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ABSTRACT  

   

The production and applications of engineered nanomaterials (ENM) has 

increased rapidly in the last decade, with release of ENM to the environment through the 

sewer system and municipal wastewater treatment plants (WWTPs) being of concern. 

Currently, the literature on ENM release from WWTPs and removal of ENM by WWTPs 

is insufficient and disorganized. There is little quantitative data on the removal of multi-

walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene 

(FLG), from wastewater onto biomass. The removal of pristine and oxidized MWCNTs 

(O-MWCNTs), graphene oxide (GO), few-layer graphene (FLG) and Tween™ 20-coated 

Ag ENM by the interaction with biomass were determined by programmable thermal 

analysis (PTA) and UV-Vis spectrophotometry. The removal of pristine and O-

MWCNTs was 96% from the water phase via aggregation and 30-min settling in 

presence or absence of biomass with an initial MWCNT concentration of 25 mg/L. The 

removal of 25 mg/L GO was 65% with biomass concentration at or above 1,000 mg 

TSS/L. The removal of 1 mg/L FLG was 16% with 50 mg TSS/L. The removal of 

Tween™ 20 Ag ENM with concentration from 0.97 mg/L to 2.6 mg/L was from 11% to 

92% with biomass concentration of 500 mg TSS/L to 3,000 mg TSS/L, respectively. 

A database of ENM removal by biomass was established by analyzing data from 

published papers, and non-linear solid-liquid distribution functions were built into the 

database. A conventional activated sludge (CAS) model was built based on a membrane 

bioreactor (MBR) model from a previous paper. An iterative numeric approach was 

adapted to the CAS model to calculate the result of non-linear adsorption of ENM by 

biomass in the CAS process. Kinetic studies of the CAS model showed the model 
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performance changed mostly in the first 10 days after changing influent chemical oxygen 

demand (COD) concentration, and reached a steady state after 11 days. Over 60% of 

ENMs which have distribution coefficients in the database reached higher than 50% 

removal by the CAS model under general operational conditions. This result suggests that 

traditional WWTP which include the CAS process can remove many known types of 

ENMs in certain degree.  
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CHAPTER 1 

OVERVIEW 

1.1 Introduction 

Nanotechnology has developed over the last decade and lead to breakthroughs in 

several industrial fields which include foods, electronics, paints, textiles, catalytic, 

pharmaceuticals and cosmetics (Bystrzejewska-Piotrowska, Golimowski et al. 2009, 

Bhatt and Tripathi 2011). The term nano derives from the Greek word nanos which 

means a dwarf. The definition of nanomaterials (NMs) is the length of the material is less 

than 100 nm in at least one dimension, while the definition of nanoparticles (NPs) is the 

material with length from 1 to 100 nm in at least two dimensions (Klaine, Alvarez et al. 

2008). Natural NMs include materials such as aerosols, proteins, nucleic acids, humic and 

fulvic acids, virus in the atmosphere, aquatic phase and terrestrial.  

Engineered nanomaterials (ENMs) have unique characteristics including large 

specific surface area, high surface energy, and quantum confinement. ENMs include 

silver (Ag), gold (Au), titanium oxide (TiO2), silica oxide (SiO2), cerium dioxide (CeO2), 

zinc oxide (ZnO), carbon nanotubes (CNTs), graphene, graphene oxide, fullerene (C60), 

quantum dots and others. Sources of ENMs from applications are included in Table 1. 

The production, manufacture and consumer usage rate of ENMs increased rapidly in this 

decade, which also increased the environmental release of ENMs (Mangematin and 

Walsh 2012, Nowack, Ranville et al. 2012).  

Environmental toxicologists and biologists have raised concern about potential 

adverse impacts of ENMs to animals, plants, as well as to the environment (Colvin 2003, 

Moore 2006, Nowack and Bucheli 2007, Drobne, Jemec et al. 2009, Ma, Geisler-Lee et 
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al. 2010). Thus it is necessary to study the potential impact of ENMs to the environment, 

and quantify the release of ENMs to the environment. 

Table 1.  Example Applications of Different Class of ENMs 

Class of ENMs Example Applications 

Silver Nanoparticles (AgNPs) Toothpastes, baby products, textiles, washing 

machines 

Gold Nanoparticles Catalyst, vector in tumor therapy 

TiO2 Cosmetics, paints, coatings 

SiO2 Batteries, paints, adhesives, cosmetics, glass, steel, 

fiber, glass 

CeO2 Combustion catalyst in diesel fuels, metallurgical and 

glass/ceramic application 

ZnO Skin care products, bottle coatings 

Carbon nanotubes (CNTs) Electronics, plastics, sporting goods, catalysts, water 

purification systems as sorption material, aircrafts, 

aerospace  

Graphene Medicine, electronics, light processing, energy, 

sensors 

C60 Cosmetics 

Quantum dots Medicine, medical imaging, solar cells 
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1.2 Conventional Activated Sludge Treatment Process 

In 1914, E. Ardern and W.T. Lockeet discovered the activated sludge process in 

England (Ardern and Lockett 1914). The activated sludge process reduced the time 

period to remove organic contaminants to a satisfactory level from days to hours. The 

typical CAS process includes aeration tank, secondary clarifier, a recycle pipeline, and a 

sludge wasting pipeline (Figure 1). The main interaction between microbial aggregates 

and contaminants take place in the aeration tank. 

 

Figure 1. Typical design of the CAS Process with Primary Treatment Processes 

 

The CAS process has become the most widely used biological processes for 

wastewater treatment worldwide because it is flexible, robust and cost-effective. 

However, during a very long period from 1914 to about 1950s, the CAS reactors were 

designed and operated based upon experience and rule-of-thumb. It was until 1950s that 

theories of operation were finally sufficient so the CAS reactors could be designed by 

characteristics of the influent wastewater (Monod 1950). Even though the CAS process 

has been widely applied worldwide and has reached large-scale success in wastewater 

treatment, it does not necessarily mean it is flawless. The large scale of the reactor makes 

it difficult to control the reactor’s parameters precisely. It is also difficult to control the 
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composition of microorganisms in the tank, which is the key to successful treatment. The 

change of the composition of the microorganisms can lead to significant problems such 

as sludge bulking. 

1.3 ENMs in Wastewater Treatment Plant (WWTP) 

1.3.1 Source of ENMs in Sewage 

The application of ENMs has experienced exponential growth in this decade, and 

there are at least four different types of product lines of ENMs that could lead to different 

release scenarios (Westerhoff, Kiser et al. 2013). First, dispersed ENMs are incorporated 

into food products, which include liquids, gels or dissolvable solids. Second, surface-

attached ENMs are used in fabrics and food packaging for antibacterial purpose. Third, 

polymeric-embedded ENMs are added to materials as a structure or performance 

enhancer. Fourth, industrial processing ENMs are being used as catalysts or polishing 

agents during manufacturing. All ENMs from these four different product lines are 

possibly released directly into the sewage system during the process of manufacturing, 

use or disposal.  

Researchers have already identified ENMs in sewage sludge of WWTP (Kim, 

Park et al. 2010). WWTP serves as a monitor of contaminants that are generated by all 

kinds of human and nature activities, thus WWTP can be a perfect observatory for 

ENMs.  

1.3.2 Relevance of ENMs in Wastewater and Sewage Sludge 

One of the major functions of the WWTP is to remove carbon, nitrogen and 

pathogens from wastewater. The removal of ENMs in WWTPs occurs either by design or 

by the removal of the other pollutants. There are two endpoints for the ENMs in the 
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wastewater. They can end up in the effluent from WWTP, or in the sewage sludge which 

ends up in land application, incineration or landfill (Brar, Verma et al. 2010). The 

proportion of ENMs that ended up in effluent (i.e. liquid phase) or sewage sludge (i.e. 

solid phase) is determined by a distribution factor that relates to sorption, aggregation, 

agglomeration and settlement. Aggregation, sorption and agglomeration are the dominant 

processes of the reactions of ENMs in WWTP. The removal of ENMs in WWTP happens 

mostly in primary treatment and secondary treatments.  

Primary and secondary clarifiers are treatment processes that remove ENMs by 

sedimentation after ENMs aggregate with other particles in WWTP. The purpose of 

primary clarifier in WWTP is to remove suspended inorganic particles by gravity 

settlement. However, because of the presence of biomass in primary and secondary 

clarifier, association of ENMs to biomass via aggregation plays important role during the 

removal process. Suspension with low stability tends to aggregate over time, thus 

increases the particle size and decreases the concentration of the suspension by 

gravitational settling. For particles smaller than 300 nm, Brownian motion dominates the 

process of aggregation. The key factors that will affect colloidal stability include pH 

value, electrolyte valence, and particle coating (Stankus, Lohse et al. 2011). 

During the CAS process, the nanoparticles interact with microorganisms in the 

aeration tank and second clarifier. The interaction includes adherence of nanoparticles to 

the cell surface or extracellular polymeric substance (EPS), and active or passive 

transport through membrane or across the cytoplasmic membrane (Kloepfer, Mielke et al. 

2005). These interactions can affect the microorganisms metabolic activities and thus 
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change the characters of microorganisms. On the other hand,  these interactions can also 

change the chemical form of nanoparticles.  

1.4 Characteristics of ENMs 

1.4.1 Carbonaceous Nanoparticles 

Carbonaceous nanoparticles including CNTs, graphene and graphene oxide have 

been extensively used in industry fields such as pharmaceuticals, antibiotics (Gomez-

Rivera, Field et al. 2012), biomedical (Seabra, Paula et al. 2014), aerospace manufacture 

(Baur and Silverman 2007). The carbonaceous nanoparticles can be with or without 

surface functionalization (Petersen, Zhang et al. 2011). Among these carbonaceous 

nanoparticles, CNTs are the most widely applied and dominant kinds. There are two main 

forms of CNTs which include the single-walled carbon nanotubes (SWCNTs) and the 

multi-walled carbon nanotubes (MWCNTs). While the SWCNTs usually have a diameter 

of a few nanometer and length of several micrometers, the MWCNTs usually have 

varying diameter and length. Moreover, CNTs are robust, stiff and also flexible so they 

are considered to be the strongest synthetic fibers (Arepalli, Nikolaev et al. 2001). CNTs 

surface can also be functionalized by functional groups to increase its water solubility in 

order to improve sorption properties (Huang, Fairbrother et al. 2014). It is because 

hydrophilic CNTs have better surface contact with adsorbates than hydrophobic CNTs 

(Huang, Tzeng et al. 2004). The attachment of metal nanoparticles can also modify CNTs 

surface, and increase the range of contamination treatment by remediation (Xiao, Shen et 

al. 2009). CNTs can also absorb natural organic matter (NOM) (Hyung and Kim 2008), 

inorganic metal cations and anionic pathogens (Brady-Estévez, Kang et al. 2008), 
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hydrophobic organic chemicals (Cho, Huang et al. 2011), and cyanotoxins (Upadhyayula, 

Deng et al. 2009).  

 

1.4.2 TWEEN™ 20-Coated Ag ENM 

Silver is well known as wide spectrum antimicrobial agent that has been 

extensively used in cosmetics, pharmaceuticals, fabrics, and other consumer products 

(Kim, Kuk et al. 2007, Kaegi, Voegelin et al. 2011). However, the inherent toxicity of Ag 

ENM has created challenges to the environment. Metal ENMS including silver tend to be 

easily modified by a variety of capping agents, which will change their character 

significantly. Ag ENM with coating agents may have greater toxicity to microorganisms 

and mammalian than unmodified Ag ENM (Ahamed, Karns et al. 2008, Kvitek, 

Vanickova et al. 2009, Panáček, Kolář et al. 2009). Tween™ 20 is a non-ionic surfactant 

with hydrophobic alkyl side chains. Its low toxicity makes it possible to be widely used 

as a detergent and emulsifier in domestic, scientific and pharmacological applications 

(Batteiger, Newhall et al. 1982, Alkasrawi, Eriksson et al. 2003). Thus Tween™ 20-

coated nanoparticles including Ag NP can end up in the WWTP from these applications. 

1.5 Models to Predict Contaminant Fate During the CAS Process 

There is consensus that the applications of ENMs will keep increasing in the 

future, and ENMs will end up in the environment from these applications (Alvarez, 

Colvin et al. 2009, Wiesner, Lowry et al. 2009, Nowack, Ranville et al. 2012). In order to 

estimate potential risks and impacts of ENMs to the environment, it is crucial to establish 

models to quantitatively evaluate ENMs in complex natural media. There are efforts 

already been made to analytically study ENMs releasing into the environment.  Critical 
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reviews have been published to evaluate the accessibility of quantifying ENMs in natural 

media or artificial complex (Klaine, Alvarez et al. 2008, Benn, Cavanagh et al. 2010, 

Gottschalk and Nowack 2011, Peralta-Videa, Zhao et al. 2011, Handy, Cornelis et al. 

2012, Klaine, Koelmans et al. 2012, Nowack, Ranville et al. 2012). However, because of 

a lack of appropriate methods for detecting, characterizing and quantifying ENMs, it is 

very challenging for researchers to build models to predict ENMs concentration precisely 

(Mitrano, Lesher et al. 2012, von der Kammer, Ferguson et al. 2012). The lack of 

knowledge to decide the dominant parameters from physicochemical properties such as 

size distribution, surface character, purity and agglomeration state prevents researchers to 

build models for prevalent application (Gottschalk, Sun et al. 2013).  

1.6 Thesis Objectives & Organization 

The objective of this thesis is to build a non-linear solids-to-liquid ratio 

distribution model to quantitatively evaluate the concentration of ENMs in the effluent of 

a CAS system based upon changes in influent COD, solid retention time (SRT), and 

initial ENMs concentration after primary sedimentation. This model is based on a 

database of literature-reported experimental data for the removal of ENMs from 

wastewater. Additional experiments with ENMs and biomass were conducted to fill in 

data gaps in the literature for MWCNTs, graphene, graphene oxide, and a specific type of 

silver nanoparticle (Tween™ 20 coated AgNP) used by a group of researchers on our 

LCnano research project. This model also contains kinetics study of the CAS reactor’s 

performance when the operational condition changes. 

The thesis contains five chapters. Chapter 2 contains standard operation protocols 

for nanoparticles and biomass distribution experiment. Chapters 3 presents experiment of 
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interaction of carbonaceous nanoparticles, Tween-20 silver nanoparticles with biomass, 

and it also contains the detection methods of ENMs. Chapter 4 contains the CAS model 

and the effluent ENMs concentration from the CAS reactor based on different operation 

conditions. Chapter 5 contains summary and conclusions of the thesis. 
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CHAPTER 2 

STANDARD OPERATION PROTOCOL (SOP) FOR NANOPARTICLE – BIOMASS 

INTERACTION 

The purpose of this experiment is to determine the removal efficiency of ENMs 

by biomass under conditions that simulate the CAS process. This SOP includes: 1. 

preparation of glassware, buffer solution and biomass. 2. Determination of total 

suspended solid (TSS) of biomass. 3. Nanoparticle-biomass batch interaction experiment. 

4. Nanoparticle concentration determination experiment. 

2.1 Glassware and Buffer Solution Preparation 

1. Wash two 1 L volumetric flasks, three 1 L glass bottles, ten 100 mL Erlenmeyer 

flasks with nanopure water, then dry them in the oven at 60℃. 

