
Secure Mobile SDN

by

Ankur Chowdhary

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved June 2015 by the
Graduate Supervisory Committee:

Dijiang Huang, Chair
Hasan Davulcu
Hanghang Tong

ARIZONA STATE UNIVERSITY

August 2015

ABSTRACT

The increasing usage of smart-phones and mobile devices in work environment and IT

industry has brought about unique set of challenges and opportunities. ARM architecture

in particular has evolved to a point where it supports implementations across wide spectrum

of performance points and ARM based tablets and smart-phones are in demand. The

enhancements to basic ARM RISC architecture allow ARM to have high performance,

small code size, low power consumption and small silicon area. Users want their devices to

perform many tasks such as read email, play games, and run other online applications and

organizations no longer desire to provision and maintain individual’s IT equipment. The

term BYOD (Bring Your Own Device) has come into being from demand of such a work

setup and is one of the motivation of this research work. It brings many opportunities such

as increased productivity and reduced costs and challenges such as secured data access,

data leakage and amount of control by the organization.

To provision such a framework we need to bridge the gap from both organizations side

and individuals point of view. Mobile device users face issue of application delivery on

multiple platforms. For instance having purchased many applications from one proprietary

application store, individuals may want to move them to a different platform/device but

currently this is not possible. Organizations face security issues in providing such a solution

as there are many potential threats from allowing BYOD work-style such as unauthorized

access to data, attacks from the devices within and outside the network.

ARM based Secure Mobile SDN framework will resolve these issues and enable employees

to consolidate both personal and business calls and mobile data access on a single device.

To address application delivery issue we are introducing KVM based virtualization that

will allow host OS to run multiple guest OS. To address the security problem we introduce

SDN environment where host would be running bridged network of guest OS using Open

vSwitch . This would allow a remote controller to monitor the state of guest OS for making

important control and traffic flow decisions based on the situation.

i

Index terms— BYOD (Bring Your Own Device), ARM, Virtualization, Hyper-

visor, VM(Virtual Machine), SDN (Software Defined Network), Controller, OpenFlow,

GRE(Generic Routing Encapsulation), oVS (OpenFlow Virtual Switch), KVM(Kernel Based

Virtual Machine)

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Dijiang Huang for providing me opportunity to work on this

research project. He is a great mentor and source of inspiration to all graduate students

working under him.

During this thesis work I received a good deal of feedback from other members in the

lab so I would like to thank members of our lab for their invaluable inputs. I would like

to thank the committee members who took out the time from their busy schedule to be

present here for my defense. I was greatly benefited by the work done by VirtualOpenSys-

tems towards Virtualization on ARM platform. I was helped a lot technically by team of

VirtualOpenSystems. I am grateful to them and other groups online who are supporting

Open source development.

Lastly I would like to thank my family and friends without whose encouragement and

support I would not have been able to do this.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION. 1

1.1 Background . 1

1.2 Contribution . 2

1.3 Organization of Thesis . 3

2 RELATED WORK . 4

2.1 End User Virtualization . 4

2.2 Prioritized Defense Deployment . 5

2.3 MOSES . 7

2.4 KVM/ARM and Virtual Open System . 8

2.5 Yocto Project . 9

2.6 XEN Virtualization on ARM . 10

3 SYSTEM DESIGN AND SECURE MOBILE SDN ARCHITECTURE 15

3.1 System Use Case Diagram . 15

3.2 System Components . 16

3.2.1 Hardware Assisted Virtualization . 16

3.2.2 Open vSwitch and its Comparison with other Switching Techniques 19

3.3 System Architecture . 23

3.3.1 Hardware Requirements and Features . 25

4 IMPLEMENTATION AND EVALUATION . 28

4.1 Host and Guest Setup . 28

4.1.1 Host File System and Kernel Setup . 30

4.1.2 Guest FileSystem and Kernel Setup . 32

4.1.3 Bootloader for ARM . 33

iv

CHAPTER Page

4.1.4 Qemu for ARM Setup. 35

4.2 Booting Up Arndale Board . 36

4.3 Open vSwitch with KVM . 38

4.4 Current Work: SDN and Communication with Remote OpenDayLight

Controller . 46

5 CONCLUSION AND FUTURE WORK . 50

5.1 Conclusion . 50

5.2 Scope for Future. 51

5.2.1 Surrogate as Service: vmBox Security . 53

REFERENCES . 55

APPENDIX

A DEVELOPMENT PHASE ERROR LOG . 58

B OTHER POTENTIAL PLATFORMS FOR DEVELOPMENT 62

v

LIST OF TABLES

Table Page

2.1 Comparison of Various Approaches Towards a Mobile Infrastructure 14

3.1 Comparison of x86 and ARM Architecture . 19

3.2 Open vSwitch Performance Analysis . 22

3.3 Open vSwitch and Compatible Linux Kernel . 25

4.1 List of Files Used in Development Phase . 46

vi

LIST OF FIGURES

Figure Page

2.1 Prioritized Defense Deployment using T-Dominance ’Peng et al. (2013)’ 6

2.2 Yocto Project Layered Framework ’Project (2014b)’. 10

2.3 Xen Virtualization over ARM ’Foundation (2013)’. 11

3.1 BYOD System Architecture. 15

3.2 ARMv7 Security Extensions . 17

3.3 ARM System Architecture. ’Dall and Nieh (2013a)’ . 20

3.4 Switching Using Bridge ’Makita (2014)’. 20

3.5 Switching Using Mac VLAN ’Makita (2014)’. 21

3.6 Switching Using Open vSwitch ’Makita (2014)’. 22

3.7 System Design Using Open vSwitch. 24

3.8 Arndale Development Board. 26

4.1 System Activity Diagram. 29

4.2 Linux Arm Bootloading Process. 33

4.3 Host OS Booting in Hyp Mode. 38

4.4 Open vSwitch Configuration. 40

4.5 Open vSwitch Interface Display. 42

4.6 Qemu Guest Bootup on Host Linux OS. 42

4.7 Guest OS Bootup Using Open vSwitch. 43

4.8 Ubuntu Guest OS Terminal . 44

4.9 SDN Based Programmable Openflow Network. 47

4.10 Remote SDN Controller Communication with OvS. 48

5.1 Comparison Between ARMv7 and ARMv8. 52

5.2 Security Vulnerability on a Surrogate Device . 54

A.1 Gcc Failure During Build. 59

A.2 Open vSwitch Build Failure. 60

A.3 Libvirtd Build Issue. 60

vii

Figure Page

A.4 Kernel Boot Error. 61

A.5 Kernel Panic Due to Improper Qemu Parameters. 61

B.1 TI Omap 5432 Development Board ’Systems. (2013)’ . 63

B.2 Arm Juno Development Board ’Inc. (2014a)’ . 64

B.3 Samsung Chromebook with 64 Bit ARMv8 ’Samsung (2013)’ 65

B.4 Google Nexus 9 with 64 Bit ARMv8 ’Nexus9 (2014)’ . 66

viii

Chapter 1

INTRODUCTION

1.1 Background

The mobile network in future would be composed of smart-phones and hand-held de-

vices and it will play big part in defining the working environment in corporations. The new

buzz word Bring Your Own Device (BYOD) has been coined to describe the consumer-

ization of the IT. IT organizations are no longer interested in providing and provisioning

the IT equipment for the individuals. Most of the companies in past had a separate de-

partment for maintaining individual IT equipment so the approach of offloading the task

of hardware / device to the individual can significantly benefit the organizations in terms

of cost cutting, delays in providing IT services due to communication gaps between vari-

ous departments, etc. Technology (2012). The IT organizations can simply provide cash

incentive to individuals to bring their own device for work, and use organization approved

Operating System, device image, secured emulation environment and anti-virus software

when working for company using the device. The second aspect of IT consumerization is

that advent of mobility smart-phones, tablets, blackberry devices means that work doesn’t

stop at 5:30 PM. Also the dramatic growth in computing services and mobility trends e.g.-

3G/4G on smart phones means consumers/ workers want to use their devices on the go as

well as during normal work hours. This would come across both as an opportunity as well

as challenge for the organizations. The opportunity is present in the sense that it would

lead to productivity increase and significant cost reductions. However this also brings forth

a lot of challenges especially from security perspective for organizations. The organizations

have to make sure that the devices are secured from external threats and at the same time

prevent data ex-filtration and unauthorized access to the resources SpA (2012). To explore

this research problem we need a suitable platform which can serve as proof of concept for

1

implementation on a large scale. We are selecting the ARM CPU to serve as our base model.

The reason for selecting the ARM platform is performance and ubiquity provided by the

ARM devices. The solution would be a KVM/ARM virtualization solution. The other ben-

efit of using KVM is that its an in built kernel module kvm.ko, so we can keep KVM/ARM

in lines with new kernel releases without the additional maintenance costs. The solution

will have host operating system running KVM environment and unmodified guest OS would

be running in the emulation environment provided by the host OS Dall and Nieh (2010).

