issue and the rotational invariant requirement is guaranteed [22]. Similar to 
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Grassl’s work [22], Chen et al. [38] proposed a lattice particle method by introducing a non-local 

particle potential term in addition to the pairwise potential. Unlike the elastic formulation proposed 

by Grassl’s [22], both elasticity and plasticity of isotropic solids using the regular lattice framework 

were proposed using the non-local particle interactions [38]. 

Fracture phenomena have been extensively studied and many numerical simulation approaches 

have been proposed, such as the Finite Element Methods (FEM) with adaptive remeshing 

technique [5] and cohesive elements [39], the XFEM [40], the Peridynamics [3], [41], [42], and the 

Lattice Models [17], [12], [2]. The Lattice Models have some advantages when handling the 

fracture problems. For instance, Lattice Models are based on discontinuous formulation which 

avoids singularity related issues while handling problems with discontinuity. The crack initiation 

and propagation processes can be modelled via bond breaking and removal rules. 

One of the intrinsic issue of the lattice/particle method for fracture simulation is the crack path 

preference due to the regular lattice configuration [13], [12]. This directional preference of the 

crack path is also related to the anisotropy of the failure surface that has been investigated in 

[15]. Two major approaches have been proposed to address this issue. One is to use the 

random/irregular network. The irregular lattice models exhibits less crack path preference and 

offers freedom in domain discretization, but require certain scaling technique [14] to obtain elastic 

uniformity. Another possible solution is to use multiple neighbors. By introducing multiple 

neighbors, the lattice symmetry will be enhanced and the crack path preference will be eliminated 

or reduced. A similar idea has been used in Peridynamics [3] and is termed as “horizon”. 

Many non-local lattice models can be found in the literature, such as [10], [11], but the systematic 

study of the effects of multiple neighbor non-local interaction on fracture simulation is rarely 

found. Thus, one of the major objectives of the proposed study is to investigate the effect of 

multiple neighbors’ effects on the crack path preference for a newly developed lattice particle 

model [38]. The article is organized as follows. First, a brief review of the basic concepts and 

major derivations of the proposed lattice particle model employing the nearest neighbors is given. 

Following this, the generalized cases with multiple different neighbors are considered. The 



 

 

48 

 

fracture criterion based on the critical stress is discussed in detail. Next, the performance of the 

proposed framework up to the 4th-nearest neighbors is assessed by studying several benchmark 

problems, e.g., the quasi-static mode-I fracture, the dynamic mode-II cracking [43], and the 

dynamic crack branching [44]. Detailed discussion on the crack path preference is given. Several 

conclusions are drawn based on the proposed study. 

2.3.2. Theory and Formulation 

 
 

  

(a) 1st neighbor (b) 2nd neighbor (c) 3rd neighbor (d) 4th neighbor 

Figure 2.3.1. Different Packing Using Different Numbers of Neighboring Particles 

In this section, a brief review of the lattice particle model is given first. The lattice particle model 

proposed in [38] only considers the 1st-nearest six neighboring particles (Fig. 2.3.1(a)). Following 

that, new development for multiple neighboring particles (see Fig. 2.3.1) is proposed. The 

derivation is first illustrated for the 2nd-nearest, 3rd-nearest and 4th-nearest neighboring particles 

and is generalized to the Nth-nearest neighboring particles case. Without loss of generality, only 

the hexagonal packing is studied in this paper (Fig. 2.3.1). For other packing, e.g., square 

packing, the same methodology can be applied. Next, the generalized failure criterion is 

discussed in detail. 

Lattice particle model using only the 1st-nearest-neighbor: a review 

In the regular lattice models, a unit cell is identified from the discretization to derive the model 

parameters in terms of the material properties. The unit cell for this 1st-nearest-neighor packing is 
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shown in Fig. 2.3.2(a) with associated six normal vector directions. The values of these normal 

vectors are listed in Table 2.3.1. A brief derivation is given here and a more detailed formulation 

can be found in the previous work [38]. 

Table 2.3.1. The Normal Vectors for the 1st-Nearest Neighbors  

1n  2n  3n  4n  5n  6n  

( )1,0  ( )1/ 2, 3 / 2  ( )1/ 2, 3 / 2−  ( )1,0−  ( )1/ 2, 3 / 2− −  ( )1/ 2, 3 / 2−  

 
The total energy of a unit cell is composed of two parts, the pair-wise (local) energy and the 

volumetric (non-local) energy: 

( ) ( ) ( )1 1 1
cell s vU U U= +          (2.3.1) 

where the pair-wise energy stored in a unit cell in terms of the elongation of the associated six 

springs is 

( ) ( ) ( )
6

21 1

1

1
2s IJ

J
U k lδ

=

= ∑          (2.3.2) 

and the volumetric energy is 

( ) ( )
26

1 1

1

1
2v IJ

J
U T lδ

=

 =  
 
∑         (2.3.3) 

where IJlδ is half of the length change of the whole bond. ( )1k  and ( )1T  are the model 

parameters. The superscription indicates these quantities are for the 1st-nearest neighbor. It 

should be noted that the volumetric energy is a generalized form of the one proposed in [22] and 

[38]. 

 

Figure 2.3.2. The Unit Cell and Normal Vectors for the 1st-Nearest Neighbors 
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In terms of the strain tensor, Eq. (2.3.1) can be rewritten using Eqs. (2.3.2)-(2.3.3) as 

( ) ( ) ( )
6 6 6

1 1 12 2
1 1

1 1 1

1 1
2 2

b b b b b b b b
cell i j k l ij kl i j ij k l kl

b b b
U k R n n n n T R n n n nε ε ε ε

= = =

  = +   
  

∑ ∑ ∑    (2.3.4) 

where 1R is the radius of the inscribed circle of the unit cell, which is half value of the particle 

spacing and superscript b  is the number of normal vectors given in Table 2.3.1. 

The total energy of a unit cell in terms of the components of the strain tensor can be obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 12 2 2 2
1 11 22 12 11 22

1 9 9 3 39 9 18
2 4 4 4 2cellU R k T k T k k Tε ε γ ε ε        = + + + + + +                

 (2.3.5) 

The stiffness tensor of an equivalent continuum can be obtained as 

( )12

1

1 cell
ijkl

ij kl

UC
V ε ε

∂
=

∂ ∂
         (2.3.6) 

where 1V  is the volume of the unit cell and 2
1 1 1 1

1 2 3 6 2 3
2 3

V R R h hR= ⋅ ⋅ ⋅ ⋅ = . To be 

dimensional consistent, the unit thickness h  is kept in all the derivations. 

Comparing the stiffness matrix with the ones of 2D isotropic homogeneous Hookean material, the 

following correspondence can be obtained: 

Plane strain case: 

( )
( ) ( )

( )( )
( )

( )

( ) ( )
( )

( )

1
1

1
1

1

13 3 9
8 1 1 22 3

3 9
8 1 1 22 3

3
8 2 1

E vk T
h v vh

k EvT
h v vh

k E
h v

−
+ =

+ −

+ =
+ −

=
+

       (2.3.7) 

Plane stress case: 



 

 

51 

 

( )
( )

( )
( )

( )

( )

1
1

2

1
1

2

1

3 3 9
8 12 3

3 9
8 12 3
3
8 2 1

k ET
h vh

k EvT
h vh
k E
h v

+ =
−

+ =
−

=
+

        (2.3.8) 

Therefore, the model parameters ( )1k  and ( )1T  for 1st-nearest neighbors can be uniquely solved 

as 

Plane strain case: 

( )

( )
( ) ( )

( )( )

1

1

4
3 1

4 13
9 1 1 2

hEk
v

hE v
T

v v

=
+

−
=

+ −

        (2.3.9) 

Plane stress case: 

( )

( )
( ) ( )

( )( )

1

1

4
3 1

3 13
9 1 1

hEk
v

hE v
T

v v

=
+

−
=

+ −

        (2.3.10) 

From Eqs. (2.3.9) and (2.3.10), the model parameters are functions of the bulk material 

constants, i.e., the Young’s modulus (E) and the Poisson’s ratio (v). And the model parameters 

are uniquely determined. 

Given the model parameters ( )1k  and ( )1T , the interaction force within each connecting bond can 

be calculated by differentiating the total energy as 

( )
( )

( ) ( )
1 6

1 1 1

1

cell
IJ IJ IJ

JIJ

UF k l T l
l

δ δ
δ =

∂
= − = − −

∂ ∑       (2.3.11) 

Eqs. (2.3.1)-(2.3.10) are the derivations of the model parameters for the 1st-nearest neighbors. A 

generalized scheme to introduce more neighboring particles is discussed in next section. 
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Generalized lattice particle model using multiple neighbors 

2nd-nearest-neighbor packing 

The 2nd-nearest-neighboring particles are considered as the interacting neighbors with the center 

particles in this subsection. The center particle I, shown in Fig. 2.3.3, has two types of 

neighboring particles, i.e., the 1st-nearest neighbors and the 2nd-nearest neighbors. The 

schematic plot is shown in Fig. 2.3.4 to show the interactions between the neighbors with the 

center particle. For each type of neighbor, it has its own unit cell. The unit cell for the center 

particle packed with the 1st-nearest neighbors is the same as the one in the 1st-nearest-neighbor 

packing shown in Fig. 2.3.2. The unit cell for the 2nd-nearest neighbors is shown in Fig. 2.3.3. The 

normal vectors for the 2nd-nearest neighbors are given in Table 2.3.2. 

Table 2.3.2. The Normal Vectors for the 2nd-Nearest Neighbors 

7n  8n  9n  10n  11n  12n  

( )3 / 2,1 / 2  ( )0,1  ( )3 / 2,1 / 2−  ( )3 / 2, 1 / 2− −  ( )0, 1−  ( )3 / 2, 1 / 2−  

 

 

Figure 2.3.3. The Unit Cell for the 2nd-Nearest Neighbors 

The total energy of the unit cell for the 2nd-nearest neighbors has the same form as the 1st-

nearest neighbors as 

( ) ( ) ( ) ( ) ( ) ( )
26 6

22 2 2 2 2
1 1 1

1 1

1 1
2 2cell s v IJ IJ

J J
U U U k l T lδ δ

= =

 = + = +  
 

∑ ∑     (2.3.12) 
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( ) ( ) ( ) ( ) ( ) ( )
212 12

22 2 2 2 2
2 2 2

7 7

1 1
2 2cell s v IJ IJ

J J
U U U k l T lδ δ

= =

 = + = +  
 

∑ ∑     (2.3.13) 

where ( )2k  and ( )2T  are the model parameters. It’s assumed that the stiffness parameters are the 

same for all springs and the volumetric parameters are the same for both unit cells. 

The energies in Eqs. (2.3.12)-(2.3.13) can be rewritten in terms of the strain tensor as 

( ) ( ) ( )
6 6 6

2 2 22 2
1 1 1

1 1 1

1 1
2 2

b b b b b b b b
cell i j k l ij kl i j ij k l kl

b b b
U k R n n n n T R n n n nε ε ε ε

= = =

  = +   
  

∑ ∑ ∑   (2.3.14) 

( ) ( ) ( )
12 12 12

2 2 22 2
2 2 2

7 7 7

1 1
2 2

b b b b b b b b
cell i j k l ij kl i j ij k l kl

b b b
U k R n n n n T R n n n nε ε ε ε

= = =

  = +   
  

∑ ∑ ∑   (2.3.15) 

Eq. (2.3.14) is exactly the same as Eq. (2.3.4), except the model parameters are different. These 

two energies in Eqs. (2.3.14)-(2.3.15) can be obtained given the normal vectors shown in Tables 

2.3.1 and 2.3.2. 

Assuming the energy densities are the same for both unit cells, the stiffness matrix for the 2-

neighbor case has following form as 

( ) ( )
( ) ( ) ( ) ( )1 2 1 22 2 2 2

1 22 2

1 1 1 2 1

1 1 1cell cell cell cell
ijkl ijkl ijkl

ij kl ij kl ij kl ij kl

U U U UV VC C C
V V V V Vε ε ε ε ε ε ε ε

   ∂ ∂ ∂ ∂
= + = + = +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

  (2.3.16) 

where ( )1
ijklC  is the tangent stiffness matrix for unit cell 1 and ( )2

ijklC  is for unit cell 2, 2V  is the volume 

of the second unit cell and 2
2 2 2 2

1 2 3 6 2 3
2 3

V R R h hR= ⋅ ⋅ ⋅ ⋅ = . 

Thus, the model parameters in this 2-neighbor case can be uniquely determined as 

Plane strain case: 

( )

( )
( ) ( )

( )( )

2

2

3 1

4 13
9 4 1 1 2

hEk
v

hE v
T

v v

=
+

−
=

+ −

        (2.3.17) 

Plane stress case: 
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( )

( )
( ) ( )

( )( )

2

2

3 1

3 13
9 4 1 1

hEk
v

hE v
T

v v

=
+

−
=

+ −

        (2.3.18) 

 

Figure 2.3.4. The Interaction between Particle and Its 1st and 2nd Neighbors 

3rd-nearest-neighbor packing 

The case of 3rd-nearest neighbors packing is briefly discussed in this subsection. The derivation 

procedure follows the case of 2nd-nearest neighbors. Each neighbor has a unique unit cell and 

thus three unit cells are identified from the discretization. The unit cells for the 1st-nearest 

neighbors and the 2nd-nearest neighbors are the same as the 2-neighbor case. The unit cell for 

the 3rd-nearest neighbors is shown in Fig. 2.3.5. The normal vectors for this unit cell are the same 

as that of the 1st-nearest neighbors, as shown in Table 2.3.1. 

 

Figure 2.3.5. The Unit Cell for the 3rd-Nearest Neighbors 
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Under the same assumption, the tangent stiffness matrix has following form 

( ) ( ) ( )
( ) ( ) ( )1 2 32 2 2

1 2 332

1 1 1

1 cell cell cell
ijkl ijkl ijkl ijkl

ij kl ij kl ij kl

V U U UVC C C C
V V V ε ε ε ε ε ε

 ∂ ∂ ∂
= + + = + +  ∂ ∂ ∂ ∂ ∂ ∂ 

    (2.3.19) 

where ( )1
ijklC  is the tangent stiffness matrix for unit cell 1, ( )2

ijklC  is for unit cell 2 and ( )3
ijklC  is for unit 

cell 3, 3V  is the volume of the second unit cell and 2
3 3 3 3

1 2 3 6 2 3
2 3

V R R h hR= ⋅ ⋅ ⋅ ⋅ = . 3R  is 

the radius of the inscribed circle of unit cell 3. 

The model parameters can be uniquely solved as 

Plane strain case: 

( )

( )
( ) ( )

( )( )

3

3

4
8 3 1

4 13
9 8 1 1 2

hEk
v

hE v
T

v v

=
+

−
=

+ −

        (2.3.20) 

Plane stress case: 

( )

( )
( ) ( )

( )( )

3

3

4
8 3 1

3 13
9 8 1 1

hEk
v

hE v
T

v v

=
+

−
=

+ −

        (2.3.21) 

4th-nearest-neighbor packing 

The case of 4-neighbor is considered in this subsection. The unit cells for the 4th-nearest 

neighbors are shown in Fig. 2.3.6. The normal vectors for the 4th-nearest neighbors are given in 

Table 2.3.3. It should be noted that there are twelve 4th-nearest neighbors and two unit cells are 

identified, each assigned with six neighbors. 
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Figure 2.3.6. The Unit Cells for 4th-Nearest Neighbors 

Table 2.3.3. The Normal Vectors for the 4th-Nearest Neighbor Packing 
(a) 

19n  20n  21n  

( )5 / 2 7, 3 / 2 7  ( )1/ 2 7,3 3 / 2 7  ( )4 / 2 7,2 3 / 2 7−  

22n  23n  24n  

( )5 / 2 7, 3 / 2 7− −  ( )1/ 2 7, 3 3 / 2 7− −  ( )4 / 2 7, 2 3 / 2 7−  

(b) 

25n  26n  27n  

( )4 / 2 7,2 3 / 2 7  ( )1/ 2 7,3 3 / 2 7−  ( )5 / 2 7, 3 / 2 7−  

28n  29n  30n  

( )4 / 2 7, 2 3 / 2 7− −  ( )1/ 2 7, 3 3 / 2 7−  ( )5 / 2 7, 3 / 2 7−  

 
The tangent stiffness matrix has the following form as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 2 3 42 2 2 2

1 2 3 432 4

1 1 1 1

12 2cell cell cell cell
ijkl ijkl ijkl ijkl ijkl

ij kl ij kl ij kl ij kl

V U U U UV VC C C C C
V V V V ε ε ε ε ε ε ε ε

 ∂ ∂ ∂ ∂
= + + + = + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (2.3.22) 

where ( )1
ijklC  is the tangent stiffness matrix for unit cell 1, ( )2

ijklC  is for unit cell 2, ( )3
ijklC  is for unit cell 

3 and ( )4
ijklC  is for unit cell 4, 4V  is the volume of the second unit cell and 

2
4 4 4 4

1 2 3 6 2 3
2 3

V R R h hR= ⋅ ⋅ ⋅ ⋅ = . 4R  is the radius of the inscribed circle of unit cell 4. 
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Comparing the components of the tangent stiffness matrix with the one obtained using solid 

mechanics, the model parameters can be uniquely obtained as 

Plane strain case: 

( )

( )
( ) ( )

( )( )

4

4

4
22 3 1

4 13
9 22 1 1 2

hEk
v

hE v
T

v v

=
+

−
=

+ −

        (2.3.23) 

Plane stress case: 

( )

( )
( ) ( )

( )( )

4

4

4
22 3 1

3 13
9 22 1 1

hEk
v

hE v
T

v v

=
+

−
=

+ −

        (2.3.24) 

Nth-nearest-neighbor packing 

For the case of a particle has N-neighbor, a generalized formula for the model parameters within 

the lattice particle model framework can be obtained. Under the assumption that all springs have 

the same stiffness and all unit cells have the same volumetric parameter, the expressions for the 

model parameters can be uniquely determined given the neighbor number N. 

Plane strain case: 

( )

( )

4
3 (1 )

3 (4 1)
9 (1 )(1 2 )

N

N

hEk
H v

hE vT
H v v

=
+

−
=

+ −

        (2.3.25) 

Plane stress case: 

( )

( )
( ) ( )

( )( )

4
3 1

3 13
9 1 1

N

N

hEk
H v

hE v
T

H v v

=
+

−
=

+ −

        (2.3.26) 

where the coefficient H is defined as 
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1

1

N

i
i

V
H

V
==
∑

          (2.3.27) 

For the cases considered in previous sections, this coefficient has following values as 

1

1

1 2

1

1 2 3

1

1 2 3 4 4

1

1 ,  1

4 ,  2

8 ,  3

22 ,  4

V N
V

V V N
VH V V V N
V

V V V V V N
V

 = =
 + = =
=  + +
 = =


+ + + + = =


       (2.3.28) 

Note that in the above Eq. (2.3.28), for the case of 4-neighbor, i.e., 4N = , there are two unit cells 

identified and thus two 4V s is used. Using the radii of the inscribed circle of the unit cells, the 

coefficient H  can be rewritten as 

2

1
2

1

N

i
i

R
H

R
==
∑

          (2.3.29) 

where 1R  is the radius of the inscribed circle of the unit cell for the 1st-nearest neighbors, i.e., 

1R R= , iR  is of the ith-nearest neighbors. 

Eqs. (2.3.25)-(2.3.29) is the analytical solution for the model parameters of the generalized 

framework. The interaction forces between particles can be calculated using Eq.(2.3.11) for 

different interacting neighbors. Several numerical integration algorithms, such as Velocity Verlet 

and Central Difference integration schemes, can be used to solve the dynamic response of the 

particle system. More details can be found in [38]. 

Failure criterion and crack propagating rule 

The critical force criterion [45], [46] derived based on the critical stress from a uniaxial tension 

experiment is used to simulate the crack initiation and propagation in this study. Other failure 

criterion can be used, such as the critical elongation [47], the cohesive energy [14]. First, the 
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derivation of the critical force for the 1st-nearest neighbors is presented. After that, the critical 

force criterion is generalized to the case of N-neighbor. 

For the 1st-nearest neighbors, the length of the six edges of the unit cell is 1 1
2
3

L R= , as can be 

seen in Fig. 2.3.2.  Thus, the equivalent stress in any of the six bonds can be calculated as 

( )1

1

IJ
IJ

F
hL

σ =           (2.3.30) 

where ( )1
IJF  is the forces of the six connecting bonds given in Eq. (2.3.11). 

The critical force of a connecting bond can be obtained given the critical stress from a uniaxial 

tensile test as, for plane strain case, 

( )1
1 1

2
3critical critical criticalF hL hRσ σ= =        (2.3.31) 

For the entire bond, the critical force is twice of the value calculated in Eq. (2.3.31). For plane 

stress case, the same criterion is applied. The bond breaking criterion for N-neighbor case can be 

generalized as 

( ) 2
3

N
critical N criticalF hR

H
σ=         (2.3.32) 

where H  is the coefficient defined in Eq. (2.3.27), NR  is the radius for the inscribed circle of the 

Nth unit cell. 

The crack propagation process is simulated in the proposed framework as follows: at each 

simulation time step, the force of the bonds are calculated and compared with the corresponding 

critical value. If the calculated force is larger than the critical value, then the bond is considered 

as broken and it cannot sustain any tensile forces in the following simulation steps. This process 

continues until the simulation ends. 
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2.3.3. Simulation results 

Several benchmark problems, i.e., quasi-static mode I cracking, dynamic mode II cracking and 

the dynamic crack branching, are used to check the fracture anisotropy of the lattice spring model 

and to assess the performance of the proposed methodology. The fracture anisotropy is tested by 

rotating the lattice structure to different angles, but maintaining the same geometry and loading 

conditions. The definition of the rotation of the lattice structure is shown in Fig. 2.3.7. Considering 

the six-fold symmetry of a unit cell, four rotations are investigated, i.e., 0, Pi/12, Pi/6, Pi/4. 

For a fixed lattice rotation, the same discretization is applied to all 4 packing. The particle 

densities for different lattice rotations are kept almost identical for each benchmark. The pre-

existing notches/cracks are inserted by removing the particles. 

All the simulation in this section is based on the dynamic formulation, i.e., the Newton’s second 

law of motion. The critical time step can be determined using the Courant-Friedrichs-Lewy 

condition. For simplicity and best stability, a time step of 1.0e-9 s is used in all the simulations. 

The total numbers of time steps are given in each example. The computational efficiency is 

studied in the case of dynamic branching. 

All simulations were done on a dual 2.8 GHz Intel Xeon E5-2680 v2 CPUs system using Ubuntu 

operating system. Double-precision floating-point number type is specified for all real data. 

 

Figure 2.3.7. Lattice Rotation Scheme in Lattice Particle Model 

Quasi-static Mode-I cracking 



 

 

61 

 

The single-edge-notched specimen, whose dimensions and loading conditions are shown in Fig. 

2.3.8, is used in this example. A plane stress condition is assumed. The material properties are: 

Young’s modulus E  = 69 GPa, Poisson’s ratio v  = 0.3, the mass density ρ  = 2700 Kg/m3, and 

the tensile strength is assumed to be criticalσ  = 200 MPa. 

 

Figure 2.3.8. The Configuration of the SEN Specimen 

In order to simulate a quasi-static loading condition, the left and right edges of the specimen are 

applied with a very small constant kinetic boundary condition. From Linear Elastic Fracture 

Mechanics (LEFM), the crack will propagates in its original crack plane (i.e., pure mode I) until the 

specimen fracture occurs. The total number of particles used for the domain decomposition for all 

rotations is about 70,000. The total number of simulation steps for this example is 600,000. 

1st-nearest-neighbor packing 

 The plots of the crack path results for the 1-neighbor packing at different lattice orientations are 

shown in Fig. 2.3.9. As can be seen from Fig. 2.3.9(a), when the lattice orientation coincident with 

the crack path, the directional preference is not obvious thus the simulated crack propagation 

path is the same as analytical solution. When the lattice is rotated to different orientations, i.e., 

Pi/12, Pi/6, and Pi/4, the directional preference of the crack path is apparent, as can be seen in 

Fig. 2.3.9(b)-(d). This fracture anisotropy can also been seen from the load-displacement curve 

shown in Fig. 2.3.10. The peak loads varies with different rotation angles. 
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(a) α = 0 (b) α = Pi/12 (c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.9. The Crack Paths for Packing 1, Static Mode I 

 

 

Figure 2.3.10. The Force-Displacement Curve for the Packing 1, Static Mode I 

2nd-nearest-neighbor packing 

The crack paths for this case are shown in Fig. 2.3.11. The load-displacement curves are shown 

in Fig. 2.3.12. As can be seen from the crack path results, the directional preference is 

significantly improved as both the crack paths are very close to the analytical solution and the 

difference between the peak loads is very small. 



