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ABSTRACT

Interest in Micro Aerial Vehicle (MAV) research has surged over the past decade.

MAVs offer new capabilities for intelligence gathering, reconnaissance, site mapping,

communications, search and rescue, etc. This thesis discusses key modeling and

control aspects of flapping wing MAVs in hover. A three degree of freedom nonlinear

model is used to describe the flapping wing vehicle. Averaging theory is used to obtain

a nonlinear average model. The equilibrium of this model is then analyzed. A linear

model is then obtained to describe the vehicle near hover. LQR is used to as the main

control system design methodology. It is used, together with a nonlinear parameter

optimization algorithm, to design a family multivariable control system for the MAV.

Critical performance trade-offs are illuminated. Properties at both the plant output

and input are examined. Very specific rules of thumb are given for control system

design. The conservatism of the rules are also discussed. Issues addressed include

1. What should the control system bandwidth be vis–vis the flapping frequency

(so that averaging the nonlinear system is valid)?

2. When is first order averaging sufficient? When is higher order averaging neces-

sary?

3. When can wing mass be neglected and when does wing mass become critical

to model? This includes how and when the rules given can be tightened; i.e.

made less conservative.
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Chapter 1

INTRODUCTION

The miracles of nature are seen in the diversity of species. In this constantly chang-

ing world where we are pushing the envelope of technological advancement, humans

have always derived inspiration from this diversity. There is a constant strive to

replicate the wonders of nature, that evolution has so well optimized. One such di-

versity seen is in animal flight. While the research in unmanned aerial vehicles has

been surging, research in flapping wing micro aerial vehicles (MAV), although not

new, has received relatively moderate amount of attention. The motivation for these

flapping wing MAV comes from insect flight, which has always captivated biologists

and aerodynamicists. It is a case of curiosity that such tiny beings perform extremely

complex flight maneuvers with very low energy. In fact, up until 1930’s insect flight

was deemed impossible! Insect flight show tremendous variations, for e.g. a butterfly

flaps at about 5 Hz, where as a tiny ceratopogonid flaps at around 1000 Hz! Flight

of every insect changes with shape of the wing, size of the body, wing beat pattern

and so on. A common house fly, although annoying is quite a marvelous flier, any-

body who has tried swatting it, can vouch for its maneuverability. In this thesis, we

have tried answering the challenges involved in modeling, designing and controlling

of flight of flapping wing micro aerial vehicles, that mimic insect flight.

1.1 Literature Review

The research presented here is built on diverse array of work. Some of them that

have contributed significantly towards the completion of this thesis have been listed

in this section. Zbikowski (2005) is a good read on how flies are able to control their
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flight. It discusses some of the morphological features they possess that enable their

superior flight. Taha et al. (2012), Orlowski and Girard (2012), Sun (2014), provide

an extensive literature review of the research so far, in the field of flapping wing

micro aerial vehicles. The first two works compare methods and approaches used by

various groups of researchers, for aerodynamics modeling, system dynamics modeling

and flight control methodologies, whereas the latter gives a summary of most of the

research done so far.

Most of the research in MAVs have concentrated on the hover state. There are

several reasons for treating hover as a benchmark problem, as listed by Ellington

(1999). Equations for power are simple, forward flight would add to the complexity,

hovering flight would provide a practical test bed for MAVs, pendulum stability (body

hanging below wing bases) minimizes control problems, lift coefficients only decline

with increasing speed and lastly the power requirement of hovering would also be

adequate for forward flight. Thus, if a MAV that hovers can be built, it will also be

able to support its weight and power the wings over virtually the entire speed range.

The first aspect that we discuss is the aerodynamic modeling. A comprehensive

review of work done in insect flight aerodynamic modeling is given in Ansari et al.

(2006a). Insect flight aerodynamics have been studied for years. Before the advent

of CFD, researchers relied on direct measurement of wing kinematics and forces from

flapping flight for analysis. The seminal work of Ellington (1984c) uses quasi steady

state aerodynamics for analysis. Kinematics for hover of many insects were studied

in this six part series paper. New theory for lift and power mechanisms were in-

troduced. Forward flight in Bumblebees was studied later by Dudley and Ellington

(1990a). Traditionally, it was believed that flapping wings created lift the same way

an aircraft’s wing did, but the secret to the lift production being 2-3 times the body

weight was attributed to leading edge vortices formed on the wings (Ellington et al.
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(1996)). Further breakthrough in the analysis of insect flight took place in the mid

1990s, when a scaled robotic flapper was built to study relationship between wing

kinematics and force production by Dickinson et al. (1999). Existence of 3 main

distinct phases of the flapping cycle namely delayed stall, rotational circulation and

wake capture, all resulting from non steady nature of flapping, were shown. The drag

and lift coefficients reported in this paper have been widely used by the flapping wing

MAV community. Based on their findings, they revised the existing quasi steady

aerodynamic model (Sane and Dickinson (2002)). A review of the aerodynamic phe-

nomena have been provided by Sane (2003) and Wang (2005). Later Dickinson and

group conducted the same experiment on the mechanical wings but with wings given

a finite velocity, to analyze effect of forward flight on the aerodynamics (Dickson and

Dickinson (2004)). CFD greatly helped in corroborating the experimental results.

One such notable work is that of Ramamurti and Sandberg (2002). Zhang and Sun

(2010) and Wu et al. (2009) solve the Navier Stokes equation coupled with rigid body

dynamics. The two part paper of Ansari et al. (2006b,c) remains till date the most

comprehensive aerodynamic model, they solve two novel coupled, non linear wake

integral equations numerically.

Aerodynamics of the wings is decided by the wing kinematics. The reason insects

are able to maneuver so well, is because they employ their wing degrees of freedom

differentially. This means that each wing is able to rotate independently of the other,

in all 3 axes. This gives great flexibility. To be able to map these kinematics to the

body degrees of freedom, force analysis and the interplay/coupling of these kinemat-

ics has been studied by many. A point to note is that allowed kinematics is limited

by the actuation power that is available. Actual wing kinematics for various hovering

insects were recorded by Ellington (1984a) using high speed photography. The same

author recorded Hawkmoth wing kinematics in both hover and forward flight in Will-
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mott and Ellington (1997a). Bumblebees in forward flight were captured by Dudley

and Ellington (1990a). Most of the studies concluded the relative importance of these

wing kinematics for flight control, and these are namely, the stroke plane angle (the

plane in which the wing stroke takes place, with respect to the longitudinal axis of

the body), wing flapping parameters including the amplitude, offset and frequency

and lastly the wing pitching angle magnitude in both upstroke and downstroke and

timing of stroke reversal. The impact of changing some of these parameters on force

production was experimentally determined in Sane and Dickinson (2001). The im-

portance of asymmetric kinematics in forward flight was studied in Yu and Tong

(2005). Analysis of few of these wingstroke kinematics from a controls perspective,

for longitudinal flight is done by Humbert and Faruque (2011). The relative signifi-

cance of few chosen parameters when the flight condition changes from hovering to

forward flight is examined by Wu and Sun (2009). Berman and Wang (2007) use an

optimization algorithm to find the kinematics that minimizes the energy in out, at

hover. Power consideration in deciding MAV wing kinematics is an important aspect

but not much literature is available on this. Hedrick and Daniel (2006) pose hover as

an inverse problem and find optimum wing kinematics that achieve this.

By manipulating wing kinematics in a certain way, desired aerodynamic forces are

produced, the insect is able to steer its body favorably. To be able to understand

the interplay between aerodynamic forces and the body dynamics, many researchers

have developed mathematical models of insect flight. Following methods have been

universally adopted for the analysis. The equations governing the motion of the

body are written in standard aircraft equations of motion form, i.e. nonlinear and

6 degrees of freedom for the body. Under certain assumptions, the longitudinal and

lateral motion are decoupled, as is done in aircraft analysis. This reduces the analysis

to two 3 DOF subsystems, and hence easier. One of the assumptions made, which is

4



almost universally adopted, is that the wing inertia effect on body is small enough to

be ignored. The wings degrees of freedom are not modeled. This greatly simplifies the

analysis of the system further. Few researchers e.g. Sun et al. (2007), Taha (2013) and

Orlowski and Girard (2011b), modeled the wing and its effect on the body. In fact,

Orlowski and Girard (2011b) and Bolender (2009) conclude that the wing inertial

effect should be taken into consideration while modeling the dynamics of the system.

The wings provide the actuating force, and since wings flap in a periodic manner,

the force on the body is periodic. Since the force vector field is non autonomous,

the system of equations of motion becomes time varying. To deal with the time

varying nature of the differential equations, two approaches are used: Floquet theory

or Averaging. Using the former entails, finding a periodic orbit (solution) that satisfies

the time varying differential equations and then linearizing the system about this

orbit. Stability is determined by the eigenvalues (Floquet multipliers) of the system

’A’ matrix. This approach has been used by Dietl and Garcia (2008) Averaging

theory, on the other hand, predicts the behavior of the original time varying system

’on an average’. Averaging technique is the more popular choice for analyzing the

system as opted by Oppenheimer et al. (2011), Deng et al. (2006a), Khan and Agrawal

(2007), Orlowski and Girard (2011a), Karásek and Preumont (2012). Averaging for

flapping wing MAVs have been dealt with rigorously in Deng et al. (2006a).

An insect employs active control to follow a desired flight condition. Reiterating

some of the important parameters that insects employ for flight control are: the stroke

plane angle, flapping amplitude, offset and frequency and lastly wing pitching angle

magnitude in both upstroke and downstroke and timing of stroke reversal. A good

description of how an insect steers itself is given in Taylor (2001). To be able to mimic

insect flight, some of the listed parameters have been chosen as control parameters

for MAVs. The relative importance of these control parameters change from hover
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state to forward flight as noted by several biologists (Wu and Sun (2009)). Thus

flight condition is an important aspect to keep in mind that determines the usage

of these controls. As a way of testing the flight control algorithms, physics engine

module was used by Dickson et al. (2008). Sensors and actuators were modeled too

in this paper. Similar work can be found in Deng et al. (2006a) and Epstein et al.

(2007). Body dynamics with sensors like Haltere dynamics were incorporated and

simpulation results have been shown.

1.2 Outline of the Thesis

In this thesis, we base our MAV model on a Hawk moth, which turns out to be

an interesting model. The two main assumptions, i.e. neglecting wing mass and

averaging the time varying equations of motion, are in question because the Hawk

moth has heavier wings compared to other insects (6% of body weight) and it also flaps

at a much lower frequency (30 Hz) than other insects (Willmott and Ellington (1997a).

Secondly, Averaging is valid when the one system’s dynamics is sluggish, compared

to the second system driving it. Here the two systems are the body (slow) and the

wing. In other words, the bandwidth of the body is sufficiently small compared to the

bandwidth of the wing. However the assumption that the body’s dynamics will be

dictated by the averaged wing force comes into question when the difference between

the two bandwidths is small. Taha (2013) show that when the model has a very small

wing beat frequency making it close to the natural frequency of the body (ratio of

the two is less than 100), higher order averaging might be necessary to get a better

approximation. The main contribution of this thesis is to address partially answered

questions about the two main concerns mentioned above.

1. When is the mass-less wing model sufficient? When does it become necessary

to include it in the model?
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2. In a feedback system, how robust can the controller be made to these model-

ing uncertainties? How much wing mass can be tolerated beyond which the

controller fails to stabilize the system?

3. When does first order averaging work?

4. When is it absolutely necessary to bring in higher order averaging terms?

These questions were posed by Sun et al. (2007) and answered using CFD analysis.