2. Make 1 L of 1 mM NaHCO3 and 1 L of 10 mM NaCl + 4 mM NaHCO3 solution, 

store the two kinds of solution in two 1 L glass bottles separately. 

2.2 Biomass Stock Preparation 

1. Collect fresh biomass from the SBR tank in the laboratory or raw activated sludge  

from full scale WWTP into 1 L Nalgene bottle. Dispense 30 mL biomass to a set 

of 50 mL plastic centrifuge vials. 

2. Add 10 mL of the 10 mM NaCl + 4 mM NaHCO3 solution as wash buffer into 

each vial, shake the vials to resuspend solids. 

3. Centrifuge the vials at 350 G for 15 minutes. 

4. Discard the supernatant carefully, don’t discard any biomass. 

5. Repeat step 2 to 4 for two more times. 

6. Add 1 mM NaHCO3 solution buffer into vials to the volume of 30 mL. 
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2.3 Determine TSS of Biomass 

1. Collect fresh biomass from the SBR tank in the laboratory into glass bottles. Keep 

the biomass in the 4℃ refrigerator, use them in 24 hours. 

2. Prepare 2 pieces of 0.45 μm Whatman® nylon membrane filters, dry them in oven 

at 105℃ for 1 hour, let the filters cool down, then weigh the filters separately as 

W11, W12. 

3. Apply the first filter to the vacuum and rinse with 20 mL nanopure water. 

4. Filter 20 mL biomass. 

5. Carefully detach the filters from vacuum, make sure no biomass are left on 

vacuum or spilled. 

6. Repeat step 3 to 5 for the second filter. 

7. Dry the filters in oven at 105℃ for 3 hours, let the filters cool down, then weigh 

the filters separately as W21, W22. 

8. Calculate TSS by Eq. (2.1). 

                    TSS (
mg

L
) =

(W21−W11) 𝑔

20 𝑚𝐿
+
(W22−W12) 𝑔

20 𝑚𝐿

2
∗
1000 𝑚𝑔

𝑔
∗
1000 𝑚𝐿

𝐿
                 Eq. (2.1) 

2.4 Determine TSS of Biomass by UV-Vis 

1. After TSS is determined, use UV-Vis full wavelength scan to determine the 

absorbance of the biomass sample from 200 nm to 780 nm. 

2. Determine absorbance peak of biomass sample by UV-Vis. For example, if the 

absorbance peak is 680 nm, then extract the absorbance data at 680 nm as OD680. 
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3. Take the OD680 data of biomass samples with different TSS value. Plot graph with 

data points of OD680 as x-axis, TSS as y-axis. Make linear standard curve from 

these data points. Example is shown as Figure 2. 

 

Figure 2. Standard curve of TSS determination by UV-Vis at 680 nm 

 

4. The standard curve can be used to calculate TSS value by determine the OD680 

value of biomass sample. This method is convenient and time-saving once the 

standard curve is built. . 

2.5 Nanoparticle – Biomass Batch Interaction Experiment Protocol on Orbital 

Shaker 

1. After the biomass stock has been washed and stored, label Erlenmeyer flasks with 

number, and prepare 1 mM NaHCO3 as buffer solution, sonicate NP suspension 

by using the bath sonicator. 
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2. Add determined volume of 1 mM NaHCO3 as buffer solution into all Erlenmeyer 

flasks. 

3. Add determined volume of washed stock biomass to each sample and biomass 

only control group. 

4. Add determined volume of sonicated NP into each sample and NP only control 

group. 

5. Put all Erlenmeyer flasks on orbital shaker, run the shaker at 150 rpm for 3 hours 

in order to simulate the activated sludge process in the CAS system. 

6. After the shaking process, take all Erlenmeyer flasks on the bench, let them settle 

for 30 minutes in order the simulate the second clarifier settling process in the 

CAS system. 

7. Take determined volume of supernatant from each Erlenmyer flask into vials, 

store at 4℃ for further analyze. 

2.6 NP Measurement by UV-Vis 

1. Make pure NP samples with determined concentration of 0.05 mg/L, 0.1 mg/L, 

0.2 mg/L 0.5 mg/L, 1 mg/L, 2 mg/L, 5 mg/L. 

2. Take samples to UV-Vis full wavelength scan to determine the absorbance of the 

samples from 200 nm to 780 nm. 

3. Determine absorbance peak of samples by UV-Vis. For example, the samples of 

Tween™ 20 Ag NP and biomass interaction experiment has a absorbance peak at 

415 nm. 
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4. Take the OD415 data of samples with different TSS value. Plot graph with data 

points of OD415 as x-axis, absorbance as y-axis. Make linear standard curve from 

these data points. 

5. Determine OD415 value for all experiment samples, use the standard curve to 

calculate NP concentration in all experiment samples. 
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CHAPTER 3 

INTERACTION OF CARBONACEOUS NANOMATERIALS WITH WASTEWATER 

BIOMASS 

This chapter is from a accepted paper on Frontiers of Environmental Science & 

Engineering entitled “Interaction of  Carbonaceous Nanomaterials with Wastewater 

Biomass” by Yu Yang, Zhicheng Yu, Takayuki Nosaka, Kyle Doudrick, Kiril Hristovski, 

Pierre Herckes, Paul Westerhoff. My contribution was designing and conducting the 

experiment of interaction of carbonaceous nanomaterials with wastewater biomass. I also 

quantitatively determined the concentration of nanomaterials in the result samples with 

other authors of this paper.  

3.1 Introduction 

        Carbon nanotubes (CNTs) and graphene are increasingly incorporated in consumer 

products and industrial processes, including flame retardant materials (U.S.EPA 2013), 

aerospace materials (Baur and Silverman 2007), and other applications (Petersen, Zhang 

et al. 2011). These carbonaceous nanomaterials (NMs) are mainly composed of aromatic 

carbon structure with or without surface functionalization (Petersen, Zhang et al. 2011). 

Multi-walled CNTs (MWCNTs) are the most dominant and representative class of these 

carbonaceous NMs (Piccinno, Gottschalk et al. 2012), and their estimated production is 

55–1,101tons/year (Hendren, Mesnard et al. 2011). Although there are no substantiated 

reports confirming the annual production of graphene on a global scale, the graphene 

market is anticipated to reach $149.9 million by 2020 (Clark and Mallick 2014). This 

rapid growth in carbonaceous NM production and markets will inevitably increase their 

release into the environment.  

http://www.springer.com/environment/journal/11783
http://www.springer.com/environment/journal/11783
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        Nanomaterial release to the environment occurs throughout all life cycle stages, 

starting with synthesis and purification, incorporation into products, recycling of 

manufacturing waste, product usage, and ending with disposal (Petersen, Zhang et al. 

2011, Nowack, David et al. 2013). NMs released to wastewater eventually enter 

wastewater treatment plants (WWTPs). As such, the NM manufactures in the United 

States must consider discharges of NMs to sewers and removal at WWTPs. However, 

limited information exists about the removal of MWCNTs and graphene in WWTPs 

(Petersen, Zhang et al. 2011). Modeling results estimate that MWCNTs are released to 

receiving waters at low concentrations (i.e., less than 1 mg/L) (Mueller and Nowack 

2008, Gottschalk, Sonderer et al. 2009); however the ability of WWTPs to remove 

carbonaceous NMs needs to be verified. In the absence of data, manufacturers must 

assume zero NM removal from water across WWTPs in the United States (U.S.EPA 

2010). Exploring the removal of carbonaceous NMs by municipal WWTPs is necessary 

to close the knowledge gap.  

        The main challenge of determining NM removal stems from barriers to quantifying 

NMs in wastewater or biomass matrices. Until recently, measuring carbonaceous NMs 

other than fullerene (C60) derivatives by mass spectroscopy methods has not been 

reported (Herrero-Latorre, Alvarez-Mendez et al. 2014). Single-walled CNTs were 

recently measured using single particle ICP-MS, where catalysts in the single-walled 

CNTs (e.g., yttrium) were surrogates for the CNTs, but this is not feasible with most 

multi-wall CNTs because they use more earth abundant metals in biomass which can 

cause background interference. MWCNTs with unique isotopic carbon ratios have been 

quantified using combustion followed by mass spectroscopy (Plata, Reddy et al. 2012), 
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which cannot be applied in our study due to the complicated background carbon in the 

biomass. We and others have developed a programmable thermal analysis (PTA) method 

for MWCNTs(Doudrick, Herckes et al. 2012) and have applied this method to quantify 

MWCNTs in rat lung tissue (Doudrick, Corson et al. 2013) and graphene oxide (GO) in 

biomass (Doudrick, Nosaka et al. 2015). When using PTA to quantify carbonaceous NMs 

in complex organic matrices, removal or digestion of background carbon is required to 

reduce carbon interference or false positives. We have demonstrated PTA to analyze 

graphene in matrix with low biomass concentration (e.g., 50 mg/L, total suspended 

solids, TSS). However, challenges still existed when analyzing MWCNTs and GO in the 

presence of high biomass concentration (e.g., ≥1,000 mg TSS/L). Alternatively, as will be 

discussed below, MWCNTs and GO are easily dispersed in solution and yield UV-Vis 

absorption spectra (Doudrick, Nosaka et al. 2015) that did not interfere with soluble 

organics, allowing UV-Vis to be used for quantification of the supernatant mass of 

MWCNTs and GO. 

        The aim of this study was to determine the removal of carbonaceous NMs by the 

wastewater biomass, including MWCNTs, GO, and graphene. Batch biosorption studies 

were conducted in a range of biomass concentration (e.g., 50 – 3,000 mg TSS/L). The 

mass of carbonaceous NMs adsorbed to biomass or retained in the liquid was quantified 

by UV-Vis or PTA method. Results obtained from this study provide critical information 

in environmental assessment and environmental exposure modeling (Mueller and 

Nowack 2008, Gottschalk, Sonderer et al. 2009).  

 

 



  18 

3.2 Experimental Approach 

3.2.1 Preparation and Characterization of Carbonaceous Nanomaterials Dispersions 

        GO suspension was obtained from TW Nano Materials (CA, USA) with the 

following characteristics provided by the manufacturer: 0.2 wt. %, >90% single layer, 0.5 

- 20 μm in x-y, 1.1 nm of thickness when dispersed in water, 1:1.3 C:O ratio, >1,200 

m2/g). Because single-layer, non-oxidized graphene is hard to achieve in aqueous 

solution, few-layer graphene(FLG) nanoplatelet powder (N006-P, Angstron Materials, 

OH, USA) was chosen to represent graphene and was used as received (characteristics by 

manufacture: >97% carbon, <1.5% oxygen, <1.5% ash, 10-20 nm thick, <14 μm in x-y 

122 direction, 21 m2/g) (Doudrick, Nosaka et al. 2015). MWCNTs (length 5-20 µm, outer 

diameter 15 ± 5 nm) were obtained from Nanolab Technologies (Milpitas, CA, USA) and 

oxidized by researchers in the lab of Dr. Howard Fairbrother at Johns Hopkins University 

(Smith, Wepasnick et al. 2009). Briefly, MWCNTs were oxidized in a concentrated acid 

mixture of sulfuric acid (98% H2SO4by mass) and nitric acid (69% HNO3 by mass) at 70 

ºC for 8 h and in a volume ratio of sulfuric acid to nitric acid of 3:1(Yi and Chen 2011). 

After further washing (with deionized water) and drying, four types of MWCNTs were 

characterized by x-ray photoelectron spectroscopy (XPS) and showed surface oxygen 

contents of 3.5%, 6.4%, 7.3%, 8.3% (Cho, Smith et al. 2008). As the surface oxygen 

content in pristine MWCNTs was 0.4%, which was below 2% and considered as common 

pristine MWCNTs (Smith, Wepasnick et al. 2009). The MWCNTs with higher oxygen 

contents (i.e., 3.5-8.3%) were considered to be oxidized MWCNTs (O-MWCNTs) 

(Smith, Wepasnick et al. 2009). The dispersion of both pristine and O-MWCNTs was 

sonicated in a water bath sonicator for one hour, and the GO suspension was sonicated 
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for 5 minutes before using. The final concentrations used for all experiments were 25 mg 

MWCNTs/L and 25 mg GO/L. 

3.2.2   Carbonaceous Nanomaterials Removal Experiments 

        The removal of carbonaceous NMs from wastewater liquid by wastewater biomass 

was examined following experimental protocols by Kiser et al. (Kiser, Ryu et al. 2010). 

In brief, clean activated sludge was collected from a lab-scale sequencing batch reactor 

seeded by activated sludge from a local WWTP. The continuous two year operation of 

the reactor ensures that the biomass is not externally contaminated by metals or 

carbonaceous NMs. Collected biomass was refrigerated at 4 °C and stored for less than 

24 h before use. Prior to experiments, activated sludge was rinsed three times with a 

carbonate buffer solution (10 mM NaCl and 4 mM NaHCO3) and then centrifuged (F = 

350 G) for 15 minutes. The supernatant was discarded, and dewatered sludge was re-

suspended in a 1 mM of NaHCO3 buffer solution. The pH of mixed sludge and buffer 

solution was adjusted to pH 7.0 ± 0.2 with 0.1 mM of HCl or 0.1 mM of NaOH. After pH 

adjustment, the TSS of the biomass stock solution was determined using standard method 

(APHA, AWWA et al. 2005).  

        Aliquots of biomass stock solution were spiked into a series of plastic vials 

containing NMs and buffered with 1 mM NaHCO3 solution. The final biomass 

concentration ranged from 50 mg TSS/L to 3,000 mg TSS/L, where the maximum 

biomass concentration used in this study is similar to the typical activated sludge 

concentration in a WWTP (Grady, Daigger et al. 1999). Positive controls included NMs 

and buffer solution without biomass, and the negative control included only clean 
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biomass and buffer solution. The final volume of all aliquots was 30 mL. The initial 

concentrations in the mixed liquor were 25 mg GO/L and 25 mg MWCNTs/L.  

        After mixing NMs and biomass, the suspensions were capped in tubes and agitated 

on a wrist-action shaker for3 hours, which is a typical duration for the aeration stage in a 

WWTP.  Following agitation, the mixed suspension was settled by gravity for 30 minutes 

(Kiser, Ryu et al. 2010). For GO and CNT experiments, a supernatant aliquot of 6 mL 

was pipetted out from each vessel for further analysis. The supernatant was centrifuged 

for 5 min at F = 1,000 G to remove any remaining suspended particles and then analyzed 

by UV-Vis method. 

        Experiments with FLG and clean biomass followed the same protocols except that 

different NM concentrations were used. To facilitate analysis, the initial concentrations of 

FLG ranged from 0.3 to 8.3 mg C/L. A single biomass concentration of 50 mg TSS/L 

was applied for all the FLG experiments. The negative control contained only biomass 

without any FLG. After 3 hours of mixing and 30minutes of gravity settling, 26 mL of 

supernatant was carefully removed with a pipette. The remaining suspension of 4 mL was 

centrifuged at F =21,293 G for 10 minutes, and the supernatant was discarded. The 

remaining biomass was used for PTA analysis. 