 

 

63 

 

    

(a) α = 0 (b) α = Pi/12 (c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.11. The Crack Paths for Packing 2, Static Mode I 

 

 

Figure 2.3.12. The Force-Displacement Curve for Packing 2, Static Mode I 

3rd-nearest-neighbor packing 

The crack paths for this case are shown in Fig. 2.3.13. And the load-displacement curves are 

shown in Fig. 2.3.14. The crack path preference is further reduced compared to the paths of 2 

neighbor cases. The crack path for the cases of rotation 0, Pi/6, and Pi/4 is the same as the 

analytical solution. The variance of the peak loads becomes smaller. 
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(a) α = 0 (b) α = Pi/12 (c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.13. The Crack Paths for Packing 3, Static Mode I 

 

 

Figure 2.3.14. The Force-Displacement Curve for Packing 3, Static Mode I 

4th-nearest-neighbor packing 

The crack paths for this case are shown in Fig. 2.3.15. And the load-displacement curves are 

shown in Fig. 2.3.16. The crack paths for all lattice orientation rotations are identical to the 

analytical solution. And the peak load variance is the smallest among all four cases. 
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(a) α = 0 (b) α = Pi/12 (c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.15. The Crack Paths for Packing 4, Static Mode I 

 

Figure 2.3.16. The Force-Displacement Curve for Packing 4, Static Mode I 

From the simulation results in this subsection, it is observed that the directional preference of the 

crack propagation path can be weakened or eliminated by introducing more neighbors. For quasi-

static mode-I fracture problem, the crack path preference can be eliminated by employing the 4th-

nearest or more neighbors. In next subsections, the proposed framework is applied to model 

dynamic fracturing problems. 

Dynamic mode-II cracking 
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In this subsection, a modified Kalthoff’s experiment [43] which has been extensively studied using 

the XFEM [48], [49], [50] is modelled to test the validity of the proposed framework. In the 

experiment, a plate with two edge notches, shown in Fig. 2.3.17, is impacted by a projectile with 

different strain rates. Two typical fracture patterns were observed from the experiments. At higher 

strain rates, a negative angle of about -10o due to the shear localization mode was observed. On 

the other hand, at lower strain rates, a brittle fracture mode with a propagation angle of about 70o 

was observed. In this study, we focus on the brittle fracture. Plane strain condition is assumed. 

The configuration of the plate is shown in Fig. 2.3.17. To simplify the simulation, a constant 

velocity which is chosen as 0v  = 10 m/s is applied on the left cracked edge. The material 

properties are: Young’s modulus E  = 190 GPa, Poisson’s ratio v  = 0.3, mass density ρ  = 8000 

kg/m3, and the material strength is assumed to be criticalσ  = 2.02 GPa. The experimental result for 

the top half plate is shown in Fig. 2.3.18. It should be noted that due to the regularity of the lattice 

structure, the discretized domain may not reproduce the two-fold symmetry of the testing 

specimen exactly. The total number of particles used for the domain decomposition for all 

rotations is about 90,000. The total number of simulation steps for this example is 90,000. 

 

 

Figure 2.3.17. Configuration for the Dynamic 
Shear Cracking Test 

Figure 2.3.18. Experimental Observation ( Top 
Half Plate for Dynamic Mode II) 

1st-nearest-neighbor packing 
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(a) α = 0 (b) α = Pi/12 (c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.19. The Crack Paths for Packing 1, Dynamic Mode II 

The simulation results for the 1-neighbor case are shown in Fig. 2.3.19. As can be seen, the 

results for different rotations are very different, which indicates the fracture anisotropy in the 1st-

nearest-neighbor packing is very crucial to the propagation path. 

    

(a) α = 0 (b) α = Pi/12 (c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.20. The Crack Paths for Packing 2, Dynamic Mode II 

2nd-nearest-neighbor packing 
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The simulated crack paths for the 2-neighbor case are shown in Fig. 2.3.20. Compared with the 

results of the 1-neighbor case, the crack paths are greatly improved. The crack angles, except α 

= 0, are very close to the experiment results. 

3rd-nearest-neighbor packing 

The simulated crack paths for the 3-neighbor case are shown in Fig. 2.3.21. The results for 

different rotations are more consistent than the 2-neighbor case. 

    

(a) α = 0 (b) α = Pi/12 (c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.21. The Crack Paths for Packing 3, Dynamic Mode II 

4th-nearest-neighbor packing 

The simulation results for the 4-neighbor case are shown in Fig. 2.3.22. As can be seen, the 

crack paths for different rotations are approximately identical and very close to 70o, which 

indicates the fracture anisotropy is almost eliminated. 
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(a) α = 0 (b) α = Pi/12 (c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.22. The Crack Paths for Packing 4, Dynamic Mode II 

 

 

Figure 2.3.23. Comparison of the Crack Angle vs. Rotation Angle 

A quantitative study on the average crack angles of different packing under different rotations are 

shown in Fig. 2.3.23. The case of 4-neighbor provides the best simulation results compared to the 

experiment observations. 
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This example shows the capability of the proposed framework for modeling of dynamic pure 

mode-II fracture problems. In next section, the proposed framework is used to model a dynamic 

crack branching problem. 

Dynamic crack branching 

The dynamic crack branching of brittle materials has been investigated extensively in the past. In 

this example, a pre-notched rectangular specimen, shown in Fig. 2.3.24, is simulated using the 

proposed framework. Similar experiments have been done by many researchers, such as [44]. A 

typical experiment result for the branching path is shown in Fig. 2.3.25. The analytical predicted 

branching angle is 27o [51]. 

 
 

Figure 2.3.24. The Configuration of the Pre-
notched Plate 

Figure 2.3.25. Experimental Observation 
(Dynamic Branching) 

The configuration of the plate is shown in Fig. 2.3.24. Tensile forces of value F  = 105 Newton are 

applied on both the top and the bottom edges. A plane stress condition is assumed. The 

materials properties are: Young’s modulus E  = 32 GPa, Poisson’s ratio v  = 0.2, mass density ρ  

= 2450 kg/m3, and the material strength is assumed to be criticalσ  = 12 MPa. The total number of 

particles used for the domain decomposition for all rotations is about 80,000. The total number of 

simulation steps for this example is 60,000. 

The simulated crack paths are shown in Figs. 2.3.26-29 for different packing. For the 1-neighbor 

case, the lattice particle model cannot simulate the crack branching phenomenon. With the 

introduction of more neighbors, the fracture anisotropy is reduced or eliminated and the crack 

branching can be accurately captured. The branching angles for the cases of 3-neighbor and 4-
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neighbor are shown in Fig. 2.3.30. The variance of the branching angle for the case of 4-neighbor 

is very small and is close to the experimental observations. The comparison of computation 

efficiency for different packing cases is shown in Fig. 2.3.31. For cases in which more neighbors 

are included, the computational time will be further increased. For dynamic simulation based on 

solution of the Equation of Motion, the relationship for the computation time and the number of 

neighbors is linear. 

1st-nearest-neighbor packing 

  

(a) α = 0 (b) α = Pi/12 

  

(c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.26. The Crack Paths for Packing 1, Dynamic Branching 

2nd-nearest-neighbor packing 

  

(a) α = 0 (b) α = Pi/12 
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(c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.27. The Crack Paths for Packing 2, Dynamic Branching 

3rd-nearest-neighbor packing 

  

(a) α = 0 (b) α = Pi/12 

  

(c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.28. The Crack Paths for Packing 3, Dynamic Branching 

4th-nearest-neighbor packing 

  

(a) α = 0 (b) α = Pi/12 
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(c) α = Pi/6 (d) α = Pi/4 

Figure 2.3.29. The Crack Paths for Packing 4, Dynamic Branching 

 

 

Figure 2.3.30. The Variations of the Branching Angle for Packing 3 and 4  

 

 

Figure 2.3.31. Computation Efficiency Comparison between Different Packing 
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2.3.4. Discussion and conclusions 

In this section, a generalized regular lattice spring framework for modeling fracture phenomenon 

of homogeneous isotropic solids was proposed. Analytical solutions for the arbitrary number of 

neighbors are obtained under the assumption that all springs have the same stiffness and all unit 

cells have the same volumetric parameters. The performance of the proposed lattice particle 

model was assessed by modeling several benchmarks, i.e., the quasi-static mode-I fracture, the 

dynamic mode-II fracture and the dynamic fracturing problems. 

From the simulation results, the fracture anisotropy intrinsically exists in the regular lattice models 

employing only the nearest neighbors. The effect of fracture anisotropy is more severe for 

dynamic problems than quasi-static problems. This fracture anisotropy can be reduced or 

eliminated by using random network models or introducing more neighbors to the center particle. 

There are several differences between these two approaches: 

1). In the random network models, since each connecting bond has different properties, certain 

scaling technique is required to achieve the elastic uniformity. And some other type of 

interactions, such as shear spring or using beam element, must introduced so as to remove the 

limitation on the effective Poisson’s ratio. In the proposed lattice particle framework, a volumetric 

energy term is introduced which facilitates the simulation process since only axial or normal 

spring is used. The non-locality serves as a path to reduce/eliminate the intrinsic fracture 

anisotropy in regular lattice model while preserving the elastic uniformity and can be generalized 

into arbitrary neighbor case. 

2). The inclusion of more neighbors in lattice particle model is eventually results in a more uniform 

energy at a comparatively larger area or volume. The boundary effect, or skin effect, still exists in 

the proposed framework. At the particle level, the introduction of more neighbors will not increase 

or decrease the boundary effect. While at the global level, since the energy is more uniform at a 

larger area or volume, the more neighbors are considered, the more severe the boundary effect 

is. In order to reduce the boundary effect on the simulation results, one possible way is to 

increase the particle density. The computational cost will also increase. Thus, there should be 
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some balance between the simulation accuracy and the computational cost while considering 

including more neighbors in the proposed lattice particle model. 

3). The assumptions that all springs have the same stiffness and all unit cells have the same 

volumetric parameters ensure that the model parameters can be uniquely determined. By these 

assumptions, there are only two model parameters irrespective of neighbor numbers, which can 

be uniquely solved using the two independent material constants for an isotropic solid. Some 

other ways to assign the spring stiffness are possible. 

Several major conclusions are drawn based on the current investigation: 

1). The inclusion of multiple neighbors for lattice spring model based on regular domain 

decomposition can reduce/eliminate the crack path preference in fracture simulation; 

2). For the investigated cases, the inclusion of 4th-nearest neighbors is shown to be able to 

maintain the computational variance within in 5% for crack path and failure loads; 

3). The computational time increases as the number of neighbors increases, which show a linear 

relationship in the current investigation from 1st to 4th nearest neighbors; 

4). The failure criterion was used in this study is the critical force criterion. No cohesive type 

behavior was assigned to the springs. The influence of different failure criteria on the fracture 

anisotropy needs further study. 

Future work is required to extend this methodology to general 3D problems. Also, additional work 

on bond failure criterion, e.g., considering post-peak softening effect, is required to fully 

investigate its influence on fracture anisotropy of the lattice particle model. 
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2.4 3D Elasticity and Fracture 

The lattice particle model for three-dimensional elasticity and fracture simulation of isotropic 

solids is presented in this section. First, the basic concept and detailed derivation of the proposed 

method is given. Various particles packing are investigated using the proposed method and the 

simulation results are compared with classical finite element method solution. The rotational 

invariance or frame independence of the formulation is showed both analytically and numerically. 

The performance of these lattice structures are assessed using several benchmark problems, for 

both mechanical deformation and fracture problems. From the simulation results, good 

agreements with both analytical solution and experimental observations are observed. 

Conclusions and future work are drawn based on this study. 

2.4.1. Introduction 

Modeling of various fracture phenomena using the classical Finite Element Method (FEM) has 

been investigated extensively in the past several decades, such as the mesh matching and 

remeshing [5] and the cohesive elements [6]. By employing the enrichment functions and using 

the level set method, the eXtended Finite Element Method (XFEM) [7] eliminates the requirement 

of mesh matching and remeshing significantly. In either approaches, certain external criteria, 

such as on crack initiation, propagation, branching and coalesce, are needed. These 

requirements for arbitrary 3D crack tracking become very tedious and difficult. 

As alternatives, numerous discrete approaches have been proposed to avoid the intrinsic 

singularity related difficulties in the continuum-based fracture simulations. Some examples of 

these discrete approaches are the Lattice Spring Models (LSM) [2], [52], the Smoothed Particle 

Hydrodynamics (SPH) [53], [54], the Discrete Element Method (DEM) [55], Meshfree Particle 

Method [56], and the Peridynamics [57]. The discrete-based methods represent the material as 

an assemblage of independent elements (also called units, particles or grains), which are 

interacting with each other with different types of interaction potentials. The fracture process in 
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these types of approaches is the natural “loss of interaction” between “particles”. In this paper, the 

proposed method belongs to the category of the Lattice Spring Model (LSM). 

The idea of using lattice model to simulate solids dates back to Hrennikoff [16]. Successive 

developments have been made since then, such as [19], [24], [58], [28], [38]. A well-known issue 

of the LSM is the restriction on the effective Poisson’s ratio if only the pair-wise axial interaction is 

assumed among particles. In order to overcome this limitation, various models have been 

proposed by introducing local non-axial interactions, such as the Born model [21], the 

shear/angular spring model [10], [11], the beam/strut model [59], [22]. Another different 

methodology to handle this issue is to introduce non-local axial interaction terms into the system 

potential. Grassl et al. [22] proposed a non-local irregular truss model based on the volumetric 

strain under the plane strain assumption for brittle materials. Starting from a similar concept, 

Chen et al. [38] developed a lattice particle model which utilizing a regular lattice structure under 

both plane stress and plane strain conditions. 

In this paper, the developed non-local 2D lattice particle model is extended to the 3D cases and a 

family of 3D lattice structures is investigated using the proposed formulation. The performance of 

the proposed 3D framework is assessed by modeling the elastic and fracture response of the 

homogeneous isotropic solids. The content of this paper is organized as follows. First, a brief 

review on the non-local lattice particle model formulation is given. Following this, a detailed 

derivation of the model parameters for three different lattice structures, i.e., the simple cubic, 

face-centered cubic and body-centered cubic, is presented. Next, a spring-based failure criterion 

for fracture modeling in the proposed framework is formulated. After that, several benchmarks are 

employed to assess the performance of the proposed 3D lattice particle model. Discussions and 

conclusions are drawn based on the current study at the end of this section. Analytical derivations 

for all three packing to show the rotational invariance of the lattice particle formulation is given in 

the APPENDIX A. 
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2.4.2. Lattice particle model for isotropic materials: review 

The formulation of lattice particle model is analogue to the classical lattice spring model, which is 

based on the Cauchy-Born Rule [60] and Theory of Hyper-elasticity. In the lattice particle model, 

the domain of interest is decomposed into regular unit cells, or particles, which located at the 

lattice sites and connected via springs. Since regular lattice packing are utilized in the proposed 

lattice particle model, the Cauchy-Born Rule can be broken down to energy equivalency at the 

unit cell level. In this section, a review on the formulation of the non-local lattice particle model is 

briefly presented. 

Assuming there are generally n unit cells associated with a particle, the total potential energy of a 

particle is the sum of all the energies of these unit cells, which can be written as 

1

n
I

particle cell
I

U U
=

= ∑           (2.4.1) 

and 

I I I
cell s vU U U= +           (2.4.2) 

where 

( )2

1

1
2

IN
I
s I IJ

J
U k lδ

=

= ∑          (2.4.3) 

is the pair-wise potential energy stored within all the connecting springs associated with unit cell I, 

and 

2

1

1
2

IN
I
v I IJ

J
U T lδ

=

 
=  

 
∑          (2.4.4) 

is the non-local multi-body energy used to compensate the energy difference between the above 

pairwise energy with the continuum counterpart for the unit cell I [38]. 

In Eqs. (2.4.3)-(2.4.4), Ik  and IT are the pairwise and multi-body parameters for the springs 

associated with unit cell I; IN  is the total number of neighbors and IJlδ  are the half length of the 

spring elongation for neighbor J of unit cell I. 
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Relating the spring elongation to the strain at continuum level, the total potential energy of unit 

cell I can be rewritten in terms of the components of the strain tensor as 

( ) ( ) ( )2 2

1 1 1

1 1
2 2

I I IN N N
I b b b b b b b b
cell I I I J K L IJ KL I I I J IJ K L KL

b b b
U k l n n n n T l n n n nε ε ε ε

= = =

  
= +   

  
∑ ∑ ∑    (2.4.5) 

where Il  is the half length of the distance between the reference particle with its neighbors and 

bn is the unit normal vector in the direction of the reference particle with the bth neighbor for unit 

cell I. 

By the conservation of the potential energy, the tangent stiffness tensor according to the Theory 

of Hyper-elasticity for the reference particle, can be obtained as  

( )

( ) ( ) ( )

2 12 1 2

1 1 1

2 2

1 1 1 11

1 1 1

1 1 1     
2 2

I I I

nn
cell cellcell n cell

IJKL
IJ KL n IJ KL IJ KL

N N Nn
b b b b b b b b

I I I J K L I I I J K L
I b b b

U UU V U
C

V V V V

k l n n n n T l n n n n
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ε ε ε ε ε ε

= = = =

∂ + + ∂ ∂
= + + = ∂ ∂ ∂ ∂ ∂ ∂ 

    
= +          

∑ ∑ ∑ ∑





   (2.4.6) 

For Hookean isotropic material, the model parameters can be solved uniquely by matching the 

components of the material tangent stiffness tensors. In next section, the three 3D lattice 

structures are presented and the explicit form of the model parameters are given for each 

structure. 

2.4.3. 3D cubic lattice structures 

Many lattice systems have been studied in the Lattice Theory. In the current study, the three 

commonly used lattice structures in cubic systems are employed, namely, the simple cubic (SC), 

the body-centered cubic (BCC) and the face-centered cubic (FCC). For each structure, two types 

of neighbors are considered, i.e., the first and the second nearest neighbors. Other cases 

introducing more neighbors can be formulated using a similar idea proposed in [52]. 

Simple cubic lattice 

The unit cells identified from the discretization using the simple cubic structure is cube for the first 

neighbors and rhombic dodecahedron for the second neighbors, as shown in Fig. 2.4.1. It is 
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shown that there are 6 springs connecting the reference particle with its first nearest neighbors 

and 12 springs for the second nearest neighbors. The corresponding unit normal vectors for all 

connecting springs are given in Table 2.4.1. 

Given the unit normal vectors, the total energy of a reference particle, in terms of the strain 

components, can be written as 

( )( ) ( )
( )( )

2 2 2 2 2 22
1 2 11 22 33 2 12 13 23

2 11 22 11 33 22 33

2 4 36 2
2 4 72

particle

k k T kRU
k T

ε ε ε γ γ γ

ε ε ε ε ε ε

 + + + + + + +
 =
 + + + + 

    (2.4.7) 

According to Eq. (2.4.6), matching the tangent stiffness matrix with a homogeneous isotropic 

Hookean solids, the model parameters can be uniquely determined as 

1 2
2 2,             
1 1

(4 1)
9(1 )(1 2 )

RE REk k
v v

RE vT
v v

= =
+ +

−
=

+ −

        (2.4.8) 

  

Simple cubic lattice 18 neighbors 

  

Unit cell 1: Cube 

 ( 3
1 8V R= ) 

Unit cell 2: Rhombic dodecahedron 

( 3
2 16V R= ) 
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Figure 2.4.1. The Simple Cubic Structure and Its Unit Cells 

Table 2.4.1. The Unit Normal Vectors for Simple Cubic Structure 
Neighbors 1 

( )1,0,0  ( )0,1,0  ( )0,0,1  

( )1,0,0−  ( )0, 1,0−  ( )0,0, 1−  

Neighbors 2 

( )1/ 2 1,1,0  ( )1/ 2 1,0,1  ( )1/ 2 0,1,1  

( )1/ 2 1, 1,0− −  ( )1/ 2 1,0, 1− −  ( )1/ 2 0, 1, 1− −  

( )1/ 2 1, 1,0−  ( )1/ 2 1,0, 1−  ( )1/ 2 0,1, 1−  

( )1/ 2 1,1,0−  ( )1/ 2 1,0,1−  ( )1/ 2 0, 1,1−  

Body-centered cubic lattice 

The unit cell for the body-centered cubic structure is shown in Fig. 2.4.2, and there are 14 springs 

connecting the center reference particle with its neighbors. The unit cells for this lattice structure 

is a truncated octahedron and a cube with volume 3
1 32 3 9V R=  and 3

2 64 3 9V R= , 

respectively. R is the particle size. The corresponding 14 unit normal vectors are given in Table 

2.4.2. 

  

Body-centered cubic lattice 14 neighbors 
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Unit cell 1: Truncated octahedron 

( 3
1 32 3 9V R= ) 

Unit cell 2: Cube 

( 3
2 64 3 9V R= ) 

Figure 2.4.2. The Body-Centered Cubic Structure and Its Unit Cells 

Table 2.4.2. The Unit Normal Vectors for Body-Centered Cubic Structure 
Neighbors 1 

( )1/ 3 1,1,1  ( )1/ 3 1,1, 1−  ( )1/ 3 1, 1, 1− −  ( )1/ 3 1, 1,1−  

( )1/ 3 1, 1, 1− − −  ( )1/ 3 1, 1,1− −  ( )1/ 3 1,1,1−  ( )1/ 3 1,1, 1− −  

Neighbors 2 
( )1,0,0  ( )0,1,0  ( )0,0,1  

( )1,0,0−  ( )0, 1,0−  ( )0,0, 1−  

 
The total energy of a reference particle for this lattice structure is 

( ) ( )

( )

2 2 2 2 2 2
1 2 11 22 33 1 12 23 132

1 11 22 22 33 11 33

8 8 112 8
9 3 9 9

2 16 224
9 9

particle
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ε ε ε γ γ γ

ε ε ε ε ε ε

  + + + + + + +  
  =
  + + + +  

  

   (2.4.9) 

Thus, the model parameters can be uniquely determined by matching the material tangent 

stiffness matrix as 

( )
( )( )

1 2
2 3 2 2 3,    

1 3 1
3 4 1

7 1 1 2

RE REk k
v v

RE v
T

v v

= =
+ +

−
=

+ −

        (2.4.10) 

Face-centered cubic lattice 

The unit cells for this lattice structure are shown in Fig. 2.4.3. The volume of the unit cells in terms 

of the particle size are 3
1 4 2V R=  and 3

1 16 2V R= , respectively. There are 18 springs 

connecting the reference particle with all its neighbors, i.e., 12 for the first neighbors and 6 for the 

second neighbors. And the corresponding unit normal vectors are given in Table 2.4.3. 

The total energy of a reference particle for FCC lattice structure is 

( )( ) ( )
( )( )

2 2 2 2 2 22
1 2 11 22 33 1 12 23 13

1 11 22 22 33 11 33

2 4 24
2 2 48

particle

k k T kRU
k T

ε ε ε γ γ γ

ε ε ε ε ε ε

 + + + + + + +
 =
 + + + + 

    (2.4.11) 
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Matching the material tangent stiffness matrix, the model parameters for this lattice structure can 

be determined as 

1 2
2 2 1 2 2,    

1 4 1
2 (4 1)

12(1 )(1 2 )

RE REk k
v v

RE vT
v v

= =
+ +

−
=

+ −

        (2.4.12) 

It should be noted that in all the above derivations, the non-local parameters T  are assumed to 

be identical for both unit cells. 

  

Face-centered cubic lattice 18 neighbors 

  

Unit cell 1: Rhombic dodecahedron 

( 3
1 4 2V R= ) 

Unit cell 2: Cube 

( 3
2 16 2V R= ) 

Figure 2.4.3. The Face-Centered Cubic Structure and Its Unit Cells 

Table 2.4.3. The Unit Normal Vectors for Face-Centered Cubic Structure 
Neighbors 1 

( )1/ 2 1,1,0  ( )1/ 2 1,0,1  ( )1/ 2 0,1,1  

( )1/ 2 1, 1,0− −  ( )1/ 2 1,0, 1− −  ( )1/ 2 0, 1, 1− −  

( )1/ 2 1, 1,0−  ( )1/ 2 1,0, 1−  ( )1/ 2 0,1, 1−  
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( )1/ 2 1,1,0−  ( )1/ 2 1,0,1−  ( )1/ 2 0, 1,1−  

Neighbors 2 
( )1,0,0  ( )0,1,0  ( )0,0,1  

( )1,0,0−  ( )0, 1,0−  ( )0,0, 1−  

Non-local Interactions 

In the previous part, the model parameters for each lattice structure have been derived based on 

the energy equivalency between the discrete model and the corresponding continuum 

counterpart. In this part, some details on how to calculate the net force exerted on each particle 

from all its neighbors are presented. And the nonlocality of the model is explained. 

Given the potential of each unit cell, the interaction force between particle I  and its neighbors 

can be calculated by differentiating the potential energy with respect to the length change of each 

spring as 

( )

( )

( )

1

2

1
1

2
1

for the first neighbors

    for the second neighbors

N

IJ IM
Mcell

IJ N
IJ

IJ IM
M

k l T l
U

F
l

k l T l

δ δ

δ
δ δ

=

=

  
− −  

∂   = − = 
∂  − −    

∑

∑
   (2.4.13) 

Rewritten the nonlocal interaction force, an effective spring stiffness can be obtained as 

1

2

1
1

2
1

for the first neighbors

    for the second neighbors

N
IM

M IJ
IJ N

IM

M IJ

lk T
l

k
lk T
l

δ
δ

δ
δ

=

=

  
+  

  = 
  +  
 

∑

∑
      (2.4.14) 

From Eq. (2.4.14), it is clear that the effective spring stiffness for each spring in the proposed 

lattice particle is non-local. It depends not only on the deformation the spring itself, but also on the 

deformation of its neighboring springs. 

2.4.4. Spring-based failure criterion and crack propagation rule 

A spring-based critical elongation failure criterion is utilized to simulation the cracking problem in 

the proposed framework. Some other bond-based failure criteria are available in the literature, 

such as critical force [46], [52], critical cohesive energy [14]. The advantage of the bond-based 



 

 

85 

 

failure criteria is that only the bond breaking rule is required to fully simulate various fracturing 

problems. 

