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ABSTRACT  
   

Background: Despite the reported improvements in glucose regulation associated 

with flaxseeds (Linum usitatissimum) few clinical trials have been conducted in diabetic 

participants. Objective: To evaluate the efficacy of ground flaxseed consumption at 

attenuating hyperglycemia, dyslipidemia, inflammation, and oxidative stress as compared 

to a control in adults with non-insulin dependent type 2 diabetes (T2D). Design: In a 

randomized parallel arm controlled efficacy trial, participants were asked to consume 

either 28 g/d ground flaxseed or the fiber-matched control (9 g/d ground psyllium husk) 

for 8 weeks. The study included 17 adults (9 male, 8 females; 46±14 y; BMI: 31.4±5.7 

kg/m2) with a diagnosis of T2D ≥ 6 months. Main outcomes measured included:  

glycemic control (HbA1c, fasting plasma glucose, fasting serum insulin, and HOMA-IR), 

lipid profile (total cholesterol, LDL-C, HDL-C, total triglycerides, and calculated VLDL-

C), markers of inflammation and oxidative stress (TNF-alpha, TBARS, and NOx), and 

dietary intake (energy, total fat, total fiber, sodium). Absolute net change for measured 

variables (week 8 values minus baseline values) were compared using Mann-Whitney U 

non-parametric tests, significance was determined at p ≤ 0.05. Results: There were no 

significant changes between groups from baseline to week 8 in any outcome measure of 

nutrient intake, body composition, glucose control, or lipid concentrations. There was a 

modest decrease in TNF-alpha in the flaxseed group as compared to the control (p = 0.06) 

as well as a mild decrease in TBARS in the flaxseed as compared to the control group (p 

= 0.083), though neither were significant. Conclusions: The current study did not detect a 

measurable association between 28 g/d flaxseed consumption for 8 weeks in T2D 
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participants and improvements in glycemic control or lipid profiles. There was a modest, 

albeit insignificant, decrease in markers of inflammation and oxidative stress in the 

flaxseed group as compared to the control, which warrants further study.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

According to the Center for Disease Control (CDC) national diabetes statistics report, in 

2014 alone 29.1 million, or 9.4%, of the adult population in the U.S. had diabetes (CDC, 

2015). In 2012 alone there were 1.7 million newly diagnosed cases of diabetes in persons 

over the age of 20.  Additionally, the American Diabetes Association (ADA) estimated 

that in 2012 37% of U.S. adults aged 20 years or older were considered prediabetic, 

which if left unresolved can progress into type 2 diabetes (T2D). The enormous 

economic burden as a result of the increasing prevalence of diabetes is estimated to be 

$245 billion dollars in both direct and indirect costs with direct costs estimated at $176 

billion and indirect costs, such as disability or missed days of work, approximated at $69 

billion (ADA, 2013). Moreover, 35.7% of the U.S. population is currently obese, which 

is expected to contribute to a rise in individuals diagnosed with T2D. T2D is 

independently associated with an increased risks for cardiovascular diseases (CVD) 

(Taub et al. 2013), which is primarily due to the early development of advanced 

atherosclerotic vascular changes (Naka et al. 2012). The mechanisms underlying the 

association of T2D with vascular dysfunction are considered to be complex. Classical 

cardiovascular risk factors (hypertension, dyslipidemia and smoking) may play a role, 

while diabetes-related parameters such as hyperglycemia and insulin resistance interpose 

increased risk to impaired vascular function. Obesity, and other associated emerging risk 

factors such as inflammation, may also contribute to the impairment of arterial function 
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in T2D (Lowe et al. 2013; Paneni et al. 2014; Theuma and Fonseca, 2003). The relative 

importance of these risk factors in the induction of vascular dysfunction in T2D patients 

has not been well-studied. Prolonged hyperglycemia, elevated blood glucose, is the 

hallmark of diabetes and results in the glycosylation of hemoglobin molecules (HbA1c), 

elevations of which can be used as biomarkers of glycemic control over the prior 2-3 

months. This leads to oxidative stress and inflammation, both of which contribute to the 

development of renal failure, blindness, and cardiovascular disease (Rolo and Palmeira, 

2006). Oxidative stress may also contribute to hypertension by reducing the 

bioavailability of the vasodilator nitric oxide, resulting in impaired endothelium-

dependent vasodilation, which can be reversed with antioxidants (Bajaj and Khan, 2012). 

Additionally, T2D is associated with lipid abnormalities characterized by high 

triglyceride concentrations, reductions in high density lipoprotein-cholesterol (HDL-C) 

concentrations, and increases in low density lipoprotein-cholesterol (LDL-C) 

concentrations. Increases in small, dense proatherogenic LDL-C particles are frequently 

observed in T2D (Lukic et al. 2014). Most of the lipid abnormalities in T2D can be 

explained by reduced action of insulin at the tissue level (Reaven, 2011). Previous 

research has established a link between high concentrations of LDL-C and CVD (Wing 

et al. 2011).  Most patients with diabetes require diet and/or hypoglycemic medications 

to regulate their blood glucose (CDC, 2012) often resulting in little success. Moreover, 

costly hypoglycemic medications are often associated with complications including 

gastrointestinal distress, lactic acidosis and hepatotoxicity (Qaseem et al. 2012). Data has 

also indicated that T2D is a strong predictor of complications associated with 
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hypertension and other cardiovascular disease risk factors. Approximately 67% of T2D 

adults have an average resting blood pressure of ≥ 140 mm Hg (defined as hypertensive) 

(Ferrannini et al. 2012). Therefore, simple and inexpensive dietary strategies for the 

control of diabetes would be welcomed by patients and medical professionals and may 

help to reduce the economic burden related to both direct and indirect costs of this 

devastating illness within the United States as well as globally if widely-implemented.  

Studies have shown that individuals who consume diets high in fibers such as 

psyllium and beta-glucan have decreased oxidative stress and inflammation along with 

improved lipoprotein profiles (Satija and Hu, 2012). While research has focused on the 

health benefits of plant-based fibers such as psyllium at reducing symptoms of T2D and 

cardiovascular disease, to our knowledge, no studies have examined the potential 

therapeutic benefits of flaxseed-derived fiber supplementation in the control of T2D in 

regards to endothelial function and inflammation. Moreover, a comparison of flaxseed-

derived versus pysllium-based fibers on diabetic complications, including cardiovascular 

disease, has not been performed.  

The majority of studies on flaxseeds have focused on the effects of the oil, which 

even at high doses (10g/day) reportedly has no impact on blood glucose, HbA1c, insulin 

concentrations or lipid profiles (Barre et al. 2008). In contrast, a recent study concluded 

that daily supplementation of ground flaxseeds (10g/day) in adults with T2D for just one 

month significantly reduced fasting blood glucose by 19.7%, HbA1c by 15.6%, in 

addition to improvements in lipid regulation (Mani et al. 2011). Moreover, recent 
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research has indicated that 40 g/d of flaxseed meal lead to significant improvements in 

lipid profiles in adult males with hypercholesterolemia (Pan et al. 2007).  

 

 

1.2 Purpose of Study 

The purpose of this pilot study and efficacy trial is to compare the effectiveness of eight 

weeks of 28 g/d ground flaxseed supplemented to an individual’s habitual diet as 

compared to a standardized amount of psyllium fiber (9 g/d) on management of 

symptoms associated with T2D including glucose homeostasis, dyslipidemia, oxidative 

stress, inflammation, and blood pressure in subjects with non-insulin dependent T2D.  

 

1.3 Specific Aims and Hypotheses  

The hypothesis for this study is that there will be no significant difference in participants 

with non-insulin dependent T2D who supplement their normal diet with 28 g/d of ground 

flaxseed versus 9 g/d of psyllium on glycemic regulation, serum lipids, and 

concentrations of inflammatory as well as markers of oxidative stress.  We will test this 

hypothesis through three specific aims. 

 

Specific Aim 1: To compare the effectiveness of daily flaxseed (28 g/d) or psyllium (9 

g/d) supplementation on improvements in acute and chronic glycemic control in adults 

with non-insulin dependent T2D. Hypothesis: Adults with T2D consuming 28g/d of 

ground flaxseeds for 8 weeks will have reduced fasting blood glucose, insulin, HbA1c, 
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and homeostatic model assessment of insulin resistance (HOMA-IR), compared to 

matched subjects consuming 9 g/d pysllium supplementation.  

 

Specific Aim 2: To compare the effectiveness of daily flaxseed (28 g/d) or psyllium (9 

g/d) supplementation on improvement in lipid profiles. Hypothesis: There will be no 

difference in total cholesterol, LDL-C, HDL-C, total triglycerides, VLDL-C, or 

HDL:LDL ratios in adults with T2D consuming 28 g/d of ground flaxseed as compared to 

matched subjects for 8 weeks will have a significantly lower total cholesterol, total 

triglycerides, and LDL-C as well as an improved LDL:HDL ratio as compared to 

matched subjects consuming a supplement with a similar fiber content (9 g/d psyllium 

husk). 

 

Specific Aim 3: To compare the effectiveness of daily flaxseed (28 g/d) or psyllium (9 

g/d) supplementation on improvements in markers of vascular reactivity through 

increased nitric oxide availability as well as diminished oxidative stress and inflammation 

in adults with non-insulin dependent T2D. Hypothesis: There will be no significant 

difference in improvements of  vascular health (reduced blood pressure and increased 

plasma nitric oxide),  reductions of markers of oxidative stress and inflammation (lipid 

peroxidation, and TNF-α) between the non-insulin dependent T2D participants in the 

flaxseed group (28 g/d)  as compared to the psyllium group (9 g/d) from baseline to week 

8.   
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1.4 Impact 

The results of this study are expected to have a broad impact by contributing to the 

understanding of how flaxseed supplementation may improve vascular health in diabetes 

as well as provide a potential cost-effective nutrition-based alternative for glucose 

regulation that may help to alleviate the costly burden of medication to individuals 

suffering from diabetes.  

 

1.5 Delimitations and Limitations 

Possible limitations of this study include lack of adequate sample size to achieve power 

(set at 80%). To avoid these potential complications we performed a sample size power 

analysis based upon an extensive literature review (see section 3.6). Additionally, we 

modified the amount of test foods for both treatment and control groups to represent 

moderate intake that more accurately reflect a participant’s average diet in an effort to 

increase compliance. Anticipated problems include contamination of samples which will 

be avoided by utilizing rigorous laboratory techniques and by wearing personal protective 

equipment at all times. There is also a potential problem in tissue availability which will 

be overcome by optimizing assays through proper collection and storage of tissue 

samples, using aliquoted samples to prevent protein degradation, and determining 

appropriate collected sample (i.e., plasma versus serum) to use for each parameter, and 

by using commercially available kits which have been previously validated for 

sensitivity, specificity, accuracy, precision, detection limit, range and limits of 

quantitation. Standard curves were also performed an analyzed during each assay, 
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according to the manufacturers protocol to ensure inter-assay and inter-laboratory 

assessment of assay and to increase the repeatability and robustness of the results. 

 

Delimitations of the study are that the data will be generalizable only to adults with non-

insulin dependent T2D. Data will also not provide information on direct measurements of 

vascular dysfunction or small resistance arteries which are important in blood pressure 

regulation and microvascular complications associated with T2D.  
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Definition of Terms 

Adenosine Diphosphate (ADP)- a nucleotide composed of adenine, ribose, and two 

phosphate groups that functions in the transfer of energy during the catabolism of 

glucose, formed by the removal of a phosphate group from adenosine triphosphate.  

Adenosine Triphosphate (ATP)- a high energy molecule which consists of adenosine, 

ribose, and three phosphate groups. It is the primary source of energy in cellular 

metabolism due to its ability to donate a phosphate group during biochemical reactions. 

Adipokines- Cytokines secreted by adipose tissue.   

Adiponectin- A 244 amino acid polypeptide involved in regulating glucose 

concentrations as well as fatty acid breakdown.      

Adipose Tissue Macrophages (ATMs)- Macrophages present in adipose tissue.  

Angiotensin Converting Enzyme (ACE)- A glycoprotein (dipeptidyl carboxypeptidase) 

that catalyzes the conversion of angiotensin I to angiotensin II by splitting two terminal 

amino acids. ACE-inhibiting agents are used for controlling hypertension and for 

protecting the kidneys in diabetes mellitus.        

Angiotensin II (AII)- An octapeptide that is a potent vasopressor and powerful stimulus 

for production and release of aldosterone from the adrenal cortex.    

Arteriosclerosis- A condition in which an artery wall thickens as a result of the 

accumulation of fatty materials such as cholesterol and triglyceride. It is a syndrome 
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affecting arterial blood vessels, a chronic inflammatory response in the walls of arteries, 

caused largely by the accumulation of macrophages and promoted by low-density 

lipoproteins.   

C-Reactive Protein (CRP)- A protein found in the blood, the levels of which rise in 

response to inflammation (acute phase protein).     

Cytokine- Small signaling molecules used for cell signaling. Cytokines can be classified 

as proteins, peptides, or glycoproteins.      

Diabetes- A group of metabolic diseases in which a person has high blood sugar, either 

because the pancreas does not produce enough insulin, or because cells do not respond to 

the insulin that is produced.       Dyslipidemia- 

An abnormal amount of lipids (e.g. cholesterol and/or fat) in the blood.  

Dyspnea- Shortness of breath.        

Electron Transport Chain (ETC)- an enzymatic series of electron donors and acceptors 

located within the mitochondria of eukaryotic cells  that transfer electrons from electron 

donors to electron acceptors via redox reactions, and couples this electron transfer with 

the transfer of protons (H+ ions) across a membrane which drives the synthesis of ATP.  

Endocrine System- The collection of cells, glands, and tissues of an organism that 

secrete hormones directly into the bloodstream to control the physiological and 

behavioral activities of an organism.         
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Endothelin 1 (ET-1)- A protein peptide that is a potent vasoconstrictor produced by 

vascular endothelial cells.          

Endothelium- the thin layer of endothelial cells that line the interior surface of blood 

vessels forming an interface between circulating blood in the lumen and the rest of the 

vessel wall. Endothelial cells line the entire circulatory system, from the heart to the 

capillaries. Functions include fluid filtration (such as in the glomeruli of the kidney), 

blood vessel tone, hemostasis, neutrophil recruitment, and hormone trafficking. 

Fatty Acid Oxidation- (beta-oxidation) The process by which fatty acid molecules are 

broken down in the mitochondria to generate acetyl-coA, which enters the citric acid 

cycle, and NADH and FADH2, which are used by the electron transport chain.  

Fibroblasts- A type of cell that synthesizes the extracellular matrix and collagen; the 

structural framework (stroma) for animal tissues; and plays a critical role in wound 

healing. Fibroblasts are the most common connective tissue in animals. 

Gluconeogenesis (GNG)- A metabolic pathway that generates glucose from non-

carbohydrate carbon substrates such as pyruvate, lactate, glycerol, gluconeogenic amino 

acids, and medium-chain fatty acids.      

Glucose- A six carbon (hexose) sugar molecule that serves as the principle source of 

sugar in the blood and a major source of metabolic energy.   

Glucose Transporters- A diverse family of membrane proteins that facilitate the 

transport of glucose over a plasma membrane.      
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Glycogenolysis- Breakdown of glycogen to glucose-1-phosphate and glucose. Glycogen 

branches are catabolized by the sequential removal of glucose monomers via 

phosphorolysis, by the enzyme glycogen phosphorylase.  

Glycolysis-The catabolism of carbohydrates such as glycogen and glucose by enzymes 

into pyruvate or lactic acid resulting in the release of energy.  

Hemoglobin A1c (HbA1C)- A form of hemoglobin that is measured primarily to 

identify the average plasma glucose concentration over prolonged periods of time (i.e. 

prior 90 days). It is formed by non-enzymatic binding of glucose to hemoglobin.  

      

Hyperglycemia- A condition in which an excessive amount of glucose circulates in the 

blood plasma (fasting plasma glucose >100 mg/dl or non-fasting plasma glucose >140 

mg/dl).           

Hyperplasia- An increase in cell number.       

Hypertrophy- An increase in cell size.       

Hypoxia- A pathological condition in which the body or a region of the body is deprived 

of an adequate oxygen supply.       

Hypoxia Inducible Factor 1 alpha (HIF-1 alpha)- a protein regulated by nuclear factor-

kappa B in response to hypoxia. 
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Impaired Fasting Glucose (IFG)- A condition in which fasting blood glucose 

concentrations are consistently elevated above what is considered physiological.  

 Impaired Glucose Tolerance (IGT)- A sustained hyperglycemic response during 

a glucose challenge.   

Infarction- Tissue death (necrosis) caused by a lack of oxygen, due to an obstruction of 

blood flow in a tissue.     

Inflammation- Part of the complex biological response of vascular tissues to harmful 

stimuli such as pathogens, damaged cells, or irritants. Inflammation is a protective 

attempt by the organism to remove the injurious stimuli and to initiate the healing 

process.    

Innate Immune System- The first line of defense of the immune system response, 

comprises the cells and mechanisms that defend the host from infection by other 

organisms in a non-specific manner (i.e. not requiring the production of antibodies).  

Insulin Resistance- A physiological condition in which cells fail to respond to the 

normal actions of the hormone insulin.      

Interleukin 1 beta (IL-1 beta)- A cytokine mediator of the inflammatory response. It is 

also involved in a variety of cellular activities including cell proliferation, differentiation, 

and apoptosis.      

Interleukin 6 (IL-6)- Secreted by T cells and macrophages to stimulate immune 

responses. Acts in both pro-inflammatory and anti-inflammatory capacities.  
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Interleukin 8 (IL-8)- a chemokine secreted by any cells with toll-like receptors that are 

involved in the innate immune response.     

Islets of Langerhans- Irregular clusters of endocrine cells scattered throughout the tissue 

of the pancreas that secrete insulin and glucagon.     

Leptin- A 16-kDa protein hormone that plays a key role in regulating energy intake and 

expenditure including appetite and hunger, metabolism, and behavior.  

Lipogenesis- The process by which acetyl-CoA is converted to fatty acids.  

Lipolysis- The breakdown of lipids. It involves hydrolysis of triglycerides into glycerol 

and free fatty acids.           

Macrophages- Immune cells produced by the differentiation of monocytes that are 

responsible for ingesting and breaking down pathogens.  

Metabolic Syndrome (MetS)- A disorder of energy utilization and storage, diagnosed by 

a co-occurrence of three out of five of the following medical conditions: abdominal 

(central) obesity, elevated blood pressure, elevated fasting plasma glucose, high serum 

triglycerides, and low high-density cholesterol (HDL-C) levels. Metabolic syndrome 

increases the risk for developing cardiovascular disease.    

Monocyte Chemoattractant Protein 1 (MCP1)- recruits monocytes, memory T cells, 

and dendritic cells to the sites of inflammation produced by either tissue injury or 

infection.   
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Nitric Oxide- A potent vasodilator.       

