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ABSTRACT

This thesis addresses control design for fixed-wing air-breathing aircraft. Four aircraft with
distinct dynamical properties are considered: a scram-jet powered hypersonic (100foot long, X-43
like, wedge shaped) aircraft with flexible modes operating near Mach 8, 85k ft, a NASA HIMAT
(Highly Maneuverable Aircraft Technology) F-18 aircraft, a McDonnell Douglas AV-8A Harrier
aircraft, and a Vought F-8 Crusader aircraft. A two-input two-output (TITO) longitudinal LTI
(linear time invariant) dynamical model is used for each aircraft. Control design trade studies are
conducted for each of the aircraft. Emphasis is placed on the hypersonic vehicle because of its
complex nonlinear (unstable, non-minimum phase, flexible) dynamics and uncertainty associated
with hypersonic flight (Mach > 5, shocks and high temperatures on leading edges). Two plume
models are used for the hypersonic vehicle an old plume model and a new plume model. The old
plume model is simple and assumes a typical decaying pressure distribution for aft nozzle. The
new plume model uses Newtonian impact theory and a nonlinear solver to compute the aft nozzle
pressure distribution. Multivariable controllers were generated using standard weighted Hj,s mixed-
sensitivity optimization as well as a new input disturbance weighted mixed-sensitivity framework
that attempts to achieve good multivariable properties at both the controls (plant inputs) as well
as the errors (plant outputs). Classical inner-outer (PD-PI) structures (partially centralized and
decentralized) were also used. It is shown that while these classical (sometimes partially centralized
PD-PI) structures could be used to generate comparable results to the multivariable controllers
(e.g. for the hypersonic vehicle, Harrier, F-8), considerable tuning (iterative optimization) is often
essential. This is especially true for the highly coupled hypersonic vehicle thus justifying the need
for a good multivariable control design tool. Fundamental control design tradeoffs for each aircraft
are presented comprehensively for the hypersonic aircraft. In short, the thesis attempts to shed
light on when complex controllers are essential and when simple structures are sufficient for achieving
control designs with good multivariable loop properties at both the errors (plant outputs) and the

controls (plant inputs).
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Chapter 1

INTRODUCTION AND OVERVIEW

1.1 Fundamental Questions Being Addressed

This thesis attempts to shed light on several fundamental questions for fixed-wing aircraft. These

fundamental questions are as follows:
1. When is a decentralized (single-input single-output diagonal) controller possible?
2. When is a centralized (multivariable) controller essential?
3. How can hierarchical (inner-outer loop) control be exploited in each of the above?

4. How can a control system designer systematically obtain good feedback control properties at

distinct breaking points such as the plant output (or error signal) and input?
5. What are some of the fundamental tradeoffs observed as bandwidth is varied?

Within this thesis, some insights/answers are provided to each of these questions. Future work
will seek more precise answers to the fundamental questions being addressed.

Four aircraft are used to focus all developments within the thesis. These aircraft are as follows:
1. Hypersonic (100 foot long, X-43 like, wedge shaped) vehicle operating near Mach 8, 85k ft

2. NASA HiMAT (Highly Maneuverable Aircraft Technology) F-18 Aircraft

3. McDonnell Douglas Av-8A Harrier Aircraft

4. Vought F-8 Crusader Aircraft
A longitudinal two-input two-output (TITO) dynamical LTT (linear time invariant) model is used
for each aircraft to conduct all studies.

1.2 Literature Survey

Each of the following topics are relevant to the work in this thesis.
Modeling and Control of Aircraft. The following references address modeling and control of

aircraft: Echols et al. (2015), Dickeson et al. (2009).



1. Within Echols et al. (2015), the authors discuss a non-standard input-disturbance weighted
H, mixed sensitivity control framework. It is applied the hypersonic vehicle addressed within
this thesis. The authors specifically design multivariable controllers which offer good properties
at both loop breaking points (errors, controls). The design of hierarchical (inner-outer) PI-PD

decentralized controllers is also discussed within the paper.

2. Within Dickeson et al. (2009), the author addresses designing hierarchical (inner-outer loop)
decentralized PI-PD controllers for the hypersonic aircraft considered within this thesis. Trade
studies are performed to study the effect of varying the bandwidth at different loop breaking

points.

Decentralized and Classical Single-Input Single-Output (SISO) Theory. The following
references address classical control theory Ogata (1998), Franklin et al. (2006).
The following references address the feasibility /applicability of decentralized control Gahinet and

Apkarian (2011a),Messner et al. (2007)

1. Within Gahinet and Apkarian (2011a), a MATLAB-based tool named HINFSTRUCT is pre-
sented for designing (optimizing) structured controller architectures (PI, PD, PI-PD, PID) with
multiple feedback loops. HINFSTRUCT uses specialized nonsmooth optimization technique

for solving structured H., synthesis problems.

2. Within Messner et al. (2007), the authors discuss the design of real and complex lead-lag
controllers. Complex lead-lag controllers are used to when tighter magnitude-phase tradeoffs
are required. They also discuss the benefits of designing a cascaded lead-lag network over a

single lead-lag network.

Multiple-Input Multiple-Output (MIMO) Control Theory. The following reference ad-
dresses MIMO control theory Skogestad and Postlethwaite (2007). Within Skogestad and Postleth-
waite (2007), the authors offer a rather comprehensive discourse on multivariable control system
analysis. The authors H., design in some detail. The text also addresses limitations of performance
(for both SISO and MIMO systems) imposed by time delays, RHP zeros, RHP poles and uncertainty.

Multi-objective Control Design. The following references address multi-objective control design



1. Within Scherer et al. (1997), multi-objective synthesis for dynamic output feedback controllers
is conducted via LMI optimization. The paper also addresses how design objectives like pas-
sivity, closed loop pole placement constraints and time-domain constraints can be expressed

in the form of an LMI.

2. Within Puttannaiah (2013), the authors discusses a new generalized weighted mixed-sensitivity
framework that can be used to directly tradeoff multivariable control properties at distinct loop
breaking points (e.g. error, control). The method introduced can be used to obtain what the
authors refer to as “equilibrated designs; i.e. designs with comparable properties at the error

and the controls.

Fundamental Control-Theoretic Tradeoffs. The following reference addresses fundamental
control-theoretic tradeoffs :

Within Freudenberg and Looze (1986), the author discusses the relation between properties at
distinct loop breaking points for a multivariable plant; i.e. input (controls) and output (error). The
paper points out how difficult it can be to obtain good properties at both loop breaking points for
a multivariable plant possessing a high condition number.

While the above references provide a solid foundation for the work pursued in this thesis, the
fundamental questions posed in Section 1.1 remain, to a large extent, unanswered. This provides

motivation for the work pursued within this thesis.
1.3 Contributions and Overview of Main Results

The paramount contribution of the thesis (besides providing partial insights/answers to the fun-
damental questions posed in Section 1.1), is illustrating the importance of multivariable design tools
for systematically achieving complex design objectives. Four aircraft - with distinct dynamical prop-
erties - are used to conduct all studies. Because the aircraft possess distinct dynamical properties,
they provide a diverse set of case studies. As such, this will help shed light on the fundamental
questions being asked (see Section 1.1),).

A longitudinal two-input two-output (TITO) dynamical LTT (linear time invariant) model is used

for each aircraft to conduct all studies. Specific contributions of the thesis are as follows.

1. Four Distinct Aircraft. Four different air-breathing aircraft of varying complexity (and

distinct dynamical properties) were examined throughout the thesis. The four aircraft are as



follows:

(a) Hypersonic (100 foot long, X-43 like, wedge shaped) vehicle operating near Mach 8, 85k
ft,

(b) NASA HiMAT (Highly Maneuverable Aircraft Technology) F-18 Aircraft,
(¢) McDonnell Douglas Av-8A Harrier Aircraft, and

(d) Vought F-8 Crusader Aircraft.

2. New Mixed-Sensitivity Design Method for Addressing Design Specifications at
the Controls. A new non-standard weighted H,, mixed-sensitivity design methodology has
been developed. This method weights the input disturbance as well as the traditionally used
reference in an effort to obtain multivariable control designs with good properties at both loop
breaking points (i.e. error and control). While the method is very useful, it is not as easy to
use as one which directly weights the functions of interest (see convex optimization approach

within Puttannaiah (2013)).

3. Control Design Trade Studies. Control design trade studies were conducted for each of
the four aircraft being considered. For each aircraft, the new (input disturbance weighted)
mixed-sensitivity design method was applied to obtain an inner-outer loop multivariable con-
trol system. Classical decentralized SISO theory was also applied to each aircraft. For the
hypersonic aircraft, a more centralized classical inner-outer loop (centralized PD-PI) structure
was also investigated. More focus was placed on the scramjet-powered hypersonic vehicle be-
cause it is a very complex vehicle (see below) and because hypersonic vehicles represent the

next key to achieving NASAs longstanding low cost, reliable two-stage-to-orbit vision.

The following is an overview of the main results for each of the four targeted aircraft. A fixed

sensitivity bandwidth at the error was used to compare distinct control system designs.

Hypersonic Vehicle. For this vehicle, two LTI models are examined at Mach 8, 85kft, each
corresponding to a different plume model. This vehicle is characterized by an instability, a non-
minimum phase zero (elevator to flight path angle), and a considerable multivariable coupling.
The inputs are fuel and elevator. The outputs are speed and flight path angle. Two plume
models are examined Dickeson (2012). While simple SISO control structures can be used to

achieve desirable multivariable properties (comparable to that of a multivariable controller),



they are very difficult to design; i.e. they may require extensive brute force optimization. The
benefit of a good multivariable design methodology is clearly demonstrated in this chapter
since the design of a good hierarchical fully populated PI-PD controller is very time consuming.
Hence, for this vehicle, a good multivariable control design tool is very important in order to
help systematize the design process. For this vehicle, a partially centralized SISO (inner-outer
PD-PI) controller was found to achieve performance comparable to that of a multivariable
controller found using the new input disturbance weighted mixed-sensitivity framework. The
later multivariable controller achieved a peak sensitivity of 4.97 db at the error and 7.61 db at
the controls for new (Newtonian) plume model and a peak sensitivity of 4.15 db at the error
and 4.56 db at the controls for the old plume model. The former partially centralized controller
achieved the following comparable performance: Peak error sensitivity - 0.19 db better for new
(Newtonian) plume model, 0.49 dB worse for old plume model; Peak control sensitivity - 2.02

dB better for new plume, 0.15 db better for old plume.

HiMAT F-18 Aircraft. This vehicle is characterized by an instability and multivariable
coupling. The inputs are elevator and canard. The outputs are flight path angle and pitch.
For this vehicle, it is difficult to obtain an equilibrated design using a multivariable controller
based on non-standard H, control methodology. Hence, there is a need to explore generalized
weighted mixed-sensitivity control methodology (Puttannaiah (2013)) to design a multivariable
controller which could offers good properties at both loop breaking points. A decentralized
SISO controller achieved comparable performance to that of a multivariable controller at the
error but not at controls. The multivariable controller achieved a peak sensitivity of 1.82 db
at the error and 12.79 db at the controls. The decentralized SISO controller achieved the
following performance at the error : Peak error sensitivity -0.26 db better. At the controls,

decentralized SISO controller achieved the the following performance: -2.21 db better.

McDonnell Douglas AV-8A Harrier Aircraft. This vehicle is characterized by a non-
minimum phase zero and multivariable coupling. The inputs are throttle and stick. The
outputs are velocity and flight path angle. For this vehicle, SISO decentralized ideas work
well but a multivariable controller was found to yield better performance. The multivariable
controller achieved a peak sensitivity of 4.39 db at the error and 6.06 db at the controls. The
decentralized SISO controller achieved the following performance at the error : Peak error

sensitivity 2.49 db worse. At the controls, decentralized SISO controller achieved the the



following performance: 1.15 db better.

Vought F-8 Crusader Aircraft. This vehicle is stable and minimum phase. It possesses
multivariable coupling. The inputs are elevon and flaperon. The outputs are flight path angle
and pitch. For this vehicle, SISO decentralized ideas work really well performing comparably to
the multivariable controllers examined. The multivariable controller achieved a peak sensitivity
of 7.41 db at the error and 6.03 db at the controls. The decentralized SISO controller achieved
the following performance at the error : Peak error sensitivity 3.5 db better. At the controls,

decentralized SISO controller achieved the the following performance: 1.22 db worse.
Some general (qualitative) insights into the fundamental questions addressed are as follows:

When is a decentralized (single-input single-output diagonal) controller possible? Decentral-
ized control can be very effective even for a coupled system. Why? While it is obvious that
high gain control in each control channel can be used to reduce the sensitivity at low frequen-
cies arbitrarily, a price is paid at higher frequencies. In general, a multivariable controller
is expected to resolve multivariable tradeoffs better when the plant is very coupled and the

specifications are demanding.

When is a centralized (multivariable) controller essential? When the vehicle is complex and/or

the specifications are very demanding, a multivariable controller should be required.

How can hierarchical (inner-outer loop) control be exploited in each of the above? Hierarchical
inner-outer loop control is the norm for aircraft. The purpose of the fast inner loop (generally
speaking) is to alleviate the workload for the outer loop. More fundamentally, inner-outer

architecture can be used to tradeoff properties at the error for properties at the control.

How can a control system designer systematically obtain good feedback control properties at
distinct breaking points such as the plant output (or error signal) and input?While the new
input disturbance weighted mixed sensitivity method helps, the convex optimization approach
presented within Puttannaiah (2013) is much more powerful and direct for achieving input-

output (control-error) tradeoffs.

What are some of the fundamental tradeoffs observed as bandwidth is varied? It is well known
that right half plane poles place a lower limit on the bandwidth at the controls (input). Aircraft

longitudinal (“pitch up) instability is generally associated with an unstable short period mode



due to the center of gravity lying aft of the center of pressure. Similarly, right half plane zeros
place an upper bound on the achievable bandwidth at the error (input). Aircraft often exhibit
this non-minimum phase (inverse response) characteristic in the elevator to flight path angle

transfer function.
1.4 Organization of Thesis

The remainder of this thesis is organized as follows.
Chapter 2 addresses modeling and control for the hypersonic vehicle.
Chapter 3 addresses modeling and control for the HIMAT F-18 aircraft.
Chapter 4 addresses modeling and control for the McDonnell Douglas AV-8A Harrier aircraft.
Chapter 5 addresses modeling and control for the Vought F-8 Crusader aircraft.
Chapter 6 summarizes the thesis and presents directions for future research.
Appendix 1 contains system-theoretic results.

Appendix 2 contains all MATLAB code (and data) that was used to generate the results within

the thesis.
1.5 Summary and Conclusions

Supported by a relevant literature survey, this chapter describes the fundamental questions to
be addressed within this thesis. These questions are to be addressed (in part) for four fixed-wing

aircraft:



Chapter 2

HYPERSONIC AIRCRAFT

2.1 Overview

In this chapter, we briefly discuss the longitudinal dynamics of the hypersonic aircraft. In the
following sections we design a dynamic output feedback controller using Linear Matrix Inequality.
We also discuss the inner outer loop control structure and how it is implemented on the rigid model
of hypersonic aircraft. Finally we attempt to design a PI-PD controller which would similar closed
loop properties as the dynamic output feedback controller.

The Hypersonic aircraft is 100 ft long with weight 6154 1b per foot of length and has a bending
mode at about 21 rads/sec. The controls inclue : elevator, stoichiometrically normalized fuel equiv-
alency ratio (FER), diffuser area ratio(not considered in the model) and a canard(not considered in
the model). The vehicle may be visualized as shown in Figure 2.1 (Rodriguez et al. (2008),Soloway
et al. (2009))

Oblique Shock ) PLM,T

Feet
|
N
]
Freestream

-20 0 20 40 60 80 100

Figure 2.1: Schematic of Hypersonic Scramjet Vehicle



2.2 Longitudinal Dynamics.

The equations of motion for the 3DOF flexible vehicle are given as follows(Rodriguez et al.

(2009),Rodriguez et al. (2008)):

T _
o= | OB guine) (2.12)
m
_ [L+Tsin(a) g v
= [ - } +q+ [v e cos(7) (2.1b)
M
q= (2.1c)
Ly
i = —2Cwir)s —wini + Ny i =1,2,3 (2.1¢)
Rp 1°
- 2.1
9=y {RE - h] (2.1g)

where L denotes lift,T" denotes engine thrust,D denotes drag, M is the pitching moment,N; de-
notes generalized forces, denotes flexible mode damping factor,w; denotes flexible mode undamped
natural frequencies,m denotes the vehicle’s total mass,I,, is the pitch axis moment of inertia, g, is

the acceleration due to gravity at sea level and Rpg is the radius of the earth.

1. States. The states consist of five classical rigid body states and six flexible modes states: the
rigid body states are velocity v, FPA ~, altitude h, pitch rate ¢ , pitch angle 6 and the flexible

body states 71,71,72,72,13,73. These eleven(11) states are summarized in Table 2.1.

2. Controls. The vehicle has 3 control inputs: a forward situated canard d.(not considered), a
rearward situated elevator d, and stoichometrically normalized fuel equivalence ration(FER).
These control inputs are summarized in Table 2.2. While designing control system, we would
consider elevator and FER,i.e. the canard has been removed. The FER is the engine control.
While FER is primarily governs the velocity, its impact on FPA is significant. Thrust is linearly
related to FER for all expected FER values. For large FER values, the thrust levels off. In
practice,when FER; 1, it results in decreased thrust. Since this phenomena is not captured in
the model on which the linearized plant is based on, it imposes a control constraint FER < 1.

Minor violations of this constraint has been allowed in this study.



Table 2.1: States for Hypersonic Vehicle Model

Symbol Description Units
1 v speed kft/sec
2 ¥ flight path angle deg
3 a angle-of-attack(AOA) deg
4 q pitch rate deg/sec
5 h altitude ft
6 m 14 flex mode —
7 T 1,; flex mode rate sec™!
8 N2 2,4 flex mode —
9 T2 2n4 flex mode rate sec™!
10 M3 3,4 flex mode —
11 M3 3,4 flex mode rate sec™!

Table 2.2: Controls for Hypersonic Vehicle Model

Symbol Description Units
1 FER Stoichometrically normalized fuel equivalence ratio —
2 e Elevator deflection deg
3 e Canard deflection deg

We now consider the nominal plant which has been linearized at Mach 8, 85 kft. The pole-zero
map for the HSV model is shown in Table 2.3

table 2.2

The poles of the linearized model are shown in Table 2.3.The short period mode consists of
a stable and an unstable pole. This unstable pole is due to the long lower forebody of a typical
hypersonic vehicles combined with a rearward shifted center-of-gravity(CG) which results in a pitch-
up instability. Hence we need a minimum bandwidth for stabilization(Sridharan (2010),Page 94).The
flexible modes are lightly damped which also limits the bandwidth(Sridharan (2010),Page 94).

10



Pole-zero map

Pole-Zerg M:
T T T 1

0.005

Imaginary Axis (sect

-0.01 —glo0s 0 0.005 00
40— Real Axis (seconds ™) —

20— o* Phugoid mode —

Imaginary Axis (seconds‘l)
T
o
o
I

a0l Short Period mode -

e | | | |
8 6 4 2 o 2 4 6 8

Real Axis (seconds ™)

Figure 2.2: Pole-Zero Map of Hypersonic Vehicle

The zeros of the linearized model are shown in Table 2.4. We see that the plant is non-minimum
phase. This is a common characteristic for tail-controlled aircrafts, unless a canard is used(Sridharan
(2010),Page 94). Tt is well known that any canard approach would face severe structural and heating

issues.

Table 2.3: Poles at Mach 8,885kft : Level Flight,Flexible Vehicle

Pole Damping | Freq.(rad/sec) Mode name
-8.15e-004 + 1.34e-003i 5.20e-001 1.57e-003 Phugoid Mode
3.02e+000 -1.00e-+000 3.02e+000 Unstable Short Period
-3.11e+-000 1.00e+000 3.11e4-000 Stable Short Period
-3.96e-001 + 2.20e+0011 1.80e-002 2.20e+001 1s¢ Flex
-9.57e-001 £ 4.82e+001i 1.98e-002 4.83e+-001 2,4 Flex
-1.90e+-000 + 9.48e+001i | 2.00e-002 9.48e+-001 3, Flex

11



Table 2.4: Zeros at Mach 8,885kft : Level Flight,Flexible Vehicle

Pole Damping | Freq.(rad/sec)
7.69e+000 -1.00e+-000 7.69e+-000
-7.70e4-000 1.00e+4-000 7.70e+000

-5.63e-001 £ 1.97e+001i 2.86e-002 1.97e+001

-9.58e-001 £ 4.86e+001i 1.97e-002 4.86e+-001

-1.90e+000 &= 9.50e+001i | 2.00e-002 9.50e+001

In the following sections we consider two different models of the hypersonic aircraft which uses
two different plume models. The New Engine Old Plume(NEOP) model uses the ”*Old Plume”
using a simple plume calculation as described in Chavez and Schmidt (1994). The New Engine New
Plume(NEOP) model uses the ”‘New Plume” which is an approximation of a numerical discretiza-

tion as described in Chavez and Schmidt (1992) and proposed in Sridharan et al. (2011).

Plant Singular Values. The plant singular values is plotted in Figure 2.3.In the plot, we
notice that the minimum singular values are near 0db for the New Engine New Plume model and
the singular values are wide spread at low frequencies.This suggests that the resulting controller will
have to compensate for low plant gain in the minimum singular value direction i.e. in the elevator
channel. Hence we expect that significant elevator activity will be required to achieve a loop with
low frequency disturbance attenuation(e.g. omn[PK] > 20 db at low frequencies) and desirable low
frequency command following. The singular values of the New Engine Old Plume model are high
at low frequencies. Therefore we should be able to attain good low frequency input disturbance

attenuation and command following with ease.

12
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Figure 2.3: Singular Values-TITO Hypersonic Aircraft Longitudinal Dynamics

13



The frequency response bode plots for each of the 4 system transfer functions for both the models

is given in Figure 2.4-2.7.
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Singular Value Decomposition. Let us analyze the singular value decomposition of both the

models at DC.

From the SVD plots we can notice the following:

1. In the New Engine Old Plume model of Hypersonic aircraft, the elevator has greater impact
on the FPA as compared to the Velocity and hence it should be primarily used to control
the FPA. The FER is associated with the minimum singular value and it is primarily used to

control Velocity.

2. In the New Engine New plume model of Hypersonic aircraft, we notice that FER has more
impact on the FPA as compared to the Velocity and it is associated with the maximum singular
value. Also the Elevator has more impact on the velocity as compared to the FPA. This means

that the New Engine New Plume model has significant coupling.

right singular value v1 u left singular value v2
o.

0.4

02

v2

-02

-0.4

-06

-08

1 2 1 2 - 1 2 1 2
Controls = [FER ée] Output = [Vel Fpa] Controls = [FER ée] Output = [Vel Fpa]

Figure 2.8: Singular Value Decomposition of New Engine Old Plume At DC
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Figure 2.9: Singular Value Decomposition of New Engine New Plume At DC
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Control Challenges. Some of the key control challenges associated with the linearized model

are:

1. RHP pole - The long lower forebody of a hypersonic aircraft along with a rearward shifted
center of gravity(CG) results in a pitch-up instability. The linearized plant is therefore unstable

and this instability requires a minimum bandwidth for stability(Echols et al. (2015)).

2. RHP zero - The elevator to flight-path-angle(FPA) element of the plant is associated with
a RHP zero which makes the plant non-minimum phase. This is a characteristic of tail-

controlled vehicles. The RHP zero limits the maximum achievable bandwidth(Echols et al.

(2015),Sridharan and Rodriguez (2012)).

3. Lightly damped flexible modes - If the flexible modes are excited , the output and the control
of the aircraft are affected. Structural flexing impacts the bow shock which in turn affects
the scramjet’s inlet properties, aft body forces, thrust generated and the vehicle’s attitude.
Therefore we should be careful that the lightly damped flexible modes are not excited. The

flexible modes limits the maximum achievable bandwidth(Echols et al. (2015)).

We now consider the design of a control system for the longitudinal dynamics of Hypersonic
aircraft for both new engine old plume and new engine new plume. The nonlinear model has

been linearized about Mach 8, 85kft.

The TITO model for the longitudinal dynamics is as follows:

&= Ax + Bu (2.2)

y=Cx+ Du (2.3)

where
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0 Velocity kft/sec

g Flight Path Angle deg

0 Pitch Attitude deg
v Pitch rate ft /sec
m 1st flex mode

o 71 1st flex mode rate
12 2nd flex mode
72 2nd flex mode rate
N3 3rd flex mode
73 3rd flex mode state

" FER Fuel Efficiency Ratio

O Elevator Deflection

v Velocity deg
y =
~ Flight path angle deg
Bandwidth Design Specification. Let us aim for the following bandwidths for New Engine

New Plume and New Engine Old Plume models of the Hypersonic aircraft aircraft.

1. New Engine Old Plume. Based on the presence of RHP-pole at s = 3.02 and the 1st flexible
mode at 22 rads/sec, we sought an open loop bandwidth greater than 6 rads/sec (w} > 2p) at
the input loop breaking point. Based on the presence of RHP-zero at s = 7.6892, we sought
an open loop bandwidth of wj < 0.5z at the output loop breaking point (Skogestad and
Postlethwaite (2007),Page 186,235).

2. New Engine New Plume. Based on the presence of RHP-pole at s = 2.3 and and the 1st
flexible mode at 22 rads/sec, we sought an open loop bandwidth of about 10 ; wh > 2p at
the input loop breaking point. Based on the presence of RHP-zero at s = 7.7146, we sought
an open loop bandwidth of w} < 0.5z at the output loop breaking point (Skogestad and
Postlethwaite (2007),Page 186,235).
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2.3 Inner-Outer Loop Feedback Loop Control Design Methodology

In the section,we discuss the design methodology for Inner-Outer loop control design for the lon-
gitudinal control system. An inner-outer loop structure is mainly used to circumvent the limitations
imposed by the small RHP zero-pole ratio(Echols et al. (2015),Sridharan (2010)).

The following assumptions have been made for the linearized plant in order to develop a nominal

control design procedure:
1. Linearized at Mach 8,85kft
2. Altitude state removed(to provide observability;included in all nonlinear simulations)
3. Flexible mode states are not available to control system i.e. not directly measured.

4. Small RHP zero to RHP pole ratio necessitates an Inner-Outer Loop feedback structure as

shown below:

The nominal linear model contains 10 states after the removal of the altitude state and it is not
suitable for designing a decentralized controller. Therefore the flexible states are removed so that
the control design methodology does not treat them as measured signals. The rigid model has the

following form (Sridharan (2010)):

Vi air a2 a1z aa| |Vi bi1 b2

0 _ 021 @22 as aa| |7 N by1 beo| | FER
0 0 0 0 1 0 0 0 de
_Q_ (@41 Qa2 Qa3 Gaq| |Q]  |ban Daz

The system in above equation represents the coupled longitudinal dynamics associated with the

aircraft. To simplify the model, the following assumptions have been made (Sridharan (2010)).

1. The velocity mode is affected by the FER only. Hence a12, a13,a14 and bio can be considered

as zZero.

2. Elevator-to-FPA is decoupled from FER-to-velocity. Hence as1, a41,b21 and byy can be consid-

ered as zero.

3. From the nonlinear Equations of Motion , we can see that 4 and Q are not affected by Q.

This can be changed due to unsteady aerodynamic forces but since we are working at trim,
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the effect can be neglected.Since at trim & — € < 0, hence the a4 and ay44 terms are small and

hence they are set to zero.

Also we take advantage of the following facts:

1. a9 = —a23

2. 42 —Qa43

The decentralized system is now written in the following form:

Vi ain 0 0 0] [V biu 0
’ﬁ/ 0 —ag3 a23 0 Y 0 b22 FER
= + (2.4)
0 0 0 1 0 0 0 de
_Q_ | 0 —auz asz O _Q_ | 0 baz

The system in above equation is the decoupled system consisting of the following (Sridharan

(2010)):

1. The system from FER to velocity is expressed as a first order system

C1
S+ ai

Prer o(s) = (2.5)

2. The system from Elevator to Flight Path Angle is expressed as a 3rd order system containing

a RHP pole and a RHP zero.

ca(s —2)(s+ 2)

P5e 7(5): S(S—pl)(8+p2) (26)

where
CcC1 = b11 (27)
Co = b22 (28)

. /a2 4
ao3 i (“5E + a43 (29)

= 2
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/42
a3 a53 + 4(143

P=y 2

/b
z= a23£—a43 (2.11)

The inner-outer controller structure for the rigid model consists of K;(s) in the inner loop and

(2.10)

K,(s) in the outer loop.
K;(s) is written as :
de

We augment K;(s) with a high frequency roll off term so as to ensure high frequency input noise

attenuation. Hence K;(s) becomes

2
100
K;(s) =g; i) | ————— 2.13
(5= 0o+ 2) | 3107 (213)
In what follows, we shall omit the roll-off for convenience.
Now let us consider Pyejtq, —~. This can be written as Pyeita, -y = Paeita.—0FPo—~
where
go(s+ z0)
Peita = 2.14
delta.—6 S(S —p1)(5 — +p2) ( )
s—z)(s+ 2z
Py, = 952 +2) (2.15)

go(s + zp)

The open loop transfer function for the inner loop is given by

9ogi(s+ z9)(s + z;)
Lood = Pictta. —0K;i(s) = 2.16
0= Patiesoils) = 12 S (2.16)

The final modified plant after the inclusion of the inner loop is

Ps.o ~(s)
Prog = —e2? D7 2.17
CT T Linoa 0(s) (2.17)

gy(s —2)(s +2)
s34+ (p2 — p1 + 9i90)s% + (9i962i + gigeze — P1D2)S + gigoziZe

(2.18)
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RHP pole/zero Limitations The hypersonic model is characterized by a small RHP pole/zero
ratio. Using SISO ideas(Sridharan (2010)), this leads to higher ||S||s and ||T||o as shown :

S 2+l

alS],a[T] > 2.19
s).ol7] = 20 (219)

For the elevator to FPA system this means :
a[S],a[T] > 6.5db (2.20)

But this rule does not apply to the inner-outer loop structure(Sridharan (2010)). Hence it is
advantageous to use inner-outer loop structure for designing control systems.

Bandwidth Constraints

1. We aim for a BW < 1/10 * 24, at the output loop breaking point. Hence BW < 0.7rads/sec

for both New Engine Old Plume and New Engine New plume model

2. At the controls, the bandwidth is constrained by RHP pole and the 1st lightly damped flexible
mode. We aim for 2 x p,p, < BW < % % w,, (st flexible mode frequency). Considering
Prip = 2.3 and wy, = 22 rads/sec for New Engine New Plume, we aim for 5rads/sec < BW <
10rads/sec. Considering pyn, = 3.02 and w,, = 22 rads/sec for New Engine Old Plume, we

aim for 6rads/sec < BW < 10rads/sec.
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The inner outer loop structure of the following form has been used in the control system design.

do

d;
Yp
r e upr u Up .y

e ® g BEASAC) P(s)

command

Tr

Us

ng

)

J

Figure 2.10: Inner Outer Feedback Loop : Hypersonic

where
1. Output vector: y = [yl y2]T =[v ]
2. Control vector: u = [ul u2]" = [FER 6.]"

3. State : . =1[0] ; x=[V v 0 qm 2 12 13 73]

4. The inner controller K;(s) has 4 parameters (g;,,2:,,9i,,%i,) associated with it.

5. The outer controller K,(s) has 8 parameters (go, ;201,02 :20Gos %03 :J04 170, ) associated with it.

The nominal controllers K;(s) and K,(s) are of the following form. Roll-off terms have been

used to ensure good noise attenuation.

(2.21)



Let us consider the New Engine Old Plume model of the hypersonic aircraft. The decentralized

representation of the New Engine Old Plume model is as follows:

1. The transfer function from FER to velocity is expressed as

0.06951
P, o(8) = —————— 2.22
Fer—(8) = 0 0008568 (2.22)
2. The transfer function from Elevator to Flight Path Angle is expressed as a
0.017543(s 4+ 7.979)(s — 7.967
Prrn(s) = ( X ) (2.23)

(s + 3.114)(s — 3.02)(s + 0.00107)

Let us design a PI controller for Prrpr—_.,(s). Since Prgr—,(s) is a first order stable transfer

function, it is easy to control. Let K,, = @

. In the rootlocus plot as shown in Figure 2.11,
we see that as we increase g,,, the damping of the closed loop poles improves. We select g,, = 0.7

and z,, = 0.02 so that closed loop poles have a damping of { = 0.7.

Rootlocus of L = Prer VKol

0.025 T

0.015—

0.005 —

-0.005 —

Imaginary Axis (seconds_l)

-0.015—

Overshoot (0): 2.11
Frequency (rad/s): 0.0304
L]

-0.025 L L L L L 1 1 1
-0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

Real Axis (seconds™)

Figure 2.11: Rootlocus of L = Prgr_,K,1 :Hypersonic

Let us now consider the transfer function of Pj,_,,(s). The presence of an instability at s = 3.02

and RHP zero at s = 7.967 makes Ps__,~(s) difficult to control. Due to the small RHP zero to pole
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ratio, a combination of state and output feedback will be used to control this system. Let us consider
Ps, 9(s) and Py_,(s) such that P5,_,,(s) = P5,6(5)Pp—~(s). To design the flight control system

for FPA, let us consider the following inner-outer closed loop system as shown in Figure 5.11.

Ps,_0(s) 6 Py~ (3) 4}>7L

) ~
o Ki,(s) T
n;

Figure 2.12: Inner Outer Feedback Loop : Hypersonic

As a rule of thumb, we always consider the inner loop as a negative feedback loop. From the

transfer function matrix of the plant we obtain

—9.4888

Ps.—0(s) = (s + 3.114)(s — 3.02)

(2.24)

—0.017543(s + 7.979) (s — 7.967)
P _ 2.25
09—~ (s) 9.488(s + 0.00107) (2:25)

Since Pj, _,(s) has an instability, the inner loop is used to move the unstable poles to a location
in the left half plane with good damping so that the outer loop can stabilize the system. We use
K;, = —1.5(s+6). As seen in the root locus plot of Ly,0q = Ps,—9(s)K;, in Figure 2.13 and Table 77,

the instability is moved in the left half plane to a location s = —7.16 £ 4.97:¢ having ( = 0.822.
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Table 2.5: Closed Loop Poles : Ty,0q = ( Dse—o

14+Ps, 0 Ki2

) : New Engine Old Plume

Pole

Damping

Frequency(rad/sec)

Time constant(sec)

-7.16e+00 + 4.97e+4-00i

8.22e-01

8.72e+00

1.40e-01

-7.16e+00 - 4.97e+001

8.22e-01

8.72e+00

1.40e-01

Rootlocus of L
mol

e

System: Lmod

Gain: 0.998

Pole: =7.15 + 4.96i
Damping: 0.822
Overshoot (%): 1.08
Frequency (rad/s): 8.7

Imaginary Axis (seconds_l)

System: Lmod

Gain: 1

Pole: ~7.19 - 4.95i
Damping: 0.824
Overshoot (%): 1.04
Frequency (rad/s): 8.73

I\/

-20

-15 -10

-5 0

Real Axis (seconds_l)

Figure 2.13: Rootlocus of Ly,0q = Ps, 02 :Hypersonic
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Let us now consider P04 = TinodPp—~ - From this relation we obtain

0.017544(s + 7.979)(s — 7.967)
(s 4 0.00107)(s? + 14.335 + 75.99)

Priod = (2.26)

K,, is now used to stabilize the modified plant. Let us use K,, = W.The root locus of
L = Pp04K,, is shown in Figure 2.14 and Figure 2.15. We see that the rootlocus has an upward
gain margin. Hence g,2 can’t be increased arbitrarily. As seen in Figure 2.14 and Table 77, the

closed loop poles are placed at s = —7.14 +4.97¢ , ( = 0.82 and s = —0.01 £ 0.09347 , ¢ = 0.78.

Table 2.6: Closed Loop Poles : T' = —fmedfez  -Hypersonic

14+Proa Koz
Pole Damping | Frequency(rad/sec) | Time constant(sec)
-1.16e-02 + 9.34e-031 | 7.78e-01 1.49e-02 8.64e+01
-1.16e-02 - 9.34e-03i 7.78e-01 1.49e-02 8.64e+01
-7.14e4-00 4 4.97e4-00i | 8.21e-01 8.70e4-00 1.40e-01
-7.14e4-00 - 4.97e+00i | 8.21e-01 8.70e+-00 1.40e-01
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Hence we have designed a decentralized inner outer loop control system for the rigid model for

New Engine Old Plume model. The controllers are as follows:

0
KZ(S) =
—1.5(s+6)
(2.27)
7(s40.01) 0
Ko(s) = °
0 —1.5(s40.01)

S

The above mentioned PI-PD controller also stabilizes the rigid model of the Hypersonic NENP
model.

It is seen that if Ko is allowed to have very high bandwidth i.e. the roll-off term considered for

1000

2
m} ), then we can observe the following:

Ko is not very aggressive (for example [

1. In the NENP model, as the parameter g,1 of K, is made arbitrarily large, the ||.Si||co, ||7i||co
decreases and ||S,||co, ||To||cc increases as shown in Figure 2.16 and Figure 2.17. ||PS||
decreases which gives us good input disturbance attenuation as shown in Figure 2.18. Hence
we are in a position to get equilibrated design at both the loop breaking points. But this comes
at the cost of having unreasonably high KS(control-action) crossover. ||KS||« also increases

which results in saturation as the constraint FFER < 1 is violated.

2. In the NEOP mode, as the parameter g, of K, is made arbitrarily large, the [|.Si||oo, ||Ti|]00
does not change much. However ||S,||oo, ||To||co increases as shown in as shown in Figure 2.16
and Figure 2.17. ||PS||o also decreases which gives us good input disturbance attenuation
as shown in Figure 2.18. This also comes at the cost of unreasonably high KS(control-action)
crossover and high ||KS||e which violates the constraint FER < 1. Hence for the NEOP
model, we are not in a position to get equilibrated designs even at the expense of unreasonably

high control action and high KS(control-action) crossover.
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2.3.1 Tradeoffs using Hierarchical PI-PD Controllers

In this section, we compare the closed loop properties obtained by using different structures of

PI-PD controllers for both New Engine Old Plume and New Engine New Plume(Dickeson et al.

(2009)). The Matlab command Hinfstruct(Gahinet and Apkarian (2011a),Gahinet and Apkarian

(2011b),Yang et al. (2013),Saussié et al. (2013)) was used to design the PI-PD controllers. We start

with the basic decentralized structure of the form.

0
K;(s) = i, (5 + 2i,) (%)3
(2.28)
K,(s) = oy (SJF%) (SﬂO)Q :

2
5+2o 10
0 Yoo ( s 2) (erIO)

The following are the closed loop properties obtained using a family of controllers for the New

Engine Old Plume.

sSingular Values (dB)

o |——g,=04
——9,=06

 |—g,=085

] —g,=11

sSingular Values (dB)

/i

Figure 2.19: Open Loop Singular Values(Old Plume) : K,

K;

Odecentralized’ decentralized
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Figure 2.20: Sensitivity(Old Plume) :

| [—9.=04

—g,=06
——9,=085

| {9,711

Singular Values (dB)

Figure 2.21: Complementary Sensitivity(Old Plume) : K

Odecentralized?

. ||Se||oo is below 5 db for all these designs. The singular values are low (< -20 db for w < 0.01 rads/sec)

at low frequencies which ensures good low frequency command following and output disturbance

attenuation.

. ||Te]|oc is below 5 db for all these designs. It also has good high frequency noise attenuation and good

robustness to multiplicative uncertainity.