Few researches have claimed that wing inertia effect on the body should not be ignored

and it can change the dynamics by a big margin (Bolender (2009)). With regards,

to averaging, Taha (2013) claims the difference between the frequencies should be at

least 100. Conservatism on these claims/bound needs to be questioned. Most of the

work mentioned here were done on a system without feedback control i.e. open loop.

In this work, we have tried giving rules of thumb from a controls perspective.

We now give a brief overview of the forthcoming chapters; The basic mechanism

of insect flight is reviewed in chapter 2, an aerodynamic model is developed and the

complete rigid body, nonlinear equations of motion is presented. In this chapter three

models i.e. model without wing inertial effect on body, model with wing inertial effect

on body and the complete system consisting of body and wings, have been derived

using Newton’s equations. In chapter 3, a short introduction to averaging theory has

been given. Both first and higher order averaging for periodic case are covered; and

what it results for the MAV system. In chapter 4, linearized approximation of the

model around hover is derived and linear analysis is done for the models. In chapter

5, LQR controller has been designed. Closed loop maps and controller trade-offs are

examined. The controller for first model, i.e. model without wing inertial effect, is

tested for its robustness, by making it work on model 2, i.e with the wing inertial

effect. chapter 6, concludes the thesis and reviews possibilities for future research.
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Chapter 2

THE NON-LINEAR TIME PERIODIC MODEL

2.1 Flapping Flight in Insects

In this short introduction, we look at the mechanism of insect flight that will aid

us in modeling. Be it an aircraft or a bird, the underlying principle of any flight is

the same, i.e. the aerodynamic lift counters the weight while thrust counters drag

and provides propulsion. But the way a bird’s flight is different from an aircraft, is in

the nature of their lift production. In a typical aircraft, the wing’s pitch provides the

angle of attack and the lift generated is proportional to the magnitude of this angle

of attack, while the engines provide thrust. Similarly in flying insects and birds, the

wing pitches to provide angle of attack and it flaps periodically to provide thrust.

Insects are very different from birds, in their flying mechanisms. Insects are able

to produce lift 2-3 times in excess of their body weight. A bird flaps its wings up

and down. During the downstroke, the wing pushes the air downwards, generating

lift. When an insect wing flaps, its front edge goes down and forward and then does

almost 90◦ flip, and continues up and backward, tracing a flattened figure eight. This

motion leads the insect wing to attack the oncoming air at a high angle. This is

where the biggest difference between an airplane wing comes, an airplane wing has a

relatively small angle of attack, almost parallel to the direction of travel. Increasing

the angle, increases the lift, but only up to a point. Beyond this point of maximum

lift, tilting the leading edge any further, results in a separation of the airflow from

the upper surface and the lift vanishes. This phenomenon is called stalling. However,

the insect wing, is always on the edge of stalling, the point of maximum lift. This
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stalling leads to the formation of a large vortex on the wing, called the leading edge

vortex (Ellington et al. (1996)). This generates 70% of the lift. At the end of each

downstroke and upstroke, as the wing is about to make the rotation, of the figure

eight, it sheds the leading-edge vortex. The rotation accelerates the airflow over

the top of the wing, thus generating a burst of even greater lift. By controlling the

timing of those wing flips, the insect can steer the direction of the lift (Dickinson

et al. (1999)).

Alexander (2004) and Dudley (2002) are good references for understanding phys-

iology and mechanism of animal flight in detail. Kinematics of the wing play a major

role in shaping the aerodynamic force to produce a desirable outcome (Sane and Dick-

inson (2001). Insects typically flap in a plane called stroke plane which is oriented

at a stroke plane angle β from the longitudinal axis of the body. The lift and drag

produced by the wing are perpendicular and parallel to this plane. Insects increase β

to accelerate forward and make it negative to decelerate or fly backwards. Similarly

accelerations in lateral direction result from rolling of the stroke plane. Tilting of the

stroke plane, results in rotation of the lift vector (as will be explained next), and thus

small tilts produce substantial horizontal thrusts (Ellington (1984b)). As the forward

velocity increases, the stroke plane becomes more and more vertical, and the body

angle reduces, becoming more and more horizontal. This is to reduce body drag. The

angle between the stroke plane and the body almost remains constant.

The aerodynamic force produced by the wing is proportional to the angle of attack

and square of the velocity with which it is moving. As a result, the force produced in

the downstroke is more than that of the upstroke, this is because the relative velocity

of the wing on the downstroke is higher (assuming the body is moving in the direction

of downstroke i.e. forward in the figure 2.1). However the propelling force (thrust

component) comes from the upstroke. To compensate for low velocity in the upstroke,

9



the angle of attack in the upstroke increases. As a direct consequence of this, as the

forward velocity increases, downstroke becomes more and more horizontal, while the

upstroke becomes more vertical, so that the thrust vector (in upstroke) is oriented

in the direction of movement. This difference in magnitude of the force is possible

because the wing assumes different pitch angles αd and αu in each half stroke. Stroke

plane angle plays a major role in this asymmetry. At small β angle, the asymmetry

is larger.

For the sake of clarity, the above discussion has been repeated here but with force

resolution shown in figure 2.1. Lift, drag and the resultant produced in the down

stroke are denoted as Ld, Dd and Rd respectively, similar nomenclature is used in

the upstroke. The total resultant of, each stroke’s resultant Rd and Ru is denoted

as R. The components of R along body’s xb and zb direction decides the direction of

body’s movement. In hover, Rz should counter the weight and Rx should be zero. If

the two strokes are symmetrical, the forces in the plane (i.e. horizontal), cancel each

other out. For forward flight to be possible, Rx plays the role of thrust and should be

in the direction of desired movement. β decides the tilt of the resultant force vector,

hence the more tilt the more thrust. It is now clear from figure 2.1 that most of the

thrust is generated in upstroke and since the magnitude is directly proportional to

the angle of attack, the angle of attack is higher in the up stroke than in the down

stroke. This differential angle of attack is very essential in forward flight.

2.2 Dynamic Model

In this section the complete equations of motion for the MAV system have been

derived. By complete we mean body and two rigid wings. For sake of simplicity,

equations of motion for the system without wings has been derived first, which are

the standard aircraft equations. Next the system with wings has been dealt with.
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Figure 2.1: Force Resolution in Upstroke and Downstroke

Various representations have been used to model the equations of motion. In this

thesis, the equations have been written in standard Newton’s method.

2.2.1 Geometry

The MAV is modeled after a Hawkmoth insect. The body and wing parameters

are given in the table. The parameters have been given in Ellington (1984a). The

body is modeled as a cylinder of length L and constant radius of r1. The wings hinge

point is assumed to be aligned with the body’s longitudinal axis. This dimension

is marked as l1 which is varied from the given length to zero to check its effect in

later chapters. In the configuration, when the wing hinge is aligned with the C.G,

symmetric flapping would result in zero average moment about the body’s C.G, and

pitch control would be lost. Thus, to regain pitch control, unsymmetrical flapping of

wings would have to be adopted. In this thesis as seen later, an offset term in the

flapping function will be introduced, to achieve this. If the flapping offset is such that

the wing lies mostly in front of the body, then pitch up moment is created and if the

wing flaps mostly behind the body, the pitch down moment is created. The body’s

center of pressure lies behind the C.G along the longitudinal axis, this dimension is

marked as l2. The wings are modeled as rectangular plates with length and width bw
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and cw.

Table 2.1: Physical Parameters

Mass (Mb) 1554 mg

Moment of inertia about yb axis (Iby) 2.435 ×10−7 kg m2

Wing mass (Mw) 47 mg

Wing semispan (bw) 51.9 mm

Wing chord (cw) 18.4 mm

Normalized centre of pressure (r̂2) 0.525

Body length (L) 42.1 mm

Radius of Body (r1) 6 mm

Wing hinge ’x’ coordinate from the C.G (l1) 0.2846L

Radius of gyration (l2) 0.3676L

Area of wing (Aw) 947.8 mm2

2.2.2 Equations of Motion for Body Without Wings

The derivation presented in this section is similar to the models presented in works

like Khan and Agrawal (2005), Faruque and Sean Humbert (2010), Oppenheimer

et al. (2011) and so on. The central body typically has 6 degrees of freedom, 3

translational and 3 rotational and the wings, each have 3 additional rotational degrees

of freedom, but are constrained to move with the body. Since in this work only

hovering and forward flight regimes have been studied, both of which are longitudinal

flight condition, we restrict the dynamic model to this plane (3 DOF). This restricts

both left and right wing to have the same motion, any unsymmetrical motion would

lead to out of plane reaction. Five frames are typically used to capture the motion,
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inertial frame (xe, ye, ze), body frame (xb, yb, zb), stroke plane frame (xsp, ysp, zsp),

this is the frame in which the stroke takes place, an intermediate flapping plane to

capture the position of the wing in the stroke plane (x′

sp, y
′

sp, z
′

sp) and lastly wing

frame (xw, yw,zw). Both the stroke plane and wing frame have their origins at the

wing hinge. Since we are primarily interested in the body’s motion, the equations of

motion are written in the body frame.

Angle θ, measured from the positive xe, gives the absolute position of the body

w.r.t to the inertial frame. The stroke plane frame is oriented at an angle β measured

with respect to positive xb. β can take values from [−π/2 π/2]. The stroke plane

angle β is held constant for a particular flight condition. The wing has 3 rotational

degrees of freedom, thus the wing position w.r.t to the stroke plane is given by 3

angles, but in this work only 2 degrees of freedom have been considered i.e. flapping

and pitching. Flapping φ, is the rotation made about the zsp axis, pitching α, the

rotation about the y′sp axis. The coordinate frames are shown in 2.2. Note the β

shown in the figure is negative.

Figure 2.2: Coordinate Frames
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The rotation matrix from inertial frame to the body frame is

Rθ =













cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ













(2.1)

The rotation matrices from body frame to stroke frame, stroke frame to interme-

diate frame, and finally from intermediate frame to wing frame are as follows

Rβ =













cos β 0 − sin β

0 1 0

sin β 0 cos β













Rφ =













cosφ sin φ 0

− sinφ cosφ 0

0 0 1













Rα =













cosα 0 − sinα

0 1 0

sinα 0 cosα













(2.2)

The rotation matrix from the body to the wing frame and vice versa are given by

R
bw

= RαRφRβ

R
wb

= R
bw

T (2.3)

Having defined the geometry and the coordinate frames, we now write the equa-

tions of motion. Let us define the following quantities in the body frame:

F, M Total force and total moment acting at the body’s C.G

Fa and Ma Aerodynamic forces and moments of the wing

Fb and Mb Aerodynamic forces and moments of the body

Vb and ωb Velocity and angular velocity of the body

The equations of motion, written in the body frame (subscript denotes the frame)

are

F = Mb

(

b

∂Vb

∂t
+ ωb ×Vb

)

M = Ib

(

b

∂ωb

∂t

)

+ ωb × Ibωb (2.4)
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where Ib is the body inertia tensor.

In the equations derived in this section, only forces from the wings have been con-

sidered because at hover, the aerodynamic forces acting on the body (parasitic drag

and lift) are negligible, but for forward flight, these have to be included too as shown

below:

F and M are defined as below

F = Fa − Fb +Rθ













0

0

g













=













Fx

Fy

Fz













+ g













− sin θ

0

cos θ













M = Ma −Mb =













Mx

My

Mz













(2.5)

Thus the complete equations of motion for the body alone, in the longitudinal

plane are

u̇ =
Fx

Mb

− g sin θ − qw

ẇ =
Fz

Mb

+ g cos θ + qu

θ̇ = q

q̇ =
My

Iby
(2.6)

2.2.3 Equations of Motion for Body with Wings

In this section we derive the equations of motion for the complete system i.e.

body plus wings. An important point to remember is that the following equations

of motion have been derived considering one wing, as long as we restrict the motion

to longitudinal plane, the kinematics of the other wing would remain the same, thus

enabling us to write the equations for one wing and extending it to the other by simply
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multiplying the respective terms by 2.