The critical elongation criterion in the proposed lattice particle framework has following 

expression: 

critical o
i i il lδ a δ= ⋅           (2.4.15) 

with 1,2i = for spring connecting with the first and second neighbors, o
ilδ  is the original spring 

length, and ia  is the threshold coefficient, which is calibrated using experimental data. 

For isotropic materials, there exists a relationship between 1a  and 2a . In the strain mapping 

used in Eq.(2.4.5), the relationship between the directional strains of the springs connecting the 

first neighbors and the second neighbors is, using the normal unit vector given in Table 2.4.1 – 

2.4.3,  

for simple cubic lattice structure, 

, 1,...,6 , 7,...,182ij j ij jε ε= ==          (2.4.16) 

Thus, 

1 22sc sca a=           (2.4.17) 

for body-centered cubic lattice structure, 

, 9,...,14
, 1,...,8 3

ij j
ij j

ε
ε =

= =           (2.4.18) 

Thus, 

2
1 3

bcc
bcc aa =           (2.4.19) 

for face-centered cubic lattice structure, 

, 13,...,18
, 1,...,12 2

ij j
ij j

ε
ε =

= =           (2.4.20) 

Thus, 
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2
1 2

fcc
fcc aa =           (2.4.21) 

Using the above derived relationship between the critical elongation for the two types of springs, 

these is only one threshold coefficient needs to be calibrated from the experimental data for each 

packing case. And this concept will be illustrated in the numerical results section. 

The crack propagation process in the proposed framework is simulated as follows: at each 

simulation time step, the elongation of the springs are calculated and compared with the 

corresponding critical values. If the calculated elongation is larger than the critical value, the 

spring is considered as broken and it cannot sustain any tensile force in the following simulation 

steps. This process continues until the whole specimen fractures. 

2.4.5. Benchmarks 

Several benchmarks are used to examine the performance of the proposed 3D lattice particle 

model for different lattice structures, including the testing of elastic properties, modeling elastic 

3D thin plates and shells, and mixed-mode fracture problems. First, the frame-independence of 

the lattice particle formulation is examined by testing the directional Young’s modulus and 

compared to the input material properties. The convergence characteristic and the applicability to 

arbitrary Poisson’s ratio are also examined in this example. Following this, several thin plate and 

shell structures with different thickness under bending load are modeled. The numerical results 

are compared with the FEM solutions and literature results for all three lattice structures 

whenever available. The last benchmark is a mixed mode fracture simulation of a brittle material. 

A center-cracked specimen under uniaxial tension is modeled. The center crack is rotated with 

arbitrary in-plane angle to create the mixed-mode fracture scenarios. Both the fracture path and 

peak loading are compared with experimental observations. 

Testing of the elastic properties 

As shown in the APPENDIX A, the proposed model formulation is frame independent for all three 

cubic lattice structures. In this example, we numerically show the frame independence of the 
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model formulation by calculating the directional Young’s modulus while rotating the underlying 

lattice structure. The Young’s modulus on two planes are examined, the <010> and <110> 

planes. A convergence study is also performed for all three lattice structures when the lattice 

rotation is zero, i.e., the lattice coordinates coincide with the global coordinate. 

The tests are performed using a cube with edge length of 0.01 m. The material constants used 

are: Young’s modulus 64 E GPa=  and Poisson’s ratio 0.36v = . The simulation is repeated for 

different lattice rotations (i.e., rotation angle β  in Fig. 2.4.5). The rotational invariance can be 

checked using this series of simulations. The numerical results for the directional Young’s 

modulus are shown in Fig. 2.4.5. As can be seen, the numerical calculated Young’s modulus for 

all three lattice structures are rotational invariant. The numerical simulation is consistent with the 

analytical derivation given in the APPENDIX A. 

  

Figure 2.4.5. The Rotation Invariance of the Three Lattice Structures 
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Figure 2.4.6. The Convergence Study for the Three Lattice Structures 

The convergence study of the Young’s modulus versus the particle number when the lattice 

rotation is zero on the <010> plane is shown in Fig. 2.4.6. From the results, all three lattice 

structures converge to the 2% error bound very fast. Among these three lattice structures, the 

body center cubic structure performs the best, while the face centered cubic structure needs a 

denser particle density in order to obtain the same accuracy as other two lattice structures. 

 

Figure 2.4.7. The Verification of Effective Poisson’s Ratio 

The isotropic materials with arbitrary Poisson’s ratio can be modeled within the proposed 

framework. The verification results on effective Poisson’s ratio are shown in Fig. 2.4.7. The x-axis 

is the actual material’s Poisson’s ratio and the y-axis is the simulated Poisson’s ratio. Lattice 

particle model with only local axial spring will produce a fixed Poisson’s ratio irrespective of the 
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input values (see red markers in Fig. 2.4.7). From the verification results, it is clear that the 

proposed framework removes the limitation on Poisson’s ratio. It is also shown that among all 

three cubic lattice structures, the body centered cubic structure performs slightly better than the 

other two lattice structures. 

3D thin plate and shell structures 

Extensive researches have been done in modeling thin structures, such as [61], [62]. In this 

subsection, the deflections of 3D thin structures are simulated to evaluate the performance of the 

proposed framework for elastic thin structures. In this example, only the body-centered lattice 

structure is used. 

Clamped circular plate under concentrated loading 

A clamped circular plate is studied in this subsection. The radius of the plate is 0.05 m, with 

concentrated force of 10 N applied on the center region of radius 0.005 m. Two scenarios of 

different thickness of the plate are considered, i.e., the diameter to thickness ratio d/h is 10 and 

100. Different Poisson’s ratios ( )0.2,  0.3v =  are used in this example. 

The results are compared with FEM solution from ABAQUS using 3D stress analysis employing 

C3D8R element. The typical deformation distributions are shown in Fig. 2.4.8. The extreme 

displacement components are given in Table 2.4.4. The error is defined as the absolute error with 

respect to the FEM solution. A detailed comparison for the displacement U3 along the radial 

direction is shown in Fig. 2.4.9. 

   

Figure 2.4.8. The Displacement Distribution for the Case of v = 0.3, d/h = 100 

Table 2.4.4. The Extreme Displacements Values 
d/h Poisson’s ratio Displacement BCC FEM Error (%) 

10 0.2 U1/2 (E-8) ±1.293 ±1.325 2.42 
U3 (E-7) -1.085 -1.105 1.81 

0.3 U1/2 ±1.223 ±1.254 2.47 
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U3 -1.033 -1.049 1.53 

100 
0.2 U1/2 (E-6) ±1.271 ±1.323 3.93 

U3 (E-5) -8.865 -8.874 0.10 

0.3 U1/2 ±1.196 ±1.254 4.63 
U3 -8.352 -8.412 0.71 

 

  

Top surface (d/h = 10) Top surface (d/h = 100) 

  

Bottom surface (d/h = 10) Bottom surface (d/h = 100) 

Figure 2.4.9. The Detailed Deformation (w) Comparison (v = 0.3) 

Simply-supported square plate under uniform loading 
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Figure 2.4.10. The Dimension and Configuration of the Square Plate 

A simply-supported square plate under uniform distributed load is studied in this example. The 

dimensions and configuration of the plate are shown in Fig. 2.4.10. Due to symmetry, only a 

quadrant of the plate is modeled, as highlighted in Fig. 2.4.10. Two cases of length-to-thickness 

ratio L t  are studied. The literature results and Kirchhoff’s analytical solution from [62] are used 

as reference solutions. For the case of 100L t = , the effect of Poisson’s ratio on the deflection is 

studied. 

Table 2.4.5. The Deflection Uz at the Center of the Plate 

L t   Poisson’s ratio 
Deflection zU  

Lattice particle Kirchhoff Elasticitya 

10 0.3 -0.4955 -0.4429 -0.4936 

100 
0.2 -0.4556 -0.4672 -- 
0.3 -0.4279 -0.4429 -0.4429 
0.4 -0.3913 -0.4088 -- 

a: 7-parameter 3D shell model from [62] 

The comparison of the deflection at the plate center is given in Table 2.4.5. The deflection 

distribution for the case of 0.3v = and 100L t =  is shown in Fig. 2.4.11. 

 

Figure 2.4.11. The Deformation Uz the Square Plate for the Case of v = 0.3, L/t = 100 

Clamped cylindrical shell strip under concentrated loading 

A cylindrical strip is studied in this example. As shown in Fig. 2.4.12, the strip is clamped at one 

end with a concentrated line load applied on the other end. Two thicknesses are considered. Due 

to symmetry, only half of the strip is modeled. 
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Figure 2.4.12. The Dimension and Configuration of the Cylindrical Strip 

The comparison between the results from the proposed model with the literature results are 

shown in Table 2.4.6. The deformation distribution of Ux is shown in Fig. 2.4.13. 

Table 2.4.6. The Displacement Ux at End Tip with Applied Force 

L t   
Deflection zU  

Lattice particle Bernoulli Elasticitya 

10 -0.947 -0.942 -0.945 
100 -0.937 -0.942 -0.945 

a: 7-parameter 3D shell model with discrete strain gap concept from [62] 

 

Figure 2.4.13. The Deformation Ux of the Cylindrical Shell Strip for R/t = 100 

Scordelis-Lo roof example 
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The famous benchmark for testing the formulation for cylindrical shell structure, the Scordelis-Lo 

roof [63] problem, is modeled in this example. The roof dimension and configuration are shown in 

Fig. 2.4.14. As indicated, only a quadrant of the roof is modeled using the proposed model. 

 

Figure 2.4.14. The Dimension and Configuration of the Scordelis-Lo Roof 

The reference solution of the deflection at point A reported by [64] is 0.3024.  The result obtained 

using the proposed model at point A is 0.3015, which is in good agreement with the reported 

result. A deformation distribution of Uz is shown in Fig. 2.4.15. 

 

Figure 2.4.15. The Deformation Uz of the Scordelis-Lo Roof 

From the simulation results of all three benchmarks, the proposed model can capture the 

deformation to certain accuracy for both relative thick and thin plate and shell structures. The 

proposed model is a discrete formulation of 3D elasticity, thus has the same issue while modeling 

very thin structures. And usually extensive computation is required for this type of structures. 

Mixed mode fracture 
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Figure 2.4.16. The Diagonally Loaded Square Plate 

Brittle fracture is one of the common types of mechanical failure of cracked engineering 

components and structures. Extensive researches have been done, both analytically and 

experimentally, to investigate the different fracture modes, i.e., pure mode I, pure mode II and 

mixed mode. In this section, we adopt the diagonally loaded square plate specimen from [65] to 

test the performance of the proposed lattice particle framework for fracture modeling using the 

simple cubic lattice structure. All the crack angles are studied in this section. When 0oβ = , the 

plate is subjected to pure mode I loading . When 62.5oβ = , the plate is subjected to pure mode II 

loading. Other crack angles are corresponding to mixed mode loading. 

The dimension of the specimen is shown in Fig. 2.4.16. The thickness of the plate is 5 mm. The 

initial crack width is 0.7 mm. The material properties of the PMMA material is: Young’s modulus 

2940MPaE = , Poisson’s ratio 0.38v = , tensile strength 48MPaTσ =  and the mass density 

3 31.18 10 kg/mρ = × . Instead of removing the particle to create the hole feature at the top and 

bottom parts of the specimen, we define two sets for the particles confined to the hole geometries 

and apply the constant velocity to these sets to simulate a uniaxial tensile loading cases. The 

particle set can only move upward or downward. The dynamic solution scheme [38] is used in this 

example. In the experiment [65], the constant loading rate is 1 mm/min, i.e., 1.7x10-5 m/sec. 

While in the simulation, we have used 0.17 m/sec and the time step is 10-8 sec for all cases. In 
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order to avoid singularity related issues around the hole, the threshold coefficients for springs 

around the holes were set to unity. 

As pointed out in the Section 4, the failure parameters ia  ( 1,2i =  ) needs to be calibrated using 

the experimental data. And since there is certain relationship between 1a  and 2a , only one 

failure parameter needs to be calibrated. In this example, the case of initial crack angle 0oβ =  is 

used to calibrate the threshold coefficients. And the other two cases are used to verify the model. 

The calibrated failure parameter for the simple cubic lattice structure is: 

1
1

1
1

1
1

1.25

1.2

1.2

sc T
sc

bcc T
bcc

fcc T
fcc

R
k

R
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σ
a

σ
a

=

=

=

          (2.4.22) 

where R  is the particle radius and Tσ  is the material tensile strength, 1k  is the spring stiffness 

parameter for the springs connecting with the first nearest neighbors. 

The simulation results using the simple cubic lattice structure is compared with the experimental 

observation from [65]. The crack paths for various initial crack angles using the body centered 

cubic structure are shown in Fig. 2.4.17. The white lines indicate the final crack paths. The 

predicted peak reaction forces are shown in Fig. 2.4.18. 

 0oβ =  15oβ =  30oβ =  45oβ =  62.5oβ =  

LMP 

     

EXP 

     
Figure. 2.4.17. The Final Crack Paths Compared with Experimental Results 
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Figure 2.4.18. The Peak Force on the Top Hole Using bcc Lattice Structure 

As can be seen from the comparisons in Fig. 2.4.17 and Fig. 2.4.18, there prediction using the 

body centered cubic lattice structure matches well with the experimental observations. 

2.4.6. Discussion and conclusions 

A family of 3D lattice structures for the Lattice Particle Model was proposed and their 

performances were studied by modeling several benchmark problems in this section. The 

simulation results are compared to both FEM solutions and experimental observations. Good 

agreements are found and the validity of the proposed model is verified. The proposed model is 

different from other lattice models at least in following two aspects: 

1). In addition to the pair-wise potential in the classical lattice models, a non-local energy 

balancing term is introduced. From the functionality viewpoint, this term serves as a balance 

between the potential energy stored within all springs associated with a unit cell in the classical 

axial spring model and the strain energy of a corresponding continuum. This is completely 

different from the other shear/angular springs introduced in some lattice spring models; 

2). The discrete elements, i.e., particles, not only communicate with its nearest neighbors but also 

interact with the second and even further neighbors in lattice particle model. This nonlocal 

interaction results in a non-uniform varying effective spring stiffness; 

Based on the current investigation, the following conclusions can be drawn: 
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1). The proposed 3D lattice particle model is capable of modeling elasticity and fracture problems 

of solid materials under general mechanical loadings; 

2). The proposed failure simulation criterion is valid for this 3D lattice particle model. The 

threshold coefficients can be calibrated using the experimental data, as illustrated in the 

benchmark section; 

3). All three lattice structures have satisfactory accuracy and the BCC lattice produces the best 

simulation results in the investigated problems. 

Further investigation on the capacity of modeling brittle fracture using the proposed model is 

required. Extending this framework to elasto-plastic materials and anisotropic materials requires 

additional research. 
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CHAPTER 

3. THE LATTICE PARTICLE MODEL FOR ANISOTROPIC SOLIDS 

3.1 Introduction 

Anisotropic materials are the materials of non-isotropic, which means the property of material 

depends on the directions. Different directions have different properties. Anisotropic materials are 

more practical meaningful than isotropic materials due to its diversity in nature. 

Anisotropic materials are widely used in engineering, such as laminated composites. The 

behaviors of composite laminates can be characterized by complex 3D states of stress. Full 3D 

elasticity analyses [66], [67], [68], [69], [70], [71] reveal that the interlaminar continuity of 

transverse normal and shear stresses as well as the layerwise continuous displacement field 

through the thickness of the laminated structures are the essential requirements for the accurate 

analysis of laminated structures. The inherent anisotropy and mismatch of material properties, 

particularly the Poisson’s ratio, between plies result in high interlaminar stresses [72], [73], [74], 

[75], [76], which is critical to the delamination failure mechanism [77]. These requirements can 

only be partially fulfilled by other reduced formulations [78]. A drawback of the 3D models is their 

computational expensiveness. However, these models are essential for an accurate evaluation of 

the interlaminar stresses at locations such as cutouts, delamination fronts and regions of intense 

loading. Damage initiation and propagation are likely to occur at such locations, which might lead 

to the failure of laminate [79]. Moreover, owing to the advent of high-speed computers and the 

use of parallel computing and GPU computing, this drawback can be underestimated and will not 

be of concern in the near future. 

Polycrystalline material is an aggregate of microstructural crystallites of various size, shape and 

crystallographic orientation. Its macroscopic properties are affected by the underlying 

microstructures. At the crystallite level, the material properties are anisotropic and orientation 

dependent. The macroscopic behavior of polycrystalline materials can be regarded as statistically 

isotropic when the materials have random crystallographic and morphologic texture. The 
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influence of individual crystallite on the overall macroscopic behavior of the aggregate is 

negligible. In practice, an ideally randomly oriented crystalline aggregate is very difficult to obtain. 

Initial deviation from this randomness may occur during the solidification process due to 

differences in crystal growth along different directions. Subsequent metal working processes, 

such as rolling, extrusion and annealing, provide other mechanisms for the formation of preferred 

orientation textures. This non-random distribution of crystallographic orientation influences the 

macroscopic properties of crystalline aggregates. The applicability of the aforementioned 

analyses for this type of polycrystal texture becomes very limited. It should be noted that perfect 

grain boundaries are assumed in all the theoretical predictions for effective elastic constants of a 

polycrystalline material with or without texture. Grain boundary also plays a significant role on the 

fracture behavior of the polycrystalline materials. Different grain boundary properties may result in 

different fracture mode, e.g., intergranular or transgranular fracture. 

The development and application of lattice models has been mainly focused on isotropic 

materials. Grah et al. [45] has used a general αβ-model [10] to investigate the fracture behavior of 

2D brittle polycrystalline materials. In their formulation, both the α-spring and β-spring, i.e., axial 

and angular springs, respectively, have been utilized. Various grain orientations were represented 

by the transformation of the material stiffness matrix. Although the spring stiffness can be easily 

assigned using the transformed materials stiffness, the shear springs suffers from the negative 

value for most of the grain orientations. In addition, the intrinsic fracture anisotropy of the lattice 

structure still persist [52]. Another effort to apply the lattice model to polycrystalline materials was 

done by Rindaldi et al. [80]. In this model, the effective elastic properties, i.e., Young’s modulus 

and Poisson’s ratio, were estimated using a novel mapping procedure between the FEM and the 

lattice spring formulations. According to their results, the estimated average Young’s modulus is 

consistent with the experimental results. However, the Poisson’s ratio could not be matched and 

its value is fixed around 0.33 for all simulation cases. 

In this chapter, the lattice particle model for anisotropic materials is presented. A lattice rotation 

scheme is proposed to represent the material orientation which is consistent but different from the 
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classical tangent stiffness matrix transformation scheme in continuum mechanics. The content of 

this chapter is organized as follows. In Section 3.2, the lattice particle model based on triangular 

packing for general 2D anisotropic materials is presented. Different from the case of isotropic 

materials, the six springs associated with each particle not necessary to have the same local and 

nonlocal parameters. But due to symmetry, the local and nonlocal parameters are identical for 

springs in the opposite directions. Similar conditions apply to the spring based failure criterion. 

Several numerical examples used to verified the validity and test the performance of the 

proposed 2D anisotropic lattice particle model. Discussions and conclusions are drawn based on 

the current study. In Section 3.3, the anisotropic lattice particle model is applied to study the 

microstructural effect on the response of polycrystalline materials. The effects of the 

crystallographic orientation and interface properties are studied in detail, on both effective elastic 

properties and fracture mode and strength. In Section 3.4, the 3D anisotropic lattice particle 

model based on the simple cubic lattice structure is presented. The focus is on the modeling of 

the deformation of cross-ply laminated composite plates. Systematic study with other laminated 

plate theories is performed. Conclusions and future work are given based on the current study. 
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3.2 2D Anisotropic Composites 

A novel nonlocal lattice particle framework for fracture simulation of general anisotropic materials 

is proposed in this paper. The key idea is that the material anisotropy is handled by the rotation of 

the underlying topological lattice structure, rather than the transformation of material stiffness 

matrix, which is commonly used in the finite element scheme. One major advantage of the 

proposed model is that the crack path preference of the anisotropic materials is naturally 

incorporated by the underlying lattice structure. First, the analytical derivation and formulation of 

the proposed nonlocal lattice particle method is given for general anisotropic materials. The 

equivalency of the lattice rotation and stiffness transformation using the proposed formulation is 

discussed in detail. Following this, numerical examples are used to demonstrate the capability of 

the proposed methodology for 2D anisotropic solids. Special focus is on the orthotropic materials 

widely used for structural applications, e.g., fiber-reinforced composite laminates. Numerical 

simulations are validated by comparing with observations from open literatures. Finally, 

discussions and future work are given based on the current investigation. 

3.2.1 Introduction 

Unlike isotropic materials, the properties of anisotropic materials are orientation dependent. Thus, 

modeling of various phenomena in anisotropic materials, such as fracture, is more complicated 

compared to that in isotropic solids. The modelling of fracture behavior of isotropic brittle 

materials can be traced back to Griffith [81]. One important issue in the fracture simulation is the 

propagation path determination. Under quasi-static loading, several popular criteria have been 

used along with the Griffith’s theory to determine the crack path, such as the maximum energy 

release rate [82], the minimum strain energy density [83], and the maximum circumferential stress 

[84]. These criteria are generally not accurate if the anisotropy of the material properties are 

considered [85]. 
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Anisotropic materials are widely used in engineering, such as fiber-reinforced composites (FRC). 

For FRC, various failure criteria have been proposed during the last several decades, such as the 

maximum stress criterion, the Tsai-Wu criterion [86] and the Tsai-Hill criterion [87]. These criteria 

try to determine the failure strength of anisotropic materials. The crack path prediction still poses 

a great challenge [88]. 

The discrete formulation of fracture mechanics, such as lattice particle method, is different from 

the continuum-based fracture mechanics. This approach dates back to the work of Hrennikoff 

[16]. Vast successive development of this approach can be found in the literature, e.g., [10], [89], 

[12], [90], [52]. The lattice models can be generally grouped into four categories based on the 

proposed potential functions among particles: (1) the local axial spring model [9]; (2) the axial-

bending/axial-shear spring model, such as the bond-bending model [10] and the angular shear 

spring model [2]; (3) the micro-polar lattice model with axial, shear, and rotation degree of 

freedoms, such as [91]; (4) the model consider both local pairwise potential and nonlocal multi-

body potential among particles, such as [22] and [38]. 

The Lattice Models have some intrinsic advantages when handling the fracture behavior of 

materials. For instance, Lattice Models are based on the discontinuous formulation which avoids 

singularity related issues in continuum-based numerical simulation methods. The crack initiation 

and propagation processes can be modelled via bond breaking rules [4]. No external crack path 

determination rule is required and the crack propagation is a natural outcome of the breakage of 

the connecting bonds. The development and application of Lattice Models has been mainly 

focused on isotropic materials. Grah et al. [45] developed a axial-shear spring model for 

simulating the fracture behavior of anisotropic materials (i.e., polycrystals). In the proposed model 

[45], a transformation of material stiffness tensor is performed according to the rotation of the 

material coordinate. The transformed material stiffness matrix is then used to evaluate the 

corresponding spring stiffness for each grain. This approach leads to the negative shear spring 

stiffness when mapping the lattice model to the transformed stiffness tensor matrix. The lattice 



 

 

103 

 

structure is independent of the grain orientation and the simulated the crack path deviates from 

the experimental observations [45]. 

The main objective of this study is to extend the lattice particle model developed by Chen et al. 

[38] for isotropic materials to general anisotropic elastic solids. The arbitrary material orientation 

of a general anisotropic material is accounted by rotating the topological lattice structure rather 

than the stiffness matrix transformation as in most existing approaches. Thus, the anisotropy of 

solids is naturally incorporated with the topological lattice structure. The content of this paper is 

organized as follows. First, the background theory and formulation of the proposed lattice particle 

model is presented. The unique mapping relationship between the model parameters and the 

components of the material stiffness matrix is derived based on the equivalence of the strain 

energy between the discrete model and the continuum model. Following this, a lattice rotation 

scheme to account for the material anisotropy is presented. A detailed derivation on the 

equivalency between the lattice rotation and the stiffness matrix transformation is given in the 

APPENDIX. Next, discussion on the failure criterion used in the proposed framework for modeling 

fracture phenomena of anisotropic materials is given. After that, several numerical benchmarks to 

test the performance of the proposed framework for modeling composite materials are presented. 

Conclusions and future work are given based on this study at the end. 

3.2.2 The lattice particle model: theory and formulation 

In the proposed lattice particle model (Fig. 3.2.1(a)), the domain of interest is decomposed into 

discrete particles, which are connected by springs. A unit cell can be identified from the 

decomposed domain, which is a hexagon for triangular packing as shown in Fig. 3.2.1(b). One of 

the main differences between the proposed framework and other lattice spring model is the 

introduction of the non-local potential among particles. This is achieved by balancing the system 

energy between the classical axial spring models with corresponding continuum model. The 

interaction force between a typical pair of particle (such as I and J shown in Fig. 3.2.1(c)) not only 
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depends on the particle pair themselves, but also has contributions from all its surrounding 

neighbors. 

Thus, the total energy of a unit cell can be formulated into two parts, the local pairwise energy 

associated with the connecting springs and the non-local multi-body energy of all its neighboring 

springs.  

