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ABSTRACT

Commercial load balancers are often in use, and the production network at Arizona

State University (ASU) is no exception. However, because the load balancer uses IP

addresses, the solution does not apply to all applications. One such application is

Rsyslog. This software processes syslog packets and stores them in files. The loss rate

of incoming log packets is high due to the incoming rate of the data. The Rsyslog

servers are overwhelmed by the continuous data stream. To solve this problem a

software defined networking (SDN) based load balancer is designed to perform a

transport-level load balancing over the incoming load to Rsyslog servers. In this

solution the load is forwarded to one Rsyslog server at a time, according to one of

a Round-Robin, Random, or Load-Based policy. This gives time to other servers to

process the data they have received and prevent them from being overwhelmed. The

evaluation of the proposed solution is conducted a physical testbed with the same

data feed as the commercial solution. The results suggest that the SDN-based load

balancer is competitive with the commercial load balancer. Replacing the software

OpenFlow switch with a hardware switch is likely to further improve the results.
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Chapter 1

INTRODUCTION

1.1 Motivation

With the rapid growth of web applications in the late 1990’s, load balancing was

used to divide the network load among identical web servers in order to minimize

the service time to users and maximize the performance of servers. At that time,

techniques such as those based on DNS and adaptive TTL were exploited by enterprise

administrators [8].

Today, commercial load balancers are often in use, including in the production

network at Arizona State University (ASU). But sometimes there are applications

that are not well suited to how the commercial products balance the load. One such

application is Rsyslog. This application is in charge of processing syslog packets and

writing them into files. It receives its input from Palo Alto firewalls. This firewall

generates a wide variety of log messages to alert the network administrator of an

existing issue in or a threat to the entire campus network. As can be imagined the

amount and the speed of data that this application generates is huge. The current

load balancing solution at ASU is used to spread the load among several Rsyslog

servers. The problem is that the existing load balancer does not divide the load

equally among the servers because it uses the source IP address to divide the load.

Also, it cannot forward the load to one Rsyslog server at a time because there are

multiple Palo Alto firewalls and each one of them is mapped to an Rsyslog server.

This leads to having unequal sized files stored on the servers as well as the Rsyslog

servers being overwhelmed with the amount of input and losing data. To address

1



this problem, we propose to spread the load among servers using a solution based on

software defined networking (SDN).

1.2 Contributions

We propose a solution to load balance the data coming from a Palo Alto firewall

among servers using software defined networking. This is accomplished by placing an

OpenFlow switch in front of the incoming data. The OpenFlow switch, controlled

by a controller that we have developed, gives us the ability to forward these packets

to our desired server. This solution enables us to make changes to forwarding as

circumstances in the network change.

We develop three different load balancing policies: Round-Robin, Random and

Load-Based. The first two policies work without measuring forwarded load to each

server. However, in the Load-Based policy our goal is to be aware of the amount of

forwarded load to each server in order to spread the load as equally as possible. We

use a software switch to run our experiments in a testbed using a real data feed from

a Palo Alto firewall.

We evaluate each load-balancing policy, both with and without server failures, for

a period of five days. We compare the results with syslog data stored on files at our

servers to that generated by ASU’s current commercial load-balancing solution. Given

that the Palo Alto feed uses UDP, which may result in packet losses, we find that

our solution, regardless of the policy in use and regardless of having server failures or

not, is able to deliver the data at a rate (computed by dividing number of syslog logs

stored on the testbed to the number of syslog logs stored on ASU’s Rsyslog servers)

with the commercial solution. As the results of experiments show, the data delivery

rate is in the range of 0.9923 to 1.0446 with the mean of 1.0109 and the standard

deviation of 0.0197. (A rate of over 1 is possible because, while the feeds from the
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Palo Alto are the same, the path internal to ASU’s network is different and losses

occur from the use of UDP.)

To evaluate which load-balancing policy spreads the load more equally among the

servers, we define a split ratio as the ratio of the smallest sized file by the largest

sized file received on our servers. The closer the split ratio is to one, the better the

load-balancing policy divides the load. In the first experiment, without having server

failures, the average split ratios over five days period for the Round-Robin, Random

and Load-Based policies are 0.9906, 0.9695 and 0.9809, respectively. In the second

experiment, where servers may fail, the average split ratios for the Round-Robin,

Random and Load-Based policies are 0.8298, 0.8791 and 0.9796, respectively.

Our results show that Round-Robin policy divides the load slightly better than the

other two policies when there is no server failures. However, in the second experiment,

where server failures exist, the results show us that the Load-Based policy is the best

choice by far. Overall the Load-Based policy has the best split ratio average over the

two experiments.

We conclude our software defined networking load-balancing solution is competi-

tive with the existing commercial solutions. Our results likely would improve further

if a hardware OpenFlow switch was used in the testbed.

3



Chapter 2

RELATED WORK

2.1 Background on SDN

2.1.1 What is SDN?

In conventional switches and routers forwarding decisions happen based on MAC

and IP address, respectively. Both the control and forwarding planes are on the same

node in this hardware. What SDN proposes is to decouple these two planes from one

another and use a centralized controller [21]. Since all nodes forming the forwarding

plane are connected to the controller, the controller has a view of whole network. This

makes the controller the best candidate for making forwarding decisions. In addition,

the forwarding decision may be based on more fields of the header, even on non-IP

based protocols.

2.1.2 Why SDN?

SDN has the potential to simplify network management, and enable innovation

in and evolution of computer networks [21]. It is based on the principle of separating

the control and data planes. The OpenFlow specification describes the information

exchange between the two planes [22]. In this architecture, an OpenFlow switch

contains a flow table consisting of flow entries. A flow entry is made up of fields on

which incoming packets are matched, and actions to be applied upon a match. If there

is no match, the packet is forwarded to a controller, which runs a program to handle

the packet, and decide whether to insert, delete, or update flow entries in the flow

table for subsequent packets matching the same fields. As well, statistics are collected
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on packets; this information may be used by the controller to make decisions. This

allows us to build innovative applications which match with our needs, and update

them as circumstances change. One such application is load balancing.

2.2 Using SDN in Load Balancing Applications

2.2.1 OpenFlow Based Load Balancing

Similar to our proposed work, Upaal and Brandon [27] investigate whether an

OpenFlow based load balancer can compete with existing highly specialized commer-

cial load balancers. Three basic OpenFlow algorithms are implemented and bench-

marked. The policies implemented are random, round robin, and load-based load

balancing. The random policy sends a request to a random server. The round robin

policy uses a circular queue to decide where to send a request. The load-based policy

sends a request to the server with the lowest load, where load is defined as the number

of pending requests.

The results indicate that as the processing time per packet at the server is in-

creased, the load-based policy performs the best. When the processing time is 10ms

the utilization of the servers is low, so all of the algorithms are essentially the same.

Once the time to service of each request increases from 10ms to 20ms, utilization in-

creases. The higher the processing time becomes, the more critical the load balancing

algorithm.

In another experiment, two different rules are installed on the OpenFlow switches,

one that simply forwards the arriving packets, and another that modifies the packet

headers. For the first rule, the performance is as good as an ordinary switch but for

the second rule it decreases by two orders of magnitude. The reason is attributed to

packets in the buffer being dropped while they are waiting for the OpenFlow switch

5



to rewrite the packet header. This indicates that preventing bottlenecks in OpenFlow

switches is important in order to have a load balancer with a reasonable speed com-

pared with commercial ones. It is expected that in the next generation of OpenFlow

switches (or even firmware updates) rule-rewriting will have high performance.

2.2.2 OpenFlow-Based Server Load Balancing Gone Wild

Load balancing in enterprise networks is one potential application of OpenFlow.

