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ABSTRACT 

 

Alternative computation based on neural systems on a nanoscale device are of 

increasing interest because of the massive parallelism and scalability they provide. Neural 

based computation systems also offer defect finding and self healing capabilities. 

Traditional Von Neumann based architectures (which separate the memory and 

computation units) inherently suffer from the Von Neumann bottleneck whereby the 

processor is limited by the number of instructions it fetches. The clock driven based Von 

Neumann computer survived because of technology scaling. However as transistor 

scaling is slowly coming to an end with channel lengths becoming a few nanometers in 

length, processor speeds are beginning to saturate. This lead to the development of multi-

core systems which process data in parallel, with each core being based on the Von 

Neumann architecture.  

The human brain has always been a mystery to scientists. Modern day super 

computers are outperformed by the human brain in certain computations. The brain 

occupies far less space and consumes a fraction of the power a super computer does with 

certain processes such as pattern recognition. Neuromorphic computing aims to mimic 

biological neural systems on silicon to exploit the massive parallelism that neural systems 

offer. Neuromorphic systems are event driven systems rather than being clock driven. 

One of the issues faced by neuromorphic computing was the area occupied by these 

circuits. With recent developments in the field of nanotechnology, memristive devices on 

a nanoscale have been developed and show a promising solution. Memristor based 

synapses can be up to three times smaller than Complementary Metal Oxide 

Semiconductor (CMOS) based synapses.  
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In this thesis, the Programmable Metallization Cell (a memristive device) is used to 

prove a learning algorithm known as Spike Time Dependant Plasticity (STDP). This 

learning algorithm is an extension to Hebb’s learning rule in which the synapses weight 

can be altered by the relative timing of spikes across it. The synaptic weight with the 

memristor will be its conductance, and CMOS oscillator based circuits will be used to 

produce spikes that can modulate the memristor conductance by firing with different 

phases differences.  
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CHAPTER 1 INTRODUCTION TO NEUROMORPHIC COMPUTING 

1.1 Historical Perspective 

Most modern computers and electronic systems used in almost in every aspect of our 

daily lives are based on the traditional Von Neumann architecture. This architecture 

proposed in 1945 (for the EDVAC), separates the memory and computation unit. A high 

speed clock is required for its operation making it a clock driven architecture. The reason 

for the Von Neumann architecture to be so popular and stand the test of time is the 

inexorable rise in the density of transistors in CMOS and reduction in cost over the years. 

This increasing number of transistors due to the aggressive down scaling of the feature 

size, allowed the Von Neumann Architecture to handle and process large amounts of 

data. However transistor scaling is reaching it limits. According to the 2011 ITRS 

(International Technology Roadmap for Semiconductors) [1] there is a need for new 

devices, and “beyond CMOS information processing technology” in which a new type of 

data representation may also be required. The reason for scaling to reach its limits is 

because the channel lengths are becoming just a few atoms wide, where quantum physics 

comes into play. This inhibits the transistor functioning as a switch. This limitation at the 

lowest abstraction level causes performance limitations of the architecture. The Von 

Neumann architecture itself suffers from a bottleneck called the Von Neumann 

bottleneck [2]. The processor cannot execute programs faster than the required data and 

instructions are fetched. Engineers got around this problem by using a memory hierarchy, 

such as cache and registers and more recently multicores on a single die. It had been 

speculated and even proved that an architecture which can process and store 

simultaneously at the same physical location consumes less power and is significantly 
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faster. These advantages formed the basis for searching newer devices, materials and 

system architectures to provide a whole new alternative to the conventional computing 

paradigms.  

The human brain is an extraordinary computing machine. It constantly monitors and 

regulates vital biological systems and performs the computations required for day to day 

tasks such reading, writing or driving. These tasks and functions handled by a brain prove 

to be daunting even for modern supercomputers. A significant difference between any 

computer and a brain is the amount of power consumed by each core computational unit. 

The neuron serves as the computational unit in a brain and central processing unit (CPU) 

for a computer. The brain weighing approximately 1.5 Kg consumes about 20W of power 

while driving in rush hour in peak traffic. On the other hand, simulating a few seconds of 

rush hour driving with IBM’s state of the art supercomputer requires 3 MW. It occupies 

5500ft square of floor space and weighs in at 227 metric tons [3]. The brain is power 

efficient because neural spikes charge only a small fraction of a neuron as they travel. By 

contrast digital computers have their transmission lines at a certain voltage at all times. 

The brain’s neurons operate in milliseconds, and are capable of image and pattern 

recognition tasks in the ten to hundred millisecond range. Powerful computers requires 

hours, if not days to process the same work load. This low power consuming and fast 

performing neural architecture is very much worth exploring in an effort to overcome the 

bottlenecks being faced by digital computers.  

Neuromorphic computing aims to use VLSI and analog circuits to mimic biological 

neural systems such as the brain which is a colossal parallel network of biological 

processing elements:  neurons. Each of these neurons is connected to thousands of other 



 

3 

neurons through conducting channels called synapses. These neurons fire after reaching a 

certain threshold. This makes the system event driven instead of a clock driven 

architecture used in digital computers. The human brain does not have a distinct 

separation between memory and a computation element as in the Von Neumann 

architecture. Synaptic connections in the brain retain their state in the absence of inputs. 

Such a behavior explains why the brain performs extremely well with complex tasks such 

as pattern recognition, maintaining and regulating vital human systems, and performing 

day to day activities while consuming a small amount of power. On the other hand, 

CMOS based computers take several hours, if not days to process the same tasks and can 

occupy thousands of square feet of land. CMOS technology suffers from its sensitivity to 

defects and failures. While aggressive scaling over 20 years has reduced the feature size 

of the MOS, newer issues relating to the robustness and reliability of CMOS technology 

has surfaced. It has been shown that neuromorphic circuits can adapt to such defects 

because of the inherent parallel nature of their architecture [4]. One of the major design 

challenges with neuromorphic circuits was the design of the synapse in CMOS. CMOS 

based synapses consumed more power and area in comparison to biological systems, 

making the Boolean based digital computer far more efficient. 

With advancements in nanotechnology, newer devices have re-ignited interest in 

bridging the gap between a neural and digital architecture. The memristor device, a 

contraction of “memory resistor” was developed by a team led by R. Stanley Williams at 

the Hewlett-Packard (HP) Laboratories, Palo Alto, California [5] in 2008 although its 

existence had been postulated as the fourth basic element in 1971 by Leon Chua [6]. The 

memristor is a passive circuit element with a unique I-V relationship resembling a 
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pinched hysteresis loop. The memristor operates analogously to the neural synapse. This 

helps alleviate the density issue, mentioned previously, with traditional CMOS circuits. 

Memristors show much promise to reach the densities found in neural systems. Hardware 

architectures shown by Turel [7] and Zhao [8], the “Crossnets” approach, provides a 

solution to the design problem and method of integrating resistive nanoscale devices in a 

crossbar topology with CMOS circuitry to design neuromorphic circuitry. Crossnets have 

been shown to dramatically increase device integration [9]. It can be shown that these 

neuromorphic networks can maintain relationships based on learning rules [10]. Due to 

the plethora of neurons, their behavior and synaptic weight combinations can produce a 

state which is unique at any given point in time. The memristor based synapse can be as 

small as three orders compared to a CMOS-based design as well as being both a non-

volatile and a variable resistive element [11].  

 

1.2 The Neuron 

The neuron is a biological cell which is electrically excitable. It is the primary mode 

of transmitting information through electrical and chemical processes. Neurons are 

connected to each other via a synapse. Each neuron connects to other neurons forming 

the neural network. Neurons are the core elements of the neural system. The nervous 

system consists of the brain, spinal cord and the peripheral nervous system. Motor 

neurons or neurons from sensory organs which respond to touch, sound or light 

depending in which organ they reside, send signals to the brain via the spinal cord. 