. [|Scl|eo and ||T¢||oo is dominated by the peak near 22 rads/sec as we increase the bandwidth at the

controls. This means that the flexible modes which puts an upper bound on the bandwidth are getting

Singular Values (dB)

K

Singular Values (dB)

[—ag,=04

: —9,=085

i2 =06

2= 11
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| |91

excited as we are increasing the bandwidth at the controls.
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Control Action

Singular Values (dB)

KS,

Singular Values (dB)

Figure 2.22: KS, and PS.(Old Plume) :

PS_
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1. It is noticed that as the control action increases, the input disturbance attenuation decreases.

Hence there is a tradeoff between control action and input disturbance attenuation.

The following are the closed loop properties obtained using a family of controllers for the New

Engine New Plume.

Open Loop transfer function at the Error

Singular Values (dB)

LG
\ : —0,=025
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Frequency (rad/s)

Figure 2.23: Open Loop singular values(New Plume) :
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Figure 2.24: Sensitivity(New Plume) : K,
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Figure 2.25: Complementary Sensitivity(New Plume) : K

Odecentralized) tdecentralized

1. ||Selloo and ||T¢||co are below 5 db for all these designs. Low singular values of T, at high

frequencies ensures good noise attenuation and good robustness to multiplicative uncertainity.

2. ||S¢||oo and ||T¢||oo is dominated by the peak near 22 rads/sec as we increase the bandwidth at
the controls. This means that the flexible modes which puts an upper bound on the bandwidth

are getting excited as we are increasing the bandwidth at the controls.
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Figure 2.26: KS. and PSC(NeW Plume) : Kodecentralized’ ldecentralized
1. It is noticed that as the control action increases, the input disturbance attenuation decreases.

Hence there is a tradeoff between control action and input disturbance attenuation.

We compare the best designs obtain for New Engine Old Plume and New Engine New Plume
using a decentralized K, and decentralized K;. The controllers are for New Engine New Plume and
New Engine Old Plume are as follows

New Engine Old Plume

0
Ki(s) = o \3
~0.8(s+5) (255
(2.29)
2
P (=£201) (185) 0
o - 2
0 ~0.5 (2227) (%)
New Engine New Plume
0
Ki(s) = o0 \?
—0.7(s+3) <s+60)
(2.30)
r 2
K | 1254 (50) 0
° 0 _6(s+0.12) ( 10 )2
L S s+10

1. We see that we get slightly better closed loop properties at the controls for New Engine Old

Plume than New Engine New Plume using a decentralized K, and a decentralized K.
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Table 2.7: Attained Closed Loop Properties(||.||oo in db) for NEOP and NENP Model

[Selloo | ITelloo | [1Selloo | [Telloo | (K Selloo | [[PSelloo Uts Tts
New Engine Old Plume 5.85 3.65 15.69 15.81 16.79 0.14 78.3 | 38.02
New Engine New Plume 4.78 2.77 16.53 16.46 19.57 -2.56 54.65 | 15.31

2. The properties at the output are better for New Engine New Plume compared to New Engine
Ol1d Plume. However it is seen that for New Engine Old Plume, the ||S.||s and ||T¢||so reduces

as the velocity channel is made slower i.e. vy increases.

Now let us introduce K;(1,1) element into the controller and study the closed loop properties
obtained. Introduction of the K;(1,1)element makes the inner loop controller 6 centralized. K, is

considered decentralized in the following designs. We consider the controller of the following form.

3

Kz' (S) — 5460

3
i (S + Ziz) (SE%O

iy (8 + 2i,) ( = )
)

(2.31)

2
s+2o 10
g (75) () 0
KO(S) = ' o

2
s+zo 10
0 oes (752 (7H0)

The following are the closed loop properties obtained using a family of controllers for the New

Engine Old Plume.

° c
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[|Selloo and ||Te||co are below 5 db. We have good sensor noise attenuation and robustness to

additive and multiplicative uncertainity.

[1Se]|oo and ||T¢||co is dominated by the peak near 22 rads/sec as we increase the bandwidth at

the controls. This means that the flexible modes which puts an upper bound on the bandwidth

are getting excited as we are increasing the bandwidth at the controls.
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Figure 2.30: KS. and PS.(Old Plume) : K
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The following are the closed loop properties obtained using a family of controllers for the New

Engine New Plume.
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Figure 2.31: Open Loop Singular Values(New Plume) : K, . .. K; . . .
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Figure 2.32: Sensitivity(New Plume) : K, K;
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Figure 2.33: Complementary Sensitivity(New Plume) : K

Odecentralized) locentralized

1. [|Selloo and ||T¢||oo are less tha 5 db for these designs.

2. There is significant improvement in the closed loop properties at the controls by making K; 6

centralized. ||S¢||co and ||T¢||co are below 11 db for these designs.
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Figure 2.34: KS, and PS.(New Plume) : K
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We compare the best designs obtain for New Engine Old Plume and New Engine New Plume

using a decentralized K, and 6 centralized K.
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3
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New Engine New Plume

—0.38(s+1.5)( 60 )3
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4 (=200 ()
K — S S
(5) O e

0.39 (s + 4.02) ( 60

0
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X
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0

(2.32)
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Table 2.8: Attained Closed Loop Properties(||.||oo in db) for NEOP and NENP Model

ISelloo | ITelloo | [ISelloo | [[Telloo | 1K Selloo | [1PSelloo | vts | yts
New Engine Old Plume 5.63 5.83 7.57 8.56 16.33 -3.75 62.2 | 36.1
New Engine New Plume 5.92 5.24 9.68 10.17 22.04 -7.98 46.8 | 17.65

1. There is significant improvement in the properties at the controls for both New Engine Old

Plume and New Engine New Plume, when we make K; 6 centralized.

2. There is not much change in the properties at the error when we make K; 6 centralized.
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Now let us keep K; 6 centralized and introduce off-diagonal elements in the K, thus making K,

centralized. We consider the controller of the following form.

3
sy |0 (),
giz (s + 2i5) (s-?—%O)
(2.34)
2 2
gou (52) (5) 90 (F22) (255)
Ko(s) =

st2o9; 10 2 StZogy 10 2
9oo: s s+10 Goz2 s s+10

The following are the closed loop properties obtained using a family of controllers for the New

Engine Old Plume.
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Figure 2.36: Sensitivity(Old Plume) : K,

Ocentralized? l9centralized
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. ||Selloo and ||Te||oo are below 6 db.
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[|Scl|loo and ||T¢||oo increases as we increase the bandwidth at the controls. This means that

the flexible modes which puts an upper bound on the bandwidth are getting excited as we are

increasing the bandwidth at the controls.
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Figure 2.38: KS. and PS.(Old Plume) :
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The following are the closed loop properties obtained using a family of controllers for the New

Engine New Plume.
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Figure 2.41: Complementary Sensitivity(New Plume) : Ko, 0iireas Kigeoniratizea
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1. By introducing the offdiagonal elements in K,, we see a slight improvement in the properties

at the error for the New Engine New Plume.
2. ||Se||oo and ||T¢|| are below 5 db for these designs.

3. ||Selloo and ||T¢||oo increases as we increase the bandwidth at the controls. This means that
the flexible modes which puts an upper bound on the bandwidth are getting excited as we are

increasing the bandwidth at the controls.
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e c
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Figure 2.42: KS, and PS.(New Plume) : K

Ocentralized? tocentralized

We compare the best designs obtain for New Engine Old Plume and New Engine New Plume
using a centralized K, and 6 centralized K;.

New Engine Old Plume

0.25 (s +3.25) (%5
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New Engine New Plume

s+60
3
~0.05 (s + 1.6) (5%%5)

Kol —0.3(s+2)( 60 )3

(2.36)

2 2
9 (3—0.01) ( 120) 19 (s+0.26) ( 1%)

Ko(s) = ° - 2 ° - 2
5 (0) () 02 (=) ()

Table 2.9: Attained Closed Loop Properties(||.||oo in db) for NEOP and NENP Model

[[Selloo | Telloo | [1Selloo | [Telloo | [ Selloo | [[PSelloo Uts Tts
New Engine Old Plume 4.64 3.46 4.42 5.72 13.18 -6.87 61.63 | 15.22
New Engine New Plume 4.76 2.72 5.61 4.21 16.56 -0.77 64.14 | 16.67

1. After making K, centralized we see a significant improvement in the properties at the error

for New Engine New Plume.

2. There is no further improvement in the properties at the error or at the controls for New

Engine Old Plume when we make K, centralized.

Now let us feedback velocity and pitch in the inner loop. Thus we would need K; to be a

controller of dimension 2 x 2. K, is considered to be centralized. We consider the controller of the

following form.

3 3
gins (s 20) (5205 ) i (5 +20) (5255
Ki(s) = 60 \3 60 \3
Gin (5 + 2121) (5+60) Gizo (S + Z122) (a+60)
(2.37)
2 2
51201y 10 StZoyy 10
o (752) (sH50) 900 (75522 (5350)
Ko (s) = 1 110 12 110




The following are the closed loop properties obtained using a family of controllers for the New

Engine Old Plume.
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Figure 2.45: Complementary Sensitivity(Old Plume) : K, K;
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1. [|Sel|loo and ||Te||oo are below 6 db for these designs.

2. ||S¢||oo and ||T¢||co increases as we increase the bandwidth at the controls. This means that
the flexible modes which puts an upper bound on the bandwidth are getting excited as we are

increasing the bandwidth at the controls.
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Figure 2.46: K S, and PS.(Old Plume) : K,
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The following are the closed loop properties obtained using a family of controllers for the New

Engine New Plume.
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Figure 2.47: Open Loop Singular Values(New Plume) : K,
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Figure 2.49: Complementary Sensitivity(New Plume) : K, , ... K; . .

1. [|Selloo and ||Te||oo is below 6 db.

2. ||Sc]loo and ||T¢||oo increases as we increase the bandwidth at the controls. This means that
the flexible modes which puts an upper bound on the bandwidth are getting excited as we are

increasing the bandwidth at the controls.
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We compare the best designs obtain for New Engine Old Plume and New Engine New Plume
using a centralized K, and a centralized K;.
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Table 2.10: Attained Closed Loop Properties(||.||oo in db) for NEOP and NENP Model

[Selloo | ITelloo | 11Selloo | [[Telloo | [ Selloo | [[PSelloo | vts Tts
New Engine Old Plume 2.63 2.62 4.54 7.64 10.52 -0.23 59.3 | 22.6
New Engine New Plume 2.54 1.31 5.35 6.33 17.05 3.05 60.9 | 16.5

1. It is noticed that the properties at the controls slightly deteriorates for both New Engine Old

Plume and New Engine New Plume when velocity is fed back along with the pitch in the inner

loop as compared to when only pitch is fed back in the inner loop.

2. The properties at the output are decent for both New Engine Old Plume and New Engine

New Plume.

After studying the closed loop properties using various structures of PI-PD controllers for New

Engine Old Plume and New Engine New Plume, we come to the following conclusions.

1. A decentralized K, and decentralized K; ensure good properties at the error but not at the

controls for both New Engine Old Plume and New Engine New Plume.

. A decentralized K, and a 6 centralized K; significantly improves properties at the controls for
both New Engine New Plume and New Engine Old Plume. The properties at the output for

New Engine Old Plume and New Engine New Plume are decent.

. A decentralized K, and a 6 centralized K; is sufficient to ensure good properties at both the

loop breaking points for New Engine Old Plume but not New Engine New Plume.

. A centralized K, and a 6 centralized K; ensures good properties at both the loop breaking
points for New Engine New Plume and New Engine Old Plume. However it is not necessary
to use this particular PI-PD structure to get good properties for New Engine Old Plume as a

decentralized K, does the job.

. A centralized K, and centralized K; ensures good properties at the error for both New Engine
Old Plume and New Engine New Plume. However the properties at the controls slightly

deteriorates when we feedback both velocity and pitch in the inner loop as compared to the
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previous bullet where we just feedback pitch. Hence it is not a good idea to use a centralized

K; in the inner-loop.
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2.3.2 H., Mixed Sensitivity Control System Design for Hypersonic Longitudinal Dynamics

H,, Dynamic Output Feedback Controller Design. We now design the dynamic output
feedback controller keeping the above mentioned bandwidth constraints in mind. Let us consider

the generalized plant of the following form:

T = Az + Biu + Byw
z=Cix + Diju + Disw
y = Cox + Daju + Daw

where u = [FER §.]7 is the input, w = [r di]T is the set of exogenous signals, y = [Velocity ~]T

is the measured output and z is an output vector related to the performance of the closed loop system.

Weighted H,, Mixed Sensitivity Problem The standard weighted H,, mixed sensitivity
problem is to find a finite dimensional real-rational proper internally stabilizing controller K that

satisfies(Echols et al. (2015),Scherer et al. (1997))

WS,
K =arg{ St%%mﬂ' WLK S, <7} (2.40)
WSTe

o0

where S is the sensitivity transfer function, T is the complementary sensitivity transfer function
of the closed loop system and KS is the control action.

The selection of exogenous signals has significant impact on the closed loop properties at the
input and output loop breaking points. Selecting reference(r) to be the only reference signal will
result in good properties at the output loop breaking point but not necessarily at the input loop
breaking point. Similarly selecting exogenous signal to be d;(input disturbance) will allow us to get
good properties at the input loop breaking point but not necessarily at the output loop breaking
point. Hence exogenous signal w = [r d;]7 has been used to shape closed loop maps at both the

loop breaking points(Echols et al. (2015)).
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WiS.e WiPS,

K=ol i 0| WeKSe WeT. | <)

(2.41)
WsT, W3PS,

oo

Finding a internally stabilizing controller K that minimizes v can be translated into an LMI op-

timization problem as shown below(Scherer et al. (1997),Gahinet et al. (1995),Gahinet (1996),Boyd
et al. (1993),Duan and Yu (2013)):

_minimize 7y
A,B,C,D,X,Y

AX + X AT + B,C + (B,C)T AT 4 (A+ ByDCy) % %
A+ (A+ By,DCy)T ATY + YA+ BC + (BC)T x *
s.t.
(Bl —+ BQ.DDQl)T (YBl —+ BDQl)T *’yI X
i C1X + D15C Cy1 + D12DCy D11 + D1aD Doy =]
(X 1
>0
1Y

After solving the optimization problem and obtaining the set of A,B,C,D,X,Y which minimizes

7, the dynamic output feedback controller is obtained as follows(Scherer et al. (1997)):

1. Find nonsingular matrices M,N which satisfies MNT =T — XY

2. Construct the controller using

Dg =D
Ck = (é — DKCQX)M_T
] (2.42)
Bg = N"Y(B — YB,Dg)
Ag = N"YA - NBgCyX — Y ByCxMT — Y (A+ ByDgCo)X)M~T

Structure of Weighting functions for H., Mixed Sensitivity Optimization. The struc-

ture of weighting functions which has been used to do the above optimization is shown below:

s/ Mg, +wp
s«Hi'ble ! 0 0
Wl — 0 5/ Mg, +wp, 0
Sstwp, €
0 0 Te — 05
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S+Wbu1/Mu1 O

W2 — S€+Wbu1€
0 S+Whugy /1\/qu
SetWhug
s4wWheq /My, 0 0
SEJercl €
— 5+Wbr:2 /M’_LIQ
W 0 T 0
0 0 Te — 05

While designing the dynamic output feedback controller, the controller architecture has been
selected to imitate a classical inner-outer loop structure to ensure that the designer won’t have to
design an inner loop controller and outer loop controller separately. The closed loop architecture

has been shown in Figure 2.51 as follows(Echols et al. (2015)):

diy doy doy
rl
—O— \FE —
r2

]
vy
TR T

Figure 2.51: Topology of Dynamic Output Feedback Control System : Hypersonic

H,, Controller Synthesis

1. Augment the velocity and - output channels of the plant with integrators so as to ensure
integral action at low frequencies which would lead to zero steady state error to a step reference

input.

2. In order to prevent cancellation of the lightly damped phugoid modes and integrator states
by the H, controller synthesis methodology, use bilinear transformation to shift the system
slightly to the right half plane(Tsai et al. (1990),Folly (2007)). We use the following Bilinear

transformation parameters for NEOP and NENP models of Hypersonic aircraft.

The bilinear transformation parameters for both NEOP and NENP model are selected are as
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follows:

p1 = —0.0097 (2.43)

p2 = —10% (2.44)

The selection results in

Transform:
S s —0.0097
s= L5 ~ 5 — 0.0097 (2.45)
Tl el
Inverse Transform:
§=~ s+ 0.0097 (2.46)

. Choose W1 to shape sensitivity transfer function to have good integral action at low frequencies
and ensure that ||S||« is below 8db. Choose W2 to shape the KS transfer function such that
|| KS||s is not too high which would prevent control signal saturation. Also ensure that KS
rolls off at higher frequencies. Choose W3 so that ||T||~ is below 8 db and T rolls off at higher

frequencies to ensure sensor noise attenuation at higher frequencies.

. Create a generalized plant using w = [r d;] as the set of exogenous signals so that we get good

properties at both input and output loop breaking points.

. Minimize gamma by solving LMI. We use YALMIP (Lofberg (2004),Lotberg (2008))for solving

the LMI. The parameter ¢ = 107! has been used while running the optimization.

. Obtain the controller from the parameters returned by the optimization. Do inverse bilinear
transformation to shift the controller to the left half plane so that it corresponds to the original

untransformed plant.

. Shift the integrators from the plant output to the controller input. In other words, augment

the controller at the input with integrators.

. Feed the 6 state into the controller as the 3rd input as shown in Figure 2.51. This serves as the
inner loop feedback as seen in a standard inner-outer feedback control architecture. Obtain
the closed loop system using the final controller containing 3 inputs and 2 outputs and the

original plant.
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2.3.3 PI-PD Controller vs Dynamic Output Feedback Controller

In this subsection we compare the performance of a PI-PD controller to a dynamic output
feedback controller. The following 3 cases are considered. To design a dynamic output feedback
controller, the weighting functions W7,Ws and W3 are designed to ensure good command following,
good output disturbance and noise attenuation. Wy is designed to limit the control action and
the bandwidth of the controller so that the controller does not saturate. Bilinear transformation
(p1 = —0.0097,p = —10%°)is used as mentioned in the previous subsection to avoid the cancellation
of the phugoid modes. The H,, controller synthesis procedure is followed to obtain the dynamic

output feedback controller.

Table 2.11: Weighting Function Parameters Table 2.12: Weighting Function Parameters
for New Engine Old Plume model for New Engine New Plume model
W1 W2 W3 W1 W2 W3
M1 5 0.01 5 M1 1 0.1 5
M2 5 0.01 5 M2 1 0.01 5
wi; | 0.01 200 50 wip | 0.04 100 50
we | 0.01 200 50 wy | 0.04 100 50
e | 0.001 | 0.0001 | 0.001 €1 | 0.001 | 0.001 | 0.001
ez | 0.001 | 0.0001 | 0.001 €2 | 0.001 | 0.001 | 0.001
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HINFSTRUCT command extends the classical H,, synthesis to fixed structure classical control
systems. It uses specialized nonsmooth programming technique for solving structured H., synthesis
problems. HINFSTRUCT features a multi-start mode that automatically runs the optimization
from multiple randomly selected initial points. This is not guaranteed to give us a global optimium.
But it is observed that a few runs is enough to find a satisfactory design if it exists(Gahinet and
Apkarian (2011a),Gahinet and Apkarian (2011b),Saussié et al. (2013),Yang et al. (2013))

HINFSTRUCT has been used to design 3 initial fixed structure PI-PD inner outer loop controllers
. After obtaining the initial controllers, an exhaustive search is performed in the neighborhood of
the previously obtained PI-PD parameters in order to obtain a set of values which would stabilize
the closed loop system. While doing this search via brute force, we minimize ||Se1 — Sez||oo (Where
Se1 corresponds to Output feedback controller and S.o corresponds to PI-PD controller) in the low
frequency range 0.0001 rads/sec to 0.01 rads/sec in order to ensure that we obtain the best PI-PD
controller which gives us similar properties at the output loop breaking point when compared to
the dynamic output feedback controller at low frequencies.The roll-off terms have been selected in a
way so that the KS crossover frequency corresponding to the dynamic output feedback based closed
loop system and the PI-PD based closed loop system is the same. This is done in order to ensure

that we are in a position to compare two designs. For convenience, we use the following notations

for the 3 PI-PD controllers.
1. K, decentralized , K; decentralized : PI — PD;
2. K, decentralized , K; theta centralized : PI — PDy

3. K, centralized , K; theta centralized : PI — PDg

After exhaustive enumeration, the following PI-PD controllers were obtained.

PI - PD,

1. New Engine Old plume :

0
Ki(s) = o 13
—1(s+3) [7(54-50)]
(2.47)
0.5(540.02) { 0.5 r 0
KO(S) _ s (s40.5) )
0 —3(s40.1) [ 0.5 }
s (s+0.5)

o7



2. New Engine New Plume:

0
Ki(s) =
~0.85(s +5) [ ;%%
(2.48)
3
2(s+0.02) [ 2
K,(s) = ’ [(S+2)] " 3
0 —6(ng0.12) [(;2)}
PI — PD,
1. New Engine Old Plume
0.25 (s +3.25) 60)3
Ki(s) = o 3
0.1 (s +4.715) (555
(2.49)
3 3
Kos) 0.19 (= 0194) (33_2) 2.6(”0'1) <83_2>
o - 3 3
3.5 (SH0.073) (ﬁﬂ) 0.48 (= 00574)(&)
2. New Engine New Plume
3
~03(s+2) (55%)
Kl(s) == 3
~0.05 (s +1.6) (5%%5)
(2.50)
3
p 2 (=001) (25 0
o(8) = 0 _0.9 (s+0.37) (3 3
( ) s+
PI — PDs
1. New Engine Old Plume
0.25 (s + 3.25) ( )3
+
Ki(s) = s 5160 \
0.1 (s +4.715) (595
(2.51)

019(5 0194)( 2 )‘3 2.6(”0'1) (L)d
Ko(s) = 2 3 e 3
35(s+0075) (siz) 048(5 00574) <S+%)
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2. New Engine New Plume

0.3 (s +2) (Sﬁ%o)s

Ki(s) = —0.05 (s + 1.6) (%f

(2.52)

Closed loop properties

Table 2.13: Attained Closed Loop Properties(||.||oo in db) for PI-PD and Dynamic Output Feedback

Controller:New Engine Old Plume

1Selloc | I Telloo | 11Selloo | [|Telloo | 1K Selloo | [1PSelloc | vis | s
Dynamic Controller 4.15 3.10 4.56 5.94 13.36 -6.07 55.21 | 34.39
PI - PD; 5.85 3.65 15.69 15.71 16.79 0.14 78.63 | 38.02
PI — PDsy 5.64 5.84 7.51 8.56 16.33 -3.75 62.26 | 36.09
PI - PDs 4.64 3.51 4.41 5.72 13.14 -6.87 61.63 | 15.21

Table 2.14: Attained Closed Loop Properties(||.|| in db) for PI-PD and Dynamic Output Feedback

Controller:New Engine New Plume

ISelloc | [ITelloo | [1Selloo | I Telloo | [[KSelloo | [[PSelloo | vts | 7ts
Dynamic Controller 4.97 3.02 7.61 7.12 19.86 -0.22 59.82 | 12.07
PI - PD, 4.78 2.77 16.53 16.46 19.57 -2.56 54.65 | 15.31
PI —PDs 5.2 4.97 9.67 9.02 20.81 -8.63 50.03 | 21.48
PI - PDs 4.78 2.72 5.59 4.21 16.54 -0.764 | 64.15 | 16.67

From the above tables, we observe the following
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1. PI — PD; offers better properties at the output loop breaking point for New Engine New
Plume that New Engine Old Plume.

2. PI— PD; offers bad properties at the control for both New Engine Old Plume and New Engine
New Plume. However the properties at the controls are worse for New Engine New Plume than

New Engine Old Plume.

3. By introducing K;(1,1) element in PI — PD,, we notice a significant improvement in the
properties at the controls for both New Engine Old Plume and New Engine New Plume.
However the properties at the controls are slightly worse for New Engine New Plume than

New Engine Old Plume.

4. By making K, centralized in PIp D3 while keeping K; theta centralized, the close loop proper-
ties improve at the both the loop breaking points for New Engine Old Plume and New Engine

New Plume.

Let us now compare the |Sel — Se2| and |Scl — Sc2| plots of both the models where S, and S¢;
corresponds to Dynamic output feedback controller and S¢o and S¢o corresponds to PI-PD controller

as shown in the following figures.

S —Se :New Engine Old Plume S —Se :New Engine New Plume

e e
MIMO PI-PD MIMO PI-PD

Dynamic K vs PI-PD1 Dynamic K vs PI-PD1
| —— Dynamic K vs PI-PDZ | —— Dynamic K vs PI-PDZ

B Y\ M REEH o Ulennon
%// N G2 L NN
AL NN @A B\ TAT

10! 10° 10° 10° 107 10°

@)

3 S

\\
@)

3

N

Singular Values
Singular Values

Figure 2.52: |Se,, 1m0 — Sepr_ro
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Figure 2.53: |Scy im0 — Seri—rp|

From these plots we make the following observations.

1. ||Semiaio —Sepr_pplloo and the singular value at 0.01 rads/sec decreases as we increase the order
of the PI-PD controller. This means that as we increase the order of the PI-PD controller, we
can obtain similar closed loop properties at the output loop breaking point as obtained using a
higher order dynamic output feedback controller. This is true for both New Engine Old Plume

and New Engine New Plume.

|Serrimo — Sepr_pp| has very low singular values at low frequencies(-40 db at 0.01 rads/sec)
which means that both the controllers would give similar properties at the input loop breaking
point for New Engine Old Plume and New Engine New Plume when we are working at low
frequencies. However at higher frequencies, ||Sec,, ;0 —Seps_pp||oo 1S greater than zero for New
Engine New Plume. Hence the dynamic feedback controller would not approximate the PI-PD
controller at the controls when working at higher frequencies. Also we can better approximate

the closed loop properties of dynamic output feedback controller at the controls using a PI-PD

controller if we increase the order of the PI-PD controller.

In the following figures we compare the frequency domain and time domain plots of various closed
loop properties for both PI-PD and dynamic output feedback controller based closed loop system

for New Engine Old Plume and the New Engine New Plume model of the hypersonic vehicle.
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2.4 Lead and Lag Compensator with Real/Complex Poles and Zeros

In the section,we discuss the design methodology for Inner-Outer loop control design using com-
plex/real lead lag compensators. These compensators are cascaded to modify the gain and phase
properties of the open loop frequency response to achieve closed loop performance specifications for

command following, noise attenuation, disturbance attenuation etc.
2.4.1 Real Lead/Lag Compensator

Lead networks are the systems which contribute phase lead to compensate the phase lag associ-
ated with many physical systems. Lead systems are typically used to increase the phase margin at
the 0 db crossover frequency.For a phase lead greater than 90 deg, multiple leads may be cascaded
together. Cascaded lead networks may also be used to introduce a phase lead less than 90 deg be-
cause the gain of a single lead network with a phase lead greater than 60 deg is large as compared
to the gain of n cascaded lead networks, each contributing % of the desired phase lead. The lead

network is of the form (Messner et al. (2007)):

K(s):a(s+z>,a>1 (2.53)
s+ az
/K (jw) = tan © — tan — (2.54)
z az
The zero at s = —z is closer to the origin than the pole at s = —az, so the angle of the numerator

is greater than equal to that of the denominator. Hence /K (jw) > 0 for all w. The lead network
can also be considered as a high pass system.The frequency of maximum phase lead is w,, = v/az
Lag networks are used to increase the loop gain to improve low frequency(steady state) command
following and disturbance attenuation or decrease the high frequency loop gain for improved sensor
noise attenuation while maintaining a set of desirable closed loop poles without introducing too

much lag. The lag network is of the form(Messner et al. (2007)):

1
K(s)z(8+ap>,a>1 (2.55)
a \ s+p
/K (jw) = tan Y tan? (2.56)
ap p
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The pole at s = —p is closer to the origin than the zero at s = —ap, so the angle of the
denominator is greater than or equal to the numerator . Hence /K (jw) < 0 for all w. Since lag
systems are used to alter the magnitude properties of the loop, it is their magnitude characteristic
that is most exploited. Lag network can also be considered as a low pass system. The frequency of

maximum phase lag is w,, = /ap.
2.4.2 Complex Lead/Lag compensators

The simplest cascade of a lead network is the square of a lead network. This is called a double

lead compensator which has a maximum phase lead of 2¢,,. It is of the form (Messner et al. (2007))

2 2 2
+ z wq [ 8°+ 2Cwns +w
K2(s)=a2 2 — n 2.57

(5)=a <s + az wy, \ 8% + 2Cqwgs + w3 (2.57)

The complex lead/lag compensator is a type of double lead/lag compensator in which the poles
and zeros are complex conjugates with the same damping ratio. The equal damping ratio ¢ provides
symmetry to the phase peak.

Wp

Kcomplex(s) = — <

52+2szs+w§) (2.58)
W, ’

The maximum phase lead/lag offered by the complex lead/lag compensator is 2¢,, at frequency
wm = /Wpw;. The frequency of the maximum phase lead/lag is the geometric mean of the nat-
ural frequencies of the zeros and poles. This is analogous to w,, for real lead/lag compensator.
While designing the compensator, we have two parameters ¢ and ¢, to form the complex lead/lag

compensator. The expressions of w, and w, are as follows :
wp = Wi (C tan ¢, + 1/C2 tan? ¢y, + 1)
W, = W (—Ctan ¢, + /(2 tan? ¢, + 1)
2.4.3 Inner Outer Control Design Using Real Lead Networks

In this subsection we discuss the inner-outer loop control system design for the SISO plant (J. to
FPA) of the New Engine Old Plume and New Engine New Plume models. A real lead network has
been designed for the inner loop and a lead network multiplied by an integrator has been designed
for the outer loop. The following is the steps followed to design the lead networks.

For the inner loop,a lead network has been designed to satisfy the following specifications
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1. Phase Margin of 60 deg for L;
2. Gain crossover frequency wg, of L;/L. to be between 6 rads and 10 rads/sec.

For the lead network in the inner loop we propose the following lead structure.

s+z\"
Kinner = >1 2.59
9<s+az) o (2.59)

This lead network provides a maximum phase lead at the frequency that we desire (Gain crossover
frequency of L;) and ensures robustness at the input by increasing the phase margin.

The following steps are followed to obtain the compensator

1. Choose the gain crossover frequency(6 <= wy, <= 10) of L;.

2. Calculate the maximum phase ( ¢, ) which the lead network should provide to ensure a PM =
60 deg at the desired crossover frequency w,, of L; using the phase of P; ( elevator to theta)

at wy,

3. Choose n = number of desired cascaded lead networks to be used for the design.

1+sin &m Wy,
4. Calculate « = ———2— and z = X
1—sin ¢Tm Va

5. Calculate K using the parameters in the previous steps.
6. Calculate Ly ominal(initial) = Py x (K)™

7. Calculate g = T L

nominat (Jwg)|

8. Obtain the final controller K;pner = g ( stz ) .

staz

After the controller has been designed for the inner loop, we use the modified plant P,,q =

ﬁPQ to design the lead network for the outer loop.The compensator for the outer loop has

been designed to satisfy the following specifications
1. Zero steady state tracking for step reference commands.
2. Phase Margin of 60 deg at the output loop breaking point.

3. Gain crossover frequency w,, of L, <= 0.7 rads/sec
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For the compensator in the outer loop, we propose the following structure of the lead network

k=17 < ”Z) = KoKjeag, a0 > 1 (2.60)
S\ s+ az

The integrator in K ensures zero steady state error to step reference commands. The lead network
provides the phase lead at the desired frequency (Gain crossover frequency wy, of L,). The following

steps are followed to obtain the compensator

1. Choose the desired gain crossover frequency( wy, <= 0.7) of L,.

2. Calculate the maximum phase ( ¢, ) which the lead network should provide to ensure a PM =

60deg at the desired crossover frequency wgy, of L, using the phase of Pp,0qP» at wy, .

3. Choose n = number of desired cascaded lead networks to be used for the design.

1+sin 2m
4. Calculate @ = —"—n_ and z = “
1—sin 52 Va

5. Calculate K using the parameters in the previous steps.
6. Calculate Lyominal(initial) = PpoqPs x (K)™

7. Calculate g = T

8. Obtain the final controller K = £ (S*—Z)n

s staz

2.4.4 Inner Outer Control Design Using Complex Lead Networks

In this subsection we discuss the inner-outer loop control system design for the SISO plant (d.
to FPA) of the New Engine Old Plume and New Engine New Plume models using complex lead
networks. A complex lead network has been designed for the inner loop and a complex lead network
multiplied by an integrator has been designed for the outer loop. The following is the steps followed
to design the complex lead networks.

Two complex lead networks are proposed for the inner loop and the outer loop respectively. The

compensator for the inner loop has been designed to satisfy the following specifications
1. Phase Margin of 60 deg for L;

2. Gain crossover frequency wg, of L;/L. to be between 6 rads and 10 rads/sec.
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For the compensator in the inner loop we propose the following lead structure.

52 4+ 2(w, s +w§)"

Kinner =
g <32 + 2¢wps + w2

(2.61)

This lead network provides a maximum phase lead 2¢,, at the frequency that we desire and
ensures robustness at the input by increasing the PM.The following steps are followed to obtain the

compensator.

1. Choose the gain crossover frequency (6 <= wg <= 10) of Li and damping factor ¢ of the

poles/zeros of the lead network.

2. Calculate the maximum phase ( ¢,,) which the lead network should provide to ensure a PM =

60 at the desired crossover frequency wgy, of L;. using the phase of Py ( d. to ) at wy,.

3. Choose n = number of desired cascaded lead networks to be used for the design.

4. Calculate w, = wy, (Ctan(‘g;’z) + 1/C2tan(‘§;’; )2 + 1>.
5. Calculate w, = wy, <(tan((§;’;) + 4/ C2tan($m)? + 1>.

. _ 32+2szs+w§
6. Obtain K = (m).

7. Calculate Lpominat(initial) = P1* (K)™.

8. Calculate g = T L

nominal (JWg)| "

. o 52+2§wzs+w§) n
9. Obtain the final controller K = g (m .

After the controller has been designed for the inner loop, we use the modified plant P,,,q =

Py

mPQ to design the lead network for the outer loop.The compensator for the outer loop has

been designed to satisfy the following specifications.
1. Zero steady state tracking for step reference commands
2. Phase margin of 60 deg at the output.
3. Gain crossover frequency w,, of L, <= 0.7 rads/sec

For the compensator in the outer loop, we propose the following structure of the lead network
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k-9 (82+24wzs+w3))n

2.62
s \ 82 + 2Cwps + w2 (2:62)

The integrator in K ensures zero steady state error to step reference commands. The lead
network provides the phase lead at the desired frequency.The following steps are followed to obtain

the compensator.

1. Choose the gain crossover frequency( wy, <= 0.7) of L, and damping factor ¢ of the poles/zeros

of the lead network.

2. Calculate the maximum phase ( ¢,,) which the lead network should provide to ensure a PM =

60 deg at the desired crossover frequency wy, of L, using the phase of P04 at wy, .

3. Choose n = number of desired cascaded lead networks to be used for the design.

4. Calculate w, = wy, <§tan(¢2’:;) + C%an(%)Q + 1>.
5. Calculate w, = wy, (—(tcm(‘g’;) + Cztan(‘g—’;)? + 1).

. o s2+2(wzs+wf
6. Obtain K = (W)

7. Calculate Lyominai(initial) = P1* (K)™.

8. Calculate g = T L

nominal (]wg) ‘ :

2 2 n
9. Obtain the final controller K = £ <%ﬁ‘ij§) :
2.4.5 Surgical Insertion of Lead-Lag Networks
In the following subsection, real lead-lag elements have been surgically inserted in the hierarchical
inner outer PI-PD control structure to further improve the closed loop properties at both the loop

breaking points. A real lead-lag network of the following structures are considered :

1. Lead Network

s+ z
K(s) = 1 2.63
©=a(2)a> (2.63)
ZK(jw) = tan Y _tan 2 (2.64)
z az

The frequency of maximum phase lead is w,, = vaz
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2. Lag Network

1
K(s):(8+ap>,a>1 (2.65)
« S+ p
/K (jw) = tan 2 tan” (2.66)
ap p

The frequency of maximum phase lag is w,, = \/ap.

First, let us consider K, K; In this controller we have the option of adding

Odecentralized Ocentralized®

lead-lag networks at 4 different positions i.e. 2 in K; and 2 in K,. Using brute force enumeration,
lead networks were added to elements of K; to add phase lead at specific frequencies to improve the
closed loop properties. Similarly lag networks were added to K, at specific frequencies to further
improve the properties.

Step 1

k 1.8540.1342

In the initial step, a lead networ 101342

was introduced in the K;(2,2) position to introduce
phase lead ¢,, = 17deg at w = 0.1 rads/sec. This leads to the following change in the closed loop

properties.

1. ||Se]|oo decreases (5.9db — 3.6db)

2. 1|S¢]|o decreases (9.7db — 8.3db)
3. || K Se||eo decreases (22db — 20db)
4. ||PS¢||co decreases (-8db — -9.4db)

5. tsettyy.,, increases (17sec — 28sec)

Step 2

25418.38
s+18.38

In step 2, a lead network was added in K;(1,1) position to introduce phase lead ¢,, =
19.5deg at w = 13 rads/sec. This leads to increase in the unity crossover frequency of L. from 12.5
rads/sec to 18.5 rads/sec without any deterioration of the closed loop properties at both the loop
breaking points. This shows that as we increases the order and complexity of the controller, we can

push bandwidth higher without much deterioration of the closed loop properties even though the

flexible modes put a upper bound on the achievable bandwidth.
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Step 3

3s5+1.732

55 was added in K,(1,1) position to introduce phase lead ¢,, =

In step 3, a lead network

30deg at w = 1 rads/sec. This leads to the following change in the closed loop properties.
1. ||Selloo decreases (3.7db — 2.8db)
2. ||KSe||oo increases (20db — 22db)
3. ||PS¢||oo decreases (-9.4db — -10.4db)

4. tgerr,,, increases (48sec — 52 sec)

vel

Step 4

55+15.65
5+15.65

In step 4, a lead network was added in K,(2,2) position to introduce a phase lead

¢m = 42deg at w = 7 rads/sec. This leads to the following change in the closed loop properties.

1. [[Selloo L ( 2.8db — 2.3db)

odeeen s Kigeen With surgically inserted lead networks :
—0.38 (5 + 15) (2;:_118?3388) 4 (S+2.06) (3981117733) 0
Ki(s) = 1.8540.13 Ko(s) = 540.1Y ( 5s+15.65
008 (s + 14) (L8:5613) 0 5 (=50 (i)
(2.67)

Table 2.15: Comparison of Closed Loop Properties(]|.||oc in db) for K, and

Odecentralized)

K;

Ocentralized

Surgical Insertion of Leads : New Engine New Plume

ISelloo | [[Telloo | [15clloo | I Telloo | [ Selloo | [PSelloo | vts | s

K,

Odecen? iocen

Surgical Insertion 2.31 3.71 8.28 7.86 22.68 -10.47 51.89 | 28.78

5.89 5.25 9.66 10.16 22.04 -7.97 46.80 | 17.65

Now let us consider K, K; In this controller we have the option of adding lead-lag

Ocen Ocen

networks at 6 different positions i.e. 2 in K; and 4 in K,. Using brute force enumeration, it was
realized that insertion of lead networks leads to deterioration in the properties irrespective of the

frequency where the phase lead may be inserted. However, it was seen that insertion of lag network
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did help in improving the closed loop properties at both the loop breaking points. A lag network
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KSe : New Engine New Plume PSc : New Engine New Plume

T TR T T T =N

20 ] \—Le:tc;“ o | 10 ”|—Le:§="|nsee:i"un}
A\ NN

1 NN 60 N
780’ . Z . A . D . ] —_— 2 780’ 2 1 0 ]\ \1 2
107 10 10 10 10 10° 107 10 10 10 10 10°
Frequency (rad/s) Frequency (rad/s)
Figure 2.87: K S, : Lead Insertion Figure 2.88: PS. : Lead Insertion

Ki(s) = sl (055—%1) Ko(s) = 2O 120 (2.68)
—0.05 (s + 1.6) —5 (s£008) (9 (£+0.37)

Table 2.16: Comparison of Closed Loop Properties(||.||oc in db) for Ko, iioearFigeenirarioea and

Surgical Insertion of Lags : New Engine New Plume

[[Selloc | 1Telloo | l[Selloo | 1Telloo | 1K Selloo | 11PSelloo Uts Vts

K, 4.78 2.72 5.59 4.21 16.54 -0.76 64.14 | 16.67

Odecen?