We start by defining the inertia tensor of one wing. The inertia tensor for other wing

would be identical. It is calculated at the wing hinge according to

Iw =













Mw

3
b2w 0 0

0 Mw

12
c2w 0

0 0 Mw(
b2
w

3
+ c2

w

12
)













(2.7)

To start the derivation following vectors need to be defined

Rh Vector from the body C.G to the wing hinge, in body frame

Rw Vector from the wing hinge to the wing C.G, in wing frame

Vb, Vh

Absolute velocities of the body center of mass and wing hinge

(w.r.t inertial frame), in body frame

Vw Relative velocity of wing center of mass w.r.t hinge, in body frame

ωb Angular velocity of the body, in body frame

ωw Angular velocity of the wing, in wing frame

bωw Angular velocity of the wing in body frame

ωw0 Angular velocity of the wing relative to the body in wing frame

Hb, Hw

Angular momentum of body in body frame and

wing in wing frame respectively

where,

ωw = R
bw
ωb + ωw0 (2.8)

We write the equations of motion for the body by summing up the total force

and moment acting at the C.G (Greenwood (1988)). Note the subscripts denote the

frame in which the vector lies.

F = Mb

(dVb

dt
) +Mw

(dVh

dt
+

dVw

dt

)

(2.9)

M = Mw

(

(Rh +Rw)×
dVh

dt
+Rh ×

dVw

dt

)

+
dHb

dt
+

dHw

dt
(2.10)
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Expressions for velocities and accelerations are as follows:

Vh = Vb + b

∂Rh

∂t
+ ωb ×Rh = Vb + ωb ×Rh (2.11)

wVw = w

∂Rw

∂t
+ (ωw ×Rw) = ωw ×Rw (2.12)

dVh

dt
= b

∂Vb

∂t
+ ωb ×Vb + b

∂ωb

∂t
×Rh + ωb × (ωb)×Rh (2.13)

w

dVw

dt
= w

∂ωw

∂t
×Rw + ωw × (ωw ×Rw) (2.14)

In the above equations, vectors from two different frames, body and wing frame,

were used (see equation 2.12, 2.14). To bring all the terms in the same frame i.e.

body frame, rotation matrices are used as shown

b(ωw ×Rw) = R
wb

w(ωw ×Rw) (2.15)

b

(

w

∂ωw

∂t
×Rw + ωw × (ωw ×Rw)

)

= R
wb

w

(

w

∂ωw

∂t
×Rw + ωw × (ωw ×Rw)

)

(2.16)

Substituting (2.11-2.16) in (2.9) and (2.10),

F = Mt(b
∂Vb

∂t
) +Mt(ωb ×Vb) +Mw

(

b

∂ωb

∂t
×Rh + ωb × (ωb ×Rh)

+ R
wb
(w

∂ωw

∂t
×Rw + ωw × (ωw ×Rw)

)

(2.17)

where, Mt is the total mass, body plus wing

M = Mw

(

(

Rh + R
wb
Rw

)

×
(

b

∂Vb

∂t
+ ωb ×Vb +b

∂ωb

∂t
×Rh + ωb × (ωb ×Rh)

)

)

+Mw

(

Rh × R
wb

(

w

∂ωw

∂t
×Rw + ωw × (ωw ×Rw)

)

)

+b

dHb

dt
+b

dHw

dt
(2.18)

where,

b

dHb

dt
= Ib

(

b

∂ωb

∂t

)

+ ωb × Ibωb (2.19)

w

dHw

dt
= Iw

(

w

∂ωw

∂t

)

+ ωw × Iwωw (2.20)

b

dHw

dt
= R

wb

(

Iw(w
∂ωw

∂t
) + ωw × Iwωw

)

(2.21)
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Up until here the equations derived are for the body alone, with wing inertial

effect modeled in it. Similar derivation of these equations is given in Sun et al. (2007).

The wing’s motion is described with respect to the stroke plane frame, thus for

convenience, the wing equations of motion are written in this frame. We start by

defining the following vectors in the stroke plane

τ Total torque acting on the wing at the hinge

τg Torque due to gravity

τα Component of input torque in y′sp direction

τφ Component of input torque in zsp direction

The total moment acting at the wing hinge is given as

τ + τg = Mw

(

( R
w−sp

Rw)× Rβ

(

b

dVh

dt
)
)

+Rβ

(

b

dHw

dt

)

(2.22)

τ + τg = Mw

(

( R
wsp

Rw)× Rβ

(

b

∂Vb

∂t
+ ωb ×Vb + b

∂ωb

∂t
×Rh

+ ωb × (ωb ×Rh)
)

)

+Rβ

(

b

dHw

dt

)

(2.23)

The equations derived till here, are for the general case i.e. 6 DOF (3 translational

and 3 rotational) for the body and 3 DOF (rotational) for the wing. Restricting to

the longitudinal plane (3 DOF), simplifies the equations. Control of longitudinal

and lateral movement is possible by allowing 2 DOF for the wings i.e. flapping

and pitching. The third DOF (deviation angle) has not been considered here. The

significance of the third DOF in insects too, is small (Ellington (1984b)). Most of the

work published in MAV research, is in accordance with this. Since motion is restricted

to the longitudinal frame, the wing motion is symmetrical about the longitudinal axis,

thus the left wing undergoes the same motion as the right one. The equations given
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below are written for the right wing, the equations for the left wing would remain

the same. We simplify the equations 2.17, 2.18 and 2.23 for longitudinal and 2 DOF

wing case below. These equations have been used in this thesis for further work.

We start by defining the flapping degree of freedom, i.e. the rotation about zsp.

The wing flaps back and forth, in a periodic manner. The flap closely resembles a

sinusoid, thus the sin function has been the most popular choice.

φ(t) = φo − φm sin(ωt) (2.24)

where φm is the mean flapping angle and φo is the offset. The sin is negative here

because it is written for the right wing which makes a negative angle when it flaps

forward (down stroke). However the left wing makes a positive angle during down-

stroke, it is so because of the way the axes are set up. The pitch angle assumes two

different magnitudes in upstroke and downstroke. Here, it is described by hyperbolic

tan function but a cosine or a signum function also serve the purpose.

α(t) = (αm −
π

2
) tanh(4.5 sin(ωt+

π

2
)) + (αo +

π

2
) (2.25)

Enumerating the vectors used in the equations of motion (some are repeated from

the previous wingless model for convenience).

u, w components of body’s velocity in xb and zb directions

q component of body’s angular velocity in yb direction

θ rotation angle of the body about yb direction

φ rotation angle of the wing about zsp direction

α rotation angle of the wing about z′sp direction

β rotation angle of the stroke plane about yb direction

Having defined the angles, we define the angular velocity of the wing relative to
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the body in the wing frame as:

w

∂ωw0

∂t
=













φ̈ sinα

α̈

φ̈ cosα













(2.26)

The stroke plane angle β is considered to be fixed for a particular flight condition.

Thus, derivatives of β are set to zero, and there is no angular velocity of stroke plane

rotation.

The geometrical parameters are defined as:

Rw =

[

0 bw
2

0

]T

, Rh =

[

l1 r1 0

]T

(2.27)

The above dimensions are have been written for the right wing, the left wing will

have the same magnitude but with negative y coordinate.

Substituting equations 2.26 and 2.27 in equations (2.17), (2.18) and (2.23) we get

the final equations in the following form:

[M ](ẋ) = [F] (2.28)

where, x =

[

u w θ q α α̇ φ φ̇

]T

M =















































Mt 0 0 m14 0 0 0 m18

0 Mt 0 m24 0 0 0 m28

0 0 1 0 0 0 0 0

m14 m24 0 m44 0 m46 0 m48

0 0 0 0 1 0 0 0

−m14 m62 0 m64 0 m46 0 m68

0 0 0 0 0 0 1 0

m18 m28 0 m48 0 0 0 m88
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m14 = Mwr sin β sinφ

m18 = −Mwr cos β cosφ

m24 = Mwr cos β sinφ−Mwl1

m28 = Mwr sin β cosφ

m44 = −2Mwrl1 cos β sin φ+Mwl
2

1 + Iby + (Iwx cos
2 α + Iwz sin

2 α) sin2 φ+ Iwy cos
2 φ

m46 = −Iwy cosφ

m48 = −Mwrl1 sin β cosφ+ (−Iwx + Iwz) sinφ sinα cosα

m62 = −Mwr cos β sin φ

m64 = Mwrl1 cos β sin φ+ Iwx sin
2 φ cos2 α + Iwy cos

2 φ+ Iwz sin
2 φ sin2 α

m66 = (−Iwx + Iwz) sinφ sinα cosα

m88 = Iwx sin
2 α + Iwz cos

2 α
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F =







































































































































































Fx −Mtg sin θ −Mtqw

−Mw(q
2 bw

2
cos β sin φ− q2l1 + 2qφ̇ bw

2
sin β cosφ+ φ̇2 bw

2
cos β sinφ)

Fz +Mtg cos θ +Mtqu

−Mw(−q2 bw
2
sin β sinφ+ 2qφ̇ bw

2
cos β cosφ− φ̇2 bw

2
sin β sinφ)

q

My −Mw

(

qw bw
2
sin β sin φ− qu(l1 −

bw
2
cos β sinφ)

+φ̇2 bw
2
l1 sin β sin φ− 2qφ̇ bw

2
l1 cos β cosφ+ g sin θ bw

2
sin β sinφ

−g cos θ(l1 −
bw
2
cos β sin φ)

)

− Iwx(−2qα̇ sin2 φ sinα cosα

+2qφ̇ sinφ cosφ cos2 α− φ̇2 cosφ sinα cosα + φ̇α̇ sin φ sin2 α

−φ̇α̇ sin φ cos2 α)− Iwy(−2qφ̇ sin φ cosφ− φ̇α̇ sinφ)

−Iwz(2qα̇ sin2 φ sinα cosα + 2qφ̇ sinφ cosφ sin2 α + φ̇2 cosφ sinα cosα

+φ̇α̇ sinφ cos2 α− φ̇α̇ sinφ sin2 α)

α̇

τα cosφ+Mwy +Mwg
bw
2
sinφ(− sin θ sin β + cos θ cos β)

−Mw(−qw bw
2
sin β sin φ+ q2 bw

2
l1 sin β sinφ+ qu bw

2
cos β sin φ)

−Iwx(−2qα̇ sin2 φ sinα cosα + 2qφ̇ sinφ cosφ cos2 α− φ̇2 cosφ

sinα cosα + φ̇α̇ sinφ sin2 α− φ̇α̇ sinφ cos2 α)− Iwy(−2qφ̇ sinφ cosφ

−φ̇α̇ sin φ)− Iwz(2qα̇ sin2 φ sinα cosα + 2qφ̇ sinφ cosφ sin2 α

+φ̇2 cosφ sinα cosα + φ̇α̇ sin φ cos2 α− φ̇α̇ sinφ sin2 α)

φ̇

τφ +Mwg
bw
2
(sin θ cos β + cos θ sin β) +Mwz

−Mw(−qw bw
2
cos β cosφ+ q2 bw

2
l1 cos β cosφ− qu bw

2
sin β cosφ)

−Iwx(qα̇ sin φ sin2 α− qα̇ sin φ cos2 α + 2φ̇α̇ sinα cosα

−q2 sinφ cosφ cos2 α)− Iwy(qα̇ sin φ+ q2 sin φ cosφ)

−Iwz(−qα̇ sinφ sin2 α+ qα̇ sin φ cos2 α− 2φ̇α̇ sinα cosα

−q2 sinφ cosφ sin2 α)
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This is the complete set of equations of motion for the entire system i.e. wing plus

body. Two models have been derived here, first without wings i.e. equation (2.6) and

second with wings (2.28).