( )
6 6 6

2

1 1 1

1 1
2 2cell J IJ J IJ IK

J J K
U k l T l lδ δ δ

= = =

    = +    
    
∑ ∑ ∑      (3.2.1) 

where the first term is the local pairwise energy of the connecting springs and the second term is 

the non-local multi-body energy of all its neighboring springs, IJlδ is half of the length change of a 

connecting spring, Jk  and JT are the local and non-local spring stiffness parameters. 

 
  

a). Domain decomposition b). Unit cell c). non-local interaction 

Figure 3.2.1. The Discretization Scheme Used in the Proposed Model 

Due to the symmetry of the material stiffness matrix C of the corresponding continuum, the 

springs in opposite directions should have the same local and non-local stiffness parameters. 

Thus, the following assumptions are used, 

1 4 2 5 3 6

1 4 2 5 3 6

;     ;     
;     ;     

k k k k k k
T T T T T T
= = =
= = =

        (3.2.2) 

In terms of the components of the strain tensor, Eq.(3.2.1) can be rewritten as 

6 6 6
2 2

1 1 1

1 1
2 2

ε ε ε ε
= = =

  = +   
  

∑ ∑ ∑b b b b b b b b
cell b i j k l ij kl b i j ij k l kl

b b b
U R k n n n n R T n n n n    (3.2.3) 
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where R is the radius of the particle, , , ,
b
i j k ln  is the component of the normal vectors of spring b  

given in Table 3.2.1. , , , 1,2=i j k l for two dimensional formulations. 

 Table 3.2.1. The Normal Vectors for the Six Nearest Neighbors of a Unit Cell  

1n  2n  3n  4n  5n  6n  
( )1,0  ( )1/ 2, 3 / 2  ( )1/ 2, 3 / 2−  ( )1,0−  ( )1/ 2, 3 / 2− −  ( )1/ 2, 3 / 2−  

 
Note that the normal vectors given in Table 3.2.1 is with respect to the material coordinate 1O2, 

as shown in Fig. 3.2.1(b) in which the material coordinate 1O2 is coincident with the global 

coordinate XOY. This is chosen for the convenience of calculating the normal vectors associated 

with each unit cells. More general case, where the material coordinates and global coordinate are 

different, will be discussed in Section 3. 

Given the normal vectors in Table 3.2.1, the total energy stored in a unit cell can be calculated 

from Eq.(3.2.3). Due to the conservative of the potential energy, the material stiffness matrix can 

be obtained by the Theory of Hyper-elasticity as 

21
ε ε
∂

=
∂ ∂

cell
ijkl

ij kl

UC
V

         (3.2.4) 

where V  is the volume of a unit cell, 21 2 3 6 2 3
2 3

= ⋅ ⋅ ⋅ ⋅ =V R R h hR . For dimensional 

consistency, the unit thickness h  is used. In following derivation, the unit thickness h  is usually 

omitted unless ambiguity arises. 

According to the Hooke’s law, the material stiffness tensor for a general anisotropic elastic 

material in 2D can be expressed as 

11 12 16

22 26

66

C C C
C C

sym C

 
=  
  

C          (3.2.5) 

Comparing the components of the material stiffness matrices solved from Eq.(3.3.4) with 

Eq.(3.2.5), the following unique mapping relationship between the proposed model parameters 

and the component of material stiffness matrix can be obtained as 
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1 11

2 22

3 66

1 26

2 16

3 12

4 33 3 0 0 2 3
3

8 30 0 4 4 0
3

8 30 0 4 4 0
3

4 3 2 3 2 30 0 0
9 3 3

2 3 2 3 20 2 0
9 3 3

2 3 2 3 20 2 0
9 3 3

 
− − 

 
 

−            −        =       −                 − −
 
 
 − −
 

k C
k C
k C
T C
T C
T C

      (3.2.6) 

Eq. (3.3.5) is the exact mapping relationship between the model parameters and the components 

of the material stiffness matrix in 2D. Given any material constants, the six model parameters can 

be uniquely determined. When the material is isotropic, the solutions reduce to the one shown in 

[38]. 

Given the model parameters Jk  and JT  ( 1, ,6= J  ), the interaction force within each 

connecting spring can be calculated by differentiating the total energy with respect to the spring 

elongation as 

( ) ( )
6 6

1 1

1 1
2 2

δ δ δ
δ = =

∂
= − = − − −

∂ ∑ ∑cell
IJ J IJ K IK J IK

K KIJ

UF k l T l T l
l

    (3.2.7) 

The interaction force between a typical particle pair can be rewritten as 

( )
6 6

1 1

1 1
2 2

IK IK
IJ J K J IJ

K KIJ IJ

l lF k T T l
l l

δ δ δ
δ δ= =

 
= − + + 

 
∑ ∑      (3.2.8) 

Thus, the effective pairwise spring stiffness in an axial spring model is 

6 6

1 1

1 1
2 2

eff IK IK
J J K J

K KIJ IJ

l lk k T T
l l

δ δ
δ δ= =

= + +∑ ∑        (3.2.9) 
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3.2.3 Material orientation represented by lattice rotation 

In the above discussion in Section 3.2.2, the formulation is based on the coincidence of the 

material coordinate, the lattice orientation and the global coordinate. The definition of the lattice 

orientation and how to rotate the lattice according to the material orientation is schematically 

shown in Fig. 3.2.2. The lattice orientation is always coincident with the material coordinate (not 

with the global coordinate). Thus, the material coordinate orientation can be represented by the 

underlying lattice orientation. The material stiffness matrix is not transformed in the proposed 

method which is generally the case for Finite Element Methods. As shown in Fig. 3.2.2, the 

underlying lattice is rotated according to the rotation of the material coordinate 1O2. 

The equivalency between the rotation of the underlying lattice structure and the transformation of 

material stiffness matrix to accommodate the rotation of the material coordinate is shown in the 

APPENDIX. One benefit for the rotation of lattice structure is that the anisotropic fracture 

preference is included naturally by the topological lattice structure. 

 

Figure 3.2.2. Correspondence between Material Orientation and Lattice Rotation 

3.2.4 Failure criterion 

A spring-based failure criterion is proposed in this study to model the fracture phenomenon of 

anisotropic materials. Various bond-based failure criteria exist in the literature, such as critical 
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force [12], critical strain energy [35] and critical elongation [8]. Cohesive type failure criteria are 

also used [14]. In this study, a critical elongation criterion is proposed. 

For homogeneous isotropic materials, the connecting bonds in different directions have the same 

critical elongation. For anisotropic materials, the critical elongation for different connecting bonds 

is different.  The critical elongation critical
js in the three directions, i.e., 1,2,3=j , is dependent on 

the particle radius and the off-axis material strength which can be obtained from the experimental 

testing. It is proposed that  

critical
j js Ra= ⋅          (3.2.10) 

where R  is particle radius. ja is calibrated from experimental testing. 

For general anisotropic materials, the calibrated failure parameters ja  should have six different 

values, i.e., three for tension tests and three for compression tests. For orthotropic materials, 

such as fiber-reinforced composites, the calibrated failure parameters ja  only have four different 

values, since bond 2 and bond 3 should have the same stiffness due to orthotropic symmetry of 

the material. Thus, only two set of tension and compression tests on the two principal material 

directions are needed for the calibration of the failure parameters ja . This process will be 

demonstrated in the numerical results section. 

3.2.5 Numerical results 

Several simulation results using the proposed model are presented in this section. First, the 

proposed model is verified against the analytical solution for the off-axis Young’s modulus of 

general orthotropic solids. The convergence study is carried out to test the performance of the 

proposed model. Following this, a comparison of the deformation calculated from FEM for a 

center-hole specimen is performed. After that, the crack propagation path prediction capability 

using the proposed framework is demonstrated using an orthotropic plate with center-crack. 

Parametric study of the effect of the material strength on the crack path is also performed. Two 
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frequently studied delamination benchmarks in the literature, such as [92] and [93], are also 

modeled using the proposed framework. The solution method proposed in [94] is used in all the 

simulations in this section. 

 Example 1: calculation of the off-axis Young’s modulus 

An orthotropic rectangular plate is modeled to calculate the off-axis Young’s modulus in this 

section. The configuration of the plate is shown in Fig. 3.2.3. The top edge of the plate is 

constrained in the vertical direction while the center point is fixed. An evenly distributed force with 

the value of 20,000 N is applied on the bottom edge in the negative y direction. The elastic 

properties of the material in form of the stiffness matrix is 

281 133 0
133 200 0  GPa

0 0 114

 
=  
  

C         (3.2.11) 

The global coordinate of the plate is fixed while the local material coordinate is rotated at different 

angles α with respect to the global coordinate system. As mentioned in Section 3.2.3, the material 

coordinate orientation is represented by rotating the underlying lattice structure accordingly. The 

calculated off-axis Young’s modulus for each rotation angle α are compared with the analytical 

solution provided by Jones [75]. 

 

Figure 3.2.3. The Configuration of the Orthotropic Rectangular Plate for Off-Axis Test 
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Figure 3.2.4. The Comparison of the Model 
Prediction and the Analytical Solution 

Figure 3.2.5. The Convergence Study for the 
Case of 60 Degree Rotation 

The comparison of the predicted off-axis Young’s modulus between the analytical solution and 

the results from the lattice particle model are shown in Fig. 3.2.4. As can be seen, the predictions 

match the analytical solution very well. The material anisotropy is accurately captured by the 

proposed lattice rotation scheme. 

The convergence study of the 60o lattice rotation is shown in Fig. 3.2.5. The predicted off-axis 

Young’s moduli are normalized with the analytical solution from Jones [75]. As can be seen from 

the results in Fig. 3.2.5, the proposed model converges very fast to the analytical solution and the 

final converged result is within 0.1% error. 

Example 2: comparison of the elastic deformation 

In this example, the accuracy of the elastic deformation prediction is further examined for 

complex stress case. The same rectangular plate is used while a hole is introduced at the center 

of the specimen. The diameter of the hole is half of the horizontal edge length. 

The displacements distributions predicted using the proposed framework are compared with the 

FEM solutions, which are shown in Fig. 3.2.6. As can be seen from the results, the predicted 

patterns and values of the displacement fields match quite well with the FEM solutions. 

Proposed Lattice Particle Method FEM 
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Figure 3.2.6. Comparison of Displacement Fields between Lattice Particle Model and FEM  

A detailed quantitative comparison of the two displacement components at the right edge of the 

specimen is shown in Fig. 3.2.7. It further verifies the accuracy of the proposed framework for 

modeling of anisotropic elasticity problems. 

  

Figure 3.2.7. The Comparison of the Displacements at the Right Edge 

Example 3: fracture of an orthotropic plate with pre-existing center crack 

In this example, the fracture of an orthotropic lamina plate with a center through crack under 

uniaxial tensile loading is modeled. The plate has the same dimensions as shown in Fig. 3.2.3. 

The length of the crack is 4 mm. As discussed in Section 3.2.4, the failure parameters ja  can be 
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calibrated using the material tensile strength in the two principal directions from experiment. For 

demonstration purpose, the assumed values are used in the current simulation. Five different 

material rotations are considered, i.e., 0 o, 30 o, 45 o, 60 o, 90o. All these material orientations are 

represented using the proposed lattice rotation scheme. 

Case I:  

In this case, the critical elongations of the springs are assumed to be 

1

2 3

0.016

0.008

critical

critical critical

S R
S S R

=

= =
        (3.2.12) 

The final crack paths for five different rotations are shown in Fig. 3.2.8. The red lines indicate the 

crack paths. As can be seen, the crack path is different from that of isotropic material under pure 

mode I loading. When the loading is along with the material principal directions, i.e., α = 0 o, the 

crack path is perpendicular to the loading direction. When the loading direction is inclined with the 

material principal direction at different angles, e.g., 30 o, 45 o and 60 o, the crack path is 

perpendicular to the weak principal strength direction. This is usually observed in the experiment 

for some fiber-reinforced laminates [95]. 

     

α = 0 o α = 30 o α = 45 o α = 60 o α = 90 o 

Figure 3.2.8. The Final Crack Path for Case I Material Strength 

Case II:  

In this case, the strength along different directions are assumed to be  

1

2 3

0.016

0.004

critical

critical critical

S R
S S R

=

= =
        (3.2.13) 
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The simulation results for this case are shown in Fig. 3.2.9. The crack paths for the rotations of 0 

o, 30 o, 45 o and 60 o are the same as in case I. But for the case of 90 o rotation, the crack path is 

parallel to the loading direction. This is known as the crack splitting and usually observed for 

some composite laminates [96]. 

     

α = 0 o α = 30 o α = 45 o α = 60 o α = 90 o 

Figure 3.2.9. The Final Crack Path for Case II Material Strength 

Example 4: delamination of CFRP with initial transverse crack 

In this example, the delamination failure mode of an initially damaged cross-ply CFRP (Carbon 

Fiber-Reinforced Polymer) is studied. This model has been studied by other researchers, such as 

[97] and [92]. The stacking sequence for the case considered here is [90/0]s. The configuration is 

shown in Fig. 3.2.10. The material properties are listed in Table 3.2.2. 

 

Figure 3.2.10. The Configuration of the CFRP Specimen 

Table 3.2.2. The Orthotropic Material Constants for Example 4 

Material constants 1E   2 3E E=  12 13G G=  23G  12 13v v=  23v  

Value (GPa) 144 9.7 4.5 3.4 0.35 0.43 
 
Under 2D plane strain assumption, the 90o ply is isotropic and has following material constants 
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90

12.2 5.4 0
5.4 12.2 0  GPa
0 0 3.4

 
=  
  

C         (3.2.14) 

while the 0o ply is orthotropic and has following material constants 

0

148.3 6.1 0
6.1 12.2 0  GPa
0 0 4.5

 
=  
  

C         (3.2.15) 

Similar to the experiment [97], a constant displacement rate is loaded at the two ends of the 

specimen. The initial damages are built by removing connecting springs between two pairs of 

neighboring particles. Since the orientation of the 0o ply is coincident with the global coordinate, 

there is no need to rotate the underlying lattice structure in this example. 

For the isotropic 90 o ply, all springs have the same critical elongation. For the orthotropic 0 o ply, 

two critical elongations are required for two different types of springs. For the interface springs, 

i.e., springs connecting particles belong to two different plies, they are assumed to have the same 

critical elongation independent of the direction. Thus, four critical elongations are required in this 

modeling example. The following values are used 

 

90

0 90

0,1

0,2 0,3

0.01

0.0002

0.016

0.008

critical

critical

critical

critical critical

S R

S R

S R

S S R

−

=

=

=

= =

        (3.2.16) 

The model parameters for interface springs are taken as the arithmetic average. Justification on 

how to determine the interface spring properties requires additional investigation. The final 

delamination pattern is shown in Fig. 3.2.11. This result is consistent with the experimental 

observation from [92]. 
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Figure 3.2.11. The Final Delamination Pattern of the CFRP Specimen 

Example 5: delamination of L shaped composite panel with a fillet 

The delamination analysis of the L shaped composites panel with fillet has been intensively 

studied in the literature, such as [93], [98]. In this example, we investigate the response of a 

simplified three-ply composite panel under monotonic constant displacement loading condition. 

The configuration of the composite panel is shown in Fig. 3.2.12. The corresponding material 

constants are given in Table 3.2.3. 

 

Figure 3.2.12. The Configuration of the L Shaped Composite Panel with Fillet 

Table 3.2.3. The Orthotropic Material Constants for Example 5 

Material constants 11E   22 33E E=  12 13G G=  23G  12 13v v=  23v  

Value (GPa) 139.3 9.72 5.59 3.45 0.29 0.40 

 
Plane strain condition is assumed in this simulation. The 90o ply is isotropic and the material 

stiffness matrix is 

90

11.7 4.8 0
4.8 11.7 0  GPa
0 0 3.45

 
=  
  

C         (3.2.17) 

while the 0o ply is orthotropic and the material stiffness matrix is 
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0

11.7 4.8 0
4.8 142.1 0  GPa
0 0 5.59

 
=  
  

C         (3.2.18) 

In this case, the underlying lattice structure was rotated by 90 o to account for the material 

longitude direction along the y axis. For the critical elongations, the same values have been used 

in this example as the previous one, i.e., Eq. (3.2.16). 

  

Figure 3.2.13. The Delamination Initiation Location and the Final Delamination Pattern 

The initial and final delamination patterns are shown in Fig. 3.2.13. The reaction-displacement 

curve is shown in Fig. 3.2.14. Due to the applied constraint, the delamination initiates between 

the 90 o/0 o plies at the horizontal direction (point A in Fig. 3.2.14). With increase of the loading, 

this horizontal delamination is frozen while the delamination between the 0 o/90 o plies at the fillet 

area develops (point B in Fig. 3.2.14). Further increase of the displacement results in a fast 

delamination propagation and hence a sharp drop down in the reaction force. A snap through 

response occurs. Stable state is regained (point C in Fig. 3.2.14) and the delamination starts to 

propagate vertically (point D in Fig. 3.2.14). This reaction-displacement curve is consistent with 

experimental observations [93]. 
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Figure 3.2.14. The Reaction-Displacement Curve with Details on the Delamination 

3.2.6 Discussion and conclusion 

A non-local lattice particle framework for modeling 2D general anisotropic elastic material was 

proposed in this section. The proposed lattice particle framework represents the material 

anisotropy by rotating the underlying lattice structure rather than transforming the material 

stiffness matrix which is generally used in some other numerical methods, such as FEM. The 

equivalency between this lattice rotation scheme and the traditional matrix transformation scheme 

was shown analytically and numerically. Several benchmark problems have been employed to 

verify and test the performance of the proposed framework. From the simulation results, both 

elastic and fracture response of composite materials can be accurately captured using the 

proposed framework. Several conclusions can be drawn based on the proposed study: 

1). The proposed non-local lattice model is able to model arbitrary 2D anisotropic solids with a 

unique mapping relationship between the model parameters and the material constants; 

2). The proposed lattice rotation scheme can handle the fracture path in anisotropic materials 

naturally without transforming the material stiffness matrix; 
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3). Fracture path simulation using the topological lattice structure agrees with many existing 

numerical and experimental observations in the current investigation for 2D orthotropic composite 

laminates. 

Future work is required to further quantitatively validate the model predictions with experimental 

testing data for composite materials. Additional work is also required to extend the proposed 

framework to general 3D cases. The extension to anisotropic plasticity, such as the crystal 

plasticity, needs further study. 
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3.3 2D Polycrystalline Materials 

In this section, the anisotropic lattice particle model is applied to investigate the microstructural 

effects, such as the crystallographic orientation distribution and grain boundary properties, on the 

mechanical performance of 2D polycrystalline materials. The classical approach of treating 

material anisotropy in other numerical methods, such as finite element method, is by transforming 

the material stiffness matrix for each crystallite. In the lattice particle model, the polycrystalline 

microstructures are constructed by rotating the underlying topological lattice structure consistently 

with the material crystallographic orientation while keeping the material stiffness matrix intact. By 

rotating the underlying lattice structure, the grain boundaries between different grains are 

naturally generated at locations where two crystallites meet. Thus, the grain boundary effect on 

the performance of the crystalline aggregates can be naturally incorporated. Parametric studies 

on the effects of crystallographic orientation distribution on both elastic and fracture behavior of 

polycrystalline materials are performed. The simulation results are compared with both analytical 

solutions and experimental observations in the open literature. Conclusions and discussions are 

drawn based on the current study. 

3.3.1. Introduction 

Polycrystalline material is an aggregate of microstructural crystallites of various size, shape and 

crystallographic orientation. Its macroscopic properties are affected by the underlying 

microstructures. At the crystallite level, the material properties are anisotropic and orientation 

dependent. The macroscopic behavior of polycrystalline materials can be regarded as statistically 

isotropic when the materials have random crystallographic and morphologic texture. The 

influence of individual crystallite on the overall macroscopic behavior of the aggregate is 

negligible. Under these assumptions, various theoretical prediction approaches have been 

proposed for the estimation of the effective elastic properties of materials of this kind, such as the 
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representative work of Voigt [99], Reuss [100], Hill [101], Kröner [102] and Hashin and Shtrikman 

[103], [104]. 

In practice, an ideally randomly oriented crystalline aggregate is very difficult to obtain. Initial 

deviation from this randomness may occur during the solidification process due to differences in 

crystal growth along different directions. Subsequent metal working processes, such as rolling, 

extrusion and annealing, provide other mechanisms for the formation of preferred orientation 

textures. This non-random distribution of crystallographic orientation influences the macroscopic 

properties of crystalline aggregates. The applicability of the aforementioned analyses for this type 

of polycrystal texture becomes very limited. Many theoretical works on extension of the Voigt-

Reuss type analyses to materials with certain degree of texture exist in the literature, such as 

[105], [106], [107], [108], [109], [110]. It should be noted that perfect grain boundaries are 

assumed in all the theoretical predictions for effective elastic constants of a polycrystalline 

material with or without texture. 

Grain boundary also plays a significant role on the fracture behavior of the polycrystalline 

materials [111], [112]. Different grain boundary properties may result in different fracture mode, 

e.g., intergranular or transgranular fracture. Numerous models have been developed to simulate 

the fracture behavior of polycrystalline materials, such as FEM with cohesive zone [113], [114], 

XFEM [115], [116], Geometric models [117], [118], Monte Carlo model [119], [120] and Molecular 

Dynamics [121], [122]. A detailed review on computational modeling of fracture in polycrystalline 

materials can be found in [123]. 

Lattice models have been widely used in the field of computational solid mechanics, such as [89], 

[38], [52]. It has advantages over the other numerical methods in fracture modeling, such as 

easiness of cracking presentation and no requirement of external rule to guide the crack growth. 

Grah et al. [45] has used a general αβ-model [10] to investigate the fracture behavior of 2D brittle 

polycrystalline materials. In their formulation, both the α-spring and β-spring, i.e., axial and 

angular springs, respectively, have been utilized. Various grain orientations were represented by 

the transformation of the material stiffness matrix. Although the spring stiffness can be easily 
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assigned using the transformed materials stiffness, the shear springs suffers from the negative 

value for most of the grain orientations. In addition, the intrinsic fracture anisotropy of the lattice 

structure still persist [52]. Another effort to apply the lattice model to polycrystalline materials was 

done by Rindaldi et al. [80]. In this model, the effective elastic properties, i.e., Young’s modulus 

and Poisson’s ratio, were estimated using a novel mapping procedure between the FEM and the 

lattice spring formulations. According to their results, the estimated average Young’s modulus is 

consistent with the experimental results. However, the Poisson’s ratio could not be matched and 

its value is fixed around 0.33 for all simulation cases. 

Recently, Chen et al. [124] have proposed a lattice particle model for modeling elastic and 

fracture behavior of two-dimensional general anisotropic materials. Unlike transforming the 

materials stiffness matrix in other numerical approaches, the material anisotropy is represented 

by rotating the underlying lattice structures consistently with the local material’s frame in lattice 

particle model. By doing this, the occurrence of negative spring stiffness is avoided and the 

intrinsic lattice fracture anisotropy is incorporated into the material anisotropy. The simulated 

results for both elastic and fracture problems match well with the analytical solutions and 

experimental observations. In this paper, we apply the two-dimensional anisotropic lattice particle 

formulation proposed by Chen et al. [124] to model polycrystalline materials. The grain boundary 

and the crystallographic orientation distribution effects on the elastic and fracture behaviors are 

investigated in detail. The content of this paper is organized as follows. First, a brief review on the 

background theory and formulation of the lattice particle model is presented. Then, details on how 

to apply lattice particle model to model polycrystalline materials are discussed. Special focus is 

on how the crystal system is generated using the crystallographic orientation information and how 

the grain boundary is treated in lattice particle model. Following this, the model is applied to 

investigate various microstructural effects on the overall elastic properties and the fracture 

behavior of a polycrystalline material, including the grain boundary effect and the crystallographic 

orientation effect. Discussions and conclusions based on this study are drawn. 
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3.3.2. Theory and Formulation: a review 

In this part, we briefly review the basic ideas on the background theory and formulation of the 

lattice particle model. A detailed derivation can be found in [124]. 

For a general two-dimensional anisotropic material, six independent components of the material 

stiffness matrix are required in order to fully characterize its elastic deformation. Using Voigt 

notation, the material stiffness matrix for the in-plane deformation has following form: 

11 12 16

22 26

66

ij

C C C
C C C

sym C

 
  =      

         (3.3.1) 

In order to be consistent with the six degrees of freedom in this continuum model, there are also 

six independent model parameters in the proposed lattice particle model. The potential energy in 

lattice particle model was proposed as 

( )
6 6 62

1 1 1

1 1
2 2cell ij ij ij ij ij

j j j
U k l T l lδ δ δ

= = =

  
= +   

  
∑ ∑ ∑       (3.3.2) 

In which ijk  are the spring stiffness parameters and ijT  are the volume-related parameters for the 

six springs associated with a unit cell i. A typical unit cell with its six normal springs is shown in 

Fig. 3.3.1. And the corresponding unit normal vectors are shown in Table 3.3.1. Due to symmetry, 

the springs in opposite directions should have the same local and nonlocal model parameters. 