Neurons can also receive signals from the spinal cord or brain which can affect muscle 

contractions, glandular outputs and other neurons within the same neural network.   
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Neurons can be very diverse in nature but there is a general description to identify a 

neuron. The neuron is typically divided into three parts, the cell body or soma, dendrites 

and axon. The cell body is usually the smallest in size with the axon and dendrites 

protruding out from the soma. The soma contains the nucleus and is where protein 

synthesis occurs. The axon and dendrites are filament-like structures. Dendrites branch 

profusely, thinning out with each branch. They reach just a few hundred micrometers 

from the soma, giving rise to a “dendritic tree”. The axon leaves the cell at the axon 

hillock and extends out over very large distances (as much as 1 meter in humans), 

branching out in the hundreds. The axon hillock has the greatest density of voltage 

dependent sodium channels. Electrical signals from other neurons in the neural network 

are received by the cell body and dendrites. A typical synapse is formed between the 

axon of one neuron and the dendrite, or soma, of another neuron in the neural network. 

Fig. 1.1 illustrates the components of the neuron system. 
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Fig. 1.1. Diagram of  typical neuron system [51]  

 

Synaptic signals fall into two types:  excitatory and inhibitory. If the overall 

excitation over a short period of time is large enough, a short spike or pulse called an 

action potential originates at the cell body and quickly moves across the axon, activating 

synapses of other neurons. This is known as salutatory conduction. The cell body and the 

axon contain voltage-gated ion channels in their cell membrane which allows the neuron 

to generate and carry electrical signals. All neurons are electrically excitable and 

maintain a voltage gradient across their membrane. The potential across the membrane is 

maintained by ion pumps which are metabolically driven. Electrical signals are produced 

and propagated with the help of the ion channels embedded in the membrane to produce 

an intracellular-extracellular concentration of charge carrying ions, namely sodium (Na
+
), 

potassium (K
+
), chloride (Cl

−
), and calcium (Ca

2+
). To activate a neuron, electrical 
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stimuli may be applied to it. These include pressure, stretching of the neuron, chemical 

transmitters and changes in electrical potential across the cell membrane [12]. The 

membrane potential changes when the ion channels within the cell membrane open 

allowing a flow of ions across it. Changes in voltage across this membrane modify the 

function of the voltage dependent ion channels. If the voltage changes are significant, 

then an all-or-none pulse, the action potential, is created.  

For a neuron to respond, it must completely respond. In other words the strength by 

which the nerve responds (the magnitude of the action potential) is not a simple analog 

function of the strength of the stimulus. The stimulus must surpass a threshold potential 

for the neuron to respond. If the threshold potential is not met by the stimuli, a response 

is not produced. This property is known as the all-or-none relationship. Stimuli which are 

too weak to produce any spike create a local electrotonus. The magnitude of the electric 

potential of this electronus progressively increases with the strength of the stimuli. This 

means that a greater intensity of stimulation does not produce a stronger response but 

rather produces a faster firing rate. If a nerve containing several thousands of neurons is 

excited with a progressively increasing stimulus, the neurons which have their threshold 

potentials satisfied by the stimuli only respond. Increasing the magnitude of the stimuli 

further increases the response of the entire nerve. Fig. 1.2 shows the equivalent circuital 

model of a neuron [33]. 
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Fig. 1.2.  Equivalent circuital model of a neuron model. The arrows indicate the direction 

of movement of ions [33]. 

 

In the absence of inputs, a potential inside the neuron relative to the outside will be 

maintained by the membrane. This resting potential is about -65mV, which can vary 

across different neurons. An increase in the potential is known as depolarization and a 

decrease is referred to as hyperpolarisation.  

The human brain contains an enormous number of synapses. There are about one 

hundred billion neurons each having about 7000 synaptic connection with other neurons. 

Synaptic plasticity is the ability of the synapse to strengthen or weaken depending on 

their activity. The plasticity of the synapse can also change with the number of 

neurotransmitters in the synapse. The plasticity of both excitatory and inhibitory synapses 

depends on the post synaptic calcium release [14]. Synaptic plasticity forms the basic 

mechanism for learning and memory. Actual synaptic operation is very complex. Many 

operate by releasing microscopic bubbles called vesicles of a chemical that aids in 
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conductance, known as a neurotransmitter into the cleft (the space between the 

presynaptic axon and postsynaptic dendrite). A synapse becomes excitatory when the 

potential alteration is depolarizing and the synapse is inhibitory when hyperpolarization 

occurs. When alterations are made they are linearly summed on the dendrites. This is true 

for a certain range of potentials above which the linearity ceases to exist. This 

nonlinearity may occur at some part of the dendrite. Studies [15] have shown that 

nonlinear processing occurs on the neuron providing other neurons with considerable 

processing power.  

The potential at the axon hillock is of great importance. This acts as a trigger zone, 

where there is a large concentration of sodium channels. As a result, when the potential 

increases beyond a threshold (usually about -50mV), voltage sensitive ion channels open, 

allowing an influx of Na
+
 ions increasing the depolarization. This results in more 

channels opening up, which causes in an exponential rise in the membrane potential. The 

increased depolarization causes the sodium ion channels to close and another set of 

channels to open, causing efflux of K
+
 ions causing the potential to drop as fast as it 

increased. This phenomenon produces a spike like wave that rapidly propagates across 

the axon. The sodium channels can be immediately reopened creating a maximum limit at 

which the spike can be generated. This delay is caused by the sodium channels and gives 

rise to a refractory period, during which the neuron cannot fire again even if inputs are 

being constantly applied. Fig.1.3 illustrates the depolarization on an axon [33].  
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Fig. 1.3. Depolarization on an axon during an action potential model [33]. 

 

Neural systems alter their response to their inputs, and this adaptation occurs so that 

identical inputs can be differentiated if they occur at different times. This adaptation can 

occur over different time scales. In mammals synapses are formed but usually do not last 

forever. Hormones and diffusible neurotransmitters can cause the growth or decay of 

synapses.  

Neural models focus mainly on the synaptic changes. Synaptic changes can be short 

term (dynamic synapse behavior) or long term. Long term changes are termed long-term 

potentiation (long term strengthening of the synapse) and long-term depression (long 

term weakening of the synapse). These mechanisms form the basis for neural learning 

models.  
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This thesis aims to demonstrate Spike-Timing-Dependent Plasticity (STDP) with 

CMOS and memristors made from silver chalcogenide films integrated on the same die. 

The Leaky Integrate and Fire (LIF) circuit will be used create neural spikes required to 

prove this learning rule. Chapter 1 will provide an overview of neuromorphic 

engineering. Chapter 2 will discuss STDP and the memristor. Chapter 3 will discuss the 

CMOS aspects of this work, with an in depth analysis of spiking neuron circuit design. 

Chapter 4 will cover the analysis and present results of this study. Chapter 5 will present 

conclusions as a result of this study. 
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CHAPTER 2 SPIKE TIME DEPENDENT PLASTICITY  

2.1 Spike Time Dependent Plasticity 

Abstract models of synaptic plasticity aim to demonstrate the learning phenomenon 

by basing these models on the relative timing between presynaptic and postsynaptic 

neurons. When choosing a synaptic plasticity model, it is important to consider the 

target’s application requirements. Examples of such models are spike-timing-dependent 

plasticity (STDP) and the triplet-based STDP (TSTDP). Other models aim to explain 

neural system behavior in more detail by attempting to explain neuroscience 

experimental data by adopting neuron and synaptic state variables.  Table 2.1 shows the 

various synaptic plastic rules that exist, ranging to abstract to physically implementable 

models.  Comparisons are made in terms of synaptic variables used. 

