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ABSTRACT  

   

The current work investigated the emergence of leader-follower roles during 

social motor coordination. Previous research has presumed a leader during coordination 

assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, 

this definition discounts what role-taking implies. Leading and following is defined as 

one person (or limb) having a larger influence on the motor state changes of another; the 

coupling is asymmetric. Three experiments demonstrated asymmetric coupling effects 

emerge when task or biomechanical asymmetries are imputed between actors. 

Participants coordinated in-phase (Ф =0o) swinging of handheld pendulums, which 

differed in their uncoupled eigenfrequencies (frequency detuning). Coupling effects were 

recovered through phase-amplitude modeling. Experiment 1 examined leader-follower 

coupling during a bidirectional task. Experiment 2 employed an additional coupling 

asymmetry by assigning an explicit leader and follower. Both experiment 1 and 2 

demonstrated asymmetric coupling effects with increased detuning. In experiment 2, 

though, the explicit follower exhibited a phase lead in nearly all conditions. These results 

confirm that coupling direction was not determined strictly by relative phasing. A third 

experiment examined the question raised by the previous two, which is how could 

someone follow from ahead (i.e., phase lead in experiment 2). This was tested using a 

combination of frequency detuning and amplitude asymmetry requirements (e.g., 1:1 or 

1:2 & 2:1). Results demonstrated larger amplitude movements drove the coupling 

towards the person with the smaller amplitude; small amplitude movements exhibited a 

phase lead, despite being a follower in coupling terms. These results suggest leader-
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follower coupling is a general property of social motor coordination. Predicting when 

such coupling effects occur is emphasized by the stability reducing effects of 

coordinating asymmetric components. Generally, the implication is role-taking is an 

emergent strategy of dividing up coordination stabilizing efforts unequally between 

actors (or limbs). 
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CHAPTER 1 

INTRODUCTION 

An important question in social interactions is concerned with how individuals 

influence the actions of one another. What characterizes leaders and followers?  Answers 

have developed along different lines.  This question has been investigated thoroughly in 

personality and social psychology (Bligh, 2011; Judge, Bono, Ilies, & Werner, 2002; 

Kirkpatrick, 1991).  Individuals are typically studied in isolation, wherein traits are 

predictors for the propensity for leadership.  The goal is predicting which individuals are 

likely to emerge as leaders, and how effective they will be.  Minimal effort is given to 

characterizing the interactive, social nature of leaders and followers. 

Examining real-time interactions (coordination) between people permits a 

different approach (Dumas, de Guzman, Tognoli, & Kelso, 2014; Oullier & Kelso, 2009). 

The question now becomes of what is entailed in the action of leading and following.  

Understanding how leaders and followers interact is a problem of coordinating actions 

and coupling. This tactic places a premium on the unfolding of events due to physical and 

informational exchanges (Kelso, Dumas. & Tognoli, 2013; Schmidt, Fitzpatrick, Caron, 

& Mergeche, 2011).  The perceptual-motor dynamics of social coordination have been 

exhaustively studied (Amazeen, Schmidt, & Turvey, 1995; Coey, Varlet, Schmidt, & 

Richardson, 1011; Fine, Gibbons, & Amazeen, 2013; Fine & Amazeen, 2011; Fine & 

Amazeen, 2014; Mottet, Guiard, Ferrand, & Bootsma, 2001; Schmidt & Richardson, 

2008; Schmidt & Turvey, 1994; Varlet, Marin, Lagarde, & Bardy, 2011). However, only 

a few studies have explicitly focused on the combination of motor interactions and 
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leader-follower dynamics (Konvalinka, Vuust, Roepstorff, & Frith, 2010; Rio, Rhea, & 

Warren, 2014; Sacheli, Tidoni, Pavone, Aglioti, & Matteo, 2013), with most employing 

scenarios that examine unidirectional coupling (Meerhoff, De Poel, & Button, 2014).  

Furthermore, past research examining rhythmic coordination has assumed the person 

exhibiting a spatiotemporal lead is the leader (Varlet et al., 2014).  This is only an 

observation of being ahead, is a limited criterion in terms of prediction power, and is 

potentially unfounded. Generally, it doesn’t guarantee the person in front drives the 

interaction. 

What is needed is a fundamental definition of a leader and follower.  Rather than 

assume a leader is solely a physical fact of coordination, it is proposed that the interaction 

of these roles requires considering actors as exchangers of information.  The existence of 

roles implies a directionality or asymmetric coupling. Put differently, future actions of 

followers are influenced more by leaders than vice versa.  In this current set of work, 

three studies were conducted to examine leader-follower dynamics during rhythmic 

social coordination.  Questions were framed by asking how intrinsic dynamics of 

individuals and task constraints (e.g., explicit coupling direction) alter leader-follower 

dynamics.  

Intra- and interpersonal coordination dynamics 

Coordinating one’s own limbs with another person requires integrating perceptual 

information with motor goals.  Despite the variable patterns people could produce, it was 

acknowledged several decades ago that certain patterns may be preferred.  Seminal work 
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examined bimanual coordination by having individuals oscillate index fingers at a 

metronome driven frequency (Kelso, 1984; Kelso, Scholz, & Schöner, 1986). Such 

coordination is readily described by the relative phasing (Φ; degs) between limbs.  In this 

paradigm, both in-phase (Φ = 0) and anti-phase (Φ = 180°) are stable.  If movements are 

initiated anti-phase, increasing their coupled metronome driven frequency (ωc) leads to a 

breakdown.  Movement patterns exhibit a phase-transition to in-phase (Kelso, 1984; 

Haken, Kelso, Bunz, 1985). In-phase, however, is stable across a range of slow to faster 

frequencies. These results were interpreted as the individual elements (limbs) operating 

as a synergy or coordinative structure (Bernstein, 1967; Kelso, 1997; Turvey & Carello, 

1996).  

 The realization that certain patterns are more stable than others is not limited to 

neuromuscular linkages. Rhythmic coordination between individuals or with 

environmental objects exhibit similar stability driven pattern preferences (Schmidt, 

Carello, & Turvey, 1990; Wimmers, Beek & van Wieringen, 1992). In the case of social 

coordination, interaction is mediated by informational linkages (e.g., visual or verbal).  

Such a result implies a generality of these principles (Schmidt, Bienvenu, Fitzpatrick, & 

Amazeen, 1998; Fine & Amazeen, 2011; Fine et al., 2013; Schmidt et al., 1990).  In 

effect, pattern selection based on stability is a seemingly invariant property of 

coordinating components. These relative phase dynamics have been modeled using Φ as 

an order parameter (i.e., dependent variable), according to (1):  

(1) Φ̇ = − 𝑎sin(Φ) − 2𝑏sin(2Φ)                
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In the equation of motion (1), the interaction between oscillatory elements are 

expressed as a system describing the stability of global coordination states.  The equation 

reduces the system’s dimensionality to a single equation, rather than examining all 

components (e.g., stiffness and friction of individual limbs) of the coupled oscillators 

(Fuchs, 2013; Beek, Schmidt, Morris, Sim, & Turvey, 1995). Coupling strength between 

oscillators is related to the a and b coefficients and their ratio (b/a).  Experiments on two-

limb, rhythmic coordination have suggested the coupling strength is inversely related to 

the coupled frequency (ωc); coupling strength increases and ωc decreases with an 

increasing ratio. Coupling strength operationalizes the cooperative tendency or stability 

between limbs or actors (Von Holst, 1937/1973). An important fact is that coupling 

strength is assumed symmetric; limbs have an equal influence on one another.  Stable 

relative phases (Φ or fixed-points) are indexed as negative zero-crossings in a plot of Φ̇ 

and Φ; fixed-point stability is measured by the gradient at the zero crossing.   Both states 

occur at the canonical values of Φ = 0° and 180° when the ratio is greater than 0.25.  Less 

than 0.25, the state of 180° disappears.  Only the in-phase attractor is left. This equation 

expresses an elementary coordination law. In effect, the coupling can be either 

anatomical or informational (between-persons; e.g., visual or auditory).  

 

Asymmetries: intrinsic differences and coupling 

Successful (social) coordination also relies on balancing differences 

(asymmetries) in intrinsic dynamics between actors.  Asymmetries may be attributable to 
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a range of factors, including strength, skill, limb (e.g., mass or length) or cognitive 

attributes (e.g., attentional control) or task constraint.  Given that rhythmic coordination 

is a spatiotemporal process, an important property of oscillatory systems is possessing a 

preferred uncoupled frequency (ω; Guckenheimer & Holmes, 2002).  Thus, a natural 

asymmetry to examine in coordination is the difference between each person’s uncoupled 

ω.   

Coordinating limbs with different frequencies (detuning) has been examined by 

manipulating the resonant frequency of coupled limbs.  Participants are typically asked to 

coordinate swinging handheld pendulums having different inertial moments, often in 

different phase relations (in- or anti-phase; Amazeen et al., 1995; Schmidt et al., 1998).  

When movements are performed in-phase, for example, increasing detuning (∆ω =

ω1−ω2) has two effects.  First, the phase pattern exhibits a shift away from the intended 

pattern.  Shifts are directionally specified by the person with the faster (or slower) 

pendulum.  If the left person has a faster frequency (∆ω < 0), the stable phase is negative 

(Φ̇ < 0, see eq. 2).  They exhibit a phase lead.  Detuning also has the effect of increasing 

coordination variability (SDΦ) or reducing stability.  Despite each pendular limb having 

its own frequency, individuals will typically perform close to the average frequency.  

These findings have been demonstrated and modeled across studies looking at variations 

of limb symmetries (Fuchs, Jirsa, Haken, & Kelso, 1996; Jeka & Kelso, 1995; Schmidt et 

al., 1998).  An extension of equation (1) indexes this asymmetry or competition between 

the limbs by inclusion of a ∆ω symmetry breaking term: 
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(2) Φ̇ = ∆ω − 𝑎sin(Φ) − 2𝑏sin(2Φ) 

 

Frequency differences are not the only source of asymmetries.  Fine & Amazeen 

(2011) showed similar relative phase effects when two people simultaneously tap 

between targets of unequal difficulty (indexed by amplitude and width).  Surprisingly, 

frequency locking was highest with the largest joint task difficulty; both targets were 

large amplitude and small widths. Previous work has shown similar findings examining 

directional and spatial movement asymmetries (Fine et al., 2013; Fine & Amazeen, 2014; 

Richardson, Campbell, & Schmidt, 2009).  

Stability and Effort: Leader-Follower Interactions 

  In all of these coordination tasks, performance was stabilized at some level.  As 

previously noted, coupling between actors is often assumed symmetric.  Intrinsic 

asymmetries as symmetry breaking terms are typically considered independent of 

coupling direction; though, they are assumed to impact stability (Amazeen et al., 1995; 

Fine & Amazeen, 2014; Richardson, Lopresti-Goodman, Mancini, Kay, & Schmidt, 

2008). This presumes each person equally influences one another, with each person’s 

contribution to maintaining stability being equivalent.  Coordination likely involves an 

asymmetric coupling, wherein stabilizing efforts are non-homogeneously distributed 

between people.   Considering when such coupling asymmetries emerge can be reframed 

as asking when leaders and followers materialize. 
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Direct examination of such role-taking has been minimal.  Research on leader-

follower dynamics has often examines scenarios when task or movement information is 

not provided equally across actors, or a leader is specified (Meerhoff & De Poel, 2014; 

Rio et al., 2014; Sacheli et al., 2013).  For example, Rio et al. (2014) examined visual 

locomotion control between two people. One person walked behind the other.  

Participants employed a speed-matching strategy to maintain a following pattern.  In this 

case, the follower presumably has no effect on the leader’s walking patterns.  Tasks of 

this nature may offer little insight into when these role emerge given their pre-

assignment.  