Virtualization can in future be extended to provide other features such as high availabil-

ity, load balancing features. The thesis work will make use of Open vSwitch to establish

a networking framework between the host OS and guest OS. This will bring in the scope

of introducing programmability into the network using SDN solution. Programmability in

the network will help us build a flexible OpenFlow based secure mobile SDN framework

for our system. The control plane of SDN will have direct control over the Data Plane

elements Oltsik (2010). This will help deal with issues in traditional networks like devices

from different vendors and two separate devices from same vendors. So individuals can

bring any smart phone/ tablets of their choice as long as they have the virtualization fea-

ture support. The network of emulated virtual machines would be easily managed by the

organization. We plan to establish guest OS using Open vSwitch framework and remotely

host controller such as OpenDayLight in cloud environment. Controller can then commu-

nicate with the ovsdb database of Open vSwitch through SSL or GRE mechanism. We

will compare our solution with other mechanism of introducing security in IT enterprises

and see why this solution will be significantly better than other proposed solutions such

as Prioritized Defense Deployment for BYOD; feedback based strategic sampling security,

application sand-boxing, etc.

1.2 Contribution

The novel aspect of the solution is that using Open vSwitch we can introduce the secure

mobile SDN framework and correspondingly programmability in our network. It will make

2

the solution vendor agnostic. So we can virtualize and manage the devices from different

vendors as long as they support virtualization feature. Since ARM CPUs are common in

many smart-phone devices E.g- Samsung Galaxy S5 uses ARM Exynos 5250, the proof

of concept can then easily be deployed in real world scenarios, and tested for performance

and security aspects. Other important contributions of the work are that it will have

significant cost savings, secured environment for managing the VMs and better scalability

as compared to some of the existing BYOD solutions. The result expected of this work is a

base model/prototype serving as experimental platform for mobile networking framework.

The ARM CPU provides Hardware Virtualization Extensions so we make use of KVM

virtualization on base ARM Development board for booting up the host OS and make use

of KVM and emulation software QEMU to bootup the guest OS via call to

KVM_VCPU_RUN ioctl()

in userspace. The ioctl() call handler is present in file arch/arm/kvm/arm.c which issues

HVC(hypercall) instruction. The Open vSwitch feature will be installed on top of Host

system so that we can introduce secure mobile SDN framework on host OS and manage

guest OS.

1.3 Organization of Thesis

The thesis work is organized as follows Chapter 2 describes the related work in the field

such as End User Virtualization, Yocto Project, etc. In Chapter 3 we discuss the System

components, hardware requirements and architecture of our solution. Chapter 4 discusses

the setup of Host and Guest OS, the hardware platform, Open vSwitch and detailed im-

plementation of the solution. Finally we conclude the Thesis discussion in Chapter 5 and

provide details about future work in this field. Appendix section at the end discusses some

roadblocks, errors encountered during the development phase and other potential develop-

ment platforms.

3

Chapter 2

RELATED WORK

According to a ESG survey Oltsik (2010) performed on 315 security professionals work-

ing in enterprise organizations about most difficult Mobile Security challenges brought to

light the main concerns are:

• Scope of policy enforcement on devices.

• Data loss in case device is stolen.

• Breach of confidentiality and integrity.

The subsequent sections deals with various approaches to deal with these security chal-

lenges using schemes such as Prioritized Defense Deployment, Virtualization, Mode of Usage

Separation, etc.

2.1 End User Virtualization

The Virtualization technology allows multiple operating systems on a Physical device

to share resources such as memory, I/O devices and storage.

The scope of virtualization is not limited to a particular area. For instance Green

Computing makes use of computing and IT resources efficiently to provide energy efficiency,

and has became an interesting research domain Liangli et al. (2012).

The paper discusses current frameworks and security perspectives in desktop and appli-

cation vitualization. It also highlights many standards adopted by companies such as Cisco

and Citrix following the available technologies.

4

There are two main modes which are not necessarily independent of each other:

• Streaming Mode The application and desktop both runs on end user’s device and

are synced with the data center image.

• Hosted Mode Desktop and applications run on data center while image is sent to

end user devices.

The authentication is required by end user in order to access the company resources.

This authentication is provided by a security broker. This process helps standardize and

unify the company wide tools and management process and is used by many leading com-

panies.

OS, user profile and applications are present on separate layers, so user can get any

device anywhere kind of environment and provides fair bit of security via resource isolation

and authentication.

The main flaw in this kind of approach is that no useful dynamics of the network can

be captured on a organization wide basis. Also this framework is not dynamic enough to

deal with security threats. We need a robust framework since dynamics of attack keep on

changing.

Another drawback is that since the individual VMs are compartmentalized, it is not

possible to observe the processes running at hardware and OS levels by a system such as

Network Intrusion Detection System.

2.2 Prioritized Defense Deployment

Prioritized defense deployment discusses a solution intermediary between security pro-

vision and mechanism intrusiveness/cost. It makes use of T-dominance - a distributed algo-

rithm approach to capture the temporal-spatial pattern in enterprise environment. Based

5

on this distributed algorithm, strategic sampling is used for malware detection and priori-

tized patching is used as a recovery mechanism. Association logs of smart-phones and their

wireless access points are used to fetch the collocation information.

Smart-phones can be considered as nodes of the graph and their collocation is used to

assign them a reachability value r(u,v), where u and v represent two smart-phones, which

serves as edge weight between the nodes. The structure would be like a weighted undirected

graph.

Figure 2.1: Prioritized Defense Deployment using T-Dominance ’Peng et al. (2013)’

This graph is known as reachability graph G(P) for smart-phones P=u,v,w,.... Filtered

reachability graph GT (P) is derived from this graph with edges having weight less than T.

The smart-phones are divided into two classes agents and non-agent. This decision is

based on the security representation in the network. Agents are given priority over non-

agents for defense mechanism deployment.

6

• Strategic sampling like honey-pot. They attract and expose propagating malware.

Agents are chosen based on their security representativeness to get quantifiable secu-

rity provision for malware detection.

• In prioritized patching agents are considered good deliverers of security patches be-

cause of their better connectivity, for instance an important authority in a social

network based graph.

Various mechanism of selecting agents are used. Agents with good reachability are

selected with higher probability for defense deployment compared to randomly selecting a

phone as agent once in a while. Results indicate that strategic sampling and prioritized

defense deployment achieves better performance cost wise compared to patching all smart-

phones deterministically or patching smart-phones using a random selection process Peng

et al. (2013).

While this approach looks reasonable in context of mobile phones, it’s scope doesn’t

cover other devices that can be connected via physical media such as Ethernet cable. Also

it can be complex to manage the data for collocation information and dynamically changing

the structure of graph on addition and removal of devices.

There are no practical implementations of this solution, so there are concerns regarding

the robustness and scalability of this solution.

2.3 MOSES

This paper discusses policy enforcement mechanism on the smart-phones. According

to this paper the OS environment of smart-phones are mostly hard coded and cannot be

configured as per user requirements. Mode of Use SEpeation approach makes use of soft-

virtualization through controlled software isolation Zhauniarovich et al. (2014).

7

Some features and advantages of this approach are:

• End user can configure the security profile dynamically according to his/her require-

ment.

• Profile switching can be user driven or automatic

• Security profile is based on the context. The features for the context can be defined

either in terms of low level feature variables e.g-time and location or high level variables

e.g-trust, reputation

Compartments where applications and data are stored are called Secure Profiles. Smart-

phones raw sensors such as GPS, camera and logical sensors can be used to define the context

in terms of boolean variables. If context evaluates to true, profile associated with context

is activated. In case of conflicts, MOSES chooses the SP with highest priority. Application

and data separation occurs at kernel level through file system virtualization approach.

This approach is limited only to Android smart-phones currently.

2.4 KVM/ARM and Virtual Open System

Virtual Open System and Linaro Networking Group have focused their efforts on Virtu-

alization of ARM. KVM/ARM project started as a research project at Columbia University

and is also supported by Virtual Open Systems. Linux kernel 3.9 and beyond provide KVM

support for ARM architecture Dall and Nieh (2013b).

Since ARM CPU have become common in mobile devices, tablets, servers, so there is a

growing demand of utilizing the Virtualization benefits for ARM devices. Split mode CPU

virtualization offered by ARM/KVM solution allows hypervisor to split execution across

CPU modes Dall and Nieh (2014). The architecture introduces three modes - the normal

user mode USR, the kernel mode SVC for running privileged instructions, and a new mode

HYP which is more privileged than SVC mode. There are several changes in terms of OS

architecture, for instance HYP mode only maintains a single page table base register, and

there is no address space split between user mode and kernel mode.

8

The kernel is by default booted in HYP mode. This makes the architecture backward

compatible with the legacy systems since kernel always boots in SVC mode in legacy sys-

tems. Pre boot stub known as ”decompresser” decompresses kernel image into memory. On

detecting that it booted in HYP mode, a temporary stub must be installed which would

allow the kernel to fall back to SVC mode and run the decompresser code. This is made

possible using the HYP stub ”arch/arm/kernel/hyp-stub.S”.

Other architectural details of KVM/ARM such as hardware trap, Virtual GIC and

timers have been discussed in the article Dall and Nieh (2013b).

Various development boards have been used as base models by the organization Virtual

Open Systems Systems (2013) such as TI - OMAP 5432 based on ARM v7 architecture,

Samsung Exynos 5250 based on ARM v7, Fast Models based simulation platform, Juno

development board Inc. (2014b) that could serve as good potential solution for KVM/ARM.