Surgical Insertion 4.33 2.7 3.61 6.32 16.51 -2.71 64.28 | 11.32

K;

Ocen
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2.4.6 Comparison of Real Lead-Lag and Complex Lead-Lag Controllers

In the following plots we compare the two designs obtained from the real lead-lag controller
and complex lead-lag controller respectively. A family of 2500 controllers were designed by varying
the parameters wy, and w,, over a range of frequencies. It is to be noted that a double cascaded
structure was used for the inner loop controller and a single lead network was used for the outer
loop controller. For the complex lead network ¢ = 0.7 was chosen since it offered the best set of

closed loop properties.
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Sensitivity at the Output
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Figure 2.97: S, : NENP using Complex leadlag Figure 2.98: S, : NENP using Real leadlag

Figure 2.99: S, : NEOP using Complex leadlag  Figure 2.100: S, : NEOP using Real leadlag

1. The family of Real lead-lag controllers give better properties at the output loop breaking
point as compared to real lead-lag controllers for New Engine Old Plume and New Engine

New Plume.

2. The ||S¢||co increases as wy, > 0.7 due to the presence of a RHP zero at s = 7.7 which puts

an upper bound on the bandwidth at the output loop breaking point.

3. For New Engine Old Plume, system becomes unstable as the wg, is pushed towards 0.7 rads/sec.
However using a more complicated controller like the complex lead-lag controller, we can push

the bandwidth at the output close to 1 rads/sec without destabilizing the closed loop system.

4. The flexible modes don’t affect the properties at the output loop breaking point.
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Complementary Sensitivity at the Output
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Figure 2.101: T, : NENP Using Complex Leadlag Figure 2.102: T, : NENP Using Real Leadlag

I, I,

15 15

Figure 2.103: T, : NEOP Using Complex Leadlag Figure 2.104: T, : NEOP Using Real Leadlag

We see similar trends as we saw while comparing ||Se||oo variation for New Engine Old Plume

and New Engine New Plume.
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Sensitivity at the Controls
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Figure 2.107: S, : NEOP Using Complex leadlag Figure 2.108: S, : NEOP Using Real leadlag

1. ||S¢]|oo increases as wgy, approaches 10 rads/sec because the flexible modes at 22 rads/sec gets
excited and deteriorates the properties at the controls. Hence the flexible modes put a upper

bound on the achievable bandwidth at the controls.

2. ||S¢|| increases as wy, approaches 6 rads/sec because the RHP pole at s = 3.1for the New

Engine Old Plume puts a lower bound on the achievable bandwidth at the controls.

3. The New Engine New Plume as RHP pole at s = 2.3 as compared to New Engine Old Plume
having a RHP pole at s = 3.1 . Hence we have a smaller lower bound on the achievable
bandwidth at the controls for New Engine New Plume compared to New Engine Old Plume.
Hence, New Engine New Plume has better properties at the controls compared to New Engine

Old Plume.
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4. The complex-leadlag controller gives us better properties at the controls compared to a real

leadlag controller for both New Engine New Plume and New Engine Old Plume.

Nyquist plots

In the following plots, a family of nyquist plot of L. for both the rigid and the flexible plant has
been plotted by keeping w,(bandwidth at error) fixed at 0.65 rads/sec and varying w.(bandwidth
at control) from 5 rads/sec to 10 rads/sec. This analysis has been done for both New Engine Old
Plume and New Engine New Plume.

Rigid : New Engine Old Plume Flexible:New Engine Old Plume

Figure 2.109: New Engine Old Plume : Rigid Figure 2.110: New Engine Old Plume : Flexible

Rigid : New Engine New Plume

Flexible : New Engine New Plume

Figure 2.111: New Engine New Plume : Rigid Figure 2.112: New Engine New Plume : Flexible

1. The rigid model nyquist plots for both Old Plume and New Plume show that as we decrease
the bandwidth at the control to below 5 rads/sec, the nyquist plot gets closed to the (-1,0)
point which means that the ||Sc||oc 1T and robustness decreases. This is due to the fact that
the RHP pole at s = 2 — 3 puts a lower bound on the bandwidth at the controls. However

increasing the bandwidth does not deteriorate the properties since the rigid body does not
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have an flexible mode to put an upper bound on the bandwidth.

. The flexible model nyquist plots for both Old and New Plume shows the same trend of deterio-
ration in properties when we decrease the bandwidth at controls. This is due to the presence of
RHP pole. However as we increase the bandwidth close to 10 rads/sec, we see that the nyquist
plot gets closer to the (-1,0) point which means that||S.||cc 1 and robustness decreases. This

means that the flexible modes put an upper bound on the bandwidth at the controls.

. The nyquist plot of the flexible model for both Old Plume and New Plume shows that the
Ps, ., for New Plume is easier to control than the Old Plume since the family of Nyquist plot

is farther away from the (-1,0) point for New Plume as compared to the Old Plume.
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Complementary Sensitivity at the Controls
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Figure 2.113: T, : NENP Using Complex Leadlag Figure 2.114: T, : NENP Using Real Leadlag
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Figure 2.115: T, : NEOP Using Complex Leadlag Figure 2.116: T, : NEOP Using Real Leadlag

1. We see similar trends as we saw while comparing ||S||~ variation for New Engine Old Plume

and New Engine New Plume.

2. ||T¢||oo increases as we increase wg, to 10 rads/sec or decrease it to 6 rads/sec. Hence we would

like to operate in a band of frequencies between 6 and 10 rads/sec.

3. ||T¢||oo also increases as we increase wy, close to 0.7 rads/sec. Hence RHP zero affects the

properties at the controls as well.
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JGM at the controls
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Figure 2.117: |GM : NENP Using Complex Lead-
Figure 2.118: |GM : NENP Using Real Leadlag
lag

Downward Gain margin : L

Downward Gain margin : Lc

Figure 2.119: |GM : NEOP Using Complex Lead-
Figure 2.120: {GM : NEOP Using Real Leadlag
lag

1. While comparing the |GM at controls of the real lead-lag and complex lead-lag designs for
New Engine Old Plume and New Engine New Plume respectively, we notice that the average
JGM for the real lead-lag design is much higher than that for complex lead-lag design. Hence

Complex lead-lag controller gives us better closed loop properties than a real lead-lag controller.

2. While comparing the |GM for the real lead-lag designs for New Engine Old Plume and New
Engine New Plume, we notice that the average |GM for the New Engine New Plume is lower

than that of New Engine Old Plume. We notice similar trend for the complex lead-lag designs.
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This is due to the fact that the RHP pole for New Engine New Plume is at s = 2.3 compared

to the RHP pole of New Engine Old Plume which is located at s = 3.1.
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TGM at the Controls
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Figure 2.121: 1GM : NENP Using Complex Lead-
Figure 2.122: 1GM : NENP Using Real Leadlag
lag
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Figure 2.124: 1GM : NEOP Using Real Leadlag
lag

1. While comparing the TGM at the controls of the real lead-lag and complex lead-lag designs for
New Engine Old Plume and New Engine New Plume respectively, we notice that the average
1GM for the family of real lead-lag designs is much lower than that for complex lead-lag
designs. Hence the complex lead-lag controller gives us better closed loop properties than a

real lead-lag controller.

2. While comparing the 1GM for the real lead-lag designs for New Engine Old plume and New

Engine New Plume, we notice that the average 1GM for the New Engine New Plume is higher
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than that of New Engine Old Plume. We notice a similar trend for the complex-lead lag

designs.
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Phase Margin at the output
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Figure 2.125: PM : NENP Using Complex Leadlag Figure 2.126: PM : NENP Using Real Leadlag
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Figure 2.127: PM : NEOP Using Complex Leadlag Figure 2.128: PM : NEOP Using Real Leadlag

While comparing the Phase margin at the output, of the real lead-lag and complex lead-lag
designs for the New Engine Old Plume , we notice that the PM decreases as the w,, increases and
approaches 0.7 rads/sec. However the PM of the complex-lead lag designs are close 60 deg. We see a
similar trend for New Engine New Plume. Hence complex lead-lag controllers offer better robustness

at the output loop breaking point as compared to real lead-lag controllers.
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Phase Margin at the Controls
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Figure 2.129: PM : NENP Using Complex Leadlag Figure 2.130: PM : NENP Using Real Leadlag
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Figure 2.131: PM : NEOP Using Complex Leadlag Figure 2.132: PM : NEOP Using Real Leadlag

1. While comparing the Phase margin at the controls, of the real lead-lag and complex lead-lag

designs for New Engine Old Plume, we notice a similar trend in the variation of PM.

2. The average phase margin at the controls of the real lead-lag and complex lead-lag designs
for New Engine New Plume are greater than the respective real lead-lag and complex lead-lag

designs for New Engine Old Plume.

By studying these plots, we conclude that the ., to FPA transfer function of the New Engine
New Plume is easier to control that the §. to FPA transfer function of the New Engine Old Plume.
Now let us design controllers for the MIMO plant of New Engine New Plume using complex lead

networks. In the following designs, we design controllers of the following form.
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0

Ki(s) =
l( ) ) s2+2C1w215+w31 1
Yio s2+2Cwprstw?,
(2.69)
s+z01
Goy —5 - 0
K,(s) =
o(s) 0 Goy [ 82 H2Cowaostw?y |2
s 52+242wp28+w12)2

Since the P;; element i.e. the transfer function from FER to velocity is approximately a first
order transfer function, a basic PI controller has been used in the outer loop controller. For the
P55 element i.e. the transfer function from d. to FPA | a lead network multiplied by an integrator,
has been used to ensure zero steady state error. In the inner loop , 6 is fed back and a complex
lead network has been used. The steps to be followed for designing the complex lead networks has
been covered while discussing the SISO case. The PI controller is designed separately followed by
the design of the lead networks keeping the PI parameters fixed. Ko;,1 was selected to be 3%
to ensure a settling time of 50 sec for the step response of velocity.

A family of 1600 controllers were designed by varying the parameters w,, and w,, over a range
of frequencies keeping the following specifications in mind. It is to be noted that a double cascaded
structure was used for the inner loop lead network and a single lead network was used for the outer
loop controller. After playing around with the (; and (> values, it was seen that (; = (s = 0.7 gives

the best set of closed loop properties.
1. Phase Margin of 60 deg at the output loop breaking point for the Py element ( §, to FPA).
2. Phase Margin of 60 deg at the input loop breaking point for the Psy element(d. to FPA).
3. Zero steady state error due to step reference commands.

The corresponding closed loop properties were studied as shown in the following plots.
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Variation of ||S,||
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1. ||Sel|so (Singular Values) increases as gain crossover frequency of L. ( breaking the loop at the elevator)
is decreased below 4.5 rads/sec due to the presence of RHP pole at s = 2.3 which puts a lower bound

on bandwidth.

2. ||5e(2,2)||oc increases as the gain crossover frequency of L. (breaking the loop at error(velocity))

is increased above 0.7 rads/sec because the RHP zero at s = 7.7 which puts an upper bound on
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bandwidth.
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Variation of ||T.]|
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[|Te]| oo (singular values) show a similar trend as the variation of ||Sc||so due to the presence of

RHP zero at s = 7.7 and RHP pole at s = 2.3 which puts an upper bound and a lower bound on

the bandwidth respectively.
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Variation of ||S.||x
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1. ||Sc||oo in the elevator channel and the net ||Sc||o (singular value) increases as the wy, of L.(breaking
the loop at the elevator) increases beyond 9 rads/sec because the flexible modes at 22 rads/sec are
getting excited. ||Sc||co also increases as the wy, decreases below 4 rads/sec because the RHP pole at

s = 2.3 puts a lower bound on bandwidth.

2. []5c(2,1)||oo is larger than the other three elements because the coupling from FER to « is large. This
leads to a large peak S. because the (2,1) element overshadows all the other 3 elements which have

lower peaks.
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Variation of ||T,||
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[|T¢]|oo (singular values) show a similar trend as the variation of ||S¢||oo due to the presence of RHP
zero at s = 7.7 and RHP pole at s = 2.3 which puts an upper bound and a lower bound on the

bandwidth respectively.
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Variation of || K S|«
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1. Control Action increases as w,, of L.( breaking the loop at the elevator) decreases beyond 4

rads/sec due to the presence of RHP pole which puts a lower bound on bandwidth.

2. Control Action increases as wgy, of L. (breaking the loop at the error(velocity)) increases beyond

0.7 rads/sec because the RHP zero puts an upper bound on the bandwidth.
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Variation of ||PS,||«
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Input disturbance attenuation increases as wy, of L.( breaking the loop at the elevator) is

decreased below 6 rads/sec.
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Variation of Overshoot
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Overshoot of the step response of + increases as w,, of L.(breaking the loop at the er-

ror(velocity)) increases. This is due to the RHP zero at s = 7.7.
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2.5 Comparison of Centralized and Decentralized Controllers

Let us compare the best dynamic output feedback controller for Standard and Non-standard

Mixed Sensitivity:

1. Standard Mixed Sensitivity

Design | Se | T. | Se T, | KS. | PS. | v Ves
Old Plume
1 3.70 | 2.81 | 11.92 | 12.38 | 15.14 | -5.1 | 46.34 | 39.26
New Plume
1 2.52 | 2.07 | 20.88 | 20.87 | 17.12 | 7.78 | 39.12 | 27.03

Table 2.17: Closed Loop Properties(Hypersonic) : Standard Mixed Sensitivity

2. Non-Standard Mixed Sensitivity

Design | S, T. S. T. | KS. | PS. Uts Vts
Old Plume
1 4.15 | 3.11 | 4.56 | 5.94 | 13.36 | -6.07 | 55.21 | 34.39
New Plume
1 497 | 3.02 | 7.62 | 7.13 | 19.86 | -0.23 | 59.82 | 12.08

Table 2.18: Closed Loop Properties(Hypersonic) : Non-Standard Mixed Sensitivity

Kurrvmo designed using H, standard mixed sensitivity gives good properties at the output but

bad properties at the input loop breaking point.However Kjsraro designed using H,, non-standard

mixed sensitivity gives good properties at output and input loop breaking points.
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Standard Mixed Sensitivity Plots
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Non-Standard Mixed Sensitivity Plots
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Let us now compare the performance of a decentralized complex lead-lag controller and a PI-PD

controller with K, decentralized, K; decentralized for New Engine Old Plume

L. KOdcccntralizcd’ ldecentralized
0 1.25 (££9-01) 0
K;(s) = K,(s) = (2.70)
—0.8(s+5) 0 —9.5 (££2.07)
2. Lead-Lag
0 1.4 (s+0.06) 0
Kils) = 2 2| Kols) = (2.71)
18.78 <s +12.98$+65482) 0 —167.99(s+0.97) (s+0.07)
$2+17.85+123.7 s(s+7.03)(s+0.50)

Table 2.19: Comparison of Closed Loop Properties for K,, .. ,K;,.. ., and Surgical Insertion of

Leads : New Engine Old Plume

Sfe Te Sfc Tc KS@ PSC Uts Vts

K 5.85 | 3.65 | 15.69 | 15.70 | 16.79 | 0.14 | 78.63 | 38.02

Odecen )’ ~*10cen

Complex lead-lag | 3.15 | 2.55 | 14.89 | 15.06 | 25.31 | -2.87 | 64.06 | 11.65

For the New Engine Old Plume, the decentrazlied Complex lead-lag controller offers better
properties than the decentralized PI-PD controller at both the loop breaking points.

Plots
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Let us now compare the performance of a decentralized complex lead-lag controller and a PI-PD

controller with K, decentralized, K; decentralized for New Engine New Plume

L. KOdccEntralizcd’ ldecentralized
0 1.5 (££0-06) 0
K;(s) = K,(s) = (2.72)
—0.7(s+3) 0 6 (s+212)
2. Lead-Lag
0 1.5 (+£0.07) 0
K;(s) = o| Ko(s) = (2.73)
96.91 ( £°414.055+54.68 0 —48.73(s+0.77)(54+0.05)
: $2423.19s+149 5(51+4.54)(5+0.33)

Table 2.20: Comparison of Closed Loop Properties for K,,,.,,Ki,..., and Surgical Insertion of

Leads : New Engine New Plume

576 Te 575 Tc KSe PSC Uts Vs

K, 4.78 | 2.77 | 16.53 | 16.46 | 19.57 | 2.56 | 54.65 | 15.31

Odecen )’

Complex lead-lag | 3.11 | 2.53 | 14.59 | 14.74 | 19.15 | -3.42 | 53.69 | 23.34

K;

fOcen

For the New Engine New Plume, the complex lead-lag controller offers better properties than

the PI-PD controller at both loop breaking points.
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Figure 2.140: Sensitivity(New Engine Old Plume)
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2.6 Summary & Conclusion

In this chapter we have studied the design of dynamic output feedback controllers using Standard
and Non-Standard Mixed Sensitivity Design on New Engine Old Plume and New Engine New Plume
models of the Hypersonic aircraft. We have also designed 3 types of hierarchical PI-PD controllers
and surgically inserted lead-lag networks to these controllers to improve the closed loop properties
further. Decentralized Lead-lag networks were also designed for both the models of the Hypersonic
Aircraft.

The dynamic controller obtained using non-standard mixed sensitivity control gives better prop-
erties at the input loop breaking point as compared to the dynamic controller designed using standard
mixed sensitivity. Both the controllers give good properties at the output loop breaking point.

As the complexity of PI-PD controllers increases i.e. as PI-PD controllers become more pop-
ulated, the closed loop properties at both the loop breaking points improve. The fully populated

(K.

venirarioeds Kioeenirariooa) Slves better closed loop properties at both the loop breaking points than
the dynamic controller using H,, mixed sensitivity. However the PI-PD controllers have been de-
signed via brute force enumeration which takes a lot of time. Therefore we require a multivariable
controller can be designed in minimal time using LMI optimization but still give good properties at
both the loop breaking points.

The decentralized complex lead-lag controllers performs better than the decentralized real lead-
lag controllers. It also performs better than the decentralized PI-PD controllers. So we see that as

the complexity of the controller increases, the closed loop properties improve as well.
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Chapter 3

ROCKWELL RPRV-870 HIMAT

3.1 Overview

In this chapter, we briefly discuss the longitudinal dynamics of the NASA-HiMAT aircraft. In
the following sections we design a dynamic output feedback controller using Linear Matrix Inequal-
ity. We also discuss the inner outer loop control structure and design a PI-PD controller for the
longitudinal dynamics. Finally we attempt to design a PI-PD controller which would similar closed
loop properties as the dynamic output feedback controller.

Background. The Rockwell RPRV-870 HIMAT (Highly Maneuverable Aircraft technology) was
a NASA project(1979 — 1983) to develop high performance fighter technologies like close coupled-
canards,fully digital flight control,remotely piloted aircrafts etc, which would be used in future fighter
aircrafts. The aircraft was half the size of an F-16 and it had twice the fighter’s turning capability.
The HIMAT plane’s rear-mounter swept wings and forward controllable canard made the plane’s
turn radius twice as tight as that of the conventional places. Traveling at the speed of sound and
an altitude of 25000 feet, the aircraft could sustain an 8-G turn compared to an F-16’s maximum
sustained turning capability of about 4.5 Gs. One of the HIMAT project’s important contribution was
the use of new composite materials in structural design such as fibreglass and graphite to strengthen
the plane to allow it to withstand high G- force conditions encountered during flight tests. The X-29
used many of the technologies developed from the HIMAT research like the successful use of forward

canard and rear-mounted swept-wing developed from light-weight composite materials.

Figure 3.1: NASA-HiMAT(Highly Maneuverable Aircraft Technology)
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3.2 NASA Himat Longitudinal Dynamics

In this section, we examine the longitudinal dynamics for the NASA Himat aircraft.
Aircraft Characteristics. We examine the aircraft during a straight and level powered ap-

proach.The flight conditions are as follows:
1. Altitude of 25,000 ft
2. Speed of Mach 0.9 (1004.8 fts/sec)

The TITO model for the longitudinal dynamics at the above flight conditions is as follows:
& = Ax + Bu (3.1)

y=Cx+ Du (3.2)

where

—0.022567 —36.617 —18.897 —32.090 3.2509  —0.76257
0.000092 —1.8997 0.98312 —0.00072 —0.17080 —0.00496
0.012338 11.720 —-2.6316 0.00087  —31.604 22.396

A =

0 0 1 0 0 0
0 0 0 0 —30 0
0 0 0 0 0 -30

0 0

0 0

0 0

B =

0 0

30 0

0 30
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i v Velocity ft/sec ]
Q@ angle of attack deg
q pitch rate deg/sec
o 0 pitch angle deg
x5 elevon actuator state deg
re¢ canard actuator state deg
_56 Elevon deﬁection_
‘T _(50 Canard deﬂection_
_0 Pitch Angle ]
- |7 Flight Path Angle|

The aircraft’s two control surfaces are as follows :
1. Elevon - Situated on the wings
2. Canard - Forward situated control surface

Poles and Zeros. The aircraft has two stable poles at s = —5.6757 and s = —0.2578, two
instabilities at s = 0.6898 £ j0.2488(¢ = —0.941, w,, = 0.744), two actuater poles at s = —30, —30.

It also has a transmission zero at s = —0.0210.
Pole-zero map
T T
02 -
01l B
k)
2 oo Unstable Phugoid mode B
2
g ‘- ) -
[=2)
©
E = ,
01l B
02 B
1 1 1 1
20 15 10 s o
Real Axis

Figure 3.2: Pole Zero Map of NASA-HiMAT Aircraft
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Table 3.1: Poles of NASA HiMAT Longitudinal Dynamics

Pole Damping | Frequency(rad/sec) Mode name
-0.258 1 0.258 Damping mode
0.69 + j0.249 -0.94 0.733 Unstable Phugoid Mode
-5.68 1 5.68 Damping mode
-30 1 30 Damping mode
-30 1 30 Damping mode

Transfer Function Matrix. The system transfer function matrix from u to y is given by

Gs.o Gs.o
G(s)=C(sI —A)'B+D=
G(Se'Y G6c7
where
G o — —948.12(540.02177)(5+1.963)
de0 = (5+5.676)(s+30)(s+0.2578) (52— 1.385+0.5377)
G = 0.14896(5+0.02555) (52 +78.785+8568)

= (5+5.676)(s+30)(s+0.2578)(s2—1.385+0.5377)

G . — 5.124(s—19.31)(s+18.82)(s+0.02218)
de7 = (545.676)(5+30)(5+0.2578)(s2—1.385+0.5377)

Gr = 671.88(540.02399) (s+1.895)
0c0 = (545.676)(54+30)(5+0.2578)(s2—1.385+0.5377)

The individual transfer functions show the presence of unstable phugoid modes at s = 0.6898 +
70.2488(¢ = —0.941, w,, = 0.744) and damping modes at s = —30,s = —5.6757 and s = —0.2578.The
transfer functions G5, shows the presence of right half plane pole at s = 19.31. It is not a trans-
mission zero but it makes the NASA HiMAT difficult to control.

DC Gain Analysis. Singular Value Decomposition. While analyzing the NASA HiMAT

model at DC, we get the following matrix of DC gains:

0 —1.7162 1.2942| |6,
vy —1.7502 1.3817| |6,

A singular value decomposition at DC yields the following:
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G(j0)=C(-A)'B+D=UxV" =

—0.6940 —0.7200

17162 1.2942]
~1.7502  1.3817]

U= ;2= 13.0971000.0343 | ; V =

—0.7200  0.6940

output coupling.

1. Examination of the first columns of V,¥ and U shows that elevon has almost an equal impact

on the pitch angle and flight path angle of the aircraft.This may be visualized as shown in

0.7915 0.6112

| —0.6112  0.7915
From the singular value decomposition, conclusions can be drawn about the steady state input

Figure ?7?. Elevator channel is associated with the maximum singular value.

2. Examination of the second columns of V,X and U shows that canard also has an equal impact
on the pitch angle and flight path angle of the aircraft. This may be visualized as shown

in Figure ?7. Canard channel is associated with the minimum singular value. The Singular

values decomposition shows that NASA-HiIMAT is coupled at DC.

right singular value v1

vl
°

1 2 T 2
Controls = [6e BC] Output =[0y]

v2

left singular value v2

1 2
Controls = [6e BC]

1 2
Output =[0y]

Figure 3.3: NASA-HiMAT Singular Value Decomposition at DC

Plant Singular Values. The plant singular values is plotted in Figure 3.4.We notice that the
minimum singular values are below 0db and the singular values are wide spread at low frequen-
cies.This suggests that the resulting controller will have to compensate for low plant gain in the
minimum singular value direction i.e. in the canard channel.

canard activity will be required to achieve a loop with low frequency disturbance attenuation(e.g.

Hence we expect that significant

Omin|PK] > 20 db at low frequencies) and desirable low frequency command following.
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Plant singular values
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Figure 3.4: Singular Values-TITO NASA Longitudinal Dynamics

The frequency response bode plots for each of the 4 system transfer functions are given in

Figure 3.5-3.8
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Figure 3.5: Pj5,_¢
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Figure 3.8: Ps__,+
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3.3 H,, Mixed Sensitivity Control System Design for NASA-HiMAT Longitudinal Dynamics

In this section , we consider the design of a control system for the longitudinal dynamics of

NASA-HiMAT.

The TITO model for the longitudinal dynamics is as follows:

& = Ax + Bu (3.3)
y=Cx+ Du (3.4)
where
v speed ft/sec
Q@ angle of attack deg
q pitch rate deg/sec
xTr =
0 pitch angle deg
x5 elevon actuator state deg
re¢ canard actuator state deg
6. Elevon deflection
u =
_(5C Canard deﬂection_
Q Pitch Angle
y =
|0 Flight Path Angle |

Bandwidth Design Specification. Based on the presence of RHP-poles at at s = 0.6898 +
j0.2488(¢ = —0.941, w,, = 0.744), we sought an close loop loop bandwidth of about wj > 2Re(p) at
the input loop breaking point.(Skogestad and Postlethwaite (2007), Page 186,235). Since the plant
does not have any RHP-zero, there is no upper bound on the open loop bandwidth at the output
loop breaking point. However we can’t arbitrarily increases the bandwidth because there would
always be high frequency unmodelled actuator dynamics, parasitic dynamics which would render
the system unstable if excited.

H,, Dynamic Output Feedback Controller Design. We now design the dynamic output

feedback controller keeping the above mentioned bandwidth constraints in mind. Let us consider
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the generalized plant of the following form:

T = Az + Biu + Byw
z = Chix + Dyiu + Digw
y = Cox + Doyu + Dopw
where u = [0, &;]7 is the input, w = [r di]T is the set of exogenous signals, y = [0 7] is the
measured output and z is an output vector related to the performance of the closed loop system.
Weighted H,, Mixed Sensitivity Problem The standard weighted H,, mixed sensitivity

problem is to find a finite dimensional real-rational proper internally stabilizing controller K that

satisfies(Echols et al. (2015)) :

W1 S,
K= aret, im0 WoKSe | <) (3:5)
WiT,

where S is the sensitivity transfer function, T is the complementary sensitivity transfer function
of the closed loop system and KS is the control action.

However we would use w = [r d;] as the set of exogenous signals in order to get good properties at
both input and output loop breaking points.So we do a slightly modified weighted mixed sensitivity
problem to find a finite dimensional real-rational proper internally stabilizing controller K that

satisfies(Echols et al. (2015)):

W.S. W,PS,
K =arg{ Sgﬁggmqvl WoKS. WoT, <~} (3.6)
WsT. WsPS,

o0

Finding a internally stabilizing controller K that minimizes v can be translated into an LMI

optimization problem as shown below(Scherer et al. (1997)):
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‘minimize
A B,CD.X)Y

s.t.

v

AX + XAT + ByC + (BoC)T

A+ (A+ ByDCy)T
(By + BaDDgy)T
Ci1 X + Dué

X I

>0

I Y

AT 4 (A + ByDCy)
ATY + YA+ BC + (BO)T
(YB; 4+ BDs)"

C1 4 D1,DCy

*
*
—~I
D11 + D13DDy

After solving the optimization problem and obtaining the set of A,B,C,D,X,Y which minimizes

~, the dynamic output feedback controller is obtained as follows(Scherer et al. (1997)):

1. Find nonsingular matrices M,N which satisfies MNT =T — XY

2. Construct the controller using

Dx =D
Ckx = (C = DgCoX)M~T
Bx = N"Y(B - YB,Dg)

Ag = N"YA - NBgCyX —YByCxMT — Y (A+ ByDgCo)X)M T

Structure of Weighting functions for H,, Mixed Sensitivity Optimization. The struc-

ture of weighting functions which has been used to do the above optimization is shown below:

S/]\/fs1 +wb1
s+wble

Wi =

Wy =

sHwheq /My,
se+wbcls

se—i—wbule

0 0
5/ Mgy +wi, 0
S+Ld},26
0 Te — 05
S5+wWhuy /Muy 0
S$+Whuoy /Mu2
SetWhug
0 0
5+‘*’b02 /Myz 0
SetWhcy
0 Te — 05
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W1 W2 | W3
M1 0.1 6 )
M2 | 0.1 6 5
w1 0.5 500 )
wa 0.5 500 )
ex | 0.001 | 0.009 | 0.05
e2 | 0.001 | 0.009 | 0.05

Table 3.2: Weighting Function Parameters for NASA-HiMAT

While designing the dynamic output feedback controller, the controller architecture has been

considered to imitate a classical inner-outer loop structure to ensure that the designer won’t have

to design an inner loop controller and outer loop controller separately. The controller architecture

has been shown in Figure 3.9.

H,, Controller Synthesis

1. Augment the 6 and v output channels of the plant with integrators so as to ensure integral

action at low frequencies which would lead to zero steady state error to a step reference input.

2. In order to prevent cancellation integrator states by the H, controller synthesis methodology,

use bilinear transformation(Tsai et al. (1990),Folly (2007))to shift the system slightly to the

right half plane. We use the following Bilinear transformation parameters for NASA-HiMAT

longitudinal dynamics model.

The bilinear transformation parameters for NASA HiIMAT model are selected are as follows:

p1 = —0.005
p2 = —10%
The selection results in
Transform:
S+ p1 §—0.005
S = — = — ~
2y T 1 —om0 T 1
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Inverse Transform:

5~ s+ 0.005 (3.11)

3. Choose W1 to shape sensitivity transfer function to have good integral action at low frequencies
and ensure that ||.S]|o is below 8db. Choose W2 to shape the KS transfer function such that
|| KS]|oo is not too high which would prevent control signal saturation. Also ensure that KS
rolls off at higher frequencies. Choose W3 so that ||T||~ is below 8 db and T rolls off at higher

frequencies to ensure sensor noise attenuation at higher frequencies.

4. Create a generalized plant using w = [rd;] as the set of exogenous signals so that we get good

properties at both input and output loop breaking points.

5. Minimize gamma by solving LMI. We use YALMIP (Lofberg (2004),Lofberg (2008)) for solving
the LMI.

6. Obtain the controller from the parameters returned by the optimization. Do inverse bilinear
transformation to shift the controller to the left half plane so that it corresponds to the original

untransformed plant.

7. Shift the integrators from the plant output to the controller input. In other words, augment

the controller at the input with integrators.

8. Feed the 6 state into the controller as the 3rd input.. This serves as the inner loop feedback as
seen in a standard inner-outer feedback control architecture in Figure 3.9. Obtain the closed

loop system using the final controller containing 3 inputs and 2 outputs and the original plant.

After performing the optimization, the closed loop poles obtained are as follows:
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Figure 3.9: Topology of Dynamic Output Feedback Control System
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Table 3.3: NASA HiMAT: Closed Loop Poles Using Dynamic Output Feedback

Pole Damping | Frequency(rad/sec) | Time Constant(sec)
-1.57¢-02 1.00e+00 1.57e-02 6.39¢+01
-2.18e-02 1.00e+00 2.18e-02 4.59e+01
-3.96e-02 1.00e+00 3.96e-02 2.52e+01
-4.98e-02 1.00e+00 4.98e-02 2.01e+01
-7.61e-02 1.00e+00 7.61e-02 1.31e+01
-1.85e4-00 + 7.27e-01i | 9.30e-01 1.98e+00 5.42e-01
-1.85e+00 - 7.27e-01i 9.30e-01 1.98e+-00 5.42e-01
-3.10e+00 + 1.39e4+00i | 9.13e-01 3.39e+00 3.23e-01
-3.10e+00 - 1.39e+00i | 9.13e-01 3.39e+00 3.23e-01
-6.03e+00 + 2.67e+00i | 9.14e-01 6.59e+4-00 1.66e-01
-6.03e+00 - 2.67e+00i | 9.14e-01 6.59e+00 1.66e-01
-3.77e400 4 1.18e+401i | 3.05e-01 1.24e+01 2.65e-01
-3.77e+00 - 1.18e+01i | 3.05e-01 1.24e+4-01 2.65e-01

-2.99e+-01 1.00e+00 2.99e+-01 3.35e-02

-3.00e+-01 1.00e+00 3.00e+01 3.34e-02

-3.00e+4-01 1.00e+00 3.00e+4-01 3.33e-02
-3.44e+4-01 + 2.64e4-01i | 7.93e-01 4.34e+01 2.91e-02
-3.44e+01 - 2.64e+01i | 7.93e-01 4.34e+01 2.91e-02

-8.36e+4-01 1.00e+00 8.36e+-01 1.20e-02
-9.90e+01 + 1.35e+01i | 9.91e-01 9.99e+01 1.01e-02
-9.90e+01 - 1.35e+01i | 9.91e-01 9.99e+01 1.01e-02

-9.99e4-01 1.00e+00 9.99e+4-01 1.00e-02
-1.00e+02 + 3.13e-01i | 1.00e+00 1.00e+02 1.00e-02
-1.00e+4-02 - 3.13e-01i 1.00e+00 1.00e+-02 1.00e-02

The closed loop poles at s = —0.000856 and s = —0.000993 are the dominant poles and they have
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a very large time constant. However they are related to offdiagonal terms of T, i.e. step response
of # tor = [0 1] and v to r = [1 0] as shown in Figure ?? and Figure ?? respectively. The step

responses don’t have a large peak. Hence the slow dominant poles won’t affect the system much.
3.4 Inner-Outer Loop Feedback Loop Control Design Methodology

In the section,we discuss the design methodology for Inner-Outer loop control design for the

longitudinal control system.

do
Yp
T e - Y
reference ] error
command Ty
ng

Figure 3.10: Inner Outer Feedback Loop

where
1. Output vector: y = [yl y2]T = [0 ~]T

2. Control vector: u = [ul u2]" = [6, 6] "

3. State : z, = [0]

Let us first design an inner-outer loop controller for the NASA-HiMAT considering only the

diagonal elements of the plant transfer function matrix i.e. Ps,_¢ and Ps__,~.

Let us consider the (1,1) element of the plant transfer function matrix i.e. Ps__¢.

b —948.12(s 4 1.963)(s + 0.02177) (3.12)
P77 (5 +5.676)(s + 30)(s + 0.2578)(s2 — 1.38s + 0.5377) |

Here we use the inner-outer loop feedback control architecture in order to shift the lightly damped

unstable phugoid modes of Ps,_,p to a location with better damping using a PD controller in the
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inner loop to obtain P,,,q =

Ps, 0

14+Lmod

where Ly,04 = Ps,,9K;1. This is followed by the stabilization

of Py,0q4 using a PI controller in the outer loop. The closed loop system architecture is shown in

Figure 3.11 :

Figure 3.11: F8: Inner Outer Loop Structure for Ps, _¢(s)

Koi1(s)

upr

P56—>9(5

Kil (S)

As seen in Figure 3.12, the zero of Kil pulls the unstable poles to the left half plane and

the inner loop with K;; = —0.5(s + 0.7) places the unstable phugoid modes
—11.7 4+ 13.67,¢ = 0.652.

Rootlocus of L
mo

d

=Ps oK
e

at the location s =

Imaginary Axis (seconds'l)
7

System: Lmod
Gain

Pole: ~11.7+ 1371
Dar

0,649
Overshoot (%): 6.85
Frequency (radis): 18

-20

15

-10

Real Axis (seconds ™)

Figure 3.12: Rootlocus of Ly,0q = Ps, 0K, using PD controller
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Pole Damping | Frequency(rad/sec) | Time constant(sec)
-2.53e-02 1.00e+00 2.53e-02 3.95e+01
-2.30e+4-00 1.00e+00 2.30e4-00 4.35e-01
-8.78e+00 1.00e+00 8.78e+4-00 1.14e-01

-1.17e4+01 + 1.36e+01i | 6.52e-01 1.80e+01 8.53e-02
-1.17e+01 - 1.36e+01i | 6.52e-01 1.80e+01 8.53e-02

Table 3.4: NASA HiMAT: Closed Loop Poles of Ppoq = 120

Now let us use an outer loop to stabilize L = P,,,qK,1 where Ppoq = 1?_527"2 and Ly,oq =
Ps, 0 K;1. We select Ky = w The rootlocus of L = P,,,qK,1 is as shown in Figure 3.13.

Rootlocus of L=P K
mod ol

System: L
Gain: 1

Frequency (radls): 20.5

Imaginary Axis (seconds ™)

40 | I I I I I i
-14 -12 -10 -8 -6 -4 -2 0 2

Real Axis (seconds %)

Figure 3.13: Rootlocus of L = Py,0qKo1

The poles of the closed loop system is as follows:
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Pole Damping | Frequency(rad/sec)
-8.15e-002 1.00e+-000 8.15e-002
-2.29e4-000 1.00e4-000 2.29e4-000
-9.66e+000 1.00e+000 9.66e+-000
-1.12e+001 + 1.35e+001i | 6.39e-001 1.76e+001
-1.12e4-001 - 1.35e4-001i 6.39e-001 1.76e4-001

Table 3.5: Closed Loop Poles of T' = % : NASA-HIMAT

Let us now consider the (2,2) element of the plant transfer function matrix i.e. P5, .

P 0.14896(s + 0.02555)(s% + 78.78s + 8568)
%™ ™ (5 +5.676)(s + 30)(s + 0.2578)(s2 — 1.385 + 0.5377)

(3.13)

Let us now consider the transfer function of Ps,_,,(s). Let us consider P5 ,4(s) and Py_~(s)
such that Ps,_,,(s) = Ps,—¢(s)Psp—~(s). To design the flight control system for FPA, let us consider

the inner-outer structure in Figure 3.14.