 Leader and follower dynamics have also been implicated in mutually coupled 

scenarios (Konvalinka et al., 2014). In the frequency detuning studies discussed above 

(Amazeen et al., 1995; Schmidt et al., 1998; Schmidt & Richardson, 2008; Varlet et al., 

2014), it is usually concluded the person with the faster uncoupled frequency is the 

leader.  They exhibit a phase lead. Logically, this is similar to the locomotion scenario 

(Rio et al. 2014).  Because one person is ahead, the slower person is deemed the follower.  

But it remains possible that both people contribute equally to stabilizing the coordination 

pattern. Put differently, a spatiotemporal lead in relative phase does not guarantee a 

greater coupling effect. Thus, no clear leader-follower demarcation has been made 

experimentally.  

These example demonstrate that larger problem. Analysis and definitions of leader-

follower interactions have always focused on the person who is spatially (or 
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spatiotemporally) ahead, explicitly labeled, or given privileged information. Most of 

these findings obfuscate the fundamental fact that roles are characterized by asymmetric 

influence (i.e., coupling). Properly defining a leader and follower requires a criterion that 

is neither task dependent nor circularly defined (e.g., phase lead equals leader).  

Accordingly, a proper definition of leader-follower interactions can be considered as a 

case of coupling asymmetries; leaders have a larger impact on the states and state 

changes of followers than vice versa.   

A necessary next step is asking when a limb or person should exhibit a more 

dominant effect on another, yielding a coupling asymmetry.  When do leaders and 

followers naturally emerge? These directed influence effects are expected when there is a 

pre-existing asymmetry in the coupling or of difference in intrinsic dynamics of 

coordinated components. This is generically known as symmetry breaking.  The simplest 

example is when a leader is explicit (e.g., Rio et al., 2014).  Roles are clearly delineated.  

If coupling is mutual, an asymmetry in the intrinsic dynamics or task constraints is likely 

required.   For example, hand dominance can be asserted as a form of leadership 

(Amazeen, Amazeen, Treffner, & Turvey, 1997; Treffner & Turvey, 1995). One hand 

drives the behavior of the other to a greater extent.  While the basis of handedness effects 

are debated, it could arise from a known asymmetric information-transfer system: corpus 

callosal fibers connecting lateralized hemispheres (Bloom & Hynd, 2005; Daffertshofer, 

Peper, & Beek, 2005). However, dynamics models of rhythmic coordination including 

handedness effects only capture shifts in the phasing and not informational or influence 
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effects (Treffner & Turvey, 1995); coupling asymmetries are only considered to the 

extent that they impact phase stability or lead.  

An experimental example where task asymmetries do modify coupling direction is 

provided by Peper, de Boer, de Poel, & Beek (2008).  They (Peper et al., 2008) found 

amplitude disparities between arms – an asymmetry in task constraints – yields a directed 

coupling.  Participants bimanually coordinated in-phase oscillations at either the same or 

different amplitude ratios (1:1 or 2:1, and 1:2), while briefly perturbing (frictional load) 

one of the arms in a cycle.  They measured how much the unperturbed arm changed 

phasing during a relaxation period.  Critical were the 2:1/1:2 amplitude conditions.  They 

found smaller amplitude movements contributed more to restoring the intended phase 

relationship, being affected more by the limb moving a large amplitude.  Relative phase 

was also shifted in a manner similar to frequency detuning studies.  Smaller amplitude 

movements exhibited a phase lead. An implication is that, although the small amplitude 

limb was ahead, it was actually influenced more by the large amplitude limb.  The 

important conclusion is leading is not spatiotemporally derived. These and similar results 

(Spijkers & Heuer, 1995) found in bimanual coordination provide a secondary criterion 

for leader-follower dynamics.  Coupling based followers are characterized by more 

effortful or corrective behavior than leaders.  Potentially, followers may also exhibit less 

variability due to being driven (Fairhurst, Janata, & Keller, 2014; Sacheli et al., 2013; for 

a different perspective, Vesper, van der Wel, Knoblich, & Sebanz, 2011).  
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Although the preceding discussion implies coordination may naturally involve leaders 

and followers, this has yet to be explicitly tested.  The following three studies were setup 

to test the hypothesis that leaders and followers represent a case of asymmetric coupling 

during social coordination, with followers typically exhibiting a stronger corrective effort 

to maintain task stability.  Participants were asked to rhythmically coordinate the 

swinging of pendulums in a particular phase relationship.  Using the pendulums to 

examine these interactions provides the benefit of controlling limb properties such as 

inertia, mass, and expected timing. All studies used a methodology where the effectors 

ranged from equivalent or differed in their inertial properties.  Importantly, this approach 

has been used in past studies to make claims about leader-follower interactions (Schmidt 

& Richardson, 2008; Varlet et al., 2014).  Effort was considered by measuring the 

neurophysiological movement drive via electromyographic (EMG) activity.   

Summary and Predictions 

The first experiment examined the potential for leader-follower effects during 

mutually coupled coordination.  In particular, it was asked whether or not intrinsic 

asymmetries actually drive changes in the coupling direction.  This was accomplished 

using the frequency detuning paradigm discussed above (Schmidt et al., 1993; Fine et al., 

2015).  Two points are necessary to consider: this paradigm has been used to make claims 

about such role-taking interactions, and the manipulation is assumed to not yield 

directional coupling differences; the main effect is lead or lag in the phasing (Amazeen, 

et al., 1995; Varlet et al., 2014). The main prediction was leader-follower coupling would 
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increase with increased limb asymmetry.  An auxiliary prediction was increased leader-

follower coupling would occur simultaneously with a larger increased effort from the 

follower.   

The second experiment was designed to ask whether or not leader-follower 

coupling is specifically a function of relative phasing.  Specifically, is leading and 

following strictly a spatiotemporal outcome (i.e., who leads or lags). The design 

employed a similar coordination task to experiment 1, except each person in a dyad was 

explicitly assigned the role of leader and follower.  Only the follower had the task of 

coordinating.  This setup imputes an already explicit asymmetric coupling.  A similar 

detuning manipulation to experiment 1 was also implemented.  The primary prediction is 

as follows: if leading and following is spatiotemporally driven (phase based), the explicit 

leader should generally exhibit a phase lead.  Given that individuals often exhibit a phase 

lead when following an explicit environmental target (Fine, Ward, & Amazeen, 2014; 

Stepp, 2009; Vercher & Gauthier, 1992), it is possible explicit followers could still phase 

lead.   Anticipating this result implies a non-spatiotemporal basis of leader-follower 

coupling. Pendulum differences (detuning) were also anticipated to modify the strength 

of coupling effects.  

The final experiment examined the possibility that rhythmic coordination is not 

maintained strictly through phase coupling, but additionally amplitude control.  In 

particular, a major prediction underlying all of these studies is that relative phasing is not 

the sole determinant of coupling effects.  When coordinating, people have to produce a 
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force (or torque) that changes movement timing and amplitude.  It is difficult to parse 

these apart because most rhythmic coordination tasks present a spatiotemporal 

requirement (e.g., in-phase).  If coupling is based on amplitude, this could explain how 

someone could phase lead and be a follower simultaneously. This notion is drawn from 

experiment 2’s predictions.  Participants in experiment 3 also coordinated frequency 

detuned pendulums, but were additionally tasked with performing at the same or different 

amplitudes. A major prediction was leaders are generally characterized by larger 

amplitudes.  Similar to Peper et al. (2008), larger movements were expected to drive the 

actions of a smaller amplitude limb by providing a larger entrainment signal.  Amplitude 

disparity’s effect on leader-follower coupling should also be accompanied by reduced 

phase stability if it is a significant component in the perceptual-motor coupling. This was 

anticipated based on the prediction that amplitude (or limit-cycle energy; Frank & Dotov, 

2011; Guckenheimer and Holmes, 1983) is particularly relevant in strongly coupled 

systems (Aronson, Ermentrout, & Kopell, 1990); human motor coordination with explicit 

pattern goals represents a type of strongly coupled system.  
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CHAPTER 2 

EXPERIMENT 1 

Previous research examining rhythmic coordination has noted differences in limb 

biomechanics or dominance (Amazeen et al., 1995; Schmidt et al., 1993; Treffner & 

Turvey, 1995), or variable task requirements (Fine & Amazeen, 2011; Fine & Amazeen, 

2014; Fine et al., 2015; Peper et al., 2008), yield a scenario wherein one limb will phase 

lead or lag the other.  It is generally assumed the leading limb qualifies as a leader.  

According to dominant coordination models (e.g., HKB model), the coupling direction 

should remain unaffected by the detuning asymmetries (see eq. 2). Each person’s role is 

effectively the same, having equal influence on one another. There is no leader or 

follower in coupling terms, just spatiotemporally. 

This first experiment reconsidered the possibility that limb asymmetries actually alter 

the coupling structure between coordinated actors; leaders and followers will emerge 

with symmetry breaking.  Therefore, leader-follower strength was anticipated to depend 

on differences in intrinsic dynamics.  To test this hypothesis, dyads coordinated the 

swinging of pendulums differing in their uncoupled eigenfrequency (ω).  It was predicted 

that role emergence would increase parallel to increased detuning (∆ω).   Put differently, 

if each person’s uncoupled frequency is equivalent (∆ω = 0), then minimal effort is 

needed from either person to maintain coordination (i.e., phase locking). Greater 

frequency differences require an increased effort to maintain stability. A secondary 

question was who will lead and follow?  To answer this question, coupling measures and 
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electromyographic (EMG) data were jointly considered to examine the physiological 

drive employed during coordination.   

 

Methods 

Participants.  Ten dyads were recruited for participation.  Recruited individuals were 

students from Arizona State University Introductory Psychology courses and graduate 

students.  

 

Design.  Participants were paired in dyads for each experimental session. The dyad’s goal 

was producing in-phase (Φ = 00) coordination with handheld pendulums.  To test the 

effect of asymmetries on leader-follower coupling, coordinated pendulum differed in 

their natural eigenfrequencies, frequency detuning (Δω = ωLeft – ωRight). The left and right 

in Δω refer to the person that was left or right seated during the experiment. Detuning 

was accomplished by creating 5 pendulums having different moments of inertia (see 

materials below). By crossing these into an asymmetry design, this yielded 5 levels of 

detuning (Δω = -2, -1, 0, 1, & 2 rad/s).  Each Δω condition was collected three times, 

giving a total of 15 trials for coordination conditions.  Participants also performed 10 

baseline trials (2 per pendulum). 

 

Materials.  The pendulums used in this study were created using walking stick handles 

affixed to wooden rods (0.65 m in length, 1.3 cm diameter).  An additional 200 g weight 

was added to the rod to manipulate the pendulum’s moment of inertia or eigenfrequency 
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(ω). Note that eigenfrequency is related to either the actual length of the pendulum or its 

virtual length (leq).  Changing the mass height allows manipulating leq.  A pendulum’s 

period is related to leq  by 
1

2𝜋 √
𝑔

𝑙𝑒𝑞
, where 𝑔 is a gravitational constant.  Mass heights 

needed to obtain particular pendulum periods (or frequencies) were calculated using the 

formula by Kugler & Turvey (1987).  Custom built chairs were used to support the arms 

of each person in a fixed position, allowing for unobstructed swinging and EMG 

recording.  Chairs were raised one foot off the ground. 

Position time series were obtained using an Optotrak 3020 (Northern Digital, 

Waterloo) motion capture system.  An infrared diode (1 cm diameter) was placed at the 

base of each pendulum.  The camera system was 6 feet in front of participants.  Position 

data was sampled at 500 Hz.  All measures were calculated using only sagittal plane data.  

EMG data was collected at 1000 Hz, using an MP150 Biopac system (Biopac, Inc.). 

Before processing, it was downsampled to 500Hz. Control of the OPTOTRAK and EMG 

was handled using custom software in MATLAB.   

 

Procedure. Participants were instructed to coordinate pendulum swinging in-phase (Φ = 

00).  This was shown to them by the experimenter before beginning any trials.  

Participants were asked to grasp the pendulum firmly, and not lift their arm off the rest.  

