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ABSTRACT  

   

CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B 

subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region 

(MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection 

by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously 

shown to induce HIV-1 transcytosis-blocking antibodies in mice and rabbits. However, 

the induction of high-titer MPR specific antibodies with HIV-1 transcytosis blocking 

ability remains a challenge as the immuno-dominance of CTB overshadows the response 

to MPR. X-ray crystallography was used to investigate the structure of CTB-MPR with 

the goal of identifying potential solutions to improve the immune response of MPR. 

Various CTB-MPR variants were designed using different linkers connecting the two 

fusion proteins. The procedures for over-expression E. coli and purification have been 

optimized for each of the variants of CTB-MPR. The purity and oligomeric homogeneity 

of the fusion protein was demonstrated by electrophoresis, size-exclusion 

chromatography, dynamic light scattering, and immuno-blot analysis. Crystallization 

conditions for macroscopic and micro/nano-crystals have been established for the 

different variants of the fusion protein. Diffraction patterns were collected by using both 

conventional and serial femto-second crystallography techniques. The two 

crystallography techniques showed very interesting differences in both the crystal 

packing and unit cell dimensions of the same CTB-MPR construct. Although information 

has been gathered on CTB-MPR, the intact structure of fusion protein was not solved as 

the MPR region showed only weak electron density or was cleaved during crystallization 

of macroscopic crystals. The MPR region is present in micro/nano-crystals, but due to the 
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severe limitation of the Free Electron Laser beamtime, only a partial data set was 

obtained and is insufficient for structure determination. However, the work of this thesis 

has established methods to purify large quantities of CTB-MPR and has established 

procedures to grow crystals for X-ray structure analysis. This has set the foundation for 

future structure determination experiments as well as immunization studies. 
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CHAPTER 1 

INTRODUCTION 

1.1 The fusion protein CTB and MPR 

HIV and AIDS 

 

Human immunodeficiency virus (HIV) shown in Figure 1.1, is the causal agent of 

acquired immune deficiency syndrome (AIDS). The virus targets cells expressing CD4 

receptors, namely CD4
+
 T cells and some dendritic cells and macrophages that also 

express CD4.  As CD4
+
 T cells are inactivated and killed during the course of the 

infection, the number of CD4
+
 T cells decreases and causes a gradual deterioration of the 

immune system that eventually leads to AIDS. The disease is characterized by a 

susceptibility to infection with opportunistic pathogens and the development of cancer at 

the end stages of the disease. 

 HIV remains as one of the leading causes of death worldwide. In 2012 there were 

an estimated 35.3 million infected individuals, with 2.3 million new infections, and 1.6 

million AIDS related death (UNAIDS, 2013). Although the advancements in 

antiretroviral therapies and access to treatment has curbed the growth of infections in 

many areas, it is clear that the HIV/AIDS pandemic will continue until an effective 

pathway of preventing viral infection and transmission is found. 

 There are currently no cures or working vaccines for HIV. There are several 

factors that make HIV treatment difficult such as the rapid reproduction, the ability to 

persist in a latent form as a transcriptionally silent provirus and the high antigenic 

variability resulting from the high mutation rates in HIV-1. The cause of the high  
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mutation rate is often attributed to the low fidelity of the viral reverse transcriptase 

(Roberts et al., 1988, Preston et al., 1988). The virus evolves by the high variability  and 

selective proliferation of mutant viruses that are both resistant to antiviral drugs and have 

the ability to escape recognition by the immune system then followed by the outgrowth of 

these variants (Murphy et al., 2008). So far, the majority of the drugs developed have 

only been targeting and inhibiting the reverse transcriptase and protease and the 

combination therapy of using multiple drugs together have been shown to be more 

effective than using a single drug (Gortmaker et al., 2001, Murphy et al., 2008). 