Nitric Oxide Synthases- A family of enzymes that catalyze the production of nitric 

oxide (NO) from L-arginine.         

Non-Alcoholic Hepatic Steatosis- Accumulation of fat in the liver; may progress to non-

alcoholic fatty liver disease (NAFLD).        

Normoglycemia- Blood glucose concentrations that fall within the normal range of <100 

mg/dl fasting, <140 mg/dl 2 hours after a high load glucose challenge, or an A1C <6.0%. 

Oxidative Stress- A situation in which there is an increase in free radicals caused by 

either increased production of oxidizing species or a significant decrease in the 

effectiveness of antioxidant defenses.   

Perivascular Adipose Tissue (PVAT)- Adipose tissue surrounding blood vessels. 

Polydipsia- Excessive thirst.        

Polyphagia- Excessive hunger.       

Polyuria- Excessive urination.      

Preadipocytes- Undifferentiated fibroblasts that can be stimulated to form mature 

adipocytes. 

Prediabetes- The state in which some but not all of the diagnostic criteria for diabetes 

are met.  
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Preproinsulin- the precursor of proinsulin which contains an additional polypeptide 

sequence at the N-terminal which are then removed by proteases in the endoplasmic 

reticulum to form proinsulin. 

Reactive Oxygen Species- Chemically reactive molecules containing oxygen. 

Resistin- A cysteine-rich adipokine implicated in the etiology and progression of obesity 

and type 2 diabetes. Resistin accelerates the accumulation of LDL in arteries, increasing 

the risk of heart disease.    

Sleep Apnea- A sleep disorder characterized by pauses in breathing or instances of 

shallow or infrequent breathing during sleep.    

Superoxide (O2˙ˉ)- A free radical product of the one-electron reduction of dioxygen.  

The Citric Acid Cycle (TCA or Krebs cycle)- A  major metabolic pathways of cellular 

respiration, and involves a cyclic series of enzymatic reactions by 

which pyruvate converted into Acetyl Coenzyme A is completely oxidized to 

CO2 and hydrogen is removed from the carbon molecules, transferring 

the hydrogen atoms and electrons to electron-carrier molecules (e.g. NADH and FADH2) 

as well as the synthesis of ATP.  

Toll-Like Receptors (TLRs)- A class of proteins that play a key role in the innate 

immune system. They are single, membrane-spanning, non-catalytic receptors usually 

expressed in sentinel cells such as macrophages and dendritic cells that recognize 

structurally conserved molecules derived from microbes.   
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Tumor Necrosis Factor Alpha (TNF-alpha)- An adipokine involved in systemic 

inflammation that stimulates the acute phase reaction.       

Type 2 Diabetes (T2D)- Disease state characterized by insulin resistance, sometimes 

combined with an absolute insulin deficiency. This form of diabetes was previously 

referred to as non insulin-dependent diabetes mellitus (NIDDM) or "adult-onset 

diabetes".        

Vascular Endothelial Growth Factor (VEGF)- A signal protein produced by cells that 

stimulates vasculogenesis and angiogenesis.   
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Glucose Metabolism  

2.1.1 Glucose  

Glucose metabolism is critical to normal physiological functioning.  Glucose is the 

human body's key source of energy, providing about four calories per gram through 

aerobic respiration. Breakdown of carbohydrates (e.g. starch) yields mono-

 and disaccharides, most of which is glucose. Through glycolysis and later in the 

reactions of the  tri-carboxylic acid (TCA) cycle, glucose is oxidized to eventually 

form CO2 and water, yielding energy mostly in the form of adenosine tri-phosphate 

(ATP) which is required for nearly all types of cellular reactions. Normal plasma glucose 

concentration varies between about 70 and 120 mg/dL (3.9-6.7 mM) (Mantzoros et al. 

2011). The brain uses about 120 grams of glucose daily which is approximately 60-70% 

of the total body glucose metabolism (Bergman, 2013). However, the brain has little 

stored glucose and no other energy stores, making glucose an essential nutrient for 

survival. Brain function begins to become seriously affected when glucose levels fall 

below 40 mg/dL; levels of glucose significantly below this can lead to permanent damage 

and death (Levin, 2002). The brain cannot use fatty acids for energy due to the inability 

of fatty acids to cross the blood-brain barrier. Ketone bodies such as acetoacetate and 

hydroxybutyrate, which are produced as by-products of beta-oxidation derived acetyl-

CoA being further metabolized in the TCA metabolic pathway, can however be utilized 
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by the brain for energy in emergencies such as periods of severely restricted carbohydrate 

or food intake. 

 

2.1.2 Glucose Homeostasis  

Glucose entry into cells is facilitated by a family of glucose transporter proteins 

(GLUT). The most commonly identified glucose transporters are GLUT1-5, each of 

which exhibit different affinities for various monosaccharides and display tissue-specific 

expression (Zhao and Keating, 2007). These characteristics contribute to how the various 

tissues respond to glucose. Typically, glucose transporters are localized on the plasma 

membrane and allow for glucose to enter the cell in a passive diffusion manner (Klip and 

Pâquet, 1990). However, the glucose transporter isoform 4 (GLUT4), is located in 

intracellular membrane vesicles which must be stimulated through an insulin mediated 

cell signaling cascade and undergo cellular trafficking to the membrane surface (Russell 

et al. 1999). The GLUT4 isoform, which is specifically expressed in insulin sensitive 

tissues such as skeletal muscle, heart muscle, and fat, is responsible for insulin-mediated 

blood glucose clearance (Saltiel and Kahn, 2001).Various organs function to regulate 

circulating glucose levels in the plasma including the liver, brain, pancreas, skeletal 

muscle, adipose tissue, heart, and kidneys. There are two main endogenous metabolic 

pathways which function to regulate glucose levels, gluconeogenesis and glycogenolysis. 

Gluconeogenesis (GNG) is a metabolic pathway that results in the generation 

of glucose from non-carbohydrate carbon substrates such as pyruvate, lactate, glycerol 

(derived from odd-chain fatty acids and to a lesser extent long-chain fatty acids)  in 
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addition to glucogenic amino acids. The liver and kidneys are the main organs which 

contribute to the GNG pathway. When circulating blood glucose concentrations are too 

low (hypoglycemia) the body acts to increase glucose levels through the breakdown 

of glycogen via glycogenolysis. Glycogenolysis functions to catabolize glycogen, the 

stored glucose energy source in liver and skeletal muscle, to glucose-1 phosphate which 

is then readily available to provide energy for intracellular processes.  

The diet is an abundant source of circulating glucose and provides carbon and 

energy sources for liver gluconeogenesis. The liver is the major metabolic regulatory 

organ for glucose metabolism. About 90% of all circulating glucose not derived directly 

from the diet comes from the liver (Schwarz et al. 1995). The liver contains significant 

amounts of stored glycogen available for rapid release into circulation and is capable of 

synthesizing large quantities of glucose from substrates such as lactate, amino acids, and 

glycerol released by other tissues. In addition to controlling plasma glucose, the liver is 

responsible for synthesis and release of the lipoproteins that adipose and other tissues use 

as the source of cholesterol and free fatty acids (Weikert and Pfieffer, 2006). During 

prolonged starvation, the liver is the source of both glucose and ketone bodies that are 

required by the brain to maintain function. Like the liver, the kidney has the ability to 

release glucose into the blood. Under normal conditions gluconeogenesis in the kidneys 

provides only a small contribution to the total circulating glucose; however, during 

prolonged starvation, the contribution of the kidneys to circulating glucose may approach 

that of the liver (Stumvoll et al. 1998). Kidney function is critical for glucose homeostasis 

for another reason; plasma glucose continuously passes through the kidney and must be 
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efficiently reabsorbed to prevent loss. Skeletal muscle cannot release glucose into 

circulation; however, it has the ability to rapidly increase glucose uptake in response to 

sudden elevations in circulating plasma glucose as is the case after a meal or during 

periods of increased demand, such as during an acute bout of exercise (Rose and Richter, 

2005). Adipose tissue also acts as a major site of glucose metabolism. Insulin stimulates 

glucose uptake into adipose tissue, and has three major actions which result in net fat 

deposition: 1) insulin increases the amount of lipoprotein lipase, an enzyme that mediates 

release of free fatty acids from circulating lipoproteins; 2) insulin stimulates synthesis of 

glycerol-phosphate (required for triacylglycerol synthesis) from glucose; and 3) insulin 

inhibits hormone-sensitive lipase, the enzyme responsible for the first step in 

triacylglycerol breakdown (Odegaard and Chawla, 2013). Adipose tissue is the major site 

of fatty acid storage. Fatty acids are stored in the form of triacylglycerol, which is 

synthesized from glycerolphosphate and free fatty acids. The glycerol-phosphate used 

must be derived from glycolysis in the adipose tissue; free glycerol cannot be 

phosphorylated because adipocytes lack the relevant kinase (Guo et al. 2013). In 

conditions when liver gluconeogenesis is necessary the adipose tissue supplies free fatty 

acids and glycerol into the circulation to be taken up by the liver as substrate. Finally, the 

pancreas is the source of insulin and glucagon, two of the most important metabolic 

regulatory hormones.  

 

2.2 Regulation of Post-Prandial Glucose Metabolism 

2.2.1 Endocrine regulation of glucose metabolism 
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Insulin is an anabolic hormone secreted by the pancreas essential for appropriate tissue 

development and growth. Insulin also functions to regulate circulating glucose levels in 

response to a meal (Pessin et al. 2000).  Insulin plays a major role in the metabolism of 

carbohydrates and lipids (McGarry and Foster 1980). The pancreas alters its release of 

insulin and glucagon in response to changes in plasma glucose and other circulating 

nutrients such as amino acids and free fatty acids. The response to a meal varies 

significantly depending on the composition of nutrient intake. The release of insulin 

levels caused by actually eating is thought to be due to gastrointestinal peptide hormones 

such as cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and ghrelin (Weir et al. 

2012). These peptides are released in response to food absorption and function to mediate 

the glucose effect on insulin release.  

When eating a meal rich in carbohydrates, insulin levels rise and glucagon levels 

fall (Thorens et al. 2011). The decrease of glucagon is due to inhibition of its release by 

insulin, and to the elevation in plasma glucose. When eating a meal rich in protein, 

insulin levels rise, because insulin secretion is stimulated by amino acids as well (Salehi 

et al. 2012). The release of glucagon in response to a meal high in protein functions to 

counteract the effects of insulin in order to maintain proper circulating glucose levels and 

avoid hypoglycemia due to the low carbohydrate content of the meal. When eating a 

mixed meal, insulin levels rise, and glucagon levels rise, fall, or remain unchanged as 

appropriate to maintain plasma glucose.  
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2.2.2 Mechanism of insulin  

Insulin is a hormone that is exclusively produced by pancreatic beta cells. Beta cells are 

located in the pancreas in clusters known as the islets of Langerhans. Insulin is a small 

protein and is produced as part of a larger protein to ensure it folds properly. In the 

protein assembly of insulin, the messenger RNA transcript is translated into an inactive 

protein called preproinsulin (Fu et al. 2013). Preproinsulin contains an amino-terminal 

signal sequence that is required in order for the precursor hormone to pass through the 

membrane of the endoplasmic reticulum (ER) (Leem and Koh, 2011) for post-

translational processing to proinsulin which is further modified to active insulin (Guo et 

al. 2014). Finally, insulin is packaged and stored in secretory granules, which accumulate 

in the cytoplasm, until release is triggered. 

 

2.2.3 Insulin secretion 

Insulin is released from beta cells, in response to changes in blood glucose concentration. 

Type 2 glucose transporters (GLUT2) mediate the entry of glucose into beta cells (Luni et 

al. 2012). Glucose (C6H12O6) enters the glycolysis pathway, which is the metabolic 

pathway responsible for converting glucose to pyruvate (CH3COCOO− + H+) and 

subsequent high energy compounds adenosine triphosphate (ATP) and reduced 

nicotimamide adenine dinucleotide (NADH). Glucose is phosphorylated by the rate-

limiting enzyme in this pathway, glucokinase. Upon modification glucose becomes 

trapped within the beta cells and is further metabolized to create ATP (Richter et al. 

2013). The increased in ATP to adenosine diphosphate (ADP) moleculares (ATP:ADP 
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ratio) causes the ATP-gated potassium channels in the cellular membrane to close, 

preventing potassium ions from crossing the membrane (Masini et al, 2014). The increase 

in potassium ions within the cell leads to an intracellular positive charge resulting in 

subsequent depolarization of the cell. This causes activation of voltage-gated calcium 

channels, which transport calcium ions into the cell. The increase in intracellular calcium 

concentrations results in the exportation, via exocytosis, of the insulin-storing granules 

from the beta cells and the diffusion of insulin into nearby blood vessels (Rorsman and 

Braun, 2013). There is a large and extensive vascular network which surrounds the 

pancreatic islets to ensure the adequate diffusion of insulin (and glucose) between beta 

cells and blood vessels (Dai et al. 2013).   

The release of insulin occurs in two stages. The initial amount of insulin released 

upon increases in circulating glucose is dependent on the available concentrations stored 

in the beta cells. Once these initial stores are depleted a second phase of insulin release is 

initiated. This latter release is prolonged since insulin has to be synthesized, processed, 

and secreted for the duration of the increase of blood glucose. Furthermore, beta cells 

also have to regenerate the stores of insulin initially depleted in the fast response phase. 

 

2.2.4 Functions of insulin and target tissues of insulin-mediated glucose disposal 

Insulin molecules circulate throughout the blood stream until they bind to their receptors 

(IR) located on various target tissues. Insulin regulates glucose disposal at many sites 

including the liver, skeletal muscles, adipose tissue (AT) and cardiac muscle (Olson and 

Pessin, 1996). In muscle and fat cells, the clearance of circulating glucose depends on the 
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insulin-stimulated translocation of the glucose transporter GLUT4 isoform to the cell 

surface which is initiated through activation of the IR. When insulin binds to its receptor 

on the cell membrane surface it activates the IR tyrosine kinase, which results in tyrosine 

phosphorylation of members of the insulin receptor substrate (IRS) family. Activation of 

the IR and IRS results in phosphorylation of the phosphatidylinositol 3-kinase (PI3K) 

pathway resulting in activation of protein kinase B (Akt) which functions to stimulate 

GLUT4 vesicles to the membrane surface. Insulin also functions to reduce hepatic 

glucose production and output (via decreased GNG and glycogenolysis) as well as 

increasing lipid synthesis in liver and adipocytes which result in attenuating fatty acid 

release from triglycerides in AT and muscle (Pessin et al. 2000). In a healthy person, 

these functions allow blood glucose and insulin levels to remain in the normal range. 

 

2.2.5 Impaired insulin signaling leading to insulin resistance 

The body’s regulation of glucose metabolism requires control and coordination of a series 

of complex mechanisms. Disruptions in normal insulin synthesis, secretion, regulation, or 

cell signaling lead to altered metabolism of glucose as well as lipids resulting in 

hyperglycemia and dyslipidemia. Impairments in normal insulin signaling are usually the 

result of genetic acquired traits, auto-immune disorders or environmental factors (Mlinar 

et al., 2007). In cases of type 1 diabetes mellitus, the body destroys insulin-producing 

beta cells in the pancreas, thus the individual does not produce insulin and must use an 

exogenous form. Other alterations in insulin signaling occur within the beta cells during 

synthesis and secretion, or at the post-receptor levels. At a molecular level insulin 
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resistance can be caused by impaired insulin signaling due to increased serine 

phosphorylation of the insulin receptor substrate-1 (IRS1). This change causes inhibition 

of IRS1 tyrosine phosphorylation, decreased binding of the downstream enzyme PI3K, 

and decreased phosphorylation and activation of the kinase Akt. IRS1 can be 

phosphorylated on serine residues by various isoforms of protein kinase C, which are 

activated by lipid intermediates, stress kinases, or increases in endoplasmic reticulum 

stress (Turban and Hujduch, 2011). The resulting hyperinsulinemia along with increases 

in inflammatory markers such as tumor necrosis factor alpha (TNF-alpha) and 

interleukin-6 (IL-6) may perpetuate the deregulation of Ser/Thr phosphorylation of IRS1 

and downstream signaling intermediates including PI3K (Rains and Jain, 2011).  

 

2.2.6 Insulin resistance and associated disorders  

Impaired insulin signaling is central to development of the insulin resistance, metabolic 

syndrome (MetS) as well as diabetes and can promote cardiovascular disease indirectly 

through development of abnormal glucose and lipid metabolism, hypertension, and 

inflammation. Insulin resistance in the liver is the major cause of fasting hyperglycemia 

due to increases in hepatic glucose output which is normally suppressed by insulin. 

Disrupted insulin signaling in the liver also contributes to dyslipidemia associated with 

hyperglycemia due to increases in fatty acid synthesis and decreased clearance of LDL 

and very low-density (VLDL) lipoproteins (Lukic et al. 2014). Moreover, impaired 

insulin signaling disrupts skeletal muscle glucose disposal due to decreased GLUT4 

expression through down-regulation of the insulin-mediated cell signaling cascade. In 



26 

 

addition to insulin resistance and hyperglycemia, dyslipidemia is a common characteristic 

of both MetS and T2D. Hepatic insulin resistance contributes to this dyslipidemia 

through increased fatty acid synthesis as well decreased clearance of LDL and very low-

density lipoprotein (Lukic et al. 2014). 

 

2.3 Insulin Resistance and Progression to T2D 

2.3.1 Insulin resistance 

Type 2 diabetes is a metabolic disorder that is characterized by high blood glucose in the 

context of insulin resistance and relative insulin deficiency (Kumar et al. 2008). Insulin 

resistance is a physiological condition in which cells fail to respond to the normal actions 

of the hormone insulin. In the context of insulin resistance, the body produces enough 

insulin in response to increases in glucose concentrations but its cells are too desensitized 

to allow adequate insulin signaling cascade response. Due to the ability to initially 

compensate for the lack of cell sensitivity and the need to maintain proper glucose 

homeostasis a person can still have glucose levels in the normal range as described 

below. Causes of insulin resistance may include ethnicity, certain diseases, excess 

weight, physical inactivity, hormones, steroid use, certain medications, age, and cigarette 

smoking. Mechanisms of insulin resistance as discussed in previous sections (2.2.5; 

2.2.6) include inhibition of IR, IRS, or insulin signaling intermediates. A person can be 

insulin resistant and still maintain normal blood glucose levels (normoglycemia) as long 

as the beta cells produce enough insulin to compensate for the decrease in cell sensitivity. 

Fluctuations in insulin sensitivity occur during the normal life cycle, with insulin 
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resistance being observed in puberty, pregnancy, and with aging (Moran et al. 1999, 

Buchanan et al. 1990). Conversely, lifestyle variations such as increased physical activity 

and increased carbohydrate intake are associated with increased insulin sensitivity (Musi 

and Goodyear, 2006). Thus, without lifestyle modifications (i.e., increased physical 

activity, improvements to diet) or medical interventions, insulin resistance will often 

progress to a condition known as prediabetes due to the high demand placed on the 

insulin-producing beta cells (McLellan et al. 2014). 