Ps,0(s) d Po_s(s) 4}>7L

) ~
o Ki,(s) T
ni

4@—> Ko, (s)

Figure 3.14: Inner Outer Feedback Loop : NASA-HIMAT

As a rule of thumb, we always consider the inner loop as a negative feedback loop. From the

transfer function matrix of the plant we obtain

671.88(s + 0.02399)(s + 1.895)
(s + 5.676)(s + 30)(s + 0.2578)(s2 — 1.385 + 0.5377)

Ps,0(s) = (3.14)
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0.14896(s + 0.02555) (52 + 78.78s + 8568)
P — 3.15
b(5) 671.88(s + 0.02399)(s + 1.895) ( )

Since Ps__,¢(s) has an instability, the inner loop is used to move the unstable poles of the phugoid
mode to a location in the left half plane with good damping so that the outer loop can stabilize
the system. We use K;, = 0.5(s + 7). As seen in the root locus plot of Lyoq = P5,0(s)K;, in
Figure 3.15, the instability has been moved to the left half plane to a location s = —9.21 £ 7.22¢

having ¢ = 0.78.

Pole Damping | Frequency(rad/sec) | Time constant(sec)
-2.91e-02 1.00e+00 2.91e-02 3.43e+4-01
-2.40e+4-00 1.00e+00 2.40e+4-00 4.16e-01

-9.17e+00 + 7.16e+00i | 7.88e-01 1.16e+01 1.09e-01
-9.17e+00 - 7.16e+00i | 7.88e-01 1.16e+01 1.09e-01
-1.38e+4-01 1.00e+00 1.38e+01 7.26e-02

Table 3.6: Closed Loop Poles : Thoq = (&) ‘NASA-HiMAT

1+Ps5, 50 Ki2
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Rootlocus of Lm =P_ _K

od 30 2
c
50
40 -
30— =
20— —
— System: Lmod
- Gain: 1
7 Pole: -9.19 + 7.21i
S Damping: 0.787
c Overshoot (%): 1.82
o 10— Frequency (rad/s): 11.7 —
2 n
2
=
0
3 0 © © 2] —
<
Pl
<
g u
‘= 10— System: Lmod |
% 10 Gain: 1
£ Pole: -9.18 - 7.2i
= Damping: 0.787
Overshoot (%): 1.82
Frequency (rad/s): 11.7
—20— ,
30 ,
—401— ,
-50 1 1 1 1 1 1 |
-35 -30 -25 -20 -15 -10 -5 0 5

Real Axis (seconds_l)

Figure 3.15: Rootlocus of Ly,0q = Ps,—0Ki2

Let us now consider P04 = TimodPp—~- From this relation we obtain

0.14896(s2 + 78.78s + 8568)

Pmo =
47 (s +2.403)(s + 13.77)(s% + 18.355 + 135.5)

(3.16)

K,, is now used to stabilize Pp,,q. Let us use K,, = @.The root locus of L = P pa Ko,
is shown in Figure 3.16.

Hence we have designed a decentralized inner outer loop control system for the rigid model for

NASA-HiMAT. The controllers are as follows:
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Pole Damping | Frequency(rad/sec) | Time Constant(sec)
-6.46e-01 + 6.69¢-011 | 6.95e-01 9.30e-01 1.55e+00
-6.46e-01 - 6.69e-011 | 6.95e-01 9.30e-01 1.55e+00

-9.14e+00 + 8.03e+400i | 7.51e-01 1.22e+01 1.09e-01
-9.14e+00 - 8.03e+00i | 7.51e-01 1.22e+01 1.09e-01
-1.49e+-01 1.00e+00 1.49e+01 6.69e-02
Rootlocus of L = Pmod K02
g
z _ |
g Y
- Real Axis
Figure 3.16: Rootlocus of L = P00 K2
Ko —0.5(3+7)]
| 0.5(s+7)
(3.17)
[—0.2(s+1.5) 0
Ko(s) = 0 —1(5—1.5)]
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3.5 PI-PD controller vs Dynamic Output Feedback Controller

In the section we try to obtain a PI-PD controller which best approximates the dynamic output

feedback controller obtained in the previous sections.

We have already obtained a decentralized PI-PD controller which stabilizes the plant provided

only the diagonal elements are considered. The controller obtained is as follows:

_—0.5 s+ 7
Ki(s) = (s+7)
i 0.5(s+7)
(3.18)
[—0.2(s+1.5) 0
Ko(s) = °
i 0 71(5;1.5)

This controller stabilizes the centralized plant. This means that the centralized system is decou-
pled enough to let the above PI-PD controller stabilize it.. Therefore, we do a exhaustive search
in the neighborhood of the previously obtained go1,201,902,%02,9i1,%:1 parameters in order to obtain
a set of values which would stabilize the centralized system. While doing this search, we minimize
[|Sol — S02||x (Where Sol corresponds to Output feedback controller and So2 corresponds to PI-PD
controller) in the low frequency range 0.0001 rads/sec to 0.01 rads/sec in order to ensure that we
obtain the best PI-PD controller which gives us similar properties at the output loop breaking point

when compared to the dynamic output feedback controller at low frequencies.

After doing the optimization, we obtain the following PI-PD controller which minimizes ||Sol —
S02|| in the range 0.0001 rads/sec to 0.01 rads/sec.The roll-off terms have been selected in a way
so that the KS crossover frequency for the dynamic output feedback based closed loop system and
the PI-PD based closed loop system is the same. This is done in order to ensure that we are in a

position to compare two designs.
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—0.65(s + 1.5) [ 100 r

5+100
Kils) = 1(00 2)
0.5(s + 9) {(S“OO)]
—2(540.5) { 5 r 0
K (S) _ s (s+5)
© 0 —0.5(s-25) [ 50 12
(5+50)

The damping of the closed loop system using the PI-PD controller is as follows:

Pole Damping | Frequency(rad/sec) | Time Constant(sec)
-1.91e-02 1.00e+00 1.91e-02 9.23e+01
-4.95e-02 1.00e+00 4.95e-02 2.02e+01
-4.17e-01 1.00e+00 4.17e-01 2.40e4-00
-1.56e4-00 1.00e+00 1.56e+-00 6.43e-01
-2.73e+00 + 3.05e+00i | 6.67e-01 4.09e+00 3.66e-01
-2.73e+00 - 3.05e+00i | 6.67e-01 4.09e+00 3.66e-01

-8.42e+4-00 1.00e+00 8.42e+00 1.19e-01
-1.99e+01 + 1.84e+00i | 9.96e-01 2.00e+-01 5.02e-02
-1.99e+01 - 1.84e+00i | 9.96e-01 2.00e+-01 5.02e-02
-4.78e+00 + 2.60e+01i | 1.81e-01 2.64e+01 2.09e-01
-4.78e+00 - 2.60e+01i | 1.81e-01 2.64e+01 2.09e-01

-3.02e+01 1.00e+00 3.02e+01 3.31e-02
-1.10e+02 + 2.97e+01i | 9.65e-01 1.13e4-02 9.13e-03
-1.10e+02 - 2.97e+01i | 9.65e-01 1.13e+02 9.13e-03

Table 3.7: Closed Loop Poles : PI-PD based controller

Let us now compare the closed loop properties obtained by using PI-PD controller and dynamic

output feedback controller.
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||SO||00 HTOHOO HSZHOO HTZHOO ||KSOHOO ||PSiHoo
Dynamic Output feedback Controller 1.82 1.24 12.79 12.29 29.76 0.90
PI-PD controller 1.56 0.01 10.58 9.20 29.29 -9.85

Table 3.8: Attained Closed Loop Properties(||.||oo in db) for PI-PD and Dynamic Output Feedback

Controller: NASA HIMAT

As shown in Table 3.8, the closed loop properties obtained using PI-PD controller is similar to

the closed loop properties obtained by using Dynamic output feedback controller at the input loop

breaking point. However, at the output loop breaking point, the dynamic output feedback controller

gives good properties compared to the PI-PD controller. However the input disturbance attenuation

is better in the PI-PD controller design.

Let us now compare the |Sol — So2| and |Sil — Si2| plots where S,; and S;; corresponds to

Dynamic output feedback controller and S,2 and S;2 corresponds to PI-PD controller as shown in

Figure 3.17.
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Sol1-So02 Si1-Si2

Singular values (dB)
Singular values (dB)

10" 10° 100 10" 10° 100
Frequency (rad/sec) Frequency (rad/sec)

Figure 3.17: Comparison of [S,1 — Se2| and |S;1 — Si2| : NASA-HiMAT

[So1 — So2| and |S;1 — Sia| have very low singular values at low frequencies i.e. the singular values
are less than -20db below 0.01 rads/sec. This means that the PI-PD controller and Dynamic output
feedback controller would give similar performances at both the loop breaking points if we operate
at low frequencies.

In the following figures we compare the frequency domain and time domain plots of various closed

loop properties for both PI-PD and dynamic output feedback controller based closed loop system
for NASA-HiMAT.

Comparison of LO Comparison of Li

Multivar

Multivar

Singular values (dB)
Singular values (dB)

107 10° 10 107 10° 10
Frequency (rad/sec) Frequency (rad/sec)

Figure 3.18: L, : NASA HiMAT Figure 3.19: L. : NASA HiMAT

135



Singular values (dB)
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Singular values (dB)

Comparison of S,
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Frequency (rad/sec)

Figure 3.20: S, : NASA HiMAT

Comparison of To
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10
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Figure 3.22: T, : NASA HiMAT

Comparison of KS,

—— Multivar
—P

1 L L L

o' 10 10
Frequency (rad/sec)

Figure 3.24: KS, : NASA HiMAT
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Figure 3.21: S. : NASA HiMAT
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Figure 3.23: T, : NASA HiMAT
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Figure 3.25: PS. : NASA HiMAT
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Figure 3.26: T},,—, : NASA HiMAT Figure 3.27: T, 4, : NASA HiMAT

Velocity response to r = [1 0]
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Figure 3.28:  Velocity Response to r =
Figure 3.29: AOA Response to r = [1 0]:HIMAT
[1 0):HiMAT

Pitch response to r = [1 0]
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Figure 3.30: 6 Response to 7 = [1 0]:HiMAT Figure 3.31: 0 Response to r = [1 0]:HIMAT
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FPA response to r = [1 0]
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Figure 3.32: FPA Response to r = [1 0]:HIMAT
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Figure 3.33: d. Response to r = [1 0]:HIMAT  Figure 3.34: J. Response to r = [1 0]:HIMAT
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Velocity response to r = [0 1]
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Figure 3.35: Velocity Response to r
0 1):HIMAT
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Figure 3.37: 6 Response to r = [0 1]:HiMAT

3.6  Summary

Figure
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3.36: AOA Response to r = [0 1]:HIMAT

6(deg) response to r = [0 1]
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—— Multivar
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Figure 3.38: 0 Response to r = [0 1]:HIMAT

After studying the closed loop properties, it is seen that the dynamic output feedback controller

offers good properties at the output loop breaking point but bad properties at input loop breaking

point. The PI-PD (K

Odecentralize?

idcccntmlized)

controller also offers good properties at the output

but bad properties at input loop breaking point.
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FPA response tor = [0 1]
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Figure 3.39: FPA Response to r = [0 1]:HIMAT
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Figure 3.40: 0. Response to r = [0 1]:HIMAT  Figure 3.41: . Response to r = [0 1]:HIMAT
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Figure 3.42: Pitch Response to d; = [1 0]:HIMAT Figure 3.43: FPA Response to d; = [1 0]:HIMAT
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Elevon Deflection response to di = [1 0] Canard Deflection to di = [1 0]
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Figure 3.44: 6. to d; = [1 0]:HIMAT Figure 3.45: ¢. Response to d; = [1 0:HIMAT
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Figure 3.46: Pitch Response to d; = [0 1]:HIMAT Figure 3.47: FPA Response to d; = [0 1]:HIMAT
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Figure 3.48: 6. Response to d; = [0 1]:HIMAT  Figure 3.49: §. Response to d; = [0 1]:HIMAT
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Chapter 4

MCDONNEL DOUGLAS AV-8A HARRIER

4.1 Overview.

In this chapter, we briefly discuss the longitudinal dynamics of the AV-8A Harrier aircraft. In
the following sections we design a dynamic output feedback controller using Linear Matrix Inequal-
ity. We also discuss the inner outer loop control structure and design a PI-PD controller for the
longitudinal dynamics. Finally we attempt to design a PI-PD controller which would similar closed
loop properties as the dynamic output feedback controller.

Background. The McDonnell Douglas(now Boeing) AV-8A Harrier is a single engine ground
attack aircraft which is capable of vertical or short takeoff and landing. It was developed in the
1960s and formed the first generation of the Harrier series of aircrafts. It is powered by a single
Pegasus turbofan engine mounted in the fuselage. The engine is fitted with four vectoring nozzles
for directing the thrust generated(two for the bypass flow and two for the jet exhaust) and two air
intakes. The aircraft also has several smaller reaction nozzles in the nose , tail and wingtips for the
purpose of balancing during vertical flight. The aircraft is capable of forward flight like a fixed wing
aircraft. It is also capable of doing VTOL and STOL manoeuvres where the lift and control surfaces
are useless. The harrier also has two control elements namely the thrust vector and the reaction

control system which is not found in conventional fixed-wing aircraft.

Figure 4.1: McDonnell Douglas AV-8A Harrier
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4.2  AV-8A Harrier Longitudinal Dynamics

In this section, we examine the longitudinal dynamics for the AV-8A Harrier aircraft.

The TITO model for the longitudinal dynamics at the above flight conditions is as follows:

0.0002

—1.9660

0.0062

0.0073

i = Az + Bu
y=Czx+ Du
where
| 0 1.0000 0 0 0
—1.8370 —1.8930 1.8370 —0.0229
A 0.5295  0.0085 —0.5295 0.0344
—0.6021 0 0.0401  —0.0621
0 0 0 0
0 0 0 0 0
- ; ; -
0 0
B 0 0
0 0
112.6518 0
0 12.0000
oo _0 01 0O 0_
00 0 1 0 0]
Do 0 0
0 0
i 0 Pitch angle deg ]
q Pitch rate deg
v  Flight path angle deg
o v Velocity ft/sec
x5  Stabilizer angle deg
x¢ Engine fan speed ft/sec
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ds Stick input
u =

Oy Throttle

v Flight Path Angle deg
y =
07 Velocity deg

The aircraft’s two control surfaces are as follows :
1. Stick input
2. Throttle

Poles and Zeros. The aircraft has stable phugoid modes at s = —0.0236 £ j0.0975(¢ =
0.235,w,, = 0.1 rads/sec), stable short period modes at s = —1.22 + 51.17(¢ = 0.722,w,, = 1.69

rads/sec). It also has a transmission zero at s = 5.5464 and s = —6.8290.

Pole-zero map

- Short Period Mode

Phugoid Mode B

TS |

Imaginary Axis

Damping Mode

Real Axis

Figure 4.2: Visualization of Poles and Zeros for AV8A Longitudinal Dynamics

Transfer Function Matrix. The system transfer function matrix from u to y is given by

Gs.n Gs
_ sY tY
G(s)=C(sI —A)'B+D=
Gésv Gﬁtv
where
G — 0.02253(s40.1154)(s%+3.3665+20.38)
6s7 = (5+1.966)(s2+0.04725+0.01007)(s2+2.4375+2.848
G — 1.1689(s46.753)(5—5.458) (s+0.02209)
0:7 T (5+1.966)(s2+0.04725+0.01007) (s> +2.4375+2.848)
G — 0.82749(s—0.1078) (s> +2.5315+2.591)
0sv = (541.966)(52+0.04725+0.01007)(s2+2.4375+2.848)
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G — —0.5424(s+10.62) (s—8.763)(s+0.48)
0tV = (5+1.966)(s2+0.04725+0.01007)(s2+2.4375+2.848)

The individual transfer functions show the presence of stable phugoid modes at s = —0.0236 +
70.0975(¢ = 0.235,w,, = 0.1 rads/sec) and short period modes at s = —1.22 + j1.17({ = 0.722,w,, =

1.69 rads/sec). The transfer functions also show the presence of right half plane zeros.
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The frequency response bode plots for each of the 4 system transfer functions is given in Fig-

ure 4.3-4.6
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Figure 4.3: Frequency Response - d5 to FPA
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Figure 4.4: Frequency Response - §; to FPA
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Figure 4.6: Frequency Response - §; to v
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MIMO Frequency Response: Singular Values

The MIMO singular values for the plant transfer matrix from controls u = [d5 d;] to plant output
y = [FPA Vel] are plotted in Figure 4.7. The plot shows a peaking at 0.1 rads/sec due to the lightly
damped phugoid mode at at s = —0.0236 £ j0.0975(¢ = 0.235,w,, = 0.1 rads/sec). In the plot, we
notice that the minimum singular values of the plant corresponding to the d5 channel are low and
wide spread at low frequencies. Hence the resulting controller will have to compensate for the low
plant gain in the §; channel. Thus we expect that significant stick input activity will be required in
order to achieve a loop with desirable low frequency disturbance attenuation(e.g. opmin[PK] > 20

db at low frequencies) and desirable low frequency command following.

Plant singular values

Singular values (dB)

-140— L -
10° 107 10" 10° 1
Frequency (rad/s)

o 10° 10°

Figure 4.7: AV-8A Harrier Longitudinal Dynamics Singular Values MIMO Frequency Response

DC Gain Analysis. Singular Value Decomposition. While analyzing the AV-8A Harrier

model at DC, we get the following matrix of DC gains:

¥ 0.9400 —2.766 | |ds

v —4.0996 70.4110| |

A singular value decomposition at DC yields the following:

0.9400  —2.766
G(j0)=C(-A) ' B+D=UxV' =

—4.0996 70.4110
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Figure 4.8: AV-8A Harrier SVD at DC for Longitudinal Dynamics vy — o1u;
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Figure 4.9: AV-8A Harrier SVD at DC for Longitudinal Dynamics vo — oous

From the singular value decomposition, conclusions can be drawn about the steady state input

output coupling.

1. Examination of the first columns of V,3 and U shows that throttle has a greater impact on
the velocity of the aircraft compared to the flight path angle .This may be visualized as shown
in Figure 4.8. This analysis shows that throttle should be used as the primary control for

maintaining steady velocity perturbations from equilibrium.

2. Examination of the second columns of V,¥ and U shows that stick input has a greater impact

149



on the flight path angle of the aircraft than the velocity of the aircraft. This may be visualized

as shown in Figure 4.9. This analysis shows that stick input should be used as the primary

control for maintaining steady flight path angle perturbations from equilibrium.

The Singular Value Decomposition at DC shows that AV8A longitudinal dynamics is suffi-

ciently decoupled at DC

4.3 H,, Mixed Sensitivity Control System Design for AV-8A Harrier Longitudinal Dynamics

In this section , we consider the design of a control system for the longitudinal dynamics of

AV-8A Harrier.

The TITO model for the longitudinal dynamics is as follows:

where

y:

The aircraft is characterized by stable phugoid modes at s = —0.0236 & j0.0975(¢ = 0.235,w,, =

T = Az + Bu

y=Cz+ Du

0 Pitch angle

q Pitch rate

~v  Flight path angle
v Velocity

x5  Stabilizer angle

z¢ Engine fan speed

ds Stick input
u =

d0¢  Throttle

v Velocity

~ Flight path angle

deg

deg

deg
ft/sec

deg

ft/sec

deg
deg

0.1 rads/sec) and short period modes at s = —1.22 + j1.17(¢ = 0.722,w,, = 1.69 rads/sec).It also

has a transmission zero at s = 5.5464 and s = —6.8290. The presence of RHP-zero at s = 5.5464

makes designing a control system for AV-8A tedious because RHP-zero puts an upper bound on the
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acceptable closed loop bandwidth.

Bandwidth Design Specification. Based on the presence of RHP-zero at s = 5.5464, we
sought an open loop bandwidth of about w} < 0.5z (Skogestad and Postlethwaite (2007),Page

186,235). We choose an open loop bandwidth of about 1 rad/sec.

H,, Dynamic Output Feedback Controller Design. We now design the dynamic output
feedback controller keeping the above mentioned bandwidth constraints in mind. Let us consider

the generalized plant of the following form:

T = Az + Biu + Byw
z=Chiz + Dy1u + Dysw
y = Coz + Daju + Dypw
where u = [0, &;]7 is the input, w = [r di]T is the set of exogenous signals, y = [y v]T is the
measured output and z is an output vector related to the performance of the closed loop system.
Weighted H,, Mixed Sensitivity Problem The standard weighted H,, mixed sensitivity

problem is to find a finite dimensional real-rational proper internally stabilizing controller K that

satisfies: (Echols et al. (2015))

Wlse
K =arg{ stﬁiﬁzmﬂ' WLK S, <7} (4.5)
WSTe

o0

where S is the sensitivity transfer function, T is the complementary sensitivity transfer function
of the closed loop system and KS is the control action.

However we would use w = [r d;] as the set of exogenous signals in order to get good properties at
both input and output loop breaking points.So we do a slightly modified weighted mixed sensitivity
problem to find a finite dimensional real-rational proper internally stabilizing controller K that

satisfies: (Echols et al. (2015))
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WS, W;iPS,
K=arg{ min A\ WoKS, W,T. <7} (4.6)
K stabilizing
WsT, W3PS,
Finding a internally stabilizing controller K that minimizes vy can be translated into an LMI op-

timization problem as shown below(Gahinet et al. (1995),Scherer et al. (1997),Gahinet (1996),Boyd
et al. (1993))

minimize 7y

A,B,C,D,X,Y
AX + XAT + BoC + (B,O)T AT 4 (A+ ByDCy) * *
. A+ (A+ ByDCy)T ATY + YA+ BC + (BC)T % *
s.t.
(Bl + B2DD21)T (YBl + BD21)T —~1 *
i C1X + D15C Cy + D12DCy Di1 4 D19DDyy  —~T
(X 1
>0
_I Y

After solving the optimization problem and obtaining the set of fl,é ,C’ ,D,X,Y which minimizes

7, the dynamic output feedback controller is obtained as follows (Scherer et al. (1997)):

1. Find nonsingular matrices M,N which satisfies MNT =1 — XY

2. Construct the controller using

D =D
Cx = (C — DgCoX)M™T
Bx = N"Y(B — Y ByDg)
Ag = N"Y (A - NBgCoX —YByCxMT —Y(A+ BoDgCo)X)M~T
Hinfinity design without Bilinear Transformation. Initially we design a controller using a
straight forward H., mixed sensitivity optimization without the use of Bilinear Transformation and

without augmenting the plant.

Weighting functions.
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_s/MS +wp T
i 0 0 0
0 ater, g 0
Wi = b2
0 0 Te — 05 0
0 0 0 Te — 05
Stwpuy /Muy
WQ _ se+wbul € 0
0 S+Whug /Mus
S€+Whug
-s-l-wbC /M )
se—&-cjbcl :1 O 0 0
0 stene /My, g 0
Wy = setWhey
0 0 Te — 05 0
0 0 0 Te — 05

Please note that the weighting functions W; and W3 are 4 x 4 since both velocity and Flight

path angle have been fed back in the inner loop. This concept has been explained in detail in the

later sections.

W1 W2 W3
M1 5 S 10
M2 5 5 10
w1 0.5 100 30
w2 0.5 100 30
€r | 0.001 | 0.001 | 0.001
ez | 0.001 | 0.001 | 0.001

Table 4.1: Weighting Function Parameters for AV-8A: Without Bilinear Transformation
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Weighting Functions

Singular values (dB)

10

10°
Frequency (rad/sec)

Figure 4.10: Weighting Functions for Mixed-Sensitivity H,, optimization

Closed loop poles. The closed loop poles that result from straight forward H., optimiza-

tion(without Bilinear Transformation) are as follows:

Pole Damping | Frequency(rad/sec)
-2.36e-002 + 9.75e-002i 2.35e-001 1.00e-001
-2.36e-002 - 9.75e-0021 2.35e-001 1.00e-001

-2.02e+4-000 1.00e-+000 2.02e4-000
-2.01e4+-000 + 6.21e-001i 9.55e-001 2.10e4-000
-2.01e4-000 - 6.21e-001i 9.55e-001 2.10e+4-000

-2.36e+-000 1.00e4-000 2.36e+000
-1.87e+000 + 2.25e+000i | 6.39e-001 2.92e+000
-1.87e4-000 - 2.25e4-000i 6.39e-001 2.92e4-000

-6.30e+000 1.00e+000 6.30e+4-000
-1.05e+001 + 1.11e-001i 1.00e+-000 1.05e+001
-1.05e4-001 - 1.11e-001i 1.00e+000 1.05e4-001

-1.18e+-001 1.00e4-000 1.18e+001

Table 4.2: Poles of AV-8A Closed Loop System : No Bilinear Transformation
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The resulting minimum ~ is

v =0.997 (4.8)

The above design is unacceptable because of the presence of lightly damped poles(¢ = 0.235). This
has resulted because the controller obtained from straight forward H,, mixed-sensitivity optimiza-
tion has zeros which cancels out the poles associated with the lighty damped phugoid modes of the
plant. This cancellation can be seen in Figure 4.11 where there is a bump(due to lightly damped
phugoid mode poles) and a dip(due to zeros in the controller) in the singular value plots of plant and
the controller K respectively at 0.1 rad/sec. There are several ways of circumventing this difficulty.
One approach is to impose a minimum closed loop damping via a regional pole placement constraint.
The second approach is to use Bilinear transformation which has been used in this thesis(Tsai et al.

(1990),Folly (2007)).

Pole zero Cancellation between P and K

T( / Poles of Phugoid mode

Zeros of K

s~ Plant

Singular values (dB)

10
Frequency (rad/sec)

Figure 4.11: Pole-zero Cancellation Between P and K

Bilinear Transformation.The plant has lightly damped stable phugoid modes at s = —0.0236+
70.0975(¢ = 0.235,w,, = 0.1 rads/sec). We use bilinear transformation to shift the lightly damped
poles to the right half plane so that the controller obtained from H,, mixed-sensitivity optimization

does not cancel out the lightly damped poles.

The following rules must be followed while selecting the parameters p; and ps.

1. Parameter py should be large(pz = —102°) so that the bilinear transformation merely becomes

a rightward shifting transformation by —p; units.
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2. Parameter p; should be chosen in such a way that all poles which must not be canceled by the
resulting controller should be moved into the right half plane after the bilinear transformation
has been applied.Typically p; should be less than the minimum of the real parts of the plant

poles which needs to be moved to the right half plane. In our problem, we require p; < —0.0236.

3. Parameter p; affects the bandwidth of the open loop and closed loop system. The band-
width(open loop and closed loop) increases as p; is decreased(i.e. making it more negative).
As bandwidth increases, the peak of the KS singular value plot increases i.e. more control
action results for step commands. Also, since AV-8A longitudinal dynamics has a RHP-zero
which puts an upper bound on the acceptable bandwidth of the closed loop system, the selec-

tion of p; becomes important. Therefore p; should not be made too negative.
The bilinear transformation parameters selected are as follows:
p1 = —0.1 (4.9)

p2 = —10% (4.10)

The selection results in

Transform:

S s—0.1
B s§+ P1_ Sg ~5—-0.1 (4.11)
E + 1 —1020 + 1

Inverse Transform:

S~ 5401 (4.12)

The transform performs a rightward(destabilizing) shift to move the lightly damped poles to the
right half plane. The inverse transform performs a stabilizing shift. It is used to transform the K

corresponding to the transformed plant P to the original K corresponding to original plant P.

The selection of p; is based on our desire to pull the phugoid mode to a location that has a
desirable damping i.e. { > 0.7. The parameter p; moves the phugoid mode into the right half plane
to § = —0.0236£0.097524+0.1 = 0.0764£0.0975¢. The open loop hamiltonian will have an eigenvalue
at the reflection of this location i.e. at § = —0.0764 + 0.0975¢. The H, design places a zero at this
left half plane location. After applying inverse bilinear transformation , the final controller ends up

with a zero at s = —0.0764 + 0.0975; — 0.1 = —0.1764 £ 0.0975¢(¢ = 0.875). Hence this zero pulls
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the phugoid mode to a location that has a desirable damping i.e. { > 0.7.

Disadvantages of Bilinear Transformation.

1. Loss of Integral Action. The H., design method is performed on the transformed plant P
with the original weighting functions. The resulting controller K is transformed back using
inverse bilinear transformation. This results in the loss of integral action because the near
integrators associated with K (due to W1 selection) are shifted into the left half plane by

p1 = 0.1 units.

2. Loss of closed loop frequency response shaping inequalities. When bilinear trans-
formation is used, the inequality ||Tw.||m., < 7 does not hold for T, which consists of P,K
and weighting functions Wi, Wy and W3. The inequality ||Twz‘|Hao < v holds for T, which
consists of ]57 K and original weighing functions W7, W5 and W3. Hence weighting functions

W1, W2 and W3 cannot be used to shape S, T and KS and they lose their physical significance.
Selection of Weighting functions
1. Sensitivity Weighting. A first order weighting function was selected for W1.

(a) Initially we started with wp, = wp, = 0.01 rad/sec. This ensures that we are equally

aggressive towards FPA steady state errors than Velocity steady state errors.

(b) € was chosen to be 0.003 so that we have adequate integral action to make Ty, look small

at low frequencies.

(c¢) As the sensitivity bandwidth parameter wy, is increased(decreased), the closed loop system
bandwidth increases(decreases). For AV-8A Harrier longitudinal dynamics, presence on
RHP zero puts an upper bound on the open loop bandwidth. Hence wp, cannot be

arbitrarily increased.
(d) We selected My, = M, =7 (16 db) to put an upper bound on the sensitivity peak.
2. Control Sensitivity weighting. Initially we choose W5 to be a constant(Wy = M,,). This
selection did not permit us to roll off KS at higher frequencies to attenuate the sensor noise. It

also resulted in larger controls. Hence we select a first order dynamic W5 as shown previously.

This allows us to roll off KS at higher frequencies to ensure attenuation of sensor noise.
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Table 4.3: Weighting Function Parameters for AV-8A

W1 | W2 | W3

M1 7 0.1 2

M2 7 0.1 2

wp | 0.01 10 20

wy | 0.01 10 20

€1 | 0.003 | 0.01 | 0.009

e2 | 0.003 | 0.01 | 0.009

(a) We select wyp,, = wp,, = 10 rad/sec. wyp,, and wp,, are equal to ensure that we are equally

aggressive to throttle action and stick input action.

(b) We select € = 0.01 to roll off the KS singular values at high frequencies to attenuate

sensor noise.
(¢) We select M,, = 0.1 to put an upper bound on the KS peak singular values.

3. Complementary Sensitivity Weighting. A first order dynamic weighting function was

selected for W3 as shown previously.
(a) We selected w,, = w, = 20 rad/sec - one decade above our desired open loop unity gain
crossover frequency of 2 rad/sec.

(b) We select € = 0.001 to roll off the singular values at high frequencies to attenuate the

sensor noise.

(c) We select M,, = 2(6 db) to put an upper bound on the peaks so that the step responses

have minimal overshoot.

The velocity and FPA output channel of the plant are augmented with integrators so as to ensure

zero steady state error to a step reference input. The weighting function W7 is designed to shape

sensitivity at low frequencies and ensure that ||S||e is below 8db. W5 is chosen to shape KS,

such that ||KS||e is not too high to prevent control signal saturation. Wj is designed so as to

ensure that ||T||« is below 8 db and T rolls off at higher frequencies. A generalized plant is created

using w = [r d;] as the set of exogenous signals so that we get good properties at both input and
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output loop breaking points. Both velocity and FPA are fed back in the inner loop while designing
the generalized plant.This serves as the inner loop feedback in a standard inner-outer feedback
control architecture This controller architecture has been considered for designing the dynamic
output feedback controller to ensure that the designer won’t have to design an inner loop controller
and an outer loop controller separately.y is minimized by solving LMI using the software YALMIP.
Inverse bilinear transformation is performed on the controller returned by the optimization to shift
the controller to the left half plane so that it corresponds to the original untransformed plant. The
integrators present at the output of the plant are shifted to the controller input. In other words, the
controller is augmented with integrators at the input. The closed loop system is obtained using the
final controller containing 4 inputs and 2 outputs and the original plant.

Closed loop pole(Good design). The closed loop poles that result from our second approach

using bilinear transformation is as follows:

Pole Damping | Frequency(rad/sec)

-1.79e-001 + 9.72e-002i 8.79e-001 2.03e-001
-1.79e-001 - 9.72e-002i 8.79e-001 2.03e-001
-1.95e+000 + 1.09e+000i | 8.73e-001 2.24e+000
-1.95e+000 - 1.09e+000i | 8.73e-001 2.24e+000
-3.24e+000 1.00e+000 3.24e4-000
-2.00e+000 + 2.90e+000i | 5.67e-001 3.53e+000
-2.00e+000 - 2.90e+000i | 5.67e-001 3.53e+000
-1.25e+001 1.00e+-000 1.25e+001
-1.79e+001 + 3.61e+000i | 9.80e-001 1.83e4-001
-1.79e4-001 - 3.61e-+000i | 9.80e-001 1.83e+001
-2.03e+001 1.00e+-000 2.03e+001
-5.94e+002 1.00e+000 5.94e+002
-2.00e+004 1.00e+000 2.00e+004
-2.01e+004 1.00e+-000 2.01e+-004

Table 4.4: Closed Loop Poles of AV8A using Bilinear Transformation
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Closed loop zeros. The resulting closed loop transmission zeros are as follows.

Zeros Damping | Frequency(rad/sec)
-1.36e+007 1.00e4-000 1.36e+-007
-8.03e+005 1.00e4-000 8.03e4+-005
-1.23e+4-005 1.00e+000 1.23e+4-005

-2.01e+004 + 2.44e+001i | 1.00e+000 2.01e+004
-2.01e+004 - 2.44e4-001i 1.00e4-000 2.01e4+-004
-2.00e+003 + 9.18e-0011 1.00e+000 2.00e+003
-2.00e+4-003 - 9.18e-001i 1.00e+000 2.00e4-003

-6.83e+000 1.00e+-000 6.83e4000
5.55e+000 -1.00e+4-000 5.55e+4-000
-1.65e-001 + 9.18e-002i 8.74e-001 1.89e-001
-1.65e-001 - 9.18e-0021 8.74e-001 1.89e-001

Table 4.5: Closed Loop Zeros of AV-8A Using Bilinear Transformation

The resulting minimum gamma for this design is
v =101.52 (4.13)
4.4 Inner Outer Loop PI-PD Controller

In the subsection,we discuss the design methodology for Inner-Outer loop control design for the
longitudinal control system. The inner outer loop structure in Figure 4.12 has been used to design
a PI-PD controller.

where
1. Output vector: y = [yl y2]T = [y Velocity] "
2. Control vector: u = [ul u2]" = [0, 6]

3. State : x, = [0]
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Figure 4.12: Inner Outer Feedback Loop :AV8A

Let us first design an inner-outer loop controller for the AVS8A Harrier aircraft considering only

the diagonal elements of the plant transfer function matrix i.e. Ps__,, and Ps, .

Let us consider the (2,2) element of the plant transfer function matrix i.e. Py, .

—0.5424(s + 10.62)(s — 8.763)(s + 0.48)
(s + 12)(s2 + 0.0472s + 0.01007) (% + 2.437s + 2.848)

P(;t —v = (4 14)

Initially let us assume that Ps,_,, does not need an inner-outer loop controller to have good
closed loop properties.
Let us use only output feedback controller to stabilize Ps,_,,.Let’s assume K, = M where

go2 > 0, 2o2 > 0. The rootlocus of L = Ps,_,, K, where K, = w

is shown in Figure 4.13.
It is seen that the closed loop system may be stable using only a PI controller but the closed loop
poles would be very lightly damped. As we increase g,1, the closed loop system become more lightly
damped and eventually the closed loop system becomes unstable because the upward gain margin

is very small as seen in Figure 4.14.
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Pole Damping | Frequency(rad/sec) | Time Constant(sec)
-9.67e-03 1.00e+00 9.67e-03 1.03e+02
-1.76e-01 + 7.38e-01i | 2.32e-01 7.58e-01 5.69¢e4-00
-1.76e-01 - 7.38e-01i 2.32e-01 7.58e-01 5.69e+00
-1.06e4-00 + 5.74e-01i | 8.79e-01 1.21e+00 9.44e-01
-1.06e+4-00 - 5.74e-011 | 8.79e-01 1.21e4-00 9.44e-01
-1.20e+01 1.00e+00 1.20e+01 8.33e-02
Table 4.6: Poles of T' = % Using Output Feedback : AV8A
Rootlocus of L =P, K,
.‘ﬁ 0
g

I
30 20 10

Real Axis (seconds ™)

0 10 20 30 40

Figure 4.13: Rootlocus of L = Pj,_,, K, Using PI controller :AV-8A
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Rootlocus of L=P, K
v 02

Imaginary Axis (seconds'l)

Overshoot (3%): 47.7
Frequency (radfs): 0.759

I I I I I I
-2 -15 -1

05
Real Axis (seconds’l)

Figure 4.14: Rootlocus of L = Ps,_,, K, using PI Controller Magnified at the Origin : AV-8A

Hence we use the inner-outer loop feedback control architecture in order to shift the lightly

damped phugoid of Pj,_,, to a location with better damping using a PD controller in the inner loop

to obtain Peq = 7 fgr"n‘i - where Lpoq = Ps,—vK;1. This is followed by the stabilization of P04

using a PI controller in the outer loop. The closed loop system architecture is shown in Figure 4.15
As seen in Figure 4.16 and Figure 4.17 , the inner loop with K;; = 0.25(s + 0.9) places the short

period modes at the location s = —0.974 + 1.39¢ , ¢ = 0.57. The inner loop also places the phugoid
modes at s = —0.217 + 0.349: , { = 0.528.
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Figure 4.15: F8: Inner Outer Loop Structure for Ps,_,,(s)
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Figure 4.16: Rootlocus of L,,,q = Ps,—¢K; Using PD Controller

Let us use a PI controller to stabilize L = P,,0qK o2 where Py, ,q = 1ff°dd and Lyoq = Ps, o Kio.
We select Ky = M. We should be careful while playing with the gain of the PI controller
because the upward gain margin is finite. The rootlocus of L = P,,,qK 2 is as shown in Figure 4.18.

The poles of the closed loop system is as follows:
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Rootlocus of L = P5‘V K,
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Figure 4.17: Rootlocus of Ly,0q = Ps,—eK; Magnified at Origin
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Figure 4.18: Rootlocus o
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Pole Damping | Frequency(rad/sec) | Time constant(sec)

-2.20e-02 1.00e+00 2.20e-02 4.54e+4-01
-2.63e-01 4 3.77e-01i 5.72e-01 4.59e-01 3.80e4-00
-2.63e-01 - 3.77e-01i 9.72e-01 4.59e-01 3.80e+00
-8.97e-01 + 1.46e+00i | 5.23e-01 1.72e+00 1.11e+00
-8.97e-01 - 1.46e+00i 5.23e-01 1.72e4-00 1.11e+4-00
-1.20e+-01 1.00e+00 1.20e+01 8.36e-02
-2.00e+02 + 2.93e+00i | 1.00e+00 2.00e+02 5.00e-03
-2.00e+02 - 2.93e+00i | 1.00e+00 2.00e4-02 5.00e-03

Table 4.7: Closed Loop Poles of T' = % : AV-8A

Let us now stabilize Ps,_,, using an inner-outer PI-PD controller.

0.02253(s + 0.1154)(s% + 3.3665 -+ 20.38)
(s + 1.966)(s2 + 0.0472s + 0.01007) (% + 2.437s + 2.848)

(4.15)

P&q—w

To design the flight control system for FPA, let us consider the following inner-outer closed loop

system in Figure 4.19.