The chair’s design restricted motion to the sagittal plane. Because of the side-by-side 

configuration, one person used their right hand and the other their left.  The person 

assigned to each side was maintained throughout each experimental session.   
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Each trial lasted a duration of 45 seconds. All coordination trials were presented 

in random order, but distinct from baseline trials (random presentation within 

participant).  The order of baseline and coordination conditions were counterbalanced 

between dyads.  At the beginning of each trial, participants were told to begin swinging 

and say “go” when they felt they reached a comfortable frequency.  After the signal, the 

experimenter begin data collection. During baseline trials, participants were given vision 

blocking goggles to remove any cues available in the periphery regarding partner 

movements. Participants were allowed to rest between trials when necessary. The 

procedures used in this experiment conform to the ethical guidelines of the American 

Psychological Association, and were approved by the Institutional Review Board at 

Arizona State University.  

 

Data Processing. Only the sagittal plane position coordinates were retained for analyses.  

To eliminate transients, the first 5 seconds of data were removed. Position data were 

filtered with a zero-phase shift, low-pass Butterworth filter (12 Hz cutoff, 2nd order).  All 

derivatives were calculated using a gradient method, and then filtered the same as the 

position to remove increased noise due to differencing.  EMG data was collected from the 

extensor carpi radialis longus, a major component in the control of wrist radial deviation.  

Digitized EMG was converted to a linear envelope by rectifying and filtering the rectified 

signal using a low-pass Butterworth filter (3 Hz cutoff, 6th  order). 

Coordination was assessed using the continuous relative phase (Φ).  The phase 

angle series for each participant was calculated using the ATAN2 ( 
�̇�

𝑥
 ) of the position and 



 

  17 

velocity series. Before phase angle calculation, the position and velocity were normalized 

to the unit circle. This allows removal of arbitrary phase deviations due to intrinsic 

nonlinearities that distort the monotonic nature of phase angles.  It should be noted that 

amplitude effects were analyzed separately and in conjunction with phase relationships 

(see below). Mean phase was calculated as the difference in unwrapped phases between 

the designated left and right (Φ = θLeft – θRight) seated participants.  Phase variability was 

measured using the standard deviation of relative phase (SDΦ). All phase statistics were 

calculated using circular statistics. Frequency locking was calculated using spectral 

coherence (see Fine & Amazeen, 2011 or Fine et al., 2013).  For increased detuning 

(Δω), an increased shift in Φ from in-phase was expected.  The expected shift is 

directional, wherein the person with the faster pendulum should exhibit a phase lead. To 

analyze coupling effects, a coupled phase modeling approach was used. The calculated 

coefficients were amended with amplitude ratio weights after fitting to the data.  This 

approach allowed a parametric means to capture coupling effects between actors.  A final 

component of this study was relating the amount of effort leaders and followers exert to 

changes in coupling.  This was examined using the peak-to-peak amplitude of the EMG 

linear envelope. The within-trial means and SD of EMG activity were normalized by 

their values calculated during baseline trials, with the same pendulum.  

 

[Insert Figure 1 Here] 

Results 

Coordination: relative phase and frequency locking 
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 In general, mean Φ during bidirectional coordination scenarios tends to yield a 

phase shift that is dependent on the frequency detuning (Amazeen, et al., 1995; Schmidt 

et al., 1993; Fine et al., 2015); the faster limb tends to phase lead.  A similar result was 

found in this study, wherein the degree of phase shift was driven by Δω (Figure 2).  A 

repeated-measures ANOVA on Φ exhibited an effect of detuning, F(4,36) = 38.94, p < 

.05, ηp
2  = .81.  The linear contrast was also significant, F(1,9)= 117.35, p < .05, ηp

2  = .93.  

This follow-up combined with the means confirmed the expected effect.  Coordination 

variability was assessed using SD Φ (Figure 3).  The effect of SD Φ was only marginally 

significant using a Greenhouse-Geiser correction, F(1.78, 16.02) = 3.59, p = .056, ηp
2  = 

.29.  As predicted from previous studies, the detuning yielded a quadratic form of 

variability with changes in Δω, F(1,9)=24.09, p < .05, ηp
2  = .73.   

 

[Insert Figures 2 & 3 Here] 

 

Frequency locking was estimated using coherence.  The grand mean (0.94) 

suggested that locking was nearly equivalent across conditions, with no effect of 

detuning, (p > .05).  The coherent frequency across conditions was 6.8 rads/s. This is 

close to the average center frequency of 6.4 rad/s. 

Kinematics: baseline  

The cycle period (samples) mean and SD for baseline trials were analyzed using 

separate repeated-measures ANOVAs with a factor of pendulum ω (5.40, 5.90, 6.40, 

6.90, 7.40 rad/s).  As expected, the ANOVA revealed a main effect of ω, F(4,76)=22.68, 
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p < .05, ηp
2= .54. The mean periods scaled linearly with ω; means ranged from 537 

(samples; ω = 5.40) to 454 (samples; ω = 7.40).  A linear trend confirmed this result, 

F(1,19) = 32.68, p < .05, ηp
2= .63    The analyses of period SD revealed no effect (p > 

.05). 

Amplitude (mm) means and SD were analyzed as well. Expected trade-offs 

between pendulum ω and amplitude were observed. A repeated-measures ANOVA 

showed a main effect of ω, F(4,76)=4.19, p < .05, ηp
2= .18. The mean amplitude tended to 

decrease linearly with increasing ω, F(1,19) = 6.07, p < .05, ηp
2= .24.  The amplitude SD 

was non-significant (p > .05).     

 

Kinematics: coordination  

Both the means and SDs of period and amplitude were also analyzed for 

coordination trials.  The mean and SD period exhibited no differences across pendulums 

ω’s (equal to Δω) conditions (p > .05).  The grand mean period was 440 (samples; or 7.08 

rads/s), and the grand SD period was 30 (samples; or 0.37 rads/s).  This result generally 

agrees with the coherence output.     

The mean and SD of amplitude were also examined for detuning effects.  

Amplitude modulation as a function Δω was confirmed by an ANOVA with pendulum ω 

as a factor, F(4,76)=10.51, p < .05, ηp
2= .36.  The means (Figure 4) suggests a linear 

increase, wherein the faster ω pendulum elicited the larger amplitudes.  Recent studies 

showed a similar pattern of results (Fine et al., 2015), wherein the highest ω counter 
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intuitively exhibited the largest amplitude.  There was no effect of SD amplitude (p > 

.05). 

Given the counterintuitive amplitude results, this suggests amplitude was 

modified across both actors with increasing Δω.  Systematic trends were examined using 

the AMP-RATIO (defined as 
𝐴𝑀𝑃−𝐿𝐸𝐹𝑇

𝐴𝑀𝑃−𝑅𝐼𝐺𝐻𝑇
).  The resulting ratios (Figure 5) revealed a 

significant effect across levels of Δω, F(4,36) = 16.81, p < .05, ηp
2= .65.   The trend was 

also linear, F(1,19)=22.05, p < .05, ηp
2= .71, confirming that participants swinging the 

faster pendulum tended to produce a larger amplitude (see Δω = -2 rad/s in Figure 5).  

 

[Insert Figures 4 & 5 Here] 

 

Coupling 

As prefaced in the experimental introduction, the main prediction was detuning 

would elicit a phase shift and change in coupling direction.  To assess this claim, phase 

modeling with amplitude weights was calculated.  Coupling coefficients were first 

calculated using a phase-modeling approach (for details, see Kralemann, Cimponeriu, 

Rosenblum, Pikovsky, & Mrowka, 2008; Rosenblum & Pikovsky, 2001).  In short, the 

assumption is that weakly nonlinear oscillations are compressible to phase only models.  

The equations of motion of each oscillator can be generally stated as follows: 

           

(3) 𝜃1̇ = 𝜔1 + (
𝑅2

𝑅1
) 𝑄1(𝜃1, 𝜃2) 
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(4) 𝜃2̇ = 𝜔2 + (
𝑅1

𝑅2
) 𝑄2(𝜃1, 𝜃2) 

 

In eq. 3 & 4, �̇� represents the phase derivative. On the r.h.s, 𝜔 represents that oscillator’s 

autonomous frequency. Specifically, it indicates phase velocity without additional forcing 

or coupling terms. The Q term represents the overall coupling-forcing term.  Simply, it 

can be broken down into the product of forcing from the other oscillator and phase-

response curve.  This is the main term to be estimated.  An inclusion of the current work 

is (
𝑅𝑖

𝑅𝑗
), representing the ratio of amplitudes from the other oscillator and current one.  

This term is usually assumed to be unity. More precisely, both oscillators’ amplitudes are 

presumed to be weakly correlated and approximately equal. The AMP-RATIO results, 

however, show this is generally not the case. Negligence of amplitude terms is only 

applicable in weak coupling scenarios (Aronson et al., 1990), unlike the current findings 

(e.g., see SD Φ results). After calculating necessary coupling terms (Qs), they were 

weighted by the amplitude ratios from the corresponding trial.  All calculations were 

completed using the DAMOCO toolbox (Kralemann et al., 2008).  Normalized coupling 

coefficients and directed coupling terms were calculated as following with the amended 

equations: 

(5) �̇�𝐿𝑒𝑓𝑡 = 𝜔𝐿𝑒𝑓𝑡 + (
𝑅𝑅𝑖𝑔ℎ𝑡

𝑅𝐿𝑒𝑓𝑡
) 𝑄𝐿𝑒𝑓𝑡(𝜃𝐿𝑒𝑓𝑡, 𝜃𝑅𝑖𝑔ℎ𝑡) 

(6) �̇�𝑅𝑖𝑔ℎ𝑡 = 𝜔𝑅𝑖𝑔ℎ𝑡 + (
𝑅𝐿𝑒𝑓𝑡

𝑅𝑅𝑖𝑔ℎ𝑡
) 𝑄𝑅𝑖𝑔ℎ𝑡(𝜃𝐿𝑒𝑓𝑡, 𝜃𝑅𝑖𝑔ℎ𝑡) 

(7)  𝐶𝐿𝑒𝑓𝑡 = (
𝑅𝑅𝑖𝑔ℎ𝑡

𝑅𝐿𝑒𝑓𝑡
)

‖𝑄𝐿𝑒𝑓𝑡‖

𝜔𝐿𝑒𝑓𝑡
.    
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(8)  𝐶𝑅𝑖𝑔ℎ𝑡 = (
𝑅𝐿𝑒𝑓𝑡

𝑅𝑅𝑖𝑔ℎ𝑡
)

‖𝑄𝑅𝑖𝑔ℎ𝑡‖

𝜔𝑅𝑖𝑔ℎ𝑡
 

(9) 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 =  
𝐶𝐿𝑒𝑓𝑡−𝐶𝑅𝑖𝑔ℎ𝑡

𝐶𝐿𝑒𝑓𝑡+𝐶𝑅𝑖𝑔ℎ𝑡
 

Formula 9 restricts the range of the output to a bounded (and unit less) interval [-

1,1].  For example, a value of 1 represent a completely directed coupling effect of the 

right-seated person driving the left.  The ANOVA revealed a main effect of Δω on 

Coupling, F(4,36)=7.56, p < .05, ηp
2= .46.  As expected, there was also a significant linear 

trend (Figure 6), F(1,9)=10.55, p < .05, ηp
2= .54. Coupling direction changed as a 

function of detuning.  Examination of the values suggests that faster frequency 

pendulums tended to have a greater driving effect on slow frequency pendulums. 

 

[Insert Figure 6 Here] 

 

Neuromuscular Effort   

 The EMG peak AMP was analyzed individually for both people, at each 

pendulum ω. Note again that ω still represents the appropriate level of detuning.   It was 

predicted that EMG AMP would scale with changes in coupling.  The effect of ω for 

mean AMP was significant, F(4,76)=5.65, p < .05, ηp
2= .23.  Follow-up polynomial 

contrasts also revealed a significant linear (F(1,19)=10.41, p < .05, ηp
2= .35) and 

quadratic trend (F(1,19)=7.63, p < .05, ηp
2= .29).  This result is visible in the graph of 

mean AMP (Figure 7).  Effort increased for both people, high and low inertia pendulums, 

as detuning increased. The quadratic trend indicates this result was not an artifact of 
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inertia.  Moreover, simple comparisons show the main difference was between ω = 5.4 

and ω = 7.4 (rad/s), F(1,19)=5.31, p < .05, ηp
2= .22.   There was no variability effect as 

estimated by SD AMP (p >.05).   