The model used as part of thesis is based on the same KVM/ARM architecture. The

fundamental difference is that while this model only plans to boot Virtual Machines on

top of ARM based development boards, we plan to make use of Open vSwitch to create

a bridged network of guest VMs on top of Host VM. This would allow us to implement

network wide policies, firewall rules, load balancing solutions on Guest VMs using a smart

OpenFlow controller such as POX, Floodlight etc.

2.5 Yocto Project

Some other approaches for developing KVM/ARM based solutions were considered to

act as base development models for this thesis project such as Yocto Build system. This

project provides infrastructure for building complete complete Linux OS using package

metadata. It uses OpenEmbedded (OE) build system, tools such as ”bitbake” to develop

Linux images and associated user space applications Project (2014b). It is a layered based

architecture for extension and customization of base system. For instance the base layer is

OpenEmbedded Core (oe-core). There is yocto specific metadata layer on it’s top, followed

by hardware specific Board Support Packages (BSP) and UI specific BSP Figure 2.2.

9

Figure 2.2: Yocto Project Layered Framework ’Project (2014b)’.

The layers meta-ti Dmytriyenko (2014) and meta-virtualization Project (2014a) have

been developed to provide support for virtualization on TI based development boards. The

paper Papaux et al. (2014) discusses use of Yocto Project to configure valid virtualization

architecture on top of TI-OMAP 5432 and performance analysis of hardware virtualization

extensions.

This looks like a very good approach and I developed meta-ti and meta-virtualization

based Yocto Build for project, but it failed to boot in Hypervisor mode either because of

faulty packages in the build system or improper bootloader. So this can be considered for

future development boards for the project.

2.6 XEN Virtualization on ARM

XEN is a type-1 hypervisor running on top of hardware. Dom0 is the privileged virtual

machine to drive the on board devices. All other virtual machines are of type DomU or

unprivileged VMs. Devices such as SATA and network cards are assigned to Dom0. Unpriv-

ileged VMs make use of the paravirtualized back-ends run by Dom0 to access the device

resources. Shared page memory and ring protocol are used for communication between

10

front-end and back-end. Specialized driver domains for running drivers corresponding to a

special class of device are used so that Dom0 doesn’t have to run all the drivers Foundation

(2013).

Figure 2.3: Xen Virtualization over ARM ’Foundation (2013)’.

XEN on ARM eliminated the need for QEMU as there is no emulation feature in XEN

over ARM. It incorporated paravirtualized interfaces for IO. XEN for x86 had two types of

guests: HVM and PV guests. This has been replaced with only one type of guests: PV in

XEN over ARM. The architecture is divided into levels: EL0, EL1, EL2 and HVC is the

instruction used to switch between HYP and Kernel modes Foundation (2013). The solution

11

for XEN over ARM solution has been discussed in over ARM (2014) for OMAP5432. This

solution was tried in TI OMAP5432 but the solution is not stable and fails to load the

kernel. Another problem with this solution is that paravirtualized front-ends and back

ends for GPS, Camera etc. don’t exists commercially as of now. The problem arises when

multiple VMs need to access these devices simultaneously. In that scenario we will need to

write PV front end and back-end drivers which is a non-trivial task.

All of the approaches to achieve a secured networking framework for Mobile devices

discussed above have been compared below.

12

Technique Features Advantages Drawbacks

End User vir-

tualization

Multiple systems on

same physical ma-

chine. App can be

running in end user

device or data-center.

Security broker me-

diated authentication.

Clean Separation of

OS and user profile.

Difficult to capture

useful network dy-

namics. Difficult

to observe state

of processes inside

sandboxed VMs.

Prioritized

Defense

Deployment

Used distributed algo-

rithm to capture the

temporal and spatial

characteristics in en-

terprise environment.

Significant cost gains

in terms of threat de-

tection and patching

mechanism.

No practical imple-

mentations suggesting

scalability and robust-

ness.

MOSES Mode of Separation

through controlled

software Isolation.

Make use of policy

enforcement.

Context based security

gives a good view of se-

curity profile. User re-

quirement based pro-

file.

Limited only to An-

droid platform. It

has not been tested on

other platforms.

KVM/ARM

Virtual Open

Systems

Virtualization on

KVM based ARM

platform. Patch to

u-boot for booting

kernel in HYP mode.

Tested on various

platforms, e.g- Exynos

5250, TI OMAP 5432,

Samsung Chrome-

book.

Makes use of a bridged

network, less scope for

programmability.

13

Yocto

Project

Provides complete

Linux build infras-

tructure through

package metadata.

Support layers for

virtualization.

Widely supported by

community, Board

support packages to

support variety of

vendors.

Very few practical

deployments, need

to be tested for sta-

ble deployments for

KVM/ARM solution.

XEN Project Type-1 hypervisor,

runs directly on hard-

ware, everything else

runs as VM on top

of XEN. Dom0 is

privileged VM, DomU

is normal user level

VM.

It does not require

an emulation environ-

ment, and as a result is

faster and much more

secured.

Virtualization support

for mobile platform

devices such as GPS,

camera for more than

one VM, require new

paravirtualized font

ends and back ends.

Table 2.1: Comparison of Various Approaches Towards a Mobile Infrastructure

14

Chapter 3

SYSTEM DESIGN AND SECURE MOBILE SDN ARCHITECTURE

This chapter introduces the design methodology and approach used for setting up BYOD

framework. In the next chapter experimentation and analysis have been introduced.

3.1 System Use Case Diagram

Figure 3.1: BYOD System Architecture.

15

The figure 3.1 shows the use case diagram for the system. As can be seen from the

model, the Mobile User can use personal and company OS, but the company OS would

be monitored by the system administrator for network traffic. Open vSwitch would be

used to provide bridged network for the system. Qemu would be emulating both the guest

Operating Systems. So in case of any new flow entry, the controller would be notified, and

using controller alerts, the admin. can take decision such as allow , deny or redirection of

network traffic.

3.2 System Components

Our research goal is to build a BYOD framework that would allow easy implementa-

tion of corporate policies and data capture for analysis. Two essential components of this

framework are hardware assisted virtualization and Open vSwitch.

3.2.1 Hardware Assisted Virtualization

The base model for experimentation and evaluation are ARMv7 based development

boards, hence we will discuss the hardware assisted virtualization that ARM offered as

part of ARMv7 and ARMv8 releases in this section. The Reduced Instruction Set Com-

puter (RISC) architecture of ARM helps achieve good balance of high performance, small

code size, low power consumption and reduced silicon area ARM (2013). Also many

smart-phones and handheld devices have ARM based processors-with multiple cores. ARM

architecture virtualization extensions and Large Physical Address Extension(LPAE) enable

efficient implementation of Virtual Machine hypervisors for ARM architecture compliant

processors.

16

Figure 3.2: ARMv7 Security Extensions .

17

Another important feature that ARMv7 and ARMv8 based processors offer is Trust-

Zone(Security Extensions) 3.2 apart from new CPU mode HYP mode discussed in KVM/ARM

section in previous chapter. TrustZone splits the mode into two worlds - secure and non-

secure. A special mode - monitor mode is used to switch between secure and non-secure

worlds. Although secure mode doesn’t work in HYP mode, since trap and emulate sup-

port is not present, still we can run sensitive applications in secure world. The paper

KVM/ARM:The design and implementation of Linux ARM Hypervisor Dall and Nieh

(2014) discusses secure world and other details about CPU, Memory, Timer and Interrupt

Virtualization of ARM.

The KVM ARM architecture achieves comparable and in some cases better performance

than traditional KVM x86 based devices. There have been some significant changes in ARM

architecture. The table compares some key features of ARM and x86 architectures.

ARM introduces split mode virtualization feature. The virtualization support is pro-

vides by the Hyp mode and the kernel mode runs core Linux kernel services without any

intrusive code modifications. The hypervisor is split into two components to provide this

functionality, namely: highvisor and lowvisor.

Lowvisor deals with setting up of execution context, isolation between contexts, context

switches between host and guest execution modes. Lowvisor also deals with interrupts

and exceptions that trap to hypervisor. Highvisor on the other hand scheduling, locking

mechanism and memory allocation functions. Stage-2 page fault handling from the VM and

instruction emulation are also handled by the highvisor Dall and Nieh (2013a).

Whenever there is requirement of switch between the hypervisor and VM, the process

involves mode transitions. If the user is running the VM and a trap to the hypervisor mode

is required, VM will trap to lowvisor running in Hyp mode, followed by lowvisor trapping

to highvisor mode. On the other hand if we need to switch from hypervisor to VM mode,

first a trap to Hyp mode occurs and then switch to the VM takes place.

18

Feature x86 Architecture ARM Architecture

Modes of Op-

eration

It has root and non root

modes orthogonal to CPU

protection modes. Trap and

emulate from root to non root

is possible.

Hyp mode is separate and

more privileged than user and

kernel mode.

Privilege

Mode

Root mode has full support

for kernel and user mode func-

tionality.

ARM Hyp mode has its own

set of features that provide

much more complex options.