Table 2.1 Comparison of STDP models [16]  

Model Spike Time Membrane Potential Calcium 

Pair Based STDP Yes No No 

Triplet Based STDP Yes No No 

Spike Driven 

Synaptic Plasticity 

Yes Yes Yes 

Modified ion 

channel based 

plasticity 

No Yes Yes 

Iono-neuromorphic 

intracellular calcium 

mediated plasticity 

No Yes Yes 
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Donald Hebb wrote in his book “The Organization of Behavior” about a learning 

rule called the Hebbian Theory. This theory describes a mechanism for synaptic 

plasticity. An increase in the synaptic efficacy is caused by the presynaptic neuron’s 

constant stimulation of the postsynaptic neuron. When an axon of cell A is near enough to 

excite a cell B and repeatedly or persistently takes part in firing it, some growth process 

or metabolic change takes place in one or both cells such that A's efficiency, as one of the 

cells firing B, is increased." [17]. He emphasized that causality should exist such that the 

cell A needs to fire before cell B. This particular emphasis of his theory created a refined 

theory known as the Spike-Timing-Dependent Plasticity (STDP) which requires temporal 

precedence [18].  

STDP imposes tighter temporal correlations between the pre-and postsynaptic 

neuron’s spike. This biological process works as follows. Recurring presynaptic spikes 

which arrive a few milliseconds before postsynaptic action potential causes long-term 

potentiation (LTP) of the synapse. Conversely, recurring spike arrival after postsynaptic 

spikes leads to long-term depression (LTD). The STDP function relates the change in the 

weight of the synapse as a function of the relative timing of pre- and postsynaptic action 

potentials. The change of the STDP function with relative timing of pre- and postsynaptic 

spikes enables a temporal coding scheme in the Kilohertz range.  

The experimental form of the STDP protocol is as follows. A synapse is activated by 

stimulating a presynaptic neuron either before or after making the postsynaptic neuron 

fire. After this, the weight of the synapse is measured as the amplitude or initial slope of 

the postsynaptic potential. The learning window can then be plotted as the change of the 
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synaptic weight as a function of the relative timing between the presynaptic spike arrival 

and postsynaptic firing. 

The basic model of the STDP learning rule is explained below. The change in weight 

of the synapse     of a presynatpic neuron   is determined by the relative timings 

between the presynaptic spike arrival and postsynaptic spike. Let the presynaptic spike 

arrival times at synapse x be   
 
 where is f is a real number. Similarly,   

  where n is an 

integer are the spike times of the postsynaptic neuron. The total change in weight Δwx 

caused by this protocol [48] is 

                                             
    

 
  

     
       (2.1) 

The function W(x) is called the learning window and can be expressed as    

                
 

 
                           (2.2) 

                
 

 
                          (2.3) 

[48], where A+ and A− can depend on the present values of the synaptic weight wx. The 

time constants are on the order 10 ms. 

It becomes clear that rate-based Hebbian learning is inherently unstable because 

synaptic inputs that drive a neuron become stronger. Although this instability is required 

to make the neuron sensitive to correlations in the input, there is a rapid increase in the 

firing rate of neuron. For practical models renormalization of the weights as well as upper 

and lower bounds are introduced to control the rapid growth of firing rates. STDP is 

sensitive to spike arrivals and their timing in the millisecond range and hence it can be 

used for temporal coding schemes. Synaptic weights are a continuous variable in most 
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models although it can be discrete. There are several advantages with being discrete such 

as bistability, which would ensure long-term stability (weeks to years).  

2.2  The Memristor 

In 1971, Leo Chua had postulated the fourth circuital element called the memristor. 

The three circuital elements, resistor, capacitor and resistor have well defined 

relationships between the fundamental electricity and magnetism variables, namely: 

current i, voltage v, the charge q and the flux linkage φ. The resistor has a linear 

relationship between current i and voltage v. The capacitor has a linear relationship 

formed between voltage v and charge q. The inductor forms its linear relationship with 

flux linkage φ and current i. For the sake of completeness Leo Chua proposed a two 

terminal device which relates flux linkage φ and charge q. He called this circuit element 

the memristor because it behaves like a nonlinear resistor with memory [6]. The equation 

that establishes the relation between flux linkage φ and charge q is given by [6] 

               (2.4) 

Substituting the flux with the time integral of the voltage, and charge with the time 

integral of current [6], 

            
      

     
 

    

    
    (2.5) 

The voltage across the memristor is given by [6],  

                         (2.6) 

where  
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                                                                      (2.7) 

The current through the memristor is given by [6], 

                                         (2.8) 

where  

                        (2.9) 

M(q) is known as the incremental memristance and W(   known as the incremental 

memductance. From these set of equations it can be observed that incremental 

memristance (memductance) at any instant of time is equal to the integral of the 

memristor current (voltage) from t = 0 to to. What this means is that the memristor 

behaves like an ordinary resistor at to, but its resistance (conductance) depends on the 

history of the current (voltage) through (across) it. This means that device has a memory 

aspect to it, and can remember its most recent resistance when switched on [6]. The 

memristor is physically a two terminal device having a low conductive material in 

between an active electrode (anode) and a passive electrode (cathode).  

The memristor has an interesting property of a pinched hysteresis effect, shown in 

Fig. 2.1. For a current-controlled memristive element, let the input be x(t) (being the 

current) and the output be y(t) (being the voltage). The slope of this curve gives the 

resistance. The change in slope of the pinched hysteresis shows different resistance states 

of the memristive device.  
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Fig. 2.1. I-V plot of a memristor showing hystersis [48]. 

 

2.3 Programmable Metallization Cell (PMC) 

Only a few groups have managed to characterize their memristor for SPICE 

modeling. The memristor used in this thesis is the Programmable Metallization Cell 

(PMC) or Conductive Bridging RAM. Developed by Dr. Michael Kozicki of Arizona 

State University at the university's Center for Applied Nanoionics, the PMC can be used 

as a memory or synapse element in neuromorphic circuits. The PMC is a resistive 

switching memory which works via the transport of metal ions moving through a solid 

electrolyte and forming a conductive filament between two electrodes. PMCs have a low 

programming current and display multilevel resistance state capabilities [23]. Fig. 2.2 

[23] shows the cross-sectional representation of the PMC. 
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Fig. 2.2. Schematic view of a PMC [23]. 

 

The PMC works on the physical re-location of ions in a solid electrolyte. A PMC 

memory cell consists of two solid electrodes, an inert metal such as tungsten and an 

active electrode such as silver. The two electrodes are placed with a thin film of 

chalcogenide glass (ChG) electrolyte between them, as shown in Fig. 2.2. The ChG film 

in the PMC device used in this work is made of AgGe0.3Se0.7. The cell has metal-

insulator-metal structure, since the ChG layer is inherently insulating, i.e., highly 

resistive.  

When a few hundred millivolts is applied from anode to cathode, oxidation of the 

anode occurs, which releases metal ions (Ag+) into the ChG film. Ions that transport to 

the inert cathode are reduced and electro-deposited there. Charge neutrality is maintained 

due to the balance between oxidation and reduction.  Over a short period of time, the ions 

flowing across the ChG solid electrolyte form a nanowire between the electrodes. This 

nanowire reduces the overall resistance of the PMC. The formation of the nanowire or 

conductive filament is shown in Fig. 2.3. The nanowire need not be a continuous; it can 

be a chain of electrodeposits islands or nanocrystals.  
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Fig. 2.3. Schematic diagram showing (a) formation of conductive filament and (b) radial 

growth of the conductive filament [23].  

 

The resistivity of the electrodeposit is about eight orders of magnitude lower than 

that of the surrounding electrolyte. Once the electrodeposit has formed, the cell resistance 

falls considerably. The final resistance value is reached once the current flowing through 

the device reaches the limit of the source. When this happens the voltage drops below the 

threshold for electro deposition. It should be noted that the threshold for electro 

deposition falls once the deposition has started to form [49].  

A device with an electrolyte thickness of 50 nm will switch to a low resistance state 

within tens of nanoseconds. When a reverse bias is applied, the inert cathode becomes the 

new anode and the electrodeposit will dissolve [49]. Reading the state of the PMC 

requires a voltage reading across it. This can be achieved by means of a transistor acting 

as a switch. The PMC’s basic operation is illustrated in Fig 2.4 [23]. The current-voltage 

characteristics shown were obtained are measurements of a PMC with a via width of 1 

μm. An external compliance current of 100 μA is set to prevent any damage to the 

device, and set the low resistance level. The reset state or high resistance state can be 

achieved by applying a negative voltage of about -0.2 V [23]. 
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Fig. 2.4. I-V characteristics of a PMC [23]. 