 

[Insert Figure 7 Here] 

 

Discussion 

Previous research on rhythmic coordination has treated asymmetries as 

exclusively altering phase dynamics (e.g., shift and stability).  The specifically employed 

asymmetry (detuning) is presumed to not modify the coupling directionality, just its 

strength (indexed by relative phase variability).  Leading and following has been treated 

as a simple phase lead-lag effect. This experiment tested the proposal that detuning 

asymmetries alter the coupling asymmetry during coordination; system asymmetry was 

expected to yield an emergent leader and follower. 

On the basis of these predictions, it was necessary to show a simultaneous change 

in Φ and coupling. As expected, mean Φ exhibited a directional shift expected from Δω 

manipulations.  Participants with the faster pendulum tended to phase lead.  Establishing 

the phase-shift allows asking what effects detuning had on coupling. As predicted, 

coupling measures (phase coupling) confirmed an effect of Δω (Figure 6).  This result 

shows increasing detuning enhanced the driving effects one person had on the other. 

Examining the plots (Figure 2 and 6) shows the coupling based leader was the person 
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with the faster pendulum.  Together, both results show increased limb asymmetry 

(detuning) yielded an asymmetric coupling. 

A change in detuning was also predicted to modify the amount of effort exerted 

by leaders and followers.  Followers were expected to exert more effort to maintain task 

stability.  This does not imply effort would not increase for leaders, but would increase to 

a greater extent for followers.  Support for this prediction is found in the EMG-AMP 

(Figure 7.) results.   First, Δω = 0 (rad/s) conditions should yield a result close to baseline 

if effort follows coupling. This result is seen Figure 7.   The relationship between 

coupling and effort is further elaborated by the quadratic EMG effect. Increased Δω 

showed effort increased for low and high inertia pendulums, indicating a larger amount of 

control from both participants.  An importany result was the comparison between ω = 5.4 

and ω = 7.4 (rad/s; equal to Δω ±2). They were significantly different from one another, 

with the coupling indicated follower (ω = 5.4) exerting a larger effort.  The mean 

difference was approximately 18%.  

 The predicted increased effort was based on the notion that it is a means to 

mitigate coordination instability.  In other words, increased effort was not accompanied 

by a weaker coordination dynamic. There was only a marginal effect of SD Φ.  SD Φ 

effects are often found in detuning studies, to the point of being considered ubiquitous 

(Amazeen et al., 1995; Schmidt et al., 1993). Similar observations of no effect have been 

observed elsewhere (Fine et al., 2015). The detuning range in this experiment (2 rad/s) is 

also comparable to others (Amazeen et al., 1995) showing an effect on stability.  

Methodologically, the studies diverge because these paradigms typically use a 
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metronome to drive movement speed.  This external coupling source is difficult to 

account for, and is a likely cause of an exaggerated SD Φ effect.  In general, both of these 

results indicate increased effort may have played a substantial role in stabilizing 

coordination as task difficulty increased.  These efforts were not distributed equally 

among participants, supporting an emergent distribution of roles. 

A final outcome to consider is the mean amplitude and amplitude ratio.  Previous 

experiments (Fine et al., 2015) also found detuning effects on amplitude. The inverse 

frequency-amplitude relationship of unimanual (baseline) movements predict that faster 

frequency pendulums should produce the smaller of the two amplitudes.  However, the 

faster frequency pendulum elicited the larger of the two.  An implication is amplitude 

asymmetries, not necessarily detuning, could yield differential coupling effects. The 

effects of amplitude asymmetries are given detailed consideration in a later experiment 

(see experiment 3).  

Overall, these results clearly demonstrate symmetry breaking alters the coupling 

symmetry. However, it is unclear whether or not these effects are solely attributable to 

relative phase arrangement.  If the coupling asymmetry is phase based, this creates a 

prediction for scenarios with explicit leaders in such rhythmic tasks.  If each person is 

assigned a lead and follow role, knowing the direction of coupling anticipates the leader 

should generally exhibit a phase lead. The following experiment was designed to test this 

prediction. 
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CHAPTER 3 

EXPERIMENT 2 

The results from experiment 1 and previous research have indicated a general 

phase lead-lag effect of detuning manipulations. Experiment 1 also demonstrated 

detuning yields a coupling asymmetry.  The faster pendulum tended to phase lead and 

drive in terms of coupling.  To conclude unequivocally that the coupling is phase driven, 

it is necessary to test for coupling asymmetries when roles are established a prioi.   

If phase leading was the main cause of experiment 1’s results, a general prediction 

can be made when an explicit leader-follower structure is imposed under detuned 

conditions. Explicit leaders should always phase lead. Alternatively, coupling results 

from experiment 1 could arbitrarily shift as a function of detuning (Δω). This would 

imply insensitivity to actual coupling effects.  A third possibility stems from work on 

unimanual (environmental) tracking.  During tracking, participants often phase lead the 

driving target (Stepp, 2009; Fine, Ward & Amazeen, 2014; Vercher and Gauthier, 1992; 

Voss, 2000).  This occurs despite the unidirectional drive, and even under artificially 

imposed delays (Stepp, 2009). Results of this kind suggest the coupling effects in 

experiment 1 may not be readily attributed to relative phase lead-lag.  If the relative 

phasing of leader and followers exhibit a pattern similar to unimanual tracking, this 

would imply the coupling effect from experiment 1 is not strictly spatiotemporal. To test 

this, dyads again coordinated the swinging of pendulums differing in their uncoupled 

eigenfrequency (ω).   One participant was assigned an explicit leader role in each trial, 

ignoring the actions of the other. If the coupling approach is sensitive to the true leader-
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follower dynamics, coupling from leader to follower should be larger in all conditions.  

Coupling effect strength was also expected to be modulated by the difference in follower 

and leader pendulum frequency (detuning; Δω).   

 

Methods 

Participants.  Eleven dyads were recruited for participation.  Recruited individuals 

included students from Arizona State University Introductory Psychology courses for 

participation and graduate students. 

 

Design.  Participants were paired in dyads for each experimental session. Because the 

coupling is unilateral in this experiment, only one person in each trial was tasked with 

performing in-phase (Φ = 00) coordination.  The pendulum’s moment of inertia for the 

follower was altered to manipulate the uncoupled frequency difference (Δω). Leaders 

always used a pendulum of fixed frequency (ω = 6.4 rads/s).  This allowed constancy of 

the driving (leader) frequency throughout trials. The followers’ pendulums consisted of 5 

different values of ω (5.4, 5.9, 6.4, 6.9, & 7.4 rads/s), such that it was either faster or 

slower, compared to the leader’s.  These pendulums yielded 5 levels of detuning (-1.0, -

0.5, 0, 0.5, 1 (rads/s)).  For Δω = 0, the only asymmetry was the coupling arrangement. 

Combining the factors of leading participant (left or right) and Δω yielded ten conditions.  

Each trial was conducted twice, with a total of 20 coordination trials.  Δω in statistical 

analysis refers to the difference between leader and follower, not left minus right; for 

clarity, notation was changed to ΔωL-F. This arrangement still maintains detuning, with 
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negative values for faster follower pendulums; for example, the condition with the 

follower ω = 7.40 (rad/s) is equivalent to ΔωL-F = – 1 (rad/s).  Participants also performed 

two baseline trials for each pendulum. A total of 10 baseline trials (2 per pendulum) per 

person were collected. All coordination trials were fully randomized, but performed 

separately from randomized baseline trials.  Again, the order of baseline and coordination 

trials was counterbalanced across dyads. 

 

Materials.  The pendulums used in this study were identical to experiment 1.  Data 

collection was handled in a similar manner, including sampling rates, muscles sites and 

system control. 

    

Procedure. The procedure in this experiment was nearly identical to experiment 1. Given 

the specified leader, each person was designated as a leader and follower for each trial.  

Followers were instructed to visually attend to the pendulum of the other person and 

maintain in-phase. Leaders were instructed to look forward and ignore the follower’s 

movements. Leaders were also given vision blocking goggles to ensure peripheral 

information was not available. Each trial lasted a duration of 45 seconds.  

 

Data Processing.  Calculation of relevant variables was nearly identical to experiment 1.  

Main differences are found in the calculation of dyadic level measures, including relative 

phase and coupling variables.  Instead of taking differences as left from right, mean Φ, 

for example, was calculated as the difference in unwrapped phases between the 
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designated leader and follower (Φ = θLeader – θFollower).  A similar variation was also 

created for the coupling measure (explained below). 

 

Results 

Coordination: relative phase and frequency locking 

Relative phasing was analyzed using mean Φ across all 5 detuning levels (ΔωL-F).   

Differences in mean Φ  (Figure 8) showed the follower exhibited a phase lead across 

most detuning conditions.  A repeated-measures ANOVA confirmed this effect of ΔωL-F, 

F(4,40) =50.69, p < .05, ηp
2= .84.  This result contrasts scenarios involving bidirectional 

coupling between two people or arms (Amazeen, et al., 1995; Fine et al., 2015), wherein 

the person with the faster pendulum typically exhibits a lead.  Importantly, the explicit 

follower phase lead across detuning levels. Relative phase variability was analyzed using 

SD Φ.  The effect was not significant (p > .05), with a grand mean of 17.50 across 

conditions. These results are similar to experiment 1 and other recent detuning studies 

(Fine et al., 2015).  This mean SD Φ is approximately equal to that commonly observed 

within this detuning range (SD Φ  200). 

 

[Insert Figure 8 Here] 

 

Frequency locking was analyzed using coherence.  No effect (p > .05) of 

coherence implied equivalent locking across conditions.  Average coherence and SD 

across conditions was 0.94 and 0.08, indicating strongly coupled frequencies. The 
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average coherent frequency was 5.88 rads/s (SD = 0.56 rad/s), indicating performance 

was close to the fixed frequency of the leader pendulum (6.40 rads/s).  

 

 

Kinematics: baseline  

The cycle period (samples) mean and SD for baseline trials were analyzed using 

separate repeated-measures ANOVAs with a factor of pendulum ω (5.40, 5.90, 6.40, 

6.90, 7.40 ,rads/s). As expected, the ANOVA revealed a main effect of ω, F(4,84)=91.18, 

p < .05, ηp
2= .81; mean periods scaled linearly, whereby performance was close to the 

resonant frequency.  There was no effect of period SD (p > .05). 

Amplitude (min-to-max and vice versa; mm) means and standard deviations were 

analyzed as well. The expected decrease in amplitude with increasing ω was confirmed 

by a repeated-measures ANOVA, F(4,40)=4.29, p < .05,  ηp
2= .30. There was no effect of 

amplitude SD (p > .05).  In combination with mean period, these results confirm the 

canonical inverse relationship between frequency and amplitude. 

 

Kinematics: coordination 

 The same variables analyzed for baseline trials were also examined for 

coordination trials.  However, these were considered separately for leaders and followers.  

They are presented accordingly for each variable.  Mean and SD period for leaders 

exhibited no differences across ΔωL-F conditions (p > .05).  The grand mean was 530 

(samples; or 5.90 rads/s), and the mean SD period was 43 (samples; or 0.54 rads/s).  The 
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same variables for the follower did not yield any differences across conditions. The 

follower mean period mean and SD were 527 (samples; 5.95 rads/s) and 42 (samples; 

0.53 rads/s), respectively. This result agrees with the coherence output.     

