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ABSTRACT 

   

This is a two-part thesis. 

Part 1 presents an approach for working towards the development of a standardized 

artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. 

Construction of an artificial chamber to maintain controlled environmental conditions and 

components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si 

mini-modules and a single cell mono-Si coupons were soiled and characterization tests 

such as  I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and 

cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good 

measure of soil uniformity, as any non-uniformity present would not result in a smooth 

curve during I-V measurements. The challenges faced while executing reflectance and QE 

characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si 

coupons with large cells to obtain highly repeatable measurements. This study indicates 

that the reflectance measurements between 600-700 nm wavelengths can be used as a direct 

measure of soil density on the modules. 

 

Part 2 determines the most dominant failure modes of field aged PV modules using 

experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, 

Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si 

glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New 

York was evaluated. Defect chart, degradation rates (both string and module levels) and 

safety map were generated using the field measured data. A statistical reliability tool, 
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FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure 

or degradation modes in the strings and modules by means of ranking and prioritizing the 

modes. This study on PV power plants considers all the failure and degradation modes 

from both safety and performance perspectives.  

 

The indoor and outdoor soiling studies were jointly performed by two Masters Students, 

Sravanthi Boppana and Vidyashree Rajasekar. This thesis presents the indoor soiling study, 

whereas the other thesis presents the outdoor soiling study. Similarly, the statistical risk 

analyses of two power plants (model-J and model-JVA) were jointly performed by these 

two Masters students. Both power plants are located at the same cold-dry climate, but one 

power plant carries framed modules and the other carries frameless modules. This thesis 

presents the results obtained on the frameless modules.  
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1.1 INTRODUCTION 

1.1.1 Background 

Soiling is a major source of energy loss on Photovoltaic (PV) modules, and it becomes 

difficult when considering the quantification of dust influence. Particle size, shape, 

composition, moisture content, deposition pattern and accumulation rate vary from location 

to location due to the geography, climate and urbanization of the region [1]. In the context 

of PV, soiling loss refers to losses primarily due to dust deposition.  

 

Previous studies show that losses due to accumulated dirt on modules can reach as high as 

15% for a period without rain [2]. Apart from these losses, there are increasing number of 

claims of dust resistant coatings, abrasion resistant coatings (during cleaning), and new 

dust removal techniques. Currently, there is no standardized way of verifying the validity 

of such claims. As a first step towards validating such claims, a standardized artificial 

soiling method using a laminated module construction of glass/EVA/cell/EVA/backsheet 

is developed in this report. Also, the characterization tests that would give all-round 

information about the soiling losses are identified.  

 

1.1.2 Statement of the Problem 

Natural soiling in PV is time-consuming and location specific. The results obtained in 

natural soiling cannot be generalized due to varying physical and chemical properties of 

soils across the globe. Hence, there comes the necessity to develop/to speed up the soil 
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depositing pattern artificially. Accelerated and artificial means of soil deposition can help 

reduce the time taken to estimate the losses due to soiling and help authenticate such claims 

of dust resistant properties and dust removal techniques. Pre-characterized soil from 

different regions can be deposited using this laboratory oriented approach, and the losses 

can be quantified. 

1.1.3 Objectives 

One of the main objective is to determine that reflectance and QE measurements can be 

used as a direct measure to calculate soil density. By measuring reflectance on the soiled 

modules, reflectance loss (%) is calculated. From reflectance loss, soil density (g/m2) is 

calculated and the corresponding Isc drop is determined. 

 

 

Figure 1. Goal of the experiment 
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1.2 LITERATURE REVIEW 

1.2.1 Artificial Soil Formulation and Application- Sandia’s Approach  

 

Burton et al. from Sandia National Laboratories have reported a means to deposit and 

characterize artificial soil coatings composed of NIST- traceable dust with known chemical 

and physical properties [3]. The process is as follows: Arizona Road Dust (ISO 12103-1, 

A2 Fine Test Dust nominal 0-80 micron size, Powder Technology, Inc., Burnsville, MN, 

USA) was mixed with a soot mixture composed of 83.3 % w/w carbon black, (Vulcan XC-

723, Cabot Corp, Boston, MA, USA); 8.3 % diesel particulate matter, (NIST Catalog No. 

2975); 4.2 % unused 10W30 motor oil, 4.2 % α-pinene, (Catalog No. AC13127-2500, 

Acros Organics, Geel, Belgium) in a glass jar and tumbled without milling media in a 

rubber ball mill drum at 150 r/min for 48 to 72 h. The composition was varied to include 3 

wt%, 10 wt%, and 25 wt% soot mixture and samples were prepared on a 100 g total solid 

basis. The composition of the varying soot mixture did not represent any specific location, 

but on an average, represented the soot content present in a few locations.  

 

For application onto the samples, this grime mixture was combined with Acetonitrile, ACN 

(HPLC grade, Sigma Aldrich, St. Louis, MO, USA) in a ratio of 3.3 g to 275 ml and was 

sprayed on a commercial glass coupon (7.62 cm × 7.62 cm). The grime mixture was 

sprayed using a HVLP (High velocity Low Pressure) gun held approximately 30 cm from 

the coupon surface. The samples were sprayed from right to left for a duration of 1–3 

seconds, and to obtain high soiling density, multiple coatings were sprayed. The glass 
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coupons before and after soiling were weighed with a Mettler Toledo (Columbus, OH, 

USA) XP205 balance with 0.00001 g resolution and characterization tests were also 

performed. Variations in the grime mixture was produced by incorporating major optical 

components, like iron oxide and in-house synthesized göthite, as primary spectral 

components.  

 

After soil formulation and application, characterization tests like current-voltage and QE 

measurements, were carried out on soiled glass samples and the results are discussed.   

1.2.2 Reflectance Spectroscopy- An Overview 

 

Reflectometery (or reflectance spectroscopy) is used in a variety of metrological 

applications for determination of chemical composition, material identification, and 

measurement of optical properties of materials [4]. Reflectance on PV modules can be 

reduced by the introduction of anti-reflective (AR) coating or texturing of the glass surface.  

 

In the case of cleaned modules, the reflectance (between 350-2500 nm) on a module surface 

can measure surface roughness, surface cleanliness, contamination, texturing, AR coating 

properties, and metallization parameters. For soiled modules, as soil is deposited on the 

surface, reflectance curve can be used to determine the physical composition, chemical 

composition and properties of the soil. The prediction of various components between 350-

2500 nm is given in the table as follows: 
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Table 1. Prediction of Various Components in Reflectance Spectra [5] 

  

 

 

 

 

 

 

 

  

Wavelength (nm) Predicted components 

350-400 Eliminated due to noise 

400-1100 Iron oxide content 

600 Anti-Reflection coating 

600-900 Soil Organic Content (SOC) 

1900-2200 Clay content 

1900-2300 Carbonate content 

1400, 1900 and 2200 Water absorption peaks 
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1.3 METHODOLOGY 

1.3.1 AZ (Arizona) Road Dust 

Soils were formulated artificially by mixing standardized soil or particulate matter, 

commonly referred to as AZ road dust (ISO 12103-1, A2 Fine Test Dust) with HPLC (High 

Performance Liquid Chromatography) grade acetonitrile. 