Save/Restore

Operations

Hardware support for VM

control block and auto

save/restore for switching

to and from root mode is

available.

ARM provides no hardware

support and any save or re-

store state feature needs to be

implemented in software.

Table 3.1: Comparison of x86 and ARM Architecture

3.2.2 Open vSwitch and its Comparison with other Switching Techniques

Linux provides three kinds of software switches:

• bridge It has key components FDB(Forwarding Database), STP(Spanning Tree), etc.

It uses promiscuous mode to receive all packets Makita (2014). Many common NIC

filters make use of unicast without promiscuous mode if destination is not it’s MAC

address.

• macvlan Four types of modes are : private, vepa, bridge, passthru. It uses unicast

filtering if supported instead of passthru.

• Open vSwitch It is switching technique that supports OpenFlow. It can be used

19

Figure 3.3: ARM System Architecture. ’Dall and Nieh (2013a)’

Figure 3.4: Switching Using Bridge ’Makita (2014)’.

as normal switch and also has many features such as GRE, VXLAN. It provides

forwarding based on Flow. User space has control plane and data plane is present in

kernel space. It there is a flow miss-hit, upcall to userspace daemon is made.

20

Figure 3.5: Switching Using Mac VLAN ’Makita (2014)’.

Considering the use of OpenFlow for our solution and need of a centralized controller in the

architecture which cannot be achieved without Open vSwitch, we are making use of Open

vSwitch to construct the underlying network.

Virtual switches connect the interfaces of Virtual Machines and establish connection

to outer network with help of Physical Network Interface Card (pNIC). Open vSwitch is

used extensively in OpenStack and OpenNebula. We can explore broad range of Open-

Flow features via software switches, that cannot be provided by hardware switches. Two

21

Figure 3.6: Switching Using Open vSwitch ’Makita (2014)’.

important parts of OvS are ovs-vswitchd daemon that controls switch and is responsible

for implementing OpenFlow protocol, and datapath kernel module to implement the packet

forwarding Emmerich et al. (2014).

The performance comparison of various forwarding techniques as shown in table 3.2

with single CPU core per VM and switch discussed in paper Emmerich et al. (2014) suggests

that Open vSwitch proves to be fastest Linux kernel packet forwarding application.

Application pNIC-

pNIC[Mbps]

pNIC-

vNIC[Mbps]

pNIC-vNIC-

pNIC[Mbps]

pNIC-vNIC-

vNIC[Mbps]

Open vSwitch 1.88 0.85 0.3 0.27

IP Forwarding 1.58 0.78 0.19 0.16

Linux bridge 1.11 0.74 0.2 0.19

DPDK vSwitch 11.31 - 10.5* 6.5*

Table 3.2: Open vSwitch Performance Analysis

Also rule based system used by Open vSwitch would make it easier to configure a

generic OpenFlow controller for VMs connected to Open vSwitch and implement access

control based on the flows.

22

For instance blocking packets from a compromised VM or redirecting packets to a dif-

ferent destination. The Software Defined Network model thus formed can be made more

scalable by configuring a controller that is logically centralized but physically distributed,

e.g.- HyperFlow Tootoonchian and Ganjali (2010). Open vSwitch across two host systems

can also communicate via a Generic Routing Encapsulation (GRE) tunnel which would be

discussed as part of future work for this project and is beyond scope of Thesis work.

3.3 System Architecture

The system architecture for BYOD framework uses Samsung Exynos 5250 as base plat-

form. The board was first introduced in 2012 and features two Cortex-A15 cores clocked at

1.7 GHz InSignal (2013b). It offers 50 percent higher per MHz performance compared to

commonly used Cortex A9 architecture. It is lightweight (150g) and is common in many

handheld devices such as Google Nexus Tablet. It is also very cost effective ($150). So

the goal of project is to develop the framework on this platform so it can later be used for

deployment in a bigger testing environment or code base from this platform to be deployed

on other tablets or mobile devices compatible with ARM architecture.

The architecture consists of three basic features:

• As shown in the Figure 3.7 below the Host OS should have hardware assisted virtu-

alization enabled and should boot in HYP mode enabled. We are choosing Ubuntu

Precise (12.04) as the Host operating system. The host operating system will need a

device tree blob exynos5250-arndale.dtb which contains description of hardware. It

is specific to the development board. Another component required is the kernel itself

uImage. Details of generating both will be discussed in next chapter.

• Open vSwitch should run on top of Host Platform. This would allow us to make use

of OpenFlow APIs along with other advantages of Open vSwitch as discussed briefly

under Open vSwitch subsection.

23

Figure 3.7: System Design Using Open vSwitch.

An important consideration for this project is compatibility of Open vSwitch with the

Linux Kernel. The 3.3 shows the compatibility of Linux Kernel with Open vSwitch

versions. Therefore we are choosing Linux Kernel 3.14.32 and Open vSwith version

openvswitch-2.3.1.

Open vSwitch Compatible Linux Kernel

1.4.x 2.6.18 to 3.2

1.5.x 2.6.18 to 3.2

1.6.x 2.6.18 to 3.2

24

1.7.x 2.6.18 to 3.3

1.8.x 2.6.18 to 3.4

1.9.x 2.6.18 to 3.8

1.10.x 2.6.18 to 3.8

1.11.x 2.6.18 to 3.8

2.0.x 2.6.18 to 3.10

2.1.x 2.6.18 to 3.11

2.3.x 2.6.18 to 3.14

Table 3.3: Open vSwitch and Compatible Linux Kernel

• The guest operating system should boot using the bridged network provided by Open

vSwitch. Additionally the guest operating system requires the kernel image to boot

guest OS zImage, the DTB file, file system image to boot guest, a modified version of

qemu to emulate and drive KVM from userspace.

3.3.1 Hardware Requirements and Features

Samsung Exynos 5250 uses ARM v7 Cortex A15 CPU. Some important features of the

hardware platform are:

• Advanced Single Instruction Multiple Data version2 (SIMD v2).

• High performance single or double precision Floating Point Unit (FPU).

• Security Extensions for enhanced security.

• Virtualized Interrupts with Multicore ARM Trust Zone architecture.

• Multiprocessing facility through multiprocessing extensions.

• Virtualization extensions for developing virtualized systems.

25

Figure 3.8: Arndale Development Board.

• Ability to reach 1.7 GHz processing capability to meet requirements for performance

optimized consumer applications.

26

Other requirements for setting up the test environment include:

• System to prepare the host, guest images, qemu. A system with sufficient disk space

and Ubuntu-12.04 is suggested.

• Samsung Exynos 5250 Arndale Board 3.8.

• A memory card (16 Gb suggested) to load host and guest OS.

• A serial port cable to communicate with board using Minicom.

• Power supply (5V).

• LAN cable connected to the Arndale development board.

27

Chapter 4

IMPLEMENTATION AND EVALUATION

In this chapter we will discuss the system setup and user experiments for our BYOD frame-

work. ARM processor is present in many tablets such as Samsung Chromebook, Nexus 9,

etc. Windows is also talking about Windows over ARM. It’s been said Windows over ARM

could kill desktops World (2014). All these reasons support our choice of base development

platform. The steps for this part are similar to Virtual Open System guide for KVM over

Arndale Systems (2013) and tutorial from Linaro Linux group Lim (2013). The contri-

bution in this section is mainly building a Open vSwitch compatible kernel and booting up

pre built guest OS using Open vSwitch on top of host OS as shown in figure 4.1.

The overall system activity includes booting up of Linux kernel in Hyp mode, start of

Open vSwitch on top of Host Linux Kernel and then starting the guest kernel on top of

bridged network created by Open vSwitch.

4.1 Host and Guest Setup

We are using Ubuntu 12.04 LTS as base system to setup Linux Kernel and rootfs for

both host and guest OS. We will first install the following packages on host system:

• Qemu: a generic opensource machine Emulator Systems (2013).

• debootstrap: a tool which installs base system into subdirectory of another already.

installed system.

• An ARM Cross Compiler for cross compiling the packages.

$ sudo apt-get install -y gcc-arm-linux-gnueabihf

$ sudo apt-get install -y qemu qemu-user qemu-user-static

$ sudo apt-get install -y debootstrap

28

Figure 4.1: System Activity Diagram.

29

4.1.1 Host File System and Kernel Setup

We will install arm-precise-root using qemu-debootstrap and setup root password for

arm-precise-root Lim (2013).

$ sudo qemu-debootstrap --arch=armhf raring ./arm-precise-root

$ sudo chroot ./arm-precise-root

Next copy the file etc/init/tty1.conf to ttySAC2.conf and change tty1 to ttySAC2.conf.

Also perform same steps to create a file ttyAMA0.conf in same directory. You will also need

to change the baud rate to 115200 for serial port login. Also we need to add a line ttySAC2

to file etc/securetty.