Figure 1.1: Illustration of the HIV-1 HIV is a retrovirus that contains an RNA 

genome which is reverse transcribed into DNA in the infected cell by viral reverse 

transcriptase and integrated into the host-cell DNA with the viral integrase. A viral 

protease is involved in the processing of many viral proteins. Two envelope 

glycoproteins gp120 (yellow) and gp41 (red) form the “spikes” on the surface of the 

HIV and have shown to play significant role in viral infection.  Image adapted from 

(Murphy et al., 2008) 
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Therefore an effective treatment or vaccine for HIV should consist of multiple 

components that target various steps of the transmission and infection processes of HIV 

expanding beyond the current drug target. It is especially important  to target the early 

stages of the viral cycle to take advantage of viral vulnerabilities of the low founder viral 

population, lower number of variants and to minimize the establishment of systematic 

infection (Haase, 2010). 

 

Membrane proximal region of envelope glycoprotein 41 in HIV-1 

 

The envelope proteins (Env) and the viral surface proteins of HIV have been one of the 

major focuses of research and development for drugs and vaccines against HIV.  The env 

gene codes for a precursor glycoprotein known as gp160, which is later processed by 

protease cleavage to form gp120 and gp41 (numbers in the names correspond to the 

molecular weight of the protein). The “surface subunit” gp120 is exposed on the exterior 

of the viral envelope and associates, non-covalently, with the “transmembrane subunit”  

gp41 that contains an ectodomain largely responsible for the trimizeration of the Env 

(Wyatt & Sodroski, 1998). Together, the two glycoproteins form the protrusion on the 

virion that are often referred to as “spikes” and are involved in essential steps in the viral 

transmission and infection processes (Murphy et al., 2008).  Env is heavily glycosylated 

with the vast majority of the highly variable glycans attached to gp120 and only few are 

found on gp41 (Wang et al., 2013, Leonard et al., 1990). 

 The gp120 subunit is very immunogenic and had been the main target of vaccine 

research during the first two decades of HIV exploration since its discovery (Zolla-
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Pazner, 2004). However, the heavy glycosylation of gp120, its ever-shifting glycosylation 

patterns and the particularly high mutation rate of HIV virus leading to high variability of 

the protein sequence are undoubtedly major contributing factors in the immune-evasion 

strategy of the virus, making gp120 less than ideal immunogen (Jeang, 2007, Steckbeck 

et al., 2011, Montero et al., 2008).  

 In contrast to gp120, the amino acid sequence of gp41, is more highly conserved, 

indicating that the structural and functional attributes of gp41 are under more exacting 

selective pressure than those of the gp120 (Soudeyns et al., 1999, Bouvin-Pley et al., 

2014, Travers et al., 2005).  Indeed, gp41 has several regions that are crucial to viral 

functions identified to be potential drug targets against HIV-1 (Zolla-Pazner, 2004). One 

of these more conserved regions of gp41 is the membrane proximal external region 

(MPER662–684), which has been known to play a key role in viral fusion with host cells 

(Buzon et al., 2010, Cai et al., 2011) and is also the site the few broadly neutralizing 

monoclonal antibodies (Abs) discovered to date such as 2F5, 4E10, and 10E8 (Zwick et 

al., 2001, Zolla-Pazner, 2004, Huang et al., 2012). 

 Over 90% of global HIV-1 transmissions occur across mucosal surfaces, for 

example through the mucosa lining of the genital and lower intestinal tracts during sexual 

transmission or oropharyngeal mucosa in breastfeeding (Kresina & Mathieson, 1999, 

Overbaugh et al., 1999). The mucosal surfaces of the cervix, rectum and colon are 

characteristically lined by a single layer of epithelial cells that are joined by tight 

junctions, preventing, when intact, the passage of HIV-1 between the cells. Instead, the 

virus co-opts the cellular process known as transcytosis to cross through the cells 
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(without infecting them). Once passed across the epithelial barrier, the virus is likely to 

encounter its target CD4
+
 host cells. 