 

According to the manufacturer, the raw material for Ar road dust is the dust that settles out 

of the air behind or around tractors operating in the Salt River Valley, Arizona. They are 

recommended to be caught on a canvas cloth and are dried in an oven. The dried dust is 

made to pass through 200 mesh screen (0.0029 in. width of openings) and the dust that 

stays on the mesh is discarded. The dust that is obtained is finally made to pass through 

270 mesh screen (0.0021 in. width opening) and is collected. The chemical composition 

and the test dust particle size is included in APPENDIX-A.  

 

1.3.2 Spray Gun Specifications and Adjustments 

The solution is then uniformly sprayed on the test module using a HVLP (High Velocity 

Low Pressure) spray gun with a 1 mm nozzle from Centralpneumatic. The detailed 

specifications of the spray gun are as follows:
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 Table 2. Spray Gun Specifications [6] 

 

 

  

 

 

 

Three factors that need to be considered during spray gun adjustment stage are: 

1. Fan direction 

2. Pattern adjustment 

3. Fluid adjustment 

 

After soiling, the variation in density was found to be high along a particular direction. If 

the fan of the gun was placed along a horizontal direction, it was observed that the variation 

in density was high in the slides that were placed along a vertical direction, and vice-versa 

when the fan was adjusted along a vertical direction. For this study, the fan of the gun was 

constantly fixed along a horizontal direction, and the microscopic slides to calculate soil 

density were placed along a vertical direction so the variation was controlled. 

 

Item Gun used 

Air Pressure Range 30 - 40 PSI 

Maximum Air Pressure 40 PSI 

Air Consumption 12 CMF @ 40 PSI 

Cup Capacity 20 fl.oz. 

Air Inlet ¼" - 18 NPS 
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Figure 2. Horizontal Fan Direction [6] 

 

Based on trial measurements, it is identified that when the pattern knob was adjusted to 

round/closed position the soil spray was more uniform. The pattern knob was used to adjust 

the spray pattern.  

 
 

Figure 3. Pattern Adjustment [6] 

 

The fluid knob was adjusted to a fine position and the air pressure was set to 30 PSI to get 

a fine layer of soil on the test modules. 
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Figure 4. Fluid Adjustment [6] 

 

1.3.3 Soil Formulation 

Initially the suspensions were prepared to have a composition of AZ road dust mixed with 

acetronitrile (ACN) in a ratio of 3.3 g to 275 ml. While spraying soil, it was found that 

formulated soil from the gun did not reach the test module and resulted in a thin layer of 

soiling even after many rounds of application. Hence the composition was changed to 15 

g of AZ road dust for every 1000 ml of acetonitrile. By varying the composition of ACN, 

different soil densities were obtained, and a density of above 1.8 g/m2 led to clogging in 

the spray gun. 

 

1.3.4 Test Coupons 

Polycrystalline and monocrystalline silicon coupons with no AR coating were used in this 

study. Polycrystalline silicon mini-modules of construction 

Glass/EVA/Cell/EVA/Backsheet having an aperture area of 144 cm2 was used. Each mini-

module was comprised of 18 polycrystalline silicon cells that are series connected. The 

dimensions of each cell are 5.7 cm × 1 cm and are rated to produce 1.48 W. 
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A single-cell monocrystalline silicon coupon also had the same construction as Poly Si. 

The area of the cell was found to be 225 cm2 (15 cm×15 cm). As an attempt to characterize 

the optical properties of soil using spectroradiometer, this coupon was laminated such that 

there was extra space close to the cell.  

 

 

Table 3. Specifications for Poly and Mono-Si Coupons 

 

Variables Poly-Si 

( Multi-cell coupon) 

Mono-Si 

(Single-cell coupon) 

Coupon structure Glass/EVA/Cell/EVA/Backsheet Glass/EVA/Cell/EVA/Backsheet 

Number of cells 12 cells in series 1 cell 

Cell dimension 5.7 cm by 1cm 15.4 cm by 15.4 cm 

Total cell area 144 cm2 233 cm2 

Isc 0.18 A 9.33 A 

Voc 10.71 V 0.59 V 

Pmax 1.48 W 3.5 W 
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Figure 5. (a) Polycrystalline Silicon                        (b) Single-cell Monocrystalline Silicon 

                         Mini-module 

 

 

1.3.5 Artificial Chamber Set Up 

To maintain a controlled environment during soil deposition, an artificial chamber was 

constructed. The chamber consisted of a cuboidal mechanical structure to support an air 

bag from Sigma Aldrich Corporation. In order to avoid human errors, the spray gun was 

placed on a mechanical structure and the soil was sprayed. The distance between the test 

coupon and the tip of the gun was ensured to be about 2.5 feet.  

 

The artificial chamber was initially erected horizontally, but on spraying soil, it was 

observed that the soiling pattern was more uniform when the chamber was flipped (placed 

vertically) and the coupon was placed on the ground, as gravity helps in maintaining 

uniformity. Also, it is important to ensure that the spray gun was held perpendicular to the 

center of the module and a pulse-spray approach was implemented to obtain further 

uniformity. 

5.7 cm × 1 cm

16 
cm

14 cm

12 cm

12 
cm
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Figure 7. Erected Vertically (With 

Glove Bag) 

 

1.3.6 Importance of Laser-Guided Technique 

Initially, the laser pointer was not employed during the application of soil, and on weighing 

the microscopic slides, the maximum deviation in density between two slides was found to 

be 0.6 g/m2. To further increase the accuracy, a laser pointer was attached to the tip of the 

gun as shown in Figure 6(b). The laser spot helped in determining the exact center of the 

test coupon while spraying, and maximum deviation in density was reduced to 0.2 g/m2. 

 

 

Figure 6. Artificial Chamber (60*46*76, in cm) 

Erected Horizontally (Without Glove Bag) 
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Figure 8. Spray Gun (a) Without Laser Pointer  (b) With Laser Pointer 

 

 

1.3.7 Soil Density Measurements 

The soil density measurements (g/m2) were carried out using commercially available 

microscope slides (2.5×7.6 cm) placed on two sides of the test coupon. The density 

calculations were carried out using Mettler Toledo (AG285, resolution 0.001 mg). The soil 

density was calculated by measuring the difference in the weight of the slides before and 

after soil deposition, divided by the area of the microscopic slide. The average of these 

measurements was taken to determine soil density on the mini-module. 
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Figure 9. Soil Density Calculation (Soiled Microscopic Slide Circled) 

 

 

1.3.8 Poly-Si Coupon– Good Indicator of Uniformity 

To verify the uniformity in soiling pattern using this approach, I-V curves were taken 

before and after soiling on the polycrystalline Si coupon (as multiple cells are connected 

in series). If there exists any significant non-uniformity, then no smooth curve would be 

expected between Isc and Imp values. 