2.2.4 Models for Control

In this section, the models used in the next 2 chapters will be revisited. Model 1

excludes the wing and its effect on the body, it encompasses just the body’s equations

of motion under the influence of periodic wing force (equation 2.6).

Model 2 again excludes the wing dynamics, and but includes the kinematics i.e. body’s

equations of motion with wing inertial effect (i.e. the first four equations of 2.28).

Similar model was derived by Sun et al. (2007). But for simplification dynamics of

wing pitch angle α have been ignored. However wing pitch angle serves as a control

parameter. Model 2 has been repeated for sake of clarity in equation 3.12

Model 3 includes both body and wing dynamics, i.e. equation 2.28 but without α

dynamics. In this model the wing kinematics are not imposed on the body, instead

the wing dynamics, introduced as states, decide the kinematics.
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Mt 0 0 m14

0 Mt 0 m24

0 0 1 0

m14 m24 0 m44





































u̇

ẇ

θ̇

q̇



















=

F =



































































Fx −Mtg sin θ −Mtqw

−Mw(q
2 bw

2
cos β sin φ− q2l1 + 2qφ̇ bw

2
sin β cosφ+ φ̇2 bw

2
cos β sin φ)

Fz +Mtg cos θ +Mtqu

−Mw(−q2 bw
2
sin β sin φ+ 2qφ̇ bw

2
cos β cosφ− φ̇2 bw

2
sin β sinφ)

q

My −Mw(qw
bw
2
sin β sinφ− qu(l1 −

bw
2
cos β sin φ)

+φ̇2 bw
2
l1 sin β sinφ− 2φ̇ bw

2
l1 cos β cosφ

+g sin θ bw
2
sin β sinφ− g cos θ bw

2
cos β sinφ)

−Iwx(2qφ̇ sinφ cosφ cos2 α− φ̇2 cosφ sinα cosα

−Iwy(−2qφ̇ sin φ cosφ− φ̇α̇ sinφ)− Iwz(2qφ̇ sinφ cosφ sin2 α

−φ̇2 cosφ sinα cosα



































































(2.29)

2.3 Aerodynamic Model

In this section, we develop the aerodynamic model. The model is based on Deng

et al. (2006b). The body experiences two different sets of aerodynamic forces, first

originating from the movement of the wings and the other due to its own motion

in the air. The aerodynamic force due to the flapping of the wings, provides the

actuation for the body, while the aerodynamic force due its own movement, known

as parasitic force, do not provide any useful force, hence the name parasitic. If the

wing actuation is sufficient enough, these parasitic forces are overcome and the body

is propelled forward. Since the magnitude of the aerodynamic force is proportional
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to the square of velocity, which is practically negligible at or near hover, the body

forces do not account for a substantial amount and are ignored in this model.

Another point to note here is, that the angle of attack is strictly the angle made by

the airfoil with the oncoming wind velocity vector. At hover or near hover, for all

practical purposes, this is taken to be the pitch angle, but strictly speaking it is given

by

αA = α− α̂ (α = αd/αu) (2.30)

α̂ = arctan(
Vz

Vx

) (2.31)

The aerodynamic force lift and drag act along the relative velocity vector (as shown in

figure 2.3 below), which makes an angle α̂. with the stroke plane angle. The rotation

matrix from relative wind frame to stroke plane angle is given by

Rα̂ =













cos α̂ 0 − sin α̂

0 1 0

sin α̂ 0 cos α̂













(2.32)

Figure 2.3: Angle of Attack Modification

The aerodynamic force, acts at the center of pressure. The vector from the wing
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hinge to the center of pressure, in the body frame is given by:

Rac = RT
βR

T
φR

T
α













cw
4

r̂2bw

0













(2.33)

The velocity of the center of pressure is the summation of total velocity of body

and the rotational velocity of the wing in the intermediate wing frame is

U = R
bw
(Vb + ωb ×Rh) + (R

bw
ωb + ωw ×Rac) (2.34)

U2

cp = U2

x + U2

z (2.35)

The quasi steady state approach has been widely used for modeling the aerody-

namics forces. The model is derived from steady state, thin airfoil using blade element

theory. The coefficients chosen here have been taken from Deng et al. (2006b). Force

generated by the wing is due to 3 main phenomena, translation, rotation and de-

layed stall Dickinson et al. (1999). Here only the translational component has been

modeled. The total force on the wing can be written as a function of angle of attack

(αA).

L =
1

2
ρAwClUcp

2

D =
1

2
ρAwCdUcp

2 (2.36)

where ρ is the density of air, Aw is the area of the wing and the lift and the drag

coefficients are expressed in terms of the tangential and normal components as:

Cn = 3.4 sinαA;

Ct = 0.4 cos2(2αA) (2.37)

Cl = Cn cosαA − Ct sinαA

Cd = Cn sinαA + Ct cosαA (2.38)

26



This is the total lift and drag generated by the wing in the relative wind frame.

The total force and moment acting at the C.G of the body is expressed in the

body frame as

F = RT
βR

T
φR

T
α̂













−D

0

−L sgn φ̇













(2.39)

M = (Rh +Rac)× F (2.40)

The individual components of the forces are

Fx = cos β cosφ(−D cos α̂− L sin α̂ sgn φ̇) + sin β(D sin α̂− L cos α̂ sgn φ̇) (2.41)

Fz = − sin β cosφ(−D cos α̂− L sin α̂ sgn φ̇) + cos β(D sin α̂− L cos α̂ sgn φ̇) (2.42)

My = FzRac,x − FxRac,z (2.43)

The aerodynamic forces and moments experienced by the wing in the stroke plane

are

spF = RT
φR

T
α̂













−D

0

−L sgn φ̇













(2.44)

τ =sp Rac ×sp F (2.45)

Mwy =sp Fx spRac,z − spFz spRac,x (2.46)

Mwz =sp Fy spRac,x − spFx spRac,y (2.47)
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2.3.1 Body Forces

Body aerodynamic forces are modeled the same way as wing (equation 2.36). This

force acts at the body center of pressure, which is at a distance l2 from the body C.G.

Lb =
1

2
ρAClbV

2

Db =
1

2
ρACdbV

2 (2.48)

where, A is the projected area of the body, Clb, Cdb are the aerodynamic coefficients

and V is the magnitude of the total velocity experienced (V 2 = u2 + w2). The aero-

dynamic coefficients found in the literature are mostly for the wings. Willmott and

Ellington (1997b) compare both wing and body coefficients (experimentally derived)

over a range of velocities starting from hover for a hawkmoth.

Also the aerodynamic model presented in this section is strictly valid for hover.

The coeffients usually decreases with increasing speed. Forward fight aerodynamics

in insects like bumblebees and hawkmoths were studied by Dudley and Ellington

(1990b) and Willmott and Ellington (1997b) respectively. The experiment of scaling

drosophila wings and aping the wing trajectory to study hover was repeated by giving

finite speed, to study effect of forward flight in Dickson and Dickinson (2004). This

concludes the discussion on aerodynamic modeling of flapping wing MAVs.

2.4 Summary

We have derived 3 different models with increasing complexity. The first model i.e.

without wing has been the most popular choice, for obvious reasons, it tremendously

simplifies the modeling. However, strictly speaking, ignoring the wing is valid if the

wing mass is really small. Usually each wing accounts for 1% of the weight of the

body. However the model used in this thesis, which is modeled after a hawkmoth
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has total wing weight of ∼ 6%. The validity of this assumption will be checked in

chapter 4. Model 2 derived gives the equations of motion of the body with wing

inertia effect. i.e. the wing accelerations the body would feel. The last model is, the

complete system, body and wings, the difference between model 2 and model 3 is

that the wings are modeled as states in model 3 where as in model 2 the kinematics

of the wings have been captured. The validity of each model will be checked in the

next few chapters.
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Chapter 3

THE AVERAGED NON-LINEAR MODEL

3.1 Introduction

As discussed previously, there are two ways of handling a time varying system,

one is to use Floquet theory and the other is to use averaging theory, which is a

perturbation method. In fact, Floquet theory converts time periodic vector field

into an autonomous averaged form. Vela et al. (2002) demonstrates that averaging

theory is a synthesis of Floquet theory and perturbation theory. In this thesis we

have discussed averaging method, as applied to the MAV system. Since the idea

of averaging is to get a time invariant model for control purposes, it is unsure how

quarter cycle averaging proposed in Orlowski and Girard (2011a) is useful for purpose

of control.

Averaging is a way to approximate behavior of a non-autonomous dynamical sys-

tem ’on an average’. Simply put, a slow time varying system can be approximated

by an averaged system, and the solution of the new averaged system is an average

solution to the original system. Murdock (1999) and Sanders et al. (2007) are two

good references for understanding of averaging theory. Averaging theory is applicable

to a large class of time dependent vector field, not necessarily periodic. However the

system under scrutiny is actuated by a periodic vector field. The motivation of aver-

aging is that a physical system’s response is determined more by the average influence

rather than the fluctuations about the average. For averaging theory to be applicable

it is necessary that the system is in periodic standard form (Murdock (1999)) i.e.

ẋ = ǫf(x, t, ǫ), x(0) = a (3.1)
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where f is 2π periodic in t. The necessity of this form, stems from the fact that

averaging theory is only applicable when the system is varying slowly. Multiplying

the right hand side by an ǫ term (where ǫ is tending to 0), makes the system evolve

slowly, i.e. x is nearly a constant. And thus averaging this system makes sense.

Example highlighting the significance of this will follow this discussion. First order

averaging, the simplest form of averaging, entails replacing the above system by

ż = ǫf̄(z), y(0) = a (3.2)

where,

f̄(z) =
1

2π

∫

2π

0

f(z, t, 0)dt (3.3)

Introducing a new variable (or ‘time scale’) τ = ǫt, removes the ǫ, results in guiding

system

dw

dτ
= f̄(w), w(0) = a (3.4)

The idea is, that the solution of the averaged system remains close to the solution

of the original system, the error in this case is O(ǫ) and the approximation is valid on

a time interval O(t/ǫ). In order to quantify this, the theorems below from Murdock

(1999) are referred.

Theorem 3.1.1 Assume 3.1 is smooth and periodic in t. Suppose 3.4 has a solution

w(τ, a) which exists on the interval 0 ≤ τ ≤ T . Then there exist constants ǫ1 > 0 and

c > 0 such that the solution of the exact system 3.1 exists on the expanding interval

0 ≤ τ ≤ T
ǫ
, and the following error estimate holds

‖x(t, a, ǫ)− w(ǫt, a)‖ < cǫ for 0 ≤ t ≤ T/ǫ, 0 ≤ ǫ ≤ ǫ1

The following example from Murdock (1999) shows the necessity of having small
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termǫ multiplying the right hand side of the ode.

ẋ1 = 1, x1(0) = 0

ẋ2 = ǫ cos(x1 − t), x2(0) = 0 (3.5)

The exact solution is x1 = t and x2 = ǫt. However, if averaging were to be directly

applied to the system, it would result into

ż1 = 1, z1(0) = 0

ż2 = 0, z2(0) = 0 (3.6)

The exact solution to the averaged solution is z1 = t and z2 = 0. The error in the

second state equals 1 when t = 1/ǫ. The error stems from the fact that, the first

state evolves in a way, that the second state stays at its maximum, and thus is not

represented correctly by its average value 0. If ẋ1 were to be ǫ (periodic standard

form) instead of 1, x1 would have grown slowly over one time period and the cos term

would perform a sinusoid and better approximated by its average 0.