 

2.3.2 Metabolic syndrome, insulin resistance, and progression to T2D 

Insulin resistance is strongly associated with a condition known as MetS.  Prevalence of 

MetS in 2008, according to data from the National Health and Nutrition Survey Data Set 

(NHANES) was estimated at 34% of adults age 20 and older (Bassin et al. 2013). MetS is 

thought to represent a combination of cardiometabolic risk determinants, including 

obesity, glucose intolerance, insulin resistance, dyslipidemia (including 

hypertriglyceridemia, increased free fatty acids (FFAs) and decreased HDL-C) and 

hypertension. The concept of a cluster of metabolic abnormalities which predispose an 

individual to T2D and cardiovascular disease was first proposed by Eskil Kylin in the 

early 1900’s. Dr. Haller first used the term "metabolic syndrome" (MetS) to describe the 

association of obesity, diabetes mellitus (DM), hyperlipoproteinemia, hyperuricemia, and 

hepatic steatosis when describing the additive effects of risk factors on atherosclerosis.  

Dr. Gerald Phillips (1978) further developed the concept of metabolic risk factors for 

myocardial infarction and described a group of abnormalities including glucose 
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intolerance, hyperinsulinemia, hyperlipidemia, and hypertension. In 1988, Dr. Gerald 

Reaven proposed insulin resistance (IR) was the cause of glucose intolerance, 

hyperinsulinemia, increased (VLDL-C), decreased (HDL-C) and hypertension and named 

the constellation of abnormalities “syndrome X”. Multiple Health organizations including 

the World Health Organization (WHO), International Diabetes Federation (IDF), the 

European Group for the Study of Insulin Resistance, and the National Cholesterol 

Education Program Adult Treatment Panel III (NCEP ATP III) all have varying 

definitions and diagnostic criteria for MetS (Miranda et al. 2005). However, the most 

common set of diagnostic criteria used to identify individuals with MetS in the U.S. by 

the American Heart Association and American Diabetes Association is the NCEP ATP 

III guideline which confirms MetS as having three or more of the following 

measurements present: 

• Abdominal obesity (waist circumference of 40 inches or above in men, and 35 

inches or above in women) 

• Triglyceride level of 150 milligrams per deciliter of blood (mg/dL) or greater 

• HDL cholesterol of less than 40 mg/dL in men or less than 50 mg/dL in women 

• Systolic blood pressure (top number) of 130 millimeters of mercury (mm Hg) or 

greater, or diastolic blood pressure (bottom number) of 85 mm Hg or greater 

• Fasting glucose of 100 mg/dL or greater 

The associated complications of insulin resistance and MetS include atherosclerosis, 

coronary heart disease (CHD), non-alcoholic fatty liver disease (NAFLD), some cancers, 
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kidney dysfunction, pancreatic dysfunction, and polycystic ovarian syndrome (PCOS). 

While having insulin resistance and metabolic syndrome are risk factors for the 

development of prediabetes and T2D, it is not absolute. Moreover, it should be noted that 

while obesity appears to be a central factor in the development of both IR and MetS, 

normal weight individuals can develop either of these conditions or both independent of a 

being classified as overweight or obese (Park et al. 2003). 

 

2.3.3 Pre-diabetes 

In prediabetes, the beta cells can no longer produce enough insulin to overcome insulin 

resistance, causing blood glucose levels to rise above the normal range, known as 

impaired glucose tolerance (IGT). Prediabetes is a condition in which a person develops 

hyperglycemia (elevated blood glucose) or increased glycated hemoglobin (HbA1c) 

levels, which reflect average blood glucose levels over the prior 90 days, that are higher 

than normal but not high enough for a diagnosis of diabetes. A HbA1c of 5.7% to 6.4% 

indicates prediabetes. A fasting glucose level of 100 to 125 mg/dl indicates prediabetes 

and is known as impaired fasting glucose (IFG). A two hour sample of blood glucose 

level between 140 and 199 mg/dl for an oral glucose tolerance test, which measures 

blood glucose levels for up to 3 hours after a high glucose drink has been ingested 

indicates prediabetes. People with prediabetes are at increased risk of developing T2D 

and CVD, which can lead to heart attack or stroke (Ganguly et al. 2008). IR increases the 

risk of developing T2D and prediabetes (Cobb et al. 2013). Prediabetes usually occurs in 

people who already have insulin resistance. Although insulin resistance alone does not 



30 

 

cause T2D, it often contributes to the disease by placing a high demand on the insulin-

producing beta cells which eventually leads to the loss of adequate production as stated 

previously. 

 

2.3.4 Type 2 diabetes 

Once a person has prediabetes, continued loss of beta cell function usually leads to T2D 

(Ristow et al. 2004). Among those individuals who develop T2D, the proportion of IR 

versus beta cell dysfunction varies, with some having primarily insulin resistance and 

only a minor defect in insulin secretion and others with slight insulin resistance and 

primarily a lack of insulin secretion (Shoback et al. 2011). Other potentially important 

mechanisms associated with T2D and insulin resistance include increased breakdown of 

lipids within adipocytes, resistance to and lack of incretin (a gastrointestinal hormone that 

stimulate a decrease in blood glucose by causing an increase in the amount of insulin 

released from the beta cells after eating, before blood glucose levels become elevated), 

high glucagon levels in the blood that promote hyperglycemia, increased retention of salt 

and water by the kidneys, and inappropriate regulation of metabolism by the central 

nervous system (Smyth et al. 2006). People with T2D have hyperglycemia and, due to 

loss of insulin regulated lipid metabolism, elevated levels of non-esterified fatty acids 

(NEFA) (Tolman et al. 2007). Diagnosis for T2D as defined by the WHO includes a 

single raised glucose reading with classic symptoms including polyuria (frequent 

urination), polydipsia (increased thirst), polyphagia (increased hunger), and weight loss. 

Other symptoms that are commonly present at diagnosis include: a history of blurred 
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vision, itchiness, peripheral neuropathy, recurrent vaginal infections, and fatigue (ADA, 

2013). Additionally, diagnosis can be based from raised values on two occasions of 

either: a fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl) or plasma glucose 

concentrations ≥ 11.1 mmol/l (200 mg/dl) two hours after consuming a controlled dose of 

glucose during an oral glucose tolerance test (OGTT). A random blood sugar of greater 

than 11.1 mmol/l (200 mg/dl) in association with typical symptoms or HbA1c of greater 

than 6.5% are other diagnostic measures of diabetes. Over time, high blood glucose 

damages nerves and blood vessels, leading to complications such as CVD, stroke, 

blindness, kidney failure, neuropathies, and lower-limb amputations. IR and prediabetes 

often go unrecognized by patients until they have progressed to overt diabetes. People 

may have one or both conditions for several years without knowing they have them. 

 

2.4 Obesity and T2D 

2.4.1 Adipose tissue as an endocrine organ 

In addition to impairments in insulin signaling, accumulating AT and obesity are 

common factors in development of IR, T2D, and MetS. Adipose tissue (i.e., body fat) is 

composed mainly of adipocytes and connective tissue. In addition to adipocytes, AT 

contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, 

vascular endothelial cells and a variety of immune cells (i.e. AT macrophages (ATMs)). 

Adipose tissue is derived from preadipocytes. Adipose tissue is found in specific 

locations, which are referred to as adipose depots. In humans, major AT depots include 

subcutaneous (below the skin), visceral (around the organs), intrahepatic (Koska et al. 
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2008) and to a lesser extent bone marrow (yellow bone marrow) and breast tissue. Its 

main role is to store excess triglycerides which are esterified to free fatty acids and 

glycerol as well as function as an energy reserve, insulate the body and cushion vital 

organs. Additionally, AT acts as an endocrine organ (Kershaw, 2004) and has been 

shown to synthesize and secrete a number of hormones, called adipokines, which are 

involved in the regulation of energy homeostasis, insulin action, and lipid metabolism 

(Dyck et al. 2006). Some of the hormones considered to play key roles in energy 

metabolism, include leptin and adiponectin. When the body accumulates excessive AT it 

may lead to disruptions in endocrine signaling which can disrupt other organ systems of 

the body and may lead to disease (Galic et al. 2010).  

Leptin is secreted by white adipose tissue (WAT) (Zhang et al. 1994). Leptin is 

produced in proportion to body fat mass and can act on the brain to induce satiety and 

regulate AT mass (Ainslie et al. 2000). It has been suggested that the primary role of 

leptin is in adaptation to negative energy balance (Kiem et al. 1998). As such, leptin was 

originally proposed to act as a signal indicating abundant adipose stores to the 

hypothalamus to limit energy intake and increase energy expenditure (Campfield et al. 

1996). Accordingly, decreases in circulating leptin are associated with increased hunger 

(Kiem et al. 1998) and leptin replacement prevents the compensatory decrease in 

metabolic rate and thyroid function after diet-induced weight loss in humans (Faraj et al. 

2003). Furthermore, there is some evidence linking leptin to a direct regulation of AT 

metabolism through inhibition of lipogenesis and stimulation of lipolysis (Meier et al. 

2004).  
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Adiponectin is a protein hormone that modulates a number of metabolic 

processes, including glucose regulation and fatty acid oxidation (Diez et al. 2003). 

Adiponectin is exclusively secreted from AT and is one of the most abundant AT-specific 

factors (Fruhbeck et al. 2003). Data suggest that adiponectin is a mediator of insulin 

sensitivity and an enhancer of fatty acid oxidation (Berg et al. 2002). In contrast to leptin, 

plasma levels of adiponectin are lower in obese subjects, and the low levels are 

associated with increased risk factors for insulin resistance (Hotta et al. 2000). Low levels 

of adiponectin are also associated with the reduced ability of insulin to phosphorylate 

insulin receptor tyrosine residues and are therefore predictive of the development of 

insulin resistance in humans since tyrosine phosphorylation is essential to activation of 

the insulin signaling pathway (Faraj et al. 2003). Administration of adiponectin to rodents 

increases insulin sensitivity, an action that appears to result from lowered hepatic glucose 

production and increased muscle fatty acid oxidation. Moreover, adiponectin knockout 

mice exhibit insulin resistance (Kubota et al. 2002) and circulating adiponectin 

concentrations have been reported to increase after weight loss (Yang et al. 2001). 

 

2.4.2 Differentiating overweight and obesity 

Obesity or being overweight in humans and most animals does not depend on body 

weight alone, but rather on body composition, specifically the amount of AT that 

accumulates. A poor diet combined with physical inactivity is known to cause overweight 

and obesity. Obesity is an excessive accumulation of fat within the body, this 

accumulation results in an imbalance between energy intake and energy expenditure 
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(Cummings and Shwartz, 2003). In this case, the nutrient supply, particularly in the form 

of high fat foods, exceeds energy expenditure of the individual thus increasing body fat 

stores (Trembly et al. 1989). To determine whether accumulating adiposity results in an 

individual becoming overweight or obese is usually determined through measurements 

such as the body mass index (BMI), waist circumference, or waist-to-hip ratio (American 

Diabetes Association). The risk of secondary diseases increases with the severity of 

overweight. BMI is calculated from the size and weight and is only considered clinically 

relevant for persons 18 years and older. Categories of BMI include: 1) normal weight is a 

BMI between 19 to 24.9 kg / m2 for women and between 20 to 24.9 for men; 2) 

overweight is a BMI between 25 and 29.9 kg / m2; 3) obesity is considered a BMI above 

30 kg / m2 (CDC, 2004). 

 

2.4.3 Causes of increased adiposity 

Causes of increased adiposity can range from physical, psychological, and environmental 

factors such as: high-fat diet and sedentary lifestyle, depression, emotional eating, 

familial predisposition, lack of access to healthy food or safe places to walk/play, cultural 

ideologies regarding food, secondary to disease states (hypothyroidism, abnormal cortisol 

metabolism), as well as undetermined factors (CDC, 2004) .  

  

2.4.4 Pathophysiological consequences of increased adiposity  

Increased adiposity may lead to both adverse physical and/or metabolic consequences 

such as respiratory distress; dyspnea or respiratory arrest attacks during the night (sleep 
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apnea); overbearing joint and articular problems such as back or knee pain; cardiac 

disorders ranging up to infarction and heart failure after fat accumulation in the heart; 

arteriosclerosis; insulin resistance, pre-diabetes, type 2 diabetes; increased levels of blood 

lipids (cholesterol and triglycerides) (Poirie et al. 2006r); non-alcoholic hepatic steatosis; 

calcifications of the gallbladder and coronary artery (Aoqui et al. 2013); leg vein 

thrombosis (partial or complete obstruction of leg vein); damage to the joints 

(osteoarthritis); and complications during pregnancy . 

 

 

 

2.5 Progression from Increased Adiposity to T2D 

2.4.1 Pathogenesis of increased adiposity 

As stated earlier, obesity is characterized by an excess of body fat and is associated with 

a state of chronic, low-grade inflammation. The link between obesity and inflammation 

was first established by Hotamisligil et al, (1993) who showed a positive correlation 

between adipose mass and expression of the pro-inflammatory gene tumor necrosis 

factor-alpha (TNF-alpha) (Hotamisligil et al. 1993). The link between obesity and 

inflammation has been further illustrated by increased plasma concentrations of several 

pro-inflammatory markers including cytokines and acute phase proteins like C-reactive 

protein (CRP) in obese individuals (Trayhurn et al. 2005).  Adipocytes are associated 

with the production of pro and anti-inflammatory adipokines.  
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As a secretory organ, AT displays several unusual characteristics. First, the 

different fat depots (visceral vs. subcutaneous) are heterogeneous not only in terms of 

metabolic capacities, but also of adipokine secretion patterns (Guerre-Millo, 2004). 

Differences in where adipose is distributed may have a direct impact on secretion thus 

variations in local repercussions on the AT by autocrine or paracrine mechanisms. 

Second, AT is composed of distinct cell types: mature adipocytes and stromal-vascular 

cells (SVC, non-fat cells; including macrophages), all of which may contribute to the 

secretory functions and effects of AT (Guerre-Millo, 2004). 

Mature adipocytes represent 50–85% of the total cellular components of AT. The 

cellular composition of AT can vary according to anatomical location and body weight. 

In human obesity, AT is characterized by adipocyte hypertrophy (increased size) and 

hyperplasia (increased number), macrophage infiltration, endothelial cell activation and 

fibrosis (Faust et al. 1978, Henegar et al. 2008 and Maury et al. 2007). Increased fat 

storage in fully differentiated adipocytes, resulting in hypertrophy is thought to be the 

most important determinant whereby fat depots increase in adults (Spalding et al. 2008). 

With increasing AT accumulation, such as in the case of obesity, adipocytes undergo 

metabolic changes.  Additionally, adipocyte size is related to dysregulated adipokine 

expression and secretion in humans, wherein the hypertrophic adipocytes have altered 

intracellular signaling that shifts the balance towards the production of pro-inflammatory 

molecules (Jernas et al. 2006 and Skurk et al. 2007). These pro-inflammatory mediators 

include TNF-alpha, interleukin (IL)-6, IL-1beta, adiponectin, leptin, and resistin. WAT is 

also known to produce chemokines such as IL-8 and monocyte chemoattractant protein 
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(MCP)-1. Obese AT is characterized by macrophage infiltration and these macrophages 

are an important source of inflammation in this tissue as well as an elevated production of 

adipose-derived pro-inflammatory mediators (Suganami et al. 2005). 

TNF-alpha appears to be one of the most central pro-inflammatory mediators 

released by AT that contributes to and promotes obesity-associated inflammation. 

Adipose tissue and circulating levels of TNF-alpha are elevated in obese subjects and fall 

after weight loss (Dandona et al. 1998; Maury et al. 2009). TNF-alpha is also higher in 

visceral than subcutaneous fat, and more abundantly produced by macrophages that have 

infiltrated AT than adipocytes themselves (Fain et al. 2004; Maury et al. 2009). Most 

effects of TNF-alpha on AT are mediated by the TNF-alpha receptor 1 subtype (TNFR1) 

and subsequent activation of various transduction pathways (Cawthorn and Sethi, 2008). 

Two transcription factor-signaling pathways have been linked to the pro-inflammatory 

effects of obesity: the nuclear factor-kappa B (NF-kappa B) and c-Jun NH2-terminal 

kinase (JNK) pathways (Shoelson et al. 2007). Cell culture studies have supported this 

regulatory effect of TNF-alpha in obesity as demonstrated by an increase in constitutive 

NF-kappa B activity (Berg et al. 2004).  

Adipocytes in obese human subjects have additionally been shown to be hyper-

responsive to TNF-alpha which in turn functions to propagate inflammation by up-

regulating pro-inflammatory mediators such as IL-6 and MCP-1, both of which have 

been shown to be elevated in obesity (Bastard et al. 2006). In fact, adipose tissue may 

contribute up to 15–35% of the systemic IL-6 in humans (Mohamed-Ali et al. 1997). 
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Additionally, adipose-derived TNF-alpha acts to down-regulate anti-inflammatory 

adipokines such as adiponectin (Bruun et al. 2003, Maury et al. 2009).  

Two other biological pathways have been suggested in the relationship between 

obesity and activation of the immune system. The first pathway which could link obesity 

to altered production of adipokines is AT hypoxia (Trayhurn et al. 2008 and Ye, 2009). 

The causal link between hypoxia and changes in adipokine production has been 

confirmed in vitro and has been demonstrated in obese mice by several techniques 

(Hosogai et al. 2007 and Ye et al. 2007). In several models of cultured adipocytes, 

hypoxia decreased mRNA levels of adiponectin, while increasing those of pro-

inflammatory genes (plasminogen activator 1 (PAI-1), TNF-alpha, IL-1, IL-6, and MCP-

1,) together with those of hypoxia response genes (hypoxia inducible factor-1 alpha (HIF-

1 alpha), glucose transporter 1, vascular endothelial growth factor (VEGF)) (Hosogai et 

al. 2007, Wang et al. 2007 and Ye et al. 2007). The expression of inflammatory genes 

was also induced by hypoxia in cultured macrophages (Ye et al. 2007). The molecular 

mechanisms of dysregulated gene expression are related to activation of the transcription 

factors NF-kappa B and HIF-1 alpha, to endothelial stress and to post-transcriptional 

alterations (Hosogai et al. 2007 and Ye, 2009). Thus, hypoxia may underlie the 

development of the inflammatory response in AT, leading to obesity-associated diseases.  