 

The soiled poly-Si coupons went through a few characterization tests as indicated in the 

flow diagram (Figure 15). Uncertainties that were observed during the characterization 

tests like reflectance and quantum efficiency on poly-Si was noted. In order to overcome 

these above stated uncertainties and to get accurate measurement results, the same process 

was followed on monocrystalline silicon coupons. 
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1.3.9 Spectroradiometer – Instrument Overview 

A FieldSpec-4 UV-Vis-NIR reflectance spectroradiometer from Analytical Spectral 

Devices (ASD), Colorado was used for all the reflectance measurements. In addition to 

reflectance, the instrument can measure transmittance and irradiance as it is a special kind 

of spectrometer that can measure radiant energy. It is a compact, field portable and 

precision instrument which has a spectral range of 350–2500 nm and a fast data collection 

time of 0.2 seconds per spectrum. The instrument has a fixed optic cable that helps to 

calibrate to units of radiant energy (irradiance and radiance), and it is operated using a 

computer that has RS3 software installed. This instrument is extensively used by the 

agricultural industry for analyzing soil samples.  

 

 

      Figure 11. Contact Probe [7] 

 

Figure 10. High Resolution Spectroradiometer [7] 
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Table 4. Technical Specifications of Spectroradiometer [7] 

 

 

 The front panel consists of an accessory power port and a fiber optic cable that is fixed. 

The cable should be handled with care as it tends to break on bending; any breakage in the 

cable can be identified using the fiber optic checker, and can be replaced if the Signal to 

Noise Ratio (SNR) drops below an acceptable level. The instrument back panel has an 

on/off switch that allows the instrument to switch on/off accordingly, and an Ethernet port 

that is to be connected to the laptop that has the software installed in it. The power port 

supplies power that is required by the instrument and is connected to the instrument 

controller. A Nickel –Metal Hydride (NiMH) battery is also provided to assist in outdoor 

measurements [8]. 

 

 

 

 

Spectral Range 350-2500 nm 

Spectral Resolution 3 nm @ 700 nm 

8 nm  @ 1400/2100 nm 

Sampling Interval 1.4 nm @ 350-1050 nm 

2 nm @ 1000-2500 nm 

Scanning Time 100 milliseconds 

Stray light specification VNIR 0.02%, SWIR 1 & 2 0.01% 

Wavelength reproducibility 0.1 nm 

Wavelength accuracy 0.5 nm 
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Setting up and saving spectrum  

 For reflectance measurements, the light source should be switched on for a 

minimum of 15 minutes. The contact probe acts as a light source and also as a 

receiver. 

 Before taking any reading, the instrument needs to be optimized to the current 

atmospheric conditions or else the instrument gets saturated. 

 The calibrated white reference (WR) reflector is fixed to the contact probe and the 

reflectance is collected. A straight line at 1 is observed, indicating that all light is 

reflected (as it is white), and with respect to this, all other reflectance measurements 

are carried out. 

 The white reference cap is removed, the contact probe is perpendicularly placed on 

the coupon surface and spectrum is saved to collect reflectance. 

 The reflectance values are saved as .asd files and they are converted to .txt files 

using ViewSpecPro software. 

The detailed procedure for collecting and saving spectrum is provided in APPENDIX-

B. 

1.3.10 Quantum Efficiency Measurement System 

Quantum efficiency (QE) is defined as the ratio of the number of electron carriers generated 

to the number of photons of a given wavelength that are incident on the solar cell. QEX12M 

quantum efficiency measurement system (as shown in Figure 10) is a device that measures 

QE of a cell within a module using a non-intrusive approach [9].  

 



 

19 

 

Figure 12. QEX12M Module QE System [10] 

 

System calibration and operation 

To turn the machine on, first turn the main power switch on and then proceed to turn on 

the auxiliary power switches. After starting up, give the xenon arc lamp about 10-15 

minutes to warm up. The module bias light should be turned on. The intensity of the light 

can be adjusted by turning the knob.  

 

Always start by calibrating the system before taking QE measurements. Position the 

monochromatic light on the calibration photodiode. Select ‘Calibration PD’ on the home 

screen. Measure the calibration curve by clicking start. After the curve is finished, save the 

curve and select ‘apply as calibration’. The monochromatic beam is then positioned on the 

test coupon and by applying voltage bias and light bias, the QE measurements are carried 

out. 
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1.3.11 Characterization Techniques 

 

The test coupon was first cleaned with tap water, followed by distilled water and finally 

with isopropyl alcohol. EL imaging was done on a cleaned module to look for any localized 

defects as QE measurements are to be done on the module. 

 

 

Figure 13. EL Image (a) Poly-Si                                               (b) Mono-Si 

 

IV characterization was done on a cleaned module to observe whether or not the curve is 

smooth, as it gives an idea about the health of the test module. Followed by I-V, soil is 

sprayed on the module uniformly, and various density soil is obtained by varying the 

concentration of acetonitrile solution. The soiled module undergoes soiled I-V 

characterization to understand the Isc loss for different soiling densities. According to EL 

image, two spots on the test module were chosen and soiled reflectance was carried out. 
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After soiled reflectance, a soiled QE measurement was performed using QEX12M Solar 

Module Quantum Efficiency Measurement System (PV Measurements). Since the 

polycrystalline module had 18 cells, it was important to keep the cell of interest completely 

in the dark. Hence, a mask was cut exactly to the size of the cell and a small window was 

provided so the light source can reach the module (as shown in Figure 14). Another existing 

feature is the shroud, but as the usage of this might disturb the soiling layer, it was not used. 

Individual voltage bias was applied and by keeping the voltage bias constant, multiple QE 

was taken (due to grain boundary effect) for each spot, and the average was considered to 

be the QE of that spot. The light bias was always maintained at 100% intensity. 

 

Monocrystalline silicon, being a single cell module, had no necessity in using voltage bias. 

The light bias was maintained at 100% intensity similar to poly-Si. Identical QE curves 

were obtained along any place in the spot and proved to be more accurate.  