As Wang et al. discuss, they use a binary tree to represent the space of all possible IP

addresses [28]. The ith level in the binary tree corresponds to the ith most significant

bits of the IP address. The nodes in a subtree correspond to a prefix match on the

path from the root to that subtree. Under the assumption that each IP address

supplies equal load on the network, a tree representation is effective since at each

level the load is distributed equally between the two subtrees. This solution allows

fine granularity of load distribution.

(a) Three resource instances, R1, R2, R3 cover

the IP space.

(b) Desirable load balancing configuration with

a minimum number of wild card matches.

Figure 2.1: Load Balancing Based on a Binary Tree [28].

Given that ternary content addressable memory (TCAM) is an expensive resource

in routers, minimizing TCAM is a useful objective. As Figure 2.1a shows, subtrees
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00∗, and 010∗ are assigned to resource R1. The representation in Figure 2.1a is not

optimal as it requires six rows in TCAM. There is an equivalent representation that

uses less TCAM space as Figure 2.1b shows. Wang et al. provide an algorithm to

reduce the tree in Figure 2.1a to the one in Figure 2.1b [28]. In their reduction, they

ensure that the connections that are already in place do not get interrupted by the

migration. This is guaranteed by making the active connections migrate after they

are closed. One weakness of this work is the assumption that load is distributed

equally among subtrees. However, the idea of migration is a useful adaptive scheme.

The number of needed wild card matches was reduced by redistributing the IP

space among servers. This solution cannot be used in our proposed work because they

are trying to slice the IP space among servers while we try to spread the incoming

data as equally as possible.

2.2.3 Aster*x: Load-Balancing as a Network Primitive

In Plug’n Serve (the precursor to Aster*x), load balancing is studied in an unstruc-

tured network [20]. Their interest is in networks that are not built for the purpose of

developing server farms such as campus networks and enterprise networks, because

background traffic and biased network topologies could affect the performance of

network-agnostic load-balancing significantly [20]. The question addressed is whether

adding more servers to an unstructured network can improve the overall performance

and whether it is possible to devise a general load balancing solution for these types

of networks. One aspect to their system design is that all servers have the same IP

alias. The controller decides to which server to direct the request. Once the controller

chooses a server, it sets up a flow to that server, and the packets are sent at line rate

over that flow path.

Aster*x advances Plug’n Serve by performing load balancing on a larger scale net-
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work, in particular, over a wide area network (WAN) [18]. In addition, the load bal-

ancer can handle the client diversity, serving both local and remote requests. Aster*x

has used the Global Environment for Network Innovations (GENI) infrastructure to

evaluate its proposed solution [16].

As in Plug’n Serve, in Aster*x all servers use the same IP alias. The controller is

in charge of assigning a server to an incoming request. Three different modules are

used to make the assignment. Two of them probe network congestion and host load

in order to choose the best path, where “best” is the one with the minimum traffic,

to the host with the lowest load. The controller then manages the load and routes

the flows using the algorithm selected.

The idea of probing the network to understand the load is an important idea.

However, our network is not unstructured; as a result there is no significant effect of

substantial background load or biased network topologies over the network-agnostic

load balancing. We can benefit from their idea of using one alias IP address to refer

to a server pool and to put an OpenFlow controller in front of the server pool to act

as a proxy and select which server has to receive the load.

2.2.4 Towards an Elastic Distributed SDN Controller

Scalability and reliability are issues that a centralized controller in an SDN enabled

network suffers. Having distributed controllers instead of one centralized controller

is a solution to these issues. However, a distributed control plane can bring the

problem of having the load divided among controllers unevenly. Dixit et al. proposed

ElastiCon, an Elastic Distributed Controller, to address this problem [13]. They

believe static mapping between a controller and a switch is the main issue [13]. Hence,

in their elastic architecture, the controller pool is dynamically grown or shrunk based

on the network load and the load could be transferred to another controller with a
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reasonable amount of resources when required.

Although migrating switches across controllers is a primitive in their design, it is

not sufficient. Additional mechanisms are provided to support three main operations

to balance the load across the controllers. First, there is a mechanism in charge

of balancing the load among controllers by reassigning switches to controllers with

sufficient resources periodically. Secondly, there is an upper margin which indicates

the total load that could be handled by the resource pool; if the load exceeds this

margin the resource pool has to be grown. Finally, there is a lower margin which

detects when we need to shrink the resource pool.

Although the idea of balancing the load among controllers by measuring their

utilization level is a very good way to make switching and or routing decisions faster,

it is out of the scope of our work.

2.3 Testbed

In this section we introduce some of the software and tools that we use in our

research.

2.3.1 XenServer

XenServer is a free product from Citrix that is used for server virtualization [11].

This open-source virtualization platform has been used in cloud services as well as

server and desktop virtualization. In our project XenServer helps us to install and

manage all the needed virtual machines (VMs) on the physical machine. It is respon-

sible to allocate resources to the VMs.

9



2.3.2 Mininet

Mininet is an open-source network emulator tool [19] [2]. Using this tool we

can imitate any arbitrary network topology with all of its components. It provides

end-hosts, switches, links and routers on a single Linux kernel. Using lightweight

virtualization it makes a single system look like a complex network. We can run any

software that is compatible with Linux, from web servers to Wireshark on its end-

hosts. Mininet also gives us the ability to customize our packet forwarding using the

OpenFlow protocol. It has the ability to establish a connection between the emulated

network to a local or remote OpenFlow controller to obtain the packet forwarding

decisions. In this research this useful tool helps us to test the controller before running

it on the testbed.

2.3.3 Open vSwitch

Open vSwitch (OVS) is a distributed software switch [3]. While this software

supports standard management interfaces and networking protocols, its main goal

is to provide switching for hardware virtualizing platforms in a multilayer virtual

switch. This software allows network automation via its programmatic extensions. It

had been used by XenServer and Xen Cloud Platform as their default switch [3]. In

this research we use this software as our OpenFlow enabled switch.

2.4 Controllers

There are several popular OpenFlow controllers written in different languages

offering a wide variety of services. Some of these controllers include:

POX: POX is a good choice for rapid development and for developers who want to

prototype a network controller software. This controller is written in Python.
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Its high-level SDN API allows developers to quickly turn their ideas into reality

and helps them to write their own OpenFlow controller.

OpenMUL: OpenMUL is an SDN/OpenFlow controller whose core is written in C

[12]. Its main goal is to reach a high performance and reliability by virtue of its

multi-threaded core. It has a graphical user interface (GUI) and a web service

API that is bound to representational state transfer architectural limitations

(RESTful API) [14] alongside the command line interface (CLI) that makes the

process of its management much easier. The RESTful web services are used

to return JavaScript Object Notation (JSON) and XML format in response to

application-specific web URLs. JSON is a lightweight human-readable open

standard format for data transmission. It was first used as an alternative to

XML to send data between a server and a web application. This controller

supports a variety of SDN south-bound protocols such as OpenFlow 1.0, 1.3

and 1.4 as well as ovsdb and of-config.

Floodlight: Floodlight, an Apache-licensed OpenFlow controller, is a Java-based

controller that can be used for controller development in enterprise networks [1].

This controller is a derivative of another Java-based controller named Beacon

[1]. Floodlight has been used in a commercial product from Big Switch Networks

as core of their network controller software [7].

FlowVisor: FlowVisor, a special purpose OpenFlow controller, is designed to sup-

port network virtualization [24]. FlowVisor has the ability to make slices of

network resources and assign each one of them to a different controller. Net-

work resources can be sliced at any layer, e.g., they could be sliced at layer

one in terms of any combination of switch ports, or they could be split at layer

two in terms of source/destination ethernet address or type; they also could
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be distinguished in terms of source/destination IP address in layer three or as

source/destination UDP/TCP ports in layer four.

OpenDaylight: Big companies such as Cisco, Microsoft, Citrix, Juniper, Intel and

IBM contributed to develop the OpenDaylight SDN/OpenFlow controller [26].