Thus, for general two-dimensional anisotropic materials, the total number of model parameters is 

six in the proposed lattice particle model. 
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Figure 3.3.1. A Typical Unit Cell and Its Six Normal Vectors 

Table 3.3.1. The Normal Vectors for the Six Nearest Neighbors of a Unit Cell  

1n  2n  3n  4n  5n  6n  

( )1,0  ( )1/ 2, 3 / 2  ( )1/ 2, 3 / 2−  ( )1,0−  ( )1/ 2, 3 / 2− −  ( )1/ 2, 3 / 2−  

 
Given the unit normal vectors of the six normal springs, the potential function of a unit cell can be 

rewritten in terms of the components of the strain matrix as 

6 6 6

1 1 1

1 1
2 2

b b b b b b b b
cell b i ij j k kl l b i ij j k kl l

b b b
U k n n n n T n n n nε ε ε ε

= = =

  
= +   

  
∑ ∑ ∑     (3.3.3) 

Due to the conservation of the potential energy, the material stiffness matrix in terms of the model 

parameters can be obtained as 

21
ε ε
∂

=
∂ ∂

cell
ijkl

ij kl

UC
V

         (3.3.4) 

where V  is the volume of a unit cell, 22 3V hR= . For dimensional consistency, the unit 

thickness h  is used. The unit thickness h  is omitted in following derivation unless ambiguity 

arises. 

Comparing the derived materials stiffness matrix with the Hooke’s law, the relationship between 

the model parameters and the components of the material stiffness matrix can be uniquely 

obtained as 
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1 11

2 22

3 66

1 26

2 16

3 12

4 33 3 0 0 2 3
3

8 30 0 4 4 0
3

8 30 0 4 4 0
3

4 3 2 3 2 30 0 0
9 3 3

2 3 2 3 20 2 0
9 3 3

2 3 2 3 20 2 0
9 3 3

 
− − 

 
 

−            −        =       −                 − −
 
 
 − −
 

k C
k C
k C
T C
T C
T C

      (3.3.5) 

The above mapping relationship is unique. When the material is isotropic, Eq. (3.3.5) reduces to 

the special case for isotropic homogeneous materials has been studied in [38]. 

3.3.3. Generation of the crystal system 

An accurate knowledge of the morphological structure of a polycrystalline material is crucial for 

subsequent modeling and prediction of its physical properties and performance. Many 

experimental and computational material microstructure characterization techniques are available 

in the literature, such as x-ray tomography technique [125], lattice-point method [126] , and CAD-

based methodology [127]. For illustrative purpose, the polycrystal systems that will be 

investigated in this study are generated by Voronoi Tessellation technique using MATLAB. The 

voronoi seeds are generated using a Hard-Particle Monte Carlo method [128]. There are some 

advantages of using this method to generate the Voronoi seeds, such as controlling the size 

distribution of the crystallites. Figure 2 shows a 1000 Voronoi seeds generated using the Hard-

Particle Monte Carlo method (Fig. 3.3.2(a)) and the associated Voronoi tessellation (Fig. 3.3.2(b)) 

and cell size distribution (Fig. 3.3.2(c)). 
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(a) (b) (c) 
Figure 3.3.2. The Voronoi Seeds, Tessellation and the Size Distribution 

3.3.4. Lattice Rotation and Grain Boundary Generation 

Unlike the classical way of treating the crystallographic orientation for different grains by 

transforming the material stiffness matrix under a reference frame, the proposed model rotates 

the topological lattice structure consistently with the material crystallographic orientation while 

keeping the material stiffness matrix intact. This idea is illustrated in Fig. 3.3.3. For a given 

crystallographic orientation of a specific crystallite, the lattice structure is rotated such that the 

reference frame for the lattice particle model is coincident with the material crystallographic 

orientation. The rotation of the lattice structure follows the vector transformation rule as: 

′ =X QX           (3.3.6) 

where ( ) ( )
( ) ( )

cos sin
sin cos

a a
a a

 =  − 
Q  is the transformation matrix, and α is positive when the 

transformation from X  to ′X  is counter-clockwise. 

By rotating the lattice structure, the material anisotropy is naturally represented in the proposed 

model. The equivalency between the material stiffness matrix transformation and the lattice 

rotation has been shown both analytically and numerically in [124]. 
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Figure 3.3.3. The Lattice Rotation Scheme Proposed in Lattice Particle Model 

For each crystallite, the procedure of rotating the underlying lattice is performed accordingly. And 

the grain boundary is automatically generated at locations where two crystals meet. A replacing 

process is used to replace any overlapping-particle clusters whose degree of overlapping is 

greater than a pre-specified value by a new particle positioned at the center of the cluster. This 

process is repeated until all of the overlappings are less than the specified value. And the 

distance between any particles after this process are defined as the un-deformed distance. This 

is very similar to the deletion [129] and the energy minimization [130] processes in the Molecular 

Dynamics (MD). Other grain boundary generation processes, such as the simulated solidification 

process [131] and the devised MD simulation [132] can be applied. The typical grain boundaries 

generated using the replacing procedures in lattice particle model are shown in Fig. 3.3.4. 

Crystallites I, II and III have different crystallographic orientations, with values of 15, -15, 0 

degrees, respectively. The boundary between crystallite I and II is a twin boundary. The red 

particles on the grain boundaries are the boundary particles. Fig. 3.3.4 shows the different grain 

boundary structure with different threshold overlapping distance (i.e., R, 1.2R, and 1.5R, 

respectively). R is the radius of the particles. It appears that the threshold value of 1.2R gives a 

satisfactory representation of grain boundaries. In all simulations in the following sections, the 

critical value of 1.2 R is used to generate the grain boundary between different grains. 
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R 1.2R 1.5R 

Figure 3.3.4. The Grain Boundaries Generated Using Different Overlapping Degree 

3.3.5. Procedures for calculating the effective elastic constants 

Procedures on estimating the effective elastic constants of polycrystalline materials in lattice 

particle model are developed based on the energy of the system. First, a two-step procedure for 

statistically isotropic materials is derived. After that, an analogical four-step procedure for 

materials don’t possess any material symmetry is formulated. All derivations are based on a 

square Representative Volume Element (RVE). 

Assuming the material to be evaluated is statistically isotropic, an energy-based two-step 

estimation scheme can be applied to approximate the effective elastic constants in lattice particle 

model. The two-step estimation procedure is shown below. 

1). Subjecting the RVE to a uniform bi-axial extension. The corresponding strain state is

0 , 0xx yy xyε ε ε ε= = = .The total energy (1)U of the RVE is the sum of energies of all unit cells, or 

particles; 

2). Subjecting the RVE to uniform uniaxial extension along one direction and to uniform uniaxial 

compression along the perpendicular direction. The corresponding strain state is 

11 22 0 , 0xyε ε ε ε− = = = . The total energy is expressed as (2)U . 

3). In terms of the bulk modulus K  and shear modulus G , the energy of a two-dimensional linear 

elastic isotropic continuum of volume V  is  

1
2 2
ε ε ε ε ε ε  = + −  

  
ii jj ij ij ii jj

KU V G        (3.3.7) 
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Thus, the two-dimensional bulk and shear moduli can be calculated through these steps as 

(1)
2
0

(2)
2
0

1
2

1
2

U
K

V
U

G
V

ε

ε

=

=
          (3.3.8) 

For linear elastic isotropic materials, the two-dimensional bulk and shear moduli can be 

expressed in terms of the Young’s modulus and Poisson’s ratio as [133] 

( )2 1
EG

v
=

+
          (3.3.9) 

For plane stress case, 

( )2 1
EK

v
=

−
          (3.3.10) 

For plane strain case, 

( )( )2 1 1 2
EK

v v
=

+ −
         (3.3.11) 

For generally anisotropic materials, the procedure to estimate the effective elastic constants is 

analogous to that of statistically isotropic materials. The strain energy density of a two-

dimensional general anisotropic material represented in terms of the elastic constants and 

components of strain tensor is 

( )2 2 2
11 22 12 16 26 662 4 4 4

2 xx yy xx yy xx xy yy xy xy
VU C C C C C Cε ε ε ε ε ε ε ε ε= + + + + +    (3.3.12) 

in which 16C  and 26C  are the Constants of Mutual Influence [134]. 

The four-step estimation procedure is carried out as follows: 

1). Subjecting the RVE to a uniform uniaxial tension in x direction while the deformation in y 

direction is fixed. The corresponding strain state is 0 , 0, 0xx yy xyε ε ε ε= = = . The strain energy of 

the system is ( )1U ; 
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2). Subjecting the RVE to a uniform uniaxial tension in y direction while the deformation in x 

direction is fixed. The corresponding strain state is 00, , 0xx yy xyε ε ε ε= = = . The strain energy of 

the system is ( )2U ; 

3). Subjecting the RVE to a uniform bi-axial extension. The corresponding strain state is 

0 0, , 0xx yy xyε ε ε ε ε= = = . The strain energy of the system is ( )3U ; 

4). Subjecting the RVE to a pure shear. The corresponding strain state is 00,xx yy xyε ε ε ε= = = . 

The strain energy of the system is ( )4U ; 

5). Using the strain energy expression given in Eq. (3.3.12), the elastic constants can be 

calculated using the data from the four-step test. The calculated elastic constants can be 

expressed as 

(1)
11 2

0

(2)
22 2

0

(3) (2) (1)
12 2

0

(4)
66 2

0

1
2

1
2

1
8

U
C

V
U

C
V

U U U
C

V
U

C
V

ε

ε

ε

ε

=

=

− −
=

=

         (3.3.13) 

The above discussion completes the formulation of the lattice particle model, the microstructure 

and grain boundary generation, and the effective elastic constants estimation procedure in the 

proposed method. In following section, the proposed lattice particle model will be applied to 

numerically investigate the microstructural effect on both the elastic and fracture behavior of 

polycrystalline materials. 

3.3.6. Numerical Investigation 

Several numerical results from the simulation using the proposed framework are presented in this 

section. First, the effects of grain boundary properties and the crystallographic orientation 
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distribution on the effective elastic constants of a polycrystalline material are studied. Special 

focus is on the effective elastic constants of a polycrystalline material with texture. The degree of 

texture is defined as the number of crystallites having certain specific orientation by the total 

number of crystallites of a specimen. Following this, the effects on the brittle fracture behavior of 

a polycrystalline material are investigated. Parametric studies on the grain boundary properties 

and crystallographic orientation distribution on the fracture mode and material strength are 

performed. 

For simplicity, the specimens for both elasticity and fracture simulations in this section have the 

same dimension as shown in Fig. 3.3.5. The only difference is that there is a pre-existing single 

edge notch in the fracture simulation case, which is not shown in Fig. 3.3.5. The total number of 

grains is 1000. The material elastic constants of single aluminum crystallite from [135] are utilized 

in all the simulations, which can be expressed in the matrix format as 

108.24 62.16 0
62.16 108.24 0 GPa

0 0 28.41

 
=  
  

C        (3.3.14) 

According to [135], the Young’s modulus calculated by the Hashin-Shtrikman bounds [104] for 

macroscopically isotropic aggregates produced by the above aluminum crystallites is 70.5HSE =  

GPa and the Poisson’s ratio is 0.348HSv = . By Eqs. (3.3.9) and (3.3.11), the corresponding bulk 

and shear moduli can be calculated as 86.0HSK =  GPa and 26.1HSG =  GPa. 
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(a). Dimensions (b). The orientation distribution 
Figure 3.3.5. The Configuration of the Polycrystalline Specimen 

Elasticity 

For the numerical method of simulations in this section, the implicit Atomic-scale Finite Element 

Method (AFEM) developed in [124], [94] is utilized. Details about the AFEM and application of 

AFEM to lattice particle model can be found in [136] and [94], respectively. 

Grain boundary effect 

As discussed in previous part, the grain boundaries can be built up in a similar way as in MD 

simulation. The determination of the grain boundary properties, i.e., spring stiffness and volume-

related parameter of particles on the grain boundaries, is an open problem. Similar techniques in 

the grain boundary theory and engineering [137] may be applied in lattice particle model. For 

simplification, the spring stiffness and volume-related parameter are assumed to be the same for 

all boundary particles. Values of arithmetic average, minimum and maximum of the three types of 

springs are used and the resultant effective elastic constants are compared. 

In this simulation, the crystallographic orientation distribution is random and thus the macroscopic 

behavior is isotropic. Therefore, the two-step evaluation procedure (i.e., for isotropic materials) is 

used to calculate the effective bulk modulus and shear modulus. The simulation results are 
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shown in Fig. 3.3.6 for the normalized elastic constants (i.e., simulation results are normalized by 

the Hashin-Shtrikman solution). 

  
 

Figure 3.3.6. The Effect of Grain Boundary Properties and the Convergence 

As can be seen in Fig. 3.3.6, the bulk and shear moduli obtained from the lattice particle 

simulation match well with the Hashin-Shtrikman predictions. There exists certain difference in 

the converged values for different grain boundary properties, i.e., different grain boundary 

properties will results in different effective elastic constants in the estimation. This difference is 

grain boundary property dependent. The larger difference between the grain boundary properties, 

the greater the difference of effective elastic constants. In the given results in Fig. 3.3.6, the 

relationship between the grain boundary properties is: maximum arithmetic minimumGB GB GB> > . The 

resultant relationship between the bulk modulus is maximum arithmetic minimumK K K< < , and for the 

shear modulus is maximum arithmetic minimumG G K> > . 

Grain orientation distribution effect 

To investigate the grain orientation distribution effect on the effective elastic constants, the fully 

random distributed crystallographic orientation used in section (a) is modified such that certain 

degrees of orientation preference, or texture, exist in the material. This is achieved by assigning a 

specific orientation value to certain amount of random grains which others keep intact. In this 

case, the specific value is set as Pi/4. Since the crystallographic orientation distribution is not 

completely random, it is assumed that there is no material symmetry in the polycrystalline 
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materials. Thus, the general four-step procedure is used to estimate the effective elastic 

constants for each different configuration. The grain boundary properties are assumed to be the 

arithmetic average. 

 
Figure 3.3.7. The Effect of Grain Orientation Distribution 

The results for various degrees of texture are shown in Fig. 3.3.7. The horizontal axis is the 

texture degree. 0% indicates no texture and 100% indicates all grains have the same orientation. 

As can be seen from the results, the texture can change the elastic constants significantly and 

consistent with analytical prediction. The difference in the predicted value of C11 and C22 is 

result from the grain boundary effect. 

Fracture 

In lattice particle model [124], the fracture behavior of materials is governed by a spring-based 

critical stretch failure criterion. The crack initiation and propagation are the natural outcome of the 

spring breakage. No additional external criteria are required. As has been proposed in [124], 

three calibrated failure parameters are needed in order to simulated the facture behavior of a 

general two-dimensional anisotropic materials. 

critical
j js Ra= ⋅          (3.3.15) 
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where critical
js and ja  is the critical stretch and failure parameter for the jth spring, respectively. 

R  is the particle radius. 

For the given materials in this section, i.e., Eq. (3.3.14), according to Eq. (3.3.5), spring 2 and 

spring 3 are identical since they have the same stiffness parameter and volume-related 

parameter. Both of them are larger than those of spring 1. Thus, there are only two failure 

parameters need to be calibrated before carrying out the simulation process. For simplification, 

the failure parameters are assumed to be 

1

2 3

0.0005
0.0006

a
a a

=
= =

         (3.3.16) 

For the fracture simulation in this section, a pre-existing crack on edge D is inserted into the 

specimen shown in Fig. 3.3.5. The initial crack length is 1/10 of the edge length. A uniaxial tensile 

testing is simulated by applying the displacement boundary condition on edge A and C. The 

specimen is loaded until the crack propagates through the whole specimen. The particle 

dynamics solution scheme [52] is utilized in this section. The stiffness and volume-related 

parameters for springs on the grain boundary are assumed to take the arithmetic average values. 

Grain boundary effect 

Parametric study on the effect of material strength of the grain boundary springs on the fracture 

mode is performed. The simulation results of the final crack path are shown in Fig. 3.3.8, and the 

reaction force profiles on the top edge C are shown in Fig. 3.3.9. 

   
Weak GB ( 0.0001GBa = ) 

 
Moderate GB ( 0.0005GBa = ) 

 
Strong GB ( 0.001GBa = ) 
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Figure 3.3.8. The Grain Boundary Effect on the Fracture Behavior: Crack Path 

 

 
Figure 3.3.9. The Grain Boundary Effect on the Fracture Behavior: Reaction Profile 

As can be seen in Fig. 3.3.8, the change of the fracture mode in lattice particle model can be 

governed by the strength of the grain boundaries. With weak grain boundary strength, e.g., 

0.0001GBa = , the examined polycrystalline material exhibits intergranular fracture. When the 

strength of the grain boundary increases, e.g., 0.001GBa = , the fracture mode changes to 

transgranular fracture from the intergranular fracture. For the case of moderate strength, i.e., 

0.0005GBa = , since we assume isotropic properties for the grain boundary, the fracture mode is 

transgranular fracture. But the material strength is increased comparing to the case of 

0.0001GBa = , but not as great as the case of 0.001GBa = , as can be seen from Fig. 3.3.9. There 

is also an interesting arrest-propagate cracking phenomenon in the transgranular fracturing, as 

shown in Fig. 3.3.9. The crack initiates when the applied force reaches certain level, due to local 

high strength in front of the crack tip, the crack is arrested after some propagation distance. The 

crack starts to propagate again after the global applied force reaches another critical value. 

Grain orientation distribution effect 

For textured polycrystalline materials, since the underlying microstructural information has been 

changed, the fracture behavior should also be different from the non-textured material, assuming 

all other factors are the same. In this section, the grain orientation distribution effect of the facture 
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response of a textured polycrystalline material is investigated. The simulation results for the four 

cases of texture degrees, i.e., 30%, 50%, 80% and 100%, are shown in Fig. 3.3.10 and Fig. 

3.3.11. 

As can be seen from Fig. 3.3.10 and Fig. 3.3.11, the general crack path is similar which is 

governed by the pure mode I loading condition, but both the local crack path and the peak load 

are changed. With the increase of the degrees of texture, the crack is more likely to branch, for 

both weak and strong grain boundaries. The material strength for different degrees of texture is 

also different; with the 100% textured material has the highest strength in the texture direction, as 

shown in Fig. 3.3.11. 

 

    
Weak GB Strong GB Weak GB Strong GB 

30% texture 50% texture 

    
Weak GB Strong GB Weak GB Strong GB 

80% texture 100% texture 
Figure 3.3.10. The Grain Orientation Distribution Effect on the Crack Path 
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Displacement-load curve Peak load comparison 

Figure 3.3.11. The Grain Orientation Distribution Effect on the Reaction Profile 

3.3.7. Discussion and Conclusion 

In this section, the lattice particle model was applied to model the elastic and fracture behavior of 

polycrystalline materials. Various microstructural effects, i.e., grain boundary properties and 

crystallographic orientation distribution, on the performance of a polycrystalline material have 

been investigated. Without loss of generality, the material properties of single aluminum crystallite 

have been used throughout all the simulations in this paper. Following general conclusions can 

be drawn based on the simulation results: 

1). The grain boundary properties can affect the macroscopic elastic materials properties. For 

statistically isotropic material, the stronger the grain boundaries are, the smaller the bulk modulus 

and the larger the shear modulus; 

2). The textured materials have different effective properties than the non-textured ones. With the 

increase of the degrees of texture, the C11 and C22 components are increasing, while the C12 

and C66 components are both decreasing. The difference between the textured and non-textured 

materials is material property dependent; 

3). With other conditions kept the same, the strength of grain boundary will affect the final fracture 

mode of polycrystalline materials. Weak grain boundaries result in intergranular fracture and low 
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material strength, while strong grain boundaries produce transgranular fracture and high material 

strength; 

4). For textured materials, the materials strength in the texture direction is higher than the 

strength in other directions. And among various degrees of texture, the full textured material has 

the largest strength. 

Future work is to extend this concept into 3D cases for materials possessing various material 

symmetries. Extension of this framework to model crystal plasticity needs additional research 

work. Comparison with the experimental observation to further validate the proposed model 

requires additional study. 
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3.4 3D Cross-ply Laminated Composites 

Study of the deformation of cross-ply laminated composite plate using the simple cubic lattice 

structure is presented in this section. Identical to the case of modeling anisotropic materials using 

2D triangular packing, the proposed model in this section considers both the material and 

geometry orientation by rotating the underlying topological lattice structure consistent with the 

material orientation, rather than transforming the materials tangent stiffness matrix as in other 

numerical methods. The advantage of the proposed model lies in the easiness of modeling 

fracture behavior as the naturally outcome of the breakage of connecting springs. For current 

study, the focus is on the model development and deformation modeling verification. Future work 

is to apply the proposed model to fracture and delamination simulation. First, the model 

formulation for orthotropic materials is presented. Following this, the lattice rotation scheme is 

discussed. The numerical results are compared with literature findings. Discussion and 

conclusion are drawn based on current study. 

3.4.1 Introduction 

 Due to the high strength and stiffness to weight ratios and many other superior properties, 

laminated composite structure has been extensively used in various engineering applications, 

such as aerospace, automotive and shipbuilding industries. Extensive research works have been 

doing on understanding the behaviors of these structures both numerically and experimentally. 

Detailed reviews on computational models for laminated composite plates and shells can be 

found in [79], [138], [139], [140], [141], [142], [143], [144], [78]. 

The behaviors of composite laminates can be characterized by complex 3D states of stress. Full 

3D elasticity analyses [66], [67], [68], [69], [70], [71] reveal that the interlaminar continuity of 

transverse normal and shear stresses as well as the layerwise continuous displacement field 

through the thickness of the laminated structures are the essential requirements for the analysis 

of laminated structures. The inherent anisotropy and mismatch of material properties, particularly 

the Poisson’s ratio, between plies result in high interlaminar stresses [72], [73], [74], [75], [76], 
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which is critical to the delamination failure mechanism [77]. These requirements can only be 

partially fulfilled by other reduced formulations [78]. A drawback of the 3D models is their 

computational expensiveness. However, these models are essential for an accurate evaluation of 

the interlaminar stresses at locations such as cutouts, delamination fronts and regions of intense 

loading. Damage initiation and propagation are likely to occur at such locations, which might lead 

to the failure of laminate [79]. Moreover, owing to the advent of high-speed computers and the 

use of parallel computing and GPU computing, this drawback can be underestimated and will not 

be of concern in the near future. 

Comparing to continuum based computational tools, such as FEM [145] and some other 

meshless methods [146], the discrete formulation based approaches, such as Lattice Spring 

Model(LSM) [16], [89], [2], Discrete Element Method (DEM) [147], [148], [149] and Peridynamics 

[150], [151], [152], have certain advantage in failure analysis of composite structures. These 

models don’t require external rules to guide crack initiation, crack propagation and some other 

more advanced cracking behaviors. A simply bond based failure criterion is sufficient. The crack 

initiation and propagation can be naturally captured via the breakage of the connecting bonds. 

Nevertheless, these models have some other limitations. The DEM formulation requires both 

normal and tangential interactions between elements and the computational procedures are quite 

involved. Until now, the use of DEM to composite materials is almost restricted to 2D domains. 

While the available Peridynamic formulations for composites are bond based, and the well-known 

issue of fixed Poisson’s ratio still persist. This will have significant effect on failure analysis, such 

as delamination modeling as mentioned previously. 

Quite recently, Chen et al. [38], [94], [52], [153] has successfully proposed a nonlocal lattice 

particle model for studying the deformation and fracture behaviors of homogeneous isotropic 

materials. Later, this approach was extended to anisotropic materials, such as composites [124] 

and polycrystalline materials [154]. In the lattice particle model, domain of interest is decomposed 

into regularly packed units or particles whose interaction not only depends on the connecting 

spring but also has contribution from all its neighbors. Unlike the traditional way of representing 
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the material orientation by transformation of the material tangent stiffness matrix, lattice particle 

model rotates the topological lattice structure according to the material’s orientation. The 

equivalency of these two schemes has been shown in [124]. 

In this study, the methodology is extended to model the deformation behaviors of laminated 

composite structures. The content of this paper is organized as follows: the formulation and 

derivation of the Lattice Particle Model for orthotropic materials is discussed in Section 3.4.2. 

After that, the lattice rotation scheme is presented. The geometric modeling of laminated 

composite structure in the proposed model is also discussed in Section 3.4.3. Section 3.4.4 is 

devoted to the numerical results of various laminated composite plates. Conclusions based on 

current study are given in Section 3.4.5. 

3.4.2 Formulation for orthotropic material 

In lattice particle model, the domain of interest is decomposed into regularly packed particles. 

Each particle interacts with its neighbors via linear springs. These interactions are non-local in the 

sense that they depend not only on the spring connecting these two particles, but also have direct 

contributions from all their neighbors.  In this study, the simple cubic packing is considered, and 

both the first and the second nearest neighboring particles are considered as the neighbors. A 

unit cell is defined as the repeating unit identified from the domain decomposition. Different 

packing will results in different unit cells. A schematic showing the simple cubic packing and the 

two unit cells is shown in Fig. 3.4.1. 

 
  

Simple cubic packing Unit cell 1: Cube Unite cell 2: 
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Rhombic dodecahedron 

Figure 3.4.1. The Simple Cubic Lattice Structure and the Unit Cells 

The volumes of these two unit cells in terms of the particle radius R is 3
1 8V R=  and 3

2 16V R= . 

There are six nearest neighbors associated with unit cell 1 and 12 second nearest neighbors with 

unit cell 2. The 18 normal unit vectors for each neighbor are given in Table 3.4.1. 