3.2.3 Quantificationof the Carbonaceous Nanomaterials 

        MWCNTs and GO in the supernatant were quantified using a UV-Vis light 

scattering spectrophotometer (MultiSpec-1501, Shimadzu, Japan) with minimum 

detection limit of 1 mg/L. For FLG studies, biomass was digested in alkaline solution to 

eliminate excess biomass and facilitate separation of FLG before it was quantified using 

PTA (Doudrick, Nosaka et al. 2015). The detailed PTA analysis is described by Doudrick 
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et al.(Doudrick, Herckes et al. 2012, Doudrick, Nosaka et al. 2015). Briefly, 1 mL of 

SOLVABLE™ (aqueous based solubilizer, PerkinElmer, MA, USA) was added to the 

biomass remaining after centrifugation. The mixture was then incubated for 24 hours at 

60 ºC, and then 2% (by weight) of sodium borohydride (99.99%, Sigma Aldrich, MO, 

USA) was added to the mixture. In order to remove any residual surfactant from 

SOLVABLETM, the rinsing procedure consisted of centrifugation at F = 21,293 G for 10 

minutes followed by decanting and addition of 1 mL of nanopureTM water (Barnstead, 

18.2MΩ·cm). The suspension was agitated for 1 minute using a vortex agitator, and then 

the centrifugation step was repeated. After centrifugation and removal of the supernatant, 

the final pellet that formed at the bottom of the centrifuge tube was suspended in 0.1 mL 

of nanopure water and used for PTA analysis. 

3.3 Results and Discussion 

3.3.1 Carbonaceous Nanomaterial Analysis in Presence of Wastewater Biomass 

        In the wastewater biomass experiments, it was possible to measure NMs either in 

solution or in the biomass to calculate the removal of NMs from the liquid phase. 

However, both measurements face potential interferences when analyzing elemental 

carbon (i.e., NMs) in the presence of large amounts of dissolved and/or particulate 

organic matter associated with soluble microbial products (SMPs), cellular debris, and/or 

intact cells. Because NMs in supernatant are representative of the discharge from a full 

scale WWTP into receiving water, we preferred analyzing NMs in the supernatant when 

possible.   

        To identify the specific wavelength for quantification, UV-Vis spectra between 200 

and 700 nm were obtained for three suspensions of NMs and the supernatant of biomass 
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and are shown in Figure 3(a). In the absence of NMs, soluble organics in a supernatant 

sample collected from a test with 1,000 mg TSS/L had minimal UV-Vis response at 

wavelengths longer than 300 nm. Thus absorbance at wavelengths equal to or above 300 

nm can be used to quantify the concentration of NMs without the interference from 

biomass. GO exhibited peaks at both 230 and 300 nm, which were also observed in other 

studies (Shin, Kim et al. 2009, Zhang, Yang et al. 2010). To avoid interference from 

biomass supernatant background, 300 nm was used for GO quantification. No obvious 

peak was observed for the suspension of MWCNTs, and the wavelength of 400 nm was 

applied for quantification as it showed a large absorbance value. 

        Calibration curves were obtained by us using UV-Vis for both GO and MWCNTs 

with a minimum detection limit of 1 mg/L. Pristine and O-MWCNTs with lower oxygen 

content (i.e., ≤ 7.3%) were not as stable as O-MWCNTs with 8.3% of oxygen; the former 

quickly aggregated and precipitated in nanopure water or 1 mM NaHCO3 even after a 1-h 

water bath sonication. Five types of MWCNTs were tested in this study, while O-

MWCNTs with 8.3% of oxygen were quantifiable using a UV-Vis calibration curve. In 

the removal experiments, negative controls without NMs were conducted over a wide 

range of biomass concentrations (50 to 3,000 mg TSS/L). By subtracting the absorbance 

of the background biomass supernatant, the concentrations of GO or O-MWCNTs in 

supernatant could be quantified using UV-Vis absorption at 300 nm for GO and 400 nm 

for O-MWCNTs.  

        FLG at 20 mg/L showed no specific absorption/scattering peak, and the highest 

absorbance between 200 and 700 nm was approximately 0.12 at 400 nm. Also, the 

concentration of FLG in the supernatant after biosorption was expected to very low, and 
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challenges existed to collect and analyze FLG in supernatant. As such, instead of using 

the UV-Vis method described previously, PTA was used to quantify FLG because it has a 

lower detection limit. As a result, we quantified FLG in settled biomass instead of the 

supernatant. Figure 3(b) illustrates a typical PTA thermogram on FLG in biomass. When 

the amount of biomass was below 50mg TSS/L, the peaks on the left attributed from 

biomass in Figure. 5b was negligible. Thus 50 mg TSS/L biomass led to no observable 

interference on the signal from FLG and was chosen for FLD distribution study in our 

research.  
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Figure 3.(a), UV-Vis characterization of graphene oxide (GO) suspension (20 mg/L), 

carbon nanotubes with surface oxygen content of 8.3% (25 mg/L), and biomass 

supernatant (after 30 minutes settling of 1,000 mg/L biomass). (b), PTA 

thermogram for adsorption test of FLG in biomass under He/O2 atmosphere. Signal 

in shaded area (>775 ºC) is counted for FLG quantification of 50 µg. 
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3.3.2 Removal of Carbon Nanotubes by Wastewater Biomass 

        Figure 4 shows the UV-Vis spectra for the experiment with the highest oxygen 

containing O-MWCNTs (i.e., the most stable MWCNT) at time zero and after the test (3 

hours mixing followed by 30minutes gravity settling). The O-MWCNTs were well 

dispersed after the water-bath sonication after a water-bath sonication. In the positive 

control (i.e., without biomass), the absorbance was near zero wavelengths above 250 nm, 

indicating complete removal of the O-MWCNTs is simply due to homo-aggregation and 

sedimentation. Visual observations showed a clear supernatant, thus supporting the 

conclusions of the UV-Vis measurements. The same process was repeated for the other 

three O-MWCNTs and pristine MWCNTs. We visually observed more rapid aggregation 

as the oxygen content of the MWCNTs decreased. Thus pristine and O- MWCNTs were 

nearly completely removed even without biomass. Nonetheless, the biomass experiments 

were performed to verify that the presence of biomass would not unexpectedly stabilize 

MWCNTs. For an initial O-MWCNT concentration of 25 mg/L, biomass concentrations 

ranging from 50 to 3,000 mg TSS/L were added. Visual observations of the biomass and 

O-MWCNT solutions indicated complete removal of O-MWCNTs from the supernatant. 

UV-Vis spectroscopy confirmed the observations, measuring < 1 mg/L MWCNTs in the 

supernatant at the end of the experiment. Greater than 96% removal of the O-MWCNTs 

with 8.3% oxygen was obtained even at the lower biomass application (50 mg/L). 

Because O-MWCNT suspension with 8.3% of oxygen is the most stable among five 

types of MWCNTs, it was concluded that >96% removal would be achieved in the 

simulated wastewater treatment teats for all the MWCNTs, including the pristine one, and 

that the presence of biomass did not hinder MWCNT removal.   
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Figure 4. UV-Vis scan of supernatant after biomass absorption on O-MWCNTs 

with 8.3% O.  Initial O-MWCNT concentration is 25 mg/L. O-MWCNT control did 

not include biomass but only 25 mg O-MWCNT/L. 

 

        Previous research reports a critical aggregation concentration values for MWCNTs 

as 25 mM NaCl, 2.6 mM CaCl2, and1.5 mM MgCl2 at pH 6.0 ± 0.2, in a time period 

ranging from 20 minutes to 3 hours (Saleh, Pfefferle et al. 2008), whereas we observed 

this to occur at less than 1 mM NaHCO3 matrix (pH = 7.0, ionic strength = 1 mM) in 

shorter than 5 min. Nearly all wastewaters have ionic strengths above 1 mM, thus higher 

ionic strength in wastewater can lead to more rapid homo- or hetero-aggregation of 

MWCNTs with other colloids because of the dependence of electrostatic repulsion on the 

Debye layer thickness (Suzuki, Tanaka et al. 2002). In the prior study (Saleh, Pfefferle et 

al. 2008), the MWCNT suspension used in previous research was sonicated for 30 

minutes, settled solids were removed, and the supernatant was used and re-sonicated – a 

process repeated five times (Saleh, Pfefferle et al. 2008). This process may have 
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significantly altered the size or surface functionality of the MWCNTs compared to this 

study where the pristine and O-MWCNTs were sonicated in a water bath only to form a 

homogeneous dispersion. Thus, different formulations of MWCNTs may experience 

different rates of homo-aggregation or hetero-aggregation with biomass. Because homo-

aggregation rates depend upon the initial NM concentration, it is possible the rate of 

aggregation at lower MWCNT concentration could be much lower than the rate observed 

in our experiments with 25 mg/L. To work with lower MWCNT concentrations in the 

presence of biomass would necessitate improved analytical detection of MWCNTs 

dispersed in solution. 

        The 1-hour sonication can decrease the length of O- MWCNTs. Our unpublished 

data and other literatures also suggested the sonication could decrease the size of CNTs 

and unalter the surface oxidation state in the absence of strong oxidant [16, 17, 26]. 

However, even with decreased lengths of pristine MWCNTs and O-MWCNTs, 96% of 

them were removed from liquid phase after 3-h mixing and 0.5-h settling. Since 

sonication increased the stability of all MWCNT suspensions (upon observation), it is 

reasonably to conclude that more than 96% of pristine and O- MWCNTs could be 

removed from liquid phase with or without sonication. 

3.3.3 Removal of Graphene Oxide by Wastewater Biomass 

        Unlike pristine or O-MWCNTs, GO did not undergo any measurable homo-

aggregation in control experiments (i.e., no biomass). Addition of biomass led to lower 

GO concentrations in the supernatant (Figure 5). Less than 10% removal of GO occurs at 

50 or 100 mg/L. Biomass dosages of 500 and 1,000 mg/L had 38% and 65% removal, 

respectively. For biomass dosages above 2,000 mg TSS/L, greater than 75% of GO was 
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removed from the supernatant (compared against controls of GO without biomass). When 

the biomass concentration was below 100 mg TSS/L, we could still find the characteristic 

absorption peak of GO at 230 nm [28]. As biomass concentration increased, more GO 

was removed. At higher concentrations of biomass, the absorption peak of GO at 230 nm 

disappeared and the high concentration of biomass led to another peak at 215 nm 

(comparable to 3,000 mg/L biomass control). 

 
 

Figure 5. UV-Vis scan of supernatant after biomass absorption on graphene oxide 

(GO). Initial GO concentration is 25 mg/L. GO control did not include biomass but 

only 25 mg GO/L. 

 

        Data for GO removal as a function of biomass dosage were fit using a Freundlich 

model (Figure 6). By applying the Freundlich model, we did not assume equilibrium or 

any other thermodynamic state, but we simply applied the model as a mathematical fit of 

the data. Similar work has been applied elsewhere for NMs (Wiesner and Bottero 2011), 

oxo-anions, and other pollutants (Westerhoff and Nowack 2013). The Freundlich model 
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(q = 5.0 Cs
0.5) fit the observed data (R2=0.6), where Cs is the supernatant concentration of 

GO and q represents a sorption density (mg GO/g TSS). 

        To explore the dominant interaction between GO and biomass, the total surface area 

of GO and bacteria in biomass was calculated. Our previous results using QPCR (Yang, 

Chen et al. 2012) show the total bacteria is approximately 1.0 × 109 cells/mL and the total 

archaea is approximately 1.0 × 107 cells/mL in the biomass of 3,000 mg TSS/L. 

Assuming the each cell has a similar size to a E.coli cell, we can estimate the total surface 

area of microorganism for biomass by multiplying the number of cells with the surface 

area of a E.coli cell. As a rod-shaped E.coli cell has surface area of approximately 0.39 

μm2(0.5 μm in width by 2 μm in length) (Neidhardt 1996), the total surface area of 

microbes is approximately 3.94 cm2/mL for 3,000 mg TSS/L. Additionally, the low ionic 

strength of matrix ( 1mM NaHCO3) would unlikely lead to fold or aggregation of GO, 

since other literature  reported 50 mM of copper ion (i.e., Cu2+) and above would be able 

to cause  folding and aggregation of GO(Yang, Chang et al. 2010).  Thus the total surface 

area of GO (surface area from information provided by manufacture, 1200 m2/g) can be 

proportionally calculated to be about 300 cm2/mL, which was much higher than that of 

biomass at 3,000 mg TSS/L. Therefore, the interaction among GO NMs likely dominated 

in the distribution process, though the carboxyl and hydroxyl group on the surface of 

GO(He, Klinowski et al. 1998) might hinder the aggregation of GO.  

3.3.4 Few Layer Graphene Removal by Biomass 

        The suspension of FLG was relatively stable after 30-min water bath sonication, and 

there was virtually no settling of FLG after one hour. At the end of the experiments, FLG 

was measured in the settled biomass and compared with the MWCNT or GO that was 
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quantified in the supernatant. Experiments with FLG were conducted with a constant 

biomass concentration of 50 mg TSS/L (see above) and variable FLG concentrations. In 

these experiments, the percentage FLG removed was nearly constant across the range of 

FLG concentrations tested. FLG removal averaged 11 ± 3% (range: 8 to 16%). 

Consequently, when the data were plotted and fit by a Freundlich model (q = 2.2 Cs
1.1; R2 

= 0.94, Figure 8), the model exponent is nearly unity, which indicates a linear distribution 

of FLG between the supernatant and biomass. This was somewhat unexpected unless the 

FLG completely covered the biomass surface – even at the lowest FLG concentration – in 

which case the near unity exponent may represent interaction of FLG with similar FLG 

NMs orientated on the biomass surface. Figure 8 also clearly shows that more FLG can 

be removed by biomass compared to GO (qFLG > qGO),  when Cs concentration was about 

6-7 mg/L. 
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Figure 6. Analysis using a Freundlich model of the supernatant NM (i.e., GO and 

FLG) concentrations (Cs, mg/L) versus the amount of NM in the biomass (q, mg 

NM/mg TSS). The initial concentration of GO was 25 mg/L with varied biomass 

concentration (50 – 3,000 mg TSS/L). The initial concentration of FLG was 0.3- 8.3 

mg/L with a fixed biomass concentration of 50 mg/L. 

 

        A similar calculation was conducted on the total surface area of FLG NMs and 

bacteria in biomass, to examine the dominant interaction in the suspension. As shown 

above, the total surface area of microbes in 3,000 mg TSS/L biomass is 3.94 cm2/mL. 

Proportionally, 50 mg TSS/L biomass will have a surface area of approximately 6.56 × 

10-2 cm2/mL. The total surface area in 0.3 mg/L FLG (surface area, 21 m2/g) is 

approximately 63 cm2/mL, which is at least 100 fold larger than the surface area of 

microbes in 50 mg/L biomass. Therefore, interaction of FLG with other FLG NMs likely 

occurred, and the aggregates of FLGs covered the surface of microbes in the biomass. 

These experiments raise a number of interesting mechanistic questions that will be 

investigated in the future. With the current dataset, we can conclude quantitatively that 

>84% of the FLG was removed by 50 mg TSS/L of biomass. It is reasonable to expect 
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FLG removal would increase at higher biomass concentrations, but current analytical 

methods limit these quantitative assessments. 