 The transcytosis process depends on a 36-amino acid-long domain of gp41 

encompassing the MPER and extending partially into the C-terminal heptad repeat 

domain lying immediately upstream to it (residues 649-684). We term this extended-

MPER region “MPR” (also referred to as the P1 peptide in previously published 

work)(Alfsen & Bomsel, 2002, Alfsen et al., 2005). MPR was shown to be crucial for the 

viral crossing of the epithelial membrane (Alfsen & Bomsel, 2002, Zolla-Pazner, 2004, 

Matoba et al., 2004). The domain is vital for the viral epithelial transcytosis of HIV using 

a non-fusogenic mechanism by binding to the glycosphingolipid galatosylcermide 

(GalCer) and the heparan sulfate proteoglycan agrin on the apical surface of epithelial 

cells to initiate endocytosis and transcytosis (Bomsel, 1997, Alfsen et al., 2001, Alfsen & 

Bomsel, 2002, Alfsen et al., 2005). This is significant as it is the first step in one of the 

principle route of HIV infection.  If the virus can be prevented from entering the body to 

reach its host cell this early in the transmission process, the chances of the virus 

establishing a chronic infection would be lowered. 

 Support for the above notion comes from studies conducted with highly HIV-

exposed persistently seronegative (HEPS) individuals. HEPS, are people with high 

exposure risk to HIV, who despite documented high potential for exposure to the virus 

(e.g. multiple and frequent unprotected sexual activities) still remain negative for anti-

HIV serum IgG and lack of detectable HIV RNA or DNA (Devito et al., 2000a, Fowke et 

al., 1996). Still, a subset of these HEPS exhibit gp41-specific secretory IgAs in their 

genital secretions. These antibodies were shown to be efficient in blocking viral 
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transcytosis across the epithelium and were suggested to be correlated to their protection 

against HIV infections (Devito et al., 2000c, Devito et al., 2002, Tudor et al., 2009, 

Miyazawa et al., 2009). These findings suggest that an HIV-1 vaccine component that 

consists of an immunogen that is mucosally targeted and capable of eliciting Abs against 

MPR which can both block the epithelial transcytosis process and neutralize the infection 

of CD4
+
 cells could be relatively effective. MPR was also shown to be able to bind to 

dendritic cells, an important class of antigen presenting cell (Bomsel & Magerus-

Chatinet, 2004, Magerus-Chatinet et al., 2007). Interaction with antigen presenting cells 

is beneficial to elicit immune response against the peptide.  

 

 

 

 

 

 

Figure 1.2: Schematic diagram of the part of the HIV-1 env gene that encodes for 

the gp41 portion. Fusion peptide (FR. Residues 512-539); fusion peptide proximal 

region (FPPR residues 528–539; N-terminal heptad-repeat region (NHR, residues 

540–590); C-terminal heptad-repeat region (CHR, residues 628–661); membrane 

proximal external region (MPER, residues 662–684); membrane proximal region 

(MPR, residues 647–684, blue), transmembrane domain (TM, residues 685–705); 

cytoplasmic C-terminal domain (CTD, residues 706–856). The epitopes of 2 broadly 

neutralizing antibodies 2F5 and 4E10 are marked. 
 



  7 

Cholera toxin B subunit as mucosal adjuvant 

 

The MPR peptide by itself is a rather poor immunogen (Denner, 2011). To boost the 

immunogenicity at the mucosal surface, an adjuvant is needed to enhance the immune 

response of MPR. Cholera toxin B subunit (CTB) was chosen as the candidate to be the 

fusion partner. 

 Secreted by Vibrio cholera, the cholera toxin is a protein complex that is 

responsible for many of the symptoms of cholera infections. It is an oligomeric protein 

made up of six subunits, a single A subunit and five copies of B subunit that form a 

pentameric ring around the tail of the A subunit.  The primary function of CTB is to serve 

as a delivery system for the A subunit. In the intestines, pentameric CTB binds to the 

pentasaccharide moiety of GM1 gangliosides on the mucosal (luminal) side of epithelial 

cells. The AB5 complex is internalized through endocytosis followed by the release of the 

A subunit through the cleavage of disulfide bonds (Merritt et al., 1994). 