Table 3.4.1. The Unit Normal Vectors for Simple Cubic Structure 
Neighbors 1 ( 1 6N =  ) 

1 ( )1,0,0  3 ( )0,1,0  5 ( )0,0,1  

2 ( )1,0,0−  4 ( )0, 1,0−  6 ( )0,0, 1−  

Neighbors 2 ( 2 12N = ) 

7 ( )1/ 2 1,1,0  11 ( )1/ 2 1,0,1  15 ( )1/ 2 0,1,1  

8 ( )1/ 2 1, 1,0− −  12 ( )1/ 2 1,0, 1− −  16 ( )1/ 2 0, 1, 1− −  

9 ( )1/ 2 1, 1,0−  13 ( )1/ 2 1,0, 1−  17 ( )1/ 2 0,1, 1−  

10 ( )1/ 2 1,1,0−  14 ( )1/ 2 1,0,1−  18 ( )1/ 2 0, 1,1−  

 
The key recipe in the formulation of lattice particle model is the potential energy for each particle. 

This potential energy eventually determines the interactions between particles, i.e., local or non-

local. In this study, the potential energy has the following form 

( )
2 2

_ _ _
1 1

particle cell I s I v I
I I

U U U U
= =

= = +∑ ∑       (3.4.1) 

where _s IU  and _v IU  are the local and nonlocal energies. 

( )2
_

1

_
1 1

1
2

1
2

I

iI

N

s I J IJ
J

NN

v I J IJ IJ
J J

U k l

U T l l

δ

δ δ

=

= =

=

  
=   

  

∑

∑ ∑
       (3.4.2) 

where Jk and JT  are the local and nonlocal spring parameters, IJlδ is the half elongation, I and 

J is the index of the particles, IN  is the number of neighbors for each unit cell. 
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Given the local and nonlocal energies, the potential energy for each unit cell can be rewritten in 

terms of the components of the strain tensor as 

( ) ( )2 2

0 0
_ _ _

1 1 12 2

I I I
I IN N N

b b b b b b b b
cell I s I v I b i ij j k kl l b i ij j k kl l

b b b

l l
U U U k n n n n T n n n nε ε ε ε

= = =

  
= + = +   

  
∑ ∑ ∑  (3.4.3) 

with , , , 1, 2,3i j k l = , 0
Il is half of the original length between reference particle with its Ith 

nearest neighbors. b
in is the i th component of the spring b given in Table 3.4.1. It should be 

noted that the springs in opposite directions should have the same parameters.  

Due to the conservative of the potential energy, the material tangent stiffness matrix can be 

obtained by differentiating the total specific energy with respect to the strain tensor twice as 

2 2
_1 _ 22

1 1 2

1 1cell cell
ijkl

ij kl ij kl

U UVC
V V Vε ε ε ε

 ∂ ∂
= +   ∂ ∂ ∂ ∂ 

       (3.4.4) 

Plugging in the unit normal vectors given in Table 1, the following correspondence can be 

obtained by comparing the coefficients of the material tangent stiffness matrices as 

( ) ( )

( ) ( )

( ) ( )

11 1 7 11 1 7 11 22 3 7 15 3 7 15

33 5 11 15 5 11 15 13 11 1 5 7 11 15

12 7 1 3 7 11 15 23 15 3 5 7 11 15

44 15 55

1 12 8 8 ; 2 8 8
4 4
1 12 8 8 ; 4 8 4

4 4
1 18 4 4 ; 4 4 8

4 4
1 1;

4 4

C k k k T T T C k k k T T T
R R

C k k k T T T C k T T T T T
R R

C k T T T T T C k T T T T T
R R

C k C k
R R

= + + + + + = + + + + +

= + + + + + = + + + + +

= + + + + + = + + + + +

= = 11 66 7
1;

4
C k

R
=

 (3.4.5) 

in which the springs in opposite directions have the same parameters, i.e., 

7 9 7 9 11 13 11 13 15 17 15 17; ; ; ; ;k k T T k k T T k k T T= = = = = =      (3.4.6) 

In Eq. (3.4.5), there are 12 model parameters. But orthotropic materials only have 9 dependent 

material constants according to Hooke’s Law. The model parameters can be reduced by 

assuming 1 7 3 15 5 11; ;T T T T T T= = = . Thus, the following relationships can be obtained 
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( ) ( )

( ) ( )

( ) ( )

11 1 7 11 1 5 22 3 7 15 1 3

33 5 11 15 3 5 13 11 1 3 5
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= = =

   (3.4.7) 

The model parameters can be uniquely determined in terms of the material constants as 
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C
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C
C
C
C
C
C
C

  
  
  
  
  
  
  
  
  − − −   

 (3.4.8)  

So far, we have derived the model parameters and a unique mapping between these parameters 

with the material constants is obtained. In next section, the lattice rotation scheme and how the 

geometry of laminate composite is built in the proposed model will be discussed. 

3.4.3 Rotation of topological lattice structure 

As has been shown in [124] for 2D case, the rotation of the underlying lattice structure in lattice 

particle model is equivalent to the stiffness matrix transformation in representing the material 

orientation in the global coordinate. The same idea is applied here to considering the ply 

orientation in a laminated composite plate. The equivalency between lattice rotation and 

transformation of tangent stiffness matrix will be shown numerically in the Numerical Results 

section. 
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Figure 3.4.2. The In-Plane Lattice Rotation and Out-of-Plane Lattice Stacking 

A typical lattice rotation scheme is shown in Fig. 3.4.2. The lattice structure for each ply is rotated 

according to the ply orientation with respect to the rotation axis. And the rotated lattice structures 

are then stacked together according to the composite stack sequence. The discretized composite 

system is built by repeating the rotation and stacking procedure. 

3.4.4 Numerical results 

In this section, various numerical examples solved using the proposed model are described and 

discussed. For all the plate bending problems, a simply supported plate with various thickness-to-

length ratios is considered for analyses. The transverse loading considered is bidirectional 

sinusoidal. The accuracy of the solution is established by comparing the obtained results with the 

solutions wherever available in the literature. The materials properties are given in Table 3.4.2. A 

general configuration of the laminated plate is shown in Fig. 3.4.3. For nondimensionalized 

deflection values presented in this section, the following normalization is used: 

2
2
3

0
x x

h Eu u
P a

= ⋅
,  

2
2
3

0
y y

h Eu u
P a

= ⋅
, 

3
2

4
0

100
z z

h Eu u
P a

= ⋅
 

Unless otherwise specified, the maximum deflection is evaluated at the position of (a/2, a/2, 0). 

The solution method presented in [153]is used. 
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Figure 3.4.3. The Configuration and Dimensions of the Composite Plates 

Table 3.4.2. The Various Material Properties for the Tests Presented in the Section 
Tests Source Material constants 

1, 2, 4 Pagano[67] 
1 172.4 GPaE =   

0.25v =  
12 3.45 GPaG =  

2 6.89 GPaE =  13 3.45 GPaG =  

3 6.89 GPaE =  23 1.378 GPaG =  

3, 5 Demasi[155] 

Sheet 1 
1 100 GPaE =   

0.25v =  
12 2 GPaG =  

2 4 GPaE =  13 2 GPaG =  

3 40 GPaE =  23 0.8 GPaG =  
Sheet 2 

1 100 GPaE =   
0.25v =  

12 2 GPaG =  

2 4 GPaE =  13 2 GPaG =  

3 4 GPaE =  23 0.8 GPaG =  
Sheet 3 

4 GPaE =   0.25v =  
12 2 GPaG =  

13 2 GPaG =  

23 0.8 GPaG =  

6 NAFEMS[156] 
1 100.0 GPaE =  12 0.4v =  12 3.0 GPaG =  

2 5.0 GPaE =  13 0.3v =  13 2.0 GPaG =  

3 5.0 GPaE =  23 0.3v =  23 2.0 GPaG =  
 
Directional Young’s modulus of homogeneous orthotropic material 

The validity of the proposed lattice structure rotation to represent the material orientation is tested 

in this example. Uniaxial tests are performed using a Representative Volume Element (RVE). The 

calculated directional Young’s modulus on two orthogonal planes, i.e., <010> and <100>, are 

compared to the analytical solution given by Courtney [157] shown in Fig. 3.4.4. 
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From the comparison of the prediction with analytical solution shown in Fig. 3.4.4, the lattice 

rotation scheme can effectively represent the material’s orientation. Thus, the equivalency to the 

transformation of material tangent stiffness matrix is established. 

 

Figure 3.4.4. Variation of the Directional Modulus on <010> and <100> Planes 

Simple 2-ply laminated square plate (0/90) 

A simply supported two-ply antisymmetric square laminated plate under bidirectional sinusoidal 

transverse load is considered in this example. The plies have equal thickness and the same 

material properties but with different ply orientation. Numerical values of nondimensionalized 

transverse displacement for various aspect ratios (a/h) are shown in Table 3.4.3. A detailed 

comparison of the in-plane displacement xu  is shown in Fig. 3.4.5. The literature results are 

obtained from [158]. 

Table 3.4.3. The Nondimensionalized Deflections in a Simple 2-Ply Laminated Square Plate 

Model Nondimensionalized deflection zu   
a/h = 5 a/h = 10 a/h = 20 a/h = 50 a/h = 100 

Present 1.7592 1.2509 1.1096 1.0815 1.0745 
Pagano [67] 1.7287 1.2318 1.1016 - 1.0742 

Kant [159] (model-
2) 1.7037 1.2274 1.1078 - 1.0695 

Reddy [160] 1.6670 1.2161 1.1018 - 1.0651 
 
The normalized deflections for various length-to-thickness ratios are very accurate compare to 

the 3D exact solution from [67]. For the detailed comparison of the in-plane displacement xu

shown in Fig. 3.4.5, there is no 3D exact solution available in the literature. Instead, a comparison 
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with Kant’s solution [158] is made. But there is some difference for locations at some inner of the 

top ply. The difference generally is quite small. 

 

Figure 3.4.5. Variation of Normalized Displacement of a Simple 2-Ply Laminated Plate 

Hybrid 2-ply laminated square plate (0/90) 

A hybrid 2-ply antisymmetric square laminated plate from Demasi [155] is considered in this 

example. The plate is simply supported and under transverse bi-directional sinusoidal loading. 

The top and bottom plies have equal thickness but different material orientation and properties. 

The top ply has the properties of Sheet 1, while the bottom ply has the properties of Sheet 2. Only 

the case of length-to-thickness ratio (a/h) equal to 4 is studied. The obtained results using lattice 

particle model are compared with Demasi’s finding [155]. The detailed comparisons of the 

normalized displacements xu  and zu  are shown in Fig. 3.4.6. 
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Figure 3.4.6. Variations of the Normalized Displacements of a Hybrid 2-Ply Laminated Plate 

For the in-plane displacement xu , there is no literature results available. A prediction using the 

lattice particle formulation is shown in Fig. 3.4.6 (left). The predicted normalized transverse 

deflection is compared with different mixed theories for plate from Demasi [155]. At current 

discretization density, there are some errors between the prediction and the 3D exact solution, 

with maximum of 3%. The general trend is accurately predicted and consistent with all other 

predictions from [155]. 

Simple 3-ply laminated square plate (0/90/0) 

A simple 3-ply symmetric square laminated plate is studied in this example. The plate is simply 

supported and under transverse bi-directional sinusoidal loading. A series of different length-to-

thickness ratios are considered. The predicted results are compared with literature results from 

[159] shown in Table 3.4.4. A detailed comparison of the prediction with 3D exact solution is 

shown in Fig. 3.4.7. 

Table 3.4.4. The Nondimensionalized Deflections in a Simple 3-Ply Laminated Square Plate 

Model Nondimensionalized deflection zu   
a/h = 4 a/h = 10 a/h = 20 a/h = 50 a/h = 100 

Present 1.9447 0.7346 0.5081 0.4397 0.4318 
Kant [159] (model-

2) 1.9261 0.7176 0.5058 0.4433 0.4343 

Reddy [160] 1.9218 0.7125 0.5041 0.4430 0.4342 
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Figure 3.4.7. Variation of Normalized Displacement Ux of a Simple 3-Ply Laminated Plate 

As can be seen from Table 3.4.4, there difference between the predictions and the available 

literature results are very small, with maximum of 3.1%. The through thickness displacement from 

3D exact solution is exactly on top of the predicted curve, shown in Fig. 3.4.7. A pretty good 

accuracy is obtained in this case. 

Hybrid 3-ply laminated square plate (0/90/0) 

Another hybrid 3-ply symmetric square laminated plate is studied in this example. The same 

boundary conditions are applied in this example. The top and bottom plies have the same 

thickness and material properties of Sheet 1. The thickness for the middle ply is twice of that of 

the top and bottom plies, and has the properties of Sheet 3.  
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Figure 3.4.8. Variations of Normalized 
Displacements of a Hybrid 3-Ply Laminated 

Plate 

 

For this problem, only the data for a single point is available from [155], which is indicated using 

red square shown in Fig. 3.4.8. As can be seen from the comparison, the predicted 

displacements of xu  and yu are very close to the results obtained by Demasi [155] using 3D 

elasticity formulation. For the case of transverse deflection zu , due to current discretization 

density, there is approximately 2% difference exists. The general trends for all three 

displacements are shown in Fig. 3.4.8. 

Simple 7-ply laminated rectangular strip ((0/90)3/0) 

The deflection of a composite laminated strip under three-point bending configuration is studied in 

this example. This test is recommended by the National Agency for Finite Element Method and 

Standards (U.K.) (NAFEMS) [156] for testing the performance of finite elements. The dimensions 

and configuration of the strip are shown in Fig. 3.4.9. The material properties are given in Table 

3.4.2. Due to symmetry, only a quadrant of the plate is modeled. 

The deformation distributions are shown in Fig. 3.4.10. The calculated deflection at Point E using 

the proposed model is -1.059 mm, while the reference solution from NAFEMS [156] is -1.06 mm. 

A very good accuracy is found for the proposed model. 
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Figure 3.4.9. The Dimensions and Configuration of the Laminated Composite Strip 

 

  

Figure 3.4.10. The Displacement Distributions of the Laminated Composite Strip 

3.4.5 Conclusion 

A discrete 3D formulation of anisotropic elasticity, the nonlocal lattice particle model, for 

laminated composite structure is presented in this section. Unlike the traditional way of 

transforming the material tangent stiffness matrix, an equivalent lattice rotation scheme is used in 

the proposed model to represent the material orientation. The lattice rotation scheme accounts for 

not only the material orientation, but also the lamina’s fiber orientation. Various numerical 

benchmark tests prove the validity of the proposed model. Future work is to apply the proposed 

model to fracture and delamination simulation of laminated composite plate. Generalization of the 

model to arbitrary angled laminates needs additional work. 
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3.5 3D Polycrystalline Materials 

In this section, a novel top-down coarse-grained non-local lattice particle framework for modeling 

the elastic behavior of cubic polycrystalline materials is presented. The physical domain of each 

composing crystallite is discretized into particles which are packed according to the underlying 

material lattice structure. The crystallographic orientation for each individual crystallite is 

represented by rotating the topological lattice structure accordingly given the three Euler’s angles. 

Since the real material lattice structure is mimicked, the grain boundaries can be automatically 

generated in a way similar to the Molecular Dynamics simulation. A nonlocal potential is then 

proposed to account for the interactions between particles up to the second neighbor. The 

parameters of the proposed potential are uniquely determined in terms of the corresponding 

elastic constants of single crystallite via a top-down coarse-graining scheme. The framework is 

verified with classical elastic solution of single crystallite. Predictions of the elastic constants of 

polycrystals with or without texture are performed and compared with literature data. 

3.5.1 Introduction 

Molecular Dynamics (MD) simulation has been widely used to study various physical phenomena 

of polycrystalline solids, such as grain growth[161], dislocation dynamics [162], [163], [164], 

crystal plasticity [165], [166] and fracture [167], [168]. However, due to available computing power 

limitation, simulations of processes on long timescales and large length-scales are prohibitively 

expensive. According to [169], the largest available molecular system might scale up to one cubic 

microns by the time of 2025. In order to simulation systems with larger volume and longer 

temporal domain, reduced representations or coarse-grained models and multi-scale techniques 

[170] can be used. 

A number of coarse-grained methods have been proposed over the years to overcome the 

severe limitations on both the timescales and length-scales, such as the hyper-dynamics method 

[171], the parallel-replica dynamics method [172], the temperature accelerated dynamics method 
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[173], the discrete dislocation dynamics [174], [175], and the lattice models [176], [177], [178], 

[179]. The coarse-grained methods usually are specific-purpose orientated, such as the discrete 

dislocation dynamics is developed especially for crystal plasticity. In this letter, we propose a 

grain level coarse-grained framework to study the mechanical deformation response of crystals or 

polycrystals. 

It’s well-known that the macroscopic behavior of polycrystalline aggregates are generally 

considered as homogeneous and isotropic in terms of the elastic deformation when the materials 

have random crystallographic and morphologic textures even though the underlying single 

crystallite exhibits anisotropy and orientation dependent in most materials. Under these 

assumptions, various theoretical prediction approaches have been proposed for the estimation of 

the effective elastic properties of materials of this kind, such as the representative work of Voigt 

[99], Reuss [100], Hill [101], Kröner [102] and Hashin and Shtrikman [103], [104]. Berryman 

simplified the Hashin-Shtrikman bounds and applied to polycrystal compounds [180] and hcp 

solids He4 [181]. However, orientation randomness assumption may not be true when the 

material does not consist of sufficient number of crystallites or there exists certain material 

texture. In order to better estimate the properties of materials of these type, it is important to 

identify local properties, which are the elasticity, crystallographic orientation of each crystallite. 

In this letter, a novel nonlocal top-down coarse-grained lattice particle model is proposed to study 

the mechanical behavior of cubic polycrystalline materials. We restrict ourselves to the scenarios 

of estimating the effective elastic constants of polycrystalline materials composed by cubic 

crystallites. For each individual crystallite, the material domain is decomposed into particles 

packed in the same way as the material’s underlying lattice structure. For each decomposed 

crystal, the particles system is oriented according to the three Euler’s angle by rotating the 

topological lattice structure, in a way similar to the Molecular Dynamics simulation. A nonlocal 

potential is proposed to account both the pairwise and multi-body interactions. The potential 

parameters are uniquely determined in terms of the material constant by a top-down coarse-

graining process. The model is verified with classical crystal elasticity solution. Predictions on the 



 

 

155 

 

effective elastic constants for polycrystals with or without texture are compared with literature 

results. 

3.5.2 Lattice Particle Framework 

The nonlocal potential 

 

Figure 3.5.1. The Nonlocal Interaction between Particles I and J. 

For illustrative purpose, a 2D particle system packed using the triangular lattice is shown in Fig. 

3.5.1. From the viewpoint of Physics, the interaction between particle I and J should not only 

dependent on the particle pair itself, but also has contribution from its neighboring particles, e.g., 

at least all the nearest neighbors in Fig.3.5.1. In Molecular Dynamics, usually atoms within the 

‘cutoff’ radius are interacting with each other. Thus, the potential of a particle should have at least 

two components, 

pairwise multi bodyU U U −= +          (3.5.1) 

In fact, the consideration of only the pairwise potential will results in a fixed Poisson’s ratio at the 

macro level. 

In lattice models, the pairwise potential can be written in a scalar form as 

( )21
2pairwiseU k lδ=          (3.5.2) 

Based on the pairwise potential, a non-local multi-body potential is proposed as 

2

1

1
2

N

multi body J
J

U T lδ−
=

 
=  

 
∑         (3.5.3) 
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In Eqs. (3.5.2) and (3.5.3), k  and T  are the local and non-local parameters, lδ  is the bond 

elongation, with reference to its original length, N  is the number of neighboring bonds. 

Energy-based coarse-graining process 

In order to connect the parameters of the potential with material constants, a top-down energy-

based coarse-graining process is used. The main idea is to equate the potential energy of the 

particle system with that of the corresponding continuum. Since regular lattice structures are 

utilized in the proposed model, an energy equivalency at the unit cell level is sought. A unit cell is 

a smallest repeating unit identified from the lattice structures. This concept will become clearer in 

Section 2.3.  

Assuming there are cellN  unit cells identified for a typical particle, then the total potential of such 

particle has following general form 

( )
1 1

cell cellN N
I I I
cell pairwise multi body

I I
U U U U −

= =

= = +∑ ∑        (3.5.4) 

Equating the potential energy to a corresponding continuum, then by the Theory of Hyper-

elasticity, the potential can be rewritten in terms of the components of the strain tensor as 

( ) ( ) ( )2 2

1 1 1 1

1 1
2 2

cell I I IN N N N
b b b b b b b b

I I i j k l ij kl I I i j ij k l kl
I b b b

U k l n n n n T l n n n nε ε ε ε
= = = =

   
= +       
∑ ∑ ∑ ∑   (3.5.5) 

where Il  is half of the distance between the center particle with its neighbors for unit cell I . bn is 

the unit normal vector for the bth neighbor. 

By the conservation of the potential energy, the material tangent stiffness tensor can be obtained 

as 

( ) ( )

2

11 22

1 1 2 1 1

2

1 1 1 11

1 1 1 1

      +
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Comparing the components of the material tangent stiffness matrix, the potential parameters can 

be solved in terms of the material constants. Generally, the solution is unique, such as [38], but 

sometimes additional constraint(s) is required, for instance, [52]. 

Potential parameters for bcc and fcc lattices 

Two common cubic lattice structures are considered, the body-centered cubic (bcc) and the face-

centered cubic (fcc). For each lattice structure, the “cutoff radius” is the second neighbor. The 

formulation follows the procedure given in Section II.B. 

Body-centered cubic lattice 

The unit cells for the body-centered cubic lattice structure are shown in Fig. 3.5.2. The 14 unit 

normal vectors are given in Table 3.5.1. 

  

(a). Body-centered cubic lattice (b). 14 neighbors 

  

(c). Unit cell 1: Truncated octahedron 
( 3

1 32 3 9V R= ) 
(d). Unit cell 2: Cube  

( 3
2 64 3 9V R= ) 

Figure 3.5.2. The Body-Centered Cubic Lattice Structure and the Unit Cells 

Table 3.5.1. The Unit Normal Vectors for Body-Centered Cubic Lattice Structure 
Neighbor 1 

(1 / 3,1 / 3, 1 / 3)−  ( 1 / 3,1 / 3, 1 / 3)− −  ( 1 / 3, 1 / 3, 1 / 3)− − −  
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(1 / 3, 1 / 3, 1 / 3)− −  (1 / 3,1 / 3,1 / 3)  ( 1 / 3,1 / 3,1 / 3)−  

( 1 / 3, 1 / 3,1 / 3)− −  (1 / 3, 1 / 3,1 / 3)−   
Neighbor 2 

(1,0,0)  (0,1,0)  ( 1,0,0)−  
(0, 1,0)−  (0,0,1)  (0,0, 1)−  

 
Thus, the potential parameters for bcc lattice structure can be solved as 

1 11

2 12

44

0 0 4 3

4 3 3 4 3 3 0

0 2 3 7 2 3 7

k C
k R C
T C

        = −    
    −     

      (3.5.7) 

Face-centered cubic lattice 

The unit cells for the face-centered cubic lattice structure are shown in Fig. 3.5.3. And the 

corresponding unit normal vectors are given in Table 3.5.2. 

  

(a). Face-centered cubic lattice (b). 18 neighbors 

  

(c). Unit cell 1: Rhombic dodecahedron 
( 3

1 4 2V R= ) 
(d). Unit cell 2: Cube 

( 3
2 16 2V R= ) 

Figure 3.5.3. The Face-Centered Cubic Lattice Structure and the Unit Cells 
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Table 3.5.2. The Unit Normal Vectors for Face-Centered Cubic Lattice Structure 
Neighbor 1 

(1 / 2, 1 / 2,0)−  (1 / 2,1 / 2,0)  ( 1 / 2,1 / 2,0)−  

( 1 / 2, 1 / 2,0)− −  (0,1 / 2, 1 / 2)−  (0,1 / 2,1 / 2)  

(0, 1 / 2,1 / 2)−  (0, 1 / 2, 1 / 2)− −  (1 / 2,0, 1 / 2)−  

(1 / 2,0,1 / 2)  ( 1 / 2,0,1 / 2)−  ( 1 / 2,0, 1 / 2)− −  
Neighbor 2 

(1,0,0)  (0,1,0)  ( 1,0,0)−  
(0, 1,0)−  (0,0,1)  (0,0, 1)−  

 
Therefore, the potential parameters for fcc lattice structure can be determined as 

1 11

2 12

44

0 0 4 2

2 2 2

0 2 6 2 6

K C
K R C
T C

        = − −    
    −     

       (3.5.8) 

It should be noted that, for uniqueness of the solution for the potential parameters, it was 

assumed that the nonlocal potential parameter T  has the same value for both unit cells. As can 

been seen in Eq. (2.4.12), a limitation on the proposed framework using the fcc lattice structure is 

that it can only model materials with 11 12 44C C C> +  . For fcc materials which do not meet this 

requirement, the bcc lattice structure model can be used if and only if the material underlying 

lattice structure can be ignored, such as the elastic properties of polycrystalline materials. 

3.5.3 Lattice rotation and grain boundary generation 

The way how a simulation model is built in the proposed framework is similar to the procedure 

employed in MD simulations. The geometrical domain of a crystallite is decomposed into regular 

particles which are packed according to the material’s underlying lattice structure under the global 

coordinate. The lattice structure then is rotated with the given crystallographic orientation 

information to account the real crystallite orientation. The particle rotation follows the vector 

transformation rule. This decomposition-rotation process is repeated for all the crystallites 

composing the polycrystal. A overlap-deletion scheme [154], [129] is used to generate the grain 

boundary using the rotated particle system. Any particle whose degree of overlapping with its 
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neighboring particles is greater than a pre-specified value is deleted. This process is repeated 

until all of the degrees of overlapping are less than the specified value. And the distance between 

any particles after this process are defined as the un-deformed distance. Other grain boundary 

generation processes, such as the energy minimization [130], the simulated solidification process 

[131] and the devised MD simulation [132] can be applied. A Representative Volume Element 

(RVE) consisting of 2,000 crystallites represented using the proposed model is shown in Fig. 