 

A 1T1R (one transistor- one resistor device) can be used to program the device, 

shown on the inset in Fig. 2.5. The cell resistance RC is initially very large, most of the 

applied voltage VA drops across the device, forcing the transistor in the triode region. As 

the programming occurs and RC drops, the transistor is driven into saturation. This forces 

a constant current through the cell, acting like a compliance current [23]. Fig. 2.5 shows 

the effect of the pulse width and applied voltage on the programming window. It can be 

seen that a larger voltage (VA) allows a faster programming time. If VA is 1.5V, a pulse 

width in the order of milliseconds is required for the conductive filament formation 

whereas if VA is 2V, a pulse width in the order of nanoseconds suffices to initiate a drop 

in the resistance of the device. A larger compliance current allows for a lower resistance 

programming. The initial rapid fall of resistance is caused by the formation of the 
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filament and the gradual decrease of the resistance that follows it is caused by the radial 

growth of the conductive filament [23].  

 

Fig. 2.5. Resistance of the PMC as a function of the applied pulse width for different ID 

values [23]. 

 

Fig. 2.6 shows a current-voltage plot of a 240 nm diameter device with a 60 nm thick 

Ag-Ge-S electrolyte which has been annealed at 300 °C. Fig. 2.7 shows the resistance 

versus voltage plot of the same device. The voltage is swept in both figures from -1.0 V 

to +1.0 V and back to -1.0 V with a current limit of 10 µA. It can be seen that around 450 

mV the device switches from an off-state resistance (Roff) which is in the order of 10
11

 Ω 

to an on-state resistance (Ron) in the order of 10
3
 Ω. As mentioned previously, once 

electro deposition occurs, the threshold for further electro deposition drops [47].  
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Fig. 2.6. I-V plot of 240nm diameter device with a 60nm thick Ag-Ge-Si electrolyte 

annealed at 300 °C. Voltage swept between -1 to 1 V with a 10 µA compliance current 

[49]. 

 
Fig. 2.7. Resistance vs Voltage plot of the device of Figure 2.6 [49]. 
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2.4 SNNs and STDP 

Spiking Neural Networks (SNNs) are closely associated with biological neural 

networks. As discussed before, the action potential of neurons in the brain are used to 

process information in biological neural networks. SNNs emulate this neural network. 

Theoretical results show that temporal coding of these spikes allows for a great amount of 

information processing [25]. The widely used neuron model in CMOS is the Leaky-

Integrate-and-Fire Neuron (I&F). The silicon based I&F neuron integrates incoming 

currents with the help of a capacitor. Once this voltage (membrane potential) reaches a 

spiking threshold potential, a spike is fired, after which no more firing takes place. This 

models the refractory period of the spike of the neuron, which cannot fire successively.  

Here, the leaky integrate and fire circuit will be used to model the neuron.  

Neural networks in the brain are capable of learning by “programming” the 

synapses. The synapses state or weight changes in response to the neurons behavior. The 

equation relating the weight changes of the synapse (state change) is given by the 

Hebbian learning rule as mentioned before. The Hebbian rule as function of pre- and 

post-synaptic spikes can be written as [25]  

    
  

  
            .     (2.10) 

In equation (2.10),   is the learning rate. Xpre and Xpost are pre- and post-synaptic 

spikes, respectively. The equation relates the rate of change of the synaptic weight of the 

neuron. Although this is valid, there is no order of the spikes specified.  The learning rate 

is used to scale the individual magnitude of the weight changes,       [25]. 
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PMCs find their use in making synapses for neuromorphic circuits. Neuromorphic 

circuits mimic biological synapses by using a crossbar network of nanodevices. This 

integration of CMOS and semiconductor, nanowire and or molecular circuits is termed as 

“CMOL” integrated circuits. CMOL circuits are suitable for implementing defect-tolerant 

architectures including embedded, stand alone memories and artificial neural networks 

(ANNs) [20].  Distributed Crossbar Networks (“CrossNets”) are found to be suitable for 

CMOL implementation. Fig. 2.8 shows the I-V curve of an ideal synaptic switch, 

equivalent circuit model of a synaptic switch and array of synaptic switches. Here the 

synaptic connections are used as switches, having only two states, ON and OFF. The 

CMOS neuron circuits lies at the bottom layer and the two-terminal synaptic switches are 

formed at each crosspoint.  

 
Fig. 2.8. (a) I-V plot of a synaptic switch, (b) equivalent circuit diagrams of the ON and 

OFF state, (c) square array of synaptic switches [25]. 

 

 

The switches at the crosspoints behave as a programmable memory cell, having 

diode like characteristics at low voltages and switch like characteristics are higher applied 

voltages. Turning the synaptic switches ON and OFF is done quickly and is a statistical 
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process. When the voltage across the synaptic switch exceeds a threshold voltage (∆V > 

VT), its conductance increases rapidly. The synaptic switch can be turned OFF when a 

large negative potential is applied such that (∆V < -VT). It now becomes evident that the 

device is polarized. ∆V is defined as Vaxon − Vdendrite.  

For implementing STDP using the crossbar network, each neuron input is a virtual 

input. Currents arriving from other neurons via the nanowire network are summed on a 

capacitor. When the voltage buildup exceeds a threshold a voltage spike is produced and 

travels to other connected neurons. The synapse is modelled using the memristor device. 

A weaker synapse is modelled with a greater the resistance of the connection. The 

resistance of the synapse is set by the voltages arriving at its terminals. As the voltage 

spike propagates through the synaptic connections the resistance of the connection 

changes. To integrate CMOS with the crossbar architecture requires a hybrid CMOS 

stack in which the network of the memristor devices will be fabricated on top of the 

CMOS circuits as shown in Fig. 2.9.  
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Fig 2.9. A conceptual diagram of a 3-dimensional CMOS-memristor hybrid structure 

[24].  

2.4.1 Spike shapes 

Unlike conventional neural spikes, the spike waveform required for STDP require a 

negative triangular wave followed by an exponential or linear decaying positive pulse. 

The spikes are asymmetric. The positive part dictates the width of the learning window. 

This is shown in Fig. 2.10. 

 

Fig.  2.10. A negative triangular pulse followed by a (a) linear or a (b) exponential 

decaying positive pulse [25].  

 

Fig.2.11 illustrates how presynaptic and post synaptic spikes can be sent both 

forward and backward to program synaptic switches. The direction of the spike can be 

selected using a switch. 
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Fig. 2.11. Pre- and post-synaptic neurons generate spikes that are sent both forward and 

backward to program the synaptic switches [25].  

 

Fig. 2.12 from [25], shows that there are three possible cases that can occur when a 

pre-synaptic and post-synaptic fire across a synapse. Assume that Xpre occurs at time tpre= 

0 and Xpost occurs at time tpost=s, giving ∆T = tpost−tpre = tpost = s. Here “s” is the “spacing” 

between fire signals. 

Fig. 2.12.(a) Shows the relative timing of the pre and post neuron spikes, (b) shows the 

different weight changes that occur due to different overlaps of the pre and post neuron 

spikes [25]. 

 

Case 1: If s > tail or s < −tail, the voltage drop across the memristor is not sufficient 

to change the conductance of the device and the weight has no change.  
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Case 2: If 0 < s < tail, or when the pre-synaptic spike precedes post-synaptic spike, 

the synaptic weight is potentiated. When this occurs, the applied exceeds the positive 

threshold of synaptic switches, (Xpre−Xpost) > VT+ for a fraction of the learning window. 

Case 3: If –tail < s <0, or when the pre-synaptic spike follows post-synaptic spike, 

the synaptic weight is depressed. This means that the applied voltage exceeds the 

negative threshold of the device (Xpre−Xpost) < VT- [25]. 