3.3.5 Removal of Carbonaceous Nanomaterials by Biomass  

        Table 2 summarizes the percentage removal by wastewater biomass of common 

carbonaceous NMs, including MWCNTs, FLGs, GO, fullerene, and functionalized 

fullerene. Except GO and functionalized fullerene, all other carbonaceous NMs could 

have more than 96% removal in the presence of 1,000 mg/L biomass. GO removal was 

65% with an initial concentration of 25 mg GO/L and a biomass concentration of 1,000 

mg/L. Functionalized fullerene (initial concentration as 3 mg C/L) has a 14% of removal 

in the presence of 400 mg/L biomass. Previous results indicate the surface 

functionalization/oxidation could affect the stability and removal rates of carbon 

nanomaterials in biomass absorption process (Kiser, Ryu et al. 2010, Petersen, Zhang et 

al. 2011). 

 

Table 2. Percentage Removal of Nanomaterials by the Wastewater Biomass  

Nanomaterials  Diameter 

of  

NMs  

(nm) 

Initial 

concentration 

of 

NMs(mg/L) 

Biomass 

concentration 

(mg/L) 

Percentage 

removal  

References 

Multi-walled 

CNTs   

with 0.4% -

8.3% oxygen 

12 25 1,000 >96 % this study 

Graphene 

oxide (GO) 

1.1a 25 1,000 65% this study 

Few Layer 

Graphene 

(FLG) 

10 – 20a 1 50 16% this study 

Fullerene (aq-

nC60) 

88 4 400 90% (Kiser, Ryu 

et al. 2010) 
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Nanomaterials  Diameter 

of  

NMs  

(nm) 

Initial 

concentration 

of 

NMs(mg/L) 

Biomass 

concentration 

(mg/L) 

Percentage 

removal  

References 

Functionalized 

fullerene 

(nC60(OH)x) 

48 12 400 14% (Kiser, Ryu 

et al. 2010) 

Fullerene 88 0.07-2 500-2,000  95% (Wang, 

Westerhoff 

et al. 2012) 

CNTs        90-97% b (Mueller 

and Nowack 

2008) 

General 

nanomaterials 

      32-77% b (Keller and 

Lazareva 

2014) 
a represents thickness of NMs.  
b represents assumed value used in modeling. 

 

        The specific mechanism governing biosorption of carbonaceous NMs on biomass is 

not clear yet, though the interaction between NMs and extracellular polymeric substances 

(EPS, one of most important sources of organic matters) is considered a driving force 

(Chen and Elimelech 2009, Kiser, Ryu et al. 2010). The EPS in the biomass contains a 

large portion of hydrophobic materials, which can enhance the stability of fullerene in the 

suspension (Kiser, Ryu et al. 2010). EPS can increase the electrical or steric repulsion 

(Becker and Foundation 2004) when interacting with carbonaceous NMs containing 

organic functional group on the surface. Thus GO with carboxyl group(He, Klinowski et 

al. 1998) showed a lower removal rate from the bulk water phase. Further research is 

needed to elucidate how the absorption forces change with different functionalization on 

the surface of carbonaceous NMs. 
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3.4 Conclusions 

        This study of pristine and O- MWCNTs, GO, and FLG in presence of biomass 

showed different removal from the water phase. Biomass at 1,000 mg/L removed at least 

65% of GO and 96% of pristine and O-MWCNTs with an initial concentrations of 25 mg 

C/L, while biomass at 50 mg/L remove 16% of FLG with an initial concentration of 1 mg 

C/L. Because activated sludge in WWTP ranges from 1,000 mg/L to 5,000 mg/L 

(George, L.Burton et al. 2004), it can be concluded that majority of carbonaceous NMs 

entering into WWTPs would associate with biomass and be removed from the water 

phase. Analytical challenges still exist for quantifying pristine and O-MWCNTs and GO 

in the presence of high concentration of biomass. Further study is needed to address the 

analytical challenges of quantifying GO and MWCNTs in environmental matrices. 
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CHAPTER 4 

INTERACTION OF TWEEN 20-COATED SILVER ENGINEERED 

NANOMATERIAL WITH WASTEWATER BIOMASS 

4.1 Introduction 

Silver has been well known for its antibacterial activity for centuries. Silver 

nanomaterials have wide application in cosmetics, pharmaceuticals, fabrics and other 

consumer products as wide a spectrum antimicrobial agents (Kim, Kuk et al. 2007, 

Kaegi, Voegelin et al. 2011). The antibacterial character of Ag ENM increases when the 

size of Ag ENM decreases, and the particle shape also affects the antibacterial character 

(Panáček, Kvítek et al. 2006, Martínez-Castañón, Niño-Martínez et al. 2008). The 

majority of Ag ENM in consumer products will be released into sewer systems and end 

up in WWTP (Blaser, Scheringer et al. 2008, Mueller and Nowack 2008).  

Studies have shown more than 95% of the Ag entering WWTP end up into the 

wastewater biomass (Shafer, Overdier et al. 1998). Ag ENM in the WWTP effluent are 

discharged into rivers, lakes and oceans, thus poses a potential threat to aquatic 

organisms. Ag ENM in the wastewater biomass often end up in land application, which 

exposes potential threat to terrestrial organisms (Nowack and Bucheli 2007, Brar, Verma 

et al. 2010).  

Tween™ 20 is a non-ionic surfactant with hydrophobic alkyl side chains. Its low 

toxicity makes it possible to be widely used as a detergent and emulsifier in domestic, 

scientific and pharmacological applications (Batteiger, Newhall et al. 1982, Alkasrawi, 

Eriksson et al. 2003). Tween™ 20-coated nanoparticles, including Ag NP can end up in 
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the WWTP from these applications. The objective of this chapter is to quantify the 

removal efficiency of Tween™ 20-coated Ag ENM by wastewater biomass. 

4.2 Experiment Method 

4.2.1 Biomass Collection and Preparation 

Clean biomass were collected from a lab-scale sequencing batch reaction (SBR) 

tank that had been continually operated and maintained for over three years. The biomass 

were seeded from a local full scale conventional activated sludge WWTP. Previous study 

has shown the biomass has the equivalent removal of ENMs as full-scale WWTP (Kiser, 

Ryu et al. 2010). All biomass were freshly prepared and no frozen biomass were used in 

the experiments. In order to minimize the effect of other extraneous material in the sludge 

on ENPs, the sludge was prepared by the following protocol. 

Activated sludge was collected from the SBR tank and then was rinsed with 

buffer solution (10mM NaCl, 4mM NaCO3) immediately, then it was centrifuged 

(F=350G) for 15 min, after that the supernatant was discarded. Then the process was 

repeated two more times to make sure extraneous material were washed out. Another 

buffer (1mM NaCO3) was added into the dewatered sludge to guarantee steady pH in the 

biomass solution. Finally, the pH was adjusted to 7.5±0.2 with 1mM HCl or NaOH. 

The determination of total suspended solids was executed by following a newly 

developed protocol, which was customized from standard protocols (APHA, AWWA, 

and WEF, Standard Methods for the Examination of Water and Wastewater. 21st Edition 

Ed. 2005.). The specific procedure of this protocol is shown in chapter 2. A more 

convenient method by using UV-Vis was then developed based on the result of this 

protocol. A group of sludge was prepared with specific concentration, and then were 
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analyzed by UV-Vis with full wavelength scan. The absorption peak was found and then 

a standard curve was made by determining the linear relationship between sludge 

concentration and absorption on specific wavelength.  

4.2.2 Source and Characteristic of Tween™ 20-Coated Ag ENM 

The TWEEN™ 20-Coated Ag ENM was synthesized by Dune Sciences, Inc. and 

was prepared by researchers from the University of Oregon. The average particle size 

was 20±7 nm tested by TEM. The ENM was sonicated for 5 minutes in a water bath 

sonicator before the experiment. 

4.2.3 Removal Experiment of Tween™ 20-Coated Ag ENM by Wastewater Biomass 

Tween™ 20-Coated Ag ENM were spiked into a series of Erlenmeyer flasks 

with different concentrations of biomass within the range from 50 mg/L to 3,000 

mg/L, and buffer solution (1mM NaHCO3). The system volume of all Erlenmeyer 

flasks was controlled at 30 mL. The concentration of biomass covered the typical 

activated sludge concentration in WWTP. Initial concentration of Tween™ 20-Coated 

Ag ENM was from 970 µg/L to 2,600 µg/L. 

After the sample solution were prepared, samples were processed through an 

agitation process in order to simulate the CAS process in WWTP. The samples of 

Tween™ 20-Coated Ag ENM were agitated by an orbital shaker with 150 rpm. The 

agitation period was set to 3 hours, which is the typical time for the aeration stage of the 

CAS process in WWTP. After agitation, the samples were gravitationally settled for 30 

minutes, in order to simulate the process of the second clarifier in WWTP. Then, an 

aliquot (6 mL) of supernatant in each sample was carefully pipette out into plastic vials 

for further analysis.  
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4.2.4 Quantification Method 

The supernatant of samples was then centrifuged (F=1, 000 g) for 5 min to 

remove any suspended particles before it was analyzed by UV-Vis. Then the samples 

were quantified by using UV-Vis light scattering spectrophotometer (MultiSpec-1501, 

Shimadzu, Japan), which has a minimum detection limit of 1 mg/L. In order to determine 

the optimal wavelength to quantify Tween™ 20-Coated Ag ENM concentration, pure Ag 

ENM samples were tested by full wavelength scan to exclude interference with biomass. 

The optimal wavelength for Tween™ 20-Coated Ag ENM was 415 nm (Figure 7). A 

standard curve was done to determine the relationship of Ag ENM concentration and 

absorbance at 415 NM (Figure 8). Then the concentration of in each sample was 

calculated by using the absorbance data and standard curve.  

 

Figure 7. UV-Vis absorbance of pure Tween™ 20 Ag ENM samples with different 

concentrations 
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Figure 8. Standard curve of Tween™ 20 Ag ENM determination by UV-Vis at 415 

nm 

 

4.3 Results 

4.3.1 Removal of Tween™ 20-Coated Ag ENM of Wastewater Biomass 

Figure 9 shows the result of removal of Tween™ 20-coated Ag ENM by biomass. 

The absorbance of samples at 415 nm was determined by using UV-Vis, and then the Ag 

ENM concentration of samples were calculated by using a standard curve. There are four 

different initial concentrations of Tween Ag, which were 2,600 µg/L, 1,940 µg/L, 1,300 

µg/L, 0.97 µg/L. The biomass concentration were from 0.5 g/L to 3 g/L. The sample of 

Ag control means only 970 µg/L Ag was added into the sample without biomass. Ag 

ENM was added in the sample without biomass. The sample of biomass control means 

only 1 g/L biomass was added in the sample without Ag ENM. 
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Figure 9. Result of Tween™ 20 Ag ENM Removal by Wastewater Biomass 
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efficiency ranged from 11% to 92% in different samples. The concentration of  activated 
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Figure 10. Power Function Relationship of Tween™ 20 Ag ENM Removal by 

Wastewater Biomass. Red triangles are samples with 2.6 mg/L initial Ag ENM, red 

squares are samples with 1.9 mg/L initial Ag ENM, red lines are samples with 1.3 

mg/L initial Ag ENM. 

 

To explore the interaction of Ag ENM and biomass, the total surface area of Ag 

ENM and biomass was calculated by using the same method in chapter 3. The mean size 

of Tween™ 20 Ag ENM was 20 nm determined by TEM. The result of spICPMS showed 

the total number of Ag ENM in a 10 ppt solution was 2.1 × 10-5. Thus, the surface area of 

2,600 µg/L Tween™ 20 Ag ENM was calculated as 6.86 × 10-4 cm2/mL. This showed the 

surface area of Tween™ 20 Ag ENM is much less than the surface area of 50 mg/L 

biomass, which was 6.56 × 10-2 cm2/mL. It showed even the highest concentration of Ag 

ENM in the samples has less surface area than the lowest concentration of biomass in the 

samples. Thus the major interaction of this experiment was between Ag ENM and 

y = 0.35x0.07

R² = 0.4315

y = 0.36x0.46

R² = 0.5099

0.1

1

0.01 0.1 1 10

q
 (

m
g

 A
g

N
P

/g
 B

io
m

a
ss

)

Final Ag ENM Concentration (mg/L)

0.97 mg/L Initial ENM Concentration

1.3 to 2.6 mg/L Initial ENM Concentration



  42 

biomass for all the samples. Our results showed consistent removal efficiency with 

previous studies, which observed 40% to 90% removal of Ag ENM with different size 

and capping agent by biomass in a sequencing batch reactor (SBR) tank (Kiser, Ryu et al. 

2010, Kaegi, Voegelin et al. 2011, Wang, Westerhoff et al. 2012, Yang, Wang et al. 

2014). 

4.4 Conclusions 

The removal of Tween™ 20 Ag ENM of biomass was determined by UV-Vis 

with a standard curve. The result of the experiment showed the removal efficiency of 

Tween™ 20 Ag ENM was from 11% to 92% at an initial Ag ENM concentration from 

970 µg/L to 2,600 µg/L with biomass concentration from 0.5 g/L to 3 g/L. This result 

shows the removal of Tween™ 20 Ag ENM is related to the biomass concentration. 

Biomass in regular WWTP at concentration range from 1,000 to 3,000 mg TSS/L can 

reach at least 50% removal of Tween™ 20 Ag ENM. 
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CHAPTER 5 

MODEL OF ENMS REMOVAL OF THE CAS PROCESS IN WWTP 

5.1  Introduction  

The production, manufacture and consumer usage of ENMs have led to 

environmental release of ENMs. Wastewater discharges, sewage sludge, land application 

and waste incineration of products are the major flows that conveys ENMs to the 

environment (Gottschalk and Nowack 2011). Hence, monitoring ENMs removal and 

release at WWTP is important. However, the lack of appropriate technology to detect and 

quantify ENMs in the complex wastewater sludge (i.e. biomass) media or liquid effluents 

impedes the accessibility of ENMs concentration data from WWTP (Gottschalk, Sun et 

al. 2013). From a few published studies, valuable empirical data has provided 

accessibility to model ENMs removal at WWTP. Modeling can predict ENMs removal at 

different WWTP under different operational conditions, and can also predict ENMs 

removal efficiency during the period when operational conditions changes.   

This chapter presents the development of a CAS model in Fortran code to predict 

solid-to-liquid ratio distribution of the concentration of ENMs in the effluent of  the CAS 

process. I incorporated a non-linear power function relationship of Freundlich isotherm 

into the CAS model by adopting an iterative solving subroutine. I also collected data 

from published journals to create a database that shows ENMs removal by activated 

sludge in terms of Freundlich isotherm. The database is adapted into the model to predict 

ENMs effluent concentration of the CAS process under different operational conditions. I 

also did kinetics study of the performance of ENMs removal by the CAS model when 

changing operational conditions. 



  44 

5.2  Model to Predict ENMs Removal Efficiency by the CAS Process 

The model is built based on the analysis and design of the CAS process by 

Rittmann and McCarty (Rittmann, McCarty, 2001). A previous study has already built a 

model which focuses on membrane bioreactor (MBR) system (Kiser, Oppenheimer et al. 

2010). My work builds upon the MBR model, and incorporates modifications from it to 

represent the character of the CAS process. I added Newton-Raphson method as 

numerical method to predict ENMs removal by the CAS process under different 

operational conditions. I also built non-linear Freundlich isotherm database of ENMs 

interacting with activated sludge, and fitted the database into the model.   