In the next theorem from Murdock (1999), existence and stability of solution of

the averaged system has been analyzed. The exact solution of the original system,

tends to make small oscillations around a slowly moving guiding center, possibly

drifting away from the center after a long duration, however at an equilibrium (if one

exists) of the averaged system, the guiding center does not move and the solution of

the exact system oscillates about this point.

Theorem 3.1.2 Suppose that the system 3.1 is smooth and 2π periodic. Let the first

order averaged 3.2 system have an equilibrium point z = z0, that is f̄(z0) = 0, and let

the matrix of the partial derivatives of f̄ at this rest point be denoted by A = f̄(z0).

If A is nonsingular (then there exists a unique ǫ dependent initial condition a(ǫ),

defined for ǫ in some interval ‖ǫ‖ < ǫ1, such that a(0) = z0 and such that the solution
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x(t, a(ǫ), ǫ) of 3.1 with this initial condition is periodic with period 2π.

If the eigenvalues of A lie in the left half of the complex plane then the periodic

solution x(t, a(ǫ), ǫ) is asymptotically stable (all nearby solutions remain close to, and

approach, the periodic solution as t → ∞. If at least one eigenvalue lies in the right

half-plane the periodic solution is unstable. If some eigenvalues are on the imaginary

axis and the rest are in the left half plane, no conclusion about the stability of the

periodic solution is possible from the first order averaged equation alone. In the first

case (eigenvalues in the left half-plane), the basic error estimate ‖x − z‖ < cǫ holds

for all future time (t > 0, and not merely 0 < t < T/ǫ) for any solution that is

attracted to the periodic solution as t → ∞.

3.1.1 Averaging Method as Applied to the MAV System

The MAV system 2.6 has the following form:

dx

dt
= f(x) + F (x, t) (3.7)

To get it into standard periodic form, a fast variable τ is introduced as τ = t/ǫ.

Thus
dτ

dt
= 1/ǫ, equation 3.7 changes to

dx

dτ
= ǫ[f(x) + F (x, τ)] (3.8)

In the MAV system 1/ω plays the role of ǫ. Based on the above theorem, the

time varying system 3.7 can be approximated as time invariant averaged system, by

averaging over one wing beat cycle (τ = ωT = 2π) as follows

dx̄

dτ
= ǫf(x̄) + ǫ

1

T

∫ T

0

F (t, x)dt (3.9)

Changing the time scale back to t by we get,

dx̄

dt
= f(x̄) +

1

T

∫ T

0

F (t, x)dt (3.10)
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Averaging the system 2.6, we get the following

˙̄u =
F̄x

Mb

− g sin θ̄ − q̄w̄

˙̄w =
F̄z

Mb

+ g cos θ̄ + q̄ū

˙̄θ = q̄

˙̄q =
M̄y

Iyy
(3.11)

where,

F̄i =
1

2π

∫

2π

0

F (t, x)idt

and similarly for the moment expression.

Using the same approach, averaging the system 3.12, we get the following



















Mt 0 0 m14

0 Mt 0 m24

0 0 1 0

m14 m24 0 m44
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F̄x −Mtg sin θ̄ −Mtq̄w̄

−Mw(q̄
2 bw

2
cos βsinφ− q̄2l1 + 2q̄ bw

2
sin βφ̇ cosφ+ bw

2
cos βφ̇2 sin φ)

F̄z +Mtg cos θ̄ +Mtq̄ū

−Mw(−q̄2 bw
2
sin βsinφ+ 2q̄ bw

2
cos βφ̇ cosφ− bw

2
sin βφ̇2 sinφ)

q̄

M̄y −Mw(q̄w̄
bw
2
sin βsinφ− q̄ū(l1 −

bw
2
cos βsinφ)

+ bw
2
l1 sin βφ̇2 sinφ− 2 bw

2
l1 cos βφ̇ cosφ+ g sin θ̄ bw

2
sin βsinφ

−g cos θ̄ bw
2
cos βsinφ)− Iwx(2q̄φ̇ sinφ cosφ cos2 α

−φ̇2 cosφ sinα cosα− Iwy(−2q̄φ̇ sinφ cosφ− α̇φ̇ sin φ)

−Iwz(2q̄φ̇ sin φ cosφ sin2 α− φ̇2 cosφ sinα cosα



























































(3.12)
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This completes the discussion on first order averaging, which has been the most

widely used method to deal with time variance of the system of differential equations

in MAV research. However Taha et al. (2012) have claimed that first order averaging

fails for the MAV system based on a Hawkmoth model because the ǫ = 1/ω is not

small enough. Thus, higher order averaging is required to get the right approximation

of the original system. They use second order averaging and showed that the hover

equilibrium changed. In the next section, we give a short introduction to second order

averaging and apply it to the MAV model, used in this thesis, to check if second order

averaging is indeed required.

3.2 Second Order Averaging

Higher order averaging is used to get better approximation of the time variant

system. The purpose is twofold, first to get higher orders of accuracy on expanding

intervals of length O(1/ǫ); but in practice this is limited by the difficulty in compu-

tation, second, to extend the asymptotic length of the expanding intervals of validity.

Besides these, higher order averaging is needed to determine stability of some periodic

solutions which do not follow the rules of theorem 3.1.1 i.e. when the eigenvalues are

on the imaginary axis.

We refer to the following theorem from Sanders et al. (2007). Starting with the

system

ẋ = ǫf1(x, t) + ...+ ǫkfk(x, t) (3.13)

with a period T in t.

If y represents the averaged variable x (x̄), then the second order averaged system is

given by

ẏ = ǫg1 + ... + ǫkgk(y) (3.14)
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where

g1 =
1

T

∫ T

0

f1(x, t)dt (3.15)

g2 =
1

T

∫ T

0

(f2 +Dyf1(y, t)u1(y, t)−Dyu1(y, t)g1(y))dt (3.16)

u1 =

∫ t

0

(f1(y, τ)− g1(y))dτ + c1(y) (3.17)

Dy represents the partial derivaive of the vector field w.r.t y.

c1 here is taken as 0, as per stroboscopic averaging (for detailed explanation refer

Murdock (1999))

An alternate expression of g2 is presented in Vela et al. (2002)

g2 =
1

2T

∫ T

0

[
∫ t

0

f1(x, τ)dτ, f1(x, t)

]

dt (3.18)

where [ , ] is a lie bracket. Then the solution of the original system is

ξ = y + ǫu1(y, t) + ...ǫk−1uk−1(y, t) (3.19)

The next theorem (Sanders et al. (2007))relates the two solutions, averaged and

original.

Theorem 3.2.1 The exact solution x(a, t, ǫ) and ξ(a, t, ǫ) are related by

‖x(t, a, ǫ)− ξ(a, t, ǫ)‖ < O(ǫk)

for time O(1/ǫ)

The improvement is of order ǫ2. However this improvement in accuracy when traded

off with the computational effort, is extremely small, as will be seen in the next

section. Since calculating even the second order averaging terms, numerically is ex-

pensive, we have second order averaged only model 1 i.e. the body dynamics without

any wing effects.
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3.2.1 Second Order Averaging as Applied to the MAV System

The MAV system can be expressed as

ẋ = f(x, t, ǫ) (3.20)

This can be expanded in an ǫ series that looks like 3.13. However, we are interested in

terms up to second order. System 3.7 when second order averaged takes the following

form

dx

dt
= ǫ

( 1

T

∫ T

0

f(x) + F (x, t) dt
)

+ ǫ2(
1

2T

∫ T

0

[
∫ t

0

F (x, τ) + f(x) dτ,

F (x, t) + f(x)

]

)

(3.21)

The above equation is nothing but system 3.11 but with additional terms, correspond-

ing to the integral given in equation 3.18.

u̇ =
F̄1,x

Mb

+
F̄2,x

Mb

− g sin θ̄ − q̄w̄

˙̄w =
F̄1,z

Mb

+
F̄2,z

Mb

+ g cos θ̄ + q̄ū

˙̄θ = q̄

˙̄q =
M̄1,y

Iyy
+

M̄2,y

Iyy
(3.22)

where F1 and F2 are given in equations 3.15 and 3.16. The second order averaged

expressions of the terms that are functions of only the states, cancel each other out;

and only first order averaged states remain.

After obtaining the averaged system, the next step is linearization. The operating

point about which the model is linearized and the linear model will be shown in detail

in the next chapter. For the sake of comparison of first and second order averaging,
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Table 3.1: Open Loop Eigenvalues of Linear Model Based on First Order Averaging

Pole Damping ωn

-6.74 1 6.74

-12.5 1 12.5

4.73 + j9.81 -0.434 10.9

4.73 - j9.81 -0.434 10.9

Table 3.2: Open Loop Eigenvalues of Linear Model Based on Second Order

Averaging

Pole Damping ωn

-6.89 1 6.89

-14.1 1 14.1

3.27 + j9.67 -0.321 10.2

3.27 - j9.67 -0.321 10.2

we go ahead of the flow of discussion and present the eigenvalues of the linear map.

All computations have carried out numerically.

As clearly seen from the tables the difference between the eigenvalues is not much.

We expect the difference to be small because the change should be on the order ǫ2. We

conclude that the stability properties remained the same after second order averaging.

3.3 Summary

In this chapter we reviewed averaging concepts, first order averaging is almost

universally used for the analysis of flapping wing MAVs. The theory of averaging

basically predicts the averaged behavior of the sysetm, which is under the influence
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of a time varying vector field. It approximates the solution of the original non-

autonomous system. The concept of higher order averaging was introduced here, to

analyze if we could obtain a better approximation of the periodic nonlinear model.

However the linearizations based on both first and second order averaging were found

to be very close to each other. We conclude that the need for higher order averaging

at least for the model used here doesn’t seem necessary. As will be seen in the next

2 chapters, feedback control based on first order averaging is able to stabilize the

nonlinear model quite well.
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Chapter 4

THE LINEAR TIME INVARIANT MODEL AND TRADE-STUDIES

The full 6 DOF nonlinear model for both, with and without wings were developed in

chapter 2. In chapter 3 averaging theory and analysis of time varying systems were

discussed. The system in question is actuated by a periodic vector field and hence

belongs to this class of systems. In this chapter, the averaged nonlinear system is

linearized about hover equilibrium and analysis of the linear model follows for both

model 1 (body without wing inertial effect) and model 2 (body with wing inertial

effect). The average model was derived in section 3.1.1 To be able to stabilize the

model at hover, the equilibrium parameters need to be evaluated. It is important

to see that there is no equilibrium point for the system 2.6; as the wings go back

and forth, the body too oscillates, thus we are looking for a periodic trajectory that

stabilizes the insect about the desired equilibrium point. But this point serves as an

equilibrium for the averaged system, about which it is linearized. The questions that

are of interest here, are

1. When does averaging work/not work?

2. What closed loop bandwidth must be sufficiently small?

3. When is lower order averaging sufficient?

4.1 Analysis of Linear Model 1: Body Without Wing Inertial Effect

The equilibrium for the averaged system is found using Matlab’s fmincon com-

mand. Sum of squares of all state derivatives was minimized. Because of hover flight
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condition, this corresponds to zero, translational and angular velocities. The table

below gives all the parameters and state values at equilibrium. For convenience,

meaning of the variables is restated

u, w Body velocities in xb and zb axis

θ Body pitch angle

q Body angular velocity in yb axis

ω Wing flapping frequency

β Stroke plane angle

φ, φ0 Flapping amplitude and offset

α, α0 Pitch amplitude and offset

Table 4.1: Hover Parameters

u (m/s) w (m/s) θ◦ q (rad/s) ω (Hz) β◦ φ◦ φ◦

o α◦ α◦

o

0 0 90 0 30 -90 50 0 25.219 0

LetX , Z be the components of Fa along the xb, zb direction respectively, andM be

the yb component of the Ma. These forces and moments are cycle averaged and func-

tions of states x = [u w θ q] and wing stroke parameters p = [ω β φm φo αm αo].