The mean and SD amplitude for leaders were also consistent across ΔωL-F 

conditions (p > .05).  Grand means for mean amplitude and SD were 613 mm and 43 

mm.  Importantly, mean amplitude for followers did change according to ΔωL-F. A 

repeated-measures ANOVA yielded an effect, F(4,84)=6.30, p < .05,  ηp
2=.23. Follow-up 

polynomial contrasts revealed mean amplitude (Figure 9) exhibited an inverse quadratic 

trend, F(1,21)=25.20, p < .05,  ηp
2=.55.  Amplitude was highest at ΔωL-F = 0 rads/s, and 

lowest at ΔωL-F ± 1 rads/s. No effect for follower SD amplitude was evident (p > .05). 

 

[Insert Figure 9 Here] 

 

The follower amplitude result implies it was modulated according to the task 

difficulty (ΔωL-F). Amplitude decreased for faster and slower pendulums.  This indicates 

the possibility of a systematic relationship between leader and follower amplitude. 

Amplitude effects were again measured using the amplitude ratio (AMP-RATIO = 

𝐴𝑀𝑃𝐿𝑒𝑎𝑑𝑒𝑟

𝐴𝑀𝑃𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟
).  AMP-RATIO was analyzed according to ΔωL-F.  The ANOVA yielded an 

effect of ΔωL-F, F(4,84)=5.84, p < .05,  ηp
2=.22, and a significant inverse quadratic trend, 

F(1,21)=27.93, p < .05,  ηp
2=.57.  Mean ratios (Figure 10) demonstrate follower’s 

typically exhibited smaller amplitudes than the leader.  Comparing followers with a 

slower (e.g., ω = 5.4 rad/s) and faster pendulum (ω = 7.4 rad/s) showed a closer to unity 



 

  32 

ratio for faster pendulums.  Counterintuitively, using the faster pendulum yielded larger 

amplitudes. 

 

[Insert Figure 10 Here] 

 

Coupling measures 

This study’s main goal was to compare the relative phase dynamics and coupling 

effects.  To this end, the same phase modeling methods were applied. The two model 

phase equations are similar to that employed in experiment 1, excepted corrected for 

leader- follower  arrangements: 

           

 (10)     𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 =  
𝐶𝐿𝑒𝑎𝑑𝑒𝑟−𝐶𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟

𝐶𝐿𝑒𝑎𝑑𝑒𝑟+𝐶𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟
 

 

This formulation is designed so negative values represent greater coupling going from 

leader to follower.  Mean Coupling values followed the ΔωL-F asymmetry (Figure 11).  A 

repeated-measures ANOVA across levels of ΔωL-F  confirmed the predicted effect, 

F(4,84)=4.36, p < .05, ηp
2  = .18.  The follow-up quadratic trend was also significant, 

F(1,21)=18.39, p < .05, ηp
2  = .47. Coupling means (Figure 11) suggest driving effects 

were highest when the follower had the slower pendulum.  

 

[Insert Figure 11 Here] 
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Neuromuscular effort 

 The mean and SD EMG-AMP for followers were both analyzed.  A repeated-

measures ANOVA on mean AMP revealed a significant effect of ΔωL-F , F(4,84) = 2.68, 

p < .05, ηp
2  = .13.  Follow-up contrasts revealed a significant quadratic trend (F(1,21) = 

8.85, ηp
2  = .30). Effort increased for both the lowest and high inertia pendulums. The 

means (Figure 12) suggest peak activity was largest with the high inertia pendulum 

(lowest ω).  There was also an effect of AMP SD F(4,84) = 3.41, p < .05, ηp
2  = .14. AMP 

SD effects interestingly show (Figure 12) that EMG activity was more variable for lower 

inertia pendulums during coordination.   

 

Discussion  

 This experiment’s aim was examining leader-follower coordination in a manner 

that was explicit: one person was assigned the job of coordinating with the other (i.e., 

leader). This was accomplished using a rhythmic coordination task, wherein intrinsic 

dynamics of leader and follower were controlled through frequency detuning.  While 

obvious that coupling should flow from leader to follower, less apparent are effects of 

intrinsic dynamics and phasing.  Previous research and experiment 1 imply leader-

follower coupling is driven by relative phasing, i.e., who is ahead and behind. These 

types of conclusions are based on results showing a directional phase shift of Φ according 

to Δω (Amazeen et al., 1995; Sternad et al., 1995; Schmidt et al., 1993).  Following such 

a logic has implications for combining detuning and an explicit role design. The leader 
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should generally exhibit a phase lead along with coupling drive. This was not supported 

by this study’s results.  Coupling was not driven by spatiotemporal lead-lag. 

Coupling estimates (phase model) revealed a directed influence of the leader to 

the follower in all cases. An important prediction was coupling changes would scale with 

ΔωL-F.  Coupling effects were lowest at ΔωL-F  = 0, growing quadratically with increased 

detuning. This verifies the prediction that coupling asymmetry is altered by symmetry 

breaking in intrinsic and task (role structure) dynamics. Combining these results with 

mean Φ provides confirmation that coupling was not driven explicitly by phase lead or 

lag.  Specifically, the follower tended to phase lead across all detuning conditions (Figure 

8).  In terms of Φ they were leading, in coupling terms they were driven.   

Another key question was how do coupling effects drive effort at the control 

level? While all followers in this experiment were explicit, a prediction congruent with 

experiment 1 was effort would scale with coupling. This prediction was verified by the 

EMG AMP results. Means exhibited a quadratic trend that scaled with coupling strength 

(see Figures 11 & 12); peak effort was generally greater than baseline in nearly all 

detuning conditions.  Overall effort was slightly larger for high inertia pendulums 

compared to low inertia. This difference between the slowest and fastest ω, though, was 

not significant.  A second notable result was the EMG variability.  SD AMP was larger 

for low inertia pendulums.  Combined examination of the mean and SD AMP shows a 

differential relationship between mean effort and variability across pendulum ω (Figure 

12).   
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Both mean and variability EMG findings may be attributed to two dual processes: 

as ΔωL-F increases in either direction, the need to exert control increases.  An unlikely 

result is detuning having an equivalent effort effect for high (ΔωL-F  =1) and low inertia 

(ΔωL-F  = -1) pendulums.  To maintain a stable phase pattern, low inertia followers only 

need to increase or lengthen the overall force across the movement cycle extent.  Control 

of force in this manner would essentially lengthen the swing period and amplitude to a 

point needed to match leader frequency. Though speculation, this is supported by the 

larger amplitude exhibited by high inertia pendulums. In contrast, following with the high 

inertia pendulum requires a different control process. It is necessary to speed up.  

Inevitably, this requires a larger stiffness. Stiffness control would have resulted in a 

larger EMG signal.  The reason for less variability with the high inertia is likely due to 

the pendulum’s filtering response.  The higher a pendulum’s inertia, the less it will 

respond to a given torque.  Essentially this implies the larger inertia pendulums can 

receive a large impulse while producing a larger damping or filtering response.  The main 

implication is followers do exert more effort, but in a means that potentially minimizes 

variability.   

A last issue is disagreement between relative phase and coupling across both 

experiments 1 & 2.  If relative phase dynamics do not explain the changes in coupling, 

another candidate control variable needs identification.  Park & Turvey (2008; see also, 

Fine et al., 2015; Kudo et al., 2006; Peper et al., 2008) suggested rhythmic coordination 

may require inclusion of amplitude terms. However, phase only models ignore oscillation 

amplitude for two reasons: the amplitude is a slowly changing variable compared to 
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phase (Strogatz, 2001), and both limbs’ (oscillators) amplitudes are approximately equal 

(Fuchs, 2011).  Focusing on the latter, results obtained from the AMP-RATIO showed 

amplitude was not constant across trials. Followers always maintained a lower amplitude 

than the leader.  The potential for amplitude coupling effects are clarified by comparison 

of coupling strength and AMP-RATIO. In general, the farther away AMP-RATIO was 

from unity, the larger the coupling effect. While this could be related to weighting the 

phase coupling by amplitudes, similar significant effects were obtained by phase coupling 

estimates without amplitude weights (p < .05).  Given the disagreement between relative 

phases and coupling in experiments 1 & 2, the amplitude ratios suggest the coupling is 

largely amplitude based.  This proposal implies that altering the amplitude ratio between 

individuals should change the direction of coupling. Experiment 3 was designed to test 

this hypothesis. 
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CHAPTER 4 

EXPERIMENT 3 

The previous experiments were designed to examine leader-follower dynamics in 

mutually coupled and explicit scenarios.  Combined results of both studies suggest the 

leader-follower coupling is potentially not contingent on phase leading (see Experiment 

2).  While in experiment 1 the phase leader happened to be the leader, experiment 2 

revealed the explicit follower nearly always phase lead.  This latter result implies a 

mechanism allowing someone to follow from ahead (i.e., phase leading). To fully 

understand the relationship in leader-follower coordination requires consideration of 

which variables individuals are controlling: what constitutes the coupling relation in these 

rhythmic dynamics?  

An imperative result in both experiments 1 and 2 was the amplitude ratio changed 

systematically with coupling.  Increased amplitude disparity was accompanied by an 

increase in coupling asymmetry.  A similar relationship was not observed between 

relative phase and coupling. This suggests amplitude control may play a distinct role. 

This proposal further agrees with Peper et al.’s (2008) results on bimanual amplitude 

disparities.  They showed disparities favored a stronger influence of large movements 

onto small, which was accompanied by reduced phase stability and shifts.  If amplitude 

plays a significant role in rhythmic-motor coupling, introducing a disparity between 

participants should alter the leader-follower dynamics. Specifically, assigning a person a 

larger amplitude should put them in a position as a coupling leader.  This hypothesis was 

tested in this experiment by, again, using a frequency detuning paradigm. Participants 
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were also instructed to coordinate either naturally or at half (or double) the amplitude of 

their partner.  

 

Methods 

Participants.  Ten dyads were recruited for participation.  Participants included students 

from Arizona State University Introductory Psychology courses and graduate students. 

 

Design.  Participants paired in dyads were asked to coordinate pendulum swinging in an 

in-phase (Φ = 00) pattern.  Symmetry breaking will be implemented using the same 

frequency detuning (Δω) manipulation from experiment 2 (Δω = -2, -1, 0, 1, 2 rads/s). 

The main manipulation was asking people to coordinate at difference ratios of one 

another’s amplitude (1:1, 2:1, & 1:2).  Amplitudes were self-selected to not bias 

participant’s exerted force. With 2 trials in each condition, the combined factors yielded a 

total of 30 trials for coordination conditions.  Each participant also performed 10 baseline 

trials, 2 for each pendulum.   

 

Materials.  All of the materials in this experiment were identical to experiment 1 and 2. 

 

Procedure. The procedure used in this experiment was identical to the other studies. 

Each trial lasted a total of 45 seconds. All coordination trials were presented in random 

order.  Baseline trials were randomly presented, but performed within a single session. 

Coordination and baseline order was counterbalanced across dyads.  
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Data Processing. Only the sagittal plane position coordinates were retained for analyses.  

Again, the data were handled the same as previous experiments.  Given both factors Δω 

and Ratio (1:1, 1:2, & 2:1), any reference to Ratio in dyad level measures refers to the 

amplitude asymmetry.  On individual level measures, such as mean period (mm), it refers 

to the amplitude requirement assigned to the person on the left of the ratio.  For example, 

2:1 indicates the analyses is directed at the person performing the larger relative 

amplitude. 

Results 

Coordination: relative phase and frequency locking 

Coordination was analyzed using mean Φ. As expected for the 1:1 Ratio 

condition (see Figure 13), there was a phase shift as a function of detuning.  The 1:2 and 

2:1 amplitude ratios also shifted Φ, whereby the person with the smaller amplitude 

always phase lead.  This was confirmed by a two-way, repeated-measures ANOVA with 

the factors Δω (5) and Ratio (3).  Both main effects of Δω (F(4,36) = 65.28, p < .05, ηp
2= 

.87) and Ratio  (F(2,18) = 22.88, p < .05, ηp
2= .72) were significant. There was no 

interaction (p > .05).  The Ratio variable shifted the intercept of the curve across levels 

Δω, while detuning effects were similar within a Ratio. 