In this project these industry leaders come together with one goal, and that is

to provide a common SDN platform to let other businesses and companies use

it as their base SDN solution. Based on each company’s needs, developers can

utilize the code or even develop new features that can fit into their requirements.

2.5 Splunk and Syslog

Splunk is software that is designed to let its users search, monitor and analyze

machine-generated big data through its web interface [6]. Machine-generated data

includes all data logs that are produced by applications, servers, network devices,

firewalls, etc. One of these log data can be syslog [15] data coming from network

devices such as routers and switches. This syslog data can record the network’s status

including device failures, security threats, performance, and the state of network

connections. Syslog has being used as a common computer message logging standard

for years. Rsyslog is software that is used to store syslog messages on a server. At

the University Technology Office (UTO) of Arizona State University (ASU) Splunk

is being used to capture the log data coming from the Palo Alto (PA) firewalls into

a web-style format that allows network administrators to monitor and analyze these

logs more easily.

Filtering is one of the features that Splunk provides for its users. It allows users

to prevent some of the logs from being indexed in Splunk database. For instance, a

user can define a rule to filter all the logs that are initiated at a specific machine by

its IP address.
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2.6 Current Solution

UTO uses Citrix NetScaler [9] as their current load balancing solution in front of

Rsyslog servers. NetScaler divides the IP address space and spreads the load among

servers based on source IP address of incoming packets. As a result, NetScaler divides

the whole load coming from one PA firewall to one Rsyslog server. Therefore only one

of the Rsyslog servers receives the whole load and the rest of them receive nothing.

With multiple PA firewalls this leads to a very uneven load distribution among Rsyslog

servers.

In the next chapter, we discuss the testbed setup, and our controller design to

balance on load differently, rather than on the IP address space.
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Chapter 3

ARCHITECTURE OF OUR SDN LOAD-BALANCING SOLUTION

In this chapter we discuss the architecture of our OpenFlow based load balancing

controller design and how we use it to improve the current solution for processing the

data coming from Palo Alto (PA) firewalls.

The main concern with our proposed architecture is whether it is fast enough to

keep up with the data rate. We describe the configuration of the testbed, and how we

verify its connections. We conduct experiments in the physical testbed, gather data,

and analyze our results in Chapter 4.

3.1 The Testbed

3.1.1 Topology and Technical Specification

We are given a wire tap to the data that one of the PA firewalls is sending out.

This wire tap is directed at our testbed to feed the load balancer for examination and

verification purposes. (Permission to obtain this tap was granted by the Research

Administration Office of the Arizona Board of Regents for and on behalf of ASU.)

Our testbed includes a physical Dell server with 32 GB of RAM and 32 Intel Xeon

E5-2640 v2 processors, each one working at the speed of 2.00 GHz. On the Dell server

we installed Citrix XenServer version 6.2. Then we installed four virtual machines

(VMs) on the XenServer. We allocated 4 GB of RAM to the first VM and 8 GB of

RAM to each of the other three. Each VM is allocated 4 Xeon CPUs.

In an OpenFlow network there is a central controller that is responsible for making

routing and switching decisions. The first VM is configured to act as our controller
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and the other three are set up as Rsyslog servers. As Figure 3.1 shows, the Open

vSwitch (OVS) is installed on the XenServer. Our software switch is connected to the

controller and the three other VMs. The OVS is configured to have the OpenFlow

protocol enabled on its bridge xenbr0. As a result it sends every new flow to the

controller and then the controller decides whether to install a rule on OVS for similar

flows or handle them on a packet by packet basis.

3.1.2 The Data Feed and its Features

The data coming in to the testbed is the data sent out by the PA firewall. The

data is in syslog format. The existing PA firewall at ASU uses the UDP protocol to

send out its syslog messages. While more recent PA firewalls give the option to send

these syslog messages in TCP packets, we restrict our attention here to UDP.

Recall that the UDP protocol is not a reliable transport protocol. As a result, the

syslog messages might get lost and there is no mechanism to retransmit those packets.

We cannot guarantee there are no packet losses. However our objective is to deliver

as many packets as the current solution delivers to the destination. In Chapter 4 we

design an experiment to perform this validation.

Rsyslog messages are smaller than the maximum transmission unit (MTU) of IPv4

packets. As a result these packets do not get fragmented. Hence, in our design there

is no need to take fragmentation into consideration.

3.1.3 Setting Up the Testbed

Since we use OVS to imitate the behavior of an OpenFlow switch, we must have

OVS running on the XenServer. In our case there are four different network interfaces

on the physical machine. eth0, . . ., eth3. The XenServer has the ability to manage

them through the OVS. In order to do so, when XenServer is booting up it creates four

15



Figure 3.1: The Testbed Topology.
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different bridges xenbr0, . . ., xenbr3, using OVS and creates a one-to-one mapping

between each interface and bridge, i.e., eth0 is added to xenbr0 as a port.

When we want to change any IP settings on a physical interface, we have to make

the changes on its mapped bridge interface. From now on, whenever we refer to

configuring physical interfaces such as eth0 and eth1, we are referring to configuring

their mapped bridges. We use all of these bridges to set up our network. Recall

Xenserver is only accessible over the network through its eth0 and eth1 interfaces.

Since the PA is on the local campus network, our testbed must be connected to

that network to obtain the data coming from the PA. The PA forwards its packets to

an IP address in the range of the network addresses we assigned to our testbed. In

our case the network address that the testbed is using is 10.106.19.0/24 and the PA

forwards its data to the IP address of 10.106.19.7. We have set up eth0 to use an IP

address of 10.106.19.6. In this case eth0 is a hop in the data path from the PA to the

Rsyslog server. We call this network, 10.106.19.0/24, our data network.

We also need to have access to the XenServer through another interface to reach

the XenServer remotely to set up the VMs, configure their attributes, and control

them. We call this network our control network. There are three reasons we cannot

use our data network to connect remotely to the XenServer for control purposes:

1. OVS is using our controller to make its forwarding decisions on xenbr0.

2. eth0 is on xenbr0.

3. Our controller only forwards those packets that are targeting to reach to the

Rsyslog server.

As a result any control or management packets on xenbr0 destined to go back to the

computer that is remotely connected to the Xenserver, are dropped by the OVS.
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It is ideal having the management network and the data network to use two

different network addresses, as well as gateways, to prevent any conflict between

them. When we make any changes on one of the networks it does not affect the other

one, since they are completely separated. In our situation due to some restrictions

from the University Technology Office, we use the same network address for both

networks. We assign the eth1 interface an IP address of 10.106.19.4. Recall that

this interface is on xenbr1 which is not controlled by our controller and is a non-

OpenFlow bridge. Hence there should not be any problem with connecting to this

interface remotely.

Since eth0 and eth1 are both on the same network we have to make sure when we

are remotely connected to eth1 all of our management packets are going through this

interface. In order to test connectivity, we unplug the cable connected to eth0. Now

when we want to SSH to 10.106.19.4 from a remote machine we get an error indicating

the server does not exist. The problem is that in our case we have set up eth0 first

and then eth1. This leads to having two different routes to the same destination in

the routing table on the XenServer. The routing table is shown in Figure 3.2. In

this case when management packets want to reach to the remote machine they match

the first match in the routing table which is eth0. To solve this problem we need to

reverse the interface configuration order. We can also solve this issue by disabling

and re-enabling the eth0. This changes the order of entries in the routing table and

leads to matching the correct entry while we are trying to reach to the XenServer

remotely.

Now that we have set up our data and management network we should set up our

Rsyslog servers. We install Rsyslog on the VMs and start this software running so we

can process syslog messages coming from the PA. We install Rsyslog on VM2, VM3

and VM4. We have to set up these VMs in such a way they can interact using our
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Figure 3.2: Erroneous Routing Table on Xenserver

controller. We assign an arbitrary IP address in range of 10.106.19.0/24 to each VM.