 

Figure 14. Reflectance 

Measurements on (a) Poly-Si 
(b) Mono-Si 
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Figure 15. (a) Poly-Si Cell Covered with             (b) Mono-Si cell with Light Source  

Mask (An Opening for Light Source)  

 

 

Figure 16. Soiled Spots Cleaned for Reflectance and QE 

 

Also, it was made sure that QE was performed on the same spot where reflectance was 

done. The soil layer that was present in the spots were cleaned using cotton gauze 

dampened with isopropyl alcohol. Finally cleaned QE and reflectance measurements were 

performed. 
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Figure 17. Flow Chart Indicating the Characterization Process 
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1.4 RESULTS AND DISCUSSIONS 

1.4.1 Soil Uniformity Check 

To check if the soil layer obtained using this approach is uniform, four microscopic slides 

were placed on four sides of the coupon. A laser-guided technique was used during soil 

application and the slides were weighed before and after cleaning. The standard deviation 

for all four soil densities was found to be 0.02%, which is a very good indication that the 

process is uniform. 

 

 

 

Figure 18. Coupon Containing Microscopic Slides  
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Figure 19. Slide Location Vs Soil Density 

 

1.4.2 Process – Sample Size Independent Repeatability 

Poly-Si modules were coated with different soil densities ranging from 0.6 to 1.55 g/m2 

[11], and single cell modules were also coated with densities ranging from 0.18 to 1.8 g/m2 

as shown in Tables 5 & 6. In Table 6, soiling densities 1.57 g/m2 and 1.8 g/m2 almost had 

the same Isc loss, meaning the process is repeatable. The uniformity pattern was observed 

in both Poly-Si and mono-Si modules of sample size 144 cm2 and 225 cm2 respectively. 

This indicates that the soil spraying process holds good for various size coupons.  
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Figure 18 shows a linear dependence in Isc loss with respect to soil density. The Isc loss is 

the difference between cleaned Isc and soiled Isc divided by cleaned Isc. This plot indicates 

that the Isc values can be used to measure the soil density or soil loss for the experimental 

variables used in this work. 

 

 
 

 

Figure 20. Soil Density (g/m2) vs Isc Loss (%) 

 

Table 6. Isc Loss for 233 cm2 

(Mono-Si) 

Table 5. Isc Loss for 144 cm2 

(Poly-Si) 
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1.4.3 Mono-Si – Better Technology to Characterize QE and Reflectance Losses 

For reflectance measurements, the contact probe diameter of spectroradiometer was found 

to be larger than the cell area of the polycrystalline mini-module. Instead of covering one 

cell at a time, the contact probe covers two cells that are shown using the circle in Figure 

19. Hence, this resulted in noise in the reflectance measurements. 

 

 

 

Figure 21. Circle Indicating Contact Probe Diameter>Cell Area for Poly-Si Coupon 

 

When comparing the Quantum Efficiency (QE) measurements for both poly and mono-Si, 

the influence of grain boundaries on poly-Si infused noise in the results. On the other hand, 

mono-Si, being a single cell module, eliminated these noises. Figures 20 & 21 show the 

variation in QE curve for both poly and mono-Si modules. The variation in QE curve for 

mono-Si (both cleaned and soiled) is minimal and it clearly proves that in order to eliminate 

noises and to obtain accurate results in QE measurements, mono-Si samples should be 

preferred.  
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Figure 22. QE Curve for Poly-Si Coupon (1.55 g/m2) 

 

  

 
 

Figure 23. QE Curve for Mono-Si Coupon (1.57 g/m2) 
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1.4.4 Relation between Cleaned QE and Reflectance 

 

Considering Figure 22, the drop in wavelength below 1100 nm is due to the cell absorption, 

as the absorption region of c-Si is below 1100 nm. From 1000 nm, the reflectance increases 

as the QE curve starts decreasing. The dip at 1700 nm is due to EVA (Ethylene Vinyl 

acetate) absorption. If the property of EVA changes over time, then the dip varies 

accordingly.  

 

Figure 24. Graph between Cleaned QE and Reflectance for Mono-Si 

 

1.4.5 Glass/EVA/Backsheet Reflectance 

 

The white area refers to the area that is sandwiched between Glass/EVA/White backsheet. 

The backsheet reflectance decreases as the wavelength increases, and most of the peaks 
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that are seen are mainly due to the backsheet properties. Also, any changes in the 

encapsulant layer/backsheet can be determined from Figure 24. 

 

 

Figure 25. Contact Probe on White Area for Reflectance Measurements (see Figure 16 

for the full size picture of the 1-cell coupon) 

 

 

 

 
 

 

Figure 26. Reflectance Plot for White Area and White Backsheet     
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1.4.6 Reflectance (Soiled %-Cleaned %) Plots for Various Soil Densities 

The reflectance plots for various soil densities ranging from 0.18 g/m2 to 1.8 g/m2 is shown 

in Figure 25. From the graph below, it is evident that the reflectance increases as the soiling 

density increases. For all soil densities, maximum reflectance was found to be between 

400-1100 nm, which corresponds to the absorption region of c-Si. 

 

 

Figure 27. Reflectance (Soiled %-Cleaned %) Plots for Various Soil Densities 

 

1.4.7 Particle Size Effect on Reflectance 

When comparing the outdoor and indoor reflectance, the outdoor reflectance curve over 

the absorption region seems to be uniform (flat), whereas for indoor, it was observed to be 

non-uniform. Bowers et al. showed that reflectance increased with a decrease in particle 

size and this effect was more prominent for a particle size less than 400 microns, which is 
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possibly true in the case of indoor soiling [12]. As scattering increases, the wavelength 

decreases. The scattering effect due to fine particle size, could be the reason for non-

uniformity patterns observed in indoor reflectance measurements. 

 

 

 

Figure 28. Outdoor – Reflectance Plots for Various Soil Density 

 

 



 

33 

 
  

Figure 29. Indoor – Reflectance Plots for Various Soil Density 

 

 

1.4.8 Reflectance Measurements – A Measure of Soiling Density 

Delta (soiled %-cleaned %) for reflectance measurements is calculated for each soil 

density. The slope of the data is calculated and the R2 value is determined for all the 

wavelengths ranging from 400 to 2500 nm. The wavelength between 600-700 nm showed 

an acceptable R2 value of 0.918. Similarly, for outdoor soiling, the wavelength between 

600-700 nm was determined to be a good fit, irrespective of the technology for measuring 

density. The equation is as follows: 

 

Soil density (
g

m2
) =  25.35 ∗ average reflectance loss(%) − 0.36 
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The correlation plot between QE and soil density (Figure 29), reflectance and soil density 

(Figure 30), and transmittance (Isc loss) and soil density (Figure 18) is linear. This further 

indicates that both reflectance/QE can be confidently used to determine soil density without 

collecting soil from the module surface, and the energy loss (Isc loss) can be calculated 

using the reflectance loss.  

 

Recommendations 

 Instead of single cell coupons, modules can be soiled artificially by increasing the 

distance between the chamber and spray gun. 

 Artificial soil formulation ad application, as mentioned above, can be extended for 

various soils across the globe and characteristics can be determined. 