4’9—' Ko, (s) Ps._0(s) P9—>'y(5) 4<£7L

Ki, (s)

Uj

—0

ng

Figure 4.19: Inner Outer Feedback Loop for Pyejiq,—:AVS8A

As a rule of thumb, we always consider the inner loop as a negative feedback loop. From the

transfer function matrix of the plant we obtain
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0.69844(s + 0.3525)(s + 0.2712)
(s + 1.966) (52 4 0.0472s + 0.01007) (% + 2.437s + 2.848)

Ps,o(s) = (4.16)

0.02253(s + 0.1154)(s2 + 3.3665 -+ 20.38)
P _ 417
b= (5) 0.69844(s + 0.3525)(s + 0.2712) (4.17)

The inner loop is used to move the phugoid modes and short period modes to a location in the
LHP with better damping so that the outer loop can stabilize the system and obtain a closed loop
system with good properties.

Let us use K;; = 6(s+0.05) to shift the phugoid and the short period modes to better locations.

I . P, .
As seen in Figure 4.20 and Figure 4.21 the poles of T},0q = ﬁ have good damping.
s— 7
Rootlocus of Lod = PESE o Ki
8
6 -
4 -
o—axf} —

Imaginary Axis (seconds‘l)
7

I I I I I
-1 -05 0 05

Real Axis (seconds ™)

Figure 4.20: Rootlocus of L,,,q = P5, K1 Using PI Controller : AV-8A

Now we use the outer loop to stabilize Py,0q Where Ppoq = Tinod * Po—r-

0.022527(s® + 3.3665 + 20.38)

Pmo =
a(8) = (5 70.8972)(s + 0.07149)(s 1 3.4545  5.508)

(4.18)

Let us use Kol = w to stabilize the system. The rootlocus of L = P,,,qK,1 is as shown

in Figure 4.22. Hence Ps__,, is stabilized.
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Rootlocus of Lmod = Pée o Kiy

Imaginary Axis (seconds'l)
T

Figure 4.21: Rootlocus of Ly,0q = Ps,0K;1 Magnified at Origin : AV-8A

-0.2 -0.15 -0.1

Real Axis (seconds’l)

Pole Damping | Frequency(rad/sec) | Time constant(sec)
-4.95e-02 + 8.69¢-02i 4.95e-01 1.00e-01 2.02e+01
-4.95e-02 - 8.69e-02i 4.95e-01 1.00e-01 2.02e+401

-8.97e-01 1.00e+00 8.97e-01 1.11e+00
-1.73e4+00 + 2.35e400i | 5.92e-01 2.92e+-00 5.79e-01
-1.73e+00 - 2.35e+00i 5.92e-01 2.92e4-00 5.79e-01

P’e—’ .
Table 4.8: Closed Loop Poles of T},0q = H},&iﬁ : AV-8A
Hence the decentralized controller obtained is as follows:
6(s + 0.05) 0
K;(s)
0 0.25(s + 0.9)
70.1(270.1) 0
Ko(s)
0 0.3(s40.1)

S
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Rootlocus of L =P K
mod "ol

'§ L |
g
% 0 O
E L ,
v Real(’/:\xis
Figure 4.22: Rootlocus of L = Py,0q K01
Pole Damping | Frequency(rad/sec)
-1.13e-002 1.00e+-000 1.13e-002
-5.28e-002 1.00e4-000 5.28e-002
-9.06e-001 1.00e4-000 9.06e-001
-1.73e+000 4 2.35e+000i | 5.92e-001 2.92e+000
-1.73e+000 - 2.35e4-000i 5.92e-001 2.92e+4-000

Table 4.9: Closed Loop Poles of L = P,,,qK,1 : AV-8A

4.5 PI-PD Controller vs Dynamic Output Feedback Controller

In the section we try to obtain a PI-PD controller which best approximates the dynamic output

feedback controller obtained in the previous section.

We have already designed a decentralized PI-PD controller which stabilizes the AV8A-Harrier

plant provided only the diagonal elements are considered. The controller is as follows:
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6(s + 0.05) 0

K;(s) =
0 0.25(s + 0.9)
(4.20)
—0.1(s—0.1) 0
Ko(s) = (S) 0.3(s40.1)

S

This controller also stabilizes the centralized plant which means that the plant is sufficiently
decoupled so that so that a decentralized controller which was designed for the decoupled system
stabilizes the coupled system as well. Now, we do a exhaustive search in the neighborhood of the
previously obtained g¢,1,201,902,202,9i1,%i1 parameters in order to obtain a PI-PD controller which
best approximates the dynamic output feedback controller. While doing this search by brute force
looping, we minimize ||Se1 — Sez2||oo (Where S,q corresponds to Output feedback controller and Seo
corresponds to PI-PD controler) in the low frequency range 0.0001 rads/sec to 0.01 rads/sec in order
to ensure that we obtain the best PI-PD controller which gives us similar properties at the output
loop breaking point when compared to the dynamic output feedback controller at low frequencies.

We find the set of parameters of the controller which minimizes ||Sc; — Se2]|oo-

After doing the optimization, we obtain the following PI-PD controller which minimizes ||Se; —
Sez2||oo in the range 0.0001 rads/sec to 0.01 rads/sec. The roll-off terms have been selected in a way
so that the KS crossover frequency for the dynamic output feedback based closed loop system and
the PI-PD based closed loop system is the same. This is done in order to ensure that we are in a

position to compare two designs.

3
0.13(s — 0.77) | 28 0
Ki(s) = ( : [(SH'S)} s 13
0 L1(s = 0.01) [
(4.21)
3
—0.3(s—0.5) 30
e
0 1(s40.06) 30 3
s (s+30)

The damping of the closed loop system using the PI-PD controller is as follows:
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Pole Damping | Frequency(rad/sec) | Time constant

-6.50e-02 1.00e+00 6.50e-02 1.54e+01
-1.29e-01 + 2.07e-01i 5.29e-01 2.44e-01 7.74e+00
-1.29e-01 - 2.07e-01i 5.29e-01 2.44e-01 7.74e+00
-9.99e-01 + 8.74e-01i | 7.53e-01 1.33e+00 1.00e+-00
-9.99e-01 - 8.74e-01i 7.53e-01 1.33e4-00 1.00e+00
-2.41e+4-00 1.00e+4-00 2.41e4-00 4.15e-01
-9.11e-01 4+ 2.24e+001 3.77e-01 2.42e+00 1.10e+4-00
-9.11e-01 - 2.24e+00i 3.77e-01 2.42e+00 1.10e4-00
-3.10e+-00 1.00e+00 3.10e+00 3.23e-01
-5.35e+00 + 6.11e-01i | 9.94e-01 5.38e+00 1.87e-01
-5.35e4-00 - 6.11e-01i 9.94e-01 5.38e+00 1.87e-01
-5.78e+00 + 1.24e+00i | 9.78¢-01 5.92e+00 1.73e-01
-5.78e+00 - 1.24e+00i | 9.78e-01 5.92e+-00 1.73e-01
-1.34e+4-01 1.00e4-00 1.34e+01 7.47e-02
-1.93e+01 1.00e+00 1.93e+01 5.18e-02
-2.66e+01 + 1.03e+01i | 9.32¢-01 2.85e+01 3.76e-02
-2.66e4-01 - 1.03e+4-01i 9.32e-01 2.85e+01 3.76e-02
-3.40e+01 + 5.50e+00i | 9.87¢-01 3.45e+01 2.94e-02
-3.40e+-01 - 5.50e+-00i 9.87e-01 3.45e+-01 2.94e-02
-3.93e+01 1.00e+-00 3.93e+4-01 2.55e-02

Table 4.10: Closed Loop Poles : PI-PD Based Controller

Let us now compare the closed loop properties obtained by using PI-PD controller and dynamic

output feedback controller.

As evident in Table 4.11, the dynamic output controller offers better closed loop properties than
the PI-PD controller. The dynamic output controller also offers better input disturbance attenuation

than the PI-PD controller.
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ISelloo | ITelloo | [1Seclloo | [1Telloo | [KSelloo | [[PSelloo

Dynamic Output feedback Controller 4.39 3.49 6.06 2.72 6.23 1.26

PI-PD controller 6.88 5.26 7.21 4.64 4.48 6.49

Table 4.11: Attained Closed Loop Properties for PI-PD and Dynamic Output Feedback

Controller:AV-8A Harrier

(dB)
|~
[t

(dB)
N
™~
|1

\\
—
AN
~

<
=

Singular Values

Figure 4.23: Comparison of |Se; — Seo| and [Se1 — Seo| for AV-8A Harrier

Let us now compare the |Se; — Sea| and |S.; — Sea| plots where S.; and S.; corresponds to
Dynamic output feedback controller and S.s and S.o corresponds to PI-PD controller as shown in
Figure 4.23.

[Se1 — Sea| and [Se1 — Seo| have very low singular values at low frequencies. This means that the
PI-PD controller and Dynamic output feedback controller would give similar performances at both
the loop breaking points when operating at low frequencies.

The following are the plots showing the comparison of the frequency domain and time domain

responses for the dynamic output feedback controller and PI-PD controller.
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Frequency Domain Plots
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Figure 4.28: T, : AV-8A
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Time Domain Plots
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Figure 4.35: FPA Response to r = [1 0] : AV-8A Figure 4.36: FPA Response to r = [0 1] : AV-8A
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Figure 4.37: Velocity Response to r = [1 0] : AV-Figure 4.38: Velocity Response to r = [0 1] : AV-
8A 8A
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Figure 4.39: Stick Response to r = [1 0] : AV-8A Figure 4.40: Stick Response to r = [0 1] : AV-8A
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Throttle response to r = [1 0:AV-8A
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Stick response to di = [1 0]:AV-8A
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Figure 4.47: Stick Response to d; = [1 0] : AV-8AFigure 4.48: Stick Response to d; = [0 1] : AV-8A
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4.6 Summary

After analyzing the closed loop properties, it is seen that the dynamic output feedback controller

offers good properties at both the loop breaking points. The PI-PD (Ko,... .. orizeas Bideoontratized)
does not give as good properties at both the loop breaking points as a dynamic output feedback

controller.
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Chapter 5

VOUGHT F-8 CRUSADER

5.1 Overview.

In this chapter, we briefly discuss the longitudinal dynamics of the F8 aircraft. In the following
sections we design a dynamic output feedback controller using Linear Matrix Inequality. We also
discuss the inner outer loop control structure and design a PI-PD controller for the longitudinal dy-
namics. Finally we attempt to design a PI-PD controller which would similar closed loop properties
as the dynamic output feedback controller.

Background. The Vought F-8 Crusader was a single-engine, supersonic, carrier-based air supe-
riority jet aircraft built by Vought for the United States Navy and the Marine Corps. The F-8 was
used by NASA as part of their digital ”‘fly-by wire” research program.The F-8 had a high-mounted
wing which necessitated the use of a fuselage-mounted short and light landing gear which was unsual
for a fighter aircraft. The most innovative aspect of the F-8 design was the variable-incidence wing
which was pivoted by 7deg out of the fuselage during takeoff and landing which increased the lift
due to greater angle of attack without compromising forward visibility because the fuselage stayed

level. The F-8 was the last aircraft designed by the Navy with guns as its primary weapon.

Figure 5.1: Vought F-8 Crusader
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5.2  F8 Longitudinal Dynamics

In this section, we examine the longitudinal dynamics for the F8 aircraft.

Aircraft Characteristics. We examine the aircraft during a straight and level powered ap-

proach.The flight conditions are as follows:

1. Altitude of 20,000 ft (6095 meters)

2. Speed of Mach 0.9 (916.6 ft/sec)

3. Dynamic pressure 550 lbs/sq ft

4. Trim Pitch angle 2.25 deg

5. Trim Angle of Attack 2.25 deg

6. Trim Elevator Attack -2.65 deg

The aircraft is assumed to fly in the vertical plane with its wings level so that we can study its

motion in the vertical plane, i.e. longitudinal dynamics. The important variables that characterize

the plane are : horizontal velocity u of the airplane, the pitch angle theta, the pitch rate and the

angle of attack alpha. The longitudinal motion of the aircraft is controlled by two aerodynamic

control surfaces: the elevator which is located on the horizontal tail and the flaperons which are

located on the wings. The longitudinal motion is also influenced by thurst generated by the engines.

However, the thrust shall be considered to be constant. Hence we shall not consider it as a dynamic

control variable.

The TITO model for the longitudinal dynamics at the above flight conditions is as follows:

where

0
1.5000
—12.0000
—0.8524

i = Ax + Bu
y=Cx+ Du

0 1.0000
—1.5000 0

12.0000  —0.8000
0.2904 0

180

(5.1)

(5.2)

0.0057
—0.0344

—0.0140



0 0
0.1600 0.6000
—19.0000 —2.5000

—0.0115 —0.0087

10 0 0
0 1 0 0

D =
0 perturbed pitch angle from trim deg
~v perturbed flight path angle from trim deg

q pitch rate deg/sec

v perturbation from horizontal speed ft/sec

0. Elevon deflection from trim  deg
u =

07 Flaperon deflection from trim deg

0 Perturbed pitch angle from trim deg
y =
~v Perturbed flight path angle from trim deg

The aircraft’s two control surfaces are as follows :
1. Elevator - Situated on the horizontal tail
2. Flaperon - Located on the wings

Poles and Zeros. The aircraft has stable phugoid modes at s = —0.00577 + j0.0264(¢ =
0.213,w,, = 0.027 rads/sec), stable short period modes at s = —1.15 + j3.45(¢ = 0.317,w,, = 3.63

rads/sec). It also has a transmission zero at s = —0.0139.

Transfer Function Matrix. The system transfer function matrix from u to y is given by

Gs.o Gspo
Gs.v Géﬂ

G(s)=C(sI— A)'B+D =

where
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Figure 5.2: Visualization of Poles and Zeros for F8 Longitudinal Dynamics

G o — —19(s+1.4)(s+0.01287)
8e0 = (5250.01155540.0007316)(s2+2.3025+13.2)

s o — 0.16(s+13.3)(s—12.49)(s+0.01069)
870 = (s2+40.011555+0.0007316)(s2+2.3025+13.2)

G — —2.5(s—1.38)(s+0.01343)
dey = (s2+40.011555+0.0007316)(s2+2.3025+13.2)

G — 0.6(s+0.0124)(s%+0.8051545.751)
857 = (s240.011555+0.0007316) (s> +2.3025+13.2)

The individual transfer functions show the presence of stable phugoid modes at s = —0.00577 +
70.0264(¢ = 0.213,w,, = 0.027 rads/sec) and short period modes at s = —1.15+353.45(¢ = 0.317,w,, =
3.63 rads/sec).The transfer functions G5,¢ and Gs, ., shows the presence of right half plane poles at

s =12.49 and s = 1.38. They are not transmission zeros but they make the F-8 difficult to control.
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The frequency response bode plots for each of the 4 system transfer functions is given in Fig-

ure 5.3-5.6

Plant(1,1) : ESe to®

50
% 0
(%]
()
=}
<
>
8
3
2
7] -50
-100 —_— -
10° 107 10" 10° 10" 107 10°
Frequency (rad/s)
Figure 5.3: Frequency Response - . to 6
Plant(1,2) : 6f to 6
40
20
0

Singular values (dB)
5

-100

-120 -3 — -2 -1 — 0 — 1 2 — - 3
10 10 10 10 10 10 10
Frequency (rad/s)

Figure 5.4: Frequency Response -  to ¢
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Figure 5.5: Frequency Response - d. to

Plant(2,2) : 6f toy

Singular values (dB)
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Frequency (rad/s)

Figure 5.6: Frequency Response - ¢ to v

MIMO Frequency Response: Singular Values
The MIMO singular values for the plant transfer matrix from controls v = [§. d¢] to plant output

y = [0 7] are plotted in Figure 5.7. The plot shows a peaking at 0.027 rads/sec and 3.63 rads/sec due

to the lightly damped phugoid mode at s = —0.00577 4 j0.0264(¢ = 0.213,w,, = 0.027 rads/sec) and
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short period modes at s = —1.15 £ j3.45(¢ = 0.317,w,, = 3.63 rads/sec) respectively. In the plot, we
notice that the minimum singular values of the plant corresponding to the d¢ channel are low and wide
spread at low frequencies. Hence the resulting controller will have to compensate for the low plant
gain in the §; channel. Thus we should expect significant flaperon activity to achieve a loop with
desirable low frequency command following and good disturbance attenuation(e.g. 0.,:n[PK] > 20

db at low frequencies.

Plant singular values
50

Singular values (dB)

-50

-100 - el -
-~ = -1 0 1 2 3
10 10 10 10 10 10 10
Frequency (rad/s)

Figure 5.7: F8 Longitudinal Dynamics Singular Values MIMO Frequency Response

DC Gain Analysis. Singular Value Decomposition. While analyzing the F-8 model at

DC, we get the following matrix of DC gains:

0 —35.4347 4.7950| | 9.
vy —29.4214 4.4283| |y

A singular value decomposition at DC yields the following:

—35.4347  4.7950
G(j0)=C(-A)'B+D=UxV" =
—29.4214  4.4283
—0.7687 —0.6396 46.5158 0 0.9901  0.1401
—0.6396  0.7687 0 0.3406 —0.1401  0.9901

From the singular value decomposition, conclusions can be drawn about the steady state input

output coupling.

1. Examination of the first columns of V,¥ and U shows that elevator has a greater impact on

the pitch angle of the aircraft compared to the flight path angle .This may be visualized as
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Figure 5.8: F8 SVD at DC for Longitudinal Dynamics v1 — ojuy
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Figure 5.9: F8 SVD at DC for Longitudinal Dynamics vo — oous

shown in Figure 5.8. This analysis shows that elevator should be used as the primary control

for maintaining steady pitch angle perturbations from equilibrium.

2. Examination of the second columns of V,¥ and U shows that flaperon has a greater impact on
the flight path angle of the aircraft than the pitch of the aircraft. This may be visualized as
shown in Figure 5.9. This analysis shows that flaperon should be used as the primary control

for maintaining steady flight path angle perturbations from equilibrium.

The Singular Value Decomposition at DC shows that the F8 is less coupled at DC.
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5.3 Hy Mixed Sensitivity Control System Design for F-8 Longitudinal Dynamics

In this section , we consider the design of a dynamic output feedback control system for the
longitudinal dynamics of F-8 aircraft.

The TITO model for the longitudinal dynamics at the above flight conditions is as follows:

& = Az + Bu (5.3)
y=Cz+ Du (5.4)
where
0 perturbed pitch angle from trim deg
~v perturbed flight path angle from trim deg
xTr =
q pitch rate deg/sec
v perturbation from horizontal speed ft/sec
0.  Elevon deflection from trim  deg
u =
07 Flaperon deflection from trim deg
0 Perturbed pitch angle from trim deg
y =

~ Perturbed flight path angle from trim deg

Open Loop Bandwidth Design Specification. Since the F8 has no RHP zero or RHP pole,
therefore there is no fundamental constraint on the bandwidth at the input and the output loop
breaking point. However, there would always be unmodelelled high frequency acutater dynamics,
high frequency parasitic dynamics or high frequency flexible modes which would put an upward
bound on the bandwidth. Hence we shouldn’t make our bandwidth very high so that these high

frequency dynamics don’t get excited. Let us choose an open loop bandwidth of 1 rads/sec.
H,, Dynamic Output Feedback Controller Design. We now design the dynamic output

feedback controller keeping the above mentioned bandwidth constraints in mind. Let us consider

the generalized plant of the following form:(Olalla et al. (2011),AbdelGhany and Bensenouci (2007))
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T = Az + Biu + Byw
z = Cll’ + D11U + D12w
y = Coz + Daju + Daypw

where u = [0, 6|7 is the input, w = [r di]T is the set of exogenous signals, y = [# 7|7 is the

measured output and z is an output vector related to the performance of the closed loop system.

Weighted H,, Mixed Sensitivity Problem The standard weighted H,, mixed sensitivity
problem is to find a finite dimensional real-rational proper internally stabilizing controller K that

satisfies (Scherer et al. (1997),Echols et al. (2015))

W1S,
K=arg{ min 5| WoKS, | <7} (5.5)
K stabilizing
W3T,

o0

where S is the sensitivity transfer function, T is the complementary sensitivity transfer function
of the closed loop system and KS is the control action.

However we would use w = [r d;] as the set of exogenous signals in order to get good properties at
both input and output loop breaking points.So we do a slightly modified weighted mixed sensitivity
problem to find a finite dimensional real-rational proper internally stabilizing controller K that

satisfies(Echols et al. (2015)):

W,S. W,PS,
K =arg{ stfféii%zmﬂ WeKS, WoT, <} (5.6)
WsT. WsPS.

oo

Finding a internally stabilizing controller K that minimizes v can be translated into an LMI

optimization problem as shown below(Scherer et al. (1997)):
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‘minimize
A B,CD.X)Y

s.t.

v

AX + XAT + ByC + (BoC)T

A+ (A+ ByDCy)T
(By + BaDDgy)T
Ci1 X + Dué

X I

>0

I Y

AT 4 (A + ByDCy)
ATY + YA+ BC + (BO)T
(YB; 4+ BDs)"

C1 4 D1,DCy

*
*
—~I
D11 + D13DDy

After solving the optimization problem and obtaining the set of A,B,C,D,X,Y which minimizes

~, the dynamic output feedback controller is obtained as follows(Scherer et al. (1997)):

1. Find nonsingular matrices M,N which satisfies MNT =T — XY

2. Construct the controller using

Dx =D
Ckx = (C = DgCoX)M~T
Bx = N"Y(B - YB,Dg)

Ag = N"YA - NBgCyX —YByCxMT — Y (A+ ByDgCo)X)M T

Structure of Weighting functions for H,, Mixed Sensitivity Optimization. The struc-

ture of weighting functions which has been used to do the above optimization is shown below:

S/]\/fs1 +wb1
s+wble

Wi =

Wy =

sHwheq /My,
se+wbcls

se—i—wbule

0 0
5/ Mgy +wi, 0
S+Ld},26
0 Te — 05
S5+wWhuy /Muy 0
S$+Whuoy /Mu2
SetWhug
0 0
5+‘*’b02 /Myz 0
SetWhcy
0 Te — 05
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Table 5.1: Weighting Function Parameters for F-8

W1 | W2 | W3

M1 10 70 1

M2 10 70 1

w1 0.2 100 20

wo 0.2 100 20

e; | 0.001 | 0.1 | 0.001

e2 | 0.001 | 0.1 | 0.001

While designing the dynamic output feedback controller, the controller architecture has been
considered to imitate a classical inner-outer loop structure to ensure that the designer won’t have
to design an inner loop controller and outer loop controller separately. The controller architecture
has been shown in Figure 5.10.

H,, Controller Synthesis

1. Augment the 6 and « output channels of the plant with integrators so as to ensure integral

action at low frequencies which would lead to zero steady state error to a step reference input.

2. In order to prevent cancellation of the lightly damped phugoid modes and integrator states by
the H,, controller synthesis methodology, use bilinear transformation(Tsai et al. (1990),Folly
(2007)) to shift the system slightly to the right half plane. We use the following Bilinear

transformation parameters for F8-longitudinal dynamics model.

The bilinear transformation parameters for both NEOP and NENP model are selected are as

follows:

p1 = —0.0075 (5.8)

p2 = —10%° (5.9)

The selection results in

Transform:
_S$+p1 $§-0.0097
mtl et

D2

5 —0.0075 (5.10)
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Inverse Transform:

5~ 54 0.0075 (5.11)

. Choose W1 to shape sensitivity transfer function to have good integral action at low frequencies
and ensure that ||.S]|o is below 8db. Choose W2 to shape the KS transfer function such that
|| KS]|oo is not too high which would prevent control signal saturation. Also ensure that KS
rolls off at higher frequencies. Choose W3 so that ||T||~ is below 8 db and T rolls off at higher

frequencies to ensure sensor noise attenuation at higher frequencies.

. Create a generalized plant using w = [r d;] as the set of exogenous signals so that we get good

properties at both input and output loop breaking points.

. Minimize gamma by solving LMI as shown in Equation 5.3. We use YALMIP (Lofberg (2004),Lo6fberg
(2008))for solving the LMI.

. Obtain the controller from the parameters returned by the optimization. Do inverse bilinear
transformation to shift the controller to the left half plane so that it corresponds to the original

untransformed plant.

. Shift the integrators from the plant output to the controller input. In other words, augment

the controller at the input with integrators.

. Feed the 0 state into the controller as the 3rd input. This serves as the inner loop feedback as
seen in a standard inner-outer feedback control architecture in Figure 5.10. Obtain the closed

loop system using the final controller containing 3 inputs and 2 outputs and the original plant.
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Figure 5.10: Topology of Dynamic Output Feedback Control System

After performing the optimization, the closed loop poles obtained are as follows:
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Table 5.2: F8: Closed Loop Poles Using Dynamic Output Feedback

Pole Damping | Frequency(rad/sec) | Time constant(sec)
-1.39e-02 1.00e+00 1.39e-02 7.19e+-01
-1.39¢-02 1.00e+00 1.39e-02 7.19e+01
-2.06e-01 1.00e+00 2.06e-01 4.85e+00
-3.14e-01 1.00e+-00 3.14e-01 3.19e+00
-1.20e+-00 1.00e+00 1.20e+00 8.31e-01

-1.58e+00 + 8.01e-01i | 8.92e-01 1.77e4-00 6.32e-01
-1.58e+00 - 8.01e-01i 8.92e-01 1.77e+00 6.32e-01
-1.25e4-00 4 1.90e4-00i | 5.49e-01 2.28e4-00 7.99e-01
-1.25e+00 - 1.90e+00i | 5.49e-01 2.28e4-00 7.99e-01
-2.59e4+00 + 2.66e-01i | 9.95e-01 2.60e+00 3.86e-01
-2.59e+00 - 2.66e-01i | 9.95e-01 2.60e+00 3.86e-01
-1.50e+00 + 3.66e+00i | 3.79e-01 3.95e+4-00 6.67e-01
-1.50e+00 - 3.66e+00i | 3.79e-01 3.95e+00 6.67e-01
-1.07e4+01 + 1.59e401i | 5.58e-01 1.92e+01 9.32e-02
-1.07e+01 - 1.59e+01i | 5.58e-01 1.92e+01 9.32e-02
-2.00e+02 + 3.13e-02i | 1.00e+00 2.00e+02 5.00e-03
-2.00e+02 - 3.13e-02i | 1.00e+00 2.00e+02 5.00e-03
-2.00e+4-02 + 3.25e4-00i | 1.00e+-00 2.00e+-02 5.00e-03
-2.00e+02 - 3.25e+00i | 1.00e+00 2.00e+02 5.00e-03
-3.25e+04 1.00e+00 3.25e+04 3.08e-05
-5.13e+4-04 1.00e+00 5.13e4+-04 1.95e-05
-6.05e+04 1.00e+00 6.05e+04 1.65e-05

5.4 Inner-Outer Loop Feedback Loop Control Design Methodology

In the section,we discuss the design methodology for Inner-Outer loop control design for the
longitudinal control system.

where
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Figure 5.11: Inner Outer Feedback Loop

1. Output vector: y = [yl 2]T =[0 ]
2. Control vector: u = [ul u2]" = [d, 67]"
3. State : x, = [0]

Let us first design an inner-outer loop controller for the F8 aircraft considering only the diagonal

elements of the plant transfer function matrix i.e. Ps,_,9 and Ps, .

Let us consider the (1,1) element of the plant transfer function matrix i.e. Ps, .

—19(s + 1.4)(s + 0.01287)
52+ 0.011555 + 0.0007316)(s2 + 2.302s + 13.2)

Ps, 9 = ( (5.12)

Initially let us assume that Ps, _,y does not need an inner-outer loop controller to be stabilized.
Let us assume Ko = M where go1 > 0, 201 > 0. The rootlocus of L = Ps5,_,9K, where
K, = M is shown in Figure 5.12. It is seen that the closed loop system may be stable using
only a PI controller but the closed loop poles would be very lightly damped. As we increase g,1, the

closed loop system become more lightly damped.

Hence we use the inner-outer loop feedback control architecture in order to shift the lightly

damped phugoid and short period modes of Ps__,y to a location with better damping using a PD

controller in the inner loop to obtain P,,,q = 1i5£%d where Ly,0q = Ps5,_0K;1. This is followed by
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Figure 5.12: Rootlocus of L = Ps__,9K, using PI Controller :F8

the stabilization of Py,.q using a PI controller in the outer loop. The closed loop system architecture

is shown in Figure 5.13 :

Koi(s)

upr

P56~>9(3 -

Kii(s)

Figure 5.13: F8: Inner Outer Loop Structure for Ps__9(s)

As seen in Figure 5.14 and Figure 5.15 , the inner loop with K;; = —0.3(s+ 0.4) places the short

period modes at the location s = —3.93 £ 2.62,{ = 0.832. The inner loop also places the phugoid

modes at s = —0.139 and s = —0.0164.
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Figure 5.14: Rootlocus of Ly,0q = Ps,¢K; Using PD Controller : F8
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Figure 5.15: Rootlocus of Ly,0q = Ps, 0K; Magnified at Origin : F8

Now let us use an outer loop to stabilize L = P,,,qK,1 where Ppoq = 1?]%: and Ly,0q =
Ps__pK;1. We select K, = M The rootlocus of L = P,,,,qK,1 is as shown in Figure 5.16.
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—19(s+1.4)

Prod = 5.13
47 (5 +0.1385)(s2 + 7.859s + 22.34) (5.13)
Rootlocus of L = Pmnd Ko1
- b Real :Axis b ' ’

Figure 5.16: Rootlocus of L = Py,,0qK,1 : F8
The poles of the closed loop system is as follows:
Table 5.3: Closed Loop Poles of T' = % where P,,0q = H%ﬁ : F8
Pole Damping | Frequency(rad/sec)
-8.11e-001 + 7.99e-0011 7.12e-001 1.14e+000
-8.11e-001 - 7.99¢-001i 7.12e-001 1.14e+000
-3.19e+000 + 4.54e4000i | 5.74e-001 5.55e+000
-3.19e+000 - 4.54e+0001 | 5.74e-001 5.55e+000
Let us now consider the (2,2) element of the plant transfer function matrix i.e. Ps, .
0.6(s -+ 0.0124)(s? + 0.8015s + 5.751
Ps, o = ( ( ) ) (5.14)

$2 4 0.01155s + 0.0007316)(s2 + 2.302s + 13.2)
We can stabilize Ps,,, using only a PI controller. Let us select K2 = w. As seen in

Figure 5.17 and Figure 5.18 we get closed loop poles with good damping.
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Figure 5.17: Rootlocus of L = P5, ,, Koo :F8
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Figure 5.18: Rootlocus of L = Ps,,, K, Magnified at the Origin
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The poles of the closed loop system is as follows:

P(Sf—>'yKo2

Table 5.4: Closed Loop Poles of T' = fEn sy o : F8
Pole Damping | Frequency(rad/sec) | Time constant(sec)
-1.23e-02 1.00e+00 1.23e-02 8.12e+-01
-1.10e-01 1.00e+4-00 1.10e-01 9.10e+00
-1.67e+00 1.00e+00 1.67e+00 5.98e-01
-1.76e+00 + 2.52¢+00i | 5.72¢-01 3.07e4-00 5.68e-01
-1.76e+00 - 2.52e+00i | 5.72e-01 3.07e+00 5.68e-01

5.5 PI-PD controller vs Dynamic Output Feedback Controller

In the section we try to obtain a PI-PD controller which best approximates the dynamic output

feedback controller obtained in the previous sections.

In section we have obtained a decentralized PI-PD controller which stabilizes the F8 plant pro-

vided only the diagonal elements are considered. The controller obtained is as follows:

—0.3(s +0.4)
Kz(s) =
0
(5.15)
—2(s+1.5) 0
KO(S) - 0 5(s+0.1)

This controller stabilizes the centralized plant but the closed loop poles are lightly damped. This
however means that the plant is sufficiently decoupled so that a decentralized controller which was
designed for the decoupled system stabilizes the coupled system as well. Now, we do a exhaustive
search in the neighborhood of the previously obtained ¢o1,201,902,%02,9i1,%i1 parameters in order to
obtain a PI-PD controller which best approximates the dynamic output feedback controller. While
doing this search by brute force looping, we minimize ||Sol — S02||», (where Sol corresponds to

Output feedback controller and So2 corresponds to PI-PD controler) in the low frequency range
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0.0001 rads/sec to 0.01 rads/sec in order to ensure that we obtain the best PI-PD controller which
gives us similar properties at the output loop breaking point when compared to the dynamic output

feedback controller at low frequencies.

After doing the optimization, we obtain the following PI-PD controller which minimizes ||Sol —
S02||oo in the range 0.0001 rads/sec to 0.01 rads/sec.The roll-off terms have been selected in a way
so that the KS crossover frequency for the dynamic output feedback based closed loop system and
the PI-PD based closed loop system is the same. This is done in order to ensure that we are in a

position to compare two designs.

—1(s+0.4) [%}3
0

KZ(S) =

(5.16)
,1.5(5}0.5) %2 0
Ko(s) = ; 4] wsesun [ 5 7

The damping of the closed loop system using the PI-PD controller is as follows:
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Table 5.5: Closed Loop Poles for F8 : PI-PD Based Controller

Pole Damping | Frequency(rad/sec) | Time constant(sec)
-1.39¢-02 1.00e+00 1.39¢-02 7.17e+01
-3.07e-01 1.00e+00 3.07e-01 3.26e+4-00

-8.85e-01 + 7.49e-01i 7.63e-01 1.16e+00 1.13e+00
-8.85e-01 - 7.49e-01i 7.63e-01 1.16e+00 1.13e+00
-1.82e4-00 1.00e+00 1.82e+-00 5.50e-01
-2.20e+00 + 2.19e400i | 7.09e-01 3.10e+-00 4.55e-01
-2.20e+00 - 2.19e+00i | 7.09e-01 3.10e+4-00 4.55e-01
-6.78e+00 1.00e+00 6.78e+-00 1.47e-01
-7.22e+00 1.00e+00 7.22e+00 1.38e-01
-5.91e4+00 + 2.04e+401i | 2.78e-01 2.13e+01 1.69e-01
-5.91e+00 - 2.04e+01i | 2.78e-01 2.13e+01 1.69e-01
-6.91e+01 + 2.55e4+01i | 9.38e-01 7.37e+01 1.45e-02
-6.91e+4-01 - 2.55e+4-01i | 9.38e-01 7.37e+01 1.45e-02

output feedback controller.

Let us now compare the closed loop properties obtained by using PI-PD controller and dynamic

Table 5.6: Attained Closed Loop Properties for PI-PD and Dynamic Output Feedback Controller:

F8

ISolloe | 1 Tolloo | I1Silloc | [ITilloo | [[KSolloo | [[PSilloo
Dynamic Output feedback Controller 7.41 4.07 6.03 3.79 13.17 6.017
PI-PD controller 3.91 3.18 7.25 4.74 10.61 -1.31

to the closed loop properties obtained by using Dynamic output feedback controller.
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Figure 5.19: Comparison of |Se1 — Sea| and |Se; — Sea| : F8

Let us now compare the |Se1 —Sea| and |S¢1 —Se2| plots where Se; and S corresponds to Dynamic

output feedback controller and S.s and S.o corresponds to PI-PD controller as shown in Figure 5.19.

|Se1 — Sea| and |Se1 — Se2| have very low singular values at low frequencies. This means that the
PI-PD controller and Dynamic output feedback controller would give similar performances at both
the loop breaking points when we work at low frequencies. However the closed loop system has bad
high frequency noise attenuation in the input channel when PI-PD controller is used as shown in
Figure 77. Any attempt at decreasing the crossover frequency of T}, ., leads to bad properties at

the input loop breaking point.
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Frequency Domain Plots
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Time Domain Plots
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5.6 Summary

After analyzing the closed loop properties, it is seen that the dynamic output feedback controller
which has been designed using H,, non-standard mixed sensitivity techniques offers good closed

loop properties at both the loop breaking points. The PI-PD (K, controller

Odecentralized? idecemmuzed)
offers better properties at the output and similar properties at the input. This shows that for a
relatively decoupled minimum phase stable system, a PI-PD controller would offer good properties
at both the loop breaking points. There is no need for a multivariable controller. However PI-PD
controller has been designed using brute force enumeration. Hence it is time consuming. So in order

to obtain a decent controller within a given amount of time, it might be appropriate to design a

dynamic controller instead of a PI-PD controller.
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Chapter 6

SUMMARY AND FUTURE DIRECTIONS

To summarize this thesis, decentralized and centralized controllers were designed for 4 different air
crafts namely Hypersonic Aircraft, F-8, AV-8A and NASA-HiMAT. It was observed that design and
control of complex vehicles requires sophisticated centralized(MIMO) control design methodologies.
Decentralized (SISO) methods for designing a controller would be inadequate unless the plant is
highly decoupled. It was also observed that full centralized PI-PD controllers would give an equally
good performance as a centralized(MIMO) controller. However, it is time consuming to design a
centralized PI-PD controller using exhaustive enumeration procedures. Therefore it is advantageous
to design centralized(MIMO) controllers for controlling complex vehicles.

For the hypersonic aircraft, we have studied the design of dynamic output feedback controllers
using Standard and Non-Standard Mixed Sensitivity Design on New Engine Old Plume and New
Engine New Plume models of the Hypersonic aircraft. We have also designed 3 types of hierarchical
PI-PD controllers and surgically inserted lead-lag networks to these controllers to improve the closed
loop properties further. Decentralized Lead-lag networks were also designed for both the models of
the Hypersonic Aircraft. The dynamic controller obtained using non-standard mixed sensitivity
control gives better properties at the input loop breaking point as compared to the dynamic con-
troller designed using standard mixed sensitivity. Both the controllers give good properties at the
output loop breaking point. Hierarchical fully populated PI-PD controllers offers good properties
at both loop breaking points but the design procedure is time consuming. Hence, there is a need
for Multivariable Controller which can be designed in minimal time using LMI optimization but

)

give an ”‘equilibrated design”’. For the NASA HiMAT, SISO decentralized PI-PD controller and
multivariable controller give good properties at the error but bad properties at the input. Hence
there is a need to explore generalized weighted mixed-sensitivity control methodology(Puttannaiah
(2013)) to design a multivariable controller which could offers good properties at both loop breaking
points. For AV-8A Harrier , the SISO decentralized PI-PD controller gives good properties at both
loop breaking points but the multivariable controller is found to yield better performance.For F-8

Crusader, SISO decentralized ideas work really well performing comparably to the multivariable

controllers examined.
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Future work will emphasize more complex advanced control structures and methodologies like
Hierarchical fully populated PID controllers and Hierarchical fully populated Lead-Lag controllers.

It would also encompass integrated advanced vehicle design and control.
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APPENDIX A

INTRODUCTION TO LMI

A.1 General Form of LMI

A linear matrix inequality(LMI) is an inequality of the form (Duan and Yu (2013))
m
Flz)=Fo+ Y (2F) >0 (A1)
i=1

where x € R™ is the variable and the symmetric matrices F; = F," € R™" i = 0,1...,m, are
given.The inequality symbol implies that F'(x) is positive definite. The inequality (1.1) is a strict
inequality. We may also encounter non-strict inequality which is of the form

F(z)>0 (A.2)

The linear matrix inequality (1.1) defines a convex constraint on z i.e. the set { z|F(z) > 0} of
solutions of the LMI (1.1) is convex
The most general form of Linear Matrix Inequality is expressed as follows:

Let Q € S™ D,E; € R™"™ F;, € R"™",i =1,2,...,1, then we can say that

l
L(X)=D'X+X'D+ ;(E;XFi +F/X'E)+Q

is linear in matrix X € R™™.We note that the matrix function L(X) is symmetric. Let us define
the inequality
L(X)<0 (A.3)

Here are some properties related to LMIs.
Property 1.1 Let A(x) = [Ai;j(2)]qep- Then A(x) < 0is an LMI in vector z if and only if

Aij(x),i=1,2,...,¢,5=1,2,..,p

are linear in x.
Property 1.2 Let

Ai(z) <0,i=1,2,...,1
be a set of linear matrix functions in z. Then

1. A4;<0,i=1,2,....,0 are a set of LMIs in z if and only if
diag(Aq(z),..., Ai(z)) <0
is an LMI in .

2. A; <0,i=1,2,...,1, are a set of LMIs in z implies that
!
Z OéiAi(’I') <0
i=1

is also an LMI in x where a; > 0,7 =1,2,...,1, are a set of real scalars which are not simulta-
neously zero.