Add the following lines to etc/source.list

deb http://ports.ubuntu.com/ precise main restricted universe

deb-src http://ports.ubuntu.com/ precise main restricted universe

Update the sources.list file, reconfigure locales and install the following packages and

exit from host rootfs

$ locale-gen en_US.UTF-8

$ dpkg-reconfigure locales

$ apt-get install -y ssh gcc make xorg fluxbox tightvncserver

$ apt-get install -y libsdl-dev libfdt-dev bridge-utils uml-utilities

$ apt-get clean

$ exit

Now we need to setup kernel for the Host OS. For this part we need to download linux-

linaro-lng version 3.14.32 and unzip it to act as source tree. We will use it to generate dtb

30

and uImage for the host file system. Run the commands below on your Linux machine. We

need to download sources from tar.gz repository. If we download from git repository, we

will get errors while installing the Linux Kernel modules on arndale development board.

$ wget https://releases.linaro.org/14.06/components

/kernel/linux-linaro-lng/linux-linaro-lng-3.14.3-2014.06.tar.bz2

$ tar -zxvf linux-linaro-lng-3.14.3-2014.06.tar.bz2

$ cd linux-linaro-lng

$ export CROSS_COMPILE=arm-linux-gnueabihf-

$ export ARCH=arm

$ mkdir ../lll-kvmhost ./scripts/kconfig/merge_config.sh

-O ../lll-kvmhost/ linaro/configs/linaro-base.conf

linaro/configs/distribution.conf linaro/configs/kvm-host.conf

linaro/configs/arndale.conf linaro/configs/ovs.conf

$ make O=../lll-kvmhost/ uImage dtbs modules

$ cp -t /tftpboot/ ../lll-kvmhost/arch/arm/boot/uImage

../lll-kvmhost/arch/arm/boot/dts/exynos5250-arndale.dtb

$ sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

O=../lll-kvmhost/ INSTALL_MOD_PATH=${KVMHOST_ROOT} modules_install

This will generate uImage in the folder lll-kvmhost/arch/arm/boot and exynos5250-

arndale.dtb in lll-kvmhost/arch/arm/boot/dtc

These two files would be used later.

31

4.1.2 Guest FileSystem and Kernel Setup

Guest file system that will be used as VM on top of host file system can be downloaded

from Virtual Open System. We are using Versatile Express - an ARM release as guest

kernel. For this we can download guest-zImage and guest-vexpress.dtb from the website

Systems (2013). We will then need to create a bootable guest OS image and copy the

precise file system used for host OS in that image. Following steps are sed for this

$ dd if=/dev/zero of=./ubuntu.img bs=1MiB count=512

$ mkfs.ext3 ./ubuntu.img

$ sudo mount -o loop ubuntu.img mnt/

$ sudo cp -a precise/* mnt/

$ sudo umount mnt/

32

4.1.3 Bootloader for ARM

Figure 4.2: Linux Arm Bootloading Process.

The following steps are followed by ARM bootloader traditionally to boot in host mode:

• The kernel finds and stores all the RAM needed by it for volatile data storage.

• The option console=”” is used by bootloader to enable one serial port on the target.

• MACH_TYPE_xxx

value is provided by bootloader to the kernel through register r1. The file linux/arch/a4rm/tools/mach-

types stores these values.

33

• Register r2 is used to pass physical address of boot data to kernel. The bootloader

must also create and initialize kernel tagged list or device tree . The tag-list must be

placed it in region of memory where it cannot be overwritten. If dtb option is used

instead of tag list, it should be put in RAM at assigned address, and initialized with

boot data.

• If initramfs is used, it should be placed in memory region where it cannot be over-

written.

• Finally the kernel can be called via zImage from the flash or RAM location.

To boot the ARM kernel in HYP mode directly the bootloader has been modified. The

bootloader used for booting up the Host file system in Hypervisor mode and two additional

files can also be downloaded directly from Virtual Open System Systems (2013).

u-boot.bin

arndale-bl1.bin

smdk5250-spl.bin

34

4.1.4 Qemu for ARM Setup

On the x86 Laptop/PC run the commands below:

sudo apt-get install -y pkg-config-arm-linux-gnueabihf

cat | sudo tee /etc/apt/sources.list.d/armhf-raring.list <<END

deb [arch=armhf] http://ports.ubuntu.com/ubuntu-ports precise main

restricted universe multiverse

deb-src [arch=armhf] http://ports.ubuntu.com/ubuntu-ports precise

main restricted universe multiverse

END

sudo xapt -a armhf -m -b zlib1g-dev libglib2.0-dev libfdt-dev

libpixman-1-dev

sudo dpkg -i /var/lib/xapt/output/*.deb

git clone git://git.qemu.org/qemu.git

cd qemu

git checkout -b v1.6.0 v1.6.0

git submodule update --init dtc

mkdir build; cd build

../configure --cross-prefix=arm-linux-gnueabihf- --target-list=arm-softmmu

--enable-kvm --audio-drv-list="" --enable-fdt --static

make

This will generate qemu that would be used to emulate the ARM guest OS on top of

Host OS using the Open vSwitch bridge.

35

4.2 Booting Up Arndale Board

We will be using SD card (16 Gb suggested) as a bootup medium to run Host OS

Ubuntu-12.04 on top of Arndale board. Use a SD card reader and plug it into Laptop or

desktop for copying file system.

Copy bl1, spl and u-boot to the SD card. The SD card will be present as a storage

device on PC and can be viewed by command ”fdisk -l”. In my case it is /dev/sdb.

$ sudo dd if=arndale-bl1.bin of=/dev/sdb bs=512 seek=1

$ sudo dd if=smdk5250-spl.bin of=/dev/sdb bs=512 seek=17

$ sudo dd if=u-boot.bin of=/dev/sdb bs=512 seek=49

Now we will copy host kernel and dtb file. These values will depend upon the size of

device tree and the Linux kernel. For instance my Linux Kernel size was (4.6 Mb) so I have

copied dtb after sufficient space so it doesn’t overlap with address space of kernel (uImage).

$ sudo dd if=uImage of=/dev/sdb bs=512 seek=1105

$ sudo dd if=arndale.dtb of=/dev/sdb bs=512 seek=13393

Now format the SD card and copy precise file system, and source tree onto the SD card.

Remember to format from start block address after dtb file, so leave sufficient space.

$ sudo fdisk /dev/sdX

$ n

$ p

$ 1

$ 16384

$

$ w

36

$ mkdir mnt

$ sudo mkfs.ext3 /dev/sdb1

$ sudo mount /dev/sdb1 mnt

$ sudo cp -a ./arm-precise-root/* mnt/

$ sudo umount /dev/sdb1

Now we need to copy the Guest file system, guest device tree, guest Kernel and qemu

generated for ARM to SD Card. So simply copy these files to root folder of the SD card.

Alternatively you can use scp to copy these files once the board boots up and gets an IP

Address via DHCP.

Next step would be to insert SD card into the appropriate slot on the board and boot

it up.

Follow the steps below to boot up the board:

• Connect the serial port cable provided with Arndale board to USB port of your

PC/Laptop.

• Download and install minicom or a similar application on your PC.

• Check the DIP switch settings on Arndale board. It should be 001000 from left to

right.

• Press the bootup key present on Arndale board. This link InSignal (2013a) is a more

detailed version of booting up Arndale board.

• As soon as board starts loading kernel and reads device tree properly, press escape key

and enter commands below to configure boot arguments and environment variables.

These commands will vary depending upon location of your kernel and device tree.

$ env edit bootargs

$ root=/dev/mmcblk1p1 rw rootwait earlyprintk

37

console=ttySAC2,115200n8 --no-log

$ env edit bootcmd\

$ mmc read 40007000 451 3000;mmc read 42000000

3451 100;bootm 40007000 - 42000000

$ env save

$ boot

If the configuration is correct, board would bootup in HYP mode as can be seen in the

figure 4.3 below.

Figure 4.3: Host OS Booting in Hyp Mode.

Once this is done board would boot up successfully. Enter username and password to

login on the board as root user. Once the system boots up and gets the IP address, run the

following command in root mode. The board has a time skew and this command syncs it

with online ntpserver.

$ ntpdate -s time.nist.gov

4.3 Open vSwitch with KVM

This section deals with installation and configuration of Open vSwitch on Arndale board,

and running KVM on top of Open vSwitch. First check kvm driver has been successfully

38

installed with command

$ ls /dev/kvm

The installation of openvswitch daemon depends upon the modules : stp.ko, llc.ko

bridge.ko and vxlan.ko, so before configuring Open vSwitch make sure these modules have

been installed properly. You can use the command ”lsmod modulename” to check if a

module is present or absent.

Next we need to build Open vSwitch. It would require linux-headers or source tree to

build openvswitch.ko module. For this we can copy sources from linux-linaro-lng-3.14.32 into

the directory /lib/modules/3.14.32/build so that Open vSwitch is able to find dependent

modules for it’s build. The version for Open vSwitch used for build is openvswitch-2.3.10

as it is compatible with Linux kernel 3.14.32.