 Similar to outdoor AOI (Angle of Incidence), indoor AOI measurements can be 

performed for artificially soiled coupons and results can be compared. 

 Results obtained by measuring reflectance on PID cells can give a brief description 

about AR coating. 
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1.5 CONCLUSION  

The study presented largely follows the procedure developed by Burton et al. and major 

conclusions resulting from this study are as follows: 

 Gravity-assisted and laser-guided approach of spraying soil onto coupons helps in 

improving the soil uniformity pattern, and total area of the test coupon for soil 

application can be further increased by increasing the distance between the module 

and spray gun. 

 Mini-modules can be used to check uniformity by measuring I-V curves, wherein, 

for characterization tests, single-cell coupons are more favorable.  

 Properties of encapsulant (EVA) over time can be determined by carrying out 

reflectance measurements.  

 Particle size plays an important role in reflectance measurements. The smaller the 

particle size, the higher the reflectance. Also, scattering effect is dominant for 

smaller particles. 

 Reflectance/QE loss can be used as a direct measure of soil density. The correlation 

plot between soil density (g/m2), reflectance loss (%) and QE loss (%) varying 

linearly is shown in Figures 29 & 30. 
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Figure 30. Correlation plot between reflectance and soil density (g/m2) 

 

 

 

 

Figure 31. Correlation plot between QE and soil density (g/m2) 
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The indoor and outdoor soiling studies were jointly performed by two Masters Students, 

Sravanthi Boppana and Vidyashree Rajasekar. This thesis has presented the results 

obtained from the indoor soiling study, whereas, the other thesis presents the outdoor 

soiling study. 

 

Key findings of the outdoor soiling study are presented below: 

 If there is an identical soil density on PV modules, then the relative optical response 

at different AOI, i.e. f2(AOI), will be nearly identical, irrespective of the PV 

technology type. 

 The power or current loss between clean and soiled modules would be much higher 

at a higher AOI than at a lower AOI leading to excessive energy production loss of 

soiled modules on cloudy days, early morning hours and late afternoon hours. 

 Based on the results obtained in this study, it can be stated that the critical angle 

shifts from 57o for the clean air/glass interface to 40o for the naturally developed 

air/soil/glass interface in Mesa, Arizona for fall season (0.648 g/m2 soil density). 

 Using an average reflectance measurement between 600-700 nm bandwidth, the 

soil density of the module can be determined. By using the empirical formula 

presented in this work, f2(AOI) values for any AOI, as well as transmission losses, 

can be estimated if the soil density is known/measured. 

 If the soil density of a particular region is known, the angle of incidence related 

losses for the whole year can be modelled using PVSyst. 
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PART 2: OUTDOOR STATISTICAL RISK ANALYSIS OF PHOTOVOLTAIC 

POWER PLANTS 
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2.1 INTRODUCTION 

2.1.1 Background    

Photovoltaic (PV) modules employed in the field can experience different types of failure 

mechanisms and varying degradation rates due to the changes in environmental conditions, 

design, installation type, electrical configuration and many other factors. The industry is in 

need of coming up with appropriate accelerated tests for new modules and in order to 

achieve this, statistical analysis of performance parameters is necessary to determine 

degradation modes responsible for the degradation of those parameters. Also, in order to 

find the dominant failure modes in the modules employed, there is a need to carry out 

quantitative analyses like FMECA (Failure Mode Effect Criticality Analysis).  

 

FMECA is carried out by ranking and prioritizing the failure modes. It uses the RPN (Risk 

Priority Number) technique, which is a multiplication of Severity, Occurrence and 

Detection for ranking the failure modes. The higher the RPN, the worse is the failure mode. 

 

Arizona State University-Photovoltaic Reliability Laboratory (ASU-PRL) has recently 

evaluated crystalline silicon PV power plants in the State of New York, a cold-dry climatic 

condition. This site has 18-year-old frameless glass/polymer modules on a rooftop (41o 

tilt). Sanjay et al. [13] was successful in determining the global RPN and in identifying the 

dominant failure and degradation modes for the hot-dry desert climate of Phoenix, Arizona. 

In this study, apart from the global RPN, degradation RPN and safety RPN for both string 

and module-levels have been determined. Safety RPN gives information on the order of 
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priority for the defects to be addressed which would cause property damage or personnel 

electric shock. Degradation RPN provides information on the order of priority for the 

defects to be addressed which would affect the energy production.  

2.1.2 Statement of the Problem 

There are various field failure modes affecting the safety, reliability and performance of 

the PV modules. These failures are not unique and as they vary according to the climatic 

conditions, there needs to be a statistical tool to determine the dominant failure modes. 

FMECA is one such tool and by determining the failure modes, the module designs that 

are resistant to those failure modes specific to that climatic condition can be manufactured.  

2.1.3 Objectives 

The main goal of RPN is to determine the health of the power plant by prioritizing the 

failure modes and allocating rank accordingly. The eventual goal of RPN study would be 

to classify power plants into classes based on their Safety RPN and Degradation RPN as 

shown in Figure 31. The class boundaries would be climate specific. 
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Figure 32. Grading PV Power Plant- Conceptual Approach 

 

The other objectives of this study are: 

i. To determine the String and module-level degradation of power (%/year) by using 

the field measured data; 

ii. To generate a safety map for the entire power plant that includes all the modules 

that had safety issues;                    

iii. To determine the safety and reliability failures involved; 

iv. To determine the RPN for the failure modes present (both string and module-level) 

and to rank them accordingly. 
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2.2 LITERATURE REVIEW 

2.2.1 Field Failure and Degradation Modes 

Field failure, degradation mode and mechanisms of PV modules depend on the 

design/packaging/construction in which the modules operate [14]. These failures can 

further be classified as reliability and durability losses. A few of the field failures are: 

broken interconnect, broken cells, corrosion, delamination, bypass diode failure, and hot 

spots. The above stated failure modes are caused due to the failure mechanisms.  

 

Failure mechanism (cause)    Failure mode (effect) 

 

The failure mode/defects can be identified by performing a visual inspection on modules 

or by using tools to determine the failure. 

 

2.2.2 Reliability Failures 

A reliable PV module may also be defined as a PV module that has a high probability of 

performing its intended function adequately for 30 years under the operating conditions 

encountered [14]. 

 

All modules degrading at higher than 1% per year, excluding the safety failures, are 

reliability failed modules. All the reliability failed modules qualify for the warranty claims 

proportional to the rate of degradation. Reliability failures are also called hard failures. 
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Figure 33. Reliability and Durability Issues of PV Module [14] 

 

2.2.3 Durability Failures 

If the performance of a PV module degrades but still meets the warranty requirements, then 

those losses may be classified as soft losses. All the modules that degrade less than 1% per 

year, excluding the safety failures, are called durability failed modules. The durability 

issues are attributed only to the material issues, and the reliability issues are primarily 

attributed to the design and/or manufacturing issues. 