It now becomes evident that a learning window exists where the spikes are close 

together and an overlap of sufficient voltage is required to cause a weight potentiation or 

depression. This is similar to the synaptic weight changing in a biological neural network. 

The idea for using memristors as synaptic connections is that their resistance changes 

negligibly for voltage below the set threshold, beyond which there is a significant change.  

Fig.2.13 shows the influence of the spike shape on the resulting STDP memristor 

weight update function ξ(T). . For this work, a spike shape similar to the action potential 

shown in C1 of Fig.2.13 is used ,thus a weight update function similar to the update 

function shown in C2 of the same figure is expected. 
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Fig.2.13 Illustration of influence of action potential shapes on the resulting STDP 

memristor weight update function ξ(T). [52]. 

 

 Synaptic weight changes need not be discrete. Reference [48] shows a continuous, 

asynchronous and a deterministic implementation of STDP using TiO2 device. Fig. 2.14 

shows the STDP simulations with a TiO2 device. This thesis work aims to produce a 

similar implementation using silver chalcogenide devices with actual silicon results.  
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Fig. 2.14. STDP simulations using a TiO2 device [48]. 
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CHAPTER 3 IMPLEMENTING NEURAL MODELS IN SILICON 

3.1 Case Study 

Neural models are found in computational neuroscience and pattern recognition. 

While computational neuroscience aims to provide a better understanding of neural 

systems, patter recognition strives to outperform systems working sequentially. Hardware 

based neural models (analog or digital) are faster than a sequential machine which uses 

complex and slow software because hardware is inherently faster than software and 

neural systems are massively parallel.   

A neuron can be viewed functionally as a circuit having one or more synapse, which 

acts as input ports responsible for receiving spikes from other neurons. These spikes are 

integrated over time with help of the soma block. The soma block produces an analog 

action potential. The soma block and synapse block can be interfaced with circuits 

modeling the neuron’s spatial structure. This allows the signal processing that takes place 

in dendritic trees and axons to be mimicked on silicon.  

The synapse in silicon can carry out either linear or non-linear integration of the 

spikes it receives from other neurons. Different temporal dynamics can be modeled along 

with short or long term plasticity mechanisms. This work focuses on implementing the 

synapse by using its plasticity mechanism. The plasticity mechanism described in STDP 

is achieved with the inherent property of the memristor:  the memristor’s resistance 

change is a function of its previous resistance.  

The soma block in silicon can be further divided into sub-blocks each serving its 

own function. Typically they are divided into the following stages. A (linear or non-

linear) temporal integration block, a spike generation block, a spike-timing block and a 
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spike-inhibiting block (or refractory period block). Each of these blocks can be designed 

using various methods from linear threshold circuits to complex systems. In this work, 

the neuron will be implemented using a leaky I&F circuit which implements the memory 

of the neuron as well as the refractory period.  

There are different design styles to realize the blocks described above in silicon. 

There are sub-threshold (weak inversion) design approaches as well as strong inversion 

designs. The weak inversion design aims for a low power operation. There are voltage 

and current mode design styles which generally depend on the type of input or output 

signals. Switch capacitor designs implement discrete time signal processing and require a 

clock. Real and accelerated-time implementations refer to designs that run at biologically 

plausible rates and rates of 10 times faster, respectively. In this work the circuits are 

designed so that the MOSFETs operate in strong inversion and are real-time 

implementations of neurons.  

3.1.1 Time Independent Neuron Models 

The time free neuron model is the simplest neuron model. The inputs are vectors and 

the output is computed from these input vectors without considering past inputs or 

outputs, making the model independent of time. Even if the network contains loops, the 

state information is sensitive to the order of the inputs and not on the actual timing of the 

inputs. This type of model can be easily implemented using digital logic and serves as the 

basis for most of the current work in pattern recognition. An early model of a time 

independent neuron was the McCulloch-Pitts neuron [26]. The model can be written as 

[26]  

                                                         
 
          (3.1) 
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According to this model, if the sum of the vector input exceeds a threshold a binary 

output of 1 is produced, otherwise a 0 is produced. Here A is the activity factor of the 

neuron,    is the weight of the synapse and    is the I’th input. A binary output Y = 1 is 

produced if the activity factor A is greater than a threshold Θ. If the threshold is not 

reached, the neuron outputs logic 0. The activity A represents the overall effect of all the 

presynaptic neurons. The effect of the presynaptic neuron on the postsynaptic neuron is 

computed by simple multiplication of the synaptic weight and the input. An excitatory 

synapse has wi > 0, and an inhibitory synapse has wi < 0. This makes computing the 

activity factor A a linear operation. The model can designed using digital gates (NOT, 

AND and OR gates). A digital computer can then be built if a clock is added [26].  

3.1.2 Time dependent neuron models  

Time dependent neuron models are sensitive to the timing of the inputs as opposed 

to the order, in other words they have a time varying state.  According to [27] a simple 

first order differential equation can be used to represent the neurons conductance 

dynamics and synaptic transmission mechanisms. The equation takes the form  

      
  

  
      ,   (3.2) 

where y represents the output voltage or current and x represents the input current or 

voltage. This equation can be used to describe all the behavior of passive ionic channels. 

As mentioned before, there are different approaches to implement this differential 

equation in circuits. Reference [28] proposes a circuit that models neurons as passive leak 

conductance and follower integrator circuits. The follower integrator basically consists of 

a transconductance amplifier configured in negative feedback and connected to a 
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capacitor. It behaves as a low-pass filter with a tunable conductance. Log domain circuits 

help realize the first order differential equation. The Bernoulli cell described in [29] is an 

example of a log domain circuit. Current mode circuits are an efficient way of 

implementing neurons on silicon. The “tau cell” was first proposed in [30] as a BiCMOS 

log-domain filter, later characterized as a subthreshold log domain circuits. This circuit is 

also used in the tau-cell neuron.  

Another way to model channel conductance is to solve the channel dynamics and 

conductance described by differential equations using analog circuits. Systematic 

synthesis methods are used to map non-linear differential equations in analog circuits. 

These circuits use voltage mode, strong inversion biased MOSFETS with integrators 

usually implemented in switch capacitor techniques.   

3.2  Techniques For Hardware Implementation And Challenges  

Implementing neural models in hardware allows real time operation and parallelism. 

Neural systems can be implemented in a plethora of ways, each having its own 

advantages and disadvantages. The different implementation methods can be compared 

as summarized in the table [32] below, 
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Table 3.1 Comparison of different hardware implementations of neurons.  

Implementation 

Method 

Degree of 

implementation 

Speed Real Time Power 

consumed 

Subthreshold 

VLSI 

High High Yes Very Low 

Strong Inversion 

based VLSI 

High Very High Yes Low 

Digital VLSI Low High Possible Medium to 

high 

FPGA Low to Medium Medium Possible Medium to 

high 

DSP based 

Software 

Low Medium to 

High 

Possible High 

 

The implementations can be broadly classified into digital and analog. The digital 

implementation can be further divided into fields ranging programmable gate array 

(FPGA) based to software based implementations. Analog based implementations largely 

fall between subthreshold designs and strong inversion based designs. The only 

disadvantage of hardware based designs (except for FPGA – which has the best of both 

worlds) is that there exists a lengthy time between design and testing. Any change of 

design in hardware requires a re-fabrication (taking several months), whereas in software 

it can be done in minutes if not seconds.  

Hardware implementation of neurons have been also already tried using discrete 

components [33], however modern neural hardware engineers are generally more 

interested in chip-based implementations. They are smaller compared to discrete circuits 

and can easily be incorporated into other systems. Testing of chip-based designs is also 

easier since the designer will receive a greater number of systems to test. The only 

limitation with chip based designs is there are no process technology kits dedicated for 
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neural implementations. This means a neural hardware designer must use technologies 

dedicated for high speed digital processors.   