If each variable is expressed as a sum of equilibrium state and a perturbation,

x = xe + δx, p = pe + δp

X = Xe + δX (4.1)
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The linearized equations can be written as:

δu̇ =
δX

Mb

− g cos δθ (4.2)

δẇ =
δZ

Mb

− g sin δθ (4.3)

δθ̇ = δq (4.4)

δq̇ =
δM

Ib
(4.5)

The perturbations in the aerodynamic forces and moments are expressed as

δX = Xuδu+Xwδw +Xqδq +Xωδω +Xβδβ +Xφm
δφm +Xφo

δφo

+Xαm
δαm +Xαo

δαo (4.6)

δZ and δM are similarly expressed as summation of partial derivatives. These deriva-

tive terms w.r.t to the body velocities are called stability derivatives and the deriva-

tives w.r.t the wing parameters are called control derivatives.

4.1.1 Choice of Controls

To decide between control and fixed parameters, and the optimum number of con-

trols required, the jacobian of the forces [X,Z,M ] w.r.t the wing stroke parameters

is examined. This helps in checking the relative importance of each parameter. A

similar procedure is taken by Karásek and Preumont (2012). Recognizing that the ve-

hicle can be controlled by, frequency (ω), stroke plane angle (β), flapping parameters

(φ, φo) and lastly pitching parameters (α, αo) only, we obtain the following system ’B’

matrix


















0.0018 0 0.2626 0 0.2102 0

−0.0007 −0.1146 0 0 0 −0.155

0 0 0 0 0 0

0.0039 −0 0 −1.7164 0 0.709



















(4.7)
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It is seen from above, that the parameters that affect the force in xb direction/lift

direction and moment along yb are αm, φm and the parameters affecting the force in

zb direction/drag direction are β, αo and φo. It follows that the vertical dynamics is

decoupled from the horizontal and pitch dynamics. this decoupling is characteristic

of hover and as seen later, in forward flight this will not hold true anymore. A point

to note here is that the body xb direction is along the longitudinal axis, which is

perpendicular to the inertial xe axis, and the body’s zb is along the xe and hence the

swap seen in the rows of B matrix. The first row corresponds to vertical dynamics

and second tow corresponds to horizontal dynamics.

For controlling the flight [φo, αm, αo] are chosen as control parameters. Since the

system is decoupled, αm is to chosen to control the vertical force and φo, αo are cho-

sen to control force and moment in horizontal and pitch direction. An SVD further

shows the relative importance of these control parameters on the states. Humbert

and Faruque (2011) perform a reachability analysis with chosen control parameters to

choose the optimum combination. To further support this decision we use the figure

2.1, the significance of differential angle of attack can be appreciated. Thrust is gen-

erated in upstroke and the magnitude is directly proportional to the angle of attack,

thus the angle of attack should be higher in the upstroke than in the downstroke.

Hence the differential angle of attack is responsible for thrust and an essential control

parameter in forward flight. αm is (αu+αd)/2. Amplitude offset is directly tied with

the pitch, if the flap is made ahead of the body/in front of the C.G, it provides a CW

moment and vice versa.
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The LTI model can be represented in state space as

ẋ = Ax+Bu

y = Cx+Du

A =



















−6.741 0 0 −0.076

0 −2.772 −9.81 0.005

0 0 0 1

0 151.611 0 −0.308



















, B =



















0 18 0

0 0 −13.3

0 0 0

1544 0 638



















C =













1 0 0 0

0 1 0 0

0 0 1 0













, D =













0 0 0

0 0 0

0 0 0













(4.8)

The outputs are [u, w, θ]. With these as the outputs, the flight path angle and the

total forward velocity can by computed.

The Eigenvalues, with their corresponding damping ratio and natural frequency

are as given below. The open loop plant has no transmission zeros.

Table 4.2: Plant Eigenvalues

Pole Damping ωn

-6.74 1 6.74

-12.5 1 12.5

4.73 + j9.81 -0.434 10.9

4.73 - j9.81 -0.434 10.9

Hover is thus an unstable equilibrium. Active control is required to maintain

hover. Since the instability is at roughly at 11 rad/s, we expect the minimum input

bandwidth to be at least twice this figure.
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4.1.2 SVD Analysis

A singular value decomposition at DC yields the following:

G(j0) = C(A)−1B +D (4.9)

= UΣV T

U =













0 −1 0

−0.9727 0 −0.2321

0.2321 0 −0.9727













, Σ =



















11.33 0 0

0 2.67 0

0 0 1.21

0 0 0



















V =













−0.9337 0 0.3580

0 −1 0

0.3580 0 0.9337













(4.10)

The SVD at hover clearly shows the decoupling between input u2 to output y1

and inputs u1, u3 to outputs y2 and y3. Also note that u1 has a major contribution

towards y2 and u3 contributes more to y3. This is in accordance with the force

resolution discussion before, pitch angle magnitude (αm) is responsible for lift hence

the vertical dynamics (along xb), while the pith offset (φo) is responsible for moment,

hence body pitch and lastly pitch offset αo is responsible for the horizontal dynamics,

(along zb).

To emphasize that decoupling of controls is only true at hover, SVD analysis at other

flight speeds (all at D.C) is checked.
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Figure 4.1: SVD at Hover

Singular value decomposition at 0.5 m/s

U =



















−0.4292 0.6131 0.6632 0

−0.8306 −0.5564 −0.2321 0

0.3549 −0.5608 0.7481 0

0 0 0 1



















, Σ =



















10.869 0 0

0 2.347 0

0 0 1.407

0 0 0



















V =













−0.9773 0.1538 −0.1454

0.0117 0.7251 0.6885

0.2114 0.6712 −0.7105













(4.11)
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Singular value decomposition at 1.0 m/s

U =



















−0.8917 0.0785 0.4458 0

−0.2247 −0.9317 −0.2853 0

0.3930 −0.3546 0.8484 0

0 0 0 1



















, Σ =



















10.495 0 0

0 3.727 0

0 0 0.7048

0 0 0



















V =













−0.9899 0.1386 −0.0295

0.0560 0.5734 0.8174

0.1302 0.8075 −0.5753













(4.12)

Singular value decomposition at 1.5 m/s

U =



















−0.9568 −0.0269 0.2895 0

−0.0438 −0.9710 −0.2350 0

0.2874 −0.2375 −0.9279 0

0 0 0 1



















, Σ =



















9.481 0 0

0 4.363 0

0 0 0.689

0 0 0



















V =













−0.9639 0.1944 −0.1818

0.0219 0.7387 0.6737

0.2652 0.6454 −0.7164













(4.13)

Singular value decomposition at 2.0 m/s

U =



















−0.9214 −0.2830 0.2664 0

0.2245 −0.9471 −0.2295 0

0.3172 −0.1517 0.9361 0

0 0 0 1



















, Σ =



















14.525 0 0

0 4.212 0

0 0 0.046

0 0 0



















V =













−0.9933 −0.1159 −0.004

−0.0647 0.5259 0.8481

−0.0962 0.8426 −0.5298













(4.14)
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The ’U’ matrix at hover clearly shows decoupling between u, θ and w states, and as

the forward speed increases this ceases to be true.

4.2 Analysis of Linear Model 2: Body with Wing Inertial Effect

The equilibrium at hover corresponds to the parameters shown in table 4.3

Table 4.3: Hover Parameters

u (m/s) w (m/s) θ◦ q (rad/s) ω (Hz) β◦ φ◦ φ◦

o α◦ α◦

o

0 0 90 0 30 -90 50 0 27.17 0

The only change is in the magnitude of the angle of attack, which went up by

almost 2◦. The LTI model is represented in state space as

ẋ = Ax+Bu

y = Cx+Du

A =



















−5.886 0 0 −0.064

0 −2.831 −9.81 0.006

0 0 0 1

0 151.753 0 −0.328



















, B =



















0 15.3 0

0 0 −13.7

0 0 0

−1337.7 0 547.4



















C =













1 0 0 0

0 1 0 0

0 0 1 0













, D =













0 0 0

0 0 0

0 0 0













(4.15)

The Eigenvalues, with their corresponding damping ratio and natural frequency

are as given below. The open loop plant has no transmission zeros.

Again, like in the previous case, the hover is an unstable equilibrium. The insta-

bility in this case too is at 11 rad/s, and we desire the bandwidth at the controls to

be at least twice of this instability.
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Table 4.4: Plant Eigenvalues

Pole Damping ωn

-5.89 1 5.89

-12.6 1 12.6

4.71 + j9.81 -0.433 10.9

4.71 - j9.81 -0.433 10.9

Singular value decomposition at D.C gives the following

U =



















0 1 0 0

0.9889 0 −0.1485 0

−0.1485 0 −0.9889 0

0 0 0 1



















, Σ =



















6.6125 0 0

0 2.5969 0

0 0 1.0352

0 0 0



















V =













0.7628 0 0.6466

0 1 0

−0.6466 0 0.7628













(4.16)

A similar decoupling between input u2 to output y1 and input u1, u3 to output y2 and

y3 is seen here. Thus, we see there is very little difference between the linear plants

of both the models.

4.3 Trade Studies

In this section, we will discuss design aspects of the MAV, changing the geometric

and mass properties to get suitable properties. Specifically, how the vehicle dimension

l1 (wing hinge distance from body C.G.) and the moment of inertia Ib affect the control

of the MAV.
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Figure 4.2: SVD at Hover

4.3.1 Effect of Wing Hinge Location

This dimension is directly related with pitch stability. Ideally for static stability

the aerodynamic center of pressure should lie behind and/or below the center of grav-

ity (Taylor and Thomas (2002)). However during flapping flight, the exact position

of this aerodynamic center varies and difficult to locate. Ristroph et al. (2013) and

Phan et al. (2012) discuss pitch stability in flapping insects. We vary the l1 dimension

to understand its significance. The moment produced by the wing, acts through this

arm. Since for a stable configuration, the center of pressure should be typically be-

low and behind the center of gravity, we expect the instability associated with pitch

dynamics to decrease as we decrease this length.

To see the effect of the parameter l1 we recalculate the eigenvalues, which will

quantify the change in the stability property.

Comparing the eigenvalues with those listed in table 4.2, we notice that the in-
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Table 4.5: Open Loop Eigenvalues for l1 = 120mm

Pole Damping ωn

-6.74 1 6.74

-18.4 1 18.4

5.27 + j12.9 -0.378 13.9

5.27 - j12.9 -0.378 13.9

stability has increased from 11 rad/s to 14 rad/s.

We are also interested in the maximum bandwidth at controls (input) that the

system can handle. Higher bandwidth at the controls tends to destabilize the system.

We expect this maximum limit can be pushed as this dimension tends to zero. The

table below shows the maximum crossover frequency (approximate) beyond which

the system destabilizes, the corresponding crossover frequency at the output, as the

l1 tends to zero. A point worth noticing here is, because this parameter is directly

linked to the total moment at the C.G, we expect the amplitude of angular velocity

’q’ about the mean to decrease simultaneously.