Then on the XenServer we add their interfaces to xenbr0 on OVS.

To finish configuring our OpenFlow enabled network, we need to configure xenbr0

on the OVS to connect it to the controller. Our controller is running on VM1. In

OpenFlow, the controller has to communicate with a switch on a non-OpenFlow

network. In order to accomplish that we configure the VM1 networking interface to

have a different network address than the data network. We assigned 192.168.1.10 to

the VM1 interface. We need to configure the XenServer to communicate with VM1.

To make this happen we first assign an IP address in the same range to one of the

free interfaces on XenServer. We use eth2 and set it up to work with the IP address

192.168.1.1. VM1 interface needs to be added to the same bridge that eth2 is on. We

add the VM1 interface to xenbr2. The last step is to inform xenbr0 where to find its

controller. We set up that using the following command:

ovs-vsctl set-controller <bridge> tcp:<ip>:<port>

To do all the configuration of VMs we use software provided by Citrix, called

XenCenter [10]. This software connects to the XenServer remotely and gives full

control over the physical machine and VMs. There is also a command line interface

(CLI) that allows control of VMs and their attributes. But XenCenter makes it very

convenient to control everything through the GUI it provides.

This software provides us a console to each VM. Through this console we can

access each VM and configure the required attributes. In the validation phase of
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this project we use the same console to reach each one of the VMs and perform the

verification. Using XenCenter on a VM, higher level configuration such as adding a

virtual network interface to a VM or assigning that interface to XenCenter’s bridges

as one of their ports, is also supported.

To complete the testbed setup, we need to create another OpenFlow disabled

network including all the VMs. As shown in Figure 3.3 this network is for probing

purposes. We will see that in the load-based policy, we use this network to probe all

of the Rsyslog servers. By probing Rsyslog servers at the time of server selection in

the load-balancing process, we can prevent the controller from forwarding data to a

server that is down. In order to add this network, we have to add a second interface

to each one of the Rsyslog servers and a third network interface to the controller.

Recall that second interface on the controller is dedicated to a TCP channel between

the controller and the OVS. After adding another interface to all of the VMs we have

to put them all on the same OVS bridge. We assign all of them to xenbr3 on OVS.

Each VM has been assigned an IP address in range of 192.168.2.0/24.

3.2 Controller Design

In this section we explain different components in the controller and how they

work together. As we know, the controller is in charge of making all the forwarding

decisions in our data network. Our goal is to divide the load among the Rsyslog

servers in such a way that one Rsyslog server receives the load at a time. We develop

three policies in which the objective is to spread the load in such a way to make these

files as even in size as possible.

1. Round-Robin: In this policy we assign each server a static ID starting from

zero, and incrementing by one. For the first time around, we choose ID number

zero, and store the ID number of the selected server in a static variable. Every

20



Figure 3.3: OpenFlow Disabled Network Setup for Network Probing.

time this method is called, we retrieve the ID number of last selected server,

increment it by one and perform a modulo n operation on it, where n is the

total number of Rsyslog servers.

2. Random: In this policy we choose our next server at random.

3. Load-Based: In this policy we choose the server which has received the least

amount of data for today.

Since the first two policies are the most common policies in load balancing, we

have chosen to implement them as well. The reason for implementing the Load-Based

policy is that we believe the first two policies cannot operate well in a network where

server failures occur.

Before describing different components in the controller, we explain how Open-

Daylight works and how we should develop a controller using OpenDaylight. Open-
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Daylight takes advantage of the following tools and software:

• Bundle: A bundle consists of a group [5] of Java classes that form an application

and come with a manifest file containing information about these classes, as well

as required packages and services that are needed by these groups of Java classes.

• OSGi: The Open Gateway Service initiative [4] is a set of specifications that

enables system modularity. It installs bundles and allows them to exchange

their information using a service model without revealing their content. It also

allows to remotely install, update, uninstall, stop or start, a bundle.

• Maven: Maven is a project management tool [25]. It uses a project object

model (POM) xml file to detect dependencies for the project, needed pack-

ages to download, where to look for those packages and what bundles to start.

OpenDaylight uses this software to automate the process of building a project.

In OpenDaylight, our controller is nothing but a bundle that uses other bundles’

services to provide a load-balancing application for a specific use. Next we explain in

detail the different components in our bundle.

3.2.1 Initialization

Prior to initializing our bundle, we need to uninstall three of the bundles that are

running by default in order to prevent any interference with our bundle. These three

bundles are:

• ARP Handler: As its name suggests this bundle is responsible for handling all

of the ARP packets.

• Simple Forwarding: Simple Forwarding is an application that makes simple

forwarding decisions like a conventional switch, and installs rules related to the
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forwarding decisions across the entire OpenFlow network. It has the ability to

discover hosts using ARP messages.

• Load Balancer Service: This built-in load balancer application installs Open-

Flow rules reactively. It can be configured through the REST API to forward

all packets with a specific source and port address to one its backend servers.

Random and Round-Robin are two policies that this bundle includes.

We stop these three bundles because they interfere with the logic of our bundle.

When the ARP Handler is running it responds to ARP requests and it does not allow

our bundle to receive those packets. Therefore, if we do not stop the ARP Handler

our bundle cannot create a mapping between MAC addresses and IP addresses using

ARP messages. Although not stopping the ARP Handler does not mean that our

bundle would not work properly, it is better to stop this bundle so we can handle

ARP messages through our bundle and use them to create a mapping between IP

and MAC addresses faster.

The Simple Forwarding bundle also does not match with the logic of our bundle.

It simply finds routes to hosts and writes rules for those flows. But our requirement

is to change the packet destination for load balancing purposes periodically. As a

result this bundle interferes with our application and is therefore stopped.

The last bundle we stop before starting our bundle is the default load balancing

bundle. By running some experiments we determined that this load balancer cannot

divide the UDP load among our Rsyslog servers. Although this bundle needs to

be configured through the REST API to start working, we prefer to prevent any

unpredictable behavior this bundle may cause by stopping it.

The PA firewall directs everything to one IP address. In our testbed, that IP

address is an alias IP address, meaning that there is no Rsyslog server running with
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that IP address. Now it is our job to redirect everything that the PA sends out, to

real Rsyslog servers. The IP addresses of the Rsyslog servers and the IP address of

an alias Rsyslog server are given to our bundle via a file on the controller. We have to

know these IP addresses for further processing and packet manipulation. In this file a

32-bit integer value is provided as well. This value is the hard time-out for OpenFlow

rules our bundle writes on the OpenFlow switch. The configuration file format is:

Policy = Policy name

Hard timeout = m seconds

The repeating the same selection limit = t times

Alias IP = IP address of alias Rsyslog

Server IP = first Rsyslog server IP address

Server IP = second Rsyslog server IP address

.

.

.

Server IP = nth Rsyslog server IP address

We will explain the repeating the same selection limit in the first step of the

Handling UDP Packets, subsection 3.2.3.

3.2.2 Processing Incoming Packets

When a packet comes into the OpenFlow enabled switch, the switch tries to find

a match for the packet in its forwarding table. If the switch fails to find a match

for the packet, it forwards the packet to the controller. OpenDaylight receives the

packet and it notifies all the bundles that have implemented its IListenDataPacket
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interface. To process an incoming packet in a bundle, the bundle has to override the

receiveDataPacket method in the IListenDataPacket interface. This method returns

a type known as PacketResult. PacketResult can acquire three different values.

1. PacketResult.CONSUME

2. PacketResult.IGNORED

3. PacketResult.KEEP PROCESSING

The CONSUME value notifies OpenDaylight that our bundle has taken care of

this packet and no other bundle in the chain after us should get a copy of this

packet. The IGNORED value informs OpenDaylight our bundle has not processed

this packet. Hence, a copy of this packet has to be forwarded to other bundles for

further processing. The KEEP PROCESSING value indicates that the packet has

been processed by our bundle and further processing is still possible by other bundles.