A good starting point for an on chip design is to choose between an analog or digital 

implementation. A number of factors can determine which implementation to choose. 

The primary differences between analog and digital systems are the way the signals are 

represented and coded. Analog signals are continuous in both time and magnitude where 

are digital signals are discrete in time and magnitude. Analog systems work with a 

different set of parameters such as bandwidth, slew rate and noise. These parameters are 

of paramount interest when the accuracy of the system is considered. For a digital system, 

the record length (sample length) of the analog value sets the accuracy. A longer digital 

word requires more transistors, meaning more area and power. 

In order to implement a simple neuron model described above, adders and 

multipliers are required. A digital implementation would typically have adders and 

multipliers whereas an analog implementation would use circuit elements to add voltages 

(currents).  Digital adders can be extremely fast and small, but multipliers tend to be quiet 

large and power hungry. The issue becomes a practical one and using a separate 

multiplier for each synapse is not feasible, especially when the word lengths are longer 

(longer words make multipliers slower and larger).  Analog multipliers on the other hand 

can be made with ease provided they are to multiply within the first quadrant where both 

values are positive. Analog implementations also allow easier ways of creating 

exponential, integration and differentiation functions.  

Neural systems require memory to hold constants such as thresholds or variables 

such as synaptic weights. Digital memories include dynamic and static Random Access 
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Memories (RAM) for variables and Electrically Erasable Programmable Read Only 

Memory (EEPROM) for constants. Dynamic RAM and static RAM are volatile and 

dynamic RAM requires constant refresh cycles. Analog memory implementations require 

resistors or capacitors to retain values. On chip resistors are usually not fabricated with 

very high accuracy and capacitors require a lot of area. A simple MOSFET can be used to 

store a charge on its capacitor but this tends to leak away so a refreshing system may be 

required. Thus these values may need to be refreshed by using Digital to Analog 

Converters (DACs) or external digital values. These techniques can be used to store 

constants. However the issue of storing variables in an analog implementation is not so 

straightforward. A digital system can easily change a variable value by changing the 

binary value by say a counter, the value of which comes from some computational 

element such as an adder and/or multiplier. Many novel solutions have been proposed 

such as motor driven potentiometers and memristors. Meador in [35] suggests a 

mechanism to transfer charges using floating gate transistors, however checking the value 

of the weight may be required since process variations exist.  

This thesis aims to use memristors as a solution for the leakage problem discussed 

above. Memristors possess non volatility, low power and high density characteristics; a 

promising solution for synaptic weight change. Memristors do pose their own problems. 

There are large device to device variations making circuit design a bit more challenging.  

3.3 Building Blocks for Implementing Synaptic Plasticity Rules In VLSI 

To implement neurons in CMOS different building blocks are required. Synaptic 

weights and other weights need to be stored in storage devices. Capacitors serve as a 

storage element for analog based implementations. In CMOS different capacitor 
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implementations exist. Almost all capacitors in CMOS are parallel plate capacitor 

composed of two conductive parallel plates having equal dimensions. VLSI dielectrics 

which are used to increase the capacitance significantly are made of an insulator. 

Integrated capacitors can be MOS capacitors, poly-poly capacitors, metal-metal or metal 

– insulator – metal (MIM) capacitors. The choice of the capacitor type depends on 

linearity and accuracy. Thin film capacitors can have less parasitic capacitors compared 

to MOS capacitors but require additional processing steps. Capacitors can vary up to +/- 

30 % and are not easy to trim because trimming forms parasitic capacitors. Poly-Poly 

capacitors are formed by two poly layers separated by a silicon dioxide layer. The 

temperature coefficient of poly-poly capacitor is typically less than 250ppm/°C which 

depends on the doping levels of the poly. MIM capacitors are made with two metal 

layers, usually the top most layer, keeping parasitic capacitances formed with the 

substrate to a minimum. MIM capacitors offer a high quality-factor (Q) of about 100 to 

1000. MOS gate capacitances are made of a thin layer of oxide on the diffusion. The 

capacitance value depends on the bias values on the MOSFET. Junction capacitors are 

formed across the depletion region of reverse biased diode and have the high capacitance 

per unit area. The major disadvantage of junction capacitors is that they suffer from 

nonlinearities caused by variations of the depletion region.  

A very commonly used neuromorphic circuit block is the differential pair or long tail 

differential pair [41]. A differential pair circuit is typically made of a bias transistor on 

which two input transistors are stacked upon. The large signal analysis of such a circuit 

gives a sigmodial relationship. Differential circuits, shown in Fig. 3.1 can also function as 

comparators, multipliers (Gilbert cell) and form the basis for operational amplifiers.  
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Fig 3.1 (a) A differential pair circuit consists of three transistors. (b) The OTA acts a 

transconductance circuit that converts the difference between its input voltages to a 

corresponding current at its output, (c) The sigmodial relationship between differential 

input voltages and the currents flowing in each transistor of the differential pair. This is a 

useful behavior for implementing similar sigmodial behavior observed in neural systems 

[45, 48]. 

 

Operational amplifiers or operational transconductance amplifiers (OTA) are another 

important building block. They are basically a differential amplifier with a very high 

gain, typically used with voltage inputs and current outputs. OTA’s can be used in a 

number of ways in neuromorphic circuits [42]. Typically they are used as comparators, 

but find themselves in innovative circuits such as active resistors in leaky integrator 

circuits [43]. OTAs generally are stable from noise and process variations proving to be a 

very useful building block.   

 



 

40 

3.4 Spike Generating Circuits  

To implement the potentiation and depression characteristics of plasticity rules, 

circuits which emulate these dynamics are required. Spiking circuits can cause 

potentiation or depression of a synaptic weight. Neurons produce analog waveforms, 

continuous in time however in many neuron models the action potential is described to a 

discrete even generated when a threshold is exceeded.  

One of the original circuits proposed for generating discrete events in VLSI 

implementations of silicon neurons is the Axon-Hillock circuit [44]. Fig. 3.2 (a) shows a 

schematic diagram of this circuit. The amplifier block A is typically implemented using 

two inverters in series. Input currents Iin are integrated on the membrane input 

capacitance Cmem, and the analog voltage Vmem increases linearly until it reaches the 

amplifier switching threshold as shown in Fig.3.2 (b). At this point Vout quickly changes 

from 0 to Vdd, switching on the reset transistor and activating a positive feedback through 

the capacitor divider implemented by Cmem and the feedback capacitor Cfb. If the reset 

current set by Vpw is larger than the input current, the membrane capacitor is discharged, 

until it reaches the amplifier's switching threshold again. At this point Vout swings back to 

0 and the cycle repeats. The inter-spike interval tL is inversely proportional to the input 

current, while the pulse duration period tH depends on both the input and reset currents. A 

comprehensive description of the circuit operation is presented in Mead [44]. 
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Fig. 3.2 Axon-hillock circuit. (a) Schematic diagram of the Axon-hillock circuit and (b) 

membrane voltage and output voltage traces over time [50]. 

 

The main advantage of such a circuit is that it has very good matching properties. 

The mismatches do not depend on the transistors, but rather on the sizes of the capacitors.  

A spiking event in the Axon-Hillock circuit is produced when the membrane voltage 

reaches a threshold, which has a strong dependence on the widths and lengths of the 

transistors and the process characteristics. To improve on the neuron model, a refractory 

period can also be incorporated. Such a circuit is present in Fig. 3.3 (a) which uses a 

simple five transistor OTA as a low cost comparator. Fig. 3.3 (b) [50] shows the various 

events that occur during the spike generation.  
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Fig. 3.3. (a)Schematic diagram of the I&F circuit, (b) membrane voltage trace over time 

[50]. 