To elaborate on the point that the amplitude of angular velocity indeed decreases

with a simultaneous decrease in the magnitude of l1, the following time responses of q

are presented. The procedure to obtain a stabilizing closed loop will be explained in

the next chapter. The design shown below (figure 4.3) corresponds to input bandwidth

close to 48 rad/s.

To conclude the distance to the wing hinge is an important dimension. It directly

affects the stability and the amplitude of oscillations. Ideally we would like this

dimension to be as small as possible. As mentioned before, one disadvantage is losing

pitch control, which can be regained by having the wings flap asymmetrically about
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Table 4.6: Effect of Decreasing l1

Fraction of l1 Input ωc Output ωc Maximum Amplitude of q (rad/s)

1 140 10 7

0.9 150 9.7 7

0.8 165 9.4 6

0.7 185 9 6

0.6 195 8.8 5

0.5 215 8.4 5

0.4 235 8.2 5.5

0.3 255 7.9 5.5

0.2 290 7.6 4

0.1 320 7.2 3.5
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(b) With l1 = 120 mm

Figure 4.3: Effect of Varying l1 Dimension on Time Response of q
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the out of plane axis i.e. to have offset in the flapping.

4.3.2 Effect of Moment of Inertia

The moment of inertia decides the pitch stability of the vehicle. In all of the

time responses of q, the amplitude of oscillation is quite high (> 4 rad/s). This is

attributed to the extremely low moment of inertia of the body. We expect that as the

moment of inertia increases the instability associated with the pitch would decrease

and the amplitude of pitch oscillation would become smaller.

The moment of inertia of the hawkmoth is on the order of 10−7. The following

table shows the effect of increasing moment of inertia from 10−7 to 10−4 on the

unstable pole. The instability significantly decreases with an increase in the moment

of inertia.

Table 4.7: Effect of Increasing Iby

Moment of Inertia Unstable pole Frequency

10−7 5.27 ± j12.9 13.9

10−6 3.53 ± j8.12 8.85

10−5 1.37 ± j3.68 3.93

10−4 0.355 ± j1.54 1.58

The oscillations of pitch velocity too decrease with the increase in the moment of

inertia as evinced by the following plots (figure 4.4).

It is clear that as the moment of inertia decreases there is a drastic decrease in

the amplitude of oscillations. We end the section by concluding that both moment

of inertia and distance to the wing hinge are important parameters that significantly

change the design of the system. Moment of inertia plays a major role in deciding
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Figure 4.4: Effect of Varying Moment of Inertia on Time Response of q

the stability of the system. While deciding the geometry of the vehicle, we must try

to maximize the rotational inertia and position the wing hinge as close as possible to

the body C.G.
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4.4 Summary

In this chapter we compared the two linear models corresponding to model 1(with-

out wing inertial effect) and model 2 (body with wing inertial effect). We see the linear

models are quite similar to each other. The linear model shows decoupling at D.C. It

decouples into a SISO and two input two output system. Lastly design of the vehicle

with respect to geometric parameters, wing hinge position and moment of inertia was

discussed. It was noticed that both quantities have significant effect on body pitch

amplitude and bandwidth at input.
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Chapter 5

THE CONTROLLER DESIGN

In the literature of flapping wing MAV control, many different control schemes have

been proposed. Classical PID control has been popular (Karásek and Preumont

(2012)) with inner and outer loop which exploits the decoupled nature of hover,

LQR has been used widely (Deng et al. (2006a)). A new robust control strategy

has been adopted in Serrani et al. (2010) which is quite unique. Nonlinear control

method has been used in Khan and Agrawal (2007). In this thesis we have opted

for LQR methodology. In this chapter a linear controller for model 1 is designed and

its performance is checked on the non-autonomous nonlinear system. Desired closed

loop maps and the trade offs seen in controller performance are discussed. Later we

discuss the effectiveness/robustness of this controller on the model with wing inertia.

The gain matrices obtained in the previous designs is used to stabilize the second

linear model. The same closed loop properties that were of interest in case one, are

analyzed again. In section 3, we check up to what percentage, wing mass expressed

as percentage of body weight, can the controller tolerate. In section 4, we design a

controller for the model 2 and test it on the original model. The questions that are

of interest are

1. Till what speed is nominal hover controller sufficient?

2. At what speed is a non-hover cruise controller necessary?

3. When is mass-less wing model sufficient?

4. When is wing mass necessary to model?
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5. How much wing mass uncertainty can nominal hover controller tolerate?

6. When is a new controller necessary?

5.1 LQR Control

To stabilize the system at hover, full state feedback, linear, multivariable LQR

was designed. LQR is formulated to minimize the following quadratic cost function

minu J(u) =
1

2

∫

∞

0

x⊤(t)Qx(t) + u⊤(t)Ru(t)dt (5.1)

where Q ≥ 0 and R > 0 are the weighting matrices that trade off regulation per-

formance and control effort. The structure chosen here was that of a LQ servo loop

as shown in figure 5.1, the advantage is that, command following, disturbance and

noise attenuation can be addressed directly. LQ servo augments the closed loop with

integrators, hence zero steady state error to step response is possible.

Figure 5.1: LQ Servo Loop

The controller was designed by iteratively tuning diagonal weighting matrices to

ensure good closed loop properties. An optimization code (using MATLAB’s fmincon

function) was run to optimize minimum damping ratio and control bandwidth. We

expect the minimum damping ratio to be no less that 0.5, ideally close to 0.707 and

the bandwidth at the controls to be close to 22 rad/s (at least twice the instability
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as mentioned before).

The other closed loop design objectives that are desired are

• σmax[So(jω)] and σmax[Si(jω)] (i.e. Sensitivity at plant output and input)

should be small at low frequencies for low frequency command following and

disturbance attenuation.

• σmax[To(jω)] and σmax[Ti(jω)] (i.e.complementary sensitivity at plant output

and input) should be small at high frequencies for high frequency noise atten-

uation.

• σmax[Tru(jω)] (i.e. reference to control) should not be too large, it may result

in unnecessarily large controls in the presence of typical reference commands.

• σmax[Tdiy(jω)] (i.e. input disturbance to output) should be low at all frequencies

for good low and high frequency disturbance attenuation.

Keeping the above points in mind, a series of controllers were designed where an

acceptable trade off between minimum damping ratio (ζ), maximum settling time (Ts)

and crossover frequency of Lu (loop broken at control input to plant) was achieved.

Table 5.1 compares the maximum damping ratio, minimum settling time and the Lu

crossover frequency (ωc) for model 1 and model 2.

The figures 5.2 - 5.9 below show the closed loop performance corresponding to

these designs. The respective designs vary from light to dark shade of blue. The

chosen design is in red. The following is observed from the plots:

1. We desire a closed loop bandwidth at controls to be close to 22 rad/s, which

would be at least twice the instability’s frequency. However, to get a minimum

desirable damping ratio (for good performance), a minimum of 32 rad/s ωc is

required.
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Table 5.1: LQR Design Comparison

Min. ζ Min. Ts Lu ωc

0.5132 3.144 32

0.5962 3.117 38

0.6254 3.11 42

0.6133 3.10 48

0.6131 3.093 52

Min. ζ Min. Ts Lu ωc

0.4125 3.025 28

0.5264 3.005 33.152

0.5535 3.022 36.692

0.5875 2.974 41.727

0.5946 2.966 45.154

2. Closed loop properties get better with more bandwidth at controls.

3. The peaks of So and To are below 6 dB. Plots show that low frequency distur-

bance attenuation and high frequency noise attenuation will be achieved.

4. The peaks of Si and Ti are below 0 and 6 dB respectively. But this is a property

of LQR, it guarantees good properties at the plant input.

5. Peak of KS is mostly below 0 dB, which is desirable for not much control effort.

6. Peak of Tdiy large, which is undesirable.

7. As To bandwidth increases, the closed loop properties get better, however the

linear controller fails to stabilize the nonlinear plant. The maximum To band-

width that could stabilize the nonlinear system was close to 30 rad/s. This is

expected, because averaging is strictly possible if the bandwidth of the system

is small enough to reject wing’s high frequency input.

With this we have answered most of the questions posed in the beginning of the

section. The answers will be summarized at the end again.
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(c) Maximum Singular Value (Model 2)
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(d) Minimum Singular Value (Model 2)

Figure 5.2: Open Loop Map at Output; Designs vary from light to dark shade of

blue; Chosen design is in red
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Figure 5.3: Open Loop Map at Input
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Figure 5.4: Sensitivity at Output
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Figure 5.5: Sensitivity at Input
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Figure 5.6: Complementary Sensitivity at Output
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Figure 5.7: Complementary Sensitivity at Input

65



Frequency (rad/s)
10-3 10-2 10-1 100 101 102 103

M
ax

 S
in

gu
la

r 
V

al
ue

s 
(d

B
)

-15

-10

-5

0

5
Tru

(a) Maximum Singular Value (Model 1)

Frequency (rad/s)
10-3 10-2 10-1 100 101 102 103

M
in

 S
in

gu
la

r 
V

al
ue

s 
(d

B
)

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16
Tru

(b) Minimum Singular Value (Model 1)

Frequency (rad/s)
10-3 10-2 10-1 100 101 102 103

M
ax

 S
in

gu
la

r 
V

al
ue

s 
(d

B
)

-15

-10

-5

0

5
Tru

(c) Maximum Singular Value (Model 2)

Frequency (rad/s)
10-3 10-2 10-1 100 101 102 103

M
in

 S
in

gu
la

r 
V

al
ue

s 
(d

B
)

-24

-23

-22

-21

-20

-19

-18

-17

-16
Tru

(d) Minimum Singular Value (Model 2)

Figure 5.8: Closed loop Map from Reference to Control
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Figure 5.9: Closed loop Map from Input Disturbance to Plant Output
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The design chosen for the step responses shown below, is the one corresponding

to Lu crossover frequency ωc of 48 rad/s. The closed loop eigenvalues are

Table 5.2: Closed loop Eigenvalues

Pole Damping ωn

-35.1 1 35.1

-10.7 1 10.7

-5.16 + j6.64 0.613 8.41

-5.16 - j6.64 0.613 8.41

-1.21 1 1.21

-6.11 1 6.11

-5.48 1 5.48

We now look at the step responses (figures 5.10 - 5.16) of the states and the

controls. A step of 0.5 m/s is given to states u and w and the response of linear, aver-

aged nonlinear and nonlinear model is checked. This shows that the hover controller

is suitable for small finite forward flight velocities up to 0.5 m/s. We notice in the

simulations that beyond 0.6 m/s, the nonlinear system becomes unstable, rendering

the hover controller ineffective beyond this speed.

68



Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4

V
el

oc
ity

 (
m

/s
)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
u

NL
Avg
Linear

Figure 5.10: Forward Speed (0.5 m/s) Command Following (u)
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Figure 5.11: Forward Speed Command Following (θ)
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Figure 5.12: Forward Speed Command Following (q)
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Figure 5.13: Vertical Speed (0.5 m/s) Command Following (w)
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Figure 5.14: Forward Speed Command Following (φ0)
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Figure 5.15: Forward Speed Command Following (α0)
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Figure 5.16: Vertical Speed Command Following (αm)
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The resulting closed loop eigenvalues for model 2 are

Table 5.3: Closed loop Eigenvalues

Pole Damping ωn

-29.1 1 29.1

-5.43 + j7.49 0.587 9.25

-5.43 - j7.49 0.587 9.25

-7.2 + j1.85 0.969 7.44

-7.2 - j1.85 0.969 7.44

-1.26 1 1.26

-4.71 1 4.71

The step responses are shown below from figures 5.17 - 5.23. A step of 0.3 m/s

is given, showing that the hover controller is valid for a small finite velocities. We

noticed in the simulations that beyond 0.4 m/s the hover controller is not able to

stabilize the nonlinear system. Responses of all 3 models i.e time varying non-linear,

averaged and linear simulations are presented.
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Figure 5.17: Forward Speed (0.3 m/s) Command Following (u)
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Figure 5.18: Forward Speed Command Following (θ)
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Figure 5.19: Forward Speed Command Following (q)
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Figure 5.20: Vertical Speed (0.3 m/s) Command Following (w)
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Figure 5.21: Forward Speed Command Following (φ0)
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Figure 5.22: Forward Speed Command Following (α0)
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Figure 5.23: Vertical Speed Command Following (αm)

5.2 Necessity of Wing Inertia Model

The mass of the wings expressed as percentage of body weight is about 6% (con-

sidering 2 wings), each wing thus weighs about 3%. This number was increased to

around 6% after which the controller failed to stabilize the nonlinear model.