5.2.1  Foundation of the CAS Model 

The foundation of the CAS model is based on mass balance equations that were 

developed earlier (Laspidou and Rittmann 2002). Non-steady state mass balance 

equations of seven components in a single complete mixing reactor are established based 

on the Monod kinetics. These equations have already been modified in previous study to 

evaluate the performance of the MBR process study (Kiser, Oppenheimer et al. 2010). 

Table 3 summarizes key parameters and the units. Table 4 includes all seven non-steady 

state mass balance equations. Laspidou’s paper has quantified the relationship of 

extracellular polymeric substances (EPS) and soluble microbial products (SMP) with 

active and inert biomass.  
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Table 3. Parameters definitions and units for mass balance equations (Laspidou and 

Rittmann 2002) 

Variable Definition Units 

𝑏 First-order endogenous decay rate coefficient T-1 

𝐵𝐴𝑃 Concentration of biomass-associated products (BAP) Mp/L
3 

𝐸𝑃𝑆 Concentration of EPS MEPS/L3 

𝑓𝑑 Biodegradable fraction of active biomass - 

𝑘1 Substrate-utilization-associated products (UAP) formation 

rate coefficient 

Mp/Ms 

𝑘2 BAP formation rate coefficient Mp/Mx -T 

𝑘𝐸𝑃𝑆 EPS formation coefficient  Mp/Mx 

𝑘ℎ𝑦𝑑 First-order hydrolysis rate coefficient T-1 

𝐾𝐵𝐴𝑃 Half-maximum-rate concentration for BAP utilization Mp/L
3 

𝐾𝑠 Half-maximum-rate concentration for utilization of original 

substrate 

Ms/L
3 

𝐾𝐷 Half-maximum-rate concentration for utilization of donor 

substrate 

MD/L3
 

𝐾𝑂 Half-maximum-rate concentration for O2 consumption MO/L3 

𝐾𝑈𝐴𝑃 Half-maximum-rate concentration for UAP utilization Mp/L
3 

𝑄 Flow rate L3/T 

𝑞̂𝑠 Maximum specific substrate utilization rate for original 

substrate 

Ms/Mx -T 

𝑞̂𝐷 Maximum specific substrate utilization rate for donor 

substrate 

MD/Mx -T 

𝑞̂𝐵𝐴𝑃 Maximum specific BAP utilization rate Mp/Mx -T 

𝑞̂𝑈𝐴𝑃 Maximum specific UAP utilization rate Mp/Mx -T 

𝑅𝑎𝑐𝑐 Rate of separate supply of acceptor Macc/L
3 -T 

𝑟𝑠 Specific substrate utilization rate Ms/Mx -T 

𝑟𝑈𝐴𝑃 Specific UAP utilization rate Mp/Mx -T 

𝑟𝐵𝐴𝑃 Specific BAP utilization rate Mp/Mx -T 
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Variable Definition Units 

𝑆 Concentration of original donor substrate MS/L3 

𝑈𝐴𝑃 Concentration of UAP Mp/L
3 

𝑉 Volume L3 

𝑋𝑎 Concentration of active biomass Mx/L
3 

𝑋𝑟𝑒𝑠 Concentration of true residual inert biomass Mx/L
3 

𝑌𝑠 True yield for substrate utilization Mx/Ms 

𝑌𝑝 True yield for SMP utilization Mx/Mp 
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Table 4. Mass balance equations for nonsteady-state CAS model based on previous 

paper (Laspidou and Rittmann 2002), Q0, Qe, Qw means influent flow rate, effluent 

flow rate, waste stream flow rate, respectively. 

Equation Definition Mass Balance Equations 

Original Donor 

Substrate (S) 

𝑑𝑆

𝑑𝑡
= −𝑞̂𝑠 (

𝑆

𝐾𝑆 + 𝑆
)𝑋𝑎 +

𝑄0𝑆0
𝑉

−
𝑄𝑒𝑆

𝑉
−
𝑄𝑤𝑆

𝑉
 

Active Biomass 𝑑𝑋𝑎
𝑑𝑡

= Y𝑆𝑟𝑆(1 − 𝑘1 − 𝑘𝐸𝑃𝑆)𝑋𝑎

+ 𝑌𝑝 (
𝑞̂𝑈𝐴𝑃𝑈𝐴𝑃

𝐾𝑈𝐴𝑃 + 𝑈𝐴𝑃
+

𝑞̂𝐵𝐴𝑃𝐵𝐴𝑃

𝐾𝐵𝐴𝑃 + 𝐵𝐴𝑃
)𝑋𝑎

− b𝑋𝑎 +
𝑄0𝑋𝑎

0

𝑉
−
𝑄𝑒𝑋𝑎
𝑉

−
𝑄𝑤𝑋𝑎
𝑉

 

True Residual Inert 

Biomass (Xres) 

𝑑𝑋𝑟𝑒𝑠
𝑑𝑡

= 𝑏(1 − 𝑓𝑑)𝑋𝑎 +
𝑄0𝑋𝑟𝑒𝑠

0

𝑉
−
𝑄𝑒𝑋𝑟𝑒𝑠
𝑉

−
𝑄𝑤𝑋𝑟𝑒𝑠

𝑉
 

Extracellular Polymeric 

Substances (EPS) 

𝑑𝐸𝑃𝑆

𝑑𝑡
= 𝑘𝐸𝑃𝑆𝑟𝑠𝑋𝑎 − 𝑘ℎ𝑦𝑑𝐸𝑃𝑆 +

𝑄0𝐸𝑃𝑆0
𝑉

−
𝑄𝑒𝐸𝑃𝑆

𝑉

−
𝑄𝑤𝐸𝑃𝑆

𝑉
 

Utilization-associated 

Products (UAP) 

𝑑𝑈𝐴𝑃

𝑑𝑡
= 𝑘𝑙𝑟𝑠𝑋𝑎 −

𝑞̂𝑈𝐴𝑃𝑈𝐴𝑃

𝐾𝑈𝐴𝑃 + 𝑈𝐴𝑃
𝑋𝑎 +

𝑄0𝑈𝐴𝑃0
𝑉

−
𝑄𝑒𝑈𝐴𝑃

𝑉

−
𝑄𝑤𝑈𝐴𝑃

𝑉
 

Biomass-associated 

Products (BAP) 

𝑑𝐵𝐴𝑃

𝑑𝑡
= 𝑘ℎ𝑦𝑑𝐸𝑃𝑆 −

𝑞̂𝐵𝐴𝑃𝐵𝐴𝑃

𝐾𝐵𝐴𝑃 + 𝐵𝐴𝑃
𝑋𝑎 +

𝑄0𝐵𝐴𝑃0
𝑉

−
𝑄𝑒𝐵𝐴𝑃

𝑉

−
𝑄𝑤𝐵𝐴𝑃

𝑉
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Equation Definition Mass Balance Equations 

Acceptor 

Consumed (as O2) 

𝑑𝑂2
𝑑𝑡

= −𝑓𝑑𝑏 (
𝑂2

𝐾0 + 𝑂2
)𝑋𝑎

− [1 − 𝑘1 − 𝑘𝐸𝑃𝑆 − 𝑌𝑠(1 − 𝑘1 − 𝑘𝐸𝑃𝑆)]𝑟𝑠𝑋𝑎

− (1 − 𝑌𝑝) (
𝑞̂𝑈𝐴𝑃𝑈𝐴𝑃

𝐾𝑈𝐴𝑃 + 𝑈𝐴𝑃
) (

𝑂2
𝐾0 + 𝑂2

)𝑋𝑎

− (1 − 𝑌𝑝) (
𝑞̂𝐵𝐴𝑃𝐵𝐴𝑃

𝐾𝐵𝐴𝑃 + 𝐵𝐴𝑃
) (

𝑂2
𝐾0 + 𝑂2

)𝑋𝑎

+
𝑄𝑂2

0

𝑉
−
𝑄𝑂2
𝑉

+ 𝑅𝑎𝑐𝑐 

 

In order to quantify the parameters in the model at steady state, pervious study has 

built another model based on the non-steady state mass balance equations in Laspidou’s 

paper (Kiser, Oppenheimer et al. 2010). Kiser’s model was made by discretizing the set 

of non-steady state mass balance equations and then using a small time step and constant 

input to solve the equations until the results reach steady-state values. The author had 

also developed a model to represent the performance of the CAS reactor by using the 

same discretization method (Kiser 2011). My model has adopted the CAS model from 

Kiser’s paper to predict ENMs removal efficiency by the CAS reactor. Moreover, I added 

Newton-Raphson method as numerical method to predict ENMs removal by the CAS 

process based on non-linear Freundlich isotherms. I also studied the kinetics of the CAS 

reactor to determine the change of performance during the change of operational 

condition, and I studied the removal efficiency of ENMs by the CAS reactor before it 

reaches steady state. 
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5.2.2 Freundlich Isotherm 

The removal of ENMs of wastewater biomass is mainly through adsorption or 

aggregation process. In order to quantify the adsorption efficiency of ENMs by biomass, 

the Freundlich isotherm is applied in the model. The Freundlich isotherm is applicable for 

non-ideal heterogeneous sorption (Freundlich 1906). Hence, it is able to represent the 

adsorption process of ENMs to complex components of wastewater. The typical form of 

the Freundlich isotherm can be represented as Eq. (5.1): 

                                                         𝑞𝐴 = 𝐾𝐶𝐴
1/𝑛

                                                    (5.1) 

Where qA is the mass of ENMs that is adsorbed by per unit mass of biomass (mg 

ENM/g biomass), CA is the concentration of ENMs in the liquid phase after the 

adsorption experiment (mg ENM/L). K is the adsorption capacity parameter (mg ENM/g 

biomass)(L/mg ENM)1/n, and 1/n is the unitless adsorption intensity parameter. The 

Freundlich isotherm is often plotted on log scale in linear form for the convenience of 

observation. The linear form of the Freundlich isotherm can be represented as Eq. (5.2).                                                                                                                

                                          log(𝑞𝐴) = log(𝐾) +
1

𝑛
log⁡(𝐶𝐴)                                      (5.2) 

When the adsorption intensity parameter is approximately 1, the adsorption 

process can be considered as linear. If the adsorption intensity parameter does not 

approach 1, the adsorption process must be considered as nonlinear.  

4.2.3 Mass Balance of Flow in CAS Model 

In the CAS model, the mass of adsorbed ENMs per unit time can be represented 

as Eq. (5.3). 

                                                       𝑀 = 𝐾𝐶𝐴
1/𝑛𝑋𝑣𝑄                                               (5.3) 
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Where Xv is the total suspended solids (TSS) concentration (mg TSS/L) of 

activated sludge, and Q is the CAS reactor influent flow rate (L/d). In general terms, 

assuming sorption is the only removal mechanism, the mass balance of flow in the CAS 

model can be represented as Eq. (5.4): 

                                 𝑄0𝐶0 = 𝐾𝐶𝐴
1/𝑛(𝑋𝑣

𝑒𝑄𝑒 + 𝑋𝑣
𝑤𝑄𝑤) + 𝐶𝐴𝑄𝑒 + 𝐶𝐴𝑄𝑤                 (5.4) 

Where Q0 is the influent flow rate of the CAS reactor (L/d), C0 is the influent 

ENMs concentration (mg ENM/L). 𝑋𝑣
𝑒 is the effluent biomass concentration of the 

second clarifier (mg biomass/L), and Qe is the effluent flow rate of the second clarifier 

(L/d). 𝑋𝑣
𝑤 is the biomass concentration in the waste stream (mg biomass/L), and Qw is the 

flow rate of waste stream (L/d). It is essential to show the mass balance of ENM in order 

to justify the result effluent ENM concentration of the model. An example mass balance 

of ENM is included in the appendix.  

To solve this equation and get the result of CA, the mass balance equation can be 

rearranged as Eq. (5.5): 

                                              𝐶𝐴 =
𝑄0𝐶0−𝐾𝐶𝐴

1/𝑛(𝑋𝑣
𝑒𝑄𝑒+𝑋𝑣

𝑤𝑄𝑤)

𝑄𝑒+𝑄𝑤
                                     (5.5) 

An iterative numerical approach is required to solve this equation. Also, this 

iterative numerical approach should ensure convergence on roots. Newton-Raphson 

method is qualified for both requirements, and the method is applied into the model. 

The effluent concentration of ENM is represented as Eq. (5.6), which include the 

ENM in the solid phase and liquid phase of effluent. 

                    𝐸𝑁𝑀⁡𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡⁡𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐶𝐴𝑄𝑒 + 𝐾𝐶𝐴
1/𝑛𝑋𝑣

𝑒𝑄𝑒             (5.6) 
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5.2.4 Newton-Raphson Method 

The Newton-Raphson method is a root-finding algorithm that uses the first two 

terms of the Taylor series of a function in the vicinity of a suspected root. The Newton-

Raphson method is also known as Newton’s iteration, and it can be applied to computer 

programs by iteration to find the root. The equation for iteration can be represented as 

Eq.(5.7): 

                                                     𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
                                              (5.7) 

In this model, the function f(CA) is represented as Eq. (5.8): 

                                        𝑓(𝐶𝐴) =
𝑄0𝐶0−𝐾𝐶𝐴

1/𝑛(𝑋𝑣
𝑒𝑄𝑒+𝑋𝑣

𝑤𝑄𝑤)

𝑄𝑒+𝑄𝑤
− 𝐶𝐴                            (5.8) 

Where f’(CA) is represented as Eq (5.9) 

⁡𝑓′(𝐶𝐴) =
1

𝑛
(−𝐾)𝐶𝐴

(
1
𝑛−1)(𝑋𝑣

𝑒𝑄𝑒+𝑋𝑣
𝑤𝑄𝑤)

𝑄𝑒+𝑄𝑤
− 1                         (5.9) 

The iteration process starts off with initial value of x0, which is CA0 in this case. 

Take x0 into Eq.(5.7) to get the answer x1 which is closer to the root. Then x1 is taken into 

the equation in order to get a closer answer to the root as x2. The process repeats until the 

change of answer is less than 1%, which means the answer is in the acceptable range of 

error.  This method usually converges and it is much faster to perform when been applied 

to computer program. Hence, after it is coded into the model, it becomes the suitable 

iterative numerical method to predict ENMs effluent concentration. 

5.2.5 Freundlich Isotherm Database 

A number of studies have determined the removal efficiency of different kinds of 

ENMs of wastewater by different quantification methods. I built a database from data of 

these studies to build isotherms to represent the removal efficiency of ENMs of biomass. 
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The database include Freundlich isotherm adsorption capacity parameter K, adsorption 

intensity parameter 1/n for each ENMs. For those studies that have already made 

isotherms in the articles, the isotherms are directly put into this database. For those 

studies that have not made isotherms, the data of initial influent concentration of ENMs 

to WWTP or the CAS process, effluent concentration of ENMs, concentration of  ENMs 

in the sludge, total suspended solid (TSS), volatile suspended solid (VSS), removal 

efficiency are extracted from these papers, then isotherms are built based on these 

information.  Information of the characters of ENMs including particle diameter, coating 

material, zeta potential are also included in the database, if there is any. The pH value of 

reaction solution is also provided in the database. The database is shown as Table 5. 

 



  53 
 



  54 
 



  55 



  56 

The data on ENMs removal efficiency of biomass in the database are the removal 

efficiencies that were reported by the authors of these papers. Most papers evaluated the 

removal efficiency of ENMs by one specific biomass concentration. The relationship of 

ENMs removal and biomass concentration is not linear, thus it is not possible to predict 

ENMs removal efficiency by different biomass concentration base on experimental data 

from these papers. The CAS model is applied to predict the removal efficiency of ENMs 

by WWTP under different situation.  