 Many immunological studies have been done on using CTB as a mucosal 

adjuvant and as a carrier for foreign peptide epitopes (Quiding et al., 1991, Peltola et al., 

1991, Malley et al., 2004, Qu et al., 2005). The fusion protein retains the important 

structural and functional characteristics of the native CTB such as the pentamerization 

and binding to the GM1 ganglioside receptors (Holmgren et al., 1993, Sun et al., 1994). 

CTB has also been used successfully to produce human vaccines against cholera itself 

(Quiding et al., 1991) and a vaccine against enterotoxigenic Escherichia coli (Peltola et 

al., 1991). It also proved to be a good adjuvant in immunizing mice against Streptococcus 
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pneumonia (Malley et al., 2004) and the severe acute respiratory syndrome-associated 

coronavirus (SARS) (Qu et al., 2005). CTB fusion protein has also been used to elicit 

anti-HIV-1 Abs before, namely the V3 domain of gp120 using V3-CTB fusion proteins 

although was not successful in acting as an effective vaccine against HIV-1 (Backstrom 

et al., 1994, Zolla-Pazner et al., 2011). 

 These findings suggested that CTB may be a suitable adjuvant for the purpose of 

eliciting anti-MPR Abs and can serve as a carrier and for the enhancement of the immune 

response that targets the mucosal membrane. Fusion proteins consisting of CTB and 

MPR649-684 were created (named CTB-MPR). The proposed mechanism of CTB-MPR 

inducing the production of IgA against MPR649-684 of gp41 in the mucosal immune 

Figure 1.3: Space-filling model of cholera toxin. Cholera toxin is an oligomeric 

complex made up of six protein subunits. One single copy of subunit A and five 

copies of subunit B. Subunit A has two important segments, A1 (red) is a globular 

enzyme, while A2 (orange) is an alpha helical chain that fits in the center of the five 

subunit B ring (blue) (Goodsell, 2005). 
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system is shown in Figure 1.3.  In published experiments of Matoba and co-workers, 

CTB-MPR has been shown to elicit HIV-1 transcytosis blocking Abs (Matoba et al., 

2004, Matoba et al., 2006). However, not all trials had successfully shown anti-

transcytosis activity and the titer of MPR specific antibodies caused by CTB-MPR 

remained low.  Subsequent booster immunizations in rabbits with CTB-MPR did not 

result in further improvement of the anti-MPR Ab responses because anti-CTB Abs 

continued to increase and thereby overshadowed the response to MPR (Matoba et al., 

2008). This indicated a need for the improvement of the MPR-based immunogen. 

 

 

 

 

 

Figure 1.4: Proposed mechanism of the fusion protein of CTB-MPR The 
pentameric CTB domain binds to GM1 gangliosides after which the fusion protein 

complex is taken up by the cell via endocytosis as a whole. The complex is then 

presented to antigen presenting cells which promotes a T helper cell response that 

signals B cells to produce Abs against the presented antigen, in this case MPR. 

(Adapted from N. Matoba) 
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Motivations and objectives 

 

To understand the function of MPR and the membrane associated processes it is involved 

in, such as the epithelial transcytosis and the membrane fusion to the host cells, as well as 

interactions with the immune system, it is imperative to obtain the structural information. 

The molecular structure defines the properties and function of proteins as well as their 

complex macromolecular assembles (Rupp, 2010). Part of the structure of gp41, that may 

represent the post-fusion state of gp41 after the virus has fused with the host cell, has 

been solved by X-ray crystallography. It formed a six helices bundle of a trimer with each 

domain of gp41 containing two anti-parallel helices shown in Figure 1.5A (Chan et al., 

1997, Melikyan et al., 2000). However, these structures provided only limited 

information for understanding of the structure-function relationship of gp41 as they 

contained only part of the MPER domain and the sites of the broadly neutralizing Abs 

(2F5, 4E10 and Z13) were buried inside the bundle of helices and were not exposed for 