 

2.2.4 FMEA/FMECA 

FMECA is a quantitative approach to determine the dominant failure mode that is observed 

in the field. FMECA extends FMEA with an addition of a detailed quantitative analysis of 

criticality of failure modes. FMECA is a method used in a product/system/device to 

identify the failure modes as they are manufactured using complicated technologies. 
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FMECA is usually conducted in the product design or process development phase, or after 

a quality function deployment to a product, but conducting it on fielded systems also yields 

benefits. FMEA/FMECA analysis allows us a good understanding of the behavior of a 

component of a system, as it determines the effect of each failure mode and its causes, and 

ranks each failure mode according to criticality, occurrence, and detectability [13]. 
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2.3 METHODOLOGY 

2.3.1 System Description 

The system was installed in November of 1996 in a cold-dry climate and is currently 

operational. The 18-year-old system is located on the rooftop of a facility and has a total 

of 13 arrays, all at latitude tilt (41o). Of the 13 arrays, 12 are actually in use and 1 array has 

been removed (reason unknown). Within the 12 arrays that are present, 1 combiner box is 

burnt up, resulting in the entire array producing no power. There are 6 strings in 11 arrays 

and 2 strings within 1 array, and each string consists of 12 c-Si frameless modules in series. 

This results in the rated power of each string being 1.44 kW. The operational size of the 

power plant is 97.92 kWdc. The inverter is located inside another building within the facility 

and is operational. 

2.3.2 Site Survey 

Visual inspection (VI) was carried out for all 744 modules at this power plant. The VI was 

performed by using the developed checklist from NREL (National Renewable Energy 

Laboratory). Defects that were found on every module were noted in the checklist, and a 

safety map that included all the safety failed modules for the entire site was generated. 

Every diode was checked in all 744 modules to test for failed diodes that are resulting in 

open circuited strings. This was conducted using the diode checker. Infrared imaging (IR) 

was also done using an IR camera for every module at the site. There were no modules that 

showed any hotspot issues since there was no cell operating at, or above, 20°C of the 
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average module temperature. For the entire power plant, there were no shading issues that 

could be found when the SunEye was used. 

 

Both string and module level I-Vs were measured using the Daystar curve tracer and then 

corrected to STC for this site. The I-Vs for all strings (excluding the 6 strings in the burnt 

combiner box), for a total of 62 strings, was measured. The total number of modules in this 

power plant was 744 operational modules. Due to the layout of the power plant, only top 

row modules were accessible when taking I-V curves, so a total of 46 individual module I-

Vs were taken. 

 

As the visual inspection data is obtained, the RPN is calculated to determine the failure 

modes. The tools and the corresponding accelerated test for the modes are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 

Table 7.Various Tools to Identify the Failure Modes 

 

 

2.3.3 Determination of Severity 

Severity depends on two factors – Degradation rate (Rd) and how the failure modes affect 

the appearance (cosmetic) and performance of the modules, and also safety concerns 

involved with the failure modes. A rank of 1-7 depends on performance factor and a rank 

of 8-10 depends on safety factor. A rank of 8-10 forms the highest severity part as they are 

involved with safety problems created by the failure modes.  
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The degradation rate is calculated using the formula below: 

Degradation rate (Rd) = (Pmax drop ∗ 100) (Rated Pmax ∗ age of operation) ⁄  

The below table gives the Severity ranking corresponding to the degradation rate (Rd). 

 

 

Table 8. Severity (S) and Detection (D) Ranking Table 

 

 
 

2.3.4 Determination of Detection 

The detection ranking is based on how simple/complex it is to determine the field failures. 

A rank of 1 is given if the failure mode is determined just by looking at the monitoring 

system. If the visual inspection technique is sufficient to determine the failure mode then a 

ranking of 2-3 is given. A ranking above 3 is given depending on the tools (ex: IR, 
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diode/line checker, IV tracer) used, and when the failure is impossible to determine in the 

field, rank 10 is assumed. 

Table 9. Detection (D) Ranking Table 

 

2.3.5 Determination of Occurrence 

Occurrence denotes the probability of occurrence of a failure mode for a predetermined or 

stated time period. CNF (Cumulative Number of module Failures per thousand per year) 

is to be computed.  
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It is given by: 

CNF 1000 =  Σsystem (% defects) ∗ 10 / Σsystem (operating time) ⁄  

where,  

% of defects = (number of particular defect/ total number of modules)*100 

Operating time = duration for which modules are employed 

 

Table 10. Occurrence (O) Ranking Table 
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2.4 RESULTS AND DISCUSSIONS 

2.4.1 Degradation Analysis of Model-J (String and Module-level) 

 

The histogram shown in Figure 32. provides the mean and median string-level degradation 

rate of power for Model-J. The histogram fits a near-normal distribution. The average 

degradation for string level power at this site is found to be 0.73%/year. Out of all 62 

strings, 57 strings (92%) are meeting the maximum degradation rate of 1.0%/year typically 

provided by the module manufactures. The median and average degradations are very close 

to each other (0.73%/year vs. 0.69%/year), indicating a tight quality management system 

during production. However, there is an outlier for one string due to the presence of a 

delaminated backsheet module in the string leading to severe encapsulant delamination 

causing Isc loss along with voltage loss due to bypass triggering. 
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Figure 34. Model-J String-level Degradation of Power 

 

 

From 46 module I-V curves, the average degradation rate of power is found to be 

0.55%/year. Out of 46 modules, 40 modules (86.3%) are meeting the less than 1.0% 

degradation rate limit typically provided by module manufactures, as shown in Figure 33. 

The string degradation rate seems to be slightly higher than the module degradation rate 

due to module mismatch that occurs during string level analysis.   
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 Figure 35. Model-J Module-level Degradation of Power 

 

2.4.2 Layout of Degradation and Safety Failures 

The defects that are present in 744 modules are provided in the graph below. Of all, 

backsheet bubbles, overcell encapsulant delamination and near edge encapsulant 

delamination are prominent in almost all the modules. Bypass diode failure, broken module 

and broken cell interconnect (photographs of a few defects shown in Figure 41) are 

determined to be the safety issues, wherein, the rest of the defects are considered to 

contribute to the increase in degradation rate.  
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 Figure 36. Defects Identified in Model-J 

 

 

The safety map below shows the safety failures that are found in the power plant, 45 in 

total. The majority of the issues are found to be due to broken cell interconnects (22 

modules) and 18 modules had failed diodes. The 8 broken modules are found to pose a 

safety hazard due to electrical hazard and mechanical hazard. Broken cell interconnects are 

a safety hazard due to the possibility for arcing to occur. Failed diodes have the possibility 

to cause backsheet burning.  
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Figure 37. Safety Map for Model-J 

 

When extrapolating the measured module degradation and including the safety failures, 

86.3% of the modules are safe and are meeting the manufacturer’s warranty, with only 

5.5% of modules being safety failures and another 8.7% exceeding the manufacturer’s 

typical warranty of 1%/year degradation rate as shown in Figure 38. 
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Figure 38. Safety Failures, Reliability Failures and Durability Loss for Entire Power Plant 

(Model-J) 

 

 

2.4.3 String-level RPN Calculation for Model-J 

 

Of all 68 strings, visual inspection and I-V’s are taken on 62 strings (excluding the 6 strings 

in the burnt combiner box), and all the strings present in the plant are evaluated for I-V and 

VI measurements with Confidence Level (CL) 100% and Confidence Interval (CI) 0%. 