Second, it has been suggested that a paracrine loop between adipocytes and 

macrophages establishes a vicious circle that aggravates the inflammatory changes in AT 

(Suganami & Ogawa, 2010). This paracrine loop involves free fatty acids (FFAs) and 

TNF-alpha. Enlarged adipocytes release excess saturated FAs that activate macrophages 
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via toll-like receptor 4 (TLR4) signaling (Suganami & Ogawa, 2010). TLRs play a 

critical role in the innate immune system by activating pro-inflammatory signaling 

pathways in response to microbial pathogens. The activation of TLR4 upregulates 

intracellular inflammatory pathways related to the induction of insulin resistance, such as 

JNK or NF-kappa B. TLR4 has been proposed to be a molecular link between lipids, 

inflammation and insulin resistance (Shi et al. 2006). Thus, TLR4-knockout mice are 

protected against lipid-induced inflammatory changes, insulin resistance and obesity (Shi 

et al. 2006 and Tsukumo et al. 2007). Additionally, TLR4 expression was increased in 

AT of obese mice (Shi et al. 2006). TLRs are also expressed in human AT (Vitseva et al. 

2008). As a result, macrophages secrete TNF-alpha, which in turn acts on TNFR1 to 

induce inflammatory changes in hypertrophic adipocytes through activation of the NF-

kappa B pathway and enhanced FFA release (Suganami & Ogawa, 2010). FFAs may also 

act on adipocytes in an autocrine fashion to generate inflammation and 

chemokine/adipokine overproduction at least in part via TLR4 (Jiao et al., 2008). 

Obesity is often associated with the pathogenesis of insulin resistance, MetS, and 

T2D. This link between obesity-induced dysfunction in adipocytes and its related co-

morbities appears to be increased in adipose tissue-mediated adipokines. In states of 

increasing adiposity the majority of adipokines with pro-inflammatory properties are 

overproduced while those adipokines with anti-inflammatory or insulin-sensitizing 

properties, like adiponectin are diminished. This dysregulation of adipokine production 

may promote obesity-linked metabolic disorders and cardiovascular disease.  
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2.6 Impaired Insulin-Mediated Vasodilation 

2.6.1 Insulin-mediated vasodilation and vascular health 

Insulin has important vascular actions to stimulate production of nitric oxide from the 

endothelium. This leads to capillary recruitment, vasodilation, increased blood flow, and 

subsequent augmentation of glucose disposal in classical insulin target tissues (e.g., 

skeletal muscle) (Muniyappa et al. 2007). The PI3K insulin-signaling pathway also 

regulates endothelial production of nitric oxide (NO). Insulin binding to its membrane-

bound receptor (IR) subsequently stimulates IRS-1/IRS-2 which activates PI3K leading 

to phosphorylation of protein kinase B (PKB/Akt) and phosphatidylinositol-dependent 

kinase 1(PDK-1) therefore stimulating endothelium nitric oxide synthase (eNOS) 

(Assunta Potenza et al. 2009). eNOS is an SH-dependent enzyme with a cysteine residue 

at its active site that is important in regulating vascular tone by catalyzing the production 

of NO from L-arginine (Figure 1; Chen et al. 1994, Vasdev et al. 2006). These and other 

cardiovascular actions of insulin contribute to the coupling of metabolic and 

hemodynamic homeostasis under healthy conditions. Cardiovascular diseases are the 

leading cause of morbidity and mortality in insulin-resistant individuals (ADA). 

Therefore, examination of markers of inflammation and oxidative stress that directly 

impact the vascular insulin signaling pathway may be relevant in evaluating the efficacy 

of specific therapeutic interventions aimed at ameliorating endothelial dysfunction. 
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Figure 1. Insulin-Mediated Vasodilation Pathway. 

 

2.6.2 Pathogenesis of Impaired Insulin-Mediated Vasodilation 

Increased adiposity is associated with the development of diabetes, hypertension, and 

cardiovascular disease. Oxidative stress is a complication of diets high in fat and 

increased adiposity and can directly induce hypertension through O2˙ˉ-mediated 

scavenging of the endogenous vasodilator NO (Dobrian et al. 2001, Taniyama et al. 

2003).  

Oxidative stress can occur as a result of decreased activity or expression of 

antioxidant enzymes with an increase in enzymatic generation of O2˙ˉ. Superoxide 

generation serves as a precursor for a number of reactive oxygen and nitrogen species. 
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Therefore oxidative stress results from an imbalance of reactive oxygen species (ROS) 

generation. Some major sources of ROS include uncoupling of the electron transport 

chain resulting in increases in NOS as well as by NADPH oxidases. Hyperglycemia and 

dyslipidemia also contribute to increased ROS production in addition to initiating insulin 

resistance through down-regulation of insulin signaling pathway intermediates 

(Newsholme et al. 2007). In addition to increases in oxidative stress, HFDs inhibit the 

vascular insulin signaling pathway. Since normal tyrosine-autophosphorylation of the 

insulin receptor (IR) is down-regulated in favor of serine/threonine phosphorylation, 

stimulation of intracellular signaling intermediates is impaired leading to downregulation 

of IRS-1, PI3K, PKB/Akt, and PDK-1 phosphorylation leading to further decreases in 

eNOS and NO production (Figure 2; Montagnani et al. 2002). Alterations to the cysteine 

residue of eNOS also results in loss of catalytic activity. Moreover, oxidation of the 

eNOS cofactor tetrahydrobiopterin causes the uncoupling of eNOS, resulting in 

decreased formation of NO and an increase in O2˙ˉ production (Thum et al. 2007, Xia et 

al, 1998). NO is not only a potent vasodilator, it also inhibits platelet aggregation, 

vascular smooth muscle cell (VSMC) migration and proliferation, monocyte adhesion, 

and adhesion molecule expression (Taddei et al. 2004). Decreasing NO bioavailability 

while at the same time producing excess ROS, therefore, leads to the endothelial 

dysfunction (Tian et al. 2012). Endothelial dysfunction, or impaired endothelium-

dependent vasodilation, is observed with insulin resistance, diabetes, obesity, and 

dyslipidemia is therefore a prominent component of hypertension, coronary heart disease, 

and atherosclerosis. 
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2.6.3 Oxidative Stress 

Proteins, lipids and DNA are cellular targets for oxidation, which lead to alterations in 

their structure and function. ROS can cause these alterations through oxidation of critical 

amino acid residues, such as cysteine residues as previously described for eNOS, which 

may alter enzyme activity or may affect transcriptional activities if they are within the 

binding site of transcription factors. Intra- or intermolecular conformational changes, 

such as the formation of disulfide bridges between or within proteins, may result in an 

alteration of protein activity or function. Metal-catalyzed oxidative reactions may cause 

modifications to membrane proteins and lipids, leading to degradation whereas 

peroxidation reactions may lead to degradation of membrane lipids with loss of 

membrane integrity, and release of aldehydes, possibly altering ion channel or receptor 

function. Finally, overstimulation of ROS-mediated signaling pathways may result in 

over-expression of inflammatory factors, increased vascular cell proliferation and 

apoptosis (Giordano et al. 2005, Vasdev et al. 2006). 

Numerous enzymes are involved in cellular regulatory functions, and oxidative 

modification of these enzymes may result in adverse effects contributing to the 

development and progression of hypertension and atherosclerosis. Antioxidants, which 

normally attenuate ROS-mediated damage, are often down-regulated in disease states. An 

important antioxidant pathway is the breakdown of O2˙ˉ by superoxide dismutase (SOD) 

to form hydrogen peroxide (H2O2), which is further converted by catalase or glutathione 

peroxidase to water and oxygen. Increases in the vascular levels of O2˙ˉ lead to 
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endothelial dysfunction through decreasing the bioavailability of NO. Animal and cell 

culture studies have demonstrated glutathione peroxidaxe (GPx) and glutathione 

reductase (GRed) are two additional key antioxidant enzymes that protect cells from 

oxidative damage. The enzymes themselves have been shown to be susceptible to 

modifications resulting from oxidation with loss of activity, resulting in perpetuation of 

oxidative stress (Cullen, 2010, Jones, 2006, Vasdev 2006). In both in vitro and in vivo 

studies of spontaneously hypertensive rats (SHRs) (models of human essential 

hypertension) there are increased ROS levels in vascular tissue, with a decrease in 

glutathionine (GSH) levels and antioxidant enzyme activity (Elmarakby and Imig, 2010, 

Dobrian et al. 2001).  

ROS act on yet another enzyme, angiotensin-converting enzyme (ACE), to 

increase catalytic activity, resulting in an increase in angiotensin II (AII) production 

(Takemori et al. 2007). AII is a potent vasoconstrictor implicated in the pathogenesis of 

hypertension and atherosclerosis. AII binds to its type 1 receptor, which results in an 

increase in contraction, hypertrophy, proliferation and apoptosis. AII stimulation of its 

type 1 receptor also increases the production of O2˙ˉ by the enzyme NADPH oxidase 

(Roberts et al. 2000). This enzyme is implicated as a major source of oxidative stress in 

cardiovascular disease. AII-induced oxidative stress (via NADPH oxidase) may be 

responsible, at least in part, for the decrease in NO bioavailability and the subsequent 

endothelial dysfunction found in hypertension and atherosclerosis. 

 

2.6.4 T2D, Obesity, and Vascular Dysfunction 
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A final link between adipokines, vascular dysfunction and cardiovascular disease 

involves the influence of perivascular adipokines, adipokines released from the 

immediate adipose tissue adjacent to the vasculature, on the vascular effects of insulin. 

Insulin normally induces vasodilation in muscle tissue to promote high glucose uptake 

and vasoconstriction in muscle tissue with low glucose uptake (Clark et al. 2003). This 

involves a delicate balance of the vasodilatory effects of NO and the vasoconstrictor 

effects of endothelin-1 (Blendea et al. 2003). This insulin-mediated blood flow is a major 

determinant of whole-body insulin resistance. In obesity, NO production is reduced 

whereas endothelin-1 production is increased along with reduced capillary recruitment 

(Sacks et al. 2007). Adipokines secreted by perivascular AT are believed to contribute to 

these changes that would work together to impair blood flow. For example, TNF-alpha 

has been shown to impair insulin-induced vasodilation (Enringa et al. 2007) possibly 

through reduced expression of IRS1. Adiponectin also influences insulin signaling, but in 

contrast to TNF-alpha and IL-6, is associated with increased sensitivity to insulin and 

increased glucose uptake (Hopkins et al. 2007). 

 

2.7 Diabetes and increased risk of cardiovascular disease 

Cardiovascular disease (CVD) in the US is the leading cause of mortality and accounts 

for 36% of all deaths. Furthermore, the economic burden of CVD was estimated as $475 

billion dollars in 2009 in both direct and indirect costs (AHA, 2010). Risk factors for 

CVD include both non-controllable factors such as age, gender, ethnicity, and genetics, as 

well as controllable factors such as diet, physical activity levels, weight, and smoking. 
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Other reversible risk factors include high blood pressure and unhealthy lipid profiles (low 

HDL, high LDL, high total cholesterol, and dyslipidemia). Additionally, other emerging 

independent factors such as hyperglycemia, postprandial lipidemia, hyperinsulinemia, 

oxidative stress, endothelial dysfunction, increased concentrations of inflammatory 

markers, and accumulating adipose tissue including perivascular adipose tissue have been 

suggested as contributing factors to the onset and progression of CVD (Cullen, 2000; 

Hackam and Anand, 2003; Pearson et al. 2003; Willerson and Ridker, 2004). With the 

US population currently experiencing a high rate of events including a large aging 

population, as well as an increased prevalence of obesity, metabolic syndrome, and T2D 

there is potential for a dramatic increase in the incidence of CVD. In fact, the AHA 

(2010) has estimated that in 2030 40.5% of the population within the US will develop 

CVD as compared to 37% of the population in 2010 resulting in an increase in the 

economic burden of CVD to $818 billion in direct costs and indirect costs of $276 billion. 

The risk of deaths of patients with type 2 diabetes from CVD-related events is 2 to 4 

times higher as compared to persons without diabetes (Buse, 2007).  Among white, non-

hispanic Americans, the age-adjusted prevalence of coronary heart disease (CHD) is 

twice as high among those with type 2 diabetes as among those without diabetes (Isomaa 

et al, 2001). These cardiovascular events associated with T2D as well as the high 

incidence of other macrovascular complications, such as strokes and amputations, further 

complicate the treatments and outcomes of illness and add to the already enormous 

economic burden of T2D. Multiple modifiable risk factors for late complications in 

patients with T2D, including hyperglycemia, hypertension, and dyslipidemia, increase the 
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risk of a poor outcome (Nandish et al, 2011). Recent guidelines from the ADA and other 

national organizations such as the AHA recommend a multifactorial approach to the 

management and treatment of diabetes and diabetes-related CVD risk factors.  

The NCEP ATP III and the AHA consider diet modification as a primary 

approach to prevent and treat hyperlipemia and hypertension. In 2010, the USDA 

released the 2010 “American Dietary Guidelines” (DGA) which emphasized healthy 

eating behaviors and physical activity aimed at reducing the prevalence of overweight 

and obesity and diet-related chronic disorders. AHA set forth nutritional guidelines aimed 

at preventing CVD and stroke or reducing associated risk factors. This guideline targeted 

5 major dietary intake factors including increasing daily fruit and vegetable intake, 

increasing consumption of fatty fish, reducing sodium as well as sugar-sweetened 

beverages, and increasing daily fiber intake. In a two-year follow-up, it was demonstrated 

that participants who followed the AHA nutritional guidelines did see significant 

improvements in measured lipid and cardiometabolic parameters (Redaelli et al. 2012)  

However, according to NHANES data, the prevalence of meeting all seven AHA health 

metrics at ideal levels was 1.2% in 2005-2010 (Shay et al, 2013). Moreover, only 20% of 

adults followed at least two dietary recommendations. Interestingly, in a recent study it 

was demonstrated that clinical trials that focused on only 1 of the 5 healthy eating factor 

goals, specifically fiber, resulted in a significantly greater adherence rate. Furthermore, 

those nutrition interventions that focused on daily fiber consumption had improvements 

in CVD risks (Post et al. 2012). 
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While it is agreed upon that meeting a greater number of healthy eating 

parameters in accordance with the AHA guidelines results in decreases in CVD mortality 

as evidenced by a 49% risk reduction in all-cause mortality in individuals who met all 

healthy eating factors (Ford et al.), only a minor percent of the population fits into this 

quintile as described previously. Therefore, finding simple dietary strategies, which have 

the potential to attenuate cardiometabolic risk factors, which are easy to adhere to and 

incorporate into a normal diet may prove to be tremendously beneficially to populations 

such as patients with T2D who are at increased risk.  

 

 

 

2.8 Nutrition interventions and dietary fibers 

2.8.1 Potential Use of Dietary Fibers in the Treatment of T2D 

Dietary fiber is defined as the portion of plants that is composed of complex carbohydrate 

polymers of simple sugars. Fibers can be classified as either soluble fiber or insoluble 

fiber. Soluble fibers, commonly referred to as viscous fiber, consist of gel-forming 

substances, such as pectin, gum, and mucilage that tend to be efficiently degraded by 

bacteria in the colon. Insoluble fibers, known as bulk fiber, consist of structural or matrix 

fiber such as, lignin, cellulose, and some hemicellulose that passes through the body 

unchanged (Gray, 1995; Hunt et al. 1993). The fibers used in this study, flaxseed (Linum 

usitatissimum) and psyllium (Plantago ovato) are both water-soluble fibers. Soluble 

fibers can function in nutrient metabolism in the body by delaying gastric emptying as 



49 

 

well as adsorbing or binding bile acids and products of fat digestion such as bile acids 

during passage through the intestines (Anderson et al. 1988; Hunt et al. 1993; Levin et al. 

1990). Epidemiological data suggests that dietary fibers may function to attenuate 

hyperglycemia (Anderson et al. 2009). Clinical trials have supported this association 

between dietary fiber intake and regulation of glucose homeostasis by demonstrating 

dietary fiber decreases post-prandial glucose and insulin responses in T2D patients 

(Anderson et al. 1999; Chandalia et al. 2000; Pastors et al. 1991; Rodrı́guez-Morán et al. 

1998). Additionally, clinical research has shown that fibers improved long-term glucose 

control in T2D (Giacco et al. 2000; Wolk et al. 1999). The benefits of a high-fiber diet on 

reducing glucose levels are still controversial (Nuttall et al. 1993) and have not been fully 

studied or appropriately tested in T2D as there are few controlled studies. Furthermore, 

the considerable amount of fiber used in these studies is controversial due to lack of 

adherence in a normal diet and adverse effects that are associated with sudden increases 

in fiber or long term very high fiber consumption such as gastrointestinal distress, 

disruption of the gut flora, and impaired mineral absorption (Beattie et al. 1988; Scott et 

al. 1988; Tattersal et al. 1990). Alternatively, the ADA recommends a fiber consumption 

of 25 g/d for women and 38 g/d for men, however, it is estimated that the average U.S. 

adult consumes only 15 g/d which is well below the recommended intake. There is 

general consensus that moderate amounts of fiber from a variety of plant-based food 

sources are a vital component of a healthy diet, thus most controversy regarding the 

effects of fiber in the regulation of glucose is not due to the effectiveness of the dietary 

approach but whether or not it is feasible.  
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2.8.2 Reported Benefits of Psyllium and glucose control 

Psyllium that is used for the majority of the world’s consumption is comprised of the 

mucilage portion of the psyllium plant obtained from the outer layer of the seed known as 

the seed coat. Mucilage yield amounts to about 25% (by weight) of the total seed yield. 

The mucilage is often referred to as husk, or ground psyllium husk. The ground husk 

mucilage is a white fibrous material that is hydrophilic, meaning that its molecular 

structure causes it to attract and bind to water. Upon absorbing water the mucilage can 

increase its volume up to ten-fold. Previous studies have demonstrated a beneficial effect 

of dietary psyllium-derived fiber for reducing cholesterol levels in patients with 

hypercholesterolemia (Anderson et al. 2000; Olson et al, 1997; Sprecher et al. 1993) 

whereas the effect on glucose serum levels of a diet supplemented with soluble fibers 

varies according the dose consumed (Chandalia et al. 2000; Weickert et al. 2008). In 

studies examining the dosage amount of psyllium required to elicit a change in glucose-

related outcomes has demonstrated that there is little change in measured variables using 

lower quantities of Psyllium (7 g/d) ( Rodrı́guez-Morán et al. 1998). However, when the 

dose is increased up to 20 g/d there was a significant reduction in both basal and 

postprandial hyperglycemia (Abraham et al. 1988; Anderson et al. 2000; Jenkins, 2002; 

Pereira et al. 2001). 

 

2.8.3 Nutrient Composition of Flaxseeds 
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Flaxseed is a food that is commonly consumed as whole seed, ground seed (powder or 

meal), or in its oil form. The nutritional composition varies between the three forms of 

flaxseed (refer to Table 1) as flaxseed oil is devoid of any fiber and lignan components 

but is unique as it contains high percentage by weight of both monounsaturated fatty 

acids (18%) as well as polyunsaturated fatty acids (73%) and is the richest food source of 

alpha lineoleic acid (ALA, 55%). Studies conducted on the bioavailability of ALA in 

flaxseed after consumption indicates that both flax oil and ground flaxseed provide 

significant levels of ALA after digestion, however, whole flaxseed did not (Katare et al. 