3.5.4. 

 

Figure 3.5.4. A Polycrystalline RVE Represented Using bcc Packed Particles 

3.5.4 Results 

Verification with classical crystal elasticity 

The proposed framework is verified with the classical elasticity of a single crystallite. Predictions 

of the directional Young’s modulus and Poisson’s ratio are compared with the analytical solution 

from crystal elasticity [157]. Implicit solution scheme proposed in [94] has been used. The elastic 

constants (GPa) for selected cubic materials are listed in Table 3.5.3. The values for Al, Cu and 

Fe are from [182], W from [183]). The anisotropy factor is defined as: ( ) ( )0 11 12 441 2f c c c= − − . 

The comparisons on the 010< >  and 110< >  planes are shown in Figs. 3.5.5 – 3.5.6. The 

calculation for fcc-structured Copper is carried out using the bcc structure in this example. All the 

predictions match the analytical solutions very accurately. 
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Table 3.5.3. Experimental Values for Elastic Constants of Selected Cubic Crystals 
Material 11c  12c  44c  0f  

Al 108 62 28.3 0.19 
Cu 169 122 75.3 0.69 
W 521 202 160.4 0.01 
Fe 230 135 117 0.59 

 

    

    

Figure 3.5.5. The Profile of the Young’s Modulus and Poisson’s Ratio on <010> Plane 
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Figure 3.5.6. The Profile of the Young’s Modulus and Poisson’s Ratio on <110> Plane 

3.5.5 Conclusion 

One limitation on the proposed framework is that it can only model certain face centered cubic 

materials with 11 12 44C C C> + , i.e., the anisotropy factor 0 0.5f < . This is due to that fact that the 

local potential parameter 2K  in Eq. (2.4.12) should be positive. But for simulations where the 

material’s underlying lattice structure is not of importance, the body centered cubic structure 

model can be used, such as the effective elastic constants prediction shown in the result section. 

 Future work will focus on further investigation of the particle-based volume compensation 

scheme and application of the VCPM to some other practical problems. The reduction or 

elimination of the fracture anisotropy can be achieved by including more neighbors. 
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CHAPTER 

4. SOLUTION METHODS AND APPLICATION TO REINFORCED COMPOSITES 

4.1 Introduction 

 Modeling and prediction of the effective elastic, especially the fracture, response of a 

heterogeneous materials, in particular particulate reinforced composites, remains a very 

challenging problem in solid mechanics. Analytical and empirical models provide an effective 

means of predicting bounds on effective elastic properties of the composites from the known 

properties of its constituents, especially for simple configurations of phases. Many models are 

available in the literature, such as the Voigt and Reuss approximations; which provides the upper 

and lower bounds of the estimations. For the fracture properties, there are no analytical results 

available in the literature. 

For multiphase materials, numerical modeling techniques, such as the finite element method 

(FEM) [184], [185], [186], [187], are more effective than analytical prediction since these materials 

often lack the structural simplicity such as continuous fiber composites or laminates and hence 

not readily amenable to closed-form theoretical analyses. Intensive research on using the lattice 

models to evaluate the effective elastic moduli can be found in the literature. Snyder et al. [188] 

used the triangular lattice to study the elastic moduli of 2D isotropic composites with circular 

inclusions. Day et al. [189] applied the same framework to calculate the elastic moduli of a matrix 

containing circular holes. Ostoja et al. [190], [191], [192] applied the lattice model to study the 

effective moduli of linear planar Delaunay networks. Garboczi et al. [193] developed a finite 

element method based algorithm while the simulation domain is represented using square lattice 

(2D) and simple cubic lattice (3D) for heterogeneous materials. No real lattice models exist in the 

literature for 3D heterogeneous materials. 

In this chapter, the 3D lattice particle model based on simple cubic lattice is applied to calculate 

the effective elastic properties of particulate reinforced composites. The content of this chapter is 

organized as follows. In Section 4.2, the implicit solution method based on the Atomistic-scale 
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Finite Element Method is presented. Details of the resulted AFEM element for each packing is 

discussed. In Section 4.3, the explicit solution method based on particle dynamics is discussed. 

Two numerical damping schemes to obtain steady state solution from explicit formulation are 

discussed. Results for using adaptive dynamics relaxation scheme are provided. In Section 4.4, 

some basics on coupling the lattice particle model based on implicit solution scheme with finite 

element method are discussed. Some preliminary results to demonstrate the coupling concept is 

given. In Section 4.5, as a special application, the lattice particle model is applied to model 

particulate reinforced composites. Parametric study on the inclusion effects on both the effective 

elastic and fracture response of the composite is performed. 
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4.2 The Atomistic-scale Finite Element Method 

 The implicit solution method is used for model quasi-static response of materials, such as 

elasticity and plasticity problems. The implicit method used in lattice particle model is derived 

based on the Atomistic-scale Finite Element Method (AFEM) proposed by Liu et al. [136]. The 

basic idea in AFEM is system energy minimization. The final discretized equation system shares 

many similarities with finite element method, which provides an interface for the lattice particle 

model to be possibly coupled with the finite element methods. 

The Atomic-scale Finite Element Method (AFEM) is a general solution method proposed by Liu et 

al. [136] for molecular statics. It has several advantages over the classical methods, such as 

conjugate gradient method, for statics in molecular simulation. Some basic and essential 

concepts in the derivation are given for illustrative purpose, more detailed formulation can be 

found in [136]. 

Similar to the Principal of Virtual Work used in deriving the discretized form of the governing 

equation in finite element methods, the AFEM uses Taylor Expansion of the system energy to 

obtain the discretized equation system. 

The total energy of the particle system is a function of the particle positions 

( ) ( )
1

N

total total ext I
I

E U
=

= − ⋅∑x x f x         (4.2.1) 

where ( )1 2, , T
N=x x x x  the position vector of all N  particles, ( )1 2, , ,

T

ext N=f f f f
is the 

external force exerted on the system, and I
I

I

x
y

 
=  
 

x  is the position vector of the particle I. 

Omitting the high order terms, the Taylor expansion of totalE  around an initial guess ( )0x  of the 

equilibrium state gives 
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The state of minimal energy corresponds to 

( ) 0totalE∂
=

∂
x

x
           (4.2.3) 

Based on Eq. (4.2.3), following governing equation for the displacement ( )0= −u x x  can be 

obtained 

=Ku P           (4.2.4) 

where 
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2 2
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is the stiffness matrix and 
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is the non-equilibrium force vector. 

At particle level, the corresponding stiffness matrix for the 2D case can be written as 
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The non-equilibrium force matrix is 

0 0 0 0 0 0 0 0 0 0 0 0
T

x ytotal total
I ext ext

I I

U Uf f
x y

 ∂ ∂
= − − 

∂ ∂ 
P   (4.2.8) 
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The AFEM elements in the lattice particle model for different lattice packing are shown in Fig. 

4.2.1. 

 
 

Triangular lattice Square lattice 

  
Simple cubic lattice Body centered cubic lattice 

Figure 4.2.1. AFEM Elements for Different 
Lattice Structure in Lattice Particle Model 

 
Face centered cubic lattice 

 



 

 

168 

 

4.3 Particle Dynamics 

The explicit, or dynamic, solution method aims to model dynamic problems, such as dynamic 

fracturing and crack propagation problems. It bases on the Newton-Euler’s Equation of Motion 

(EOM) and solves the discrete system as a sequential update of the particle states. One of the 

frequently used integration schemes in the literature.is the Velocity Verlet integration method 

[194]. 

4.3.1. Equation of Motion and Velocity Verlet integration 

All particles in the lattice particle model obey the Newton’s second law of motion. The Equations 

of Motion of the entire system is 

+ =int extMu f f           (4.3.1) 

where M  is the diagonal mass matrix, u  is the position matrix, intf  is the internal force matrix 

and extf  is the external force matrix. u  is the acceleration matrix needs to be solved. intf is a 

column matrix with the component being the internal resultant force on each particle. 

The solution method used in lattice particle model to solve the equations system is the simple 

Velocity Verlet method [194]. 
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     (4.3.2) 

where ( )i tx and ( )i t dt+x are the position vector of a particle at current time step and next time 

step, respectively. u  is the velocity matrix and c  is the damping coefficient. 
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The solution is conditional stable and the critical time step is determined from the speed of P-

wave.  

2
critical

p

Rt
v

∆ =           (4.3.3) 

where R is the radius of the particles and the P-wave speed is 

4 / 3
p

K Gv
ρ

+
=          (4.3.4) 

where K and G  are the bulk and shear moduli of the material. 

4.3.2. Kinematic Damping 

For quasi-static elastic problems based on dynamic formulation, damping is usually introduced in 

order to obtain a static solution. Kinetic damping was proposed by Cundall [195] as an alternative 

damping method to viscous damping. The underlying basis of kinetic damping is that as an 

oscillating body passes through a minimum potential energy state its total kinetic energy reaches 

a local maximum. Under this scheme, the total kinetic energy is traced under un-damped motion 

of the system of particles. Upon detection of a local energy peak, all current particles’ velocities 

are set to zero. The process is then restarted from the current state and continued through 

generally decreasing peaks until the kinetic energy of the system has been dissipated and the 

system attains its static equilibrium state. This scheme can be used in lattice particle model for 

the static solution from dynamics formulation. A schematic for the basic idea in kinetic damping is 

shown in Fig. 4.3.1. 
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Figure 4.3.1. Dissipation of Kinetic Energy in Dynamic Formulation 

4.3.2. Adaptive dynamic relaxation 

As has been pointed out by Rayleigh, the static solution of a mechanics system can be referred to 

as the steady-state part of the transient response of the system to step loadings. This approach 

was successfully applied to solving linear problems by the pioneer work of Otter [196] and Day 

[197] independently in the 1960s. Later in early 1980s, Underwood [198] summarized the 

advances of the dynamics relaxation method and proposed an adaptive dynamic relaxation (aDR) 

scheme which will be discussed in this section. 

Generally, the Equation of Motion (EoM) of a discrete system at step n  has following form as 

n n n n n+ =M u C u R           (4.3.5) 

where M  and C  are the fictitious diagonal mass and damping matrices, u  is the displacement 

vector and R  is the residual force vector. 

int
n n n

ext= −R F F           (4.3.6) 

The central difference integration scheme is used to update the system. Assuming mass-

proportional damping, i.e. c=C M , the fundamental time march equations for updating the 

velocities and displacements for the next time step are 

1/2 1/2 12 2
2 2

n n nc t t
c t c t

+ − −− ∆ ∆   = +   + ∆ + ∆   
u u M R        (4.3.7) 

1 1/2n n nt+ += + ∆u u u          (4.3.8) 
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The mass matrix M  and time step t∆  are not independent and they must satisfy certain 

relationship in order to make the system stable and convergent. Generally, the time step t∆  is 

taken to be a unity ( 1t∆ =  ) and the inequality based on the Gerschgorin circle theorem for the 

mass matrix should be satisfied. That is 

( )21
4

n n
ii ij

j
m t K≥ ∑          (4.3.9) 

where n
ijK    is the stiffness matrix of the system at step n . 

Using the mass-stiffness Rayleigh quotient, the damping coefficient c  at step n  can be 

approximated as 

( ) ( )
( ) ( )

2
Tn n n

n
Tn n n

c =
u K u

u M u
         (4.3.10) 

For the force controlled loading, 0 =u 0 , the damping coefficient 1c  is taken to be zero. For 

displacement controlled loading, the velocities for the particles with applied displacement is 

nonzero, thus the damping coefficient 1c  can be calculated using Eq.(4.3.10). 

For linear problems, the tangent stiffness matrix K is directly used to approximate the damping 

ratio, as shown in Eq.(4.3.10). For nonlinear problems, a diagonal estimator S  is commonly used 

and given by 

i i 1
int int

1/2

n n
n
ii n

i

F FS
tu

−

−

−
=

∆ 
         (4.3.11) 

For non-linear problems exhibit structural instability, the stiffness matrix may lose positive 

definiteness which results in a negative radicand. Under these conditions, the damping coefficient 

c  is set to be zero as recommended by [198]. 

As the system marching towards the steady state, a convergence criterion should be used to 

terminate the simulation process. Different convergence criteria can be used, such as the residual 

force, the residual kinetic energy. In this study, the kinetic energy convergence criterion is used. 
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The simulation is terminated when the ratio of the kinetic energy of the system to work done by 

the internal force is very small to a prescribed tolerance value. 

( )
( )

1/2 1/2

int

1
2

1
2

Tn n

Tn n
ε a

− −

= ≤
u Mu

u F

 

        (4.3.12) 

where a  is a very small number such that the whole system can be viewed as under steady 

state. 

Next, a clamped square sectioned beam under traction loading is modeled to assess the 

performance of the implemented aDR for elastic response of solids in lattice particle model. The 

2D configuration of the beam is shown in Fig. 4.3.2. 

 

Figure 4.3.2. Cantilever Beam under Traction Force 

2D case: 

The simulation results of the displacement distribution of the 2D case are shown in Fig. 4.3.3. The 

profile of the displacement Uy at point (0.03,0) is shown in Fig. 4.3.4. The profile of the system 

kinetic energy is shown in Fig. 4.3.5. As can be seen from the comparison with FEM solution, the 

results using ADR solution scheme is very accurate. 
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Figure 4.3.3. The Displacements Fields Using the Triangular Llattice 

 

 

Figure 4.3.4. The Profile of the Displacement Uy at Point (0.03,0) 
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Figure 4.3.5. The Profile of the Fictitious Kinetic Energy of the System (2D) 

3D case: 

The boundary conditions for 3D case are that the left end is fully clamped and a traction force 

with value of 2 KN is applied in the positive y direction on the right end surface. The formulation 

based on body-centered cubic lattice structure is used in this 3D case. The steady state 

displacement distributions are shown in Fig. 4.3.6. The profile of the displacement Uy at point 

(0.03,0,0) is shown in Fig. 4.3.7. The kinetic energy profile for the case of simple cubic pack is 

shown in Fig. 4.3.8. 

   

Figure 4.3.6. The displacement fields using the bcc lattice structure 
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Figure 4.3.7. The Profile of the Displacement Uy at Point (0.03,0,0) 

 

 

Figure 4.3.8. The Profile of Fictitious Kinetic Energy of the System (3D) 
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4.4 Coupling between Lattice Particle Model with Finite Element Method 

Due to the intrinsic characteristics, discrete models have extensive applications for energetic 

problems, such as impact simulation. A well-known issue for the discrete models is the 

computational inefficiency. A relatively large amount of discrete elements must be used in order 

to achieve certain solution accuracy. This is the case for both static and dynamic formulation. 

With the fast increase of computation power, this shortcoming will not be of critical concern in 

simulations using discrete models. It’s sometimes still desirable to reduce the computational 

power requirement by coupling these models with continuum based models, such as finite 

element methods [199]. This is also sometimes required by model larger structures using the 

discrete model. 

For coupling scheme available in the literature, the domain partition scheme is usually used. The 

domain of interest is decomposed into several subdomains. For subdomains of special interest, 

such as crack tip/front, the discrete model is used to take the advantage of modeling 

discontinuities, while finite element method is used just for the purpose of taking care of general 

deformation in other subdomain. For some models, a handshake zone is also defined. A 

handshake zone is a subdomain in which the coupling between two different models is happened 

and treated only in this area. Sometimes, a bridging zone is also used with the handshake zone. 

While in some other models, there is no specific zone assigned for the coupling, only the 

overlapping interface is used. 

In this paper, we present some basic concepts for coupling the lattice particle model with finite 

element method. Preliminary results for applying the coupled model to study the static and 

dynamic problems are also provided. The content of this section is organized as follows. First, the 

coupling method between the lattice particle model and finite element method is discussed. 

Following this, some preliminary results for several benchmarks to examine the accuracy of the 

coupling methods is presented. Conclusions and future works are drawn at the end of this 

section. 
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4.4.1 The lattice particle and finite element interface 

In order to couple the lattice particle model with finite element method, the atomistic-scale finite 

element formulation is used. And since the atomistic-scale finite element formulation shares the 

same framework with finite element method, the coupling between these two models becomes 

very trivial. The only concern is how to treat the interface springs. The virtual lattice particles that 

are centered at the finite element nodes are introduced. A schematic showing the interface 

coupling is shown in Fig. 4.4.1. 

 
Figure 4.4.1. The Interface Coupling scheme in Lattice Particle Model 

4.4.2 Preliminary simulation results 

Some preliminary results for applying the coupled model to both static and dynamic problems are 

presented in this subsection. 

Static simulation 
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Beam bending problems 

The geometry and boundary conditions of the static beam bending problem are described in 

Fig.4.4.2. The beam is fixed in both x- and y- directions at the left and right end. A concentrated 

load of 5x103 N is applied on the center of top edge downward. For modeling, the beam is divided 

into three sub-regions, where the center region is modeled using the lattice particles with radius 

equal to 5x10-5 m .The material constants for the beam are Young’s modulus E = 69 GPa, and 

Poisson’s ratios v = 0.33. 

 
Figure 4.4.2. The Configuration of Clamped Beam for Coupled Model  

 
The displacement distribution is shown in Fig. 4.4.3. The detailed comparison of the reaction 

force at the two ends and displacements at the bottom edge and the interface are shown in Fig. 

4.4.4. From the simulation results, the coupled model can accurately capture the static 

deformation compared to the finite element solutions from ABAQUS. And there is no 

displacement discontinuity at the interface. 

 
Figure 4.4.3. The Displacements Distribution Using the Coupled Model 
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Figure 4.4.4. Detailed Comparison of the End Reaction Force and Interface Deformation 

Dynamic simulation 

A spall damage simulation is modeled using the lattice particle model. A boundary free beam of 

size 0.127 x 0.0127 m is applied with a rectangular stress wave at the right end. The beam is 

divided into two subdomains, with the left is modeled using the lattice particle model. The material 

constants are Young’s modulus E = 3.0 GPa, Poisson’s ratios v = 0.33.and mass density ρ = 

1140 kg/m3. 

Three types of input wave with various wave widths are simulated and compared (Fig.4.4.5). 

From the results, it’s clearly show that the spall damage can be captured by the coupled model. 

The spall zone appears right at the position, where the reflected tension wave meets the wake of 

the input compression wave. 
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Figure 4.4.5. The Stress Waves and Resulted the Final Failure Patterns 

4.4.3. Conclusion 

Some basic concepts of coupling the lattice particle method with finite element method are 

presented in this section. In the developed coupled model, the lattice particle model is applied to 

the regions of interest, e.g., the regions where the crack initiates and propagates, while finite 

element model is applied in the remaining regions to take care of the general deformations. The 

coupling method is based on the atomistic-scale finite element formulation in lattice particle 

model, which shares the same theoretical framework with the classic finite element method. 

Some preliminary results of both static and dynamic problems using the coupled model are also 

provided to test the performance and validity of the coupled model. The results indicate that the 

coupled model not only significantly improves the computational efficiency, but also well 

maintains the computational accuracy. 

More efforts are required to extend the coupled model to the simulation of more complex 

problems, e.g., strain rate dependent dynamic failure problems, quasi-static crack propagation 

problems, etc. 
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4.5 Particle Reinforced Composites 

In this section, the lattice particle model using the simple cubic packing is applied to obtain the 

effective elastic and fracture properties of bi-phase particulate composite materials. First, the 

interface problem is discussed in detail. Following this, the representative volume elements for 

particulate reinforced composite are generated. Finally, simulations for several microstructures 

are performed. The effective elastic and fracture properties are obtained. Conclusions are drawn 

based on the current study. 

4.5.1 Introduction 

Modeling and prediction of the effective elastic, especially the fracture, response of 

heterogeneous materials, in particular particulate reinforced composites, remains a very 

challenging problem in solid mechanics. Analytical and empirical models provide an effective 

means of predicting bounds on effective elastic properties of the composites from the known 

properties of its constituents, especially for simple configurations of phases. Many models are 

available in the literature, such as the Voigt approximation; the Reuss approximation, the 

variational principles model [200], [201],  the Mori-Tanaka estimates [202], [203], the self-

consistent scheme [204], and the differential method [205], etc. For the fracture properties, there 

is no analytical result that can be found in the literature. 

For multiphase materials, numerical modeling techniques, such as the finite element method 

(FEM), are more effective than analytical prediction since these materials often lack the structural 

simplicity such as continuous fiber composites or laminates and hence not readily amenable to 

closed-form theoretical analyses. Intensive research work have been done in this area, such 

as[184], [185], [186], [187], to name a few. An important aspect while using the computational 

approach to approximate the overall properties of a composite material is the determination of the 

characteristic size of the Representative Volume Element (RVE). The first formal definition of 

RVE was given by Hill [206] in which a RVE must be structurally entirely typical of whole micro-

structure on average and must contain a sufficiently large number of micro-structual 
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heterogeneities. Later, Drugan and Willis [207] have defined RVE as the smallest volume element 

of a material for which the usual spatially constant effective modulis are sufficiently accurate to 

represent overall constitutive response. Torquato [208] has used the correlation function to define 

the minimum size requirement of a RVE for particulate reinforced system. 

In this section, the lattice particle model using the simple cubic packing is applied to study the 

effective elastic and fracture response of 3D particulate reinforced composites. The content of 

this section is organized as follow. First, the modeling of interface between different material 

phases is discussed. Following this, the RVEs generation is presented. Next, parametric studies 

on the effects of particle volume fraction and size are performed and the calculated effective 

mechanical properties with interface effect are compared to the analytical estimate. Conclusions 

are drawn based on current study at the end. 

4.5.2 Modeling Interface in lattice particle model 

Each phase of composites is assumed to be homogeneous and isotropic. The stiffness of the 

spring and the volume-related parameter of the particle within a phase are obtained using Eq. 

(2.4.8) given the material constants, i.e. Young’s modulus and Poisson’s ratio. 

For interfaces between different material phases, the properties of the bonds straddling these two 

phases can be obtained from experiment. For simplicity, some mathematical averages are used 

in this study, i.e., the arithmetic mean and the harmonic mean. The arithmetic mean is defined as 

phase1 phase2 phase1 phase2arithmetic arithmetic
interphase interphase;

2 2
k k T T

k T
+ +

= =      (4.5.1) 

while the harmonic mean is defined as 

harmonic harmonic
interphase interphase

phase1 phase2 phase1 phase2

2 2;1 1 1 1k T

k k T T

= =
+ +

     (4.5.2) 

A typical interface in VCPM is shown in Fig. 4.5.1. 
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Figure 4.5.1. A Typical Interface in a Two-Phase Material (2D view) 

4.5.3 The RVEs 

RVEs of different numbers of identical non-overlapping randomly distributed spheres with 

different volume fractions are created for the investigation of the both effective elastic and fracture 

properties. Volume fractions of 10%, 20%, 30%, 40%, and 50% are considered. For a fixed 

volume fraction, 30, 40, and 50 numbers of spheres are considered to study the size effect. The 

original and the dicretized with periodic boundary condition configurations of the RVEs of the 

case of 30 spheres, 30% volume fraction are shown in Fig. 4.5.2. The size of these RVE are 

determined according to [208] using the S2 correlation function. The corresponding S2 correlation 

function is given in Fig. 4.5.3. From the S2 curve, we can see the RVE size is statistical 

satisfactory according to [208]. 

   

The RVE identified from the 
composites 

The discretized RVE with 
periodic boundaries (the 

particles) 

The discretized RVE with 
periodic boundaries 

Figure 4.5.2. The RVEs for 30 Particles with Volume Fraction of 30% 
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Figure 4.5.3. The S2 for the RVE of 30 Particles with Volume Fraction of 30% 

4.5.4 Results and Discussions 

The effect of the interface properties, the volume fraction, the inclusion size on both the effective 

elastic and fracture properties are studied in this section. The material constants are shown in 

Table 4.5.1. 

 Table 4.5.1. Material Constants for Bi-Phase Particulate Reinforced Composite 

matrixE  70 GPa particleE
 450 GPa 

matrixv  0.3 particlev
 0.17 

 
The calculation of the effective elastic moduli is conducted in three steps: 

1). subjecting the cube at its surfaces to a uniform tri-axial extension, corresponding to a strain 

11 22 33 0ε ε ε ε= = = , and then calculating the total energy (1)U  as a sum of energies of all unit 

cells, or particles; 

2). subjecting the cube at its surface to a uniform extension in y and z directions and a uniform 

compression in x direction, corresponding to a strain 11 22 33 0ε ε ε ε− = = = , and then calculating 

the total energy (2)U  as before; 

3). in terms of the bulk modulus K  and shear modulus G , the energy of a three-dimensional 

linear elastic continuum of volume V  is  



 

 

185 

 

1
2 3ii jj ij ij ii jj
KU V Gε ε ε ε ε ε  = + −  

  
       (4.5.3) 

The bulk modulus and shear modulus can be calculated through these steps as 

(1)
2
0

(2) (1)
2
0

2
9

91
24

U
K

V
U U

G
V

ε

ε

=

−
=

         (4.5.4) 

Effective elastic properties 

The effects of the interface property, the volume fraction and the inclusion size on the bulk 

modulus K and shear modulus G are studied in this subsection. The effective value for the bulk 

and shear moduli are obtained by carry out the outline procedure in lattice particle model. The 

interface properties are determined using the arithmetic mean and harmonic mean defined in 

Eqs. (4.5.1) - (4.5.2). 