A.2 Basic Examples Involving LMIs
In this section , a few basic examples have been presented which involves formulating the problem

as an LMI. These examples would be used in the later chapters for proving various theorems(Duan
and Yu (2013)).

213



A.2.1 Eigenvalue Minimization

Let us consider the problem of minimizing the maximal eigenvalue of a matrix that depends
affinely on a variable.

Let A; € R™™ i=0,1,2,...,n, be a symmetric matrices, and define the matrix function

We have to find z € R™ to minimize
J(@) = Apas(A(2))

This problem can be written in the form of an LMI as follows:
In order to convert this problem into an LMI, we prove the following lemma. Lemma 1.1 Let
M be a symmetric matrix. Then,

Amaz(M) <t M —tI <0 (A.5)
Proof
For an arbitrary matrix M with eigenvector = and corresponding eigenvalue k, there holds
(M —the = Mz —tx = (k—t)x
This states that for an arbitrary matrix M, there holds
AMM —tI) = \M) —t.
Thus when M is symmtric, we have

Amaz <t Apage(M —tI) <0
S M-t <0.

Applying this lemma to the matrix defined in (1.5) we finally have
Amaz(A(x)) <t < A(x) —tI <0.

Conclusion 1.1
Problem 1.1 is equivalent to the following minimization problem

mwn t
st. A(x)—tI <0

where x;,7 = 1,2,...,n, and t > 0, are the parameters to be optimized. In this way the eigenvalue
minimization problem can be converted into an LMI problem.

A.2.2  Matrix Norm Minimization
The matrix norm minimization problem is a generalization of the eigenvalue minimization prob-

lem and uses the results of eigenvalue minimization problem.
Let A; € R™™ i =0,1,2,...,n, be a symmetric matrices, and define the matrix function

We have to find £ € R™ to minimize

J(z) = [A(2)]2
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To convert the above problem into an LMI problem, the following result is needed which is a
special case of the Schur complement lemma to be introduced later.

Lemma 1.2

Let A be a matrix and ¢t be a positive scalar. Then,

—tI A
ATAtzng@[AT U.} <0 (A7)
Proof Let
I A
Q= {0 tl}

Then @ is nonsingular since ¢ > 0. Please note that

| Al |-t 0
Q [0 tr|@=1 o t(ATA —+21)
According to the definition of ||A(x)||2, we know that

IA@) |2 = Amaa(ATA)? (A.8)

Using Lemma 1.1, we have ,for ¢ > 0,

[A(z)]2 <t
& Anaz(ATA) < 12
e ATA-t?I<0

—tI A
<
[AT m] =0

Hence we derive the following conclusion.
Conclusion 1.2
The aforementioned problem is equivalent to the following minimization problem using LMI

min t

s.t. {Ajé) A(fj)} <0

with z;,7 = 1,2, ...,n, and t being parameters to be optimized.

A.2.3 Schur Stabilization

Schur stabilization corresponds to stability analysis of discrete-time linear systems. Let us con-
sider the control of the following linear system

x(k+1) = Az(k) + Bu(k)

where z € R"™ is the state vector and u € R" is the input vector. Let us consider the state
feedback control law

u(k) = Kx(k),
then the closed-loop system is given by
z(k+1) = (A+ BK)x(k)
We note that for an arbitrary matrix M € R™" | there holds
X\i(A+ BK)| < |[A+ BK|2,i =1,2,...,n,
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we have
A(M)] < [ M2yi = 1,2, m,
We know that the closed loop system is stable in the discrete time sense if
[A+BK|2 <1

Motivated by the above statement, we have the following problem,
Let A € R™" and B € R™" and a scalar 0 < v < 1. We need to find a matrix K € R™" such
that
[A+ BK]l2 < 7. (A.9)

We know that (1.9) is equivalent to
(A+ BK)"(A+ BK) <~%I
Using Lemma 1.2 we can say that the above mentioned inequality is equivalent to

—~I (A+ BK) <0
(A+ BK)" —I

Therefore, for finding a minimum ~ which satisfies (1.5) we have the following optimization
problem with LMI constraints with K and v as parameters.

min vy
—~I (A+ BK)
s.t. [(A—&—BK)T T <0

The following briefly summarizes the key notations which we will be using to present the theo-
retical results in this thesis. First. we present the key lemmas which would be used in designing the
LMIs for various control system problems. Second, we would be presenting some notions of convex
optimization. Lastly, we will describe the definitions of Hy and H, norms for a linear time invariant
system(Duan and Yu (2013)).

A.3 Schur Complement Lemma
A.3.1 Schur Complements
In linear algebra, the Schur complement of a matrix block is defined as follows(Duan and Yu

(2013)):
Consider the partitioned matrix

_ A A
A= {Aﬂ Any (A.10)
When Ay, is nonsingular, Ass — A21A1_11A12 is called the Schur complement of A;; denoted by
Sch (A11>
When Ags is nonsingular, Ay — A12A2_21A21 is called the Schur complement of Ass denoted by
Sch (A22)

For the partitioned matrix (2.1) the following holds true.

When Aj; is nonsingular, then we can represent A as follows

. A11 0 _ A11 0
A= 0 Ay —A21A1_11A12] N { 0 Sen(A1r) (A-11)

and therefore A is nonsingular if and only if S.,(A411) is nonsingular and

detA = detAndetSch (An) (A12)
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When Ass is nonsingular, then we can represent A as follows

_ A = AA An 0] _ [Sen(A22) 0
A= : oL =[P (A.13)

and therefore A is nonsingular if and only if S, (A22) is nonsingular and

detA = detAQQ detSch (AQQ) (A 14)

A.3.2 Matrix Inversion Lemma

For the partitioned matrix (2.1) the following conclusions hold true(Duan and Yu (2013)).

When Aj; is nonsingular, A is nonsingular if and only if S.,(A11) is nonsingular and

_ (AT + A ALS (AL A AT — AT ALS (A
A1 = |41 11 1290, (A11) 42141, 11 £H20cp (411 A.15
—S, (A1) An Ay S (Ann) (A.15)
When Ass is nonsingular, A is nonsingular if and only if S.j,(As2) is nonsingular and
_ I S_l(AQQ) 7S_1(A22)A12A_1
Al = ch 22 _ e ) 22 B A.16
|—Asy A28, (Aza Agy + Asy A1 S, (A2a) A2 Ay | (A.16)

For the partitioned matrix (2.1), considering A;; and Ass to be nonsingular matrices, then the
following also holds true

(A1 — App A Ag) ™t = AT+ A Ara(Agg — Aot AT Arg) T An AT (A.17)

(Ago — A21A1_11A12)71 = Ag_gl + A2_21A21(A11 — A12A2_21A21)71A12A2_21 (A.18)

A.3.3 Schur Complement Lemma

The Schur complement lemma is a very well known lemma and it helps in converting a nonlinear
matrix inequality into a LMI(Duan and Yu (2013)).
Let the partitioned matrix

A= {A” A”] (A.19)

Ag1 Az
be symmetric. Then

A is positive definite if and only if Ay and S.,(A11) are both positive definite or Ay and
Sen(Aaz) are both positive definite.

A>0s A > 0, Sch(All) >0 Ay > 0, Sch(AQQ) >0 (AQO)

A is negative definite if and only if Ayq and S.,(A11) are both negative definite or Ags and
Sen(Aa2) are both negative definite.

A<0s A1 < 0, Sch(All) <0 Ay < 0, Sch(AQQ) <0 (A21)

The following statements are very important since it realizes the conversion from quadratic to
linear inequalities. This conversion technique is based on Schur complement lemma and it would be
used frequently in the thesis to design LMIs(Duan and Yu (2013)).

Let Ac R"™ BeR™ ,CecR™,Q cS" ReS", and denote

¢(P)=A"P+PA+(PB+CTRYBTP+C)+Q (A.22)
and - T
_[ATP+PA+Q PB+C
then
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¢p(P) <0< ¢(P)<0,ifR>0 (A.24)

¢(P)>0< ¢(P)<0,ifR<0 (A.25)
A.3.4 Elimination of Variables
This section provides some results related to the technique of Elimination of Variables which is

used frequently while deducing a LMI(Duan and Yu (2013)).
There are two techniques related to the Elimination of Variables.

Let

VATRRVAY
Z= Zy, € R
{Zm Zop| 411 € ’

be symmetric. Then, there exists a symmetric matrix X such that

Zinn—X Zpp X

AN Zy 0| <0 (A.26)
X 0 -X
if and only if
Zu 22
Z = <0 A.27
[Z1T2 Z22} (A.27)

Let Z;;,i=1,2,3,5 =1,...,3, be given matrices of appropriate dimensions. Then,there exists
a matrix Y such that

AT Z12 Z13
Zly  Za  Zag+Y'| <0 (A.28)
7l Zh+Y Zs3
if and only if
Zi1 Zi2 Z11 Zi3
0 0 A.29
{Zg ZQJ <% [Zg 233} < (A.29)
Such a matrix Y is given by
Y =252 210 — Z5y (A.30)

A.3.5 Reciprocal Projection Lemma

The reciprocal projection lemma is used for formulating the LMI for State feedback controller.
The reciprocal projection lemma proof can be found at(Apkarian et al.,2000 ,Duan and Yu (2013)).
For a given symmetric matrix ¢ € S™, there exists a matrix S € R™" satisfying

Y+ST+S<0 (A.31)

if and only if, for an arbitrarily fixed symmatric matrix P € S™, there exists a matrix W € R™"
satisfying
Y+P—-WT+W) ST4+WwT

5w | <0 (A.32)
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A.3.6 Trace of LMI

While deducing various control system design applications into LMIs, we may encounter a type of
constraint which requires the trace of a matrix to be less than a given scalar quantity. The following
statements provides a way of working with such a type of constraint(Duan and Yu (2013)).

Let A(z) € S™ be a matix function in R™ and let v be a positive scalar. Then the following
statements hold true and are equivalent:

Jz € R™ such that trace(A(x)) < v
Jr € R™, Z € S™, such that A(z) < Z, while trace(Z) < v
A.4 Hurwitz and Schur Stability
A.4.1 Hurwitz Stability
Let us consider a continious time linear system of the form
z(t) = Ax(t) (A.33)

This system is said to be stable if all the eigenvalues of matrix A have nonpositive real parts. We
can also say that A is Hurwitz critically stable. If all the eigenvalues of A have negative real parts,
then the linear system is asymptotically stable. We may say that matrix A is Hurwitz stable.

The system (2.24) is Hurwitz stable if and only if there exist a matrix P € S” such that

P>0

ATP+PA<O
Using the aforementioned statements, we can convert the problem of checking the stability of a
linear system into finding a symmetric matrix satisfying the pair of LMIs.

A.4.2 Schur Stability

The stability analysis problem for a discrete time system can be stated in a similar way using
LMIs.
Let us consider the discrete-time linear system

z(k+1) = Ax(k) (A.34)

To check the lyapunov stability of this system, we check the Schur stability of the matrix A which
means that we check if all the eigenvalues of the matrix A are located within the unit circle of the
complex plane.

The system is Schur stable if and only if there exists a matrix P € S™, such that the following
LMIs hold true.

P>0

APAT —P <0

A.5 D-Stability

In this section, we formulate LMIs which helps us in enforcing constraints on the position of the

closed loop poles so that satisfactory time response and closed loop damping may be achieved.We
will also introduce the concept of D-Stability and deduce LMI conditions for the D-stability of a
matrix with a given general D region(Duan and Yu (2013))
Let D be a subset of the complex plane which is symmetric about the real axis. Then a matrix

A e R™" is D stable if
A(A)eD,i=1,2,..,n (A.35)
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If there exists L € S™ and M € R™*™ such that D can be expressed as
D={zz€C,L+2zM+zM" <0} (A.36)
then D is called an LMI region and
Fp(s)=L+zM+zM"

is called the characteristic function of the LMI region of D. The LMI region is always convex and
symmetric about the real axis.

Constraints on the closed loop poles to restrict them to a particular convex region, can be ex-
pressed in the form of an LMI. The following statements deduce the LMI for constraining the closed
loop poles to a general LMI region.

Let D be an LMI region whose characteristic function is
Fo(s)=L+zM+zM".

Then the matrix A € R™" is D-stable if and only if there exists a symmetric positive definite matrix
P such that
LRP+M®(AP)+ M' ® (AP)" <0 (A.37)

where ® represents the Kronecker product.
Let us now use (2.28) and deduce LMIs to restrict the eigenvalues of A to a particular convex
region. We consider three cases.
1. Dy ={z+yi|l-B<z<a<0}
Let us express D; in the form of a LMI region of the form (2.27)
Dy {z+yi|l-B<z<a<0}
{#|] = B < Re(z) < —a}
2l - B < i%(z-i—é) < —a}
Z|—=B—5(2+2) <0,a+ 3(z+2) <0}
z|diag(a, —B) + 3diag(z, —z) + tdiag(z, —z) < 0}
Hence D, is an LMI region with

a 0 1 0
ool -y 4
Using Kronecker product we obtain the following LMIs which serves as a constraint to place
the eigenvalues of matrix A in region D;.

The matrix A € R™" is Dy-stable if and only if there exists a matrix P € S™ which satisfys
the following constraints

P>0
ATP+PA+2aP <0
ATP+PA+28P >0

2. Dy = {z +yi|(x + q)* +y* < r?}

Let us express Do in the form of a LMI region of the form (2.27)
D, = x—|—yi|(sr:—|—q)2+y2<r2}

= {z+yillz+yi+q(z—yi+q) <r?}

= {ze+9(E+9 <r’}

_ —r ztg
- Z[z+q —r]<0}

L AR IR

Hence D5 is an LMI region with
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[7 2of

Using Kronecker product we obtain the following LMIs which serves as a constraint to place
the eigenvalues of matrix A in region Ds.

The matrix A € R™" is Dy-stable if and only if there exists a matrix P € S™ which satisfys
the following constraints

P>0
—rP qP + AP
qP + PAT —rP

3. Dy ={z+yil|y|< —ztan(d)} with 0 < 0 < /2

Let us express D3 in the form of a LMI region of the form (2.27)
Ds {z +yil |y |< —xtan(8)}
= {z+yily* < #*tan?®(9), xtan(d) < 0}
= {4 yily*cos?(0) < a?sin*(0), zsin(f) < 0}
xsin(0)  dycos(6)
—iycos(0) xsin(0)
_ | (z 4 2)sin(0) (= — Z)cos(0) <0
= V(=2 +2)cos(0) (z+ z)sin(h)

Hence D3 is an LMI region with

x + yil

Using Kronecker product we obtain the following LMIs which serves as a constraint to place
the eigenvalues of matrix A in region Djs.

The matrix A € R™" is Ds-stable if and only if there exists a matrix P € S™ which satisfys
the following constraints

P>0
(AP + PAT)sin(0) (AP — PAT)cos(9) <0
(PAT — AP)cos(0) (AP + PAT)sin(0)
A6 H./H; Index
A.6.1 H,, Norm

In this section we explain the H., norm and the Hs norm of rational matrices. We also present
LMI conditions for these norms to be bounded.

The Hs norm of a rational matrix is an extension of the spectral norm of a constant matrix A
which is defined as

[All2 = ()‘mar(AAT))l/z = Omax(A)

Let P(s) be a rational matrix. Then the Ho, norm is defined as

”P”OO = Slj)p {Umaz(P(jw))}
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If P(s) does not have poles in the closed right half complex plane. Then

1Plloc = sup {omas (P(jw))|Re(s) > 0}
A.6.2 Hy Norm

Suppose P(s) is a matrix such that
7 G(jw)GH (jw) dw < corm
Then the Hs norm of G(s) is defined as
1
1 [ ’
1G(8) oo = trace < / GG (jw) dw> (A.38)
2m J_ o
Let us consider the following transfer function in control systems context.
G(s)=C(sI—A)"'B+D (A.39)

To find the Hs norm of this matrix function , we need to use the following results.
Let A,QQ € R™", and A be stable, Q be positive semi-definite, then the following lyapunov

equation
ATP+PA=-Q

has a unique positive definite solution which is expressed as
P = [7G(jw)G (jw) dw
Based on this result we can state the following result. Let G(s) be defined as 2.30. Then
1. |G(s)]|2 exists if and only if A is stable and D =0
2. When A is stable and D = 0, then the following holds

|G (5)]|2 = trace(CXCT)
with X > 0 being the unique solution of the lyapunov equation defined as

AX+XAT +BB" =0 (A.40)
or

|G (5)||2 = trace(BT X B)
with Y > 0 being the unique solution of the lyapunov equation defined as

ATY +YA+CTC=0 (A.41)
A.6.3 LMI for Hy, index

Let us define a system as given below

T = Az + Bw
y=Cz+ Du

where x is the state vector, y is the output vector and w is the disturbance vector. Then we have

y(s) = G(s)w(s)
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where
G(s)=C(sI — A" 'B+D (A.42)

Now we consider the H., norm of G(s) to be bounded by a given level ~ i.e.
[G(s)lloe <~ (A.43)

where gamma is the level of attenuation of disturbance in the system.
Now we present the LMI conditions for (2.34) to be valid.

Let G(s) be given by (2.33). Then ||G(s)|lco < 7 if and only if there exists a symmetric positive
definite matrix P such that one of the following two inequalities holds. In other words, G(s) is
bounded-real if and only if there exists a matrix P ; 0 satisfying one of the following LMI condi-
tions(Duan and Yu (2013)).

ATP+PA PB CT
BTP —~I DT | <0 (A.44)
C D —I

ATP+PA+CTC PB+C'D
BTP+D'C D' D-~1 <0 (A.45)
In control system applications, we are interested in finding the minimal  which satisfies ||G(5) |00 <

~. This problem can be converted into a minimization problem with LMI constraints(Duan and Yu
(2013)).

min vy
st P>0
ATP+PA PB COT
B'P —~I DT| <0
C D —y
or
min 7y
st P>0

ATP+PA+CTC PB+C'D
BTP+D'C DD —~?I

A.6.4 LMI for Hy index
Now we consider the Ha norm of G(s) to be bounded by a given level v i.e.
IG(s)ll2 <~ (A.46)

Let us consider A € R™" B € R™",C' € R™" and v > 0. Then ||G(s)||2 < 7 holds if and only
if one of the following statements holds true(Duan and Yu (2013)).

1. 3X >0 s.t.
AX + XA" + BB < 0,trace(CXCT) < ~? (A.47)

2. 3Y >0 ,s.t.
ATY + YA+ CTC < 0,trace(B'YB) < 52 (A.48)

In control system applications, we are interested in finding the minimal v which satisfies ||G(s)]]2 <
~. This problem can be converted into a minimization problem with LMI constraints(Duan and Yu
(2013)).
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min
st AX+XAT+BB" <0
trace(CXCT) <~
X>0
or

min 7y

st ATY+YA+C'C <0
trace(BTY B) < v
Y >0

A.7 Anaysis of Properties
A.7.1 Hurwitz Stabilizability and Detectability

Let us define a system

T = Ax + Bu
y=Cx+ Du

Then this system or the matrix pair (A, B) is said to be Hurwitz stabilizable if there exists some
matrix K such that A+BK is Hurwitz stable(Duan and Yu (2013)).
We now present some LMI conditions for Hurwitz stabilizability.

The matrix pair (A, B) is Hurwitz stabilizable if and only if one of the following conditions hold

There exists a symmetric positive definite matrix P such that
(A+BK)P+P(A+BK)" <0 (A.49)
Let W = KP, then we obtain the following LMI from (2.40)
AP+ PAT + BW+W' BT <0 (A.50)
There exists a symmetric positive definite matrix P such that
AP+ PAT <yBB' (A.51)

for some scalar v > 0

Hurwitz detectability is the dual concept of Hurwitz Stabilizability. The matrix pair (A4, C) is
said to be Hurwitz detectable if there exists some matrix L such that A+ LC' is Hurwitz stable(Duan
and Yu (2013)).

We now present some LMI conditions for Hurwitz detectability.

The matrix pair (A, B) is Hurwitz detectable if and only if one of the following conditions hold

There exists a symmetric positive definite matrix P such that
(A+LC)'P+PA+LC)<0 (A.52)
Let WT = PL, then we obtain the following LMI from (2.43)
ATP+PA+CTWH+W'C <0 (A.53)

There exists a symmetric positive definite matrix P such that
ATP+PA<~CTC (A.54)

for some scalar v > 0
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APPENDIX B

TRADEOFFS AND LIMITATIONS OF PERFORMANCE

In this chapter, some fundamental limitations imposed by RHP-poles and RHP zeros have been
mentioned. Some algebraic and analytic constraints on Sensitivity and Complementary Sensitivity
has been covered in brief. Various design tradeoffs which are a consequence of unstable RHP-poles,
non-minimum phase zeros and bandwidth limitations have also been mentioned in the chapter.

We know that S = (I + L)~ and T' = L(I + L)~! leads to

S+T =1 (B.1)

We want S to be small to ensure good command following and good disturbance attenuation.
We also want T to be small to ensure good sensor noise attenuation. However both these conditions
can’t be achieved simultaneously. S(jw) and T(jw) cannot be both small at the same frequency.
Hence there is a trade-off at each frequency between properties such as sensitivity reduction, distur-
bance attenuation governed by |S(jw)| and sensor noise reduction and robustness to high frequency
uncertainty governed by |T'(jw)].

B.1 The Waterbed Effect

In this subsection, we would talk about a trade-off between sensitivity reduction and sensitivity
increase that must be performed when

L(s) has at least two or more poles than zeros(first waterbed formula)
L(s) has a RHP-zero(second waterbed formula)

The term ”Waterbed” has been used since the trade-off between sensitivity reduction and sen-
sitivity increase is similar to sitting on a waterbed in which if we push it down at one point, this
will reduce the water level locally but this would result in an increase in water level at some other
region in the bed(Skogestad and Postlethwaite (2007))

First waterbed formula

The first waterbed formula is related to the Bode sensitivity integral coined by Bode. It says
that if L(s) has N, RHP-poles at locations p;, then assuming that the feedback system is stable, the
sensitivity function must satisfy(Skogestad and Postlethwaite (2007))

Np

/OOO log |S(jw)|dw = 7. > Re(p;) (B.2)

i=1

where Re(p;) denotes real part of p;
This means that area of sensitivity increase(log | S| positive) is greater than the area of sensitivity

decrease(log | S| negative) by an amount of 7. vazpl Re(p;). Thus we may observe peaking in the

sensitivity bode plot. This peaking may be decreased if the increase in area occurs over a large

frequency range i.e. if |S(jw)| = 146 for w € [wy, we] where the interval [w1, ws] is sufficiently large.
For a stable plant, the bode sensitivity integral reduces to

/OOO log |S(jw)|dw = 0 (B.3)

This means that the area of sensitivity reduction(log |S(jw)| negative) is equal to the area of
sensitivity increase(log|S(jw)| positive). Hence if we try to increase the bandwidth of S (pushing
down on S at low frequencies), then we would expect that the sensitivity bode plot would have a
larger peak.(Stein (2003)),(Skogestad and Postlethwaite (2007))

The first waterbed formula may also be explained by using Nyquist plots. Let us consider the
open loop transfer function L(s) which has at least two or more poles than zeros. Let L(s) = ﬁ
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Figure B.1: Nyquist plot of L(s) = ﬁ

As shown in Figure B.1, the Nyquist plot enters the unit circle at some frequencies. Hence at
these frequencies |1 + L| is less than 1. So S = (1 + L)~ is greater than one at these frequencies.
In practice L(s) would always have at least two or more poles than zeros at high frequencies due to
unmodelled actuator dynamics. Hence there will always exist a frequency range where |S| > 1.

Second waterbed formula

The presence of RHP-zeros in the open loop transfer function always implies that the || S]] > 1.

To illustrate this, let us consider a non-minimum phase open loop transfer function L(s) = 1; %Iz
1

and the minimum phase counterpart Ly, (s) = 3 .(Skogestad and Postlethwaite (2007))

Nyquist Diagram

Imaginary Axis
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Figure B.2: Nyquist plot of L(s) = ﬁ ire

In the Figure B.2 we see that the additional phase lag contributed by the RHP-zero and the
extra pole causes the Nyquist plot to enter the unit circle. Hence 14L is less than one at some
frequencies or S = (I + L)~! is larger than 1.

Second waterbed formula states that if L(s) has N, RHP-poles and a single real RHP-zero
z or a complex pair of zero z = x + y , then for closed-loop stability, the sensitivity function must
satisfy (Skogestad and Postlethwaite (2007))

(oo} NP
. pi+ 2
log |S(jw)|w(z, w)dw = m.log —_ B.4
| o lsGulew) I (B.4)
where if the zero is real 5 ) )
w(z,w) = SER (B.5)

224+w?  z14(%)2
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and if the zero pair is complex i.e. z =z + jy

T + T
T P R O

w(z,w) = (B.6)

The weight w(z,w) limits the contribution of log|S| to sensitivity integral at frequencies w > z.
Hence the waterbed is finite in this case and the tradeoff between S less than 1 and S greater than
1 is done over a limited frequency range. To illustrate this, let us consider L;(jw) = and

Ly (jw) = Ly (jw) 252

The following is the bodeplot of S; where L; =

_2
s(s+1)

and S, where Lo (jw) = L, (jw)=55.

_2
s(s+1) s+5

Singular Values
20

—S1

Singular Values (dB)

60— - .
10 10 10° 10
Frequency (rad/s)

Figure B.3: Bode plot of L; = and Lo = L, =315

_2
s(s+1) s+5

As shown in Figure B.3 , the area of log S is almost the same for S; and S5 below the 0 db line.
However the frequency range in which log.Ss contributes positively to the area of log .S is limited
due to the presence of RHP-zero. Hence, in order to ensure that the area of log . S(jw) above the 0
db line is the same for both cases, there must be peaking in Sa(jw). Hence we can clearly see the
effect of a RHP-zero in the open loop transfer function.

B.2 Bounds on Peaks

In this subsection, we present bounds on the H., norm on the weighted sensitivity(w;.S) and
weighted complementary sensitivity (wsT) (Skogestad and Postlethwaite (2007)).

Sensitivity peak. For closed loop stability, for each RHP-zero z of G(s), the sensitivity transfer
function must satisfy

|z + pi
|prl

w1 S]loe > [w1(2)]- H (B.7)

where p; denotes the N, RHP-poles of G(s). If G(s) has no RHP-poles, the bound simplifies to
[w1Sloe > w1 (2)] (B.8)

Without a weight the bound simplifies to

N,
T 12+ il
[S]lec > (B.9)
};[1 |z — pil

Complementary Sensitivity peak. For each RHP pole p of G(s), the complementary sensi-
tivity function must satisfy

2 +p|
[w2T ||oo = |wa(p H |ZJ (B.10)
J
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where z; denote the N, RHP zeros of G(s). If G(s) has no RHP-zeros, then the bound simplifies
to
[w2T oo = w2(p)| (B.11)

Without a weight the bound simplifies to

|2 +p|
1700 > H . (B.12)

|Z]

From these bounds we note that

S is primarily limited by RHP-zeros. The bound |w;.S| > |w;(z)| shows that we need to take
into consideration the RHP-zeros while shaping S.

T is primarily limited by RHP-poles. The bound |wT'| > |wz(p)| shows that we need to take
into consideration the RHP-poles while shaping T.

If the RHP-zero and RHP-pole are located close to each other, then ||H| of S and T are
large.

B.3 Tradeoff Between Undershoot and Settling Time

RHP-zeros pose a fundamental constraint on the achievable output performance. The presence
of a RHP-zero in the plant causes an undershoot in the step response of the system. If we define
undershoot(y,s) as the negative peak value of the step response of the system with y; as the final
steady state value of the output then for a plant with RHP-zero z(z > 0), the following lower bound
on the closed loop undershoot holds (Skogestad and Postlethwaite (2007),Page 184).

[Yusl 2 lysl— (B.13)

-1
where ¢t is the settling time and n(n = 0.05) is the corresponding level for the settling time.
The above equation shows that as the settling time is reduced(BW increased), the system with
RHP-zeros will show larger undershoot in the step response.
To show the trade-off between undershoot and settling time, we consider the plant

P(s) =

Z+S,z—2

Let us consider the controller

K(s) = =5 (35 °

The step response of the closed loop system and the sensitivity are plotted for g = 0.1,0.3,0.5
as shown in Figure B.5 and Figure B.4 .

As shown in Figure B.4 and Figure B.5 , we note that as the gain increases,the settling time
decreases but the undershoot and the peak of Sensitivity bode plot increases. Thus we need to do a
tradeoff between settling time and undershoot.The figures also show that the closed loop properties
deteriorate as the Bandwidth increases which means that RHP-zero poses a fundamental constraint
i.e. an upper bound on the BW of the system at the error.

B.4 Relation Between Overshoot and Settling Time

A stable feedback system with a RHP-pole has an overshoot in the closed loop step response y(t).
If we consider y,s as the positive peak value of the step response of the system with y; as the final
steady state value of the output then for a plant with RHP-pole p(p > 0) and r be the reference,
then the following lower bound on the closed loop overshoot holds(Skogestad and Postlethwaite
(2007),Page 193).

t, — 1)ePtr +1 t,
—(p )e i +r > yf% +7r (B.14)

>
Yos Z Yf ot
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Figure B.5: Variation of Sensitivity

From the above equation, we can infer that the overshoot in the closed loop step response
increases as the rise time increases( BW decreases).

To show the trade-off between overshoot and settling time, we consider the plant
P(s)=-22=1

s—z’

Let us consider the controller

K(s) =g (+)

The step response of the closed loop system and the sensitivity are plotted for g = 1.5,2,3 as
shown in Figure B.6 and Figure B.7.

As shown in Figure B.6 and Figure B.7 , we note that as the gain decreases,the settling time
increases and the overshoot and the peak of Sensitivity bode plot increases. The figures also show
that the closed loop properties deteriorate as the Bandwidth decreases which means that RHP-pole
poses a fundamental constraint i.e. an lower bound on the BW of the system at the control.
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APPENDIX C

RAW DATA

C.1 Synthesis of Dynamic Output Feedback LMI

The following proof can be found in Scherer et al. (1997).
Let us consider the generalized plant given by the state equations

T = Az + Bju + Baw
z = Cll’ + D11U + D12w
y = Cox + Doyu + Dopw

where u € R™ is the control input, w is the vector of exogneous inputs ( reference signals,
disturbance signals ,sensor noise), y € R™ is the measured output and z is an output vector related
to the performance of the closed loop system.

Let us consider the dynamic output-feedback control law v = Ky. Let our dynamic output
feedback controller be of the form

Ty = Apzy + Bry
u = Cixyp + Dky

Let T denote the closed loop system from w to z for the control law u = Ky. Let us express T
as

{1'.cl = Az, + Bw

z=Cxq + Dw
where
AlB A+ ByDgCy ByCk B1 + BsDg Doy
[T‘iil — BKCQ AK BKD21 (Cl)
C1 +D12DkCsy Di12Ck | D11+ D12Dg Dy

Let ||T'|| denote the Ho, norm of the closed loop transfer function matrix T from w to z. According
to the Bounded Real Lemma, A is stable and ||T||o < 7 if and only if there exists a symmetric
matrix P such that
ATP+PA PB CT
BT P I DT | <0,P>0 (C.2)
C D —I

The substitution of AJB,C and D in Equation C.2 leads to the formation of Bilinear Matrix
Inequality (BMI) which is no longer convex. Hence we propose the following change of variables:

Let n be the number of states of the plant and let k be the order of the controller. Let us
partition P and P! as
Y N _ X M
P:[NT *],P 1:[MT *] (C.3)
where X and Y are n x n and symmetric. From PP~ = I we infer that

PTI, =TI, (C.4)

where
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X I
=

I Y C.5
no- [0 (©5)
MNT = I-XY

Let us define the change of controller variables as follows:

NAgMT + NBrCoX + YB,Cxe MT + Y(A+ BaDg(Cy)X
NBrg +YBDg

CKMT + DgCX

Dk

(C.6)

@> Q) Uj) >>
|

The variables A,E and C have dimensions n x n,n x n, and n, X n. After obtaining M and
N matrices having full row rank and obtaining the A,B,é,f),x and Y by solving the LMI, we can
compute the output feedback controller matrices Ax,By,Cx and Dy .

Please note the following identities which have been derived from Equation C.3, C.4 and C.5.

[AX + BsC A+ BsDC
OTPAIL, = HYPAIL, = 2 272
! ! 2 ! A YA+ BC,
By + BoDD R R
nfpB, = 1B i Cilli = [C1X + D D1yD
1 1 5 b1 | YB, + BDy 11l [Cl +D2C Ci+ Dro Cz]
(X I
L

(C.7)

We would use these identities to derive the Dynamic Output feedback LMI from Equation C.2

using suitable congruence transformation. Let us apply congruence transformation on Equation C.2
using diag(I1;,I).

n? o o] [ATP+PA PB CT| (I, 0 0O
0 I 0 BTP I DT||0 I 0|<0 (C.8)
0 0 I C D Il L0 0 I

After substituting the value of AB,Cand I from Equation C.1 into Equation C.8, we obtain the
following LMI.

AX + X AT + ByC + (BoC)T AT 4 (A + ByDCy) * *
A+ (A+ ByDCy)™ ATY +Y A+ BC + (BC)" x 2
(Bl =+ BQDDQl)T (YBl =+ BDQl)T —’)/I *
ClX + Dlzé Cl —|— D12f)c’2 D11 + D121A)D21 —’7]
(C.9)

Also since P > 0, applying congruence transformation leads to the following inequality :

7 PII, = ﬁ( ﬂ >0 (C.10)

Hence the dynamic output feedback controller can be obtained by solving the following optimiza-
tion problem:
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‘minimize
AB,C,DXY

s.t.

aé
[AX + X AT + B,C + (B,C)" AT 4 (A+ ByDCy) * *
A+ (A4 ByDCy)" ATY + YA+ BC + (BC)T % “ | —o
(Bl + BQDDQ];)T (YBl + BQQl)T —’)/I . *
L ChX + D12C Ci1+ D12DCs D1y 4+ D12DDyy —v1
(X I
I v >0

After solving the optimization problem and obtaining the set of A,B,C,D,X,Y which minimizes
v, the dynamic output feedback controller is obtained as follows:

Find nonsingular matrices M,N which satisfies MNT =1 — XY

Construct the controller using

D =D
Cx = (C — DgCoX)M™T
Bk = N"Y(B — Y B,Dg)
Ax = N"YA— NBrCyX —YByCx MT —Y(A+ ByDgCo)X)M T

(C.11)
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%F8 Aircraft

D.1 Vought F-8 Crusader

clc;

clear all;

close all;

wvec = logspace(-3,3,10000);

s = tf( 's" )

%%

Aorg = [ -0.8 -0.0006 -12 0
0 -0.014 -16.64 -32.2
1 -0.0001 -15 0
1 0 0 (VI

Borg = [ -19 -2.5
-0.66 -0.5
-0.16 -0.6
0 0

Corg=[0 O 0 1
0 0 -1 17

Dorg = 0 *ones(size(Corg)

*[1 0], size(Borg)

% FACTS ON SCALING: Scaling affects the shape of singular val
% It does not alter pole locations, zero locations.

APPENDIX D

MATLAB CODE

[0 1]);

% It does alter directionality information.

% Scaling Matrices

% unew = su uold
% xnew = sx xold
% ynew = sy yold

% New Control Variables
% unew = [ delta

_e, elevator deflection from trim (deg)

% delta _f, flaperon deflection (deg) ]

% New State Variables
% xnew

%
%
%
% New Output Variables

% ynew = [ theta, perturbed pitch angle from trim (deg)
% gamma, perturbed flight path angle from trim (deg) ]
r2d = 180/pi;
su = diag( [r2d, r2d] );
sx =[0 0o o r2d
0 0 -r2d r2d
r2d 0 O 0
0 1 0 0];

sy diag([ r2d, r2d ) ;

= [ theta, perturbed pitch angle from trim (deg)
% gamma, perturbed flight path angle from trim (deg)

g, pitch rate (deg/sec)

u, perturbation from horizontal speed (ft/sec)
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%
% Scaled Linear Dynamics
%

Aorg
Borg
Corgl
Dorgl

sx *Aorg * inv(sx);

sx *Borg *inv(su);
sy *Corg *inv(sx);
sy *Dorg * inv(su);

% Corg = [Corgl ; 1 00 0,0 01 0]
Corg = [Corgl ; 1 000 ];

% Dorg = [Dorgl; 0 0;0 0O];

Dorg = [Dorgl; 0 Of;

P_ss = ss(Aorg,Borg,Corgl,Dorgl);

%%Outputing all states
% Augmenting with integrators
A = blkdiag(Aorg,zeros(size(Corgl,1)));

A( end-size(Corgl,1)+1:end,1:size(Corgl,2)) = Corgl;
[Borg;zeros(size(Corgl,1),size(Borg,2))];

C z [zeros(2,4) eye(2)];
C=[C100O0OO];
D = [Dorg];

P_aug = ss(A,B,C,D);

%% BILINEAR TRANSFORMATION FOR HINF CONTROL SYSTEM DESI@$K Dr.Rodriguez)

%
% damp(P-ss)
%

% Eigenvalue Damping Freq. (rad/s)

%

% -5.77e-003 + 2.64e-002i 2.13e-001 2.70e-002

% -5.77e-003 - 2.64e-002i 2.13e-001 2.70e-002

% -1.15e+000 + 3.45e+000i 3.17e-001 3.63e+000

% -1.15e+000 - 3.45e+000i 3.17e-001 3.63e+000

%

%

p2 = -1e20; pl = -0.0075; %-0.5 % Bilinear transformation parameters
% When p2 is large, the transformation essentially
% implements a shift to right by -pl units
% - making the plant look more unstable

[Atp,Btp,Ctp,Dtp] = bilin(A,B,C,D,1, 'St jw' ,[p2 pl)); % Obtain ssr for transformed plant

P_transformed = ss(Atp,Btp,Ctp,Dtp); % Form Transformed plant P _transformed

%% Weighting functions

%W1
= [0.2];
for i = 1:l:length(m)
% W1
ki = 1;
M1 = 10 ;% Affects overshoot
M2 = 10 ;% Affects overshoot
wbl = 02 ; % Affects overshoot
wbll = 0.2 ; % Affects overshoot
epsll = 0.001 ; % 0.001;
epsl2 = 0.001 ; % 0.001;
wll = [(tf([(1/M1)"(1/k1) wb1l],[1 wbl * (eps11)"(1/k1)])) (1/k1)];
wl2 = [(tf([(1/M2)"(1/k1) wb1l1],[1 wbll * (eps12)”(1/k1)])) (1/k1)];

W1 = blkdlag(wll w12,6e-05);
[awl,bwl,cwl,dwl] = ssdata(W1);
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k2 = 1;

M21 = 70 % [0.1 - 0.5] good !!