The analyses of SD Φ was analyzed to test the prediction that coupling is 

amplitude driven. Confirmation of this would result in significantly higher variability for 

the 1:2 and 2:1 scenario compared to 1:1. While the two-way ANOVA revealed no effect 

of Δω, the effect of Ratio was significant as predicted, F(2,18) = 20.47, p < .05, ηp
2= .70.  
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As seen in Figure 14, the 1:1 Ratio was more stable than both the 1:2 and 2:1. This 

difference was verified using the combined average of 1:2 and 2:1 compared to 1:1.  This 

effect was confirmed with a simple contrast (bonferroni adjusted, p < .05).  

Frequency locking was estimated using coherence.  The grand mean (0.93) 

suggested strong frequency locking across conditions. There was no effect of Δω or Ratio 

(both p > .05).  In general, the coherent frequency was consistent across conditions was 

7.4 rads/s.  

 

[Insert Figure 13 & 14 Here] 

 

Kinematics: baseline  

The cycle period (samples) mean and SD for baseline trials were analyzed using 

separate repeated-measures ANOVAs with a factor of pendulum ω.  As expected, the 

ANOVA revealed a main effect of ω, F(4,76)=53.92, p < .05, ηp
2= .74. The mean periods 

scaled linearly with ω, ranging from 573 (samples; ω = 5.40) to 410 (samples; ω = 7.40).  

A linear trend confirmed this result, F(1,13) = 131.50, p < .05, ηp
2= .87     Analysis of 

period SD revealed no effect (p > .05). 

Amplitude (mm) means and SD were analyzed as well. The one-way ANOVA 

revealed a main effect of ω, F(4,76)=8.15, p < .05, ηp
2= .36. The mean amplitude 

decreased linearly with increasing ω, F(1,19) = 16.65, p < .05, ηp
2= .46.  There was no 

effect on amplitude SD (p > .05).     
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Kinematics: coordination  

Analyses of mean period yielded a significant two-way interaction between 

pendulum ω and Ratio, F(8,152)= 3.54, p < .05, ηp
2= .20.   While comparisons 

(Bonferonni adjusted) revealed several differences between levels of pendulum for 

Ratios, the interaction source is likely due to no differences among Ratios between 

pendulum ω = 6.9 (rad/s) and another ωs.  Despite this interaction, the graph (Figure 15) 

is explanatory.  The plot of means shows a strong match of period between pendulums at 

the 1:1 Ratio.  Though, in the 1:2 Ratio the person with the smaller amplitude movement 

tended to produce a shorter period; the person with the larger amplitude assignment 

consequently produced a longer period. The SD period analysis also revealed an effect of 

Ratio, F(2,38)= 6.23, p < .05, ηp
2= .25, but not of  pendulum ω. The means for the 3 ratios 

(1:1 = 23, 1:2=31, & 2:1 = 25 samples) suggests smaller amplitude movements yielded 

slightly more variability. 

 

[Insert Figure 15 Here] 

 

The amplitude (mm) mean and SD were also examined.  The ANOVA revealed 

an effect of Ratio, F(2,38)=98.94, p < .05, ηp
2= .84,  and of pendulum ω, F(4,76)=3.83, p 

< .05, ηp
2= .17 .  The means of all 3 ratios (1:1 = 438, 1:2 = 321, & 2:1=550 mm) suggest 

people performed the 1:2 and 2:1 requirements of the task (Figure 16).    The effect of ω 

indicates amplitude was generally higher for faster (low inertia) pendulums (ω = 7.4 

rads/s) across ratios.  Amplitude disparity was accompanied by an increase in amplitude 
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SD.  Analysis revealed only a main effect of Ratio, F(2,38)=22.41, p < .05, ηp
2= .54. 

Consideration of the means across Ratio (1:1 = 39, 1:2 = 36, & 2:1=49 mm) and follow-

up comparisons showed the 2:1 Ratio was different from 1:1 and 1:2 (p < .05), but they 

were not different from each other (p > .05). Variability was highest for the person 

performing the larger of both amplitudes.  

 

[Insert Figure 16 Here] 

 

The main amplitude effect of interest is the ratio between participants.  AMP-

RATIO was analyzed for both Δω and Ratio.  Analysis revealed both the Δω, 

F(4,36)=7.84, p < .05, ηp
2= .47, and Ratio, F(2,18)=47.33, p < .05, ηp

2= .85, main effects 

were significant. The means (Figure 17) show the effect of Δω linearly shifting the AMP-

RATIO across all amplitude disparities. A linear contrast for Δω substantiates this, 

F(1,9)=18.04, p < .05, ηp
2= .67. The Ratio effect was confirmed by the means in the 1:2 

and 2:1 amp condition, wherein people performed close to the required relative 

amplitude.    

[Insert Figure 17 Here] 

 

 

Coupling Measures 

This study’s main prediction was amplitude control underlies the coupling 

dynamics.  Manipulating amplitude disparity therefore should affect the leader-follower 
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interaction.  This was examined using phase modeling.  Model coefficients were 

weighted with amplitude ratios, while Coupling was calculated in a left-right arrangement 

(see Experiment 1).  The ANOVA revealed a significant interaction of Δω and Ratio, 

F(8,72) = 3.16, p < .05, ηp
2= .26. Examination of Figure 18 shows a similar coupling 

result to experiment 1 for the 1:1 Ratio.  The faster pendulum tended to drive the slower.  

For the 1:2 and 2:1 Ratios, it is clear that the coupling was driven by the person with the 

larger amplitude requirement.  These differences are the likely interaction source.  

Follow-up analyses using simple contrasts revealed no Δω effect when comparing the 1:2 

and 2:1 Ratios. When comparing the average absolute values of the 1:2 and 2:1 Ratios to 

the 1:1 there was a Δω x Ratio interaction, F(4,36) = 9.17, p < .05, ηp
2= .51. This result 

suggests detuning had an effect on the 1:1, but not disparate amplitude Ratios.  

Amplitude asymmetries yielded a stabilizing effect on coupling, whereby the switch seen 

across Δω levels in the 1:1 Ratio were mitigated.  

 

[Insert Figure 18 Here] 

 

Neuromuscular Effort 

 The EMG AMP mean and SD were again analyzed to examine changes in 

effortful control.  Analyses revealed an effect of Ratio on mean AMP, F(2,38) = 22.36, p 

< .05, ηp
2= .54, and an effect of ω, F(4,76) = 11.08, p < .05, ηp

2= .37.  Follow-up analyses 

for Ratio revealed that all levels differed from one another (Bonferonni adjusted, p < .05). 

Interestingly, the lowest AMP was in the 1:2, with the highest in the 2:1 (Figure 19). The 
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effect of ω was analyzed using polynomial contrasts.  The linear (F(1,19) = 28.37, p < 

.05, ηp
2= .60) and quadratic (F(1,19) = 11.41, p < .05, ηp

2= .38) trends were both 

significant.  Overall, these trends indicate higher inertia pendulums exhibited a larger 

effort across Ratio levels.  

Analysis of SD AMP also revealed an significant interaction of Ratio and ω, 

F(8,152) = 3.24, p < .05, ηp
2= .15. To find the source of the interaction, follow-up 

analyses comparing the 1:1 and 1:2 across levels of ω was conducted using a repeated-

measures ANOVA. As anticipated from Figure 20, the interaction was significant, 

F(4,76)=4.14, p < .05, ηp
2= .18.  Comparisons within this analyses showed that both 

Ratios were different for all levels of ω except ω = 5.9 (rad/s).  The Mean SDs (Figure 

20) across Ratios actually indicate variability was lowest for 1:2 (89 % baseline), with 

1:1 (102 % baseline) and 2:1 (129 % baseline) exhibiting a more variable response.   

 

[Insert Figure 19 & 20 Here] 

 

Discussion 

 Past research on rhythmic coordination has generally pursued coupling 

mechanisms based on phase and its derivatives.  This has garnered conclusions about 

leader-follower coupling based on phase lead and lag. Effects related to amplitude are 

often not considered. However, the previous two studies and others (de Poel, Peper, & 

Beek, 2009;  Fine et al., 2015; Kudo et al., 2006; Park & Turvey, 2008; Peper et al., 

2008) indicate the amplitude may exert a large influence on such coupling.  This study 
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tested this possibility, predicting that amplitude asymmetries should alter the coupling 

asymmetry or leader-follower direction. The results confirmed the prediction that 

coupling direction and stability (indexed by SD Φ) were modified by differential 

amplitude requirements.  

The correspondence between amplitude and coupling is revealed by comparing 

the mean Φ and coupling results. Overall, coupling and mean Φ during 1:1 trials were 

similar to experiment 1. Coupling was driven by the person with the faster (high inertia) 

pendulum. As noted in these other experiments, the faster person also produced a larger 

amplitude. Currently, the important conditions are the 1:2 and 2:1 ratios.  In this case, 

participants tasked with the larger amplitude drove the coupling. The person producing a 

smaller amplitude exhibited a phase lead across all detuning levels, however.  Put simply, 

phase leading had little distinguishable impact on coupling compared to amplitude 

manipulation.  

A possible explanation is amplitude manipulations just displaced the relative 

phase curves, such that a switch between the left and right person phase leading across 

Δω was slowed.  However, constraining the amplitude in 1:2 or 2:1 stabilized the 

coupling effect; the large amplitude movements always drove the coupling. This is 

supported by the interaction and follow-up of Coupling.  Removing the amplitude 

constraint (i.e., 1:1) yielded the expected switch in coupling across Δω, but was clearly 

driven by amplitude ratios.  

Another concern was the effect of amplitude disparity on stability.  If amplitude 

drives coupling, and the most stable coordination appears during a match of amplitude, 
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stability should decrease significantly when manipulated.  First, detuning’s impact on SD 

Φ results were generally negligible.  Again, this result agrees with previous studies (Fine 

et al., 2015). The effect of Ratio was large, as anticipated.  Stability was significantly 

degraded in differential amplitude conditions. This result further demonstrates the 

pertinence of amplitude based coupling.  

A final hypothesis throughout all experiments was that followers would exhibit a 

larger stabilizing effort.   Support for this was less clear in the current EMG results.  

Mean AMP did show differences across levels of detuning or pendulum. The previous 

two experiments showed mean AMP was higher for the high inertia pendulum, which 

was also found in the current work. However, the previous studies revealed an effect 

whereby there were similar increases in effort for high and low inertia pendulums.  In the 

current work, the AMP generally declined from high to low inertia.  However, the 

quadratic effect does suggest there still was a slight increase going from Δω = 0 to high 

inertia pendulums. This effect was clearly smaller than expected, particularly in the 1:1 

scenario.  Potential reasons for this divergence are suggested below.  

One possible reason for this trend is the movements were not scaled by 

appropriate baselines.   The other experiments had no amplitude requirement; though, this 

should not impact the 1:1 condition.  Regardless, the same standard baseline used in the 

other experiments was used to normalize in this study as well.  One unknown is whether 

or not baseline swinging a pendulum at a self-chosen small and large amplitude has a 
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different change in activity over the different inertias.  Thus, normalizing only on the 

standard baseline could have altered the coordination outcome.1 

Although the effect of ω is less clear, the effect of Ratio also requires 

interpretation.  At first glance, it suggests followers did not exert more effort. The means 

for each ratio (1:1 = 103%, 1:2 = 97%, and 2:1 = 120% of baseline) show that the least 

effort was exerted by followers in the 1:2 condition.  Moreover, the difference between 

1:2 and 1:1 was significantly different (see results above). This does imply follower’s 

effort was lower than leaders, even below baseline.  Producing the larger amplitude also 

yielded the largest output.  A possible explanation for this result is found in the amplitude 

manipulation.  For example, when required to produce a small amplitude, individuals 

may switch to a different means of control.  Rather than increasing force, people may 

have accommodated the amplitude requirement by producing less force in shorter 

impulses; this resulted in less force than baseline. A consequence of this control scheme 

would yield shorter and potentially faster oscillations.  This would explain the 

emphasized phase lead. The opposite may have occurred for larger amplitudes. By 

manipulating amplitude, this also may have switched the roles in terms of who exerted 

the largest effort to coordinate.   