The interface effect 

The results showing the effect of the interface properties on the effective bulk and shear moduli 

are given in Fig. 4.5.4. As can be seen, with the increase of the interface spring stiffness and 

volume-related parameter (the arithmetic mean is greater than the harmonic mean), both the 

overall bulk and shear moduli increase. The predicted value also compared with Hashin-

Shtrikman’s bounds with perfect interface. As can be seen, the predicted values are fall within the 

bounds. 
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Figure 4.5.4. The Effect of the Interface and Volume Fraction on the Effective Bulk and Shear 

Moduli 

The particle size effect 

The results for the particle size effect on the elastic properties, i.e., bulk and shear moduli, are 

shown in Fig. 4.5.5. As can be seen, for different particle number in a fixed RVE volume, i.e., 

different particle size, the difference of the predicted values is small. The variance becomes 

larger with the increase of the particle volume fraction. 

  
Figure 4.5.5. The Effect of Inclusion Size on the Effective Bulk and Shear Moduli 

The volume fraction effect 

The results for the effect of particle volume fraction can be seen from Fig. 4.5.4 and Fig. 4.5.5. 

From Fig. 4.5.4, with the increase of the particle volume fraction, the effective bulk and shear 

moduli are both increasing. In Fig. 4.5.5, the particle size effect is more obvious with the increase 

of the particle volume fraction. 

The inclusion properties effect 

The results of the effects of inclusion properties are shown in Fig. 4.5.6. For a fixed particle 

volume fraction, the effective shear and bulk moduli increases with the increase of relative 

Young’s modulus of the inclusion over matrix. But for the increase of relative Poisson’s ratio of 

the inclusion over matrix, the effective shear moduli decreases and the effective bulk moduli 

increases. 
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Figure 4.5.6. The Effect of Inclusion Properties on the Effective Bulk and Shear Moduli 

Effective fracture properties 

As mentioned in the previous section, the model failure parameters can be calibrated from the 

experimental data. In this study, we investigate qualitatively the effect of interface properties, 

particle size and particle volume fraction on the overall material strength. Pre-assumed values of 

different phases are used. As for the interface, the critical stretches are obtained by the arithmetic 

and harmonic means. 

matrix

particle

0.0004
0.0008

a
a

=
=

         (4.5.5) 

The interface effect 

The results showing the interface effect on the overall material tensile strength using 30 particles 

are shown in Fig. 4.5.7. As can be seen, the properties of interface play important roles in 
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determine the effective material tensile strength. Weak interface, i.e., the harmonic mean, will 

decrease the material tensile strength. 

The particle size effect 

In this case, the interface properties are assumed to be the arithmetic means. The results of the 

particle size effect on the material tensile strength are shown in Fig. 4.5.8. As can be seen, 

generally, the material tensile strength increases with the decrease of the particle size. It should 

be noted that the analysis is performed with one realization of the microstructure. Statistical 

averaging for many microstructure realizations is required for a statistical meaningful conclusion. 

 
Figure 4.5.7. The Effect of the Interface and Volume Fraction on the Tensile Strength 

 

 
Figure 4.5.8. The Effect of Inclusion Size on the Effective Tensile Strength 
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4.5.5 Conclusions 

The lattice particle model is applied to investigate the inclusion effects, the interface properties, 

the inclusion volume fraction, the inclusion property and the particle size, on both the effective 

elastic and fracture properties of a particle reinforced composites. The RVEs’ size were 

determined by the correlation function proposed by Torquato [208]. The following conclusions can 

be drawn from this investigation: 

1). The effective elastic moduli increase with the increase of the particle volume fraction, the 

interface properties. The decrease of the particle size can also increase the effective elastic 

moduli. 

2). The material tensile strength increases with the increase of the interface properties. For a 

fixed particle volume fraction, the material tensile strength increases with the decrease of the 

particle size. 

3) It appears that different interface strength hypothesis has large impact on the final marcro level 

strength estimation, especially for the large particle size based on the current simulation. Large 

number of statistical averaging is required for confirm this conclusion. 

Further work needs to be done to systematically investigate various effects on the material 

fracture properties. Modification for plasticity effect is required for metallic particle reinforced 

composites. 
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CHAPTER 

5. CONCLUSION 

5.1 Summary 

A novel lattice particle framework has been proposed for modeling of solids, including 

homogeneous isotropic, heterogeneous isotropic and anisotropic materials, under various 

mechanical loadings. For isotropic materials, it was shown both analytically and numerically that 

the formulation is frame independent for all the lattice structures have been used. A lattice 

structure rotation scheme is developed for model anisotropic materials within the proposed lattice 

particle framework. The equivalency of this lattice structure rotation scheme with the classical 

tangent stiffness matrix transformation is established both analytically and numerically. A one 

dimensional spring based criterion is developed for failure analysis within the proposed model for 

both isotropic and anisotropic materials. The validity of the spring based failure criterion was 

verified with experimental findings. Benchmark problems have been used to examine the 

performance and verify the validity of the proposed framework. The simulation results are 

compared with analytical solution, numerical solution (FEM) and experimental findings. The 

proposed lattice particle model has following main modeling capacities: 

1). The proposed model uses only the axial springs and capable of modeling isotropic materials 

with arbitrary Poisson’s ratio; 

3). The proposed model is capable of modeling fracture of isotropic materials without crack path 

preference; 

2). The elasto-plastic materials can be modeled using the proposed model under two dimensional 

assumptions; 

4). The proposed model is capable of modeling anisotropic materials using an effective lattice 

rotation scheme to represent the material orientation; 

5). The proposed model is capable of modeling polycrystalline materials, both 2D and 3D. The 

real material lattice structure can be accounted for in the proposed model. 
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A brief comparison of the lattice particle model with some other discrete models is shown in Table 

5.1.1. 

Table 5.1.1. A Brief Comparison with Some Other Discrete Numerical Models 

Discrete Models Similarities Distinctions 

Discrete 
Element Method 

1). The model parameters are 
derived from the continuum 
mechanics in terms of the material 
constants; 
2). Well suited for simulations 
involving discontinuities, such as 
damage and fracture problems; 
3). One dimensional bond based 
criteria is used for failure 
simulation. 

1.) Uses both axial and tangential 
springs in the formulation and no 
restriction on the effective Poisson’s 
ratio; 
2). Considers only the nearest 
neighboring interactions; 
3). Cohesive type of failure criteria is 
used for failure analysis and the failure 
parameters need to be calibrated from 
experiments; 
4). Crack path dependent on the 
element. 

Peridynamics 

1). Bond based formulation uses only 
axial spring but the effective Poisson’s 
ratio is fixed to 1/4. State based 
formulation removes this limitation; 
2). The material nonlinearity can be 
considered but the formulation is based 
on continuum mechanics; 
2). The concept of horizon is used to 
introduce multiple neighbors; 
3). Failure criterion is derived in terms of 
energy release rate. 

Lattice Particle 
Model 

1). Only axial spring is used and no 
restriction on the effective Poisson’s 
ratio; 
2). Able to consider material nonlinearity 
at the spring level; 
3). Multiple neighbor can be considered, 
and no crack path preference; 
4). Material anisotropy can be easily 
incorporated by the lattice rotation 
scheme; 
5). The real material underlying lattice 
structures can be considered. 
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5.2 Scope of Future Work 

There are still many future works need to be done in enhancing the proposed lattice particle 

framework and extending its application. Recommendations of future work are summarized 

below. It includes but not limited to the following directions: 

1). Extension of the lattice particle framework to dynamic contact simulations, such as high 

velocity impact simulation. The lattice particle model has many advantages over continuum based 

model specifically for this type of problems. 

1). Detailed systematic study on the spring based failure criterion for both isotropic and 

anisotropic materials, such as considering the spring stiffness degradation effect. This will 

eventually lead to the time and rate dependent failure criterion in the lattice particle model; 

2). Detailed study of the lattice particle model for nonlinear constitutive response of the solids, 

such as viscoelasticity, elasto-plasticity and visocoplasticity. This will allow the lattice particle 

model to more efficiently study the nonlinear behavior at microstructural level, such as crystal 

plasticity; 

3). In order to reduce the computational effort for large 3D structures, systematic study on 

developing the effective coupling mechanism with finite element methods or extended finite 

element method for both static and dynamic problems is required. Some advantages of the 

discrete model can be incorporated with classical continuum-based model for failure analysis; 

4). Some intrinsic issues due to the regularity of the packing, such as non-smooth boundaries and 

missing neighbors for boundary particles, also need to be addressed. This problem is common to 

all discrete models. 
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APPENDIX  

A THE FRAME INVARIANCE OF THE FORMULATION FOR ISOTROPIC SOLIDS 

  



 

 

210 

 

It should be noted that the previous derivation of the model parameters is based on the condition 

that the lattice coordinate (O123) coincides with the global coordinate (OXYZ). For isotropic 

materials, the material properties are frame invariant, i.e., not dependent on the direction in which 

the material properties are measured or observed. Thus, it’s very important also to have frame 

invariant model parameters for modeling isotropic materials. In this appendix, we analytically 

show that the derived model parameters in lattice particle model for isotropic materials are frame 

invariant. 

Assuming the global coordinate can be obtained by rotating the lattice coordinate by angles (θ1, 

θ2, θ3) in the sequence of 1, 2, 3. This rotation process is shown in Fig. A.1. Thus, in terms of 

these three rotation angles, the rotation matrix for coordinate transformation between these two 

coordinates is 

2 3 2 3 2

1 3 1 2 3 1 3 1 2 3 1 2

1 3 1 2 3 1 3 1 2 3 1 2

cos cos cos sin sin
cos sin sin sin cos cos cos sin sin sin sin cos
sin sin cos sin cos sin cos cos sin sin cos cos

θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ

− 
 = + − − 
 − + 

Q   (A.1) 

 

Figure A.1. The Rotations between the Lattice Coordinate and the Global Coordinate 

And the vector transformation law under these rotations is 

b b=n Q n           (A.2) 

where bn  is the unit normal vectors under the lattice coordinate and bn is under global 

coordinate. 
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Without loss of generality, we consider a single arbitrary rotation for each lattice structures, i.e., 

rotations with respect to 3, 2 and 1 axes for simple cubic structure, body centered cubic and face 

centered cubic, respectively. The simplified rotation matrices are 

3 3

3 3 3

cos sin 0
sin cos 0

0 0 1

θ θ
θ θ

− 
 =  
  

Q          (A.3) 

2 2

2

2 2

cos 0 sin
0 1 0

sin 0 cos

θ θ

θ θ

− 
 =  
  

Q          (A.4) 

1 1 1

1 1

1 0 0
0 cos sin
0 sin cos

θ θ
θ θ

 
 = − 
  

Q          (A.5) 

Simple Cubic Lattice 

The transformed unit normal vectors under the global coordinate system are given in Table A.1.1. 

The coordinates rotate with respect to the Z(3) axis by an arbitrary angle 3θ . The transformation 

matrix is 3Q , given in Eq. (A.5). 

Table A.1. The Unit Normal Vectors for sc Structure under Global Coordinate  
Neighbors 1 

( )3 3cos ,sin ,0θ θ  ( )3 3sin ,cos ,0θ θ−  ( )0,0,1  
( )3 3cos , sin ,0θ θ− −  ( )3 3sin , cos ,0θ θ−  ( )0,0, 1−  

Neighbors 2 
( )3 3 3 31/ 2 cos sin ,sin cos ,0θ θ θ θ− +  ( )3 31/ 2 cos ,sin ,1θ θ  ( )3 31/ 2 sin ,cos ,1θ θ−  
( )3 3 3 31/ 2 sin cos , sin cos ,0θ θ θ θ− − −  ( )3 31/ 2 cos , sin , 1θ θ− − −  ( )3 31/ 2 sin , cos , 1θ θ− −  
( )3 3 3 31/ 2 cos sin ,sin cos ,0θ θ θ θ+ −  ( )3 31/ 2 cos ,sin , 1θ θ −  ( )3 31/ 2 sin ,cos , 1θ θ− −  
( )3 3 3 31/ 2 cos sin ,cos sin ,0θ θ θ θ− − −  ( )3 31/ 2 cos , sin ,1θ θ− −  ( )3 31/ 2 sin , cos ,1θ θ−  

 
Given the transformed unit normal vectors, the energy of a reference particle can be obtained in 

terms of the strain components as 
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( ) ( )

( ) ( )( ) ( )
( )( )

( )

2 2 23 3
1 2 11 22 1 2 33

2 22
3 1 3 2 11 22 2 13 23

23 3
1 2 12 2 11 33 22 33

1 3 2 3 11 12 2

3 cos 4 9 cos 4
36 2 4 36

2 2

1 cos 4 3 cos 4 72 2
2 1 cos 4 3 cos 4

4 72
2 2

sin 4 sin 4 si

particle

k k T k k T

k k T kRU
k k k T

k k k

θ θ
ε ε ε

θ θ ε ε γ γ

θ θ
γ ε ε ε ε

θ θ ε γ

+ − + + + + + + 
 

+ − + + + + +
=

− + + + + + + 
 

+ − + ( )3 1 3 22 12n 4 sin 4kθ θ ε γ

 
 
 
 
 
 
 
 
 − 

  (A.6) 

For isotropic material, there is no coupling between the normal strain and shear strain. Thus, from 

the above total strain energy there must have 

1 3 2 3sin 4 sin 4 0k kθ θ− =          (A.7) 

and 

2 3 1 3sin 4 sin 4 0k kθ θ− =          (A.8) 

Therefore, 1 2k k= . Given this relationship between the spring stiffness, the above total strain 

energy can be simplified as 

( )( ) ( )( ) ( )( )
2

2 2 2 2 2 2
1 11 22 33 1 11 22 11 33 22 33 1 12 13 236 36 4 72 2

2particle
RU k T k T kε ε ε ε ε ε ε ε ε γ γ γ= + + + + + + + + + + (A.9) 

The arbitrary rotation angle 3θ  is cancelled out in the energy given 1 2k k= . And this relation, i.e., 

1 2k k= , is exactly what has been obtained when the lattice coordinate is coincident with the global 

coordinate, as shown in Eq. (2.4.8). Thus, the derived model parameters for simple cubic packing 

in lattice particle formulation are frame invariant. 

Body Centered Cubic Lattice 

The transformed unit normal vectors under the transformation matrix 2Q are given in Table A.2. 

The energy for a reference particle in this case is 

( )2 2 2 22 2
1 2 11 33 1 12 1 23

2 2 2
1 2 22 1 2 11 332

22 2
1 2 13 1

12 4cos 4 6 2cos 4 112 8 8
9 3 9 9 9

8 8cos 4 4 4cos 48 8 112 224
9 3 9 9 3 9

2 4 4cos 4 2 2cos 4 16 224
9 3 9 9

particle

k k T k k

k k T k k T
RU

k k k T

θ θ
ε ε γ γ

θ θ
ε ε ε

θ θ
γ

− + + + + + + 
 

+ −  + + + + + +      =
+ −   + + + +   

( )11 22 22 33

2 2 1 2 1 2 2 2
11 13 33 13

4 sin 4 8 sin 4 8 sin 4 4 sin 4
3 9 9 3

k k k k

ε ε ε ε

θ θ θ θ
ε γ ε γ

 
 
 
 
 
 
 
 + 
     + − + −        

 (A.10) 
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Table A.2. The Unit Normal Vectors for bcc Structure under Global Coordinate 
Neighbors 1 

( )2 2 2 21/ 3 cos sin ,1,sin cosθ θ θ θ− +  ( )2 2 2 21/ 3 cos sin , 1,sin cosθ θ θ θ+ − −  
( )2 2 2 21/ 3 sin cos , 1, sin cosθ θ θ θ− − − −  ( )2 2 2 21/ 3 cos sin ,1,cos sinθ θ θ θ− − −  
( )2 2 2 21/ 3 cos sin ,1,sin cosθ θ θ θ+ −  ( )2 2 2 21/ 3 cos sin , 1,sin cosθ θ θ θ− − +  

( )2 2 2 21/ 3 cos sin , 1,cos sinθ θ θ θ− − − −  ( )2 2 2 21/ 3 sin cos ,1, sin cosθ θ θ θ− − −  
Neighbors 2 

( )2 2cos ,sin ,0θ θ  ( )0,1,0  ( )2 2sin ,cos ,0θ θ−  
( )2 2cos , sin ,0θ θ− −  ( )0, 1,0−  ( )2 2sin , cos ,0θ θ−  

 
For isotropic materials, the following must satisfied 

2 2 1 24 sin 4 8 sin 4
0

3 9
k kθ θ

− =         (A.11) 

and 

1 2 2 28 sin 4 4 sin 4
0

9 3
k kθ θ

− =         (A.12) 

Thus, 1 22 3k k= . Given this relationship, the energy in Eq. (A.10) can be simplified as 

( ) ( )

( )

2 2 2
1 11 22 33 1 11 22 22 33 11 332

2 2 2
1 12 23 13

24 112 16 224
9 9 9 9

2 8
9

particle

k T k T
RU

k

ε ε ε ε ε ε ε ε ε

γ γ γ

    + + + + + + +    
    =
 
+ + + 
 

  (A.13) 

When 1 22 3k k= , the arbitrary rotation angle 2θ  is cancelled out in the energy, as shown in Eq. 

(A.13). This relationship, i.e., 1 22 3k k= , is exactly what has been obtained when the lattice 

coordinate is coincident with the global coordinate, as shown in Eq. (2.4.10). Thus, the derived 

model parameters for body centered cubic packing in lattice particle formulation are also frame 

invariant. 

Face Centered Cubic Lattice 

The transformed unit normal vectors for this case by the transformation matrix 1Q are given in 

Table A.1.3. The energy of a reference particle for this lattice packing is 
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( ) ( ) ( )

( ) ( )( )

( ) ( )

2 2 2
1 2 11 1 1 2 22 33

21
1 1 2 23 1 11 22 11 332

2 21
1 1 2 22 33 1 12 13

2

9 cos 42 4 24 3 cos 4 24
4

3 cos 4
1 cos 4 2 48

4
2 3 cos 4

2 1 cos 4 48
2

2 sin

particle

k k T k k T

k k k T
RU

k k T k

k

aε θ ε ε

θ
θ γ ε ε ε ε

θ
θ ε ε γ γ

 −  + + + + + + +  
  

 +  + + − + + +  
  =
 +  + + − + + +  
  

+ 1 1 1 1
1 22 23 2 1 33 23

sin 4 sin 4
4 2 sin 4

2 2
k k kθ θ

θ ε γ θ ε γ

 
 
 
 
 
 
 
 
 
 
    − + −     

    

  (A.14) 

Table A.3. The Unit Normal Vectors for fcc Structure under Global Coordinate 
Neighbors 1 

( )1 11/ 2 1,cos ,sinθ θ  ( )1 11/ 2 1, sin ,cosθ θ−  ( )1 1 1 11/ 2 0,cos sin ,sin cosθ θ θ θ− +  

( )1 11/ 2 1, cos , sinθ θ− − −  ( )1 11/ 2 1,sin , cosθ θ− −  ( )1 1 1 11/ 2 0,sin cos , sin cosθ θ θ θ− − −  

( )1 11/ 2 1, cos , sinθ θ− −  ( )1 11/ 2 1,sin , cosθ θ−  ( )1 1 1 11/ 2 0,cos sin ,sin cosθ θ θ θ+ −  

( )1 11/ 2 1,cos ,sinθ θ−  ( )1 11/ 2 1, sin ,cosθ θ− −  ( )1 1 1 11/ 2 0, cos sin ,cos sinθ θ θ θ− − −  

Neighbors 2 
( )1,0,0  ( )1 10,cos ,sinθ θ  ( )1 10, sin ,cosθ θ−  

( )1,0,0−  ( )1 10, cos , sinθ θ− −  ( )1 10,sin , cosθ θ−  

 
For isotropic materials, the following must satisfied 

1 1
2 1

sin 4
2 sin 4 0

2
kk θ

θ − =          (A.15) 

and 

1 1
2 1

sin 4
2 sin 4 0

2
k kθ

θ− =          (A.16) 

Therefore, 1 24k k= . The energy can be simplified as 

( )( ) ( )( )
( )

2 2 22 1 11 22 33 1 11 22 22 33 11 33

2 2 2
1 12 23 13

3 24 2 48

2particle

k T k TRU
k

ε ε ε ε ε ε ε ε ε

γ γ γ

 + + + + + + +
 =
 + + + 

   (A.17) 

When 1 24k k= , the arbitrary rotation angle 1θ  is cancelled out in the energy, as shown in 

Eq.(A.17). This relationship, i.e., 1 24k k= , is exactly what has been obtained when the lattice 

coordinate is coincident with the global coordinate, as shown in Eq. (2.4.12). Thus, the derived 

model parameters for face centered cubic packing in lattice particle formulation are also frame 

invariant. 
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In conclusion, the lattice particle model parameters for the three cubic lattice structures are frame 

invariant for isotropic material. 
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APPENDIX  

B EQUIVALENCE OF LATTICE ROTATION AND STIFFNESS TRANSFORMATION 
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For modeling anisotropic materials in FEM, the material stiffness tensor is usually transformed 

according to the material coordinate rotation with respect to the global. In the proposed method, 

the lattice rotation rather than the stiffness matrix transformation is used to accommodate this 

coordinate rotation.  In this section, the equivalence of the two approaches for the anisotropic 

elasticity will be shown. We begin with a counter-clockwisely rotated lattice orientation, as show in 

Fig. B.1, with respect to the global coordinates XOY by an angle α. For this configuration, the six 

normal vectors for a unit cell are given in Table B.1. 

Table B.1. The Normal Vectors of the New Configuration of a Unit Cell  

1n  2n  3n  

( ) ( )( )cos ,sina a  cos ,sin
3 3
π πa a    + +    

    
 

2 2cos ,sin
3 3
π πa a    + +    

    
 

4n  5n  6n  

( ) ( )( )cos ,sina π a π+ +  
4 4cos ,sin
3 3
π πa a    + +    

    
 

5 5cos ,sin
3 3
π πa a    + +    

    
 

 

 

Figure B.1. Rotation of Lattice Orientation 

We first consider the case of rotating underlying lattice. Using the same procedure as has been 

described in previous section and the normal vectors in Table B.1, the general mapping 

relationship between the components of the material stiffness tensor and the model parameters 

for an arbitrary material coordinate rotation can be obtained as 
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4 4
12 22
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32 42

3
52 62

3 3cos ;                                sin
3 3 3 3
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3 3 3 3 3 3

3 sin cos ;             
3 3 3

A A

A A

A A

π πa a

π π π πa a a a

π πa a

   = + = +   
   

       = + + = + +       
       

   = + + =   
   

32A

 

4 4
13 23

2 2 3
33 43

3
53

3 2 3 2cos ;                                sin
3 3 3 3
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3 3 3 3 3 3
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( ) ( ) ( ) ( )

( ) ( )

15 25

45 55 45

3 3 3 3 3 3sin 2 cos 2 ;     sin 2 cos 2
2 4 4 2 4 4

3 3cos 2 sin 2 ;              
8 8

A A

A A A

a a a a

a a

   
= − − = + +      
   
 

= − =  
 

 

( ) ( ) ( ) ( )

( ) ( )

16 26

46 56 46

3 3 3 3 3 3sin 2 cos 2 ;    sin 2 cos 2
2 4 4 2 4 4

3 3cos 2 sin 2 ;          
8 8

A A

A A A

a a a a

a a

   
= + − = − +      
   
 

= − − =  
 

 

When rotation angle α = 0, the previous derivation is recovered. 

Next, the lattice structure is not rotated but the stiffness matrix is transformed for the mapping 

solution of the lattice particle parameters. The transformation for the material stiffness matrix is 

1 T− −=C Q CQ           (B.2) 

where C  and C  are the original untransformed and transformed material stiffness matrix, 

respectively, Q  is the transformation matrix which is defined as 

2 2

2 2

2 2

cos sin 2sin cos
sin cos 2sin cos

sin cos sin cos cos sin

θ θ θ θ
θ θ θ θ

θ θ θ θ θ θ

 
 = − 
 − − 

Q       (B.3) 

with θ is the rotation angle from the rotated material coordinate to the global coordinate. 

Apparently, θ = - α in the case shown in Fig. B.1. 

From Eq. (B.2), we have the original untransformed material stiffness matrix in terms of the 

rotation angle and the transformed material stiffness matrix as 

T=C QCQ           (B.4) 

The mapping relationship between the component of the transformed material stiffness matrix 

and the model parameters using the un-rotated lattice structure is 
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126

216

312

3 3 3 3 33
3 48 48 4 4

3 3 3 3 3 3 3 30 0
16 16 4 4

3 30 0 0 0
16 16
3 3 3 30 0

16 16 8 8
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16 16 8 8
3 3 3 3 30

16 16 2 2 2

kC
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TC
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TC

 
 
 
 
    
    
    
        =   
    − −    
    
        − − 
 
 
  

      (B.5) 

Substituting Eq. (B.4) to (B.5), we finally have the mapping relationship between the components 

of the original untransformed material stiffness and the model parameters as 
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When rotation angle α = 0, the previous derivation is recovered. 

After simplification, it is shown that =A B . Thus, the underlying lattice rotation in the proposed 

framework is equivalent to the material stiffness tensor transformation for anisotropic elastic 

materials. 
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