2012). The whole seed and ground meal forms contain both insoluble and soluble fibers. 

The soluble fiber content of flaxseeds is derived from the mucilage portion of the seed 

and contributes to approximately 25% of the total dietary fiber of flaxseeds. Previous 

research in both animal models as well as clinical trials has demonstrated that this soluble 

fiber component may explain the cardioprotective effects attributed to flaxseeds (Carter 

et al. 1993; Kritchevsky et al. 1995; Wolever et al. 1995). In addition to high 

concentrations of the omega-3 fatty acid ALA and soluble fibers, flaxseeds are also a 

good source of multiple micronutrients associated with vascular health including vitamin 

E as gamma-tocepherol and the B vitamins (thiamin (B1), riboflavin (B2), niacin (B3), and 

pyridoxine (B6)). Flaxseeds also contain high concentrations of folate, potassium, 

phosphorous, magnesium, and zinc, however, due to the presence of phytic acid and 

oxalate which act as chelators and bind magnesium and zinc to form insoluble complexes 

in the intestine (Robson, 2009), the bioavailable amounts of these minerals is relatively 
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low. It is worth noting that some studies of animal models indicate that phytic acid 

independently lowers blood glucose levels (Lee et al. 2006).  

 
 
Table 1. Comparison of the Nutrient Composition of Flaxseed Forms 
Flaxseed 
Form 

Weight 
(g) 

Energy 
(Kcals) 

Total fat 
(g) 

Total 
ALA (g) 

Total fiber 
(g) 

SDG content 
(mg)a 

Whole 41.2 220 17.37 11.84 11.2 33.4 
Ground 28 150 11.8 8.04 7.6 24.32 
Oil 54.4 481 50.4 39.1 0.0 0.0 
Source: NDSR, 2012 
a secoisolariciresinol diglucoside 

 

2.8.4 Flaxseed-derived lignans and potential antioxidant properties 

Flaxseeds also contain a large concentration of phytoestrogen lignans. Plant lignans are 

phenolic compounds which are a class of chemical compounds consisting of 

a hydroxyl group (-OH) bonded directly to an aromatic hydrocarbon group. Plant lignans 

are found in a variety of commonly consumed foods and are considered naturally 

occurring phenolics. After ingestion they are metabolized via the xenobiotic pathway 

which is also the pathway responsible for drug metabolism. The carbohydrate portion is 

removed by intestinal bacteria to form the bioactive mammalian lignans: enterodiol and 

enterolactone (Bloedon et al. 2004). These mammalian lignans are then absorbed in the 

small intestine and conjugated in the liver. Conjugated lignans are then excreted from the 

body through urine and bile in addition to undergoing enterohepatic circulation which 

promotes reabsorption. Flaxseeds are the richest source of the lignan precursor 

secoisolariciresinol diglucoside (SDG) in addition to also containing minor lignan 

components isolariciresinol, pinoresinol, and matairesinol (Hutchchins et al. 2001; 

Meagher et al. 1999). Flaxseed consumption has demonstrated a linear, dose-dependent 
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relationship with urinary excretion of enterodiol, enterolactone, and total lignans in 

clinical trials (Morton et al. 1995). Prasad (1999) demonstrated that SDG, isolated from 

flaxseeds, lowered serum total cholesterol and LDL cholesterol and reduces 

hypercholesterolemic atherosclerosis in rabbits.  

Recent clinical trials have demonstrated flaxseed-derived lignans have serum 

cholesterol and glucose lowering effects in hypercholesterolemic subjects (Bloedon et al. 

2008; Pan et al. 2007; Zhang et al. 2008). Additionally, lignans, such as SDG, and its 

mammalian metabolites secoisolariciresinol, enterodiol, and enterolactone have 

demonstrated antioxidant activities (Prasad, 2000; Prasad, 1997). Studies exploring the 

effects of flaxseed-derived lignans have established antioxidant activity in vivo and in 

vitro resulting in increased total antioxidant capacity as well as decreased lipid 

peroxidation (Hu et al. 2007; Kitts et al. 1999; Niemeyer and Metzler, 2003). However, 

whole flaxseed had no significant effect on markers of lipid peroxidation in humans 

(Cunnane et al. 1995; Cunnane et al. 1993), but partially defatted flaxseed lowered serum 

protein thiol groups, indicating increased oxidation (Jenkins et al. 1999). The antioxidant 

activity of secoisolariciresinol and enterodiol found in flaxseeds is higher than that of 

vitamin E or the parent glucoside present in flaxseed (Prasad, 2000). As described earlier, 

oxidative stress has been shown to be a major contributor to the onset and progression of 

insulin resistance and T2D. Interestingly, SDG also reduces the incidence of diabetes in 

streptozotocin-induced diabetic rats (Prasad et al. 2000) and Zucker rats, a model for type 

2 diabetes (Prasad, 2001). 
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2.8.5 Flaxseeds-derived omega 3, T2D and CVD risks 

As previously stated (see Table 1), flaxseeds are a rich source of ALA. ALA is an 

essential omega-3 fatty acid which cannot be synthesized in the human body though can 

be converted (in variable amount) into the longer chain omega 3 fatty acids 

eicosapentaenoic acis (EPA) and docosahexanoic acid (DHA) (Burdge, 2004). The 

majority of research regarding potential benefits of flaxseed consumption is focused on 

markers of cardiovascular disease. While results are still inconclusive, recent data 

suggests that consumption of flaxseeds in all forms is associated with attenuated CVD 

risks. Potential mechanism by which flaxseeds may exert this protective effect include 

reduction of inflammation and oxidative stress as well as reducing total serum 

cholesterol, improving serum lipids, decreasing platelet aggregation, and attenuating 

vasoconstriction. These effects are primarily attributed to the large concentration of ALA 

as well as phytoestrogen lignans and the soluble fiber content of flaxseeds as previously 

discussed. Research regarding flaxseed consumption in animal models has primarily 

focused on the effects of flaxseed lignans in improvement of serum lipids (as discussed 

in2.7.2). However, when weanling female Wistar rats were fed diets supplemented with 

200 g/kg flaxseed for 4 weeks as compared to rats supplemented with ALA or diets high 

in saturated fatty acids, the flaxseed group demonstrated significantly decreased oxidative 

stress levels in response to the administration of a oxidative stress inducer, CCL4 

(MacDonald-Wicks and Garg, 2002).  

Epidemiological data on flaxseed consumption and risk of clinical studies 

observing the use of flaxseed oil have demonstrated that ground flaxseed intake can result 
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in modestly reduced total cholesterol and LDL-C concentrations without significantly 

decreasing HDL-C (Albert et al., 2005; Hu et al. 2004). Eleven major studies (Mantzioris 

et al, 1994; Allman et al. 1995; Caughey et al. 1996; Gibson et al. 2000; James et al. 

2000; Nordstrom et al. 1995; Nestel et al. 1997; Cunnane et al. 1993; Loria et al. 1993; 

Guan et al, 1998; Paschos et al. 2007; Ueshima et al. 2007) have reported that flaxseed-

derived ALA levels are inversely correlated with primary cardiovascular events. The 

results are from large sample populations or collected over multiple years. More evidence 

that dietary ALA has significant cardioprotective benefits has been demonstrated in 

secondary prevention trials. Studies such as the Nurses' Health Study (Hu et al. 1994) 

found that the intake of ALA in the diet protected against fatal ischemic heart disease and 

that this protection probably resulted from an antiarrhythmic effect of ALA. However, 

the protective effect of ALA did not extend to nonfatal myocardial infarction, for which 

there was a nonsignificant trend for an effect. Although there may be a direct effect on 

cardiac arrhythmias from dietary ALA, it is likely that its effect was mediated, in part, 

through the syntheses of EPA and DHA. In the Lyon Diet Heart Study (Axelson et al. 

1982), ALA was associated with a decreased risk of recurrent fatal and nonfatal 

myocardial infarction, and a 73% reduction in risk of primary end points (cardiac 

mortality and morbidity) between the experimental and control groups. In a double-

blinded, placebo-controlled study (Shakir et al. 2007) conducted in India, 120 patients 

with suspected acute myocardial infarction were followed and supplemented with 2.9 

g/day of ALA (enriched oil). After one year of follow-up, both cardiac death and nonfatal 

myocardial infarction were significantly lower in this group of patients compared with 
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those on placebo. Animal models exploring the relationship of flaxseed and CVD have 

demonstrated that flaxseed (0.4 g/day) effectively inhibited the expression of 

inflammatory markers such as interleukin (IL)-6, vascular cell adhesion molecule 

(VCAM)-1 in aortic atherosclerotic tissue from LDL receptor-deficient mice (Cunnane et 

al. 1995). It was concluded that an important antiatherogenic role of ALA may involve a 

potent anti-inflammatory action. These results have further been demonstrated in clinical 

trials. Two clinical trials with healthy subject populations have observed significant 

reductions of TNF-α, IL-1-beta, thromboxane B5 and prostaglandin E5 after 

administration of an ALA-rich diet (13.7 g/day of ALA from flaxseed) (Austria et al. 

2008). Additionally, in response to 2 g/d of flaxseed-derived ALA, expression of VCAM-

1 and E-selectin were significantly decreased (Bloeden et al, 2008). ALA intake (8 g/day) 

from a flaxseed source decreases serum concentrations of serum amyloid A and IL-6 

(Alonso et al. 1995). Additionally, Nestel et al (1997) reported that in obese human 

subjects, 20 g/day of ALA from flaxseed oil significantly increased arterial compliance 

and decreased LDL-C oxidation when it was compared with an oleic acid and saturated 

fat intervention. 

Flaxseed consumption may improve glucose regulation. Studies in animal models 

of diabetes mellitus have shown that SDG from flaxseed can prevent the development of 

type 1 diabetes by approximately 71% (Prasad, 2000) and T2D by 80% (Prasad, 2001). 

Pan et al (2007) reported more modest but statistically significant improvements in 

glycemic control in type 2 diabetic patients treated for 12 weeks with 360 mg/day of 

flaxseed-derived lignan supplement. Ingestion of flaxseed or ALA may help in 
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preventing or treating a variety of diabetic complications. Bloedon et al (2008) 

demonstrated that 40 g/d of ground flaxseed significantly improved insulin sensitivity in 

individuals with elevated LDL-C concentrations. Furthermore, studies in type 2 diabetic 

patients, 5 g/day of flaxseed oil consumption has been associated with a significant 

reduction of plasmin alpha-2-plasmin inhibitor complex level, plasminogen activator 

inhibitor-1 activity and thrombin antithrombin III complex level after a two week of 

intervention (Toghi et al. 2004). In an animal model, Velasquez et al (2003) reported that 

flaxseed meals reduced proteinuria and ameliorated nephropathy in type 2 diabetes 

mellitus. Due to the strong association between obesity and T2D, caution should be 

exercised in recommendations for a potentially high fat diet. Studies examining the 

effects of flaxseed consumption on changes in body mass have not found evidence that 

flaxseed induces weight gain or increases in body fat (Faintuch et al. 2007; Nelson et al. 

2007). 

2.9 Consequences or Implications 

The overall goal of this study is to contribute to the understanding of how flaxseed 

supplementation may help manage hyperglycemia in diabetes as well as improve vascular 

health. The results of this study will provide new insight into the feasibility of use 

regarding a plant-based dietary treatment for T2D that is predicted to have few, if any, 

side-effects and is affordable (as compared to oral hypoglycemic medications) which 

would also help to alleviate the economic burden of diabetes for many individuals from 

low socioeconomic backgrounds. Additionally, the findings of this study regarding the 

use of dietary interventions to reduce inflammation and oxidative stress which are similar 
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underlying factors of T2D, endothelial dysfunction, and cardiovascular disease will be 

applied to future work regarding the effects of diabetes on vascular health and the use of 

nutritional intervention therapy in an effort to further our understanding of the 

devastating effects of poor dietary habits and obesity on vascular health. The potential 

benefits of this study will be to establish and characterize how flaxseed supplementation 

may attenuate hyperglycemia and increased cardiovascular risks in non-insulin dependent 

diabetes patients and design future goals for implementing interventions with the aim of 

avoiding the adverse consequences of impaired insulin regulation, hyperglycemia and 

subsequent disease and help to establish optimal health.  

 

 

 

 

CHAPTER 3 

MATERIALS AND METHODS 

3.1 Study Design 

In this comparative single-blinded randomized double-arm parallel efficacy parallel trial, 

participants were randomly assigned to supplementation for eight weeks with 28 g/d of 

ground flaxseed (intervention) or the control, 9 g/d of ground psyllium husks, which was 

standardized to control for fiber content (Table 2). Furthermore, this was designed to be a 

pilot study to determine the following: 1) would participants adhere to the previously 

stated volumes of test foods supplemental to their normal diet for an eight week trial 
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period; 2) would test food volumes be adequate to elicit a detectable change in the 

measured variables; 3) would the trial length be long enough in order to elicit previously 

observed effects of either ground flaxseed supplementation or psyllium supplementation 

on measured outcomes including glucose regulation, lipid profiles, circulating 

inflammation concentrations, and markers of oxidative stress. Participants were asked to 

refrain from making any additional changes to their usual diet or activity levels 

throughout the duration of the entire study. The study was approved by Arizona State 

University’s Institutional Review Board (Appendix A). 
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Figure 2.  Study Timeline and Milestones for Eligible Participants.   

 

3.2 Participants and Recruitment 

3.2.1 Participants 

Participants for this study included 17 adults (18 - 75y) who had a medical diagnosis of 

non-insulin dependent type 2 diabetes mellitus at least 6 months prior to enrollment. 

Subjects were recruited from the Phoenix Metropolitan area through flyers (Appendix B), 

diabetes support groups and events, health fairs, local hospitals, clinics and doctor’s 

offices.  

 

3.2.2. Initial Screening 

Subjects were pre-screened by completing an online questionnaire (SurveyMonkey.com) 

(Appendix C) designed to assess the exclusion criteria. 

 

3.2.3 Exclusion Criteria 

Exclusion criteria included: history of flaxseed allergies, current fiber supplement use, 

insulin use, currently pregnant or planning to become pregnant, currently breastfeeding, 

active disease states (other than diabetes), and anticipated changes to diet or physical 



61 

 

activity levels. Prescription medication use by participants, including oral hypoglycemic 

agents, statins, and hypertensive medications were required to have been consistent prior 

to the trial and were to remain consistent throughout the study. 

 

3.2.4 Rolling Enrollment  

Participants were enrolled after successful completion of initial online survey. Participant 

inclusion into the 8 week trial was based upon a rolling recruitment. Enrollment began on 

March 2014 and was concluded on December 2014.  

 

 

 

3.2.5 Consent Visit 

A total of 66 potential participants responded to the online questionnaire (Fig. 3). Those 

subjects who passed the pre-screening stage were invited for an initial visit at the School 

of Nutrition and Health Promotion (SNHP) Research Facility in the Arizona Biomedical 

Collaborative Building (Phoenix, AZ). Informed consent was obtained during this visit 

(Appendix D and E) and each subject completed a medical history questionnaire 

(Appendix F). Following consent, glycated hemoglobin (HbA1c) was determined using a 

small blood sample collected by fingerprick (DCA Vantage autoanalyzer, Siemens, 

Washington, D.C.). Additionally, anthropomorphic measurements were recorded as 

described later (refer to 3.5.1).  
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66 potential participants completed online survey 

37 participants screened 

19 respondents reported 

no diagnosis of T2D 

 

3 respondents did not meet 

age criteria (18-75 y) 

1 respondent currently 

breastfeeding or 

pregnant
1 respondent not willing to 

travel 

4 respondents currently on 

insulin 

1 respondent started taking 

insulin prior to consent 

 

16 respondents did not reply 

to acceptance notice 

20 participants consented 

Flax n=9 Control n=8 

1 participant had 

adverse response to 

blood draw 

Figure 3.  Study CONSORT flow diagram. 

2 participants lost to 

follow-up (1 flax, 1 

control) 
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3.3 Treatment and Control Foods 

The test foods consisted of ground flaxseed (Midwestern Flax, Valley City, ND) and 

ground psyllium husks (NOW Foods, Bloomindale, IL). Test foods were measured by 

weight and packaged in individual serving food grade plastic bags (American Plastics, 

Tracy, CA) in the Nutrition Metabolic Kitchen, located in the Arizona Biomedical 

Collaborative Building. Participants received 56 individually packaged servings for each 

day of the 8 week study intervention period. Subjects were given instructions on proper 

storage as well as suggestions on how to incorporate the fiber supplements into their daily 

diets (Appendix G). Participants were instructed to consume one individual package per 

day and asked to consume the supplement every day of the week and at minimum 5 days 

of the week. Furthermore, subjects were allowed to distribute the fiber supplement 

throughout the day as they wished in an effort to improve compliance. The selected dose 

of the treatment fiber, ground flaxseed (28 g/d) is equivalent to approximately one quarter 

of a cup. Ground psyllium husks was chosen for the control intervention due to its 

common use as a dietary fiber bulking agent in addition to its reported cholesterol and 

glucose lowering effects (Ziai et al. 2005). Psyllium has demonstrated outcome 

improvements are linearly related to the consumed dose and in clinical trials relatively 

low doses of psyllium without dietary instructions (< 9 g/d) are not significantly observed 

with improvements in glucose regulation (Anderson et al. 1999; Theuwissen and 

Mensink, 2008; Ziai et al. 2005). The amount of ground psyllium (9 g/d) used for the 

intervention is equivalent to approximately 1.5 teaspoons and was standardized according 

to fiber to ensure equal fiber content in both test food variables (Table 2). To monitor 

compliance and whether participants maintained their usual dietary habits, participants 
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were asked to complete a 3-day food record (Appendix H) 3 days prior to their first 

fasting blood draw and again 3 days prior to their final fasting blood draw. In addition, 

they were given calendars which corresponded to the intervention period and asked to 

check off the day the supplements were consumed (Appendix I). The 3-day food records 

were reviewed and analyzed using Food Processor software (Esha Research, Salem, OR). 

Dietary variables of interest were estimates of total energy intake, percentage of energy 

provided by macronutrients (carbohydrate, fat, and protein), and total fiber consumed by 

the participants.  