As a result the controller forwards a copy of the packet to other bundles.

Now that we know how to get a copy of incoming packets from OpenDaylight,

we must describe how to process them. When our bundle starts working, it does not

know anything about the network’s topology or the servers’ MAC addresses. So when

we get a new packet we extract this information into two different hash tables. We

are interested in knowing what IP address corresponds to what MAC address, and

what MAC address corresponds to which port on the switch. Without knowing this

information we cannot write proper OpenFlow rules on the switch. Hence we need

to collect this information before we can start writing any rules.

Since the PA encapsulates its data in UDP packets, after extracting the IP and

MAC information we check to see whether the packet is a UDP packet. If it is a TCP

packet we ignore it and leave it to other bundles to process. If it is anything other
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than UDP we inform the switch to flood these packets, depending on what mode the

bundle is operating, but we do not write any rule for them. Our bundle operates

in two different modes. The first mode is an initialization mode, and the second

mode is a post-initialization mode. Initialization mode indicates that the bundle has

not collected all the information required for writing OpenFlow rules. As a result

it keeps broadcasting all packets except TCP and UDP packets. When the bundle

collects needed information, it transitions to its post-initialization mode. This means

the controller stops broadcasting any packets except ARP messages. Next we go into

detail of handling UDP packets.

3.2.3 Handling UDP Packets

When we process UDP packets we are only interested in packets destined for our

alias Rsyslog IP address. Therefore, we do not further process a UDP packet if it is

not intended to go to an Rsyslog server. To route a UDP packet with syslog content

we perform the following steps:

1. Use the load balancing policy to select a server.

2. Create a match for packets similar to the current packet.

3. Make a list of actions to be made on any match with this packet.

4. Write the rule for this flow in the switch.

5. Forward the current packet.

6. Periodically, proactively update this flow to forward packets to the next server

according to the load balancing policy.
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Selecting a Server

We select a server from the server pool based on the policy we are using to spread

the load. We assign an integer to each server starting from zero and incrementing by

one. We call this number our server ID. We put these values in a hash table. This

makes selecting a server from an existing server pool and tracking previous choices

easier. Then based on the policy we are using, we select a server as the destination

of packets.

To make sure we are not sending the packets to a server that is down or to a

server that is having trouble listening on port number 514 (this is the default port to

receive syslog messages), using a script we first probe port 514 on all of the servers

to determine which of them is up and listening. All the syslog servers listen on port

514 for TCP and UDP packets. Since there is no way to verify delivery of a probing

packet using UDP, we use TCP to probe port 514 on the servers. There are two

different methods to probe a TCP port. One is to connect to that TCP port, i.e.,

open a connection and tear it down immediately. The other is to only send the SYN

packet to the TCP port and wait for a SYN-ACK packet. If the server sends the SYN-

ACK packet it means it is up and listening on that port. We use the second method,

since it is slightly faster and does not require the Rsyslog daemon on the server to

create another process to listen on the same port. To implement second method we

use Nmap [17], software that allows us to scan ports on a computer network, and

provides us a result indicating whether specific port is open on each host. At first

we wanted to use this software to probe the network, but for unknown reasons the

probing process was very time consuming. For instance instead of probing a server in

a fraction of a second, it took about twenty seconds for Nmap to produce a report.

As a result we decided to use the setup connection method instead.
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The code to probe the servers is written in Python. This code is called at the

beginning of the server selection process. It writes the probing results in a file. Later

in our program, the bundle reads the results from the file and uses them to check

which servers are available in the server pool.

Different load balancing policies use this information about available servers dif-

ferently. The Round-Robin policy first selects the next server simply by incrementing

the server ID from the last time. Then it checks to see if that server is up and running.

If it is not up, increments the server ID and checks again. This process continues until

the selected server’s status is up.

The Random policy first uses the information in the file to create an array of

server IDs whose status is up, then it selects a number in range of the array’s length

at random; this number is the index of selected server ID in the array.

The Load-Based policy chooses a server based on the number of bytes the switch

has sent out on each port. An OpenFlow switch has the ability to keep track of

statistics such as the number of packets it has received and sent out on each port,

the number of errors in receiving and transmitting packets, the number of incoming

and outgoing dropped packets, etc. Since OpenDaylight is a RESTful controller, to

obtain such statistics we query the controller by sending a specific web URL to the

controller on port 8080. The OpenDaylight controller has a web server running on

that port by default. When we send out the query to the controller to obtain the

statistics, the controller processes it and sends the corresponding command to the

switch to get the information. The statistics that come back from the switch are in

JSON format. Our bundle parses the JSON report to obtain the number of bytes

that is sent out on each port. Since the switch keeps this information for each port,

we have to use a hash map to figure out what servers are on what ports.

Rsyslog can separate incoming logs based on the server’s local time. For instance
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it can put all the logs in a file on an hourly or a daily basis. In our case Rsyslog splits

the logs on a day to day basis. Our objective is to make the files for each day as equal

in size as possible. Therefore we need to derive number of bytes we have sent out for

the day from the total number of bytes that we have sent out from the beginning of

controller’s job. As a result we need to keep track of how many bytes we have sent

out on each port starting from midnight of each day. Recall only those ports that go

to a server are important to us. By subtracting the number of bytes we sent out at

midnight from the number of bytes we have sent out up to this moment, we obtain

the number of bytes we have sent out to the current time. Using our hash map we

can detect which server corresponds to the fewest number of bytes that we have sent

out on all ports. In this calculation there is one thing we need to be cautious about,

and that is overflow. As the OpenFlow specification declares, the number of received

bytes is stored in a 64-bit unsigned integer. Hence if we get a negative number in our

calculation, an overflow has occurred. To take care of this overflow, we need to add

up the following values to get the number of received bytes so far for the day for that

particular server:

• The difference of the maximum positive value an unsigned 64-bit integer can

store and the number of received bytes at midnight

• The number of received bytes so far for the day

As we will see, the different policies behave differently when a server that has

been down for a while comes back up. The Round-Robin and Random policies do

not try to compensate for the time the server was unreachable. They continue their

normal routine. They only use the server that just came back up to split the load.

On the other hand, the Load-Based policy keeps selecting the server that just came

back up to compensate for the time it was down. There is an option in this policy

29



that can be set to put a limit for selecting same server repeatedly. This option could

be set in the configuration file in integer format. We call this number the repeating

the same selection limit (RSSL). The RSSL determines how many times a server can

be selected consecutively. This option not only can prevent other servers from being

idle, but also can help to keep the server that was down from being overwhelmed

with data. The smaller the RSSL, the longer the compensation time lasts, where

compensation time is the time it takes for controller to fill the created gap between

the server that was down and the rest of the servers.

Creating a Match

In the second step we have to create a matching rule. We match a packet based on

following fields:

• EtherType

• Network Protocol

• Network Destination Address

• Destination Port Address

EtherType is a two-byte field that shows which protocol is encapsulated inside an

Ethernet frame. For those packets going to the Rsyslog server this value is 0x0800

which indicates that the Ethernet frame contains an IPv4 payload.

The Network Protocol is a one byte field indicating the protocol encapsulated in

the IPv4 frame. If this field is equal to 17, the IPv4 packet encapsulates a UDP

packet.

The Network Destination Address is the destination IP address which is repre-

sented in integer type. The packets that we are interested in forwarding have a
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destination IP address set to the alias Rsyslog server.

The Destination Port Address is represented in a short type, indicating the desti-

nation port where packets are destined. By default, Rsyslog listens on port 514.

Since our purpose is to forward all the traffic to one server at a time and there

are multiple PA firewalls in principle, we cannot include the source IP address in the

fields to match. For the same reason we cannot include the source port address.

Making a List of Actions

We now make a list of actions to be taken on the packets that have the same fields

as our match. These actions are:

• Rewrite the destination MAC address of the packet with the destination MAC

address of the selected server.