Ab access shown in Figure 1.5B and 1.5C (Shi et al., 2010, Buzon et al., 2010). It was not 

until recently, when there has been published work on a proposed ‘pre-fusion’ 

conformation of gp41. A ‘pre-fusion’ NMR dynamics study showed structures that 

contained large portions of gp41, however it is questionable if these structures really 

represent a “pre-fusion” conformation as they are similar to the two anti-parallel helices 

conformation reported previously for the post fusion conformation (Lakomek et al., 

2014). Another NMR structure of pre-fusion state included MPER attached to a 

trimerization domain of bacteriophage T4 fibritin foldon domain that forces the MPER in 

a conformation in which the Ab sites are accessible was solved recently and is shown in 
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Figure 1.5D (Reardon et al., 2014). Interestingly, the gp120 and gp41 crystal structure 

shown in Figure 1.5E showed a different conformation. In this structure, gp41 is arranged 

in a four helices collar that is very different from the two anti-parallel helices. However 

the part of gp41 used for this structural study did not contain the MPER domain that bind 

the neutralizing Ab epitopes (Pancera et al., 2014). The structures from these publications 

also differ from each other, making it difficult to determine which (if any) would 

represent the native pre and post fusion conformation of gp41. 

 CTB-MPR has shown promising results in inducing anti-HIV Abs that could 

block transcytosis, thereby hinting that the Ab sites are exposed in CTB-MPR; it would 

be very important for further improvement of CTB-MPR as a potential vaccine against 

HIV to determine the structure of MPR in its CTB-MPR fusion conformation as none of 

the published structures of gp41 may represent the immunogenic form of MPR. 

 The unraveling of the structure of CTB-MPR would surely help in improving the 

vaccine design as CTB-MPR has shown already promise in anti-HIV activities. To 

achieve this goal, we have decided to pursue the path of protein X-ray crystallography for 

structure determination. 
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Figure 1.5: Published gp41 and MPER structures. The structures were obtained 

from the PDB and the pictures were generated by PyMol (Delano, 2002). (A)  PDB 

ID: 1AIK. Structure of gp41 post fusion 6-helices bundle that only contained the 

helices NHR and CHR (Chan et al., 1997) (B) PDB ID: 2X7R. Structure of gp41 6-

helices bundle that also included parts of FPPR and MPER (Buzon et al., 2010) (C)  

PDB ID: 3K9A. Structure of gp41 6-helices bundle that included overhanging MPER 

without the FPPR (Shi et al., 2010) (D) PDB ID: 2LP7. NMR structure of MPER 

linked with the foldon domain of bacteriophage T4 fibritin (Reardon et al., 2014) (E) 

PDB ID: 4TVP. Structure of gp120 and gp41 pre-fusion confirmation with gp41 

arranged in a 4-helices collar (MPER not included) (Pancera et al., 2014) 
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1.2 X-ray Protein Crystallography 

Overview and theory 

 

The structure and function of molecules are related to each other at the atomic and 

molecular level. Therefore, in order to completely understand the properties and 

functions of proteins and their interaction with other molecules, it is necessary to 

determine their structure. Nearly 100,000 protein structures have been solved and 

deposited in the protein database (PDB) by X-ray crystallography, nuclear magnetic 

resonance (NMR), electron microscopy (EM), with the vast majority (~90%) of the 

structures determined by protein X-ray crystallography. 

 In conventional x-ray crystallography, a single crystal is placed into a finely 

focused x-ray beam and the x-rays scattered by the electrons of the atoms in the crystal 

are recorded as diffraction patterns by a detector. The diffraction patterns are analyzed by 

X-ray structure analysis. The amplitude of the structure factors is determined from the 

intensity for the reflection, the wavelength corresponds to the wavelength of the X-ray 

beam but phase information for each structure factor is lost and has to be solved by 

molecular replacement (for homologous structures) or de-novo by MIR (multiple 

isomorphous replacement), MAD (multiple anomalous dispersion) or SAD (single 

anomalous dispersion). After retrieval of the phases, the electron density of the 

crystallized protein is reconstructed. An atomic model fitting the electron density is built 

using computational methods and refined into the resultant protein structure (Woolfson, 