Table 2. Nutrient Comparison of Test Foods 

Nutrient Ground Flaxseed (28g) Psyllium (9g) 

Total Energy (Kcals) 150 34 
Total Fat (g) 11.8 0.0 
Total ALA (g) 8.04 0.0 
Total carbohydrates (g) 8.09 8.0 
Total fiber (g) 7.6 7.0 
Soluble fiber (g) 
Total protein (g) 

2.8 
5 

7.0 
0.0 

Thiamin (B1) (mg) 0.46 0.0 
Riboflavin (B2) (mg) 0.045 0.0 
Niacin (B3) (mg) 0.862 0.0 
Vitamin B6 (mg) 0.132 0.0 
Folate (DFE) 24.0 0.0 
Calcium (mg) 71.0 30.0 
Magnesium (mg) 9.63 0.0 
Phosphorous (mg) 1079.0 0.0 
Potassium (mg) 1366.0 0.0 
Zinc (mg) 1.2 0.0 
SDG content (mg)a 24.32 0.0 

Source: NDSR, 2012 
a SDG, Secoisolariciresinol digluscside 

 

3.4 Blood Collection  

Fasting blood samples were collected at the beginning and end of the 8 week dietary 

intervention period. Fasting blood draws occurred in the morning between 7:00 am and 
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10:00 am at both time points. Participants were asked to fast for 10-12 hours prior to their 

fasting blood draws at the SNHP research facilities For each fasting visit, blood was 

collected from a routine venous puncture procedure using a 23-gauge butterfly venous 

puncture needle. If a venous blood draw was not possible from the antecubital vein in 

either arm, blood was collected from a vein in the subject’s non-dominant hand. Blood 

was collected into vacutainer tubes as follows: one separating tube containing serum-

clotting factor (7 ml), one tube containing EDTA for plasma (10 ml), and one potassium 

oxalate and sodium fluoride containing vacutainer tube for plasma (4 ml). Blood was 

immediately centrifuged at 10,000 x g at 4°C for 20 minutes, and serum/plasma was 

separated, aliquoted, and stored at -80°C for future analyses.  

 

3.5 Measurements 

3.5.1 Anthropometric Data 

Subject blood pressure was taken at one time-point during each visit prior to any 

additional measurements from the non-dominant arm (unless contraindicated) following a 

5 to 10 minute seated rest period (both feet resting on floor) using a Medline MDS2001 

automated blood pressure monitor (Medline Industries, Inc., Mundelein, IL). Height was 

measured in centimeters using a wall-mounted stadiometer. Body weight (in kilograms), 

percent body fat, and body mass index (BMI, kg/m2) were measured using a calibrated 

Tanita body composition analyzer (model TBF- 300A, Tanita Corporation, Tokyo, 

Japan). Waist circumference (in centimeters) was measured in inches using a flexible 

tape measure at the naturally smallest point of the natural waist, between the lowest rib 
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and the iliac crest. All measurements were performed at a single time point by the same 

study investigator to increase reliability and validity. 

 

3.5.2 Glucose and Lipids  

Fasting glucose concentrations were measured using an automated chemistry analyzer 

(COBAS C111 chemistry analyzer, Roche Diagnostics, Indianapolis, IN). Glucose was 

measured in plasma which was collected into a vacutainer tube containing potassium 

oxalate and sodium fluoride to prevent glycolysis. Measurements of lipids which 

included total cholesterol, low density lipoprotein cholesterol (LDL-C), high density 

lipoprotein cholesterol (HDL-C), and total triglycerides, were measured in serum and 

determined enzymatically on a COBAS autoanalyzer (COBAS C111 chemistry analyzer, 

Roche Diagnostics, Indianapolis, IN).  Very low density lipoprotein (VLDL)-cholesterol 

was calculated as total triglycerides/5.  

 

3.5.3 Fasting Insulin and HOMA-IR 

Insulin was measured in serum using a commercially available kit, ultra-sensitive human 

insulin radioimmunoassay kit (Cat. No. HI-14K; EMD Millipore, Billerica, MA). To 

determine insulin sensitivity, the homeostatic model assessment of insulin resistance 

(HOMA-IR) was calculated from fasting glucose and insulin values as follows: [fasting 

glucose (mg/dL) x fasting insulin (mg/dL)]/405. The calculated HOMA-IR value is 

highly correlated with the euglycemic clamp method (r2=0.88) (Matthews et al. 1985). 

Higher levels of HOMA-IR indicate diminished insulin sensitivity.  
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3.5.5 Markers of Inflammation and Oxidative Stress 

Increases in inflammatory markers, such as TNF-alpha, and reactive oxygen species 

(ROS) favor oxidative stress. Additionally, total nitrate and nitrite concentrations (i.e. 

NOx) are often utilized as a clinical marker for ROS generation and vascular dysfunction. 

TNF-alpha was measured in plasma using a commercially available ELISA kit (Cat. No. 

EH3TNFA; Life Technologies, Thermo Scientific, Waltham, MA) and measured at 450 

nm on a Multiskan GO microplate spectrophotometer reader (Thermo Scientific, 

Waltham, MA). Lipid peroxidation, a marker of oxidative stress, was measured using a 

commercially available thiobarbituric acid reactive substances (TBARS) assay kit (Cat. 

No. 0801192; Zeptometrix, Buffalo, NY) using a miniaturized version of the standard 

protocol (Appendix J) based on the reaction between malondialdehyde (MDA) and 

thiobarbituric acid (TBA). Absorbance was measured spectrophotometrically at 532 nm 

on a microplate absorbance reader (iMark plate reader; BioRad, Hercules, CA). Plasma 

levels of TBARS are expressed as nM MDA/L. Additionally, plasma concentrations of 

NOx were measured in EDTA plasma with a commercially available Greiss assay kit 

(Cat. No. 780001; Cayman, Ann Arbor, MI) according to the manufacturer’s protocol. 

Total plasma NOx activity was measured at wavelengths 450 nm and 550 nm (Multiskan 

Go; Thermo Scientific, Waltham, MA). Measurements at 550 nm were subtracted from 

measurements taken at 450 nm to correct for imperfections in the microplate.  Plasma 

concentrations of NOx are expressed in nM/L.  
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3.6 Sample Size Calculation 

This was designed to be a pilot study to determine the following: 1) would participants 

adhere to the previously stated volumes of test foods supplemental to their normal diet for 

an eight week trial period; 2) would test food volumes be adequate to elicit a detectable 

change in the measured variables, and 3; would the trial length be long enough to observe 

significant changes in previously described endpoint measurements. The primary 

endpoints were absolute change from baseline to week 8 in HbA1c (%) and plasma 

glucose. Secondary endpoints included: absolute changes in BMI (kg/m2), waist 

circumference, body fat %, fasting insulin, HOMA-IR, serum triglycerides, total 

cholesterol, HDL-C, measured LDL-C, calculated VLDL-C, plasma oxLDL (i.e. 

TBARS), serum TNF-alpha, and total plasma NOx. As previously stated, this study was a 

pilot trial in order to assess feasibility and generate data for future large scale clinical 

interventions. Conducting a pilot trial before a main study may potentially help to avoid 

erroneous main trials due to flaws in the study design and may increase the likelihood the 

main study will succeed. A modified power analysis for feasibility and pilot studies was 

performed to determine the sample size necessary to detect significant changes in the 

primary endpoints. 

Based upon published data (Hutchins et al. 2013; Mani et al. 2011), it was 

determined that a total of 50 participants would be needed to provide at least 80% power 

(at a significance level of 0.05) to observe an estimated 19.7% reduction in plasma 

glucose and 15.6% reduction in HbA1c for a large scale study design. This sample size 

was modified based upon recommendations proposed by Stallard (2012) and Chow 
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(2011) who collectively proposed that an appropriate sample size could be achieved by 

acquiring 8 to 15 participants per sample group to sufficiently mirror a large clinical trial 

with similar endpoints. A sample size of 16 total participants (8 per sample group) was 

constructed upon these recommendations. To account for an expected 20% attrition rate 

at follow-up additional participants were recruited (Fig. 4).  

 

3.7 Statistical Analyses 

Data was analyzed using SPSS 22.0 (IBM, 2014, Chicago, IL). Differences in baseline 

measurements between the flaxseed treatment group and the control group were 

determined using a student independent samples t-test. Between group changes from 

baseline to week 8 were determined by analyzing the absolute net change (week 8 values 

minus baseline values, Δ) with Mann Whitney U non-parametric analyses. Results are 

expressed as means ± standard deviation (SD). Results were considered significant at 

95% or above (p-value of ≤0.05). 

CHAPTER 4 

RESULTS 

 

4.1 Baseline Participant Characteristics and Dietary Intake 

Seventeen of the 20 enrolled participants (85%) completed all study related visits (Figure 

3). Baseline characteristics of the enrolled subjects are presented in Table 3. There were 

no significant differences in baseline measurements between the flaxseed and control 

groups (p>0.05). The mean age of participants in this study was 59.1 ± 7.8 years of age. 
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Additionally, the mean BMI (kg/m2) of the participants was 30.4 ± 5.8 and mean percent 

body fat was 34.9 ± 8.9%. Mean waist circumference (cm) for study participants was 

102.6 ± 16.4, both mean baseline measurements for waist circumference in women (98.6 

± 16.8 cm) and men (106.4 ± 16.0 cm) participants in this study were above the 

recommended healthy ranges for their respective gender (88 cm for women and 100 cm 

for men). Additionally, mean systolic blood pressure for participants (141.4 ± 13.9 mm 

Hg) fell within the American Heart Association’s diagnostic criteria for hypertension 

stage 1 (140-159 mm Hg) while the mean diastolic blood pressure of 77.1 ± 5.6 mm Hg 

was within the normal range (< 80 mm Hg). Finally mean baseline glycated hemoglobin 

(HbA1c) was 6.91 ± 1.7% which is considered within the diagnostic criteria for diabetes 

(> 6.5%).  

 

 

 

 

 

 

Table 3. Baseline Characteristics and Measurements for Study Participants 
Subject Characteristics Flaxseed (n=9) Control (n=8) p-valuea 

Age (mean ±SD), y 59.7±7.9 58.5±9.4 0.802 

Male sex, n  5 4 N/A 

Female sex, n  4 4 N/A 

Race/Ethnicity    

  White, n (%) 8 7  

  Non-Hispanic, n (%) 7 5  

  Black, n (%) 1 0  

  Asian, n (%) 0 1  

  Other, n (%) 0 0  

BMI (mean±SD), kg/m2 31.7±4.2 29.03±6.7 0.335 

Body Mass (mean±SD), kg 94.3±15.2 85.88±21.1 0.358 

Waist Circumference (mean ±SD), 

cm 105.0±12.7 100.0±20.3 0.548 

HbA1c (mean ±SD), % 7.1±1.5 6.7±2.0 0.333 
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Body Fat (mean±SD), % 36.4±3.2 33.3±2.9 0.483 

Systolic BP (mean±SD), mm Hg 141.8±14.4 141.0±14.0 0.912 

Diastolic BP (mean±SD), mm Hg 76.1±4.0 78.3±7.1 0.448 

Current Smokers, n (%) 0 0 N/A 
a Between group baseline measurements were analyzed using Student’s Independent samples t-test. 
Significance was set at α < 0.05.  
Abbreviations: HbA1c-glycated hemoglobin; BMI- body mass index; BP-blood pressure 
 

 

4.2 Nutrient Intake 

 
Analysis of nutrient intake from 3-day food records completed by all subjects the 3 days 

prior to baseline fasting blood draw and the 3 days prior to week 8 fasting blood draw 

showed no significant differences in nutrient intake between groups at baseline or at 8 

weeks (Table 4). Prior to the start of the nutrition intervention, participants were given 

compliance calendars to keep a tally of the days test foods were consumed. Based upon 

compliance records returned by 16 of the 17 participants, compliance with the study 

protocol was very high (92.8 ± 8 %). Additionally, there were no reported differences in 

adherence between the flaxseed (92.3 ± 10%) and control groups (93.3 ± 6%) during the 

8 week trial period. Data on compliance was missing in 1 subject (control group) which 

was not included in the subject adherence analysis.  

 

Table 4. Baseline and Week 8 Nutrient Intakes for Flaxseed and Control Groups. 

 Flaxseed 

n = 9 

 Control 

n = 8 

 Between 

Groups 

Variablea Baseline Week 8 Δb Baseline Week 8 Δb p-valuec 

Energy (kcal)d 

1925±394 1862±334 -63 1937±474 1830±444 -107 0.630 

Total Fat (g)d 59±31 62±25 +3 53±26 55±145 +2 0.847 

Fiber (g)d 22±6 28±5 +5 26±5 31±4 4.1 0.191 

Sodium (mg)d 2148±619 1851±672 -296 2338±936 2185±662 -153 0.700 
a Data is represented as Mean±SD. 
b Δ represents absolute net change from baseline to week 8. 
c Data was analyzed as week 8 values minus baseline values (absolute net change); p-

value represents Mann-Whitney U non-parametric test. 
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d Student’s independent t-test analysis determined there were no significant differences at baseline 

between the flaxseed and control groups for kcals (p=0.958), fat (p-0.683), fiber (p=0.159), or sodium 

(p=0.624) 

 

4.3 Anthropometric Characteristics 

The effects of the 8 week intervention on anthropometric measurements are shown in 

Table 5. Body mass (kg), BMI (kg/m2), waist circumference (cm), and percent body fat 

were not significantly different between the flaxseed and control groups throughout the 

trial period. Additionally, there were no significant changes within groups. Both systolic 

and diastolic blood pressures were comparable between groups from baseline to week 8.   

 
 
 

 

 

 

 

 

 

 

Table 5.   Anthropometric Measurements from Baseline to Week 8. 
 Flaxseed 

n = 9 

 Control 

n = 8 

 Between 

Groups 

Variablea Baseline Week 8 Δb Baseline Week 8 Δb p-valuec 

Body Mass 

(kg) 
94.3±15.2 93.5±14.7 -0.8 85.9±21.2 85.8±21.4 -0.1 0.665 

BMI (kg/m2)d 31.7±4.2 31.4±4.1 -0.3 29.0±6.7 28.9±6.6 -0.1 0.152 

Waist 

Circumference 

(cm) 

104.9±12.7 102.2±11.9 -2.8 100.0±20.3 98.82±20.3 -2.5 0.809 

Body Fat (%) 

 
36.4±9.5 37.4±8.9 +1.0 33.3±8.2 33.9±9.1 +0.7 0.700 

Systolic BP 

(mm Hg)d 

 

141.8±8.9 140.4±11.6 -1.3 141.0±14.0 139.6±12.5 -1.4 0.735 

Diastolic BP 

(mm Hg)d 76.1±3.9 74.6±3.9 -1.6 78.3±7.1 76.6±6.2 -1.6 0.961 



73 

 

a Data is represented as Mean±SD. 
b Δ represents absolute net change from baseline to week 8. 
c Data was analyzed as week 8 values minus baseline values (absolute net change); p-

value represents Mann-Whitney U non-parametric test. 
d Abbrevations: BMI, body mass index; BP, blood pressure. 

 
 

4.4 Biomarkers of Glucose Regulation 

 
Change in biomarkers of glucose regulation (fasting plasma glucose and insulin, HbA1c, 

and HOMA-IR) did not differ between groups (Table 6) from baseline to week 8. 

However, HbA1c, a measure of long term glucose control (2 to 3 months) demonstrated a 

modest decrease in the flaxseed group (p = 0.099) though not significant.  

 

 

 

 

 

 

 

 

 

 

Table 6. Changes in Markers of Glucose Regulation from Baseline to Week 8. 

 Flaxseed 

n = 9 

 Control 

n = 8 

 Between 

Groups 

Variablea Baseline Week 8 Δb Baseline Week 8 Δb p-valuec 

HbA1c 7.1±1.5 6.6±1.1 -0.5 6.7±2.0 6.8±2.6 +0.1 0.099 

Fasting 

Glucose 

(mg/dL) 

119.5±32.7 134.9±55.1 +15.4 130.7±62.2 129.1±69.1 -1.6 0.248 

Fasting 

Insulin 

(mg/dL) 

13.6±3.7 17.5±7.8 +4.0 14.6±5.8 19.2±13.5 +4.6 0.773 

HOMA-IRd 4.1±1.6 6.3±4.1 +2.2 5.0±3.1 6.8±6.6 +1.8 0.336 
a Data is represented as Mean±SD. 
b Δ represents absolute net change from baseline to week 8. 
c Data was analyzed as week 8 values minus baseline values (absolute net change); p-

value represents Mann-Whitney U non-parametric test. 
dHOMA-IR was calculated as (fasting glucose mg/dL x fasting insulin mg/dL)/405. 
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4.5 Serum Lipid Profile 

 

Comparisons of serum lipid profiles from baseline to week 8 between the treatment and 

control groups are shown in table 7. There were no significant differences found for any 

of the serum lipid markers including total cholesterol, LDL-C, HDL-C, total 

triglycerides, calculated VLDL-C (total triglycerides/5), or HDL:LDL ratios.  
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Table 7.  Changes in Measurements of Serum Lipids from Baseline to Week 8. 

 
Flaxseed 

n = 9 

 Control 

n = 8 

 Between 

Groups 

Variablea Baseline Week 8 Δb Baseline Week 8 Δb p-valuec 

Cholesterol 

(mg/dL) 
167.7±45.7 159.6±28.9 

 
-8.1 

 
173.5±43.7 166.1±40.8 -7.4 0.923 

LDL-C 

(mg/dL) 
105.5±53.7 100.0±36.2 

 
-5.5 

 
105.5±46.1 96.4±28.0 -9.1 0.773 

HDL-C 

(mg/dL) 
55.3±19.7 49.2±22.9 -6.1 

58.0±56.6 
 

56.6±36.2 
 

-1.4 
 

0.470 

VLDL-Cd 

(mg/dL) 
21.7±12.1 24.3±15.0 +1.5 20.1±6.5 22.5±5.6 +2.3 0.294 

Triglycerides 

(mg/dL) 108.3±57.4 121.3±75.2 
 

+13.0 
 

128.9±76.9 134.4±138.6 +5.5 0.248 

HDL:LDL 

(mg/dL) 
0.6±0.2 0.6±0.2 +0.0 0.7±0.4 0.7±0.4 -0.1 0.149 

a Data is represented as Mean±SD. 
b Δ represents absolute net change from baseline to week 8. 
c Data was analyzed as week 8 values minus baseline values (absolute net change); p-value represents 

Mann-Whitney U non-parametric test. 
d VLDL-C was calculated as total triglycerides/5. 

 
 

4.6 Markers of Inflammation and Oxidative Stress 
 

There was a trend for decreased serum TNF-α concentrations in the flaxseed group as 

compared to the control (p = 0.060) from baseline to week 8 suggesting a tendency for 

decreased inflammation. There was also a modest decrease, though not significant 

observed between the flaxseed group and the control group from baseline to week 8 for 

TBARS, a marker of lipid peroxidation and oxidative stress (p = 0.083). A significant 

difference for NOx between groups from baseline to week 8 was not established.  

However, the flaxseed group had slightly higher concentrations of NOx at week 8 as 

compared to baseline (Δ = +5.7 nM/L vs. -2.41 nM/L for the control group). 