Steps below are followed in order after this:

$ apt-get update

$ apt-get install -y git automake autoconf gcc uml-utilities

libtool build-essential git

$ wget http://openvswitch.org/releases/openvswitch-1.10.0.tar.gz

$ tar zxvf openvswitch-2.3.10.tar.gz

$ cd openvswitch-2.3.10

$./boot.sh

$./configure --with-linux=/lib/modules/‘uname -r‘/build

$ make && make install

$ insmod datapath/linux/openvswitch.ko

$ mkdir -p /usr/local/etc/openvswitch

$ ovsdb-tool create /usr/local/etc/openvswitch/conf.db

vswitchd/vswitch.ovsschema

$ ovsdb-server -v --remote=punix:/usr/local/var/run/openvswitch/db.sock \

39

--remote=db:Open_vSwitch,manager_options \

--private-key=db:SSL,private_key \

--certificate=db:SSL,certificate \

--pidfile --detach --log-file

$ ovs-vsctl --no-wait init

$ ovs-vswitchd --pidfile --detach

$ ovs-vsctl show

The figure 4.4 below show the expected outcome after correct configuration of Open

vSwitch.

Figure 4.4: Open vSwitch Configuration.

Now we need to create custom versions of qemu-ifup and qemu-ifdown scripts that would

be used in KVM configuration of guest OS. The custom versions will make use of Open

vSwitch bridges vSwitch (2013). The configuration files /etc/ovs-ifup and /etc/ovs-ifdown

should be created for this purpose.

$ vim /etc/ovs-ifup

#!/bin/sh

switch=’br0’

40

/sbin/ifconfig $1 0.0.0.0 up

ovs-vsctl add-port ${switch} $1

$ vim /etc/ovs-ifdown

#!/bin/sh

switch=’br0’

/sbin/ifconfig $1 0.0.0.0 down

ovs-vsctl del-port ${switch} $1

After this we need to add a bridge using Open vSwitch and add a port to the bridge over

which the guests can communicate. Steps for establishing this connection and configuring

IP address for the bridge and gateway are as follows

ovs-vsctl add-br br0

ovs-vsctl add-port br0 eth0

ovs-vsctl add-port br0 tap0

ovs-vsctl list port

#ifconfig eth0 0

ifconfig eth0 0.0.0.0 up

ifconfig tap0 0.0.0.0 up

ifconfig br0 10.218.108.16 netmask 255.255.248.0

route add default gw 10.218.104.1 br0

The command below can be used to verify the correct configuration for Open vSwitch.

The final task for bringing up the guest Operating system requires that guest image

ubuntu.img, guest device tree guest-vexpress.dtb and guest kernel guest-zImage are already

41

Figure 4.5: Open vSwitch Interface Display.

present on the SD card. We will issue the command to qemu to bootup the guest OS on

top of Open vSwitch

Figure 4.6: Qemu Guest Bootup on Host Linux OS.

42

./qemu-system-arm \

-enable-kvm -kernel guest-zImage \

-nographic -dtb ./guest-vexpress.dtb \

-m 512 -M vexpress-a15 -cpu cortex-a15 \

-netdev type=tap,id=net0,script=no,downscript=no,ifname="tap0" \

-device virtio-net,transport=virtio-mmio.1,netdev=net0 \

-device virtio-blk,drive=virtio-blk,transport=virtio-mmio.0 \

-drive file=./ubuntu.img,id=virtio-blk,if=none \

-append "earlyprintk console=ttyAMA0 mem=512M

root=/dev/vda rw ip=dhcp --no-log

virtio_mmio.device=1M@0x4e000000:74:0

virtio_mmio.device=1M@0x4e100000:75:1"

The guest OS will bootup and get IP address via DHCP, as can be seen 4.7

Figure 4.7: Guest OS Bootup Using Open vSwitch.

43

Finally the guest OS terminal will be visible and can be used for communication with

other hosts or guest OS 4.8.

Figure 4.8: Ubuntu Guest OS Terminal .

During the development phase some files and sources were used directly as provided by

various open source development groups and some file/scripts were written from scratch.

List of all the modules used is as below:

File Name or Source Purpose Used/New

linaro-linux-lng-3.14.32 Sources for kernel Used from Linaro Group

arm-precise-root File system For Host OS Generated

/etc/init/ttySAC2.conf Serial Port Communication Modified

/etc/securetty Serial Port Communication Modified

/guest Folder for Guest OS New

/etc/exports x86 Host VNC communica-

tion

Modified

44

kconfig/merge config.sh Script for Host Kernel

Setup

Linaro Group

linaro/configs/linaro-

base.conf

Script for Host Kernel

Setup

Generated

linaro/configs/kvm-

host.conf

Script for Host Kernel

Setup

Generated

linaro/configs/arndale.conf Script for Host Kernel

Setup

Generated

boot/dts/exynos5250-

arndale.dtb

Host OS Device Tree New

arch/arm/boot/uImage Host Kernel New

stp.ko, llc.ko, bridge.ko,

vxlan.ko, gre.ko

Host Kernel Modules for

Open vSwitch

Generated

u-boot.bin Host Bootloader Used from Virtual Open

Systems

arndale-bl1.bin Host Bootloader Used from Virtual Open

Systems

smdk5250-spl.bin Host Bootloader Used from Virtual Open

Systems

qemu-system-arm Guest Emulator Generated

bootargs Command to boot host New

bootcmd Command to boot host New

openvswitch-2.3.10 Open vSwitch File System Used from Open vSwitch

/etc/qemu-ifup File to bring up qemu on

Open vSwitch

New

45

/etc/qemu-ifdown File to bring down qemu on

Open vSwitch

New

ovs script.sh Open vSwitch bootup and

ovsdb setup script

New

ovs setup.sh Open vSwitch network

setup script

New

qemu-bootovs.sh Open vSwitch Qemu Guest

boot script

New

Table 4.1: List of Files Used in Development Phase

4.4 Current Work: SDN and Communication with Remote OpenDayLight Controller

SDN came into being from the need of simplifying network management and control.

It has two main components, the Control Plane defines how to handle the traffic. The

second element is Data Plane, which handles traffic flow based on flow entries defined by

control plane. A well defined API known as OpenFlow is used by SDN to install the rules

of traffic flow. OpenFlow switch such as Open vSwitch can have multiple packet handling

rule tables. This provides openFlow the flexibility to behave as Firewall, switch, Network

Address Translator (NAT). As discussed in the paper Feamster et al. (2013) discusses the

need of data plane and control plane separation to provide better traffic engineering in

terms of predictability, reliability, network management functions.

The goals we wish to target is enforcement of security policy separately for each part of

network , for instance we may want to allow limited access to finance department servers so

we can enforce security policy and isolate resources in that particular department by VLAN

tagging and specific traffic flow rules for that particular VLAN as can be seen in figure 4.9.

Second advantage is that if we have abnormal traffic behavior within the network/VLAN,

the controller can flag the event as Intrusion based on rules specified and quarantine a

46

Figure 4.9: SDN Based Programmable Openflow Network.

particular VM. In context of heterogeneous mobile devices in a BYOD environment, this

would be very useful, e.g- two people from same department one having Mac Air and another

having Samsung Galaxy Tab can run company provided guest OS on the fly. The controller

would Group them in same VLAN according to the deviceID tagging, MAC associated with

a devices, etc. So policies and access rules for that particular VLAN will apply to these two

tablets. The Guest OS images can be synced with secured datacenter images at a remote

location.

Although performance is not out main focus, but this kind of network scenario will

offer load balancing features too. So if a particular server is overwhelmed with traffic the

controller can dynamically spawn another VM, server image and provide new traffic flow to

distribute load over both the machines.

We can use a remote controller for managing and monitoring the network traffic flow,

and achieve the functionality of a SDN network. The controller used is OpenDayLight. The

modular approach provided by OpenDayLight project helps provide SDN functionality and

achieve solid platform for other important features such as NFV(Near Field Virtualization).

47

Figure 4.10: Remote SDN Controller Communication with OvS.

The Northbound APIs of the OpenDaylight controller can be used for providing the

application development functionality through an abstraction layer. The southbound API

will connect to the Open vSwitch present on Samsung Exynos 5250. Another good feature is

that it also has plugins for Inter Controller communication, so we can achieve a distributed

architecture as discussed in hyperflow Tootoonchian and Ganjali (2010). The controller

48

would prove very useful for managing the Virtual Machines in a BYOD scenario. In case

of network events such as DoS attacks targeting a particular Mobile device the controller

can have an Intrusion detection mechanism configured that looks for application protocol

conformation violations or DoS attack patterns.

49

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

There are various models of providing a secured framework for mobile devices, but we

need a generic solution that transcends all limitations such as scalability, platform compat-

ibility, security, etc. Mobile devices such as smart-phones and tablets will certainly play a

role in future work setting of each organization. BYOD using a SDN framework can prove

very efficient, scalable and secured solution for organizations in future.

The cost of implementing this framework would be significantly less than the existing

infrastructure cost for providing and maintaining IT equipment to the employees. ARM

being present in many target devices and new features such as Virtualization, Security

Extensions, better throughput than it’s peers serve as a suitable experimentation model.

We analyzed drawbacks of other solutions present and KVM over ARM using Open vSwitch

looks better compared to other solutions such as End User Virtualization, XEN, etc.

The model in this Thesis research work ARMv7 serves as a proof of concept that ARM

is a cheap, fast and stable platform for serving as a base models for such devices. In the

future work section we also discuss how the ARMv7 solution can easily be ported to ARMv8

development platforms which have better performance and larger address range but are not

yet commercially available. Samsung is already using ARM and windows is also planning

to use ARM as processor in their coming tablets and mobile devices. It is thus a novel

idea to provide a solution/architecture which can make use of these capabilities provided

by ARM and serve as a model of defining corporate network comprising of mobile devices

in future. While there are many issues still to be resolved such as Controller coordination

with Open vSwitch for ARM, use of VMI for finer system analysis, this research work is

still a significant step towards realization of BYOD goal.