The membrane of the biological circuits is represented by the capacitor Cmem. When 

no input is given to this circuit a membrane leakage current controlled by Vleak will draw 

all the charge on the membrane capacitor bringing to a resting potential, ground in this 

case. Excitatory inputs in the form of a current Iin will build charge on the membrane 

capacitance as long as it is greater than the leakage current. The membrane voltage is 

compared to an external threshold (Vth). This comparison between the two potentials is 

made by a comparator. If Vmem exceeds the externally controlled Vth a spiking event 

occurs. This is similar to a biological neuron in which the increase in sodium 

conductance causes the waveform to rise and a slightly delayed potassium conductance 

increase creates a downswing. 
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As Vmem rises above Vth the comparator outputs a positive voltage equal to the 

supply. The inverter that follows will go low allowing the “sodium” current INA to pull up 

the membrane potential. While this occurs the second inverter charges capacitor CK, 

controlled by Ikup. Once the voltage on CK reaches a large enough, M2 turns on allowing 

the potassium current IK to discharge the membrane capacitance. These two potassium 

channel currents govern the opening and closing of the potassium channels. IKUP controls 

the spike width, and the delay between the opening of the sodium channels and potassium 

channels is inversely proportional to IKUP. Once the voltage of the membrane capacitor 

Vmem drops below the threshold voltage Vth the sodium current becomes 0. The second 

inverter causes Ck to discharge to ground through IKDN. This current controls the 

refractory period of the circuit.  

The advantage of this circuit over the Axon-Hillock circuit is that it consumes less 

power. The amplifier used in this circuit, typically two inverters in series dissipates lots 

of power for slow varying input signals, which occurs when the NMOS and PMOS are 

both conducting (short circuit power). 
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CHAPTER 4 ANALYSIS AND SIMULATION RESULTS 

4.1 Design and Evaluation approach. 

The design begins with a block level simulation of the circuit. This is done to 

evaluate critical parameters of the circuit such as frequency and power consumption. It 

also serves as starting point for the design. From there on, transistor level design is done 

followed by layout and post-layout verifications. The designs are also tested across 

Process, Voltage and Temperature (PVT). Since the CBRAM device does not have a 

specified threshold voltage for programming, the I&F circuit should be able to produce a 

wide range of spikes with different pulse widths. This was the main requirement for the 

I&F block.  Characterization of the memristor is done to get a general idea of the spike 

amplitude and pulse width that would be able to program the device. The programming 

window is chosen to be in microseconds. From [23] a microsecond programming time 

frame requires spike amplitude of about 1.5 V to 2 V.  

4.1.1 Integrate and Fire Circuit 

As mentioned before different circuit blocks can be used to model the biological 

neuron in CMOS. The spiking neuron in CMOS will be implemented using the LIF 

circuit. In a biological system, a neuron is surrounded with water having ions. These ions 

maintain a concentration across the cell membrane of the neuron. This is modeled as a 

capacitance      . As mentioned before, the firing of a neuron takes place when these 

ions move across the cell membrane. This can be described as a current     . The 

electrical potential across the cell membrane which manifests as a spike (action potential) 

is defined as          This can be described using  
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      (4.1) 

When the voltage across      reaches a threshold voltage    , a spike occurs and 

the potential is reset to the resting potential. The frequence of firing here is clearly 

unbounded. The neuron has a refactory period     ,during which no firing can take place. 

The linear time invarient frequency bounded model for frequency of firing for the neuron 

is given by  

          
 

              
.    (4.2) 

The shortcoming of equation (4.2) is that it fails to incorporate the memory aspect of 

the neuron. The memory of the nueron is time dependent. The leaky integrate and fire 

model accounts for this memory phenomenon by adding a “leaking” current. This 

accounts for the diffusion of ions across the membrane when the equilibiruim is not 

reached. The equation can be expressed as 

                                                  
       

    
     

     

  
    (4.3) 

Here      is the membrane resistance. The cell membrane does not act as perfect 

insulator. If the threshold is not exceeded, there will be a leak of charge. The frequency 

of firing now becomes 

              

                                                           
 

                    
   

     
 
                                          

   (4.4)  
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The I&F circuit architecture used in this thesis is shown in Fig. 3.5.The I&F circuit 

is first modeled in Verilog AMS to start with. The block level simulation of the I&F 

gives an idea of the frequency and power it consumes.  

4.1.2 Operational Amplifier Design 

The operational amplifier (op-amp) here is used as a simple comparator. Input 

offsets are not of a major concern-shifting the threshold by a few tens of mill volts has no 

effect on the spiking width or frequency.  

The op-amp is designed to have a gain of approximately 40 dB. Its architecture is 

kept simple since a high gain is not required. A 5 transistor design is shown in Fig. 4.1. It 

functions as the comparator.  

 

Fig. 4.1. OTA architecture used to function as a comparator [42]. 

 

The gain of the op-amp is given by the transconductance (gm) of the input pair 

multiplied by the output impedance. To achieve the gain of 40 dB, (which is sufficient to 

resolve the input voltage difference), the bias current to the op-amp and the widths of the 
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input pair can be sized accordingly. The unity gain bandwidth of the op-amp is designed 

to be above 100 MHz. The gain of the op-amp is given as  

                                               
  

  
       

  

     
  

  

     
 ,  (4.5) 

where, Ibias is the bias current, Wn, Ln are the width and the length of the input pair’s 

transistor respectively,    is the mobility of the NMOS device and     is the capacitance 

of the gate oxide of the input transistor pair. The bias voltages for the op-amp are 

generated using a constant gm biasing circuit with a start up circuit shown in Fig. 4.2.   

  
Fig. 4.2. Constant gm bias.  

 

The constant gm bias circuit offers several advantages. The current reference is 

derived from VGS6 divided by the on chip resistance R. The resistance R is shielded from 

the supply hence the reference current is supply insensitive to a first order. By sizing the 

width of transistor M6 to be four times as the width of transistor M5, the transconductance 

of M6 becomes equal to the inverse of R. On chip resistors have a very good temperature 

co-efficient .Thus a N-channel MOSFET referenced from M6 will have a gm with a 
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temperature coefficient of R. This circuit has a positive feedback loop which causes a 

stability concern. To prevent oscillations, R must be selected such that the source 

degenerated common source amplifier formed by R,M6 and M5 have a gain of less than 

unity. Another issue with this circuit is that it has a second stable where all the currents 

are zero. To guarantee this condition does not happen, a start up circuit (M1 ,M2 and M3) 

is implemented to ensure non zero current flow during start up.  

The capacitors are sized according to equations (4.2) and (4.3) to achieve the 

required frequency. The capacitor is chosen to be 9 pF so that the frequency of operation 

is lies in the MHz range. Fig. 4.3 shows the circuit. 

 

Fig. 4.3. I&F circuit schematic. 

 

The threshold can be adjusted externally. The current required for the pulse width 

adjustment can also be adjusted externally. All other bias voltages required for modeling 

the sodium and potassium currents are taken from the constant gm bias. A spike swing of 

about 1.2 V is required to modulate the CBRAM device. This spike swing can be set by 

adjusting capacitor      and the operating Vdd. The Vdd is chosen to be 3.6V so that the 

required swing can be achieved. Table 4.1 shows the pin list for the I&F circuit.  
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Table 4.1 Pin list of I&F circuit. 

 

Name I/O Function 

VDD I/O Supply 

GND I/O Ground 

ENABLE I Enables the circuit 

VPW I Adjust spike pulse width 

VTH I Set threshold for spike to occur 

VMEM O Output 

 

4.1.3 Layout and Floor Planning 

Fig. 4.4 shows the layout of the I&F circuit. The input pairs are laid out using a 

common centroid to improve matching (although it is not a strict requirement). The rail 

devices used for current mirroring are laid out using interdigitization to reduce 

mismatches up to a first order.  
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Fig. 4.4. I&F circuit layout. 

 

The die size is 1.5 mm x 3 mm with pads of 30um x 30um. This allows 21 pads on 

the sides and 9 pads on the top and bottom. The CBRAM devices are deposited by hand 

with masks made out of tape. To allow sufficient spacing for the CBRAM deposition, 

two pad spacing is used. More pads were placed in the center on the die as required. 