Measurements are shown below in table 8.  
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Table 8. Changes in Markers of Inflammation and Oxidative Stress from Baseline to 

Week 8. 

 
Flaxseed 

n = 9 

 Control 

n = 8 

 Between 

Groups 

Variablea Baseline Week 8 Δb Baseline Week 8 Δb p-valuec 

TNF-α 

(pg/mL)d 0.1±0.0 0.06±0.02 -0.0 0.1±0.0 0.1±0.0 -0.0 0.060 

TBARS (nM 

MDA/L)d 6.7±5.0 3.9±2.0 -2.8 2.9±1.4 2.8±2.0 -0.1 0.083 

NOx  

(nM/L)d 5.9±1.6 11.7±3.5 +5.7 7.1±2.9 4.7±2.2 -2.4 0.092 

a Data is represented as Mean±SD. 
b Δ represents absolute net change from baseline to week 8. 
c Data was analyzed as week 8 values minus baseline values (absolute net change); p-

value represents Mann-Whitney U non-parametric test. 
d Abbrevations: TNFα, tumor necrosis factor-alpha; TBARS, thiobarbituric acid reactive 
substances; NOx, total nitrate/nitrites. 

 
 
4.7 Safety and Tolerability  
 
There were no reported issues with any complications arising from the test food volumes 

participants consumed during this nutrition intervention. The flaxseed group consumed 

28 g/d of ground flaxseed while the control group consumed 9 g/d of ground psyllium 

husk. All participants were instructed to report any discomfort, irritation, or aversions to 

the test foods at any time point throughout the study. No aversions to either test food or 

physical discomfort was reported.  
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CHAPTER 5 

DISCUSSION 

Lifestyle changes such as diet modifications and exercise as well as pharmaceutical 

interventions (i.e., insulin and hypoglycemic) are often implemented to control glucose 

metabolism during the initial treatment stages of T2D (i.e., stage I and stage II 

interventions, Lebovitz, 1999). In recent years there has been much attention paid to the 

potential benefits of various foods and their nutritive components in the management of 

T2D symptoms and associated outcome risks. Studies examining the effects of flaxseed 

consumption in its various forms (oil, ground, and whole seed) have provided mixed 

results in regards to these outcomes. Very few clinical trials looking at the impact of 

glycemic control and markers of inflammation in T2D participants have been conducted 

(Pan et al. 2007; Taylor et al. 2010). Furthermore, a comparison of the effectiveness of 

ground flaxseed as compared to psyllium supplementation in addition to a habitual diet in 

adult non-insulin dependent T2D participants has not been investigated. To the best of 

our knowledge, the present study is the first to investigate the effect of a modest amount 

of ground flaxseed compared to a fiber-matched control in conjunction to a person’s 

normal daily nutrient intake on glycemic control, lipid profiles, inflammation and 

vascular function in non-insulin dependent T2D patients. We demonstrated that eight 

weeks of supplementation with 28 g/d ground flaxseed in conjunction to an individual’s 

habitual diet demonstrated a mild increase in total NOx (p = 0.099) as well as a slight 

reduction in markers of inflammation (TNF-alpha, p = 0.060) and oxidative stress 

(TBARS, p = 0.083). Additionally, our findings resulted in a modest (though not 
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significant) decrease in HbA1c (p = 0.099) as compared to the control group (9 g/d 

ground psyllium husk). 

 

5.1 Measurements of Body Composition and Blood Pressure  

No changes in measurements of body composition (Table 5) were observed in either the 

flaxseed group or the control group from baseline to week 8. Our results confirm 

previous studies which failed to report any significance in measurements of body mass, 

BMI, body fatness, or waist circumference associated with flaxseed consumption 

(Hutchins et al. 2011; Rhee and Brunt, 2011) or lower doses (less than 12 g/d) of 

psyllium (Pal et al, 2011; Pittler and Ernst, 2004). Additionally, there were no changes in 

systolic or diastolic blood pressure of the non-insulin T2D participants enrolled in this 

study. To date, findings regarding the effects of flaxseed consumption on blood pressure 

have been inconclusive. Studies which have reported decreases in systolic BP, diastolic 

BP, or both have only done so in participants with baseline blood pressure values that 

were considered hypertensive (Paschos et al. 2007; Dupasquier et al. 2006).  

 

5.2 Glucose Regulation 

Type 2 diabetes is a chronic disease characterized by insulin insensitivity and 

hyperglycemia. Treatment and management of this disorder aims to control glucose 

regulation in the body, specifically to attenuate hyperglycemia in the bloodstream, as well 

as prevent the damage associated with prolonged tissue exposure to elevated blood 

glucose concentrations. Associated complications of T2D include macrovascular 
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complications (coronary artery disease, peripheral arterial disease, and stroke) and 

microvascular complications (diabetic nephropathy, neuropathy, and retinopathy). 

HbA1c, also known as glycated hemoglobin, is an indicator of long-term glycemic 

control over the past two to three months and is strongly associated with vascular 

complications, both macro- and micro-vascular (Fowler, 2008).  

While results from our current study suggested a modest decrease in HbA1c 

concentrations, these results were not significant (p = 0.099) and did not ascertain any 

major link between ground flaxseed consumption and long term glucose regulation. 

Moreover, since HbA1c is a long term marker of glucose control and reflects glucose 

regulation of the previous 2 to 3 months, short trials may find very little change in 

measured outcomes. Interestingly, one study that examined the effects of replacing a 

standard chow diet consisting of corn oil (1.2. mg/kg/d) with flaxseed oil (1.2 ml/kg/d) in 

streptozotocin (STZ)-induced diabetic rats and non-diabetic rats observed a significant 

decrease in fasting glucose and HOMA-IR levels in the STZ-treated diabetic group as 

compared to the STZ corn oil group and the control. However, the flaxseed supplemented 

STZ group did have increased (N.S.) fasting insulin levels compared to these same 

groups (Hussein et al. 2012).  Several clinical trials have failed to establish any link 

between low or high doses of flaxseed oil and glycemic control in type 2 diabetic patients 

(Barre et al. 2008; Goh et al. 1997; McManus et al. 2006). High doses of EPA and DHA, 

which as previously discussed can be metabolized from ALA, have been associated with 

deteriorated glycemic control in T2D (Glauber et al. 1998; Nettleton et al. 2005; 

Woodman et al. 2002).  
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Current research in animal and human studies (Hussien et al. 2012; Hutchins et al, 

2008; Rhee et al. 2011 Velqasquez et al. 2003) suggests the ground form of flaxseed, the 

form used in this current study, which is also rich in the ALA, as well as fibers, lignans, 

and folic acid may be useful in reducing hyperglycemia. Recent clinical trials have shown 

that ingestion of ground flaxseed (50 g/d, 10 weeks) resulted in statistically significant 

improvements in glycemic control in T2D patients as measured by fasting glucose, 

fasting insulin, and HOMA-IR (Bloedon et al. 2008). Furthermore, previous studies have 

demonstrated that ground flaxseeds improve glucose metabolism in healthy participants. 

In one study, healthy participants who consumed a baked product containing 50 g of 

flaxseed daily for 4 weeks had a 27% decrease in post-prandial glucose concentrations 

(Cunnane et al. 1993). Lemay (2002) found that ground flaxseed consumption (40 g/d for 

8 weeks) in post-menopausal hypercholestorelemic women resulted in significantly 

reduced blood glucose concentrations. Additionally, Hutchins et al, (2012) found that in 

obese pre-diabetic participants given 13 g/d or 26 g/d ground flaxseed, the 13 g/d group 

had improved fasting insulin levels as compared to the control (0 g/d) and higher flaxseed 

group (26 g/d), however, improvement were not seen in fasting glucose or HOMA-IR. 

Dahl (2005) demonstrated that healthy subjects who consumed flaxseed fiber in 

conjunction with their normal diet displayed attenuated peak glucose concentrations. In 

contrast, data from this current study did not establish any major effect on fasting glucose 

and insulin concentrations, or HOMA-IR. The focus of this trial was to examine the 

effectiveness of ground flaxseed (28 g/d) consumption as compared to the control test 

food (psyllium, 9 g/d) supplementation in non-insulin T2D participants as opposed to 
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previous trials which examined obese, pre-diabetic, or healthy participants which may 

account for the discrepancies in observed outcomes. Additionally, due to lack of research 

establishing an optimal dose for either dietary supplement as well as no known 

comparative trials examining the efficacy of flaxseeds versus psyllium, we have a lack of 

studies that we can directly compared our outcomes against. Furthermore, the 

mechanisms by which flaxseed exerts its control over glucose metabolism in the body 

have yet to be elucidated. Both the fiber components of flaxseed as well as the lignan 

concentration (i.e., SDG) may be responsible for results observed in prior studies.  

 

5.3 Serum Lipids 

Several studies have reported a positive impact of flaxseed consumption on lipid 

metabolism. Previous animal studies suggest that flaxseed or flaxseed derived lignans 

reduce both total and LDL-C as well as attenuate the progression of atherosclerosis 

(Lucas et al. 2004; Prasaad, 2008; Prasaad, 1999; Prasaad, 1997). In clinical trials, 

flaxseed consumption on blood lipid concentrations appear to be much more modest and 

the results lack consistency. Studies observing the effects of flaxseed oil in lipids profiles 

have reported decreases in total cholesterol and LDL-C. Harper et al. (2006) reported that 

3 g/d of flaxseed-derived ALA resulted in no significant differences between LDL-C 

levels, however, LDL-C subfractions LDL1 and LDL2, which are considered large 

buoyant LDL particles were significantly increased as compared to the smaller dense 

LDL subfractions which have a greater likelihood of oxidation and contributing to the 

progression of atherosclerosis. In hypercholesterolemic participants, ground flaxseed 
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supplementation (30 g/d, 12 weeks) and flaxseed-derived lignan supplementation (600 

mg/d, 8 weeks) has been associated with decreases in total cholesterol (7% and 22%, 

respectively) and LDL-C concentrations (10% and 24%, respectively). Most studies to 

date have not shown any impact of flaxseed consumption in any of its forms on HDL-C 

concentrations (Lemay et al. 2002; Harper et al. 2006; Stuglin et al. 2005),  with the 

exception of one trial (Bloedon et al. 2008) which reported a decrease in HDL-C in 

hypercholesterolemic men.  A meta-regression analysis of flaxseed supplementation in its 

various forms (Pan et al. 2009) analyzing a total of 28 clinical trials (overall participants 

= 1539) demonstrated that of the 13 out of 28 trials which used flaxseed oil, no 

significant changes in total and LDL cholesterol were detected. Flaxseed in whole or 

ground form were used for ten of these 28 studies and flaxseed derived lignan trials 

comprised five of the 28 studies. Whole flaxseed and flaxseed lignans demonstrated a 

greater impact on serum lipids as compared to ground flaxseed. Of the reported trials 

which used flaxseed in its whole form or lignans derived from flaxseed there were 

significant decreases in total cholesterol and LDL-C concentrations, however this 

reduction was much greater in studies including post-menopausal women and these 

reductions were only moderate for trials that included both women and men. In 

agreement with our findings the authors found no association between flaxseed in any 

form or flaxseed derived lignans on HDL-C concentrations. Results from this analysis 

suggested that sex, type of intervention (whole flaxseed, flaxseed oil, or lignan 

supplement), and initial lipid concentrations (i.e., healthy subjects vs. 

hypercholestorelemic subjects) influenced the net changes in total and LDL cholesterol.  
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Trials examining the effects of flaxseed consumption have also displayed varying 

outcomes. While epidemiological data reports higher levels of ALA consumption  

associated with lower total triglyceride levels (Dejousse et al. 2005), flaxseed clinical 

trials have reported an increase (Cunnane et al, 1995), decrease (Dejousse et al. 2003; 

Zhao et al. 2004), or no change (Rallidis et al. 2003; Paschos et al. 2007) on total 

triglyceride levels.    

 

5.4 Inflammation and Oxidative Stress  

Oxidative stress resulting from increases in inflammation, dyslipidemia, and 

hyperglycemia is also strongly associated with worsening of T2D symptoms and 

associated complications. There is strong evidence of increased platelet aggregation in 

type 2 diabetes which may be a result of ROS generation and oxidative stress (Ferroni et 

al. 2004). As we demonstrated in this study there was a trend for decreased serum 

concentrations of the inflammatory marker TNF-alpha in the flaxseed group (p = 0.060) 

as well as a modest decrease in plasma concentrations of TBARS (p = 0.083) which 

suggests decreased lipid peroxidation.  While not significant, possibly due to the 

relatively small sample size or participant characteristics, these results appear to 

corroborate with previous findings which demonstrated flaxseed consumption in animal 

models (Dupasquier et al. 2007; Hussein et al. 2012) and clinical trials (Allman et al. 

1995; Bierenbaurn et al. 1993; Freese et al. 1994; Pilar et al. 2014; Rhee and Brunt, 2011) 

act to decrease concentrations of platelet aggregation (i.e., VCAM, ICAM, VEGF), 

inflammation (TNF-alpha, IL-6) and oxidative stress (TBARS) in healthy, obese, and 
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glucose-intolerant individuals. Findings from the previous studies suggest a protective or 

antioxidant effect of flaxseeds which is in agreement with the findings of the present 

study.  Increased glucose oxidation and lipid peroxidation as a result of hyperglycemia 

and obesity increases inflammation, ROS generation, and oxidative stress (Furukawa et 

al. 2004). Increased oxidative stress may inhibit proper phosphorylation of the insulin 

receptor or decrease the translocation of GLUT4 on the cell membrane through impaired 

insulin signaling intermediates (Hoehn et al. 2009; Rudich et al. 1998). It was found that 

antioxidants attenuate impaired GLUT4 translocation and increase glucose uptake 

(Estrada et al. 1996; Shin et al. 2006). Increases in ROS, such as superoxide lead to 

increases in oxidative stress through scavenging of nitric oxide (NO) to form 

peroxynitrite, which is strongly associated with vascular dysfunction. Furthermore, cells 

other than the endothelium, which produces NO as a vasodilator for vascular smooth 

muscle, such as macrophages, can produce NO in very small quantities as a defense 

against inflammation and oxidative stress. High physiological concentrations of NO in 

the body favor increases in oxidative stress thus worsening symptoms associated with 

T2D. We measured total plasma concentrations of nitrates and nitrites (NOx) since 

nitrates are rapidly metabolized to nitrites in vivo. Consistent with our findings for TNF-

alpha and TBARS concentrations, there was a slight increase in plasma concentrations of 

NOx (p = 0.099) following the 8 week supplementation with ground flaxseed. These 

modest reductions in levels of inflammation and oxidative stress may be attributed to the 

SDG content in flaxseed which previous studies have reported to decrease lipid 

peroxidation due to its ability to scavenge ROS (Houstis et al. 2006). This present study 
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did not specifically examine serum concentrations of SDG in the flaxseed group as 

compared to the control and only a few clinical trials have examined SDG in flaxseeds on 

oxidative stress, thus greater investigation is warranted.  

 

5.5 Study Limitations and Strengths  

The current study did have some limitations. Few studies have been conducted in regards 

to flaxseed and T2D. It is possible that our study may have lacked statistical power to 

detect changes in outcomes of interest. The sample size calculation estimated that at least 

16 subjects would be necessary for this study to have sufficient statistical power for 

detecting changes in HbA1c and fasting plasma glucose. Recruitment was increased in 

order to assure that the minimum sample size was achieved. The sample size calculation 

was based on two previous studies Hutchins et al. (2012) and Pan et al. (2007) which 

specifically examined the effects of ground flaxseed consumption in diabetic participants 

on measures of glycemic control. It is possible that the effect sizes based on that study 

may have been overestimated due to differences in study design (parallel arm trial as 

compared to randomized crossover study).  
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Our study failed to achieve an effect size greater than 55% using a Mann-Whitney 

U analysis, which strongly suggests that additional participants were needed to truly 

observe any valid changes between groups. Additionally, of the few clinical trials that 

have looked at the effects of whole or ground flaxseed consumption on similar outcome 

variables, dosage of flaxseed ranged from 20 g/d to 50 g/d and lasted from 2 weeks up to 

12 weeks in length, thus a known optimal dosage has yet to be established. This study 

included participants who were on oral hypoglycemic medications (i.e., metformin, 

flaxseed 5/9; control 6/80) and allowed for participants to be on statins or fibrolytics 

(flaxseed, 7/9; control 6/8) which may have effected changes seen in lipid variables, 

although participants were instructed to maintain consistent use of medications to avoid 

this issue. The majority of previous trials examining the effects of flaxseeds on serum 

lipids had participants with higher total-and LDL-C concentrations at baseline in addition 

to specifically examining hypercholestorelemic populations. When performing a 

statistical analysis for changes in the primary outcomes (HbA1c and fasting plasma 

glucose) from the present study to conduct a power analysis, the suggested sample size 

for having a statistical power (at a 0.05 significance level and power > 0.80) was 15 

participants in both the flaxseed and control group (N = 30). Since two to three months 

are often necessary to observe changes in HbA1c it is possible that greater effects would 

have been observed if the participants had consumed the flaxseed for a long period of 

time. A longer intervention time would have also provided more information regarding 

adherence of individuals to flaxseeds supplemental to a normal diet. Additionally, we 

relied on self-reported nutrient intake data to estimate dietary measurement using 3-day 
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food records. While this questionnaire has been validated (Pietinen et al. 1988) and is not 

reliant on memory recall there may be issues with participants underestimating food 

quantities and underreporting portions. Other clinical nutrition interventions have 

circumvented this issue by structuring a complete diet program for study participants as 

well as providing comprehensive dietary instructions (Serra-Majem et al. 2006). The 

present study has a number of strengths worth discussing. For all subjects who completed 

the baseline fasting blood draw there was minimal attrition (17 out of 19, 85%) from 

baseline to week 8 which is less than the anticipated participant attrition rate (20%). 

Additionally, in this randomly controlled trial, subjects (all non-smokers with a diagnosis 

of T2D ≥ six months) were matched based upon baseline height, weight, HbA1c, sex, and 

age then randomly assigned to their respective group to eliminate confounding variables 

affecting between group measured outcomes. Subjects were blinded to their study 

condition which further decreases likelihood of performance bias or attrition bias 

disrupting the validity of this intervention trial. Furthermore, body composition and 

nutrient intakes for each group was comparable within group and between groups from 

baseline to week 8 reducing the likelihood of an interaction effect of weight loss or 

changes in body fatness on measures of glycemic control, serum lipids, and 

inflammation. Additionally, there was little between group variations which increased 

validity of measured outcome data between groups. 
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5.6 Future Research 

This current study was conducted in order to investigate the effects of flaxseed use on 

complications of T2D. Future studies should include a larger sample size in addition to a 

tightly structured randomized control trial with an expanded participant sample 

population to include subjects with pre-diabetes and MetS to determine variations in the 

effectiveness of flaxseeds on specific populations. Additionally, this study did not 

measure plasma concentrations of polyunsaturated fatty acids ALA, EPA, DHA, or the 

flaxseed-derived lignan SDG. As these bioactive components have been proposed as 

potential mechanisms by which flaxseeds may exert their effect, future analyses should 

include these measures. Additionally, plasma levels of alpha-tocopherols should be 

measured in future studies to elucidate the potential antioxidant protective effects of 

flaxseeds in the progression of T2D.  
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CHAPTER 6 

CONCLUSIONS 

Due to the prevalence and economic burden of diabetes and its associated CVD risks, 

research is needed to assess the safety and effectiveness of treatment strategies. Nutrition 

interventions that are simple and effective in reducing symptoms of diabetes are an area 

of great interest due to the relative low cost and accessibility to the general public. 