50

5.2 Scope for Future

ARM v7 is a good prospective platform for BYOD implementation. The future work

for the project includes the deployment of ARM based BYOD platform in a testing envi-

ronment. We have been working on a Mobile testbed consisting of 4 Unmanned Ground

Vehicles(UGVs) and 6 Unmanned Aerial Vehicles (UAVs). This board being lightweight

can be a suitable candidate to be deployed on UAVs.

The Robotic control functionality for UGVs would be provided by Arduino Uno De-

velopment board Uno (2011), which is standard for common robotic projects and UAVs

would make use of Ardu Pilot Board DroneCode (2014) with compatible camera. Since

Arduino platforms do not come with sufficient computing capability and the signal and net-

work traffic analysis for testbed would require a platform with good computing capability

so we Samsung Exynos 5250 can be integrated with Ardu Pilot for providing computing

capability.

The Juno Development board would be considered as a platform for UGVs. Since the

Juno development board has ARMv8 which comes with full scale native virtualization, and

with bigger address space range. Furthermore any application developed for the platform

ARMv7 can easily be ported to ARMv8 Inc. (2014c).

Another feature that would be incorporated to the system architecture is the Virtual

Machine Introspection(VMI) capability. VMI capability would allow monitoring of guest

OS internal state, state transitions(events) and I/O activity. As an administrator this would

provide better visibility of state of VM and enforce security policies. A VMI based Intrusion

Detection System can be deployed in the network which will observe the hardware state and

events of a guest. Being isolated from host it would provide high degree of attack resistance

even if host is corrupted.

The technique for incorporating VMI capability is an active area of research currently

and one of the models we can consider is LibVMI LibVMI (2013). The qemu emulator

would need to be patched like:

51

Figure 5.1: Comparison Between ARMv7 and ARMv8.

<domain type=’kvm’ xmlns:qemu=’http://libvirt.org/schemas/domain/qemu/1.0’>

This is a very fast way to access the memory but it is also considered buggy and may

crash the VM LibVMI (2013). So coming up with a good way of providing VMI capability

in SDN context can be a useful research area which will be explored further in near future.

52

5.2.1 Surrogate as Service: vmBox Security

Another prospective scope for future is to use ARM development board for security

in Mobile Vehicular Environment. The collaboration between Autonomous Vehicle in real

time will put each device in a high risk position. The adversary can target open security

vulnerability. For instance the speed control of vehicle can be manipulated by exploiting

OS level vulnerability since the code/computing from a Vehicle in platoon is offloaded to

Surrogate containers , if the Vehicle is compromised.

Other methods of attack such as hack attacks and shack attacks have been discussed in

detail in Inc. (2013). We propose a security verification approach on each host device.

At hardware level, ARM TrustZone(Security Extension) will provide split mode feature

of secure and non-secure environments. This will allow boot time verification of trusted

components and runtime hypervisor protection LENGYEL et al. (2014). Execution of

code on virtual CPUs is strictly managed by Configuration Register.

The core mode called monitor mode will allow context switch between two virtual pro-

cessors running in time sliced fashion depending upon the offloaded code from Vehicle.

Once the request reaches the monitor mode on surrogate, trusted software would route the

request accordingly as can be seen in 5.2.

For instance if normal computing is required by Vehicle - IRQ (normal interrupt request)

, this will be handled by Normal World on surrogate as shown in figure. The remote user will

have privileges of read/write in this mode. However if operation requires access to secure

world resources monitor mode would switch to Secure world, and remote user/adversary

will have lower read privileges only. This will prevent adversary in platoon from mask-

ing secure world interrupts FIQ(Fast Interrupt Requests) modifying Status Registers e.g.

CPSR(Current Program Status Register) Wu et al. (2015).

53

Figure 5.2: Security Vulnerability on a Surrogate Device .

54

REFERENCES

ARM, ARM Architecture Reference Manual ARM v7-A and ARM v7-R, chap. A1.1 (ARM
Inc., 2013).

Dall, C. and J. Nieh, “Kvm for arm”, in “Proceedings of the 12th Annual Linux Sympo-
sium”, (OLS, 2010).

Dall, C. and J. Nieh, “Kvm/arm: Experiences building the linux arm hypervisor”,
Tech. rep., Department of Computer Science, Columbia University, URL http://
academiccommons.columbia.edu/catalog/ac%3A162668 (2013a).

Dall, C. and J. Nieh, “Supporting kvm on the arm architecture”, LWN (2013b).

Dall, C. and J. Nieh, “The design and implementation of the linux arm hypervisor”, in “Pro-
ceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems”, p. 333348 (ALPOS, 2014).

Dmytriyenko, D., “meta-ti layer”, URL http://git.yoctoproject.org/cgit/cgit.cgi/
meta-ti/ (2014).

DroneCode, “Ardu pilot”, URL http://ardupilot.com/ (2014).

Emmerich, P., D. Raumer, F. Wohlfart and G. Carle, “Performance characteristics of virtual
switching”, in “Cloud Networking (CloudNet) 2014 IEEE 3rd International Conference”,
(IEEE, 2014).

Feamster, N., J. Rexford and E. Zegura, “The road to sdn: An intellectual history of
programmable networks”, Tech. rep., Princetion University, URL http://queue.acm.
org/detail.cfm?id=2560327 (2013).

Foundation, L., “Xen arm with virtualization extensions whitepaper”, Tech. rep.,
XEN, URL http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_
Extensions_whitepaper (2013).

Inc., A., “Arm. arm security technology”, (2013).

Inc., A., “Arm juno development platform”, URL http://www.arm.com/products/tools/
development-boards/versatile-express/juno-arm-development-platform.php
(2014a).

Inc., A., “Juno arm development platform”, URL http://www.arm.com/products/tools/
development-boards/versatile-express/juno-arm-development-platform.php
(2014b).

Inc., A., “Porting to arm 64-bit”, URL http://community.arm.com/docs/DOC-8453
(2014c).

InSignal, “Arndale 5 base board system reference manual”, Tech. rep., Arn-
dale, URL http://www.arndaleboard.org/wiki/downloads/supports/BaseBoard_
Specification_Arndale_Ver1_0.pdf (2013a).

InSignal, “Samsung exynos 5250 dual”, URL http://www.notebookcheck.net/
Samsung-Exynos-5250-Dual-SoC.86886.0.html (2013b).

55

http://academiccommons.columbia.edu/catalog/ac%3A162668
http://academiccommons.columbia.edu/catalog/ac%3A162668
http://git.yoctoproject.org/cgit/cgit.cgi/meta-ti/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-ti/
http://ardupilot.com/
http://queue.acm.org/detail.cfm?id=2560327
http://queue.acm.org/detail.cfm?id=2560327
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://community.arm.com/docs/DOC-8453
http://www.arndaleboard.org/wiki/downloads/supports/BaseBoard_Specification_Arndale_Ver1_0.pdf
http://www.arndaleboard.org/wiki/downloads/supports/BaseBoard_Specification_Arndale_Ver1_0.pdf
http://www.notebookcheck.net/Samsung-Exynos-5250-Dual-SoC.86886.0.html
http://www.notebookcheck.net/Samsung-Exynos-5250-Dual-SoC.86886.0.html

LENGYEL, T. K., T. KITTEL, J. PFOH and C. ECKERT, “Multi-tiered security archi-
tecture for arm via the virtualization and security extensions.”, in “25th International
Workshop onDatabase and Expert Systems Applications”, (IEEE, 2014).

Liangli, M., C. Yanshen, S. Yufei and W. Qingyi, “Virtualization maturity reference model
for green software”, in “Control Engineering and Communication Technology”, (ICCECT,
2012).

LibVMI, “Virtual machine introspection”, URL http://www.libvmi.com/ (2013).

Lim, Z. S., “Setting up kvm”, URL https://wiki.linaro.org/ZiShenLim/sandbox/
SettingUpKVM (2013).

Makita, T., “Virtual switching technologies and linux bridge”, Tech. rep., NTT Open
Source Software Center, URL http://events.linuxfoundation.org/sites/events/
files/slides/LinuxConJapan2014_makita_0.pdf (2014).

Nexus9, “Google nexus 9”, URL https://www.google.com/intl/en_us/nexus/9/ (2014).

Oltsik, J., “A multitude of mobile security issues”, URL http://www.esg-global.com/
blogs/a-multitude-ofmobile-security-issues/ (2010).

over ARM, X., “Xen arm with virtualization extensions/omap5432 uevm”, URL
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions/
OMAP5432_uEVM (2014).

Papaux, G., D. Gachet and W. Luithardt, “Processor virtualization on embedded linux sys-
tems”, in “Education and Research Conference (EDERC), 2014 6th European Embedded
Design”, (IEEE, 2014).

Peng, W., F. Li, X. Han, Keesook J.and Zou and J. Wu, “T-dominance: Prioritized de-
fense deployment for byod security”, in “Communications and Network Security (CNS)
Conference”, (IEEE, 2013).