5.2.6 Model strategy 

The model is developed to simulate ENMs removal efficiency by the CAS reactor 

in typical size WWTP. The parameters of the WWTP follow general design parameters 

of WWTP, which are listed in Table 6. The influent flow is designed based on the 

capacity of City of Phoenix 91st Avenue Wastewater Treatment Plant with a treatment 

capacity of 230 MGD, which is about 867,000,000 L/d. Solids retention time (SRT) is the 

key to design the CAS reactor. SRT can affect the effluent substrate concentration, the 

effluent contaminant concentration, the volatile suspended solids concentration and the 

active biological sludge production rate. Hence, I set the SRT in applicable range from 4 

days to 20 days to determine its effect on ENMs removal efficiency. Another important 

factor is the ratio of SRT to hydraulic retention time (HRT), which is also known as the 

solids-concentration ratio. Higher solids-concentration ratio means the CAS reactor can 

achieve higher efficiency of substrate removal with smaller reactor volume. The range of 

solids-concentration ratio is from 10 to 50. In general, the effluent flow of waste stream is 

just a few percent of the influent flow. Biomass concentration in the effluent of second 

clarifier is assumed to be 1% of the biomass concentration in the aeration tank. 
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Table 6. Design Parameters of the CAS Model 

Parameter Value Units Description 

Q0 867,000,000 L/d Influent flow into the CAS reactor 

V 370,000,000 L Volume of the aeration tank 

θx 4 to 20 d SRT 

S0 400 to 1,000 mg COD/L Influent COD concentration 

 

The range of ENMs concentrations should be able to represent the realistic 

contaminant concentration of ENMs in wastewater. According to the review of analytical 

studies of ENMs, the ENMs concentrations are set in the range from 10 µg/L to 1,000 

µg/L (Gottschalk, Sun et al. 2013).  

The CAS model predicts ENMs effluent concentrations from the CAS reactor 

under four scenarios. The first scenario simulates regular operation condition of the CAS 

reactor, with SRT value of 5 days and ENMs influent concentration of 10 µg/L. This 

scenario represented the removal capability of ENMs by the CAS reactor under general 

operational performance. The second scenario sets the SRT value to 20 days and ENMs 

influent concentration to 10 µg/L. It represents the removal efficiency when SRT is very 

high and leads to low biomass growth rate. The third scenario sets influent COD 

concentration to 1,000 mg COD/L, and sets ENMs influent concentration to 10 µg/L. It 

can determine the ENMs removal efficiency when the CAS reactor is under the influence 

of high COD influent. The fourth scenario simulates worst case scenario with low SRT as 

4 days, and extremely high ENMs influent concentration as 1,000 µg/L. This scenario 

provides information about the CAS reactor’s performance under extreme pressure. Table 

7 shows the parameters data of these four scenarios.  
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Table 7. Parameters of CAS model under four different scenarios 

Scenarios Influent ENMs 

Concentration 

(µg/L) 

Influent COD 

Concentration 

(mg COD/L) 

SRT (d) SRT/HRT 

ratio 

Regular 10 400 5 12.5 

High SRT 10 400 20 50 

High COD 10 1,000 5 12.5 

Worst Case 1,000 400 4 10 

 

5.3  Results 

5.3.1 Kinetic Study of the CAS Model 

The CAS reactor is a dynamic system with microorganisms. When the operational 

conditions change, it will take time for the microorganisms to accommodate to the new 

conditions. During this period, parameters such as TSS and effluent COD will change 

and eventually the parameters will reach a steady state. It is time consuming for 

researchers to determine the trend and exact period of this accommodation process. 

However, it becomes very convenient to use a model to simulate this accommodation 

process. The model also helps researchers to determine the ENMs removal efficiency 

during the accommodation process. Figure 11 shows the change of TSS and effluent 

COD of the CAS reactor when the influent COD change from 400 mg COD/L to 1,000 

mg COD/L at the beginning, and change from 1,000 mg COD/L back to 400 mg COD/L 

at day 30. The change of TSS mostly happens in the first 10 days after the change of 

influent COD, then reaches a steady state with less than 5% fluctuation after day 11. The 

change of effluent COD happens mostly in the first 2 days, and reaches a steady state 
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with less than 5% fluctuation from the third day. The trends of change of TSS and 

effluent COD are similar during day 30 to day 60.  

 

Figure 11. Change of TSS and effluent COD of the CAS reactor when influent COD 

change from 400 mg COD/L to 1,000 mg COD/L at the beginning, and the influent 

COD change from 1,000 COD/L back to 400 mg COD/L at day 30. 

 

5.3.2 Modeled ENMs Effluent Concentration 

The CAS model runs under the four scenarios. To exclude potential interference 

to the result, the results of ENMs effluent concentration are calculated separately. The 

CAS model has reached a steady state for all scenarios before the calculation of effluent 

ENMs concentration. In the general scenario, the value of TSS in the CAS reactor is 

around 2,000 mg TSS/L at steady state. In the high SRT scenario, the TSS value is 3,300 

mg TSS/L. It shows that higher SRT leads to higher TSS in the CAS reactor. In the high 

COD scenario, the TSS value is 5,200 mg TSS/L. Thus, higher influent COD leads to 

higher TSS. In the worst case scenario, the TSS value is 1,700 mg TSS/L, which is the 
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lowest TSS value in the four scenarios. The effluent concentrations of ENMs under the 

four scenarios are shown as Figure 12. 

 

Figure 12. Modeled effluent concentration of ENMs under four scenarios 

 

Under the four different scenarios, the effluent concentrations of ENMs are in the 

range of 1.19 µg/L to 984 µg/L. In the general scenario, which SRT is 5 days and influent 

ENMs concentration is 10 µg/L, 10 out of 17 ENMs have effluent concentration lower 

than 5 µg/L. Only 2 kinds of ENMs have effluent concentration higher than 9 µg/L. It 

indicates most kinds of ENMs can be well removed by the CAS process under general 

conditions. 

In the high SRT scenario, which SRT equals 20 days, and ENMs influent 

concentration is 10 µg/L, the effluent concentrations of ENMs are higher than those in 

general scenario. It indicates that a higher SRT is can decrease ENMs removal efficiency. 
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The suggested range of SRT for general operation is 4 to 10 days, so in this scenario the 

SRT value is higher than general operation range. Thus, this scenario is not preferred in 

realistic operating condition because it will decrease the removal efficiency of ENMs. If 

the CAS reactor keeps a SRT value of 20 days, the percentage of nitrifying bacteria will 

increase and will have a very large oxygen demand that increases aeration rate and 

effluent COD.  

In the high influent COD scenario which SRT is 5 days, and the influent COD 

concentration is 1,000 mg COD/L. The ENMs removal efficiency is higher than general 

scenario, 12 out of 17 kinds of ENMs have effluent concentration lower than 5 µg/L. 

Only 2 kinds of ENM have effluent concentration higher than 9 µg/L. High influent COD 

increases the biomass concentration in the CAS reactor, thus increases the ENMs 

removal. However, high influent COD also increase effluent COD concentration, which 

is not preferred in wastewater treatment.  

In the worst case scenario which SRT is 4 days and influent concentration of 

ENMs is 1,000 µg/L, the effluent concentration of ENMs is in highest range of the four 

scenarios. The removal of ENM under worst case scenario does not always have the same 

trend as the removal of ENM under general scenario. For example, the removal of 

graphene oxide in the worst case scenario is much lower than in general scenario. It is 

because the importance of adsorption capacity parameter (K) will increase when the 

influent ENM concentration is higher. For graphene oxide, the adsorption capacity 

parameter is low, so the removal of graphene oxide under worst case scenario is lower. 

However, the worst case scenario sets the influent concentration higher than realistic 

situation, even if the effluent ENMs concentration is 100 µg/L, it still has 90% removal. 
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Moreover, the situation is unlikely to happen when influent ENMs concentration is 

around 1,000 µg/L. Currently most of the ENMs concentration in surface water is in the 

range of 1x10-4 µg/L to 100 µg/L (Gottschalk, Sun et al. 2013). If the application of 

ENMs keeps increasing in the future, it is possible that the concentration of ENMs in the 

surface water will increase to 1,000 µg/L. Until then, traditional treatment includes the 

CAS reactor in WWTP can still serve as capable barriers to prevent ENMs pollution to 

the environment. 

5.3.3 Modeled ENMs Removal Efficiency 

The modeled removal efficiency of different ENMs represents the percentage 

removal of ENMs by the CAS reactor under the four scenarios. The result shows 17 out 

of 17 kinds of ENMs have more than 50% removal from the CAS process under the 

general scenario. However, removal efficiency can be lower than 1% for SiO2-FITC. It 

means the removal efficiency of ENMs of the CAS process can be significantly different 

if ENMs have different characters. Characters of ENMs include but not limit to particle 

size, coating, zeta potential, surface charge and collision rate. However, no study has 

found quantitative relationships between ENMs properties and the removal efficiency of 

ENMs in WWTP until now. 

Different studies conduct the ENMs experiments by using activated sludge at 

different concentration. Some studies use as low as 50 mg/L, and others use as high as 

3,000 mg/L. From the database, it is clear that the concentration of activated sludge in the 

CAS reactor will affect the ENMs removal significantly. In general, higher biomass 

concentrations will lead to a higher removal of ENMs. With higher biomass 

concentration, there is increased possibility of classical colloidal interactions (i.e. 
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aggregation) and chemical interaction (i.e. sorption) to occur (Westerhoff, Kiser et al. 

2013). However, ENMs removal efficiency and activated sludge concentration do not 

have a linear relationship, so it is impossible to predict ENMs removal efficiency under 

different activated sludge concentration without the model.  

5.3.4 Relationship of Freundlich Isotherm Parameters and ENMs Removal 

Efficiency 

Freundlich isotherm can represent the adsorption capability of different kinds of 

absorbates to absorbents. In this model, Freundlich isotherms are established for all 

ENMs. The model also predicts the ENMs removal efficiency based on the isotherms. 

Hence, Figure 13 shows the relationship of Freundlich adsorption capacity parameter, 

intensity parameter and ENMs removal efficiency under the general scenario.  
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Figure 13. The relationship of Freundlich adsorption capacity parameter (K, (mg 

ENM/g biomass)(L/mg ENM)1/n), intensity parameter (1/n, Unitless) and ENMs 

removal efficiency under general scenario (SRT=5d, COD=400 mg/L, C0=10 μg/L) 

 

When the adsorption capacity parameter (K) is the same, higher adsorption 

intensity parameter (1/n) means lower ENMs removal efficiency. Higher adsorption 

intensity parameter indicates unfavorable adsorption, and lower adsorption intensity 

parameter indicates favorable adsorption. It means unfavorable adsorption requires higher 

activated sludge concentration to reach ENMs removal than favorable adsorption. When 

the adsorption intensity parameter is the same, higher adsorption capacity means higher 

ENMs removal efficiency. Adsorption capacity indicates the capability of unit mass of 

absorbent to adsorb unit mass of absorbate, so ENMs with higher adsorption capacity 

requires less mass activated sludge to reach the same ENMs removal efficiency as the 

low adsorption capacity ones. 
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5.3.5 Kinetic Study of ENM Removal of the CAS Model 

The CAS model is powerful when it comes to kinetic study of the CAS process. It is 

very convenient and can save researchers many time by running the program instead of 

running an experiment for a long time. It can predict the change of biomass 

concentration, and the change of ENM removal when changing the influent COD.  

In this scenario, a kind of ENM is applied to the CAS model with determined 

adsorption capacity parameter (K) as 10 (mg ENM/g biomass)(L/mg ENM)1/n, and the 

intensity parameter (1/n) as 1. The SRT is 5 days, and HRT is about 10 hours. The 

influent COD started at 1,000 mg/L, and then changed to 400 mg/L at day 60, then 

changed to 100 mg/L at day 220 and changed back to 400 mg/L at day 280. The influent 

ENM concentration started at 0.5 mg/L, and then changed to 0.05 mg/L at day 100. 

Figure 14 shows the change of biomass concentration had effluent ENM concentration 

under this scenario. 
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Figure 14. The kinetic study result of (a) change of biomass concentration, (b) 

effluent ENM concentration by the change of influent COD concentration and 

influent ENM concentration 

 

The biomass concentration reached steady state after 10 days of change of influent 

COD. When the influent COD changed from 1,000 mg/L to 400 mg/L, the biomass 

concentration changed from 5,000 mg/L to 2,000 mg/L. When the influent COD changed 

from 400 mg/L to 100 mg/L, the biomass concentration changed from 2,000 mg/L to 500 

mg/L. This shows the biomass concentration has positive correlation with influent COD. 

The effluent ENM concentration decreases as the influent COD increases, because 

the biomass concentration increases as the influent COD increases. When influent COD 

changed from 1,000 mg/L to 400 mg/L at day 60, the effluent ENM concentration 

changed from 0.143 mg/L to 0.219 mg/L. Then the influent ENM changed from 0.5 mg/L 

to 0.05 mg/L at day 100, which caused the change of effluent ENM from 0.219 mg/L to 

0.022 mg/L. Then the influent COD changed from 400 mg/L to 100 mg/L at day 220, the 

effluent ENM changed from 0.022 mg/L to 0.037 mg/L. Finally, when the influent COD 

changed from 100 mg/L to 400 mg/L at day 280, the effluent ENM concentration 
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changed from 0.037 mg/L to 0.022 mg/L. This result shows the influent COD have 

significant influence on the ENM removal rate. 

5.4  Conclusion 

Modeling result of effluent ENMs concentration of the CAS process showed 17 

out of 33 ENMs have effluent concentration lower than 5 µg/L. Only 3 kinds of ENMs 

have effluent concentration higher than 9 µg/L. It showed that traditional WWTP process 

include the CAS process is able to removal many kinds of ENMs with high efficiency. 

The CAS model reached a steady state 30 days after changing influent COD from 400 

mg/L to 1,000 mg/L. The change of model performance which include TSS and effluent 

COD happened mainly in the first 10 days. The removal of ENMs was related with TSS 

value of the CAS model. 

The database summarized analytical work on quantifying ENMs removal by 

wastewater sludge. However, many studies are not nano-specific when it comes to 

quantifying ENMs concentration. The results of these studies also include particles which 

has larger diameter than nanoparticles, so the ENMs concentration should be lower than 

the results. Hence, it will affect the reliability of the ENMs removal efficiency by the 

CAS process. The model can only predict ENMs removal efficiency by the CAS process, 

which means it does not consider the attribution of other treatment process in the WWTP 

such as primary and tertiary treatment processes. The overall ENMs removal efficiency 

should increase if these treatment processes have been considered. Future works can 

input the data of ENMs removal by primary and tertiary treatment processes into the 

database. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

This chapter includes summary and conclusions of each chapter, followed by 

recommendations about future works. 

The objective of chapter 3 is to quantitatively determine the removal of pristine 

and oxidized MWCNTs (O-MWCNTs) GO, and FLG from wastewater into the 

wastewater biomass. Results and conclusions of this chapter include: 

• Quantification of  GO and MWCNTs was determined by UV-Vis 

spectrophotometry, quantification of FLG was determined by programmable thermal 

analysis (PTA), 

• At least 96% of pristine and O-MWCNTs were removed from the water phase 

through aggregation and 30-min settling in presence or absence of biomass with an initial 

MWCNT concentration of 25 mg/L.  