M22 =70 ;

wb21 = 100 ; % 100

wb22 = 100 ; % 100

eps21 = 0.1; % 0.1

eps22 = 0.1; % 0.1

w21l = [(tf([1 wb21/(M21)"(1/k2)],[(eps21)"(1/k2) wb21])
w22 = [(tf([1 wb22/(M22)"(1/k2)],[(eps22)"(1/k2) whb22])

W2 = blkdiag(w21,w22);

[aw2,bw2,cw2,dw2] = ssdata(W2);
%W3

k3 = 1;

M31 =1,; %1

M32 =1,; %1

wb31l = 20 ; %20

wbh32 = 20 ; %20

eps31 = 0.001, % 0.001
eps32 = 0.001 ; % 0.001

w31l = [(tf([1 wb31/(M31)"(1/k3)],[(eps31)"(1/k2) whb31])
w32 = [(tf([1 wb32/(M32)"(1/k3)],[(eps32)"(1/k2) wb32])
W3 = blkdiag(w31,w32,7e-05);

[aw3,bw3,cw3,dw3] = ssdata(W3);

ss _W1 = ss(awl,bwl,cwl,dwl);
ss_W2 = ss(aw2,bw2,cw2,dw2);
ss W3 = ss(aw3,bw3,cw3,dw3);

%% OUTPUT r and di
%

[A ,B ,C ,D] = ssdata(P _transformed);
[A1,B1,C1,D1] = ssdata(W1);
[A2,B2,C2,D2] = ssdata(W2);
[A3,B3,C3,D3] = ssdata(Wa3);
Ap = [ A ,
, zeros(size(A,1),size(A3,2)) ;
B1xC Al

zeros(size(A2,1),size(A,2)), zeros(s:ize(AZ,l),size(A
, zeros(size(A2,1),size(A3,2));
B3+ C

A3 I;
Bpl = [zeros(size(A,1),size(B1,2)) , B
-B1 Bl *D
zeros(size(B2,1),size(B1,2)), B2
zeros(size(B3,1),size(B1,2)), B3 *D
Bp2 = [ B ;
B1+D ;
B2 ;
B3+ DJ;
Cpl = [ D1+C , C1

, zeros(size(C1,1),size(C3,2));
zeros(size(C2,1),size(A,2)) , zeros(size(C2,1),size(C
, zeros(size(C2,1),size(C3,2));

zeros(size(A,1),size(A1,2)) , zeros(size(A,1),s

zeros(size(A3,1),size(Al,2)), zeros(size(A3,1),siz

Y (1K),
Y (1/k2)];

Y (Lk3)];
Y (A/k3)];

ize(A2,2))

, zeros(size(Al,1),size(A2,2)) , zeros(size(Al
1,2)) A2

e(A2,2)) ,

, zeros(size(C1,1),size(C2,2))

1,2)) , c2

D3+C , zeros(size(C3,1),size(C1,2)) , zeros(size(C3,1),siz e(C2,2))
, c3 I
Cp2 = [ C , zeros(size(C,1),size(C1,2)) , zeros(size(C,1), size(C2,2))
, zeros(size(C,1),size(C3,2))];
Dpll = [ -D1 , D1 *D
zeros(size(D2,1),size(D1,2)) , zeros(size(D2,1),size( D,2))
zeros(size(D3,1),size(D1,2)) , D3 *D ;

Dpl2 = [ D1+D ;

236



D2 ;

D3+ DJ;
Dp21 = [-eye(size(C,1),size(D1,2)) , D 1
Dp22 = [D];
P_weights = ss(Ap,[Bpl Bp2],[Cpl;Cp2],[Dpll Dpl2;Dp21 Dp22 D;

%% Decision variables for controller modelling

Y1 = sdpvar(size(Ap,1),size(Ap,1));
X1 = sdpvar(size(Ap,1),size(Ap,1));
An = sdpvar(size(Ap,1),size(Ap,1), ‘full’ );
Bn = sdpvar(size(Ap,1),size(Cp2,1));
Cn = sdpvar(size(Bp2,2),size(Ap,1));
Dn = sdpvar(size(Bp2,2),size(Cp2,1));
gamma = sdpvar(1);
eps = 10°-6 ; %5
%% LMI
Matrix1=[Ap *Y1+Y1lx Ap'+Bp2 »Cn+Cn'*Bp2' , [Ap'+An+[Bp2 * D+ Cp2]T , Bpl+Bp2  *DnxDp21 , [Cpl *Y1+Dpl2+Cn]'
’ Ap'+An+[Bp2 *Dn+ Cp2]' , X1 *Ap+Ap' * X1+Bnx Cp2+Cp2' *Bn' , X1 *Bpl+Bn*Dp21 , [Cp1+Dp12 *Dn+Cp2]
' [Bp1+Bp2 * Dn+ Dp21]' , [X1 +Bpl+Bn*Dp2l] , -gamma *eye(size(Bp1l,2))
, [Dp11+Dp12 +*Dn+Dp21] ;
Cplx Y1+Dpl2xCn , Cpl+Dpl2 *Dn+Cp2 , Dpll+Dpl2 «Dn+Dp21 , -gamma * eye(size(Dpll
I;
Matrix2 = [ Y1 , eye(size(Ap,1)) ;
eye(size(Ap,1)) , X1 ;
Constraintl = [Matrix1 <= -eps *eye(size(Matrix1))];
Constraint2 = [Matrix2 >= eps*eye(size(Matrix2))];

Constraint  _total=[Constraint1l,Constraint2];
Objective = gamma,;

sol = solvesdp(Constraint _total,Objective);
Y1 = double(Y1);

X1 = double(X1);

An = double(An);

Bn = double(Bn);

Cn = double(Cn);

Dn = double(Dn);

N = X1 ;

M = inv(X1)-Y1,;

%% Controller structure with augmentation
Dk = Dn ;

Ck = (Cn - Dk *Cp2* Y1) *inv(M)';

Bk = N\(Bn-X1 *Bp2+DKk) ;

Ak = N\(An - N »Bk+*Cp2*Y1 - X1*Bp2*Ck+M' -X1 »(Ap + Bp2 * Dkx Cp2) * Y1) xinv(M)";
[Ak,Bk,Ck,DK] = bilin(Ak,Bk,Ck,Dk,-1, 'S ftjiw' ,[p2 pll);

K = ss(Ak,Bk,Ck,DK);

integrator = [1/s 0 0 ; 0 1/s 0 ; 00 1 ];

K1 = Krintegrator ;

K1 = series(K1,200°2/(s+200)"2);
Mil = [1 0 O O];

[Lo1,Lil,So01,Si1,Tol,Til,KS1,PS1,Tniyl, Tniul]=f _CLMaplnnerOuter _BigK(P _ss,-K1,Mil);
if  (isstable(Tol))
fprintf( "A\n');
fprintf( 'Sol
fprintf( Tol

%f , ' ,mag2db(norm(Sol,inf)));
%f , ' ,mag2db(norm(Tol,inf)));
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fprintf( 'Sil = %f , ' ,mag2db(norm(Sil,inf)));

fprintf( Til %f , ' ,mag2db(norm(Til,inf)));
fprintf( 'KS1 = %f , ' ,mag2db(norm(KS1,inf)));
fprintf( 'PS1 = %f , ' ,mag2db(norm(PS1,inf)));

fprintf( "A\n");

end
end
%
%% PID
%
% gil_vec = [-0.6];%][-0.6]; %gi2 decreases,
% zil _vec = [0.4];%[0.4];
% golvec = [-0.5];%][-0.8]; % gol decreases,
% zolvec = [0.3];%][0.4];% zol increases, S
% go2vec = [1.5];%][1.5];%0.7 go2 increase, S
% zo2.vec = [0.4];%[0.5];% zo2 increase,
gil .vec = [-1]; %[-0.6]; %gi2 decreases,
zil .vec = [0.4]; %[0.4];
gol_vec = [-1.5]; %[-0.8]; % gol decreases,
zol vec = [0.5]; %[0.4];% zol increases, S
go2_vec = [1.5]; %[1.5;%0.7 go2 increase, S
zo2 .vec = [0.9]; %[0.5];% zo2 increase,
%%
min = inf;

for kkk = 1:length(gil _vec)
for I = 1:length(zil _vec)
for mmm=1:length(gol _vec)
for nnn = l:length(zol _vec)
for ooo = lilength(go2  _vec)
for ppp = lilength(zo2 _vec)

gil gil _vec(kkk);
zil _vec(lll);

gol = gol _vec(mmm);
zol = zol _vec(nnn);
go2 = go2 _vec(000);
z02 = zo2 _vec(ppp);

%% Controllers

Ki=[gil *(s+zil) ; 0];
Ko=[gol *(s+zol)/s O; 0 go2  *(s+z02)/s];
for m = [50] %50

for n = [3] %3

Ki2=series(Ki,m"n/(s+m)"n); %50,3
Ko2=series(Ko,blkdiag(5°2/(s+5)"2,5°2/(s+5)"2)); % 5,3
K2 = [Ko2Ki2];

Mi2=[1 0 0 O]; % feedback pitch in inner-loop
[Lo2,Li2,S02,Si2,To2,Ti2,KS2,PS2,Tniy2, Tniu2]=f _CLMaplnnerOuter(P  _ss,Ki2,Ko2,Mi2);

if  (isstable(To2))

% a = stepinfo(Tol(1,1));

% b = stepinfo(Tol(2,2));

%%

% fprintf(* \nY;

% fprintf('Sol = %f , " 'mag2db(norm(Sol,inf)));
% fprintf(Tol =  %f , ';mag2db(norm(Tol,inf)));
% fprintf('Sil = %f , ',mag2db(norm(Si1,inf)));
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% fprintf(Til = %f , ‘;mag2db(norm(Til,inf)));

% fprintf(KS1 = %f , '';mag2db(norm(KS1,inf)));
% fprintf(PS1 = %f , ', mag2db(norm(PS1,inf)));
fprintf( "A\n');
fprintf( 'S02 = %f , ' ,mag2db(norm(So2,inf)));
fprintf( To2 = %f , ' ,mag2db(norm(To2,inf)));
fprintf( 'Si2 = %f , " ,mag2db(norm(Si2,inf)));
fprintf( Ti2 = %f , " ,mag2db(norm(Ti2,inf)));
fprintf( 'KS2 = %f , ' ,mag2db(norm(KS2,inf)));
fprintf( 'PS2 = %f , ' ,mag2db(norm(PS2,inf)));
fprintf( "A\n");
end
end
end
end
end
end
end
end
end
D.2 AV-8A Harrier
clc;
close all;
clear all;

wvec=logspace(-3,3,10000);

s=tf( 's' ),

%% Longitudinal dynamics of AV-8A Harrier Aircraft at a medi um speed flight
%% condition

% Controls : 1) dels (Stick input)

% 2) delt (throttle)

% States : 1) Pitch angle

% 2) Pitch rate

% 3) Flight path angle

% 4) Velocity

% 5) Stabilizer angle

% 6) Engine fan speed

% Output 1) Flight path angle

% 2) Velocity

A = 0 1 0 0 0 0

[

-1.8370 -1.8930 1.8370 -0.0004 0.0062 -0.1243 ;
0.5295 0.0085 -0.5295 0.0006 0.0002 0.0017 ;
-34.5000 0 2.3000 -0.0621 0.4209 -0.0452 ;

0 0 0 0 -1.9660 0 ;
0 0 0 0 0 -12.0000];
B=[0 0;
0 0;
0 0;
0 0;
1.9660 O;
0 12.0000]
C =[573 O 0 0 0 0;
0573 0 0 0 0;
0 0 5730 0 0;
0 0 0 1 0 0;
0 0 0 0 57.3 0;
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o 0 O o0 o0 1j

D = zeros(6,2);

P = ss(A,B,C,D);

Sx=[573 0 0 O 0 O
0573 0 0 0 0;
0 0 5730 0 O
0 0 0 1 0 0;
0O 0O O 0 5730;
0 0 0 0 0 1];

% Converting radians to degrees

Aorg = Sx * Axinv(Sx);
Borg = Sx *B;

Corg = C+inv(Sx);
Dorg = D;

%Selecting only velocity and flight path angle as the output
Corgl = Corg([3 4],);

Dorgl = zeros(2,2);

P_ss = ss(Aorg,Borg,Corgl,Dorgl);

% Corg2 = Corg(1,));

Corg new = [Corgl ; 1 0000000010 0]
Dorg .new = zeros(4,2);

P_new = ss(Aorg,Borg,Corg _new,Dorg _new);

%% Augmenting with integrator

A = blkdiag(Aorg,zeros(size(Corgl,1)));
A(end-size(Corgl,1)+1:end,1:size(Corgl,2)) = Corgl;

B = [Borg;zeros(size(Corgl,1),size(Borg,2))];

C = [zeros(2,6) eye(2)];
C=[C;100000000001000 Q0
D = zeros(4,2);

P_aug = ss(A,B,C,D);

%% BILINEAR TRANSFORMATION FOR HINF CONTROL SYSTEM DESIGN

% Eigenvalue Damping Freq. (rad/s)

% -2.36e-002 + 9.75e-002i 2.35e-001 1.00e-001

% -2.36e-002 - 9.75e-002i 2.35e-001 1.00e-001

% -1.22e+000 + 1.17e+000i 7.22e-001 1.69e+000

% -1.22e+000 - 1.17e+000i 7.22e-001 1.69e+000

% -1.97e+000 1.00e+000 1.97e+000

% -1.20e+001 1.00e+000 1.20e+001

p2 = -1e20; p1 = -0.1; %0.5 % Bilinear transformation parameters
% When p2 is large, the transformation essentially
% implements a shift to right by -pl units
% - making the plant look more unstable

[Atp,Btp,Ctp,Dtp] = bilin(A,B,C,D,1, 'Sft - jw' ,[p2 p1)); % Obtain ssr for transformed plant
P_transformed = ss(Atp,Btp,Ctp,Dtp); % Form Transformed plant P _transformed

%% Weighting functions
% g = [1 2.5 5];%[ 5:-1:1 0.9:-0.1:0.1 0.09:-0.01:0.01];

q = [1];

for j = l:length(q)

color =[ b 'g T I
%

k1l = 1;

k2 =1 ;

M1l = 1; % 1
M12 = 1, % 1

wbl = 0.01; % 0.01
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wh2 0.01; % 0.01

epsl = 0.003; % 0.003
eps2 = 0.003; % 0.003
wll = [(tf([(1/M11)"(1/k1) wb1],[1 wbl * (epsl)’(1/k1)]))"(1/k1)];
wl2 = [(tf([(1/M12)"(1/k2) wb2],[1 wb2 * (eps2)"(1/k2)]))"(1/k2)];

W1 = blkdiag(wl1l,w12,6e-05,7e-05);
[awl,bwl,cwl,dwl] = ssdata(W1);

%W2

k2 = 1;

M21 = 0.3; % 0.3

M22 = 0.015; % 0.015

wb21l = 3; %3

wb22 = 3; %3

eps21 = 0.01; %0.01

eps22 = 0.01; %0.01

w21l = [(tf([1 wb21/(M21)"(1/k2)],[(eps21)"(1/k2) wb21]) ) (1/k2)];
w22 = [(tf([1 wb22/(M22)"(1/k2)],[(eps22)"(1/k2) wb22]) ) (1/k2)];

W2 = blkdiag(w21,w22);
[aw2,bw2,cw2,dw2] = ssdata(W2);

%W3

k3 = 1 ;

M3 =2 ; %2

wbh3 =20 ; % 20

eps3 = 0.009; % 0.009

w3 = [(tf([1 wb3/(M3)"(1/k3)],[(eps3)"(1/k2) wb3]))"(1/ k3)];

W3 = blkdiag(w3,w3,7e-05,6e-05);
[aw3,bw3,cw3,dw3] = ssdata(W3);

ss_W1 = ss(awl,bwl,cwl,dwl);
ss _W2 = ss(aw2,bw2,cw2,dw2);
ss _W3 = ss(aw3,bw3,cw3,dw3);
9%

%% OUTPUT r and di

[A ,B ,C ,D] = ssdata(P _transformed);
[A1,B1,C1,D1] = ssdata(W1);
[A2,B2,C2,D2] = ssdata(W2);
[A3,B3,C3,D3] = ssdata(W3);
Ap = [ A , zeros(size(A,1),size(A1,2)) , zeros(size(A,1),s ize(A2,2))
, zeros(size(A,1),size(A3,2)) ;
B1+C , Al , zeros(size(Al,1),size(A2,2)) , zeros(size(Al
zeros(size(A2,1),size(A,2)), zeros(size(A2,1),size(A 1,2)), A2
, zeros(size(A2,1),size(A3,2));
B3« C , zeros(size(A3,1),size(A1,2)), zeros(size(A3,1),siz e(A2,2)) ,
A3 I
Bpl = [zeros(size(A,1),size(B1,2)) , B ;
-B1 , Bl *D ;
zeros(size(B2,1),size(B1,2)), B2 ;
zeros(size(B3,1),size(B1,2)), B3 *D K
Bp2 = [ B ;
B1+D ;
B2 ;
B3+ DJ;
Cpl = [ D1+C , C1 , zeros(size(C1,1),size(C2,2))
, zeros(size(C1,1),size(C3,2));
zeros(size(C2,1),size(A,2)) , zeros(size(C2,1),size(C 1,2)) , c2
, zeros(size(C2,1),size(C3,2));
D3«C , zeros(size(C3,1),size(C1,2)) , zeros(size(C3,1),siz e(C2,2))
: c3 Ik
Cp2 = | C , zeros(size(C,1),size(C1,2)) , zeros(size(C,1), size(C2,2))
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, zeros(size(C,1),size(C3,2))];

Dpll = [ -D1 , D1 *D ;
zeros(size(D2,1),size(D1,2)) , zeros(size(D2,1),size( D,2)) ;
zeros(size(D3,1),size(D1,2)) , D3 *D 1

Dpl2 = [ D1+D ;

D2 ;
D3+DJ;

Dp21 = [-eye(size(C,1),size(D1,2)) D ]

Dp22 = [D];

P_weights = ss(Ap,[Bpl Bp2],[Cpl;Cp2],[Dpll Dpl2;Dp21 Dp22 D;

9%

%% Decision variables for LMI

Y1l
X1
An
Bn

sdpvar(size(Ap,1),size(Ap,1));
sdpvar(size(Ap,1),size(Ap,1));
sdpvar(size(Ap,1),size(Ap,1), ‘full’ );
sdpvar(size(Ap,1),size(Cp2,1));

Cn sdpvar(size(Bp2,2),size(Ap,1));

Dn sdpvar(size(Bp2,2),size(Cp2,1));

gamma = sdpvar(l);

eps = 10°-3 ; %5

%% LMI

Matrix1=[Ap *Y1+Y1lx Ap'+Bp2 »Cn+Cn'*Bp2' , [Ap'+An+[Bp2 * D Cp2]T , Bpl+Bp2  *DnxDp21 , [Cpl *Y1+Dpl2+Cn]'
’ Ap'+An+[Bp2 *DnxCp2]' , X1 *Ap+Ap' * X1+Bn* Cp2+Cp2' *Bn' , X1 *Bpl+Bn*Dp21 , [Cp1+Dp12 *Dn+Cp2]
’ [Bp1+Bp2 * Dn+ Dp21]' , [X1 +Bpl+Bn*Dp2l] , -gamma *eye(size(Bp1l,2))
, [Dpl1+Dpl2 *Dn+Dp2l1] ;
Cplx Y1+Dpl2xCn , Cpl+Dpl2 *Dn+Cp2 , Dpll+Dpl2 *Dn+Dp21 , -gamma * eye(size(Dpll
I;

Matrix2 = [ Y1 , eye(size(Ap,1)) ;

eye(size(Ap,1)) , X1 ;
Constraintl = [Matrix1 <= -eps *eye(size(Matrix1))];
Constraint2 = [Matrix2 >= eps *eye(size(Matrix2))];

Constraint  _total=[Constraintl,Constraint2];
Objective = gamma,;

sol = solvesdp(Constraint _total,Objective)
gamma

Y1 = double(Y1);

X1 = double(X1);

An = double(An);

Bn = double(Bn);

Cn = double(Cn);

Dn = double(Dn);

N = X1 ;

M = inv(X1)-Y1;

%% Controller structure with augmentation
Dk = Dn ;

Ck = (Cn - Dk *Cp2+ Y1) *inv(M)';

Bk = N\(Bn-X1 *Bp2*DKk) ;

Ak = N\(An - N *Bk+*Cp2*Y1 - X1*Bp2*Ck+M' -X1 »(Ap + Bp2 * Dkx Cp2) * Y1) xinv(M)";
[Ak,Bk,Ck,DK] = bilin(Ak,Bk,Ck,Dk,-1, 'S fyw' [p2 pll);
K = ss(Ak,Bk,Ck,DK);

integrator = [1/s 0 0 0 ;0 1/s 0 0;0 0 1 0;0 O O 1];
K = Krintegrator;
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K = series(K,50°2/(s+50)°2);
Mil=[1 0 0 00000010 Q] % feedback pitch in inner-loop

Kl = -K;
%% closed loop system

[Ap, Bp, Cp, Dp] = ssdata(P _SS);
[Ak, Bk, Ck, DK] = ssdata(-K);

Bo = BK(:,1:size(Cp,1));
Bi = Bk(:,(size(Cp,1)+1):end);
Do = Dk(:,1:size(Cp,1));
Di = Dk(:,(size(Cp,1)+1):end);
Q = inv(eye(size(Dp,1),size(Dp,1))+Dp * Do);
M = Mi1;
Acl = [Ap-Bp *Dox Q- Cp+Bp+ Do* Q- Dp* Di * M-Bp* Di *M , Bp=* Ck-Bp * Dox Qx Dp*x Ck ;
Bo* Qx Dp* Di * M-Bo* Qx Cp-Bi *M , Ak - Bo *QxDp*Ck I
Bcl = [Bp *DoxQ , Bp-Bp *DoxQxDp , Bp*DoxQ<Dp+Di-Bp *Di , -Bp *DoxQ ;
Bo* Q , -Bo *QxDp , Bo*QxDp*Di-Bi ,-Bo *Q ]
%To
C.To = [Cp-Dp *Do* Qx Cp+Dpx Dox Q- Dp* Di * M-Dpx Di *M , Dp* Ck-Dp * Dox Q Dpx Ck |;
B_-To = [Bp *Do+Q ; Bo*Q];
D_-To = Dp*Do+Q ;
Tol = (ss(Acl,B  _To,C _To,D _To));
%So
B_So = Tol.b;
C.So = -Tol.c;
D_So = eye(size(Dp,1),size(Dp,1))-Dp * Do Q;
Sol = (ss(Acl,B _So,C_So,D _So));
%KS
B_.KS = Tol.b;
C.KS = [-Do * QxCp+Do+ Q< Dp* Di * M-Di *M , Ck-Do * Qx Dp* CK];
D.KS = Do-Q;
KS1 = (ss(Acl,B _KS,C_KS,D_KS));
%Si
B_Si = [Bp-Bp *DoxQ+Dp
-Bo * Q- Dp I
C.Si = KSl.c ;
D_Si = eye(size(Do,1),size(Do,1))-Do * Qx Dp;
Sil = (ss(Acl,B  _Si,C _Si,D _Si));
%Ti
B_Ti = Sil.b;
C.Ti = KSl.c;
D_.Ti = -Do *QDp;
Til = (ss(Acl,B _Ti,C _Ti,D _Ti));
%PS
B_PS = Sil.b;
C_PS = Tol.c;
D_PS = Dp-Dp* Do+ Qx Dp;

PS1 = (ss(Ac,B _PS,C.PS,D_PS));

%Tniy
B_Tniy = [Bp *DoxQ:Dp*Di-Bp *Di ;
Bo* Qx Dp+ Di-Bi 1;
C_Tniy = Tol.c;
D_Tniy = -Dp =*Di+Dp*Do* Q:Dp*Di ;
Tniyl = (ss(Acl,B _Tniy,C _Tniy,D _Tniy));
%Tniu
B_Tniu = Tniyl.b;
C_Tniu = KS1.c;
D_Tniu = Do * Q- Dp* Di-Di;

Tniul = (ss(Acl,B _Tniu,C _Tniu,D _Tniu));
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%Lo
A_Lo = [Ap-Bp *Di*M , Bp*Ck ;

-Bi *M , Ak I

B_Lo = [Bp *Do ; BoJ;

C.Lo = [Cp-Dp *Di*M , Dp*CK];

D_Lo = Dp+Do;

Lol = (ss(A _Lo,B _Lo,C _Lo,D _LO));

%Li

A_Li = [Ap , zeros(size(Ap,1),size(Ak,2)) ;
-Bo*Cp-Bi *M , Ak 1;

B_Li = [Bp ; -Bo *Dp]j;

C_Li = [-Do =*Cp-Di *M CK];

D_Li = -Do *Dp;

Lil = (ss(A _Li,B _Li,C _Li,D _Li);

%% PID
%

gil _vec = [0.01]; % @il increases,So01-S02 increases(slightly),Si1-Si2 inc

zil .vec = [0.4]; % zil increases, S0l-So2 increases(slightly),Si1-Si2 inc

gol_vec = [-0.2]; %-0.2% gol increases,S01-So2 increases,Sil-Si2 decrease
%-1% [-1];z01 decreases,

% So0l-So2 decreases till -1 then increases...

% Sil-Si2 decreases

% So increases,

% Si increases

% Damping improves till

% -1 then worsens

zol vec = [-1];

gi2 _vec = [0.15]; R
zi2 _vec = [0.6];
go2_vec = [0.4]; %0.3919;g02 increases, Sol-So2 decreases, Sil-Si2 decrea

zo2 _vec = [0.06]; %z02 increases,S01-So2 decreases,Sil-Si2 decreases,So i

min = inf;
for iii=1:length(gil _vec)
for jjj=1:length(zil _vec)
for kkk =1:length(gol _vec)
for Il = 1:length(zol _vec)
for mmm = l:length(go2 _vec)
for nnn = l:length(zo2 _vec)
for ooo = l:length(gi2 _vec)
for ppp = lilength(zi2 _vec)
gil = gil _vec(iii);
zil = zil _vec(jjj);
gol = gol _vec(kkk);
zol = zol _vec(lll);
go2 = go2 _vec(mmm);
z02 = zo2 _vec(nnn);
gi2 = gi2 _vec(000);
zi2 = zi2 _vec(ppp);

Mi2=[1 0 0 0 0 0;0 0 0 1 0 O]; % feedback pitch in inner-loop
s=tf( 's' );

Ki=[gil =(s+zil) 0; 0 gi2 * (s+2i2)];

Ko=[gol *(s+zol)/s O; 0 go2  *(s+z02)/s];

% Roll off
s=tf( 's' );
for m = [10]
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for n = [2]

for o = [50]
for p = [2]
Ki2=series(Ki,10°2/(s+10)"2); % 10,2
Ko2=series(Ko,0 p/(s+0)"p); % 100,2
K2=[Ko2 Ki2];
[Lo2,Li2,S02,Si2,To2,Ti2,KS2,PS2,Tniy2, Tniu2]=f _CLMaplnnerOuter(P  _ss,Ki2,Ko2,Mi2);
end
end
end
end
end
end
end
end
end
end
end
end
end
end

D.3 NASA HiMAT

%NASA hiMAT

% Control inputs: 1)Elevon Deflection

% 2)Canard deflection

% Measured outputs: 1l)angle of attack (alpha)

% 2)Pitch angle(theta)

% 6 states :

% 1)Velocity

% 2)alpha

% 3)thetadot

% 4attitude(theta)

% 5)Canard control actuater dynamics
% 6)Elevon control actuator dynamics
clc;

close all;

clear all;

s = tf( 's");
wvec = logspace(-3,3,10000);

%% Plant

Aorg =[-2.2567e-02 -3.6617e+01 -1.8897e+01 -3.2090e+01 3 .2509e+00 -7.6257e-01 ;
9.2572e-05 -1.8997e+00  9.8312e-01 -7.2562e-04 -1.7080e- 01 -4.9652e-03 ;
1.2338e-02 1.1720e+01 -2.6316e+00 8.7582e-04 -3.1604e+0 1 2.2396e+01 ;

0 0  1.0000e+00 0 0 0 ;
0 0 0 0 -3.0000e+01 0 ;
0 0 0 0 0 -3.0000e+01];
Borg =[0 0;
0 0;
0 0;
0 0;
30 0;
0 30];
Corgl = [0 0 0 1 0 0 ;
0o -1 0 1 0 0];
Corg = [Corgl ;0 0 0 1 0 0O]; %feeding back thetadot for Inner loop controller
Dorg = [0 0 ;
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0 0 ;
0 01l

Dorgl = [0 0;0 O];

P_ss = ss(Aorg,Borg,Corgl,Dorgl);

%% Augmenting the plant with integrators and
A = blkdiag(Aorg,zeros(size(Corgl,1)));

A( end-size(Corgl,1)+1:end,1:size(Corgl,2)) =
[Borg;zeros(size(Corgl,1),size(Borg,2))];

C = [zeros(2,6) eye(2)];
C=[C; 00010000
D = Dorg;

P_aug = ss(A,B,C,D);

feeding back th

Corgl,;

etadot

%% BILINEAR TRANSFORMATION FOR HINF CONTROL SYSTEM DESIGN

%

%NO NEED FOR BILINEAR TRANSFORMATION

% REASON :

% damp(P-ss)

%

% Eigenvalue Damping Freq. (rad/s)
%

% -2.58e-001 1.00e+000 2.58e-001
% 6.90e-001 + 2.49e-001i -9.41e-001 7.33e-001

% 6.90e-001 - 2.49e-001i -9.41e-001 7.33e-001

% -5.68e+000 1.00e+000 5.68e+000
% -3.00e+001 1.00e+000 3.00e+001
% -3.00e+001 1.00e+000 3.00e+001
p = [-0.05];

for j = 1:l:length(p)

p2 = -1e20; pl = p(j); %0.01

[Atp,Btp,Ctp,Dtp] = bilin(A,B,C,D,1, 'Sft - _jw' [p2 pi]);

P_transformed = ss(Atp,Btp,Ctp,Dtp);

%% Weighting functions

%W1
= [0.01]; % 500:50:1000];
for i = 1:1:length(m)
kil =
Msl = l % 5
Ms2 =1, % 5
whbl =1; % 1
whb2 =1; % 1
epsl = 0.005; %0.01
eps2 = 0.005; %0.01
wl = [(tf([(1/Ms1)"(1/k1) wb1],[1 wbl
w2 = [(tf([(1/Ms2)"(1/k1) wb2],[1 wb2

W1 = blkdiag(wl,w2,6e-05);

[awl,bwl,cwl,dwl] = ssdata(W1);
%W2

k2 = 1;

Mul = 2;Mu2 = 2; % 5
wbul = 750; % 450

wbu2 = 750; % 450

*(eps1)" (/1) (1/k1)];
* (eps2) (k1)) (L/k1)];
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When p2 is large, the transformation essentially
implements a shift to right by -pl units

- making the plant look more unstable

% Obtain ssr for transformed plant

%

Form



eps = 0.01; %0.009
w21 = [(tf([1 wbul/(Mul)"(1/k2)],[(eps)’(1/k2) wbul]))" (2/k2)];
w22 = [(tf([1 wbu2/(Mu2)"(1/k2)],[(eps) (1/k2) wbu2]))® (2/k2)];

W2 = blkdiag(w21,w22);
[aw2,bw2,cw2,dw2] = ssdata(W2);

%W3
k3= 1 ; %l
My 5 ; %5

wbc = 20 ; % 20

eps = 0.01 ; %0.05

w3 = [(tf([1 wbc/(My)"(1/k3)],[(eps)"(1/k2) wbc]))"(1/k 3);
W3 = blkdiag(w3,w3,7e-05);

[aw3,bw3,cw3,dw3] = ssdata(W3);

ss _W1 = ss(awl,bwl,cwl,dwl);
ss _W2 = ss(aw2,bw2,cw2,dw2);
ss W3 = ss(aw3,bw3,cw3,dw3);

%% Exogenous signal w = [ r di]

[A ,B ,C ,D] = ssdata(P _transformed);
[A1,B1,C1,D1] = ssdata(W1);
[A2,B2,C2,D2] = ssdata(W2);
[A3,B3,C3,D3] = ssdata(W3);
Ap = [ A , zeros(size(A,1),size(Al,2)) , zeros(size(A,1),s ize(A2,2))
, zeros(size(A,1),size(A3,2)) ;
B1xC , Al , zeros(size(Al,1),size(A2,2)) , zeros(size(Al
zeros(size(A2,1),size(A,2)), zeros(size(A2,1),size(A 1,2)), A2
, zeros(size(A2,1),size(A3,2));
B3« C , zeros(size(A3,1),size(Al1,2)), zeros(size(A3,1),siz e(A2,2)) ,
A3 L
Bpl = [zeros(size(A,1),size(B1,2)) , B ;
-B1 , Bl *D ;
zeros(size(B2,1),size(B1,2)), B2 ;
zeros(size(B3,1),size(B1,2)), B3 *D I
Bp2 = [ B ;
B1+D ;
B2 :
B3+ DJ;
Cpl = [ D1+C , C1 , zeros(size(C1,1),size(C2,2))
, zeros(size(C1,1),size(C3,2));
zeros(size(C2,1),size(A,2)) , zeros(size(C2,1),size(C 1,2)) , Cc2
, zeros(size(C2,1),size(C3,2));
D3«C , zeros(size(C3,1),size(C1,2)) , zeros(size(C3,1),siz e(C2,2))
, c3 I8
Cp2 = [ C , zeros(size(C,1),size(C1,2)) , zeros(size(C,1), size(C2,2))
, zeros(size(C,1),size(C3,2))];
Dpll = [ -D1 , D1 *D
zeros(size(D2,1),size(D1,2)) , zeros(size(D2,1),size( D,2))
zeros(size(D3,1),size(D1,2)) , D3 *D IE
Dpl2 = [ D1+D ;
D2 ;
D3+DJ;
Dp21 = [-eye(size(C,1),size(D1,2)) , D
Dp22 = [D];
P_weights = ss(Ap,[Bpl Bp2],[Cpl;Cp2],[Dpll Dpl2;Dp21 Dp22 D;

%% Decision variables for LMI

Y1 = sdpvar(size(Ap,1),size(Ap,1));
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X1 = sdpvar(size(Ap,1),size(Ap,1));

An = sdpvar(size(Ap,1),size(Ap,1), ‘full’ );
Bn = sdpvar(size(Ap,1),size(Cp2,1));

Cn = sdpvar(size(Bp2,2),size(Ap,1));

Dn = sdpvar(size(Bp2,2),size(Cp2,1));

gamma = sdpvar(1);

eps = le-5 ; %5

%% LMI

Matrix1=[Ap *Y1+Y1x Ap'+Bp2 * Cn+Cn'*Bp2' , [Ap'+An+[Bp2 * D+ Cp2] 7'

Ap'+An+[Bp2 *Dn+Cp2]' , X1

[Bp1+Bp2 * Dn+ Dp21]' , [X1 +Bpl+Bn*Dp21]
, [Dpl11+Dpl2 *DnxDp2l] ;
Cpl*Y1+Dpl12+Cn ,  Cpl+Dpl2 *Dn+Cp2

I
Matrix2 = [ Y1

, eye(size(Ap,1)) ;
eye(size(Ap,1)) , X1

>=

-eps *eye(size(Matrix1))];
eps * eye(size(Matrix2))];

Constraintl
Constraint2

= [Matrix1
= [Matrix2
Constraint  _total=[Constraint1l,Constraint2];
Objective = gamma,;

sol = solvesdp(Constraint _total,Objective);

, Bpl+Bp2
* Ap+Ap' * X1+Bn* Cp2+Cp2' *Bn'

, -gamma

* D+ Dp21 , [Cpl *Y1+Dp12+Cn]

X1 *Bpl+Bn*Dp21 , [Cpl1+Dp12 *Dn+Cp2]
* eye(size(Bp1l,2))

Dp11+Dpl12 * Dnx Dp21 , -gamma * eye(size(Dp1l

Y1 = double(Y1);

X1 = double(X1);

An = double(An);

Bn = double(Bn);

Cn = double(Cn);

Dn = double(Dn);

N = X1 ;

M = inv(X1)-Y1;

%% Controller structure with augmentation
Dk = Dn ;

Ck = (Cn - Dk *Cp2* Y1) *inv(M)';

Bk = N\(Bn-X1 *Bp2+DK) ;

Ak = N\(An - N *Bk+*Cp2*Y1 - X1*Bp2*Ck«M' -X1 *(Ap + Bp2 * Dkx Cp2) * Y1) *xinv(M)";

[akl,bk1,ckl,dk1] = bilin(Ak,Bk,Ck,Dk,-1, [p2 p1ll);
K1 = ss(Ak,Bk,Ck,Dk);
integrator = [1/s 0 0;0 1/s 0;0 0 1J;

K2 = Klxintegrator ;

'S _ftjw’

K3 = series(K2,(10072/(s+100)°2));
Mil =[00010 0]

[Lo1,Lil,So01,Si1,Tol,Til,KS1,PS1,Tniyl, Tniul]=f _CLMaplnnerQuter

a = stepinfo(To1(1,1));

b = stepinfo(Tol1(2,2));

if isstable(Tol)

% damp(Tol)

fprintf( "A\n');

fprintf( 'SolPeak = %f , ' ,mag2db(norm(Sol,inf)));
fprintf( TolPeak = %f , ' ,mag2db(norm(Tol,inf)));
fprintf( 'SilPeak = %f , ' ,mag2db(norm(Sil,inf)));
fprintf( ‘TilPeak = %f , ' ,mag2db(norm(Til,inf)));
fprintf( 'PSpeak = %f , ' ,mag2db(norm(PS1,inf)))
fprintf( 'KSpeak = %f , ' ,mag2db(norm(KS1,inf)))
fprintf( '‘parameter = %f ' i);
fprintf( n');
fprintf( 'StepTollpeak = %f , * ,a.0vershoot);

248

_BigK(P _ss,-K3,Mil);



fprintf(
fprintf(

end
end
end

%
%% PI-PD
%

% il _vec
% gi2 _vec
% Qi3 _vec
% gi4 _vec
% golvec
% zolvec
% go2vec
% zo2.vec

% gil _vec
% Qi2 _vec
% Qi3 _vec
% Qi4 _vec
% golvec
% zolvec
% go2.vec
% zo2.vec

gil _vec
gi2 _vec
gi3 _vec
gi4 _vec
gol_vec
zol _vec
go2_vec
z02 _vec

min = inf;
%%

for

%%

gil
gi2
gi3
gid
gol
zol
go2
z02

L 1 A {11
N
flae
S

'StepTo22peak = %f , ' ,b.Overshoot);
tAnt);

[-1.0346];
[-0.16972];
[0.75038];
[0.1353];
[-0.99907];
[0.2433];
[0.1353];
[6.856];

[-1.0346];
[-0.16972];
[0.75038];
[0.1353];
[-0.99907];
[0.2433];
[0.1353];
[6.856];

iii= 1:length(gil _vec)
for jj = l:length(gi2 _vec)
for kkk = 1:length(gi3 _vec)
for Il = 1:length(gi4 _vec)
for mmm =1:length(gol _vec)
for nnn = 1l:length(zol _vec)
for ooo = lilength(go2  _vec)
for ppp = l:length(zo2 _vec)

gil _vec(iii);
gi2  _vec(jjp);
gi3 _vec(kkk);
gi4 _vec(lll);
gol _vec(mmm);
zol _vec(nnn);
go2 _vec(000);
202 _vec(ppp);

%% Controllers

s=tf( 's' ),
Ki2=[gil gi2 ;
gi3 gid];
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Ko2=[gol *(s+zol)/s O0; 0 go2  *(s+zo2)/s];
Ki2=series(Ki2,70"2/(s+70)"2); %70,2
Ko2=series(Ko2,blkdiag(4"2/(s+4)"2,5072/(s+50)"2)); %1,2

K2 = [Ko2 Ki2];
Mi2=[0 0 1 0 0 O;
000100 % feedback pitch in inner-loop
[Lo2,Li2,S02,Si2,To2,Ti2,KS2,PS2,Tniy2, Tniu2]=f _CLMaplnnerOuter(P  _ss,Ki2,Ko2,Mi2);
%%

if (isstable(To2))
% while(n < min)

fprintf( "A\n');

fprintf( 'SolPeak = %f , ' ,mag2db(norm(Sol,inf)));
fprintf( ‘TolPeak = %f , ' ,mag2db(norm(Tol,inf)));
fprintf( 'SilPeak = %f , ' ,mag2db(norm(Si1,inf)));
fprintf( ‘TilPeak = %f , ' ,mag2db(norm(Til,inf)));
fprintf( 'KS1Peak = %f , ' ,mag2db(norm(KSL1,inf)));
fprintf( 'PS1Peak = %f , ' ,mag2db(horm(PS1,inf)));

fprintf( "A\n');

fprintf( 'So2Peak = %f , ' ,mag2db(norm(So2,inf)));
fprintf( ‘To2Peak = %f , ' ,mag2db(norm(To2,inf)));
fprintf( 'Si2Peak = %f , ' ,mag2db(norm(Si2,inf)));
fprintf( ‘Ti2Peak = %f , ' ,mag2db(norm(Ti2,inf)));
fprintf( 'KS2Peak = %f , ' ,mag2db(norm(KS2,inf)));
fprintf( 'PS2Peak = %f , ' ,mag2db(horm(PS2,inf)));
fprintf( "A\n');
end
end
end
end
end
end
end

end
end

D.4 New Engine Old Plume

close all; clear all;clc;
s = t( s )
wvec = logspace(-3,3,10000);

%% NEW ENGINE OLD PLUME
%

Aorg = [

-0.00161983452436639 -0.000173653118186216  9.85221125 198869e-09 -0.000383285547441667
-0.000153334284598949  -6.40990402063117e-07  -0.000517 647827164931 0  -0.000246189995128958

0

0.0174436232266518 -0.0952505742413470 -2.45973545620 615e-06  0.0952505742413470 -0.0473740081521685 0.00016
-0.0333718434315429 0  -0.0954009317216059 0

1.77986936072073 -11.7204708121079  -0.001825866052589 89 11.7204708121079 -6.51667947017910
-0.0499188708626610 -20.8953256566930 0  -10.6317565947 130 ©

0 0 1 0o 0 O O o 0 o

o 0 0O o0 ©O 1 0 O o0 0

96.6858565835592 -175.176839832411 O 175.176839832411 - 486.360518917941  -0.790307353781827
-62.7375115982431 0  -194.060730791534 O

o o o o o o o 1 o0 o

7.24340636721254 -1.71987412949226 O 1.71987412949226 - 3.78805277857882 0  -2328.68432267708
-1.91361201729023  -1.92565360634944 0O

o o o o o o o o o 1

-29.6855826478488  -8.31276945317075 0  8.31276945317075 6.16367497142926 0 1.59220472539801
0  -8995.50484452050  -3.79649083015465 ];
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Borg = [

0.0659511726422028 -0.000642964403131860
0.106326843669806  0.0175428125197014
27.5975073455364 -9.48877384602615
0 o

0 O

-20.2860969693575  39.6819134079967

0 o

177.216008339087 -25.3583618231909
0 o

-95.7318231087356  -4.29758487599550 1;
0/0}

Corgl =[

1 0 o0 O O o o o o0 o
0o 1 0 O O O O O o0 oI

Corg = [Corgl;0 O 0 1 zeros(1,6)];

Dorg = [0 O
0 0
0 0]

Dorgl = [0 O ;
0 0,

P_ss = ss(Aorg,Borg,Corgl,Dorgl);
P_new = ss(Aorg,Borg,Corg,Dorg);
[A,B,C,D] = ssdata(P _new);
%% Hinf controller using LMI

%

%

S

Augment Plant with integrators

A = Aorg;B = Borg;C = Corgl;D = Dorg;

A = blkdiag(A,zeros(size(C,1)));
A(end-size(C,1)+1:end,1:size(C,2)) =
B [B;zeros(size(C,1),size(B,2))];
[zeros(2,10) eye(2)];

[C ; zeros(1,3) 1 zeros(1,8)];

|
0

C
Cc

P_aug = ss(A,B,C.[);

=

Bilinear transformation

= [0.0097];  %-0.0097
= 0.25; %[0.01 0.05 0.25 0.275 0.3]

[1];
for k = 1:1:length(p)

£330

pl = pk) ; %-0.0097
p2 = -1e20 ;
[Atp,Btp,Ctp,Dtp] = bilin(A,B,C,D,1, 'Sft _jw' [p2 pi]);

P_transformed = ss(Atp,Btp,Ctp,Dtp);
% Weights at output for hinflmi and augw
for i = 1:1:length(m)

for j = 1:l:length(w)

% NEOP with flexible mode cancellation

kl = 1;

M1 =7 ; % 5 % Affects overshoot
M2 =7 ; % 5 % Affects overshoot
wbl = 0.8 ; % 0.8 Affects overshoot
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wbll = 0.8 ; % 0.8 Affects overshoot

epsll = 05 ; % 0.3

epsl2 = 05; % 0.3

wll = [(tf([(2/M1)"(1/k1) wbl],[1 wbl * (eps1l)”(1/k1)]))"(1/k1)];
wl2 = [(tf([(2/M2)"(2/k1) wb1l],[1 wbll * (eps12)”(1/k1)]))"(1/k1)];

W1 = blkdiag(w1l,w12,6e-05);
[awl,bwl,cwl,dwl] = ssdata(W1);

%W2

k2 = 1,

M21 = 0.07 ; % 0.07 [0.1 - 0.5] good !!