• Rewrite the destination IP address of the packet with the destination IP address

of the selected server.

• Forward this packet on the outgoing port that reaches the selected server.

Writing the Rule

In the fourth step we write a flow on the switch. This flow includes a match and a set

of actions to be taken on that match. To write a flow on the switch we need to specify

a hard and soft timeout for that flow. A hard timeout defines the expiration time of

the flow after the flow is installed. A soft timeout specifies to remove the flow after a

flow is idle for the given period of time. The hard timeout could be set by the user in

a configuration file placed on the controller. We do not set the idle timeout, since the

PA never stops flooding. As a result before this flow becomes idle we need to rewrite

another flow to forward the load to another server in order to prevent losing packets.
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Forwarding the Current Packet

In this step we have to forward the current packet to the selected server. Otherwise

we lose those packets that do not match the rule on the switch and are forwarded to

the controller for further processing. To do so we have to rewrite some parts of the IP

packet and UDP packet. The checksum in UDP packet needs to be updated to reflect

the IP address of the selected server. The UDP checksum is a one’s complement sum

over the IP header, UDP header and data [23]. For the new packet, the UDP header

and the data remain the same. But the IP header changes. Hence we have to update

the UDP checksum reflect the change. To update the checksum we use the following

rule:

New checksum = Old checksum - ( IP address of the alias Rsyslog server - IP

address of selected server)

We also have to rewrite the IP address and MAC address parts in the IP packet.

Then the packet is ready to be sent out on the proper outgoing port.

Updating the Current Flow

The last step is to update the current flow periodically. Since the speed of the data

coming in is fast, on the order of hundreds of megabits per second, we need to write

the flow proactively. If we write the rule reactively we might lose some of the packets

due to the high incoming data rate. The period of updating the flow is relative to

the hard timeout for the flow. We update the flow α seconds prior to its expiration

time. α is defined as the time it takes for the controller to do all required actions for

updating the flow table and rewrite the existing rule. By doing this we would not

allow the switch to remain without a proper rule for any incoming flow of interest.

In the next chapter we design two experiments to test our controller and compare
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results that we obtain from different policies, and to the existing commercial load-

balancer.

33



Chapter 4

EVALUATION OF SDN LOAD-BALANCING POLICIES

In this chapter we design two experiments, one is to verify that our solution is reliable

and can deliver the data that the current solution delivers. The other verifies that our

solution splits the load among the servers as the current solution. We also compare

the three SDN load-balancing policies to see which one performs better in terms of

balancing the load.

4.1 Design of the Experiment

The Palo Alto (PA) sends its log data to ASU’s Rsyslog servers as well as to our

testbed. Therefore the data we are receiving is a replica of what is being sent to

ASU’s Rsyslog servers. However, the path to our testbed is different from path going

to ASU’s servers and the data is being sent in UDP. As a result there is no guarantee

that we get exactly the same data as ASU’s Rsyslog servers. As we will see, this is

why sometimes we deliver more data than the current solution.

We set-up and run two experiments. In the first experiment we run each policy

for at least five days and we gather the results. During this period none of our servers

experienced any failures. In the second experiment we simulate the condition of losing

one or even two of the servers for some time, by taking the servers down, to see how

each policy handles server loss. We explore how well each policy operated in terms

of data delivery and splitting the data as equally as possible among Rsyslog servers.
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4.2 Data Delivery Verification

The best method to check the data delivery is to feed the log files collected by our

Rsyslog servers on the testbed to Splunk and see if we are getting the same results

as the direct feed to ASU’s Rsyslog servers. Since Splunk licensing is based on the

amount of data we feed Splunk each day, and the fact these log files are huge (on the

order of tens of giga bytes), UTO decided not to use this verification method.

Another way to verify the data delivery is to compare log files that we gather with

the log files that UTO stores in ASU’s data centers before feeding them to Splunk.

Since these log files are huge and we cannot enter the data centers because of security

reasons, this verification method is not feasible either.

One other way that we can compare our results to what UTO obtains is to compare

the number of syslog messages that we recieve to the number of syslog messages that

Splunk indexes in its database. As it is described in syslog standard [15], each syslog

message has to be sent in one line. As a result, each line in the log files that we store

on our servers is a syslog message. We can count the number of lines in each file and

obtain the number of syslog messages in a file using a Linux command. However, we

have to consider Splunk filtering. As these logs are generated in ASU’s production

network, UTO filters the logs for management purposes. Hence, we need to perform

the same filtering as UTO before comparing our numbers. UTO filters some of the

logs based on IP addresses. We use a Linux command to count the number of lines

in the log files except those lines that contain certain IP addresses. After that we

add up the numbers that we get from each log file and compare the sum with the

number that Splunk gives us. The delivery ratio is defined by dividing the sum by

the Splunk’s number. We present results for each policy.
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4.2.1 Round-Robin Policy

In the first experiment, there is no server failure. As can be seen in Figure 4.1 and

Table 4.1 the number of syslog messages that we obtain after filtering is very close to

what Splunk indexes into its database.

Figure 4.1: The Number of Syslog Messages After Filtering on the Testbed Compared

to the Number of Messages Splunk Indexed Into Its Database for the Round-Robin

Policy With No Server Failures.

In the second experiment we simulate server failure by shutting servers down. As

Figure 4.2 shows, on December 19th we experienced an unusual gap between what

we stored on our servers and what the Splunk report shows. Numerical results for

this experiment are in Table 4.2. But the average delivery ratio (number of syslog

messages we stored on testbed divided by number of syslog messages Splunk indexed

for each day) over this period was still 0.993.
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Date Testbed (T ) Splunk (S) Difference (S − T ) Delivery ratio (S/T )

Nov 24th 192664117 193157905 493788 0.997443604

Nov 25th 193478076 194470616 992540 0.994896196

Nov 26th 173037862 173405381 367519 0.997880579

Nov 27th 145913198 146199972 286774 0.998038481

Nov 28th 154588059 155168922 580863 0.996256576

Table 4.1: Total Number of Syslog Messages on the Testbed After Filtering Compared

to the Number of Messages in Splunk Report for the Round-Robin Policy With No

Server Failures.

Figure 4.2: The Number of Syslog Messages After Filtering on the Testbed Compared

to the Number of Messages Splunk Indexed Into Its Database for the Round-Robin

Policy With Server Failures.
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Date Testbed (T ) Splunk (S) Difference (S − T ) Delivery ratio (S/T )

Dec 18th 61450166 61974048 523882 0.991546752

Dec 19th 46629441 54922906 8293465 0.848998066

Dec 20th 35155013 35214334 59321 0.99831543

Dec 21th 40500742 35132478 -5368264 1.152800608

Dec 22th 50886551 52465403 1578852 0.969906797

Table 4.2: Total Number of Syslog Messages on the Testbed After Filtering Compared

to the Number of Messages in Splunk Report for the Round-Robin Policy With Server

Failures.

Date Testbed (T ) Splunk (S) Difference (S − T ) Delivery ratio (S/T )

Dec 1st 216021445 216497873 476428 0.997799387

Dec 2nd 220307032 221506328 1199296 0.994585726

Dec 3rd 213855086 214371744 516658 0.997589897

Dec 4th 217260686 218149382 888696 0.995926204

Dec 5th 189661407 189555048 -106359 1.000561098

Table 4.3: Total Number of Syslog Messages on the Testbed After Filtering Compared

to the Number of Messages in Splunk Report for the Random Policy With No Server

Failures.

4.2.2 Random Policy

As Figure 4.3 depicts, the Random policy performance was very good in terms of

data delivery for the first experiment with the average delivery ratio of 0.997. These

results can be found in Table 4.3 as well.