• 65% of GO was removed with biomass concentration at or above 1,000 mg/L as 

total suspended solids (TSS) with the initial GO concentration of 25 mg/L. 

•The removal of FLG at a biomass concentration of 50 mg TSS/L showed 16% 

removal of FLG with initial concentration of 1 mg/L. The current detection method 

limited the accessibility of using samples with higher biomass concentration. 

•Majority of carbonaceous NMs entering into WWTPs would associate with 

biomass and be removed from the water phase. 

The objective of chapter 4 is to quantitatively determine the removal of Tween™ 

20 Ag ENM by wastewater biomass. The results and conclusions are: 



  69 

•The removal efficiency of Tween™ 20 Ag ENM was from 11% to 92% at initial 

Ag ENM concentration from 970 µg/L to 2,600 µg/L with biomass concentration from 

0.5 g/L to 3 g/L. 

•WWTP with wastewater biomass concentration in the range of 2,000 mg/L to 

5,000 mg/L can reach at least 50% removal of Tween™ 20 Ag ENM. 

The objective of chapter 5 is to build a non-linear solids-to-liquid ratio 

distribution model to quantitatively evaluate the concentration of ENMs in the effluent of 

a CAS system based upon changes in influent COD, SRT, and initial ENMs 

concentration after primary sedimentation. The results and conclusions of this chapter 

are: 

•Modeling result of effluent ENMs concentration of the CAS process shows 10 

out of 17 ENMs have effluent concentration lower than 5 µg/L. Only 2 kinds of ENMs 

have effluent concentration higher than 9 µg/L. 

•The change of TSS mostly happens in the first 10 days after the change of 

influent COD, then reaches a steady state with less than 5% fluctuation after day 11. The 

change of effluent COD happens mostly in the first 2 days, and reaches a steady state 

with less than 5% fluctuation from the third day.  

•The CAS model can predict ENMs effluent concentration from the CAS process 

in different operational conditions, so it is adaptable to WWTPs in a wide range of 

operation circumstances. The database includes literature-reported experimental data of 

the removal efficiency of ENMs by wastewater, which can be the foundation of database 

of ENMs contamination in sewage through WWTP. 
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Future work can include quantitative study of the removal of other kinds of ENMs 

from WWTP by wastewater biomass if it is necessary to predict the removal of other 

kinds of ENMs by WWTP. Data of ENMs removal by primary and tertiary treatment in 

WWTP can be included in the database in order to present a comprehensive 

understanding of ENMs removal by WWTP. The result of the model can help companies 

to make decisions to meet the regulated emission standard of ENMs in the future. 
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THE ESTABLISHMENT OF DATABASE OF PARAMETERS OF THE NON-

LINEAR SOLID TO LIQUID DISTRIBUTION OF ENM  
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  The parameters of the non-linear solid to liquid distribution of ENMs are critical 

for the model to predict the effluent ENM concentration. The parameters include capacity 

parameter (K) and intensity parameter (1/n). Each kind of ENMs in the database has 

unique parameters to represent the characteristic of solid to liquid distribution. Some 

published papers have included determined parameters of ENMs, so the parameters are 

included in the database. Others do not have the parameters, so the data of the removal 

efficiency, biomass concentration and initial ENMs concentration are included in Table 

8, then isotherms are built based on these data. 

Table 8. Removal efficiency of ENMs by different concentration of biomass, with 

different initial concentration of ENMs. 

ENM Experiment 

ENM 

concentration 

(mg/L) 

removal 

% 

Experiment 

Biomass 

Concentratio

n (g/L) 

Have 

Isotherm in 

Original 

Paper 

Reference 

AgNP(A) 0.06 to 0.49 99 N/A Yes Benn et al. 2007 

CeO2(A) 100 95±1 3 No Limbach et al. 2008 

SiO2(A) 2470 99 0.293 No Jarvie et al. 2009 

TiO2(A) 0.1 to 3 99.9 N/A Yes Kiser et al. 2009 

SiO2-FITC 1 to 50 21±4 0.4 Yes Kiser et al. 2010 

AgNP(B) 0.6 96±1 0.05 No Kiser et al. 2010 

aq-nC60(A) 4 88±8 0.4 No Kiser et al. 2010 

f-Ag 0.5 38±2 0.4 No Kiser et al. 2010 

fn-Ag 0.5 to 1.5 88±4 1.8±0.2 No Wang et al. 2011 

TiO2(B) 0.5 to 2.0 97±1 1.3±0.2 No Wang et al. 2011 

C60(A) 1.8 to 2.2 96 2±0.2 No Wang et al. 2011 

AgNP(C) 0.13 to 2.4 95 3 No Kaegi et al. 2011 

PVA-AgNP 40 91 3 No Yang et al. 2011 

TiO2(C) 0.18 to 1.23 98.3 2 No Westerhoff et al. 

2011 

CeO2(B) 55 98.5 0.248±0.05 No Gomez-Rivera et al. 

2012 

Car-Ag 2.1±0.05 60±4 0.8 No Kiser et al. 2012 

Cit-Ag 0.4 38 0.8 No Kiser et al. 2012 

PVP-Ag 0.1 48 0.8 No Kiser et al. 2012 
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ENM Experiment 

ENM 

concentration 

(mg/L) 

removal 

% 

Experiment 

Biomass 

Concentratio

n (g/L) 

Have 

Isotherm in 

Original 

Paper 

Reference 

GA-Ag 0.5 62 0.8 No Kiser et al. 2012 

TA-Au 2.2±0.3 90±2 0.8 No Kiser et al. 2012 

PVP-Au 0.9 52±25 0.8 No Kiser et al. 2012 

Car-PS 2 91±1 0.8 No Kiser et al. 2012 

Sulf-PS 2 92±2 0.8 No Kiser et al. 2012 

aq-nC60(B) 3.4±0.04 92±1 0.8 No Kiser et al. 2012 

Al2O3 0.5 to 200 73.4 N/A Yes Rottman et al. 2012 

CeO2(C) 0.5 to 200 82.5 N/A Yes Rottman et al. 2012 

SiO2(B) 0.5 to 200 27.7 N/A Yes Rottman et al. 2012 

C60(B) 0.2 96 0.279±0.025 No Wang et al. 2013 

TiO2-P25 1 to 10 95 2 No Gartiser et al. 2013 

FLG 1 72.2 2 Yes Yang et al. 2015 

GO 25 94.2 2 Yes Yang et al. 2015 

nC60 0.07 to 2 99.5 2 Yes Yang et al. 2015 

Tween-20 

Ag 

0.97 to 2.6 99.9 2 Yes Original 

 

For the ENMs which do not have isotherm in the original paper, isotherms were 

made based upon the removal rate, initial ENM concentration and biomass concentration. 

All isotherms were included in Figure 15. 
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Figure 15. ENM non-linear solid to liquid distribution isotherms 
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APPENDIX B 

MASS BALANCE OF ENM OF THE CAS MODEL 
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In order to get the result of the model, the iteration start with an initial value X0. To 

prove the iteration process is able to get the final result of effluent ENM concentration, 

the iteration process of ENM is illustrated here. 

For TiO2 (A), the adsorption capacity parameter (K) is 34.32 (mg ENM/g 

biomass)(L/mg ENM)1/n, the intensity parameter (1/n) is 0.48. The model is under general 

scenario, which means SRT is 5 days, influent COD is 400 mg/L. Biomass concentration 

in the effluent is 0.02 g/L, and is 10 g/L in the waste stream. The initial ENM 

concentration C0 is 1 mg/L. The influent flow rate (Q0) is 8.67×108 L, the effluent flow 

rate (Qeff) is 8.54×108 L, the waste stream flowrate (Qwas) is 1.3×107 L. Set the initial 

value of X0 as 0.1C0, the iteration result is shown as Table 9. 

Table 9. Iteration result of CAS model with initial value of 0.1C0 

Iteration # M0 (mg/d) Ceff (mg/L) Meff (mg/d) Mwas (mg/d) 

Difference 

of Mass 

Balance  

1 8.67×108 0.0002 1.00×107 7.44×107 90% 

2 8.67×108 0.0041 4.54×107 3.17×108 58% 

3 8.67×108 0.0159 9.38×107 6.08×108 19% 

4 8.67×108 0.0235 1.17×108 7.34×108 2% 

5 8.67×108 0.0244 1.19×108 7.47×108 0% 

6 8.67×108 0.0244 1.19×108 7.47×108 0% 

 

 

M0 is the mass of ENM in the influent, Meff and Mwas are mass of ENM in the 

effluent and waste stream, respectively. Qwas is the waste stream flow rate. The difference 

of mass balance is (M0-Meff-Mwas)/M0 ,which means the difference of Eq (5.4) on both 

side. Smaller difference means the model result is closer to mass balance. Table n. shows 

the iteration took six steps to get the result of the model, which have no difference 

between each side of Eq (5.4).  
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Initial value X0 is critical for the iteration, it determines the number of steps that are 

needed for the iteration process to find an answer. If the X0 value changes from 0.1C0 to 

0.01 C0, the iteration result is shown as Table 10. The iteration took three steps to get the 

result of the model. There is no difference between each side of the mass balance, so the 

result can represent the effluent ENM concentration. 

Table 10. Iteration result of CAS model with initial value of 0.01C0 

Iteration # M0 (mg/d) Ceff (mg/L) Meff (mg/d) Mwas (mg/d) 

Difference 

of Mass 

Balance  

1 8.67×108 0.02 1.07×108 6.79×108 9% 

2 8.67×108 0.0242 1.19×108 7.44×108 0% 

3 8.67×108 0.0244 1.19×108 7.47×108 0% 
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APPENDIX C 

FORTRAN CODES FOR CONVENTIONAL ACTIVATED SLUDGE MODEL 
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The FORTRAN codes include CAS model input parameters and CAS model main 

code. The CAS model is built and optimized bases upon previous paper. The codes that 

are bolded are elements created or modified for optimization of different scenarios.  

 

CAS Model Input Parameters 

$CASfparam 

 

  Q0     = 867000000.0, 

  S0     = 400.0, 

  Xa0    = 0.0, 

  Xres0  = 50.0, 

  EPS0   = 0.0, 

  UAP0   = 0.0, 

  BAPS0  = 0.0, 

  BAPL0  = 0.0, 

  O20    = 3.0, 

 

  C0     = 0.05 

  X0     = 0.001 

  Kad    = 10 

  a      = 1 

 

  qS       = 10.0, 

  qD       = 1.5, 

  qBAP     = 0.07, 

  qUAP     = 1.27, 

  YS       = 0.4, 

  YP       = 0.45, 

  KBAP     = 85.0, 

  KS       = 10.0, 

  KD       = 0.8, 

  KUAP     = 100.0, 

  KO       = 0.5, 

  b        = 0.1, 

  fd       = 0.8, 

  k1       = 0.05, 

  kEPS     = 0.18, 

  khyd     = 0.17, 

  xBAPS    = 0.35, 

  kLa      = 2000.0, 
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  V        = 370000000, 

  d        = 5.0, 

  thetax   = 5.0, 

  e        = 0.8, 

 

  Xv_eff   = 20, 

  Xv_rec   = 10000, 

 

  Si       = 10.0, 

  Xai      = 2000.0, 

  Xresi    = 100.0, 

  EPSi     = 100.0, 

  UAPi     = 1.0, 

  BAPSi    = 50.0, 

  BAPLi    = 50.0, 

  O2i      = 3.0, 

  Qwi      = 12700, 

 

  SOTE     = 2.0, 

  c1s      = 8.7, 

  c1       = 2.0, 

  beta     = 0.95, 

  T        = 25.0, 

 

  Ci0    = 0.5, 

  kb    = 9000, 

  Kp    = 0.00006, 

  Hc      = 0.000265, 

  kLac    = 0.1, 

  xsur    = 0.33, 

  p1    = 1.00, 

  n_air  = 0.28, 

  R    = 8.31, 

  R_dry  = 287.05, 

   

  ts       = 1.0, 

  tdmax    = 100, 

 

$end 
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The CAS Model 

 

 

PROGRAM CASf 

 

 

IMPLICIT REAL*8 (a-h,o-z) 

 

REAL*8 Q0,S0,Xa0,Xres0,EPS0,UAP0,BAPS0,BAPL0,ISS,O20, & 

       qS,qBAP,qUAP,YS,YP,KBAP,KS,KUAP,b,fd,k1,kEPS,khyd,xBAPS, & 

       V,d,thetax,e, & 

       Si,Xai,Xresi,EPSi,UAPi,BAPSi,BAPLi,O2i,Qwi, & 

       ts,td,tdmax, & 

      

S_old,Xa_old,Xres_old,EPS_old,UAP_old,BAPS_old,BAPL_old,Xv_old,Qw_old,Qe_ol

d, & 

              

S_new,Xa_new,Xres_new,EPS_new,UAP_new,BAPS_new,BAPL_new,Xv_new,Qw_ne

w,Qe_new, & 

       rs,BAP, & 

 

       thetad,thetah, & 

       Xv,Xv_eff,Xv_rec,XvSS,Xratio, & 

       Xv_is,y_theta,X,XSS,Xg,Xkg, & 

       dXa_dt,dXv_dt,dXSS_dt,dXSS_dt_kg,dXv_dt_biol, & 

       SWR, & 

       N,P, & 

       EffProd,WastProd, & 

       EQ_COD,EQ_BODL,EQ_BOD5,COD_sum,COD_loading, Rem_COD, & 

       O2input,O2output,O2uptake,O2uptake_kg, & 

       SOTE,c1s,c1,beta,T,alpha_KK,FOTE_KK,alpha_C,FOTE_C, & 

       Power_KK,Power_C, & 

        

       Ci0,kb,kb_mg,Kp,Kp_mg,kLac,xsur,Hc,Hc_LL,p1,p2,n_air,R,R_dry,w,Qa, & 
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Qa_L,rho_air,Ci,Rem_Ci,Mass_inf,Mass_eff,Mass_was,Mass_vol,Mass_aer,Mass_sor,M

ass_bio, & 

       Ci_eff,Ci_was,Ci_vol,Ci_aer,Ci_sor,Ci_bio,Ci_sum, &  

       total_time, & 

 

       Qe,Qw,C0,Ce,Xa_eff,Xa_rec,Kad,a,epsilon,x0,x1 

 

REAL*4 t0,KD,KO,kLa 

INTEGER nt,i 

 

NAMELIST/CASfparam/ & 

         Q0,S0,Xa0,Xres0,EPS0,UAP0,BAPS0,BAPL0,O20, & 

         

qS,qD,qBAP,qUAP,YS,YP,KBAP,KS,KD,KUAP,KO,b,fd,k1,kEPS,khyd,xBAPS,kLa, & 

         V,d,thetax,e, & 

  Xv_eff,Xv_rec, &          

         Si,Xai,Xresi,EPSi,UAPi,BAPSi,BAPLi,O2i,Qwi, & 

  SOTE,c1s,c1,beta,T, & 

  Ci0,kb,Kp,Hc,kLac,xsur,p1,n_air,R,R_dry, & 

         ts,tdmax, & 

         C0,X0,Kad,a,Xvad 

 

 