M22 = 0.07 ; % 0.07

wb21 = 200 ; % 200

wb22 = 200 ; % 200

eps21 = 0.0001; % 0.0001

eps22 = 0.0001; % 0.0001

w21 = [(tf([1 wb21/(M21)"(1/k2)],[(eps21)"(1/k2) wb21]) ) (1/k2)];
w22 = [(tf([1 wb22/(M22)"(1/k2)],[(eps22)"(1/k2) wb22]) ) (1/k2)];

W2 = blkdiag(w21,w22);
[aw2,bw2,cw2,dw2] = ssdata(W2);

%W3

k3 = 1;

M31 =5; %5

M32 =5 ; %5

wb31l = 50 ; %50

wb32 = 50 ; %50

eps31 = 0.001; % 0.001

eps32 = 0.001 ; % 0.001

w31l = [(tf([1 wb31/(M31)"(1/k3)],[(eps31)"(1/k2) wh31]) ) (1/k3)];
w32 = [(tf([1 wb32/(M32)"(1/k3)],[(eps32)"(1/k2) wb32]) ) (1/k3)];

W3 = blkdiag(w31,w32,7e-05);
[aw3,bw3,cw3,dw3] = ssdata(W3);

% r and di : w = [r di]

[A ,B ,C ,D] = ssdata(P _transformed);
[A1,B1,C1,D1] = ssdata(W1);
[A2,B2,C2,D2] = ssdata(W2);
[A3,B3,C3,D3] = ssdata(W3);
Ap = [ A , zeros(size(A,1),size(Al,2)) , zeros(size(A,1),s ize(A2,2))
, zeros(size(A,1),size(A3,2)) ;
B1xC , Al , zeros(size(Al,1),size(A2,2)) , zeros(size(Al
zeros(size(A2,1),size(A,2)), zeros(size(A2,1),size(A 1,2)), A2
, zeros(size(A2,1),size(A3,2));
B3« C , zeros(size(A3,1),size(Al1,2)), zeros(size(A3,1),siz e(A2,2) ,
A3 ¥
Bpl = [zeros(size(A,1),size(B1,2)) , B ;
-B1 , Bl *D
zeros(size(B2,1),size(B1,2)), B2 ;
zeros(size(B3,1),size(B1,2)), B3 *D B
Bp2 = [ B ;
B1+D ;
B2 ;
B3*DJ;
Cpl = [ D1+C , C1 , zeros(size(C1,1),size(C2,2)) , zeros(size
zeros(size(C2,1),size(A,2)) , zeros(size(C2,1),size(C 1,2)) , Cc2
, zeros(size(C2,1),size(C3,2));
D3«C , zeros(size(C3,1),size(C1,2)) , zeros(size(C3,1),siz e(C2,2))
, C3 I
Cp2 = | C , zeros(size(C,1),size(C1,2)) , zeros(size(C,1), size(C2,2))

, zeros(size(C,1),size(C3,2))];
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Dp1l

-D1 ,
zeros(size(D2,1),size(D1,2)) , D2
zeros(size(D3,1),size(D1,2)) , D3

Dpl2 [ D1+D;

D2 ;

D3+DJ;
Dp21 [-eye(size(C,1),size(D1,2)) D
Dp22 [D];

P_weights = ss(Ap,[Bpl Bp2],[Cpl;Cp2],[Dpll Dpl2;Dp21 Dp22

Y1
X1
An
Bn

sdpvar(size(Ap,1),size(Ap,1));
sdpvar(size(Ap,1),size(Ap,1));
sdpvar(size(Ap,1),size(Ap,1), ‘full' );
sdpvar(size(Ap,1),size(Cp2,1));

Cn = sdpvar(size(Bp2,2),size(Ap,1));

Dn sdpvar(size(Bp2,2),size(Cp2,1));

gammal = sdpvar(1);

eps = 10-13 ; %13

Matrix1=[Ap *Y1+Y1x Ap'+Bp2 *Cn+Cn'*Bp2' , [An+[Ap+Bp2
, [Cpl *Y1+Dpl12Cn]' ;

An+[Ap+Bp2 * Dn+ Cp2]' , X1 *Ap+Ap' * X1+Bn* Cp2+Cp2' * Bn'

, [Cp1+Dp12 *Dn+Cp2] ;

«D

*D

* D+ Cp2]7

[Bp1+Bp2 * Dr+ Dp21]' , [X1 +Bpl+Bn«Dp21]

, [Dp11+Dp12 =D+ Dp21]

Cpl* Y1+Dpl2+Cn , Cpl+Dpl2*Dn+Cp2

, -gammal * eye(size(Dp11,1)) 1;

Matrix2 = [ Y1l , eye(size(Ap,1)) ;
eye(size(Ap,1)) , X1 ;
Constraintl = [Matrix1 <= -eps eye(size(Matrix1))];
Constraint2 = [Matrix2 >=  eps*eye(size(Matrix2))];
Constraint3 = [Y1 >= eps *eye(size(Y1,1))];
Constraint4 = [X1 >= eps *eye(size(X1,1))];

Constraint  _total=[Constraintl,Constraint2,Constraint3,Constrai
Objective = gammal;

solvesdp(Constraint _total,Objective)
Y1 = double(Y1);
X1 = double(X1);
An = double(An);
Bn = double(Bn);
Cn = double(Cn);

Dn = double(Dn);
gammal = double(gammal);

N = X1 ;
M = inv(X1)-Y1;

Dk
Ck
Bk
Ak

Dn ;
(Cn - Dk *Cp2+ Y1) *inv(M)";
N\(Bn-X1 *Bp2*DK) ;

[ak1,bk1,ckl,dk1] = bilin(Ak,Bk,Ck,Dk,-1, 'S _ftjw'
K = ss(akl,bkl,ckl1,dkl);

integrator = [1/s 0 0;0 1/s 0;0 0 1J;
K1 = Krintegrator ;

K3 = series(K1,140°2/(s+140)2); % 60 , 3

Mil=[zeros(1,3) 1 zeros(1,6)]; % feedback pitch in inner-loop

[Lol,Li1,So1,Si1,To1,Til,KS1,PS1,Tniyl, Tniul]l=f _CLMaplnnerQuter

all = stepinfo(Tol(1,1));
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nt4];

, Bpl+Bp2 * Dnx Dp21

, X1 *Bpl+Bn+Dp21

, -gammal xeye(size(Bpl,2))

N\(An - N *Bk*Cp2+Y1 - X1=*Bp2*Ck+M' -X1 *(Ap + Bp2 *Dkx Cp2) * Y1) *inv(M)";

[p2 p1]);

Dp11+Dp12 * Drx Dp21

_BigK(P _ss,-K3,Mil);



al2 = stepinfo(Tol(2,2));
end

end

end

%
%%

% Ko decentralized Ki decentralized

%

gil _vec = [0];

zil _vec = [0];

gi2 _vec = [-0.8];

zi2 _.vec = [5]; %5
goll vec = [1.25] %1.75
zoll .vec = [0.04]; %0.06
gol2 vec = [0];

zol2 .vec = [0];

go21 vec = [0];

z021 vec = [0];

go22 vec = [-9.5]; % -11
z022 vec = [0.07]; % 0.07
% gil_vec = [0];

% zil vec = [0];

% Qi2 vec = [-1.5];

% zi2 vec = [6]; % 3
% gollvec = [1]; % 15

% zoll.vec = [0.02]; % 0.06
% gol2.vec = [0];

% zol2.vec = [0];

% go2l.vec = [0];

% zo21.vec = [0];

% go22.vec = [-1.5]; % -6
% zo22.vec = [0.1]; % 0.12
min = inf;

for iii=1l:length(zi2 _vec)

for jjj=1l:length(gi2 _vec)
for kkk = 1:length(zil

for Il = 1l:length(gil
for mmm =1:length(goll

for nnn = 1l:length(zoll
1:length(go12
for ppp = 1l:length(zol2
for

for o000

zi2 = zi2 _vec(iii);
gi2 = gi2 _vec(jj);
zil = zil _vec(kkk);
gil = gil _vec(lll);

goll = goll _vec(mmm);

zoll = zoll _vec(nnn);
gol2 = gol2 _vec(000);
z012 = zol2 _vec(ppp);
go21 = go2l1 _vec(qqq);
z021 = z021 _vec(rrr);

g022 = go022 _vec(sss);
2022 = z022 _vec(ttt);

Mi2=[zeros(1,3) 1 zeros(1,6)];

s=tf( 's' ),

%-0.8 % decrease peak increas
increase peak decrease

% -0.7 % decrease peak increas

increase peak decrease

_vec)

_vec)
_vec)
_vec)
_vec)
_Vec)
gqqg = l:length(go21 _vec)
for rrr = l:length(zo21 _vec)
for sss = 1l:length(go22
for ttt = l:length(zo22

_vec)
_vec)
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Ki=[gil *(s+zil) ; gi2 * (s+zi2)];
Ko=[goll *(s+z0l1l)/s gol2 =*(s+z0l1l2)/s; go21  *(s+z02l)/s go22 *(s+z022)/s];

m = [45]; n = [3]; o = [L.3];p = [3]; %45,3,1.5,3
for i = 1:1:length(m)

for j = 1:1:length(n)

for k = 1:1:length(o)

for | = 1:1:length(p)

s=tf( 's' );

Ki2=series(Ki,m(i)"n(j)/(s+m(i))"n(j));
Ko2=series(Ko,o(k) p(l)/(s+o(k))"p(1));
K2=[Ko2 Ki2];

[Lo2,Li2,S02,Si2,To2,Ti2,KS2,PS2,Tniy2,Tniu2]=f _CLMaplnnerOuter(P  _ss,Ki2,Ko2,Mi2);
a2l = stepinfo(To2(1,1));
a22 = stepinfo(To2(2,2));

end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
% Ko decentralized Ki theta centralized
%
gil _vec = [0.3889]; %[0.3 0.4 0.5 0.6 0.7];
zil _vec = [4.018 ]; %4.018
gi2 _vec = [0.059]; % 0.059 %decrease peak increas
zi2 _vec = [10.73]; % 10.73 increase peak decrease
goll vec = [-3]; % -3
zoll .vec = [0.077]; % 0.077
gol2 vec = [O];
z012 vec = [0];
go21 .vec = [0];
z021 vec = [0];
go22 .vec = [2.5]; % 3
z022 vec = [0.045]; % 0.045
col vec =['b g T K
min = inf;
for iii=1:length(zi2 _vec)
for jjj=1l:length(gi2 _Vec)
for kkk = 1:length(zil _vec)
for Il = 1l:length(gil _Vec)
for mmm =l:ength(goll _vec)
for nnn = 1:length(zoll _Vec)
for o0oo = 1:length(gol2 _vec)
for ppp = 1l:length(zol2 _Vec)
for qggq = 1l:length(go21 _vec)
for rrr = l:length(zo21 _Vec)
for sss = 1l:length(go22 _vec)
for tit = l:length(zo22 _Vec)
zi2 = zi2 _vec(iii);
gi2 = gi2 _vec(jjj);
zil = zil _vec(kkk);
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gil = gil _vec(lll);

goll = goll _vec(mmm);
zoll = zoll _vec(nnn);
gol2 = gol2 _vec(000);
z012 = zol12 _vec(ppp);
go21 = go2l _vec(qqq);
z021 = zo21 _vec(rrr);
go22 = go022 _vec(sss);
2022 = z022 _vec(ttt);

Mi3=[zeros(1,3) 1 zeros(1,6)];

s=tf( 's' );
Ki=[gil *(s+zil) ; gi2 * (s+zi2)];

Ko=[goll *(s+zo0ll)/s gol2 =*(s+z012)/s; go2l  *(s+zo021)/s go22

m = [50]; n = [3]; o = [1.6];p = [3]; %50,3,1.5,3
for i = 1:1:length(m)

for j = 1:l:length(n)

for k = 1:1:length(o)

for | = 1:1:length(p)

s=tf( 's' ),

Ki3=series(Ki,m(i)"n(j)/(s+m(i))"n(j));
Ko3=series(Ko,o(k) p(l)/(s+o(k))"p(l));
K3=[Ko3 Ki3];

[Lo3,Li3,S03,Si3,To3,Ti3,KS3,PS3,Tniy3, Tniu3]=f
a3l = stepinfo(To3(1,1));
a32 = stepinfo(To3(2,2));

end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end

%
% Ko centralized Ki theta centralized

%

_CLMaplnnerOuter(P

* (s+2022)/s];

_ss,Ki3,Ko3,Mi3);

gil -vec = 0.25; %[0.25 0.35 0.45 0.55] ; % 0.1756 Li BW [0.25 0.35 0.45 0.55]

zil _vec = [3.25]; % 3.25 Li
gi2 .vec = [-0.1]; % -0.1 Li BW
zi2 _vec = [4.715]; % 4.715

goll vec = [0.1974] ; % 0.1974
zoll vec = [-0.194]; % -0.194
gol2 vec = [2.6]; % 0.1

7012 vec = [0.1]; % 0.1
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go21 vec = [3.5]; % 3.5 affects KS , tsett of vel

z021 vec = [0.075]; % 0.075 affects KS , tsett of vel
go22 vec = [0.4835]; % 0.4835 no change
z022 vec = [-0.0574]; % -0.0574 no change
min = inf;
for iii=1l:length(zi2 _vec)
for jjj=1:length(gi2 _vec)
for kkk = 1:length(zil _vec)
for I = 1:length(gil _vec)
for mmm =l:length(goll _vec)
for nnn = lilength(zoll _vec)
for o0oo = 1:length(gol2 _vec)
for ppp = lilength(zol2 _vec)
for qggq = l:length(go21 _vec)
for rr = 1:length(zo21 _vec)
for sss = 1l:length(go22 _vec)
for ttt = l:length(zo22 _Vec)
zi2 = zi2 _vec(iii);
gi2 = gi2 _vec(jjj);
zil = zil _vec(kkk);
gil = gil _vec(lll);

goll = goll _vec(mmm);

z0ll = zoll _vec(nnn);
gol2 = gol2 _vec(000);
z012 = z012 _vec(ppp);
go21l = go2l _vec(qqq);
z021 = zo021 _vec(rrr);

go22 = go022 _vec(sss);
2022 = z022 _vec(ttt);

Mid=[zeros(1,3) 1 zeros(1,6)];

s=tf( 's' );

Ki=[gil =(s+zil) ; gi2 * (s+zi2)];

Ko=[goll *(s+zoll)/s gol2 =*(s+zol2)/s; go21  =*(s+zo2l)/s go22 *(s+z022)/s];

m = [60]; n = [3]; o = [L.7];p = [3];

for i = 1:l:length(m)
for j = 1:1:length(n)
for k = 1:1:length(o)
for | = 1:1:length(p)
s=tf( 's' );

Kid=series(Ki,m(i)"n(j)/(s+m(i))"n(j));
Ko4=series(Ko,o(k) p(l)/(s+o(k))"p(1));
K4=[Ko4 Kid];

[Lo4,Li4,S04,Si4,To4,Ti4, KS4,PS4,Tniy4, Tniud]=f _CLMaplnnerOuter(P  _ss,Ki4,Ko4,Mi4);
a4l = stepinfo(To4(1,1));

a42 = stepinfo(To4(2,2));
end
end
end
end
end
end
end
end
end
end
end
end
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end
end
end
end

close all;

clear all;

clc;

s =t 's" ),

wvec = logspace(-3,3,10000);

%% NEW ENGINE NEW PLUME
%

Aorg = [
-0.000765493197068893
0.0398256071163982
-8.13713435624790

0 0 1 0o 0 o O o o0 o
0 o0 o0 o0 O 1 0 O O o
97.7307242797890 -175.419307332950 O 175.419307332950 -
o o o o o o o 1 o0 o
6.82432124669712 -1.57125267814757 O 1.57125267814757 -

o o0 o o o o o0 o
-29.7382596677102

Borg = [
0.0712759693723950
0.241985299802785
-34.6487159397153

-0.000619189572893596
-0.106750102119458
-6.48745781627056

-8.28953904356666 0

D.5 New Engine New Plume

0 1
8.28953904356666

-0.000654310307661334
0.0176611650172086
-9.55146419597720

0 O

0 O

-20.2978430934309  39.9550972872018
0 o0

176.090260268325 -25.5329374689752
0 o0

-94.9585209610859
%
Corgl =[

1 0o 0 o O o o0 o
o 1 o O o o o0 o0

Corg = [Corgl;0 0 O 1 zeros(1,6)];
Dorg = [0 O

0 O

0 0
Dorgl = [0 O ;

0 0

P_ss = ss(Aorg,Borg,Corgl,Dorgl);
P_new = ss(Aorg,Borg,Corg,Dorg);
[A,B,C,D] = ssdata(P _new);
%% Hinf controller using LMI

%

% Augment Plant with integrators

A = Aorg;B = Borg;C = Corgl;D =
A = blkdiag(A,zeros(size(C,1)));

A(end-size(C,1)+1:end,1:size(C,2)) = C;

-4.32717092161711 ;

Dorg;
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4723372e-09

9.9809836
-2.466818548985 12e-06
-0.00182676880431 733

6.22509072657125e-05 -0.0004957179841095
0.106750102119458  -0.0565053547573918 0.0001601
6.48745781627056 -2.69343551595363  -0.0499534¢€

486.465384423634  -0.790307353781827 -62.489625-

3.71600254756222 0  -2328.83881300339 -1

6.18686985587133 0  1.57849738968707 0



[B;zeros(size(C,1),size(B,2))];
[zeros(2,10) eye(2)];
[C ; zeros(1,3) 1 zeros(1,8)];

Oo0Ow
o

P_aug = ss(A,B,C.[);
% Bilinear transformation

= [0.0097];  %-0.0097
= 0.25; %[0.01 0.05 0.25 0.275 0.3]

[1];
for k = 1:1:length(p)

€30

pl = pk) ; %-0.0097
p2 = -1e20 ;
[Atp,Btp,Ctp,Dtp] = bilin(A,B,C,D,1, 'Sft _jw' [p2 p1]);

P_transformed = ss(Atp,Btp,Ctp,Dtp);

% Weights at output for hinflmi and augw
for i = 1:1:length(m)
for j = 1:l:length(w)

% NENP with flexible mode cancellation
%

kil = 1;

M1 = 10 ; %1 % Affects overshoot 3

M2 = 10 ; %1 % Affects overshoot

wbl = 2; % 2 Affects overshoot

wbll = 2; % 2 Affects overshoot

epsll = 0.25 ; % 0.07 ;

epsl2 = 025 ; % ;

wll = [(tf([(2/M1)"(1/k1) wbl],[1 wbl * (eps11)”(1/k1)]))"(1/k1)];
wl2 = [(tf([(1/M2)"(2/k1) wb11],[1 wbll * (eps12)”(1/k1)]))"(1/k1)];

W1 = blkdiag(wll,w12,6e-05);
[awl,bwl,cwl,dwl] = ssdata(W1);

%W2

k2 = 1;

M21 = 0.09 ; % 0.03 0.03 [0.1 - 0.5] good !!
M22 = 0.09 ; % 0.03 0.03

wb21 = 300; % 200 300

wb22 = 300; % 200 300

eps21 = 0.0001; % 0.0001

eps22 = 0.0001; % 0.0001

w21l = [(tf([1 wb21/(M21)"(1/k2)].[(eps21)"(1/k2) wb21])
w22 = [(tf([1 wb22/(M22)"(1/k2)],[(eps22)"(1/k2) wb22])

W2 = blkdiag(w21,w22);
[aw2,bw2,cw2,dw2] = ssdata(W2);

%W3

k3 = 1;

M31 =6 ; %5

M32 =6 %5

wb31l = 50 ; %50

wb32 = 50 %50

eps31 = 0.001 ; % 0.001

eps32 = 0.001 ; % 0.001

w31l = [(tf([1 wb31/(M31)"(1/k3)],[(eps31)"(1/k2) wh31])
w32 = [(tf([1 wb32/(M32)"(1/k3)],[(eps32)"(1/k2) wb32])

W3 = blkdiag(w31,w32,7e-05);
[aw3,bw3,cw3,dw3] = ssdata(W3);

% r and di : w = [r di

[A B .C D]
[A1,B1,C1,D1]

ssdata(P _transformed);
ssdata(W1);
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Y (1/k2)];
Y (/k2)];

Y (1/k3)];
Y (/k3);



[A2,B2,C2,D2] = ssdata(W2);
[A3,B3,C3,D3] = ssdata(W3);
Ap = [ A , zeros(size(A,1),size(Al,2)) , zeros(size(A,1),s ize(A2,2))
, zeros(size(A,1),size(A3,2)) ;
B1+C , Al , zeros(size(Al,1),size(A2,2)) , zeros(size(Al
zeros(size(A2,1),size(A,2)), zeros(size(A2,1),size(A 1,2)), A2
, zeros(size(A2,1),size(A3,2));
B3xC , zeros(size(A3,1),size(A1,2)), zeros(size(A3,1),siz e(A2,2)) ,
A3 I;
Bpl = [zeros(size(A,1),size(B1,2)) , B
-B1 , B1 *D ;
zeros(size(B2,1),size(B1,2)), B2 ;
zeros(size(B3,1),size(B1,2)), B3 *D 1
Bp2 = [ B ;
B1+D ;
B2 ;
B3+ DJ;
Cpl = [ D1+C , C1 , zeros(size(C1,1),size(C2,2)) , zeros(size
zeros(size(C2,1),size(A,2)) , zeros(size(C2,1),size(C 1,2)) , c2
, zeros(size(C2,1),size(C3,2));
D3+C , zeros(size(C3,1),size(C1,2)) , zeros(size(C3,1),siz e(C2,2))
, Cc3 I
Cp2 = [ C , zeros(size(C,1),size(C1,2)) , zeros(size(C,1), size(C2,2))
, zeros(size(C,1),size(C3,2))];
Dpll = | -D1 , D1 *D ;
zeros(size(D2,1),size(D1,2)) , D2 ;
zeros(size(D3,1),size(D1,2)) , D3 *D 1;
Dpl2 = [ D1+D;
D2
D3+ DJ;
Dp21 = [-eye(size(C,1),size(D1,2)) , D
Dp22 = [DJ;
P_weights = ss(Ap,[Bpl Bp2],[Cpl;Cp2],[Dpll Dpl2;Dp21 Dp22 D;
Y1 = sdpvar(size(Ap,1),size(Ap,1));
X1 = sdpvar(size(Ap,1),size(Ap,1));
An = sdpvar(size(Ap,1),size(Ap,1), ‘full' );
Bn = sdpvar(size(Ap,1),size(Cp2,1));
Cn = sdpvar(size(Bp2,2),size(Ap,1));
Dn = sdpvar(size(Bp2,2),size(Cp2,1));

gammal = sdpvar(1);

eps = 1013 ; %13
Matrix1=[Ap *Y1+Y1* Ap'+Bp2 * Cn+Cn'*Bp2' , [An+[Ap+Bp2 *Dn+Cp2]] , Bp1+Bp2  *Dn+Dp21
, [Cpl *Y1+Dpl2+Cn]' ;
An+[Ap+Bp2 * Dr* Cp2]' , X1 *Ap+Ap' * X1+Bn* Cp2+Cp2' *Bn' , X1 *Bpl+Bn*Dp21

, [Cp1+Dp12 *DnxCp2] ;

[Bp1+Bp2 * Dn+ Dp21]' , [X1 +Bpl+Bn*Dp2l] , -gammal +eye(size(Bpl,2))
, [Dpl1+Dpl2 *DnxDp21] ;

Cpl* Y1+Dpl2+Cn , Cpl+Dpl2*Dmn*Cp2 , Dpl1+Dpl2 *Dn+xDp21

, -gammal * eye(size(Dp11,1)) 1
Matrix2 = [ Y1 , eye(size(Ap,1))

eye(size(Ap,1)) , X1 ;
Constraintl [Matrix1 <= -eps *eye(size(Matrix1))];
Constraint2 [Matrix2 >= eps*eye(size(Matrix2))];

Constraint3
Constraint4

[Y1 >= eps*eye(size(Y1,1))];
[X1 >= eps * eye(size(X1,1))];

Constraint  _total=[Constraintl,Constraint2,Constraint3,Constrai nt4];
Objective = gammal;
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solvesdp(Constraint _total,Objective)

Y1 = double(Y1);
X1 = double(X1);
An = double(An);
Bn = double(Bn);
Cn = double(Cn);

Dn = double(Dn);
gammal = double(gammal);

N = X1 ;

M = inv(X1)-Y1;

Dk Dn ;

Ck = (Cn - Dk *Cp2x Y1) *inv(M)';

Bk = N\(Bn-X1 »Bp2+DK) ;
Ak = N\(An - N *BkxCp2+Y1 - X1*Bp2+CksM' -X1 *(Ap + Bp2 *Dk*Cp2)* Y1) *inv(M)";
[akl,bkl,ckl,dkl] = bilin(Ak,Bk,Ck,Dk,-1, 'S _ftjw'[p2 pl);

K = ss(akl,bkl,ckl,dkl);

integrator = [1/s 0 0;0 1/s 0;0 0 1J;
K1 = Krintegrator ;

K3 = series(K1,13072/(s+130)"2); % 60 , 3

Mil=[zeros(1,3) 1 zeros(1,6)]; % feedback pitch in inner-loop
[Lo1,Lil,So01,Si1,Tol,Til,KS1,PS1,Tniyl, Tniul]=f _CLMaplnnerOuter _BigK(P _ss,-K3,Mil);
all = stepinfo(Tol(1,1));

al2 = stepinfo(Tol(2,2));

end

end
end

%
%%

% Ko decentralized Ki decentralized

%

gil _vec = [0];
zil _vec = [O];
gi2 _.vec = [-0.7]; % -0.85 -0.7% decrease peak increas
zi2 _vec = [3]; % 5 3 increase peak decrease
goll vec = [1.5]; % 2 15
zoll .vec = [0.06]; % 0.06 0.06
gol2 _vec = [0];
z012 vec = [O];
go21 vec = [0];
z021 .vec = [O];
go22 .vec = [-6]; % -6 -2.5
z022 vec = [0.12]; % 0.12
min = inf;
for iii=1:length(zi2 _vec)
for jjj=1:length(gi2 _vec)
for kkk = 1:length(zil _vec)
for Il = 1:length(gil _vec)
for mmm =1:length(goll _vec)
for nnn = 1:length(zoll _vec)

for ooo = l:length(gol2 _vec)
for ppp = lilength(zol2 _vec)
for ggq = 1l:length(go21 _vec)

for rr = 1:length(zo21 _vec)
for sss = 1:length(go22 _vec)
for ttt = l:length(zo22 _vec)
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zi2 = zi2 _vec(iii);
gi2 = gi2 _vec(jjj);
zil = zil _vec(kkk);

gil = gil _vec(lll);
goll = goll _vec(mmm);

z0ll = zoll _vec(nnn);
gol2 = gol2 _vec(000);
z012 = zo12 _vec(ppp);
go21 = go2l _vec(qqq);
z021 = zo21 _vec(rrr);

go22 = go22 _vec(sss);
7022 = z022 _vec(ttt);

Mi2=[zeros(1,3) 1 zeros(1,6)];

s=tf( 's' );

Ki=[gil =(s+zil) ; gi2 * (s+zi2)];

Ko=[goll *(s+z0ll)/s gol2 +*(s+zo0l2)/s; go21l  =*(s+z02l)/s go22 *(s+z022)/s];

m = [35; n = [3]; 0o = [2];p = [3];

for i = 1:l:length(m)
for j = 1:1:length(n)
for k = 1:1:length(o)
for | = 1:1:length(p)
s=tf( 's' );

Ki2=series(Ki,m(i)"n(j)/(s+m(i))"n(j));
Ko2=series(Ko,o(k) p(l)/(s+o(k))"p(1));
K2=[Ko2 Ki2];

[Lo2,Li2,S02,Si2,To2,Ti2,KS2,PS2,Tniy2, Tniu2)=f _CLMaplnnerOuter(P  _ss,Ki2,Ko2,Mi2);
a2l = stepinfo(To2(1,1));
a22 = stepinfo(To2(2,2));

end
end
end
end
end
end
end
end
end
end
end
end
end
end
end

end
%
% Ko decentralized Ki theta centralized
%
gil .vec = [-0.3 -0.4 -0.5 -0.6 -0.7]; %[-0.38]; % -0.5
zil _vec = [1.5]; % 1.5
gi2 _.vec = [-0.08]; % -0.08 % decrease peak increas
zi2 _vec = [14]; % 14 % increase peak decrease
goll vec = [4]; % 4
z0ll .vec = [0.06]; %0.06
gol2 _vec = [0];
z012 .vec = [O];
go21 vec = [0];
z021 .vec = [O];
go22 .vec = [-5]; % -3
z022 vec = [0.1]; % 0.3

col .vec =['b g I
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min = inf;
for iii=1:length(zi2 _vec)
for jjj=1l:length(gi2 _Vec)
for kkk = 1l:length(zil _vec)
for Il = 1l:length(gil _Vec)
for mmm =1l:length(goll _vec)
for nnn = 1:length(zoll _Vec)
for o0oo = 1:length(gol2 _vec)
for ppp = 1l:length(zol2 _Vec)
for ggq = l:length(go21 _vec)

for rr = 1:length(zo21 _vec)
for sss = 1l:length(go22 _vec)
for ttt = l:length(zo22 _vec)

zi2 = zi2 _vec(iii);
gi2 = gi2 _vec(jjj);
zil = zil _vec(kkk);
gil = gil _vec(lll);

goll = goll _vec(mmm);

z0ll = zoll _vec(nnn);
gol2 = gol2 _vec(000);
z012 = zo012 _vec(ppp);
go21l = go2l _vec(qqq);
z021 = z021 _vec(rrr);

go22 = go22 _vec(sss);
2022 = z022 _vec(ttt);

Mi3=[zeros(1,3) 1 zeros(1,6)];

s=tf( 's' );
Ki=[gil =(s+zil) ; gi2 * (s+zi2)];
Ko=[goll *(s+zoll)/s gol2 =*(s+zol2)/s; go21  =*(s+zo2l)/s go22 *(s+z022)/s];

m = [45]; n = [3]; o = [3;p = [3]; %60,3,1.5,3
for i = 1:l:length(m)

for j = 1:1:length(n)

for k = 1:1:length(o)

for | = 1:1:length(p)

s=tf( 's' );

Ki3=series(Ki,m(i)"n(j)/(s+m(i))"n(j));
Ko3=series(Ko,o(k) p(l)/(s+o(k))"p(1));

K3=[Ko3 Ki3];
[Lo3,Li3,S03,Si3,T03,Ti3,KS3,PS3,Tniy3, Tniu3]=f _CLMaplnnerOuter(P  _ss,Ki3,Ko3,Mi3);
a3l = stepinfo(To3(1,1));
a32 = stepinfo(To3(2,2));
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
%

% Ko centralized Ki theta centralized
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%

gil _vec = [-0.3]; %-0.2 -0.3 -0.4 -0.5 -0.7] ; % -0.14719 [-0.2 -0.3 -0.4 -0.5 -0
zil _vec = [2]; % 2
gi2 _vec = [-0.05]; % -0.05 So peak is affected
zi2 _vec = [1.6]; % 1.6 zi2 decreases :
goll vec = [2 ] ; % 3
zoll vec = [-0.01]; % -0.00358 no change
gol2 vec = [-1.2]; % -1.3 output Lo
z012 vec = [0.26]; %0.26  %output Lo best
go2l vec = [-5]; % -5
z021 vec = [0.08]; %0.02 changed to 0.08 to improve
go22 .vec = [-0.2]; %-0.20114 no change
z022 vec = [0.37]; % no change
min = inf;
for iii=1l:length(zi2 _vec)
for jjj=1l:length(gi2 _vec)

for kkk = 1:length(zil _vec)
for Il = 1:length(gil _vec)
for mmm =1:length(goll
for nnn = 1l:length(zoll

_vec)

So0l-So2 decreases(slightly),Sil-Si2

input & output prop

_vec)

for ooo = 1l:length(gol2

for ppp = 1l:length(zol2
for qgq = l:length(go21
for rrr = l:length(zo21

for

zi2 = zi2 _vec(iii);
gi2 = gi2 _vec(jj);
zil = zil _vec(kkk);
gil = gil _vec(lll);

goll = goll _vec(mmm);

zoll = zoll _vec(nnn);
gol2 = gol2 _vec(000);
z012 = zol2 _vec(ppp);
go21 = go21 _vec(qqq);
z021 = z021 _vec(rrr);

g022 = go022 _vec(sss);
7022 = z022 _vec(ttt);

Mi4=[zeros(1,3) 1 zeros(1,6)];

s=tf( 's' );

Ki=[gil =(s+zil) ; gi2 = *(s+zi2)];

Ko=[goll *(s+zoll)/s gol2 =*(s+z012)/s; go2l

m = [45]; n = [3]; o = [3;p = [3];

for i = 1:1:length(m)
for j = 1:1:length(n)
for k = 1:1:length(o)
for | = 1:1:length(p)
s=tf( 's' );

Kid=series(Ki,m(i)"n(j)/(s+m(i))"n(j));
Ko4=series(Ko,o(k) p(l)/(s+o(k))"p(1));
K4=[Ko4 Kid];

[Lo4,Li4,So4,Si4,To4,Ti4,KS4,PS4,Tniy4, Tniud]=f
a4l = stepinfo(To4(1,1));
a42 = stepinfo(To4(2,2));

end
end
end
end

SSS
for

* (s+z021)/s go22

end

_vec)
_Vec)
_vec)
_vec)
= l:length(go22
ttt = 1:length(zo22

_vec)
_vec)

* (s+2022)/s];

_CLMaplnnerQuter(P
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.7]input prop( flex) best

increases(slightly), damping worsens

_ss,Ki4,Ko4,Mi4);



end
end
end
end
end
end
end
end
end
end
end
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