Project, Y., “meta-virtualization layer”, https://git.yoctoproject.org/cgit/cgit.
cgi/meta-virtualization/ (2014a).

Project, Y., “Yocto project development manual”, URL http://www.yoctoproject.org/
docs/1.6.1/dev-manual/dev-manual.html (2014b).

Samsung, “Samsung chromebook”, URL http://www.samsung.com/us/computer/
chromebook (2013).

SpA, M., “New security perspectives around byod”, in “Broadband, Wireless Computing,
Communication and Applications (BWCCA”, (IEEE, 2012).

Systems, V. O., “Kvm virtualization on arndale development board”, URL http://www.
virtualopensystems.com/en/solutions/guides/kvm-virtualization-on-arndale/
(2013).

Systems., V. O., “svirt security for kvm virtualization on omap5 uevm”, URL http://
www.virtualopensystems.com/en/solutions/guides/kvm-svirt-omap5/?vos=tech
(2013).

Systems, V. O., “svirt security for kvm virtualization on omap5 uevm”, URL http://www.
virtualopensystems.com/en/solutions/guides/kvm-svirt-omap5/ (2013).

56

http://www.libvmi.com/
https://wiki.linaro.org/ZiShenLim/sandbox/SettingUpKVM
https://wiki.linaro.org/ZiShenLim/sandbox/SettingUpKVM
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConJapan2014_makita_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConJapan2014_makita_0.pdf
https://www.google.com/intl/en_us/nexus/9/
http://www.esg-global.com/blogs/a-multitude-ofmobile-security-issues/
http://www.esg-global.com/blogs/a-multitude-ofmobile-security-issues/
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions/OMAP5432_uEVM
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions/OMAP5432_uEVM
https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/
https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html
http://www.samsung.com/us/computer/chromebook
http://www.samsung.com/us/computer/chromebook
http://www.virtualopensystems.com/en/solutions/guides/kvm-virtualization-on-arndale/
http://www.virtualopensystems.com/en/solutions/guides/kvm-virtualization-on-arndale/
http://www.virtualopensystems.com/en/solutions/guides/kvm-svirt-omap5/?vos=tech
http://www.virtualopensystems.com/en/solutions/guides/kvm-svirt-omap5/?vos=tech
http://www.virtualopensystems.com/en/solutions/guides/kvm-svirt-omap5/
http://www.virtualopensystems.com/en/solutions/guides/kvm-svirt-omap5/

Technology, M., “Bring your own device”, URL https://mti.com/Portals/0/Documents/
White%20Paper/MTI_BYOD_WP_UK.pdf (2012).

Tootoonchian, A. and Y. Ganjali, “Hyperflow: A distributed control plane for openflow”,
in “INM/WREN’10 Proceedings of the 2010 internet network management conference on
Research on enterprise networking”, (IEEE, 2010).

Uno, A., “Uno rev 3”, URL http://www.arduino.cc/en/Main/ArduinoBoardUno (2011).

vSwitch, O., “Kvm on open vswitch”, URL http://git.openvswitch.org/cgi-bin/
gitweb.cgi?p=openvswitch;a=blob_plain;f=INSTALL.KVM;hb=HEAD (2013).

World, P., “Windows 9 on arm”, URL http://www.pcworld.com/article/2598372/
windows-9-on-arm-could-kill-the-desktop-merge-windows-phone-and-windows-rt.
html (2014).

Wu, H., D. Huang, Y. Xin, A. Chowdhary and Z. Wang, “Drive-in-the-cloud(dr.cloud):
Surrogate service for autonomous vehicles”, in “In proceedings USENIX Hot Cloud”,
(USENIX, 2015).

Zhauniarovich, Y., G. Russello, M. Conti, B. Crispo and E. Fernandes, “Moses: Supporting
and enforcing security profiles on smartphones”, in “Dependable and Secure Computing,
IEEE Transactions”, (IEEE, 2014).

57

https://mti.com/Portals/0/Documents/White%20Paper/MTI_BYOD_WP_UK.pdf
https://mti.com/Portals/0/Documents/White%20Paper/MTI_BYOD_WP_UK.pdf
http://www.arduino.cc/en/Main/ArduinoBoardUno
http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a=blob_plain;f=INSTALL.KVM;hb=HEAD
http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a=blob_plain;f=INSTALL.KVM;hb=HEAD
http://www.pcworld.com/article/2598372/windows-9-on-arm-could-kill-the-desktop-merge-windows-phone-and-windows-rt.html
http://www.pcworld.com/article/2598372/windows-9-on-arm-could-kill-the-desktop-merge-windows-phone-and-windows-rt.html
http://www.pcworld.com/article/2598372/windows-9-on-arm-could-kill-the-desktop-merge-windows-phone-and-windows-rt.html

APPENDIX A

DEVELOPMENT PHASE ERROR LOG

58

In this section we will discuss the Challenges Faced during the development and some of
the techniques employed to resolve these challenges so that future build process can make
use of this development experience for a smooth build.

• Some of the gcc libraries are dependent upon python libraries so all the python de-
pendencies for the development environment need to be installed for gcc to build up
properly A.1.

apt-get install python-dev

Figure A.1: Gcc Failure During Build.

• Openssh Errors during the build of Open vSwitch was another issue A.2. We need to
make sure this package is present and it’s version is compatible with Open vSwitch.

• Libvirt Daemon needs the firewall modules to be enabled during kernel build. We
need to go to

\lib\modules\uname -a\build

and enable the corresponding firewall modules as external modules that are one de-
pendencies of libvirt daemon.

• Modules bc needs to be present for kernel build.

• Kernel boot parameters need to be proper to avoid A.4, the device tree start address
should not overlap with address range of uImage.

59

Figure A.2: Open vSwitch Build Failure.

Figure A.3: Libvirtd Build Issue.

• Modules stp.ko, llc.ko, bridge.ko and vxlan.ko need to be present for openvswitch.ko
module to be installed. Also the device source tree and kernel should be compatible.

• Make sure that qemu parameters for bootup are in accordance with the parameters
give in script in implementation Chapter. Otherwise the kernel may crash and build
would have to be started anew A.5.

60

Figure A.4: Kernel Boot Error.

Figure A.5: Kernel Panic Due to Improper Qemu Parameters.

61

APPENDIX B

OTHER POTENTIAL PLATFORMS FOR DEVELOPMENT

62

• OMAP 5432 sVirt feature of protecting the KVM ARM guests has been discussed
on TI-OMAP 5432. This can be another suitable platform for testing SDN solution
in ARM virtualized environment since it offers additional security provided by libvirt.
A stable bootloader and way to boot Ubuntu or Fedora on this board needs to be
explored.

Figure B.1: TI Omap 5432 Development Board ’Systems. (2013)’

• TI OMAP 5432 XEN SOLUTION A stable bootloader and kernel is required,
solution discussed for TI-5432 doesn’t work currently.

• ARM Fast Models Versatile Express simulation platform is a good model that can
be tried for eperimentation.

• ARM Juno It comes with ARMv8 and it is a 64-bit CPU. Currently price of this
board is 4200$and if license for Developer Studio is included, it costs 700$almost
35x price of arndale Exynos5250.

• Samsung Chromebook Although it is ARMv8 CPU, many developers face known
issues in Virtualization over this platform.

63

Figure B.2: Arm Juno Development Board ’Inc. (2014a)’

• Nexus 9 A good, and powerful model providing ARMv8, has to be explored further.

64

Figure B.3: Samsung Chromebook with 64 Bit ARMv8 ’Samsung (2013)’

65

Figure B.4: Google Nexus 9 with 64 Bit ARMv8 ’Nexus9 (2014)’

66

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Background
	1.2 Contribution
	1.3 Organization of Thesis

	2 RELATED WORK
	2.1 End User Virtualization
	2.2 Prioritized Defense Deployment
	2.3 MOSES
	2.4 KVM/ARM and Virtual Open System
	2.5 Yocto Project
	2.6 XEN Virtualization on ARM

	3 SYSTEM DESIGN AND SECURE MOBILE SDN ARCHITECTURE
	3.1 System Use Case Diagram
	3.2 System Components
	3.2.1 Hardware Assisted Virtualization
	3.2.2 Open vSwitch and its Comparison with other Switching Techniques

	3.3 System Architecture
	3.3.1 Hardware Requirements and Features

	4 IMPLEMENTATION AND EVALUATION
	4.1 Host and Guest Setup
	4.1.1 Host File System and Kernel Setup
	4.1.2 Guest FileSystem and Kernel Setup
	4.1.3 Bootloader for ARM
	4.1.4 Qemu for ARM Setup

	4.2 Booting Up Arndale Board
	4.3 Open vSwitch with KVM
	4.4 Current Work: SDN and Communication with Remote OpenDayLight Controller

	5 CONCLUSION AND FUTURE WORK
	5.1 Conclusion
	5.2 Scope for Future
	5.2.1 Surrogate as Service: vmBox Security

	REFERENCES
	A DEVELOPMENT PHASE ERROR LOG
	B OTHER POTENTIAL PLATFORMS FOR DEVELOPMENT