In general, the amplitude manipulation made the task more difficult. When 

allowed to self-choose amplitude (e.g., 1:1 conditions), coordination variability was 

                                                 
1 The possibility that a different rate-of-change of activity over small and large amplitudes, across 

pendulums, was examined with three new participants.  Changes in mean peak amplitude over different 

pendulums, with both amplitudes, were approximately equivalent. However, the intercepts of the 

differences across pendulums were slightly lower for small amplitude. This indicates the usage of lower 

force with decreasing amplitude.    
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distinctly lower (indexed by SD Φ) compared to a 1:2 or 2:1 task.  This fact seemed to 

result in changes in EMG variability as well. Not only was effort higher for 2:1 compared 

to 1:1 and 1:2, but SD Amp followed a similar rank ordering (1:1= 102% , 1:2= 89% , &  

2:1= 120% ).  It seems follower’s (1:2) contribution to stability was not in terms of effort, 

but reducing within-trial variability.   

Both of the mean and SD results become clear when considering the effects of 

generic oscillators (linear and nonlinear) under external forcing.  Both oscillators will 

have equal effects on each other’s states when coupled equivalently.  Increasing the 

forcing (or coupling) one system has on another while leaving the other fixed alters this 

relationship. This yields an asymmetric coupling. Assuming each oscillator exhibits some 

intrinsic variability (i.e., noise), the system exhibiting the larger input will tend to 

stabilize the variability of the system receiving this forcing. An increased forcing in this 

sense is equivalent to a larger coupling in the current work.  Assuming amplitude is 

equivalent to forcing, the EMG results seem to accurately reflect the dominant coupling 

going from large to small amplitude movements. Leaders and followers switched in terms 

of effort, while followers exhibited larger consistency or lower variability.   
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CHAPTER 5 

GENERAL DISCUSSION 

The notion of leader-follower coupling was considered in the current work by 

examining social motor coordination.  In sensorimotor coordination, roles are typically 

demarcated by which person exhibits a spatiotemporal lead or lag, or has privileged 

information (Bosga, Meulenbroek, & Cuijpers, 2010; Rio et al., 2014; Varlet et al., 2012; 

2014; Vesper & Richardson, 2014).  For rhythmic tasks, this implies the phase leader is 

the leader.  Such an approach precludes what is actually entailed in role-taking: one 

person has a larger effect on another person’s actions.  Therefore, to delineate leader from 

follower requires identifying individual roles in terms of coupling asymmetries or 

influence.  Following this proposal, three experiments examined the emergence of such 

leader-follower coupling in a rhythmic coordination task.  The main prediction was that 

imputing some form of symmetry breaking would lead to increase role-taking. Across all 

studies, participants coordinated (in-phase) the swinging of handheld pendulums differing 

in their natural frequency (detuning). The first two experiments aimed to identify when 

leaders and followers emerge during coordination, and how these roles are reflected in 

physiological responses or effort produced to stabilize coordination. This was 

accomplished by either not constraining (Experiment 1) or explicitly assigning roles 

(Experiment 2). A third prediction, specific to motor coordination, was examined in 

experiment 3.  This experiment tested the proposal that coupling direction is largely 

based on amplitude.  The main manipulation was asking people to self-select amplitude 

(1:1) or produce half (or double) that of the other dyad member (1:2 or 2:1).  
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Symmetry breaking changes coupling and stability 

All of the current studies aimed to show that including some form of symmetry 

breaking – attributable to biomechanical differences (i.e., pendulums; experiment 1), 

explicit roles (experiment 2), or task requirements (amplitude disparity; experiment3) – 

alters the leader-follower (asymmetric) coupling during rhythmic coordination. This 

prediction was generally supported. The experiments as a whole demonstrated coupling 

was not driven by spatiotemporal lead or relative phase.  

First, Experiment 1 showed phase leaders did drive (see Figure 2 & 6) phase 

followers.  Alone, this result agrees with other’s consensus (Bosga et al., 2010; Varlet et 

al., 2012; 2014) that rhythmic leading may surmount to relative phasing.  However, other 

work (Fine, Ward, & Amazeen, 2014; Stepp, 2009) on rhythmic target tracking has 

shown people actually will exhibit a phase lead with an environmental driver; this is 

comparable to an explicit leader.  Therefore, the second experiment used a similar 

coordination task, but with an explicit leader and follower.   Followers surprisingly phase 

lead the explicit leader (Figure 8) across all frequency detuning conditions.  This 

occurred even when a follower’s uncoupled frequency was slower (Δω =1 rad/s).  This 

follower phase lead effect would not be predicted if the leader-follower coupling is 

spatiotemporally based. Moreover, the degree of asymmetric coupling also changed as a 

function of Δω.   The incongruence between both experiments results were clarified by 

experiment 3. Coupling direction changed as function of symmetry breaking via 

amplitude disparities (1:2 and 2:1).  The person with the larger amplitude drove the 
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coupling, despite the smaller amplitude movements exhibiting a phase lead across 

detuning conditions. The important conclusion is that asymmetries – whether physical 

(pendulums), task requirement (amplitude disparity) or specified (explicit) – altered the 

coupling directionality.  

The fact that leader-follower coupling was not based on phase leading suggests 

prior claims about such directionality are potentially misleading (Bogsa et al., 2010; 

Konvalinka et al., 2010; Mörtl, Lorenz, Vlaskamp, Gusrialdi, Schubo, & Hirche, 2012; 

Varlet et al., 2012; 2014). For example, Varlet et al. (2014) showed people with social 

anxiety disorder (SAD) may have more difficulty in leading another person.  They 

employed a similar frequency detuning task to that presently used.  Their main finding 

was that assigning the faster pendulum to people with SAD yield larger variability (SD 

Φ). From this, they concluded people with SAD had trouble leading.  However, based on 

their results, there is no guarantee this person had a diminished driving effect on the 

other.  Aside from relative phasing, these results imply differentiating people in terms of 

intrinsic properties can lead to an overall differentiation of roles.   By identifying when 

pertinent task asymmetries exist, it is possible to predict when such role-taking would 

emerge.  

Although role-taking can occur in an emergent fashion, an issue worth discussion 

is why a person would take on either role.  The impetus for role emergence and who 

performs which role are interrelated.   Coordinating asymmetric components without 

increased corrections would inevitably lead to decreased stability.    Thus, the fact of a 

coupling asymmetry implies two-people (or limbs) may split their efforts unequally. How 
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are these efforts distributed among leader and followers? A possible explanation for why 

effort should change unequally is based on the cost to perform necessary corrections. 

Specifically, followers may incur a lower cost to produce increased forces or effort in 

terms of motor variability.   

Close examination of the present results provides support for cost based roles. In 

experiment 1 and 2, a larger coupling effect was directed at high inertia pendulums.  

Effort in terms of EMG output was also higher. Larger forces, however, are typically 

accompanied by noisier output (Harris and Wolpert, 1999). This presents a paradox when 

claiming they became the follower because it minimizes overall variability.  Considering 

a reversed outcome of experiment 1 and 2 clarifies why the larger inertia pendulum 

following is more stable.  If the lower inertia pendulum followed, this would imply they 

produced a larger effort.  The lower resistance of this pendulum to imputed forces, 

compared to a higher inertia, would yield noisier kinematic output (Russell & Sternad, 

2001).  The lower a limb’s inertia, the less it filters out the noise for a fixed level of 

torque. Because the high inertia pendulum tended to follow, they could exhibit larger 

control signals without the accompanying noise. The overall cost to correct was lower.  

Experiment 3’s results differ because participants were required to produce movements 

that were distinctly larger or smaller.  The means of controlling movement likely 

switched from the other experiments.  This was due to constraints on the force-amplitude 

relationship.  While the small amplitude follower’s exhibited a lower effort, they still 

exhibited less variability.   
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Overall, these findings indicate leader-follower coupling emerges during 

coordination as a result of biomechanical or task asymmetries.  The reason for changes in 

coupling are stability reducing effects of stability.   Inevitably, this leads to leaders and 

followers exerting different levels of effort to maintain stability while minimizing 

variability.  Such an emergent act reflects a group-level decision about role structure. 

Whomever has the lower cost to correct in terms of minimizing task relevant variability 

may take on the follower role (Jarasse, Charalambous, & Burdet, 2012). A further 

implication is that, by identifying the person with the lower cost, it may be possible to 

predict role structuring during coordination. Clearly this division of roles will depend on 

the type of asymmetry. 

 

Beyond phase synchronization 

Most models of rhythmic coordination assume a homogeneous coupling between 

components; handedness research is an exception (de Poel et al., 2006; Treffner & 

Turvey, 1995).  In making this assumption, two systems of coupled oscillators are 

reduced to a singular equation of motion.  A prime example is the HKB system (eq. 2 & 

3).  For clarity, this equation is repeated here:  

 

(11) Φ̇ = ∆ω − (𝛼 + 2𝛽𝑟2)sin(Φ) − (𝛽𝑟2)sin(2Φ) 

 

It is important to note the detuning term only shifts the stable relative phase and 

decreases its stability. There is no effect on coupling direction.  Experiment 1’s results 
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show detuning also modified coupling directionality. This result is not predicted by eq. 

10. One extension of eq. 10 that could accommodate this coupling effect is the addition 

of cosine terms, included to model handedness effects (Amazeen et al., 1997; Treffner & 

Turvey, 1995). Even with the addition of these terms, it still predicts the limb driving the 

coupling would phase lead.  To capture these asymmetric coupling effects in modeling 

terms may require going beyond the lower-dimensional equations. 

Another issue presented by all three experiments is reconsidering the role of 

amplitude (for a similar proposal, see de Poel et al 2009; Peper et al., 2008). While the 

HKB equation (eq. 10) includes amplitude in the coupling, the assumption is amplitude is 

equivalent for both oscillators. This reduces amplitude down to a single 𝑟2 term.  The 

predicted equivalent amplitude, however, was not supported by the AMP-RATIO results 

in the first two experiments. This ratio drove the coupling direction and stability (see 

Experiment 3) beyond effects of Φ.  The more disparate the amplitude, the larger the 

variability (see Figure 13). Moreover, changes in the amplitude also altered the coupling 

direction.  Others have suggested amplitude asymmetries are actually linked to 

manipulations of ∆ω (de Poel et al., 2009). This claimed is based on the expected change 

in limb amplitude as a function of its natural frequency.  This frequency-amplitude effect 

(Kay, Saltzman, Kelso, & Schoner, 1987) was found in the baseline amplitude and period 

in all current experiments.  de Poel et al. (2009) proposed such frequency driven 

amplitude asymmetries could explain differences in the oscillator’s relative amplitudes. 

However, this predicts lower inertia pendulums should exhibit a larger amplitude and the 

opposite for high inertia (assuming detuning).  The present results revealed the opposite. 
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Even with experiment 3’s manipulation, the effect of ω on mean amplitude showed the 

low inertia pendulums exhibited a larger amplitude within an amplitude asymmetry level 

(e.g., 1:2 or 2:1).  Amplitude was generally higher for the faster pendulum across all 

experiments (see Figures 4, 9, & 16; see also Fine et al., 2015). This result implies the 

amplitude ratios were not a byproduct of the pendulum’s eigenfrequencies.   

This raises the question of how amplitude modulates coordination coupling (de 

Poel et al., 2009; Kudo et al., 2006; Park & Turvey, 2008).  All experiments showed the 

person driving the coupling tended to exhibit a larger amplitude. Proposing amplitude as 

a basis for coupling asymmetries has been advanced in bimanual coordination (de Poel et 

al., 2009; Peper et al., 2008), and even in synchrony of neural networks (Daffertshofer & 

van Wijk, 2011). For bimanual coordination, the proposal was based on the notion that 

larger amplitudes should yield increased afferent signals and cross-talk between limbs. 