Fig.4.5 shows the layout of the chip.Fig.4.6 shows the two pad spacing to for the 

CBRAM device deposition. 
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Fig. 4.5. Chip layout. 
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Fig. 4.6. Layout of the I&F pair used for programming the CBRAM device. The figure 

also shows the 2 pad spacing used for memristor deposition done by hand. 

4.1.3 Die Post Processing 

The CBRAM device is deposited on the required pads on the die. A 100nm layer of 

chalcogenide glass is deposited by thermal evaporation over the chip, followed by a 400 

nm Ag deposition by thermal evaporation over the ChG. Photo doping of silver is done 

by exposing the depositions to ultraviolet light for 20 minutes. Another 100 nm layer of 

Ag is deposited by thermal evaporation. Finally, a 1 micron layer of aluminum and 1 
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micron layer of copper are deposited over the silver by e-beam evaporation respectively. 

Fig. 4.7 below summarizes the post processing to deposit the CBRAM device on the 

CMOS die.  

 
Fig.4.7. Steps involved in the CBRAM device deposition on the chip pads. 

 

4.2 Evaluation  

The memristor after fabrication has unknown resistance and I-V characteristic. Since 

there is batch to batch variation of these devices, characterization is required.  

Characterization of the device shows the positive threshold voltage at which the 

conductance change occurs and the negative threshold at which the erase occurs. These 

voltages are required to measure the memristor’s resistance by applying a subthreshold 

pulse, and measuring the current flowing through the device. After the characterization of 

the device, the device is programmed to different low resistance states of 1 kΩ, 5 kΩ and 

10 kΩ. The device can be programmed using the 1T-1R circuit. After the device has been 

programmed, the pre and post spikes can be applied across the device. The spike can be 
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produced by enabling the I&F circuit using a pulse. The post-spike is then delayed by 0.5 

µs. For each delay, the resistance (conductance) of the device is measured using a 

semiconductor parameter analyzer and the 1T-1R circuit. The flow chart shown in Fig. 

4.8 shows the steps that are carried out to acquire the readings. Fig.4.9 illustrates the test 

setup. 

 
Fig.4.8. Flow chart showing steps followed to prove STDP in CBRAM devices.  
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Fig.4.9. Test setup used to modulate the resistance(conductance) of the CBRAM device. 

 

Fig. 4.10 shows the 1T-1R circuit that is used to program the memristor to its 

initial resistance.   

 
Fig.4.10. 1T-1R used to set the initial resistance of the memristor device. 

 

The I&F outputs are applied across the memristor once the switch SW1 is closed 

(shown in Fig. 4.9). The pad at the drain of the transistor is also connected to the cathode 

of the device. The 1T-1R circuit is used to program the device to a low resistance state 
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and also measure the resistance after the spikes are applied. By enabling the I&F circuits 

with a phase difference, relative spike timings can be achieved. A dual channel signal 

generator is used for this purpose, which offers better synchronous signals than using two 

individual signal generators externally synchronized. All other inputs (VTH and VPW) are 

common to both I&F circuits so that similar spikes shapes are produced. DC power 

supply units connected to a common ground are used to provide input voltages.  

 

4.3 Results  

The Spice and experimental results for each block and the STDP rule are presented 

in this section.  

4.3.1 I&F 

The simulations were run at optimum conditions (room temperature and typical 

models). The results presented are post-layout simulations with extracted parasitic 

capacitances. Fig. 4.11 shows the SPICE waveform required to prove the STDP 

mechanism using CBRAM devices. This waveform conforms to the required 

specifications to modulate the conductance of the memristor. The waveform shape is 

similar to those in Fig. 2.12 and Fig. 3.5 (b).  Fig. 4.11 shows a spike that is ideal to 

modulate the resistance of the memristor. Fig. 4.12 shows spike of different widths and 

amplitudes that can be produced with the I&F circuit as required.  
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Fig. 4.11. Ideal spike to modulate the conductance of the CBRAM device.  

 
Fig. 4.12. Example of spikes that can be produced by the I&F circuit. 

 

Fig. 4.13 shows the oscilloscope trace of the real hardware I&F circuit’s output. 
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Fig. 4.13. Hardware test result showing the I&F output. 

 

Fig. 4.14 shows the hardware test results of individual spikes from pre-synaptic 

neuron and post-synaptic neuron that are used to modulate the conductance of the device. 

As mentioned before, pulse width modulated signals are applied to the enable pin to 

produce the lone pulses.  
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Fig 4.14 Hardware test results showing lone spikes used to modulate the device resistance 

(conductance). 

 

4.3.2 Memristor 

The memristor’s I-V characteristic is shown below in Fig.4.15. The characterization 

of the memristor was done using a 1T-1R circuit. The parametric semiconductor analyzer 

is used to for this purpose. The high resistance state of the device was measure to be 

14.74 MΩ. A compliance current of 100µA was used when obtaining the I-V curve. 
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Fig.4.15 I-V characteristic of the CBRAM device deposited on hardware. 

 

4.3.3 STDP  

The die was packaged using a 28 pin ceramic package. The input pads of the I&F 

circuit were wirebonded leaving the anode of the memristor exposed for probing. The 

memristor was first programmed to a low resistance value of 10kΩ using the 1T – 1R 

circuit. When the external switch SW1( shown in Fig. 4.9) is closed , the pre-synaptic and 

post synaptic spikes are applied across the memristor. Switch SW1 is closed by probing 

the anode of the memristor and connecting it to the post-synaptic I&F circuit’s output. 

The resistance of the device was measured using a semiconductor parametric analyzer. 

The resistances were recorded for different phase differences between the pre-synaptic 

spike and post-synaptic spike. The process was then repeated for an initial resistance of 

5kΩ and 1kΩ. Fig. 4.15 shows the results of the weight change due to the relative timings 

between the pre and post synaptic spikes. The post-synaptic neuron’s spike is shifted by 

∆T. A positive ∆T indicates that the post-synaptic spike occurs after the pre-synaptic 

spike, and a negative ∆T indicates that the post-synaptic spike occurs before the pre-
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synaptic spike. Fig. 4.16 (a) shows the results with a spike width of 7µs and (b) shows 

results with a spike width of15µs. From the results presented in Fig.4.16 a spike width of 

7 µs causes a maximum weight change of about 20% whereas a spike width of 15 µs 

causes a maximum weight change of about 40 % for LTP and -30% for LTD. It is also 

observed that a lower initial resistance has a slightly greater weight change. The weight 

update function is similar to the update function shown in Fig. 2.13. From the results 

presented above, it can be concluded that a hybrid neural network using CMOS circuits 

and CBRAM devices can be used to implement a STDP weight update function 
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Fig.4.16. Plots showing results for STDP using CBRAM devices made of silver 

chalcogenide using spikes widths of (a) 7 µs and (b) 15 µs. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

5.1 Summary and Conclusions 

Alternative methods of computation will continue to advance in an effort to process 

complex problems while consuming little energy per computation. Biological systems 

provide a model from which such a processor can be designed. The challenges to emulate 

a neural system on chip had been an engineering challenge but with recent developments 

such as memristors, bio-inspired processors are becoming more feasible. Most 

implementations demonstrate proofs of principles. A successful application of 

neuromorphic circuits in large-scale requires a system that goes beyond single core 

solutions. The major challenges include interchip communication and EDA tools that 

allow design, verification and testing. Synaptic weight storage circuits tended to consume 

a large area but memristors are new alternatives. Memristors consume less power, occupy 

smaller area and are compatible with CMOS technology. Although memristors show a 

promising alternative to circuit based synaptic weight implementation, memristors suffer 

from wide process variations. 

This thesis presents a proof of concept in which CBRAM devices made of Ag ChG 

materials are used with CMOS circuits to prove a learning algorithm, i.e., Spike Time 

Dependant Plasticity. The learning algorithm is proved by implementing a hybrid circuit 

of CMOS based neurons and a memristor based synapse. 
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