1997, Rupp, 2010). Although it may appear quite straightforward and simple, there are 

various challenges that must be overcome to obtain a crystal structure. 
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 When an X-ray photon strikes an atom, it interacts with the electron cloud of the 

atom and is either absorbed or scattered. The scattering from a single protein molecule by 

the X-rays is too small to be measured with the current technology (Glaeser, 1999, 

Spence & Doak, 2004). In order to increase the signal to detectable levels, it requires the 

protein to be arranged in an orderly three-dimensional repeating lattice of equivalent unit 

cells to amplify the signal (Figure 1.6). The amplification can be of the order N
2
, where N 

is the number of unit cells in the crystal (Miao et al., 2004). 

 Bragg’s Law describes the coherent scattering of light (in this case x-rays) from a 

crystal lattice (Figure 1.7): 

2d sin θ = nλ 

where d is the distance between the reflective planes, θ is the angle of incidence of the x-

ray which will reflect back with a same angle of scattering, n is an integer, and λ is the 

wavelength of the X-ray. When X-rays strike a protein crystal, the waves are scattered 

from the planes separated by a distance d. The waves will interfere constructively and 

destructively depending on the path difference between the two waves 2d sin θ. The 

waves that remain in phase (a phase shift that is a multiple of 2π) will interfere 

constructively resulting in measureable reflections.  Scattering from each set of planes in 

a crystal leads to a reflection which corresponds to a structure factor in the reciprocal 

space. 

 In order to reconstruct the electron density of the scattering molecule, the Fourier 

reconstruction from reciprocal diffraction space of the diffraction pattern back into a 

three-dimensional direct molecular space is needed (Rupp, 2010). However, to carry out 
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Fourier transform, the properties of the scattered X-rays are needed in order to 

reconstruct the wave; wavelength, amplitude and phase angle. The wavelength of the 

scattered X-rays is the same as those the crystal is exposed to. The amplitude is equal to 

Figure 1.6: Unit cell and crystal. A unit cell is the smallest unit of a repeating lattice 

that contains the structure and symmetry information. A crystal is an ordered 3-

dimensional repeating array of unit cells. 

Figure 1.7: Bragg’s Law The graphical interpretation of Bragg’s Law shows 
conditions for the constructive interference of the X-ray diffraction from the reflective 

planes of a crystal. 
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the square root of the intensity the diffraction spot (reflection) and can be calculated 

based on the measured intensities (Rupp, 2010). The phase angle, which contains most of 

the structural information, is lost in the measurement and is not readily available; its 

value must be determined by other experiments. This is known as the phase problem and 

is a reason why protein structure determination can be quite difficult. 

 There are several ways to solve the phase problem. The brute force direct method 

exploits the phase relations between certain sets of structure factors, but it is limited to 

only relatively small proteins (Rupp, 2010). Another method is using marker atoms such 

as heavy atom derivatives and comparing it to the native crystal diffraction to produce a 

difference map to calculate phase (Woolfson, 1997, Rupp, 2010). The introduction of 

heavy metal atoms is typically done by either soaking the crystal in heavy metal solution 

or introducing marker atoms such as selenium in form of selenomethionine during 

expression of the protein in-vivo. The methods summarized above allow for de-novo 

structure determination and they do not require prior structure information.  A third 

method, molecular replacement requires a structurally similar model as a molecular 

probe. By using a previously solved structure homologue of the crystallized protein,  the 

phases of the correctly placed models are used as starting phases for map reconstruction 

(Rupp, 2010). 