However, diets are not limited to a single food; likewise, foods such as flaxseeds are not 

limited to a single nutrient thus complicating the mechanistic properties and health 

benefits of a particular food on any given population. The primary aims of this study 

were to investigate the effects of consuming 28 g/d ground flaxseed in addition to a 

participant’s habitual diet for eight weeks on markers of glycemic control in T2D. 

Additionally, we further investigated the effects of ground flaxseeds on serum lipid 

concentrations as well markers of inflammation and oxidative stress in subjects with non-

insulin dependent T2D. Due to the lack of knowledge regarding the use and efficacy of 

modest consumption of ground flaxseeds at attenuating symptoms associated with T2D, 

additional exploratory outcomes included evaluating compliance as well as the efficacy 

of incorporating a moderate amount of flaxseed into the daily diets of individuals with 

non-insulin T2D as compared to previous studies which used larger volumes (50 g/d) of 

ground flaxseed. 

To our knowledge this study is the first to examine a moderate amount of ground 

flaxseeds on glycemic control, serum profiles, and markers of inflammation and 

oxidative stress in T2D participants. We did not confirm the main hypothesis that 28 g/d 
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of flaxseed intake would result in significantly improved glucose regulation, however, we 

did demonstrate a trend towards reduced markers of inflammation (NOx, TNF-alpha) and 

oxidative stress (TBARS) which is consistent with previous literature. Additionally, it 

should be noted 28 g/d of ground flaxseed did not result in any negative effects and was 

favorably reported by study participants thus increasing the likelihood that the dosage 

was reasonable and could be assimilated into a habitual diet. Lack of significant findings 

in this study may be related to the small study sample size, length of trial, or mechanism 

by which flaxseeds exert their greatest effects. The latter requires further investigation to 

elucidate the populations that may potentially benefit the greatest from ground flaxseed 

interventions.   
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* 1. Please provide your email address. 

 
2. Has your physician diagnosed you with type 2 diabetes? 

Yes 

No 

Not sure 

3. Do you know your glycosylated hemoglobin A1c level? 

Yes 

No 

Not sure 

If yes, what is it?  

4. Are you between 18 and 75 years old? 

Yes 

No 

5. Are you currently taking insulin? 

Yes 

No 

Not sure 

6. Are you currently taking any oral diabetic medications (e.g., 

metformin)? 

Yes 

No 

7. Do you take any of the following medications: e.g. beta-blockers, ACE 

inhibitors, diphenhydramine or cyproheptadine (allergy medications), 

lithium carbonate, corticosteroids, thiazolidinediones ( Actos, Avandia or 

Avandamet), sulfonylureas, biguanides, meglitinides, incretins, sodium 

valproate, or thyroid replacement therapy? 

Yes 

No 

Not sure 
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8. Are you currently pregnant or breast-feeding? 

Yes 

No 

9. Do you have any known food allergy? 

Yes 

No 

Not Sure 

If yes, please specify  

10. Would you be willing to consume 4 tablespoons of ground flaxseeds or 

1.5 tablespoons pysllium fiber daily for 8 weeks? 

Yes 

No 

11. Will you be able to maintain your current diet and physical activity for 

a consecutive 8 weeks? 

Yes 

No 

Not sure 

12. Do you train athletically to compete? 

Yes 

No 

13. Are you willing and are able to travel to the ASU Downtown Campus 

to meet with the research investigators on three separate mornings? 

Yes 

No 

14. Are you willing to have a fasting blood draw (fast 10-12 hours prior to 

blood draw) on 2 separate occasions? 

Yes 

No 

Not Sure 

15. Where did you hear about this survey? 
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APPENDIX D 

APPROVED ASU IRB CONSENT FORM  
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APPENDIX E 

APPROVED MODIFIED ASU IRB CONSENT FORM  
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APPENDIX F 

MEDICAL HISTORY QUESTIONNAIRE 
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Medical History Questionnaire 
 

            ID#________________ 

                       Age:________ 

                                                                                               Height:_______ft. _______in. 

           Waist:________in.  

Gender (please circle):  Female    Male            Weight:__________lbs.  

Smoker (please circle):  Yes No    

          

1.  Are you taking any medications regularly? (Including aspirin, steroids, birth control, 

etc.) Y     N 

 If yes, what medications and how often? 

 

 

 

2. Do you currently take supplements? (vitamins, minerals, herbs, etc.)   

 Y     N 

 If yes, what supplements and how often? 

 

 

 

3. Do you take insulin or an oral diabetic control medication (e.g., metformin)?  

 Y     N 

4. Do you know what your glycosylated hemoglobin A1C (HbA1c) level is?  

   Y     N 

 If so, what is it?_______________________________ 

 

5. Has a doctor ever told you that you have any of the following conditions? 

To be 
completed 

by 
investigator 
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       Heart disease?  Y     N     Thyroid problems?

 Y     N 

       Kidney disease?  Y     N     Cancer?  

 Y     N 

       Liver disease?  Y     N     High blood pressure?

 Y     N 

       Food Allergy?  Y     N (if yes, what 

type?)______________________________ 

       Type 2 Diabetes?                Y     N (if yes, when were you 

diagnosed?)_________________ 

       Other chronic 

conditions?__________________________________________________ 

 

6. Are you pregnant or planning on becoming pregnant in the next 16 weeks?  

 Y     N 

7. Are you currently breast-feeding?       

 Y     N 

8. Have you ever fainted at a blood draw?      

 Y     N 

Are you willing to participate in a blood draw?     

 Y     N 

 Have you donated blood in the past 8 weeks?     

 Y     N 

9. Will you be willing to consume 4 tablespoons (40 g) of flaxseeds 5-7 times per week 

for 8 weeks?           

  Y     N 

 

10. Would you be willing to consume 1.5 tablespoons (18 g) of pysllium powder 5-7 per 

week for 8 weeks?          

  Y     N 
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11. Do you follow a specific diet? (weight loss/gain, vegetarian, low-fat, etc.)  

 Y     N 

 

12. Are you willing to drive or take the Phoenix light rail (metro system) to the ASU 

downtown Phoenix campus for a fasting blood draw on 2 separate occasions?   

   Y     N 

 

13. Will you have a problem fasting overnight (10-12 hr) prior to the blood draw? 

 Y     N  

 

14. Will you be able to maintain your typical lifestyle/activities during the trial?  

 Y     N 

 

15. Over a 7 day period, how often do you engage in any regular activity long enough to 

work up a sweat   

      (e.g., heart beats rapidly)?_________________ How often do you exercise 

moderately per    

      week?___________ 

 

16. Please circle the total time you spend in each category for an average week. 

 

               Light activities such as: slow walking, golf, easy swimming, gardening, etc. 

           Hours per week: 0   1   2   3   4   5   6   7   8   9   10+ 

               Moderate activities such as: moderate walking, cycling, swimming, weight 

lifting, etc. 

           Hours per week: 0   1   2   3   4   5   6   7   8   9   10+ 

                Vigorous activities such as: fast walking, jogging, cycling, heavy/intense 

weight lifting, etc. 

           Hours per week: 0   1   2   3   4   5   6   7   8   9   10+ 
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17. Please describe any other medical conditions or situations that may affect you ability 

to participate  in a research trial (i.e., pregnancy, infections, travel, deadlines, etc.). 
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APPENDIX G 

INSTRUCTIONS FOR TEST FOOD STORAGE AND CONSUMPTION
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Consuming plant-based fibers 

1. Store the fiber supplement in the freezer, refrigerator, or other cool dry 

area such as the pantry. Try to avoid exposure to direct sunlight. 

2. Consume 1 package of the fiber supplement 5-7 days per week for the 

eight weeks. 

3. Fiber can be consumed at one time or split up throughout the day (e.g., 1 T 

in breakfast oatmeal, 2 tsp in lunch salad dressing, 1 T in dinner chili, and 2 tsp 

sprinkled over ice cream). You can divide up the fiber any way you choose as 

long as you consume the entire package during the course of the day. 

Adding ground fibers to your daily diet 

1. Add ground flaxseed or psyllium powder to yogurt, applesauce, soups,  

or smoothies. 1-2 tablespoons does not alter the flavor very much of the yogurt 

or smoothie. This will also add fiber to your yogurt or smoothie.  

2. Bake with flaxseed or psyllium powder. Both fibers go well in baked 

goods at small or larger amounts. It imparts a toasted nut flavor that matches 

well in sweet or savory baked goods. Some popular baked uses of flaxseed are in 

breads or muffins. It has a good heat stability so all the nutrients are available 

after the baking process and is a good way to get extra fiber in a baked item 

without affecting texture and taste dramatically. 

3. Add one or two spoonfuls into chili, spaghetti sauce, stew, or gravy. 

4. Add to commonly used condiments. Each blends well in mayonnaise, 

mustard and ketchup. It also goes great in salad dressings and as a salad 

topping. You will not need to add very much (1 tablespoon or less will suffice). 

5. Mix into oatmeal or cream of wheat cereal. 

6. Sprinkle on top of toast with peanut butter and bananas or jelly. 

7. Sprinkled on top of salads, mixed in to mashed potatoes, etc. 

8. Add to drinks. Using smaller amounts throughout the day in whatever 

you are drinking will give just as much, without the thickness from one larger 

dose. 

9. Stir a little into juice and drink up. 

10. Sprinkled on top of fruit, pudding, or ice cream for dessert. 
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APPENDIX H 

  3-DAY FOOD RECORDS 
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DIETARY INTAKE RECORD 

ASU Flaxseed Study 

 
Day of Week:     Su   M   T   W   Th   F   Sat                                             (circle one) 

TIME OF 

MEAL 
FOOD ITEM 

DESCRIPTION (how was it 

prepared or where was it 

purchased?) 

AMOUNT 

(cups, oz, tsp, 

etc.) 

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

    

TIME OF 

MEAL 
FOOD ITEM DESCRIPTION (how was it 

prepared or where was it 

AMOUNT 

(cups, oz, tsp, 
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*Supplements Taken – List brand, number of tablets/amount: 

 purchased?) etc.) 
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APPENDIX I 

COMPLIANCE CALENDAR 
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Sun Mon Tue Wen Thu Fri Sat 

1 2 3 4 5 1 2 

3 4 5 6 7 8 9 

10 11 12 13 14 15 16 

17 18 19 20 21 22 23 

24 25 26 27 28 29 30 

31       

  
 S

e
p

te
m

b
e

r 
  

2014 

INSTRUCTIONS 
 

1. Check off each day indicating that the study food was consumed as instructed. 
2. Arrive at the Nutrition labs at scheduled times for testing. 
3. 12 hours prior to your blood draws: 

• Do not exercise strenuously although you may walk the dog and carry out routine activities.                      
• Beginning at about 10:00 pm, do not eat or drink anything other than water.   

4. At study weeks 0 and 8, bring your diet records with you to the lab.  
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APPENDIX J 

MODIFIED TBARS PROTOCOL 
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TBARS Assay (Zeptometrix, Buffalo, NY) can be used with either plasma or serum (both 
heparin and EDTA) 
Plasma: Collect fasting heparinized whole blood. Centrifuge at 3500 rpm 
for 10 min at 5-10°C, carefully remove plasma and place on ice for 
immediate analysis or freeze several aliquots at -70°C for later analysis. 
Samples can be safely stored for 1-2 months. Process as described below 
for serum. 
Serum: Collect fasting whole blood in a red top vacutainer®. Incubate at 
room temperature for at least 30 min for clots to form. Centrifuge at 3500 
rpm for 10 min. Carefully remove serum and place on ice for immediate 
analysis or freeze aliquots at -70°C for later analysis.  
Protocol: All solutions must be at room temperature before performing the assay. If using stored 
samples, thaw on ice. Label tubes for standards (0-4) as well as samples. Poke holes in the top to 
avoid excessive pressure build-up during heat block phase.  

Using the Zeptometrix TBARS assay kit prepare the following: 

Set the heat block to 95ᵒC 

To make TBA buffer: 

• To 10 mL Diluent 1 add 106 mg TBA powder (cover with parafilm) 

• Mix on a hot plate at a low temperature (45-55ᵒC) 

• Turn off the plate (allow to cool), add 10 mL of Diluent 2, mix for 10 min on stir plate 
with heat off. 

Prepare Standards: 

• Prepare standards according to Table 1 (make sure to add MDA standard to Diluent). 
Standard MDA standard (uL) MDA Diluent (uL) Final Conc 

0 0 100 0 
1 12.5 87.5 12.5 
2 25 75 25 
3 20 50 50 
4 100 0 100 

 

• Once samples are prepared place on ice, they can now be treated the same as the 
samples. 
 

Prepare Samples: 
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1. In labeled eppendorf tubes with hole (use 18-20G needle) prepared sample 
2. Mix sample for duplicate runs 
3. Add 30 uL of sample 
4. Add 30 uL of SDS buffer 
5. Add 750 uL of TBA buffer 
6. Vortex tubes 
7. Place on heat block @ 95ᵒC for 60 minutes 
8. Place on ice for 10 minutes 
9. Centrifuge samples (NOT STANDARDS) @ 3000 rpm for 15 minutes @ RT 

Load 96 well plate: 

a. Add 200 uL of supernatant to plate well in duplicates (making sure not to disturb the 
pellet formed on the bottom of the tube) 

b. Absorbance reading: read supernatants on plate reader @ 532 nm 
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APPENDIX K 

INDIVIDUAL VARIATIONS IN MEASURES OF BODY COMPOSITION, BLOOD 

PRESSURE, AND NUTRITENT INTAKE FOR FLAXSEED GROUP 
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A. Individual changes in waist circumference (in) from baseline to week 8. 
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B. Individual changes in BMI (kg/m2) from baseline to week 8. 
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B. Individual changes in body fatness (%) from baseline to week 8. 



145 

 

 
 

 

D. Individual changes in systolic blood pressure (mm Hg) from baseline to week 
8. 
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E. Individual changes in diastolic blood pressure (mm Hg) from baseline to week 
8. 



147 

 

 
 

 

F. Individual changes in total energy (kcal) intake from baseline to week 8. 
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G. Individual changes in total fat (g) intake from baseline to week 8. 
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H. Invidual changes in total fiber (g) intake from baseline to week 8. 
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I. Individual changes in sodium (mg) intake from baseline to week 8. 
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APPENDIX L 

INDIVIDUAL CHANGES FOR MEASUREMENTS OF BODY COMPOSITION, BLOOD 

PRESSURE, AND NUTRIENT INTAKE FOR CONTROL GROUP 
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A. Individual changes in waist circumference (in) from baseline to week 8. 
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B. Individual changes in BMI (kg/m2) from baseline to week 8. 
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C. Individual changes in body fatness (%) from baseline to week 8. 
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D. Individual changes in systolic blood pressure (mm Hg) from baseline to week 
8. 
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E. Individual changes in diastolic blood pressure (mm Hg) from baseline to week 
8. 
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F. Individual changes in total energy (kcal) intake from baseline to week 8. 
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F. Individual changes in total fat intake (g) from baseline to week 8. 
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G. Individual changes in total fiber (g) intake from baseline to week 8. 
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H. Individual changes in sodium (mg) intake from baseline to week 8. 
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APPENDIX M 

INDIVIDUAL CHANGES IN MEASUREMENTS OF GLUCOSE REGULATION FOR 

FLAXSEED GROUP 
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A. Individual changes in HbA1c (%) from baseline to week 8. 
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B. Individual changes in fasting plasma glucose (mg/dL) from baseline to week 
8. 
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C. Individual changes in fasting insulin (mg/dL) from baseline to week 8. 
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D. Individual changes in HOMA-IR from baseline to week 8. 



166 

 

APPENDIX N 

INDIVIDUAL CHANGES IN MARKERS OF GLUCOSE REGULATION FOR CONTROL 

GROUP 
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A. Individual changes in fasting plasma glucose (mg/dL) from baseline to week 
8. 
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B. Individual changes in fasting insulin (mg/dL) from baseline to week 8. 



169 

 

 
 

 
 
 

 

C. Individual changes in HOMA-IR from baseline to week 8. 
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 D. Individual changes in HbA1c (%) from baseline to week 8. 
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APPENDIX O 

INDIVIDUAL CHANGES IN SERUM LIPID MEASUREMENTS FOR FLAXSEED GROUP 
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A. Individual changes in total cholesterol (mg/dL) from baseline to week 8. 
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B. Individual changes in HDL-C (mg/dL) from baseline to week 8. 
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C. Individual changes in LDL-C (mg/dL) from baseline to week 8. 
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D. Individual changes in total triglycerides (mg/dL) from baseline to week 8. 
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E. Individual changes in calculated VLDL (mg/dL) from baseline to week 8. 
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APPENDIX P 

INDIVIDUAL CHANGES IN SERUM LIPIDS MEASUREMENTS FOR CONTROL GROUP 
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A. individual changes in total cholesterol (mg/dL) from baseline to week 8.  
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B. Individual changes in HDL-C (mg/dL) from baseline to week 8.  
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C. Individual changes in LDL-C (mg/dL) from baseline to week 8.  
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D. Individual changes in total triglycerides (mg/dL) from baseline to week 8.  
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E. Individual changes in calculated VLDL (mg/dL) from baseline to week 8.  
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APPENDIX Q 

INDIVIDUAL CHANGES IN MARKERS OF INFLAMMATION FOR FLAXSEED GROUP 
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A. individual changes in plasma concentrations of TNF-alpha (pg/mL) from 
baseline to week 8. 
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B. Individual changes in serum concentrations of TBARS (MDA nM/L) from 
baseline to week 8. 
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C. Individual changes in plasma concentrations of TBARS (nM/L) from baseline 
to week 8. 
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APPENDIX R 

INDIVIDUAL CHANGES IN  MARKERS OF INFLAMMATION FOR CONTROL GROUP 
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A. Individual changes in plasma TNF-alpha concentrations (pg/mL) from baseline 
to week 8.  
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B. Individual changes in serum TBARS concentrations (MDA nM/L) from baseline 
to week 8.  
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C. Individual changes in plasma NOx concentrations (nM/L) from baseline to week 
8.  