 

The sum of each defect that is present in the above stated 62 strings are considered to be 

the count. From the count, frequency of occurrence of failure mode is computed using the 

formula discussed in the previous section. A maximum value of 9 is given to four defects 

as almost all modules along the string had these defects.       

From the degradation data (Rd), severity is calculated. A severity of 10 is given for both 

broken module and bypass diode failure as a broken module possesses an electrical hazard. 
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Failed diodes may lead to backsheet burning, so it is considered as a safety issue and a 

maximum ranking for severity is given. 

 

Depending on how the defects were detected, ranking is given accordingly. As most of the 

failure modes are detected visually, a ranking of 2 is given. Bypass diode failure alone is 

determined using diode/line checker and a conventional handheld tool is used, and a 

ranking of 4 is given.  

 

Table 11. String-level Severity and Occurrence Table for Model-J  

 

 

Figure 40 indicates that RPN is calculated in 3 ways: 

1. Global RPN – gives entire plant RPN (includes both degradation and safety issues) 

2. Degradation RPN – considers defects that contribute only to degradation issues 

(safety issues are neglected during this RPN calculation)  

3. Safety RPN - considers defects that possess only safety issues (degradation issues 

are neglected during the safety RPN calculation) 

Defects Frequency (%) Degradation rate (%/Y) Severity, S Occurence, O

Backsheet Bubbles 72.31 0.61 5 9

Backsheet Scratches 0.54 0.20 1 3

Interconnect Discoloration 3.36 0.30 2 5

Cell Discoloration 38.44 0.41 3 9

Over Cell Encapsulant Delamination 84.68 0.73 5 9

Near Edge Encapsulant Delamination 75.67 0.59 4 9

Corrosion-Like (3mm spot) 4.84 0.13 1 6

Bypass Diode Failures  (open ckt) 2.42 0.54 10 5

Broken Module 1.08 0.32 10 4

Broken cell Interconnect 2.96 0.67 8 5
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The global string-level RPN for this site is found to be 704 where the degradation RPN 

contributes to 344 and the safety RPN contributes to 360. Broken glass, broken cell 

interconnect and bypass diode failures belonging to safety should be immediately 

considered, and the modules should be replaced depending on the safety threat they 

possess. 

 

 

 

Figure 39. Global, Degradation and Safety RPN Chart for String-level Analysis 

 

2.4.4 Module-level RPN Calculation for Model-J 

Due to plant layout and time constraint, only top modules in the strings were accessible 

and individual I-V’s were taken only for 46 modules. Modules that had both I-V and VI 

data is considered for the module-level RPN analysis. The count and detection ranking is 
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the same as string-level RPN, but severity ranking that is based on the degradation rate is 

going to vary. 

 

Few defects (backsheet scratches, corrosion-like, broken module) that are not observed in 

the calculation of module-level RPN are observed in the string-level calculation. The 

defects involved in the calculation of module-level RPN are as follows:   

 

 

 

Module-level RPN is also calculated in a similar manner as string-level RPN. Figure 44 

includes only the defects that are present in 46 modules. Figure 42 includes all defects that 

are present in the strings, but severity of 0 is given if that particular defect is not identified 

during the module-level calculation. 

Defects Frequency (%) Degradation Rate (%/Yr) Severity, S Occurrence, O Detection, D Module-RPN

Backsheet Bubbles 72.31 0.21 1 9 2 16

Interconnect Discoloration 3.36 0.11 1 5 2 12

Cell Discoloration 38.44 0.22 1 9 2 16

Over cell Encapsulant Delamination 84.68 0.64 5 9 2 90

Near Edge Encapsulant Delamination 75.67 0.31 3 9 2 54

Bypass diode Failures (Open Ckt) 2.42 0.10 10 5 4 200

Broken cell Interconnect 2.96 0.30 8 5 2 80

Table 12. Module-level Defects for Model-J 
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Figure 40. Global, Degradation and Safety RPN for Module-level 

 

Figure 41. Global, Degradation and Safety RPN for Module-level (all defects included) 

 

The global string-level RPN for this site is calculated to be 704 and global module-level 

RPN is calculated to be 470. Statistically, both string and module-level global RPN should 
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nearly match, but for this site it does not seem to be true. Only 46 modules were considered 

for module-level global RPN, but to have a CL (confidence level) of 95% and CI 

(confidence interval) of 5%, 254 modules should have been considered. Insufficient data 

for the calculation of module-level global RPN could be one of the reasons for this 

discrepancy. 

2.4.5 Comparison Plots between Model-J and Model-JVA 

As indicated in the abstract, the statistical risk analysis of two power plants was jointly 

performed by two Masters students. Both power plants are located at the same cold-dry 

climate, but one power plant carries framed modules and the other carries frameless 

modules as shown in Figure 41. This thesis presented the results on the framed modules. 

Comparing these two sites would help understand the failure modes and mechanisms for 

this climatic zone as both the plants had modules from the same manufacturer.  

 

Table 13. Comparison between Model-J and Model-JVA 

 

 

Variables 

 

Model-J 

 

Model-JVA 

Module construction Frameless Framed 

Place State of New York (close to 

water body) 

State of New York (higher 

temperature influence 

compared to Model-J) 

Tilt angle 41o 41o 

Age 18 years 19 years 

System state Functional Not functional 
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Dominant Failure 

Mode (degradation) 

Over cell Encapsulant 

Delamination 

Interconnect Discoloration 

and Encapsulant Browning 

Degradation Rate  

(String level) 

 

0.73%/year 

 

0.6 %/year 

 

Model-J, 18-year-old plant had a string-level degradation of 0.73%/year, whereas model-

JVA, 19-year-old plant, had a string-level degradation of 0.6%/year. From Figures 45 and 

46, it is inferred that the dominant failure mode for model-J is encapsulant delamination; 

browning and interconnect discoloration for model-JVA. These failure modes are mainly 

due to moisture ingress. For model-J, intrusion of moisture resulted in backsheet bubbles 

that further lead to encapsulant delamination. Encapsulant delamination resulted in optical 

decoupling that not only had an effect on Isc drop, but also on Voc drop, resulting in 

triggering of bypass diodes. Due to high Voc drop, the number of diodes failed in model-J 

is higher compared to model-JVA (Table 15). This comparative study between framed and 

frameless modules of the same model in cold-dry climate clearly indicates that the 

frameless modules are highly susceptible to backsheet delamination leading to severe 

encapsulant delamination. The severe encapsulant delamination leads to high Isc drop, high 

Voc drop (due to bypass triggering) and high bypass diode failures, as they conduct 

electricity during daytime every day for several years before they permanently fail under 

open circuit conditions.   
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Interconnect discoloration is scarcely found in model-J because a frameless module (Figure 

43) does not have a leakage current path as the mounting rail is on the backskin of PV 

modules. In the case of a framed module, current leakage occurs between cell and frame 

through electrolytic corrosion, resulting in interconnect discoloration. These modules 

should have higher series resistance problems leading to local I2R heating, which, in turn, 

leads to encapsulant browning (Figure 44).   