The current experiments only examined interpersonal coordination. Similarities between 

bimanual and interpersonal coordination implies amplitude may operate as a general 

entrainment signal (Varlet, Coey, Schmidt, & Richardson, 2011), driving the coupling 

physiologically or visually.  Moreover, it is possible that what is perceptually salient to 

participants on a cycle-by-cycle is amplitude and not phase.  

Some models have explicitly included separate amplitude terms for both 

oscillators (for examples, see Aronson et al., 1990; Jirsa, Fink, Foo, & Kelso 2000).  The 

model of Jirsa et al. (2000) predicts a positive and negative stable relative phase for a 

given detuning (e.g., ± 2 rad/s) and non 1:1 amplitude ratio (e.g., 1:2 or 2:1).  However, 

results from experiment 3 suggest the relative phase was always negative for a 1:2 ratio. 
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These models also still present no mechanism for asymmetric coupling. To this end, 

others have proposed that modeling rhythmic dynamics should focus on the oscillator or 

physiologically limb coupled level (Beek et al., 2002; de Rugy et al., 2006).  Generally, 

rhythmic movements are often modeled as self-sustaining limit-cycles (Beek et al., 1995; 

Fine et al., 2015; Fuchs, 2014).  The movement cycle energy (i.e., movement related 

effort) is related to its amplitude, the radius. It can be approximated as the peak-to-peak 

amplitude (Dotov & Frank, 2011) as presently done. Examining amplitude results of 

experiment 1 and 2 implies low inertia movements elicited a larger energy output.  

Comparison with the EMG-AMP (Figure 7 & 12) reveals this is not the case. Higher 

inertia pendulums typically revealed a larger effort (de Rugy et al., 2006; Hatsopoulos & 

Warren, 1996). Models focusing on dimensionality reduction (eq. 10) would not predict 

this dissociation between kinematic and physiological output. By modeling at the 

physiology plus coupled limb level, predictions such as the effects of feedback delays 

(Stepp, 2009; Stepp & Turvey, 2010; Voss, 2000) and coupling asymmetries can be 

simulated and tested against experimental results. 

 

Leader Dynamics and Traits: common ground 

Because people can readily coordinate their actions in a directed (coupling) and 

stable manner suggests the notion of leading and following are not restricted to individual 

traits. The present approach was to consider how these roles change during the interaction 

of two people.  Leading (and following) was presently defined as a larger influence from 

one person to another or coupling asymmetry.  Because this was pursued in a motor 
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coordination paradigm, this questions its relevance to individual traits thought to underlie 

leadership (e.g., agreeableness; Judge et al., 2002).   

Trait-based approaches to leadership generally have two major aims, uncovering 

the factors that predict leader emergence and their effectiveness (for a review, see 

Zaccaro, Kemp, & Bader, 2003). Traits are typically considered a fixed component, not 

unlike the treatment of personality factors (e.g., extroversion; Judge et al., 2002; Zaccaro 

et al., 2003).  In a constrained sense, motor coordination displays trait-like properties. 

The pendulums provided to each person on a given trial are akin to a trait. They provide a 

task relevant indicator about the individual’s properties.  However, these pendulums 

alone did not dictate roles.  Interaction with another person’s ‘trait’ (pendulum) yielded 

an emergent leader and follower (i.e., coupling asymmetry).  There exists a situational 

contingency.  For example, no person would be expected to dominantly lead given 

identical pendulums or a Δω = 0 (rad/s) scenario. The necessity of situational 

contingency to understand leader emergence is similar to trait models of leadership 

emergence referred to as situationism models (Fiedler, 1964; Murphy, 1941).  Such 

conceptual models mainly stipulate leadership resides in scenarios (combinations of 

other’s traits or task type), not people.  

Leadership qualities are also defined by how effective someone is predicted to be 

in a given situation. While effectiveness possesses a broad and task-contingent definition, 

a common ground is stability.  Leaders drive non-leaders in a flexible way, which results 

in stable follower responses.  The current experiments express this in terms of coupling 

direction and coordination variability.  Effective leading is marked by increased coupling 
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direction and follower responsiveness (e.g., EMG-AMP).  Both are accompanied by a 

certain level of joint-task stability; in terms of motor coordination, this is represented as a 

consistent SD Φ across detuning manipulations.  Acceptance of this comparison allows 

stepping outside the limiting bounds of leadership described primarily in terms of 

personality traits.  Namely, it emphasizes the proposal that leading and following should 

be considered in terms of information-transfer or coupling in a given task.   

Conceptual similarities exist between trait-based leadership components, 

emergence and effectiveness, and the social coordination presently investigated. Though, 

these are not the traits typically considered in trait-based research (e.g., extroversion or 

agreeableness; Judge et al., 2002; Kim-Yin & Fritz, 2001). Attempts have been made to 

connect similar factors such as rapport (Bernieri, 1988; Miles, Nind, & Macrae, 2009) or 

social pathologies (e.g., social anxiety disorder; Varlet et al., 2014) to social motor 

interactions. Specifically related to leadership was the examination of social competence 

(intelligence) and social coordination (Schmidt, Christianson, Carello, & Baron, 1994).  

Employing a similar pendulum task, Schmidt et al. (1994) created dyads composed of 

people ranked either both high, low, or both high and low on a social competence scale.  

They found the high-low group performed best.  Stability or effectiveness was highest for 

this group.  Importantly, degree of competence was mostly correlated with a subscale on 

leadership. High competence individuals tended to phase lead, with low competence 

individuals following.   

Although these traits may embody themselves in interactive movements, their 

effects are likely task dependent as expressed by situational models (Fiedler, 1964).  The 
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current paradigm created a situation for the pendulum traits to engender a leader-follower 

coupling.  Not all leader-follower dynamics, though, should be considered in terms of 

motor coordination.    Leadership is task driven, foregoing explicit role assignment. An 

example not contingent on motor control is conversational turn-taking (Wilson & Wilson, 

2005).  Some individuals may tend to dominate and drive conversations, but these roles 

may switch in a time-resolved manner.  Applying methods not restricted to phase 

coupling, such as transfer entropy (Choi, Yu, Smith, & Sporns, 2011; Schreiber, 2000) or 

granger causality (Barnett, Barrett, & Seth, 2009), would allow examining role 

emergence, switching, and dissipation in more ecologically realistic scenarios.  Future 

research on leader-follower interactions can examine traits as they relate to real social 

interactions.  This provides a means to step beyond subjective report indices, while 

testing a variety of scenarios under which certain people are predicted to emerge as 

leaders.  
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CONCLUSIONS 

 A largely unanswered question in (social) coordination research is under what 

circumstances individuals will take on differential roles. This was presently examined by 

considering when leaders and followers emerge during rhythmic coordination.  The novel 

approach was – rather than identifying leaders and followers as merely spatiotemporal 

positions – identifying when asymmetric coupling effects (i.e., influence) between people 

emerge.  A central thesis was the coordination must involve some form of asymmetry 

between people, whether it is between limb properties (inertia), role (explicit leader or 

follower), or task requirement (amplitude).  This proposal’s basis was the stability 

reducing effects asymmetries have on coordination.  Across all studies, changing the type 

and degree of asymmetry altered the coupling direction between participants.  

Importantly, coupling identified leaders and followers were not phase lead (or lag) 

contingent.  Comparing the kinematic output to EMG (measure of effort) also revealed 

individuals produced larger forces with increased coupling asymmetry.  This 

physiological effort, however, was typically stronger for followers. The drawn conclusion 

was leader and follower roles materialize based on a simple principle: whomever can 

produce the necessarily larger corrections while minimizing variability, yielding 

maximizing coordination stability, settles into the follower role.  The systematic means 

by which these roles occurred given each person’s pendulum and asymmetry supports 

this.  In summary, research on inter-limb or interpersonal interactions, whether it is motor 

coordination or conversation, should aim to describe the moment-by-moment states in 

terms of causal coupling.  Taking this approach has applications beyond theory. It could 
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provide a unique window into the effectiveness of instructional or therapeutic 

interactions.  
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FIGURE CAPTIONS 

Figure 1. Representative sample data from Experiment 1.The top graphs show the 

normalized position series from both participants.  Data is from a trials with a ∆ω = 0.  

Middle graphs show the scaled EMG linear envelopes (a.u.) from the same trial.  The 

bottom graph displays the corresponding relative phase (degs). Note the graphs only 

include a portion of the trial length. 

Figure 2. Mean Φ (degs) across all levels of frequency detuning (∆ω). Relative phase is 

calculated as the difference of the left and right-seated participant. A reference shows the 

zero line. 

Figure 3. Coordination variability as SDΦ for all levels of ∆ω.  

Figure 4. Mean min-to-max and max-to-min amplitude (mm) for all pendulum 

frequencies (ω). 

Figure 5. Mean AMP-RATIO for all ∆ω levels.  Values were calculated as the ratio of 

left and right-seated participants’ amplitudes. A reference line is added at the unity ratio. 

Figure 6. Mean coupling function values calculated from phase coupled models with 

amplitude ratio weights.  Coupling values are presented across levels of ∆ω. Positive 

values imply a stronger drive to the left and negative values to the right. 

Figure 7. Mean peak EMG amplitude extracted from the linear envelope.  Means are 

normalized by pendulum ω according to their baseline value.  All values are considered 

as a % of baseline by pendulum ω.  

Figure 8. Mean Φ(degs) across all levels of detuning (∆ωL-F).  Note that detuning and Φ 
are calculated as the difference in leader and follower frequencies and phase angles.  



 

70 

 

Figure 9. Follower mean amplitude (mm) for all pendulum ω. Although presented as a 

function of ω, each frequency still corresponds to the referential detuning (e.g., ω = 5.4 is 

equivalent to ∆ω = 2). 

Figure 10. Mean AMP-RATIO for all ∆ωL-F levels.  Values were calculated as the ratio 

of leader and follower amplitudes. A reference line is added at the unity ratio. 

Figure 11. Mean coupling function values calculated from phase coupled models with 

amplitude ratio weights.  Coupling values are presented across levels of ∆ωL-F. Negative 

values indicate driving effects from leader to follower.  The strength is marked by 

increasingly negative values. 

Figure 12. Mean and SD EMG-AMP are both plotted for comparison for each 

pendulum ω . Both variables are calculated as a % baseline.  

Figure 13. Mean Φ(degs) across all levels of detuning (∆ω) and amplitude Ratio (1:1, 

1:2, & 2:1). Detuning is calculated as left-right.  

Figure 14. SD Φ(degs) across all levels of detuning (∆ω) and amplitude Ratio (1:1, 1:2, 

& 2:1). The figure shows the significant impact of amplitude disparity on coordination 

compared to detuning. 

Figure 15. Mean period (samples) for frequency detuning and amplitude ratio levels (1:1, 

1:2, & 2:1). 

Figure 16. Mean amplitude (mm) for frequency detuning and amplitude ratio levels (1:1, 

1:2, & 2:1). 

Figure 17. Mean amplitude ratio (left divided by right) for frequency detuning and 

amplitude ratio levels (1:1, 1:2, & 2:1). 
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Figure 18. Mean coupling function values calculated from phase coupled models with 

amplitude ratio weights.  Coupling values are presented across levels of ∆ω and 

amplitude Ratio. Positive values imply a stronger drive to the left and negative values to 

the right. 

Figure 19. Mean peak EMG amplitude extracted from the linear envelope.  Means are 

normalized by pendulum ω according to their baseline value.  All values are considered 

as a % of baseline by pendulum ω. Means are presented for all frequencies and the 

amplitude the person performed in a given Ratio.  For example, in 1:2 the person being 

analyzed was performing the smaller amplitude. 

Figure 20. SD peak EMG amplitude from linear envelope.  Values are normalized by 

pendulum ω according to their baseline value.  All values are considered as a % of 

baseline by pendulum ω. Means are presented for all frequencies and the amplitude the 

person performed in a given Ratio.  For example, in 1:2 the person being analyzed was 

performing the smaller amplitude. 
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