 Once the electron density map is calculated, a model must be generated to fit the 

electron density, and then further refined. As each atom of the structure contributes to all 

of the diffraction spots in a nonlinear way, it is necessary to adjust the model parameters 

to best describe the data. Stereochemical knowledge must generally be incorporated into 

the refinement in the form of restraints to keep the model within reasonable bounds. 
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Protein crystallization 

 

In order to obtain a high resolution X-ray structure, a well-diffracting protein crystal is 

required. The scattering of X-rays is dependent on the atomic number of the atoms in the 

protein, which corresponds to the number of electrons; the higher the number, the greater 

the scattering intensity (Woolfson, 1997). However, biological macromolecules are 

mainly comprised of H, C, N, O, and small amount of S and P. These are atoms with 

relatively low atomic numbers and low scattering intensity. In addition, the native states 

of proteins are typically not at solid state but they are surrounded by a fluid environment 

such as an aqueous solution. It is common for proteins to have a solvent content between 

30% and 70%, and even in some cases up to 90% have been reported (McPherson, 2004) 

creating large unit cells with few crystal contact sites (Rupp, 2010). Therefore, in order to 

obtain high resolution diffraction, large protein crystals are necessary due to the weak 

scattering of the elements and the relatively high solvent content of the unit cell. 

 The first step of protein crystallization is the preparation of the protein in 

quantities needed for crystallization experiments.  Through recombinant DNA 

engineering, it is possible to overexpress proteins that are synthetically designed or not 

abundant in nature in bacterial or eukaryotic cells (Rupp, 2010). However, the 

purification remains a great challenge as high purity samples are required for 

crystallization.  For crystallography, the concept of purity does not only mean the 

removal unrelated proteins or other undesired cellular components, but also means 

maintaining the protein in homogenous form in a single conformation and an unique 

oligomeric state.  The presence of contaminants and different conformations or a 
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heterogeneity of oligomeric states may hinder crystal growth in a number of ways. 

Different forms of the same protein may compete for crystal contacts thereby generating 

lattice errors leading to mosaicity, dislocation, irregular faces and secondary nucleation, 

twinning, poor diffraction, and ceasing crystal growth (Ducruix & Giegé, 1992). To 

probe the purity and homogeneity of protein samples, many different techniques such as 

electrophoresis, gel filtration, and light scattering methods are used to detect 

contaminants or structural oligomers based on charge, size, mobility and shape (Ducruix 

& Giegé, 1992, Rupp, 2010). 

 Many crystallographers consider protein crystallization to be more of an art than 

science. It is the least understood step of structure determination of a protein as there is 

no known method of predicting exactly under what conditions a protein will form crystals 

(Rupp, 2003). The effects of buffers, salts, pH, detergents, temperature, precipitant, and 

additives may all have drastic and unpredictable effects on protein crystallization. 

Therefore, the number of possible crystallization conditions far exceeds the number that 

may be reasonably tested. Techniques such as the grid screens described in (McPherson, 

1982), factorial designs (Carter & Carter, 1979), and sparse matrix sampling (Jancarik & 

Kim, 1991) have been developed. They sample many conditions that have been 

previously reported to lead to crystallization of proteins. However, none of the 

commercial screen systematically investigates the influence of each of the crystallization 

factors so that the effects of each factor can be determined as there is a limit to the total 

number of crystallization conditions that can be explored per screen. Many commercial 

crystallization screens are based on these screening techniques and have been widely 

used. 
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 Once initial crystallization conditions are found, it is still necessary to further 

improve the crystal quality in finer screens that screens around the condition that had led 

to crystal hits in commercial screens by adjusting the concentrations of the components in 

the crystallization cocktails. 

 The main objective in protein crystallization is to reach the supersaturated phase 

to coerce the protein out of the solution gently into a well-ordered lattice. The protein 

solubility is typically reduced by various methods such as the addition of precipitate to 

the protein solution, removal of water from the protein-precipitate solution through vapor 

diffusion, exchange of solvent through dialysis; change of pH, or by use of free interface 

diffusion. The protein solution becomes supersaturated and when the nucleation zone is 

reached crystals may form correlating to the schematic phase diagram shown in Figure 