In the figures (5.24 - 5.27) below we see the step responses of the nonlinear model.

And even though the controller could tolerate up to 6% of weight, to get satisfactory

results, we had to use a controller with higher input bandwidth. We conclude that for

the mode considered in this thesis, based on a regular hawkmoth insect, the inertial

effect of wings becomes significant and needs to be modeled at around 6%. One can

get by ignoring the wing dynamics if closed loop feedback control is employed, unless

the wing mass is extremely low ∼ 1% (which is what most insects have), in which

case one can use model 1 for all practical purposes.
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Figure 5.24: 3 Times Higher Wing Weight; Forward Speed Command Following (u)
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Figure 5.25: 3 Times Higher Wing Weight; Forward Speed Command Following (θ)
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Figure 5.26: 3 Times Higher Wing Weight; Forward Speed Command Following (q)
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Figure 5.27: 3 Times Higher Wing Weight; Vertical Speed Command Following (w)
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5.3 Control for Wing Inertia Model

In this section a controller is designed for model 2 and tested on the first model.

Starting with the minimum bandwidth constraint, LQR weighting matrices were op-

timized. The resulting design was tested on the original model. As expected, it was

able to stabilize it. The resulting parameters are shown in the following table.

Table 5.4: closed loop Properties

Model Min. ζ Min. Ts Lu ωc

II 0.454 3.014 28.4

I 0.568 3.14 32.4
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Figure 5.28: Forward Speed (0.1 m/s) Command Following
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Figure 5.29: Forward Speed Command Following (θ)
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Figure 5.30: Forward Speed Command Following (q)
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Figure 5.31: Vertical Speed (0.1 m/s) Command Following

5.4 Control of Model 3 - Body and Wing Dynamics

The discussion in this section is still under development. However we would like to

present preliminary discussion that highlights the key aspects of the control method-

ology opted. The model was presented in equation 2.28. But it included pitch angle

α dynamics too, in this section however, we are considering a modified version of

2.28, i.e. without α dynamics. Thus the state vector is

[

u w θ q φ φ̇

]T

. In the

previous models the flapping angle of the wing i.e. φ(t) = φ0 − φm sin(ωt) was im-

posed on the body. However in this model, the flapping angle becomes a state and it

is an outcome of the wing dynamics. The last 2 equations of 2.28 show that the wing

dynamics includes its own inertia and terms representing the coupling between body

and wing. Given an input torque to the wings, these equations need to be solved, for

the wing degree of freedom/state (φ).

A Hierarchical controller structure like the one shown in figure 5.32 is being used.
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Figure 5.32: Hierarchical Control Structure for Model 3

Two loops, outer and inner are being used. Inner loop stabilizes the wing attitude

while the outer loop stabilizes the body attitude. The outer loop controller is the

same LQR that was designed in the previous sections. The reference to the outer

loop remain the same i.e. the reference velocities and pitch angle

[

u w θ

]T

. The

outer controller’s output corresponding to flapping state offset (φ0) channel is added

to the desired sinusoid signal (φm sin(wt)) and fed into the controller for the inner

loop. Inner loop is SISO and state feedback LQR can be used to control this loop. The

controller for the inner loop is however augmented with 1

s2+ω2 , to track the sinusoid

reference signal.

The flapping wing is modeled as

τ = Js2 +Bs+K (5.2)

The damping and spring constant of the wing hinge have been chosen to mimic

available actuator parameters. Although the coupling does not show up in the linear

model, the controller will be designed such that is it robust to the body coupling terms.

The controller design is still in progress. And the simulations will be presented in a

technical paper that will be released soon.
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5.5 Summary

In this chapter it was seen that although hover is not an equilibrium point for

the original time varying system, it can be stabilized about a periodic trajectory,

average of which, is an equilibrium point for the averaged system. Averaging is an

approximation and the closeness of this approximation and original system depends

on the ǫ term introduced in chapter 3. The role of ǫ is played by frequency which

is 188 rad/s roughly. Thus averaging works in the case of such systems where the ǫ

is small. As seen from the simulations, first order averaging works quite well in this

case. Second order averaging as seen in chapter 3 didn’t yield significant change in

the linearization. Also note the approximation holds true for a time scale 1/ǫ. On

this small time scale, the response is mostly determined by its average.

We will now answer precisely some of the questions that were posed in the begin-

ning of this chapter. The closed loop bandwidth that should be sufficiently small, for

averaging to be valid, is To. To is the closed loop map from reference to output. It

was observed that more than 30 rad/s crossover frequency which is roughly 1/6th of

the forcing frequency, the nonlinear system is not able to stabilize.

The wingless model is sufficient for low wing mass, satisfactory results are obtained

for each wing mass up to 6% of body weight. An interesting point to note here, is

that the averaged model stabilizes and follows quite well with the linear model. The

necessity of modeling the wing inertial effect and designing a controller for this model

becomes essential with a wing mass of about 6% of body weight for the case considered

here.

The hover controller is also able to stabilize the model up to small forward veloci-

ties. For model 1, up to 0.6 m/s in both directions (xb, zb) of the body, the controller

worked well. Beyond this speed, a cruise controller would have to be designed. This
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upper limit of the forward speed decreased when the controller was operated on model

2.

Lastly a controller designed for the wing inertial model is also able to stabilize the

wingless model with satisfactory responses.
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Chapter 6

CONCLUSION AND FUTURE RESEARCH

In this thesis, modeling and control of flapping flight for robotic insects were analyzed

in detail. The most important contribution of this thesis is to show how modeling

can be dealt in different ways, how and when it can be simplified, what underlying

assumptions are being made in this simplification process and when is it safe or unsafe

to make these. Second important point of discussion was averaging; how it applies to

the MAV system, and whether higher order approximations are necessary. We now

conclude the the research presented.

6.1 Conclusion

Insect sized micro aerial vehicles that can especially ape their flight capabilities

would truly revolutionize surveillance. However due to their flapping flight and thus

added degrees of freedom of the wings, modeling is a challenge. Owing to the flapping

nature of the wing (actuator), the force field is basically a high frequency periodic

vector field. Analyzing the effect of this fast changing system on the slow system en-

tails knowledge of averaging/Floquet theory. Achieving stability via vibrations makes

the system more complicated. Even more challenging is the hardware to build such

robots at an insect level. However few researchers have been successful in building

flapping vehicles. The area is thus still fresh and much research needs to be done

along these directions. In this thesis, we have identified two partially answered areas

of research, namely modeling of the wings and validity of averaging theory. we have

sincerely tried addressing these problematic areas through controls perspective.

In chapter 2 all three models were derived from the basic principles. Many researchers
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have opted for the simplest model that is the wingless body. The reasoning behind

this, is that the wings mass simply doesn’t matter. Each wing roughly is a meager

1% of the body weight. As analyzed in chapter 5 this model is sufficient for good 6%

figure. This model owing to its simplicity is very amenable from a real time compu-

tation perspective. However its validity comes under question when the wing mass

increases. The figure of 6% was true in this case, however a similar analysis needs

to be done if the wing mass exceeds 3% and/or the flapping frequency is low, which

contributes significantly to the inertial effect of the wing.

The third model is what the actual implemented system would look like. In reality

the wing’s state will be driven by a motor with its own dynamics. In the second

model, the flapping degree of freedom was imposed. As long as the modes (poles) of

the wing system are far away from the body’s modes, the two models will look very

similar. Again the poles being far from the body’s poles directly means that the mass

of the wings is very small.

Having analyzed all 3 models, we comment on the need of higher order averaging. As

seen and discussed in the third chapter, the use of such perturbation method is only

possible if the ǫ is strictly small and positive. If this is not the case, the validity of

using averaging theory falls through. Having said that, however higher order averag-

ing is useful in improving the accuracy on the order of (ǫk) and in determining the

stability of systems that have poles on the imaginary axis from first order averaging.

However since the eigenvalues were relatively far away from the imaginary axis, the

stability of the linear map didn’t change much. In any case the change in eigenvalue

shift would be on the order of (ǫ2). Hence we concluded that using feedback control,

first order averaging is sufficient.
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6.2 Future Direction

Flapping wing robots that can truly ape insects is far from reality, till then the

possibilities are many.

Advanced Models: Hover was the main flight condition in this thesis. And the

aerodynamic model considered was a very simple model. The major limitations of

this model are, ignoring aero-elastic effects and modeling the wings as rigid. Though

the dynamic model could be easily extended to forward flight or lateral motion, the

aerodynamics and the relative significance of flight controls would change consider-

ably. Most of the aerodynamic models found in literature concentrate on hover, the

current model would render ineffective. Secondly the wing motion was parameterized

such that the hover was achieved easily, however insect use many more kinematic

parameters other then the ones used here in forward flight, this map of controls to

degrees of freedom of wings as a function of flight condition after having incorporated

the right aerodynamics would have to be studied.

Trajectory Planning: Insects are able to perform sharp saccades of 90 ◦. To

be able to mimic the fast maneuvers of insects, the control system needs to be made

faster i.e. higher bandwidth. Not much literature can be found on path planning of

such maneuvers. Optimal trajectory planning to achieve a certain goal is definitely

challenging especially with limited controls and bandwidth.

Actuator and Sensory System: The actuator and sensory dynamics were ig-

nored in this thesis, but in reality incorporating these could change the structure of

system. In reality all actuators have saturation limits and and they have their own

dynamics. Capturing these dynamics is crucial for design. Sensors too have their

limitations. They have to process information fast and translate the information into
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commands for the system for stabilization and navigation.They have their own dy-

namics. All these practical, real life situations would have to be included in the design

because reality will be even worse.

Energy Efficiency Consideration : The wing kinematics were adopted based

on flight condition, however for optimality energy should be the criterion. The ob-

jective is to perform the desired flight with minimum energy consuming kinematics.

The trade off between performance and efficiency is always a good question to ask.

However, not much research has looked from power perspective. A study of the trade

offs between maneuvers and power requirement can help in the design of better vehi-

cles.

Modeling Uncertainty and Robust Control: Uncertainty modeling and anal-

ysis done here can be done in a much more guaranteed, control theoretic framework

under mu analysis. Mu guarantees performance and stability properties of the linear

plant with respect to uncertainties. It gives bounds on how much uncertainty the

plant can tolerate. This would make the analysis of the wing model proper and rig-

orous.

Test Bench: Simulations only tell half the truth, the results found should be

tested experimentally on a test bench. Ultimately building these micro or nano

aerial vehicles will be extremely challenging because of the size limitation. Without

sacrificing on the performance too much, maintaining the insect level size will be

difficult. New manufacturing schemes have to be looked into to go to a true micro

scale.

89



REFERENCES

Alexander, D. E., Nature’s flyers: birds, insects, and the biomechanics of flight (JHU
Press, 2004).
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