! Start counting runtime 

t0 = SECNDS(0.0) 

 

 

! Read input file 

OPEN(unit=1, file='CASfparam.in', status='old') 

READ(unit=1, nml=CASfparam)  

CLOSE(1) 

 

 

! Derived parameters 

Xres0 = 0.08*S0 

ISS   = 0.05*S0 

 

 

! Time stepping 

td    = ts / (60*60*24)   ! size of time step in days 

nt    = tdmax / td        ! total number of time steps 

 

 

! Initialize time-dependent quantities 
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S_old    = Si 

Xa_old   = Xai 

Xres_old = Xresi 

EPS_old  = EPSi 

UAP_old  = UAPi 

BAPS_old = BAPSi 

BAPL_old = BAPLi 

O2_old   = O2i 

Qw_old  = Qwi 

 

! Iteration criterion 

epsilon = 0.01 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Do the time integration of the differential equations ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

DO i=1,nt 

 

  rs       = qS*S_old/(KS+S_old) 

  BAP      = BAPS_old + BAPL_old 

  Xv_old   = Xa_old + Xres_old + EPS_old 

  Qe_old   = Q0 - Qw_old 

   

  S_new    = S_old + ( -rs*Xa_old + Q0*S0/V - Qe_old*S_old/V - Qw_old*S_old/V ) * 

td 

  Xa_new   = Xa_old + ( YS*rs*(1-k1-kEPS)*Xa_old + 

YP*(qUAP*UAP_old/(KUAP+UAP_old) + qBAP*BAP/(KBAP+BAP))*Xa_old - 

b*Xa_old + & 

   Q0*Xa0/V - Qe_old*(Xa_old*Xv_eff/Xv_old)/V - 

Qw_old*(Xa_old*Xv_rec/Xv_old)/V) * td 

  Xres_new = Xres_old + ( b*(1-fd)*Xa_old + Q0*Xres0/V - 

Qe_old*(Xres_old*Xv_eff/Xv_old)/V - Qw_old*(Xres_old*Xv_rec/Xv_old)/V) * td 

  EPS_new  = EPS_old + ( kEPS*rs*Xa_old - khyd*EPS_old + Q0*EPS0/V - & 

   Qe_old*(EPS_old*Xv_eff/Xv_old)/V - Qw_old*(EPS_old*Xv_rec/Xv_old)/V) * td 

  UAP_new  = UAP_old + ( k1*rs*Xa_old - 

Xa_old*qUAP*UAP_old/(KUAP+UAP_old) + Q0*UAP0/V - Qe_old*UAP_old/V - 

Qw_old*UAP_old/V ) * td 

  BAPS_new = BAPS_old + ( xBAPS*khyd*EPS_old - 

Xa_old*qBAP*BAPS_old/(KBAP+BAPS_old) & 

   + Q0*BAPS0/V - Qe_old*BAPS_old/V - Qw_old*BAPS_old/V ) * td 

  BAPL_new = BAPL_old + ( (1-xBAPS)*khyd*EPS_old - 

Xa_old*qBAP*BAPL_old/(KBAP+BAPL_old) & 

   + Q0*BAPL0/V - Qe_old*BAPL_old/V - Qw_old*BAPL_old/V ) * td 
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  Xv_new   = Xa_new + Xres_new + EPS_new 

  Qw_new   = (Xa_old*V - 

thetax*Qe_old*Xa_old*Xv_eff/Xv_old)/(thetax*Xa_old*Xv_rec/Xv_old) 

  Qe_new   = Q0-Qw_new  

 

  S_old    = S_new 

  Xa_old   = Xa_new 

  Xres_old = Xres_new  

  EPS_old  = EPS_new 

  UAP_old  = UAP_new 

  BAPS_old = BAPS_new 

  BAPL_old = BAPL_new 

  Xv_old   = Xv_new 

  Qw_old   = Qw_new 

  Qe_old   = Qe_new  

 

ENDDO 
 

DO 

  x1=x0-(((Q0*C0 - (Kad*x0**(a))*(0.001*Xv_eff*Qe_new + 

0.001*Xv_rec*Qw_new))/(Qe_new + Qw_new)-x0)/& 

  ((((-Kad)*(0.001*Xv_eff*Qe_new + 0.001*Xv_rec*Qw_new)*a*x0**(a-

1)))/(Qe_new + Qw_new)-1)) 

 

write(6,*) "Root = ", x1 

 

if (abs (x1-x0)/x0 < epsilon ) exit 

 

   x0=x1 

 

END DO 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Calculate final output values ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

! System Hydraulic Detention Time 

thetad = V/Q0         ! days 

thetah = thetad*24    ! hours 

 

 

! Mixed Liquor Volatile Suspended Solids, MLVSS 

Xv   = Xv_new ! mg CODX/L 

XvSS = Xv/1.42  ! mg VSS/L 
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! Ratio of Active to Volatile Suspended Solids 

Xratio = Xa_new/Xv  

 

 

! Estimation of Mixed Liquor Suspended Solids, MLSS 

Xv_is   = Xv * 10/90              ! Inorganic solids of MLVSS (assuming 10 parts inorganics 

per 90 parts organics) (mg COD_X/L) 

y_theta = ISS*thetax/thetad       ! Input inorganic suspended solids (mg COD_X/L) 

X       = Xv + Xv_is + y_theta    ! mg COD_X/L 

XSS     = X / (0.9*1.42)          ! mg SS/L 

Xg      = X / (1000*1.42*0.9)     ! g SS_X/L (assuming VSS = 0.9SS) 

Xkg     = Xg / 1000               ! kg SS_X/L 

 

 

! Effluent and Recycle Components 

Xa_eff   = Xa_new*(Xv_eff/Xv) 

Xres_eff = Xa_new*(Xv_eff/Xv) 

EPS_eff  = EPS_new*(Xv_eff/Xv) 

Xa_rec   = Xa_new*(Xv_rec/Xv) 

Xres_rec = Xres_new*(Xv_rec/Xv) 

EPS_rec  = EPS_new*(Xv_rec/Xv) 

 

 

! Solids Loss Rate 

dXa_dt      = Xa_new * V/thetax             ! mg COD_X/d 

dXv_dt      = Xv * V/thetax      ! mg COD_X/d 

dXSS_dt     = X * V/thetax                      ! mg COD_X/d 

dXSS_dt_kg  = dXSS_dt / 1000000        ! kg COD_X/d 

dXv_dt_biol = dXv_dt - Q0*Xres0         ! mg COD_X/d 

 

 

! Sludge Wasting Rate 

SWR = Qw_new*X*(Xv_rec/Xv)/1000000    ! kg COD_X/d 

 

 

! Nutrient Requirements 

N = dXv_dt_biol * 0.124/Q0    ! mg N/L 

P = dXv_dt_biol * 0.025/Q0    ! mg P/L 

 

 

! Effluent and Wasted EPS, UAP, and BAP 

EffProd  = (EPS_new*Xv_eff/Xv) + UAP_new + BAPS_new + BAPL_new      ! mg 

COD_P/L 
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WastProd = (EPS_new*Xv_eff/Xv) + UAP_new + BAPS_new + BAPL_new    ! mg 

COD_P/L 

 

 

! Effluent Quality 

EQ_COD      = ISS+ S_new + Xv_eff + UAP_new + BAPS_new + BAPL_new ! mg 

COD/L 

EQ_BODL     = S_new + Xa_eff + UAP_new + BAPS_new + BAPL_new ! mg 

BOD_L/L 

EQ_BOD5     = 0.68*S_new + 0.14*(UAP_new + BAPS_new)   ! mg 

BOD_5/L 

COD_sum     = S0+Xa0+Xres0+EPS0+UAP0+BAPS0+BAPL0+ISS  ! mg 

COD/L 

COD_loading = Q0*COD_sum/(1000*V)                                       ! 

kg/m^3/d 

Rem_COD     = (1-(EQ_COD/COD_sum))*100     ! % 

 

 

! Oxygen Supply Rate Needed 

O2input     = Q0*(O20+COD_sum-ISS)                               ! mg 

02/d 

O2output    = Qe_new*(S_new+Xv_eff+UAP_new+BAPS_new+BAPL_new) + 

Qw_new*(S_new+Xv_rec+UAP_new+BAPS_new+BAPL_new)  ! mg 02/d 

O2uptake    = O2input - O2output                                                                  ! mg O2/d 

O2uptake_kg = O2uptake / 1000000                                                                  ! kg 

O2/d 

 

 

! Field Oxygen Transfer Efficiency 

alpha_KK = EXP(-0.08788*Xg)                                                                  ! kg O2/kWh 

FOTE_KK  = SOTE * 1.035**(T-20) * alpha_KK * (beta*c1s-c1) / 9.2   ! kg O2/kWh 

alpha_C  = EXP(-0.046*Xg)                                                                        ! kg O2/kWh 

FOTE_C   = SOTE * 1.035**(T-20) * alpha_C * (beta*c1s-c1) / 9.2        ! kg O2/kWh 

 

 

! Power Required for Aeration 

Power_KK = O2uptake_kg / (FOTE_KK*24)    ! kW 

Power_C  = O2uptake_kg / (FOTE_C*24)     ! kW 

 

 

! Pollutant Fate 

Hc_LL       = Hc/(0.082054*293/1000)                 ! L 

water/L gas 

Kp_mg      = Kp/(0.9*1000*1.42)     ! L/mg 

COD_P 
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kb_mg      = kb/(0.9*1000*1.42)     ! L/mg COD_P-d 

p2           = ((p1*101330)+(1000*9.8*d))/101330   ! atm 

w            = (29.7*n_air*e*Power_KK)/(R*T*(((p2/p1)**0.283)-1)) ! kg air/s 

rho_air      = (p1*101330)/(R_dry*(T+273))    ! kg/m^3 

Qa           = (w/rho_air)*86400                     !m^3/d 

Qa_L         = Qa*1000                    !L/d 

Ci           = 

(Q0*Ci0)/(Qe_new+Qw_new+(xsur*kLac*V)+(Qa_L*Hc_LL)+(Xv_rec*Kp_mg*Qw_n

ew+Xv_eff*Kp_mg*Qe_new)+(kb_mg*Xa_new*V)) !mg Ci/L 

Rem_Ci       = (1-(Ci/Ci0))*100      ! % 

Mass_inf     = Q0*Ci0      ! mg Ci/d 

Mass_eff     = Qe_new*Ci     ! mg Ci/d 

Mass_was     = Qw_new*Ci     ! mg Ci/d 

Mass_vol     = (kLac*xsur*V*Ci)    ! mg Ci/d 

Mass_aer     = Qa_L*Hc_LL*Ci     ! mg Ci/d 

Mass_sor     = Xv_rec*Ci*Kp_mg*Qw_new+Xv_eff*Ci*Kp_mg*Qe_new !mg 

Ci/d 

Mass_bio     = kb_mg*Xa_new*Ci*V    !mg Ci/d 

Ci_eff       = (Mass_eff/Mass_inf)*100    ! % 

Ci_was       = (Mass_was/Mass_inf)*100   ! % 

Ci_vol       = (Mass_vol/Mass_inf)*100    ! % 

Ci_aer       = (Mass_aer/Mass_inf)*100    ! % 

Ci_sor       = (Mass_sor/Mass_inf)*100    ! % 

Ci_bio       = (Mass_bio/Mass_inf)*100    ! % 

Ci_sum       = Ci_eff+Ci_was+Ci_vol+Ci_aer+Ci_sor+Ci_bio ! % 

 

! Effluent ENM Concentration 

Ce=x1+(Kad*x1**(a))*Xv_eff/1000 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Write outputs to a file ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!! 

OPEN(unit=1, file='output.txt', status='replace') 

WRITE(1,*) EQ_COD 

WRITE(1,*) S_new 

WRITE(1,*) UAP_new 

WRITE(1,*) BAPS_new + BAPL_new 

WRITE(1,*) COD_loading 

WRITE(1,*) Rem_COD 

WRITE(1,*) Xa_new 

WRITE(1,*) Xres_new 

WRITE(1,*) EPS_new 

WRITE(1,*) BAPL_new 

WRITE(1,*) XvSS 

WRITE(1,*) Xv 
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WRITE(1,*) XSS 

WRITE(1,*) X 

WRITE(1,*) Xv/X 

WRITE(1,*) thetah 

WRITE(1,*) SWR 

WRITE(1,*) O2uptake_kg 

WRITE(1,*) FOTE_KK 

WRITE(1,*) alpha_KK 

WRITE(1,*) Power_KK 

WRITE(1,*) Power_KK/Xg 

WRITE(1,*) dXSS_dt 

WRITE(1,*) O2input 

WRITE(1,*) O2output 

WRITE(1,*) O2uptake 

WRITE(1,*) Qe_new 

WRITE(1,*) Qw_new 

WRITE(1,*) Ci            

WRITE(1,*) Rem_Ci       

WRITE(1,*) Mass_inf      

WRITE(1,*) Mass_eff      

WRITE(1,*) Mass_was      

WRITE(1,*) Mass_vol      

WRITE(1,*) Mass_aer      

WRITE(1,*) Mass_sor      

WRITE(1,*) Mass_bio      

WRITE(1,*) Ci_eff       

WRITE(1,*) Ci_was       

WRITE(1,*) Ci_vol       

WRITE(1,*) Ci_aer       

WRITE(1,*) Ci_sor       

WRITE(1,*) Ci_bio       

WRITE(1,*) Ci_sum       

CLOSE(1) 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Might as well print it to the screen too ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

PRINT*,'' 

PRINT*,'EQ_COD = ',EQ_COD 

PRINT*,'S_new = ',S_new 

PRINT*,'Xa_new = ',Xa_new 

PRINT*,'Xres_new = ',Xres_new 

PRINT*,'EPS_new = ',EPS_new 
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PRINT*,'UAP_new = ',UAP_new 

PRINT*,'BAPS_new = ',BAPS_new 

PRINT*,'BAPL_new = ',BAPL_new 

PRINT*,'COD_loading = ',COD_loading 

PRINT*,'(COD_sum-EQ_COD)/COD_sum = ',(COD_sum-EQ_COD)/COD_sum 

PRINT*,'COD_sum',COD_sum 

PRINT*,'Rem_COD',Rem_COD 

PRINT*,'XvSS = ',XvSS 

PRINT*,'Xv = ',Xv 

PRINT*,'XSS = ',XSS 

PRINT*,'X = ',X 

PRINT*,'Xv/X = ',Xv/X 

PRINT*,'SWR = ',SWR 

PRINT*,'O2uptake_kg = ',O2uptake_kg 

PRINT*,'FOTE_KK = ',FOTE_KK 

PRINT*,'alpha_KK = ',alpha_KK 

PRINT*,'Power_KK = ',Power_KK 

PRINT*,'Power_KK/Xg = ',Power_KK/Xg 

PRINT*,'Qe_new = ',Qe_new 

PRINT*,'Qw_new = ',Qw_new 

PRINT*,'Xa_eff = ',Xa_eff 

PRINT*,'Xa_rec = ',Xa_rec 

PRINT*,'Ce liquid =',x1 

PRINT*,'Ce = ',Ce 

PRINT*,'' 

 

 

! Get total runtime 

total_time = SECNDS(t0) 

PRINT*,'' 

PRINT*,'Total time: ', total_time 

PRINT*,'' 

 

 

END 
 

 

 