As Figure 4.4 and Table 4.4 show, the Random policy performed very well, in
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Figure 4.3: The Number of Syslog Messages After Filtering on the Testbed Compared

to the Number of Messages Splunk Indexed Into Its Database for the Random Policy

With No Server Failures.

terms of data delivery, in the second experiment as well.

4.2.3 Load-Based Policy

As well as the other policies, the Load-Based demonstrated a very good delivery

ratio, with an average ratio of 1.03 and 1.00, as can be seen in Figure 4.5 and Figure 4.6

for the first and the second experiments, respectively. Numerical results can be found

in Table 4.5 and Table 4.6, respectively. During the first experiment 0.96 and 1.10

are the lowest and the highest data delivery ratios, respectively. While during the

second experiment these ratios are 0.96 and 1.04, respectively.

4.3 Load-Balancing Results

In this section we compare the different policies in terms of spreading the load

among servers based on the results that we gathered from running them on the

controller. We compare these policies for each experiment separately. To measure
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Figure 4.4: The Number of Syslog Messages After Filtering on the Testbed Compared

to the Number of Messages Splunk Indexed Into Its Database for the Random Policy

With Server Failures.

Date Testbed (T ) Splunk (S) Difference (S − T ) Delivery ratio (S/T )

Jan 5th 73188622 68323257 -4865365 1.071210964

Jan 6th 74993873 70059638 -4934235 1.070429068

Jan 7th 70052433 75863551 5811118 0.923400396

Jan 8th 77290725 69014981 -8275744 1.119912284

Jan 9th 110467859 106417245 -4050614 1.038063511

Table 4.4: Total Number of Syslog Messages on the Testbed After Filtering Compared

to the Number of Messages in Splunk Report for the Random Policy With Server

Failures.
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Figure 4.5: The Number of Syslog Messages After Filtering on the Testbed Compared

to the Number of Messages Splunk Indexed Into Its Database for the Load-Based

Policy With No Server Failures.

Date Testbed (T ) Splunk (S) Difference (S − T ) Delivery ratio (S/T )

Dec 25th 37444009 37101507 -342502 1.009231485

Dec 26th 41644757 37871078 -3773679 1.099645408

Dec 27th 39752694 41029295 1276601 0.968885622

Dec 28th 56260329 51003489 -5256840 1.103068243

Dec 29th 56928490 58358202 1429712 0.975501096

Table 4.5: Total Number of Syslog Messages on the Testbed After Filtering Compared

to the Number of Messages in Splunk Report for the Load-Based Policy With No

Server Failures.
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Figure 4.6: The Number of Syslog Messages After Filtering on the Testbed Compared

to the Number of Messages Splunk Indexed Into Its Database for the Load-Based

Policy With Server Failures.

Date Testbed (T ) Splunk (S) Difference (S − T ) Delivery ratio (S/T )

Dec 31th 48887055 50388054 1500999 0.970211213

Jan 1st 46580918 45021297 -1559621 1.03464185

Jan 2nd 51567124 53219385 1652261 0.968953775

Jan 3rd 47356854 45434582 -1922272 1.042308566

Jan 4th 47786448 47741711 -44737 1.000937063

Table 4.6: Total Number of Syslog Messages on the Testbed After Filtering Compared

to the Number of Messages in Splunk Report for the Load-Based Policy With Server

Failures.
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the performance of each policy in terms of spreading the load, we define the split ratio

by dividing the smallest file size by the largest one stored on the testbed for each day.

4.3.1 First Scenario: Without Server Failure

In the first experiment all the servers are up and running for the whole experiment.

This is the ideal network status that does not happen very often. We run all of the

policies with the same configuration that might affect the result such as hard timeout

for flows that we write on the switch. In this case the hard timeout for all policies is

eight seconds. This means that after eight seconds the controller must select another

server to forward the load.

The first policy we run on the testbed is Round-Robin. As Figure 4.7 and Table 4.7

show, Round-Robin divides the load among servers almost equally. The largest split

ratio during this experiment is 0.99, while the smallest ratio is 0.98.

Figure 4.7: Round-Robin Policy Divides the Syslog Load Among Rsyslog Servers

With No Server Failures.
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Date Server 1 file size Server 2 file size Server 3 file size Split ratio (Min/Max)

Nov 24th 25.38 GB 25.13 GB 25.15 GB 0.989912803

Nov 25th 25.26 GB 25.06 GB 25.03 GB 0.990710266

Nov 26th 22.63 GB 22.45 GB 22.51 GB 0.991811974

Nov 27th 19.42 GB 19.26 GB 19.32 GB 0.991758144

Nov 28th 20.85 GB 20.62 GB 20.68 GB 0.988974086

Table 4.7: Final Syslog File Sizes on Each Server at the End of Each Day When the

Controller Was Running Round-Robin Policy With No Server Failures.

Date Server 1 file size Server 2 file size Server 3 file size Split ratio (Min/Max)

Dec 1st 28.19 GB 28.19 GB 28.04 GB 0.99454847

Dec 2nd 28.91 GB 29.24 GB 28.73 GB 0.982632883

Dec 3rd 28.54 GB 27.51 GB 27.96 GB 0.964127122

Dec 4th 29.24 GB 27.73 GB 27.84 GB 0.948370566

Dec 5th 24.78 GB 24.98 GB 23.94 GB 0.958304583

Table 4.8: Final Syslog File Sizes on Each Server at the End of Each Day When the

Controller Was Running Random Policy With No Server Failures.

Then, we run Random policy on the controller. The result is given in Figure 4.8.

The Random policy also spreads the load in such a way that can be used in a network

without any server failures. Table 4.8 shows file sizes at the end of each day on each

server while the controller was running the Random policy. During this experiment

the largest split ratio is 0.99, whereas the smallest ratio is 0.94.

Finally, we run the Load-Based policy on the testbed. As Figure 4.9 shows, the

Load-Based policy behaved very similar to the Round-Robin policy. This policy

spreads the load among the servers almost equally. Performance of all of the policies
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Figure 4.8: Random Policy Divides the Syslog Load Among Rsyslog Servers With No

Server Failures.

was very good in terms of balancing the load between servers. Actual file sizes for

this run can be found in Table 4.9. The largest and the smallest split ratios in this

experiment are 0.98 and 0.97, respectively.

During the course of the first experiment the best average split ratio belongs to

the Round-Robin policy by the rate of 0.99. While the Random policy has the worst

average split ratio by the rate of 0.96.

4.3.2 Second Experiment: With Server Failure

In the second experiment we simulate the condition of losing one or two servers

by turning off Rsyslog servers. Using XenCenter we reach the Rsyslog server that we

want to turn off and shut it down. We examine the performance of all the policies in

this condition, and then we compare their results.

First we run the Round-Robin policy. In Figure 4.10 we can see syslog file sizes
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Figure 4.9: Load-Based Policy Divides the Syslog Load Among Rsyslog Servers With

No Server Failures.

Date Server 1 file size Server 2 file size Server 3 file size Split ratio (Min/Max)

Dec 25th 33.70 GB 33.07 GB 33.03 GB 0.980028907

Dec 26th 24.76 GB 24.39 GB 24.38 GB 0.984667995

Dec 27th 31.49 GB 30.95 GB 30.97 GB 0.98291316

Dec 28th 39.81 GB 39.03 GB 39.18 GB 0.980243263

Dec 29th 38.22 GB 37.48 GB 37.34 GB 0.976772638

Table 4.9: Final Syslog File Sizes on Each Server at the End of Each Day When the

Controller Was Running Load-Based Policy With No Server Failures.
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immediately before losing a server and at the time the server comes back up. Fig-

ure 4.11 shows the final syslog file sizes on each Rsyslog server at the end of each

day; the actual file sizes are in Table 4.10. On average we lost one server for about

two hours per day. In comparing Figure 4.11 with Figure 4.10b we see that this pol-

icy retains the gap created due to server failure between the server that experienced

failure and the other servers. As a result the Round-Robin policy does not work well

when servers fail. During this experiments the Round-Robin policy has the smallest

and the largest split ratio of 0.75 and 0.90, respectively.