 

 
     

 

 

Figure 42. (clock-wise) a) Backrail Mounting using Adhesive of Frameless Module 

Model-J b) Framed Module at Model-JVA; c) Encapsulant Browing and Interconnect 

Discoloration in Model-JVA; d) Encapsulant Delamination in Model-J 



 

64 

 

 

 

Figure 43. Pareto Chart for Model-J 

 

 

Figure 44. Pareto Chart for Model-JVA 

 



 

65 

2.5 CONCLUSION 

 Model-J is an 18-year-old power plant in a cold-dry climatic condition, having 

string-level degradation of 0.73%/year and module-level degradation of 

0.55%/year.  

 The global RPN for the power plant is divided into safety and degradation RPN. 

For model-J, string-level global RPN was determined to be 704 and module-level 

global RPN was calculated to be 470. 

 For cold-dry climatic conditions, the degradation rate is about 0.6% per year 

(framed) to 0.73% per year (frameless). 

 Encapsulant delamination was the dominant failure/degradation mode for frameless 

modules, while interconnect discoloration was the dominant degradation mode for 

framed modules. However, both these modes are the result of extent of moisture 

ingress.  
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APPENDIX A 

CHEMICAL COMPOSITION AND PARTICLE SIZE OF ARIZONA ROAD DUST 
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APPENDIX B 

 

STANDARD OPERATING PROCEDURE FOR REFLECTANCE 
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Applications 

This procedure shall be used in all indoor and outdoor Reflectance and Transmittance 

measurements using HandHeld FieldSpec 4 Wide-Res spectroradiometer. 

Procedure - Reflectance 

1. In the rear portion of the spectroradiometer unit, connect the power supply to the 

input 12 VDC port. Also, connect the Ethernet cable to the appropriate port with 

the other end connected to the laptop. (Ensure that the laptop is always switched on 

after the spectroradiometer.)  

 

 

 

 
 

Figure B1. Power supply to port connection 

 

2. Connect the accessory power port to the contact probe as shown below. 

3. To connect the fiber optic, first remove the screws in such a manner that the grey 

color screw is placed in the same place. Then take the fiber optic and insert it in the 

screw that has been removed. Gently push the fiber optic in the place were the 

screws were already present and tighten it. (Handle the fiber optic with utmost 

care as it is sensitive and tends to break.)  
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Figure B2. Handling of fiber optic 

 

 

 

Figure B3. Step-by-step process of inserting optic fiber to the contact probe 

 

 

4. Hit the ‘ON’ button, which is on the rear side of the spectroradiometer unit, and 

then click the ‘ON’ button that is present on the contact probe so that the instrument 

starts warming up. For reflectance measurements, the light source should be 
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switched on for a minimum of 15 minutes, whereas for radiometric measurements, 

the time is extended to an hour. 

 

 

Figure B4. Switching and warming up of the instrument 

5. Even for outdoor measurements, initially use the power supply as the source and 

then once the instrument is warmed up, the battery can be used. The battery is 

charged separately by connecting one end of the power cord to the battery and the 

other end to the supply. As in step 1, instead of connecting the power supply to 

12VDC, connect the battery in its place. 
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Figure B5. Charging of battery 

 

6. Once the instrument is warmed up, take a small square-shaped, black colored 

cardboard/sheet and make a circle in the center the same as the size of the lens. 

Insert it to avoid the entry of the stray light and then clean the lens using lens wipes 

(Isopropyl alcohol and a soft cloth). Switch on the laptop. 

 

 

Figure B6. Cleaning of lens 

 

OPTIMIZATION AND WHITE REFERENCE:  

 

 

Before taking any reading, first you need to optimize the instrument to the current 

atmospheric conditions. (If you are doing an outdoor experiment, take the instrument 

outdoors and optimize it, as the indoor and outdoor atmospheric conditions differ). 
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Optimize the instrument whenever the atmospheric conditions differ or whenever a beep 

sound comes from the instrument indicating that the instrument is saturating. 

 

1. Cover the lens of the contact probe using white reference (WR). Never touch the 

central white portion of the WR as it is already calibrated. Then hit the RS3 software 

in the desktop. (There are two RS3 software in the desktop; click high contrast for 

outdoor measurements.) 

 

Figure B7. White reference measurement 

 

2. A dialog box appears. Using the drop down menu, change the settings to bare fiber 

and raw DN mode. Then hit the ‘OPT’ (Optimize) to go ahead with the 

optimization.  
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         Figure B8. Dialog box to change settings 

 

3. Once optimization is done, then click the ‘WR’ (White Reference) which is right 

next to the ‘OPT’. After collecting the WR, you get an image as below. A straight 

line appears at reflectance 1, indicating that the spectroradiometer unit has reflected 

all the light that it has encountered. 

 

DATA COLLECTION: 

 

Then the WR cap is removed and the contact probe is placed perpendicular to the sample 

for which the reflectance measurements are to be made. For saving the measurements, go 

to Control -> Spectrum save -> Dialog box appears -> Give the file name and check for the 

dates -> Hit Begin Save. The measurements start saving and for each and every spot on the 

sample you will have 10 readings.  
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Figure B9. Reflectance measurement on module 

 

CONVERSION OF ASD TO TXT FILES: 

 

Once all the measurements are done, the reflectance values are saved as ASD files and the 

next step is to convert them to TXT files. Go to ViewSpec Pro -> File -> Open (open the 

files you want to convert) -> Process -> ASCII Export -> In the dialog box, just change the 

Data for .asd files only to Reflectance (don’t change any) -> OK.  

 

The Output path where the processed data gets stored is indicated at the bottom of this 

software. 
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Figure B10. Exporting of .asd files 

 

NOTE: For any further information about the Spectroradiometer, click on the below link 

to access the user manual; 

http://support.asdi.com/Document/Viewer.aspx?id=140 
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