(a) Immediately before losing a server (b) Immediately after all servers come back up

Figure 4.10: Log File Sizes Immediately Before Losing a Server and Immediately

After Server Recovery.

Now, we explore performance of the Random policy. As Figure 4.12 depicts, after

the server recovers, the gap in the file sizes is retained. But as we have seen in

Round-Robin policy, the Random policy is not able to fill this gap after recovery.

The Random policy obtains the smallest and the largest split ratio of 0.80 and 0.97,

respectively.

As Figure 4.13 shows, at the end of each day we can see that the gap remains.

Hence the Random policy is not suitable when servers fail. Table 4.11 shows the final

syslog file sizes for this period.
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Figure 4.11: Syslog File Sizes on the Testbed at the End of Each Day for the Round-

Robin Policy With Server Failures.

Date Server 1 file size Server 2 file size Server 3 file size Split ratio (Min/Max)

Dec 18th 30.23 GB 26.68 GB 30.02 GB 0.882603893

Dec 19th 21.82 GB 25.98 GB 25.94 GB 0.840052407

Dec 20th 25.57 GB 19.54 GB 25.04 GB 0.764244724

Dec 21th 32.50 GB 35.95 GB 35.71 GB 0.90421896

Dec 22th 34.47 GB 26.12 GB 33.87 GB 0.757887583

Table 4.10: Final Syslog File Sizes on Each Server at the End of Each Day While the

Controller Was Running Round-Robin Policy With Server Failures.
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(a) Immediately before losing a server (b) Immediately after all servers come back up

Figure 4.12: Log File Sizes Immediately Before Losing a Server and Immediately

After Server Recovery.

Figure 4.13: Syslog File Sizes on the Testbed at the End of Each Day for the Random

Policy With Server Failures.
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Date Server 1 file size Server 2 file size Server 3 file size Split ratio (Min/Max)

Jan 5th 39.07 GB 45.23 GB 45.18 GB 0.863902131

Jan 6th 43.16 GB 34.70 GB 41.95 GB 0.80407031

Jan 7th 25.40 GB 28.57 GB 28.59 GB 0.888571795

Jan 8th 34.98 GB 37.37 GB 32.44 GB 0.868200106

Jan 9th 36.96 GB 35.89 GB 36.03 GB 0.970871603

Table 4.11: Final Syslog File Sizes on Each Server at the End of Each Day While the

Controller Was Running Random Policy With Server Failures.

Finally, we run Load-Based policy on the controller. In Figure 4.14 we can see

syslog file sizes before the server fault and after server recovery.

(a) Immediately before losing a server (b) Immediately after all servers come back up

Figure 4.14: Log File Sizes Immediately Before Losing a Server and Immediately

After Server Recovery.

As can be seen in Figure 4.15 and Table 4.12 this policy is able to compensate

for the time that some of the servers were down (unless, the server was to fail at

the end of the day and there is insufficient time for recovery). This policy tries to

connect the imbalance in file sizes due to a fault network or server. The behavior

of this policy is very similar to the Round-Robin and Load-Based policy in the first
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experiment where we had all the servers up for the whole experiment. During this

experiment the Load-Based policy performs the best among all of the policies with

the largest and the smallest split ratios of 0.97 and 0.98, respectively. As a result, we

can conclude that the Load-Based policy is the most appropriate for a network where

servers may fail.

During the second experiment, the Round-Robin policy obtains the worst average

split ratio with the ratio of 0.82. Whereas the best performance in terms of load-

balancing belongs to the Load-Based policy with the split ratio of 0.97.

Figure 4.15: Syslog File Sizes on the Testbed at the End of Each Day for the Load-

Based Policy With Server Failures.

4.4 Overall Summary

Our evaluations on different SDN-based transport-level load balancing policies

suggest that we can divide the load almost equally among Rsyslog servers using any

policy when server failures are unlikely to happen. We also demonstrated that using a
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Date Server 1 file size Server 2 file size Server 3 file size Split ratio (Min/Max)

Dec 31st 29.00 GB 28.48 GB 28.60 GB 0.982225926

Jan 1st 35.55 GB 34.92 GB 34.52 GB 0.970855028

Jan 2nd 28.47 GB 28.02 GB 27.96 GB 0.982183892

Jan 3rd 22.04 GB 21.64 GB 21.67 GB 0.981745024

Jan 4th 31.07 GB 30.48 GB 30.48 GB 0.98101208

Table 4.12: Final Syslog File Sizes on Each Server at the End of Each Day While the

Controller Was Running Load-Based Policy With Server Failures.

Load-Based policy is most appropriate to divide the load almost equally when servers

may fail. With overall average delivery ratio of 1.01 and the split ratio of 0.92, our

results suggest that SDN-based load balancing could replace the existing solution.

In the next chapter, we summarize our contributions and propose future work.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, we discussed the need for an SDN transport-level load balancing solution

over UDP packets. We discussed three different load balancing policies and how we

can take advantage of SDN specifications and use network statistics that it offers to

perform a network-aware load balancing over UDP packets. We implemented three

different policies and we tested them in two experiments in our testbed with a data

feed from ASU’s production network.

We defined delivery ratio as a metric to validate whether our solution is reliable.

This ratio is calculated by dividing the number of the syslog messages received on

the testbed in a day to the number of the syslog messages indexed by Splunk for the

same day. The average delivery ratio for the Round-Robin, Random, and Load-Based

policies during the first experiment, without having server failures, is 0.99, 0.99 and

1.03, respectively. Since the path to our testbed is different from path going to ASU’s

servers, and because the data is being sent in UDP, there is no guarantee that we get

exactly the same data as ASU’s Rsyslog servers. As a result the delivery ratio can be

more than one. During the second experiment, with simulation of server failure, the

average delivery ratio for the Round-Robin, Random, and Load-Based is 0.99, 1.04

and 1.00 respectively. The results of these experiments suggest that these SDN load

balancing policies are reliable enough to be used in a real production network with a

high input data rate. The results show our solution is competitive with the existing

commercial load-balancing solution for UDP traffic.

A split ratio is a metric defined to measure the ability of each policy to divide the

load equally among the servers. Dividing the smallest sized file on the testbed for a
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given day by the largest sized file on the testbed for the same day, gives us the split

ratio of that specific day. In the first experiment average split ratios for the Round-

Robin, Random, and Load-Based policies were 0.99, 0.96 and 0.98 respectively. The

split ratio for different policies during the first experiment is 0.99, 0.96 and 0.98 for the

Round-Robin, Random, and Load-Based policies, respectively, and Round-Robin had

the best ratio among them all. But for the second experiment the results were quite

different. The average split ratio over the period of the second experiment is 0.82,

0.87 and 0.97 for the Round-Robin, Random, and Load-Based policies, respectively.

The Round-Robin and Random policies could not divide the load during the second

experiment as equally as they did in the first experiment. However, the Load-Based

policy’s performance during the second experiment showed it could recover from server

failures.

In summary, the results on split ratios indicate that while each load balancing

strategy is effective when there are no server failures, when servers fail, only the

Load-Based policy can recover and keep the split ratio high. Therefore, if equal file

size is an outcome of load balancing, the Load-Based policy is most appropriate.

In this project we used an OpenFlow enabled software switch to balance the load.

Future work could use an OpenFlow enabled hardware switch to perform the load

balancing. This should only improve our results because switching rates are faster on

physical hardware and would even allow us to handle input at a faster data rate.

In this thesis we restricted our attention to balance the load over the UDP pro-

tocol. The Palo Alto firewall also can run over TCP. By using TCP instead of UDP,

future work can eliminate loss of packets. However, this change complicates the

controller design since connection setup and state management would need to be

maintained across the servers.
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