1.8 (Ducruix & Giegé, 1992, Chayen & Saridakis, 2008, Rupp, 2010). During a 

crystallization experiment, crystals do not appear as soon as the supersaturated phase is 

reached. The crystallization process is not only determined by the thermodynamics but 

also by the kinetics pf the system. It is very common that no crystals are formed in the 

supersaturated zone due to kinetic barriers. Nuclei form and dissolve; the size and 

stability of nuclei depend on the supersaturation. In the metastable zone the nuclei are too 

small to be stable, therefore crystals cannot form but pre-grown seeding crystals can 

grow. Once the nucleation zone is reached and activation barriers toward equilibration 

are overcome, a nucleation event occurs that leads to formation of nuclei that exceed the 

critical radius, leading to stable nuclei which can further grow into a crystal. By crystal 

growth the protein concentration in the solution decreases until the supersaturation 

borderline is reach. Crystals are not always formed in a crystallization experiments, often 
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amorphous precipitate is observed instead of crystals.  The reason are manifold and 

include but are not limited to very high supersaturation, unsuitable conditions for the 

formation of crystal contacts, partial or complete denaturation of the protein by the 

supersaturated conditions, flexible domains of the protein prohibit formation of crystal 

contacts, high dynamics of protein hinder formation or an ordered lattice etc.  

 

 

 

Figure 1.8: Basic solubility phase diagram shows the general observation of 

crystallization. The higher the precipitant concentration, the lowers the maximum 

concentration for the protein to achieve each phase and vice versa. Between the 

solubility line and instability line are the metastable and nucleation zones. The 

metastable zone represents a supersaturated protein solution where pre-formed crystal 

can grow but no stable nuclei are formed. In the nucleation zone nuclei are stable and 

crystals are observed. 
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 Though high supersaturation is necessary for the nucleation, it is not desirable for 

the growth of large, well-ordered single crystals. A high supersaturation promotes the 

formation of large numbers of nuclei leading to the growth of many protein microcrystals 

rather than the macroscopic crystals required for conventional protein crystallography, 

where data are collected from single crystals at synchrotron sources. In addition, at very 

high supersaturation, the protein will precipitate in form of unordered amorphous 

precipitates as mentioned previously. While the formation of protein crystals are 

thermodynamically favored in supersaturated conditions, the amorphous precipitates are 

kinetically favored under high supersaturation conditions (McPherson et al., 1995). 

 

Serial femtosecond X-ray crystallography 

 

One difficulty with protein crystallography is that crystal growth of protein microcrystals 

is much more common than the growth of macroscopic protein crystals necessary for data 

collection at conventional X-ray sources (synchrotrons or rotating anodes) (Cusack et al., 

1998).  Also, large crystals often suffer from the long range internal disorder or 

mosaicity. Protein crystals are made up of small mosaic blocks, with each block being 

well ordered in submicrons dimensions, but the gaps between the blocks create angular 

misalignments. This long range disorder reduces the intensity and broadens the 

diffraction spots (Woolfson, 1997). So there are advantages of using smaller crystals with 

the trade-off of having weaker scattering intensity. These weaker intensities can only be 

partially enhanced by an increase in X-ray intensity due to the X-ray damage problems in 

crystallography (Owen et al., 2006, Barty et al., 2012). The micro-focused beamlines at 
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third generation Synchrotron sources, where the beam is focused to 5-25 micrometer size, 

alleviate some of the weak scattering intensity problem by reducing the focus spot radius 

and increasing the flux density at the spot (Bilderback et al., 2003, Bilderback et al., 

2010). However, this leads to higher radiation damage and limits the lifetime of the 

crystal for data collection. 

 With the technology advancement and the introduction of the X-ray free electron 

laser (XFEL), a new approach to collect diffraction data from much smaller crystals 

became possible. The XFEL is able to generate a peak X-ray flux that is 10
9
 higher than a 

3rd generation synchrotron pulse and allows data collection from crystals that contain just 

a few hundred molecules (Barty et al., 2009, Fromme & Spence, 2011, Chapman et al., 

2011). The method, serial femtosecond X-ray crystallography (SFX), is based on the 

“diffract before destroy” principle. By using short 10-50 fs pulses of X-ray exposures, the 

diffraction of a nano/microcrystal could be recorded before the molecules in the crystal 

are destroyed and the crystals disintegrate (Barty et al., 2012). As the beam destroys the 

sample, fresh new sample is continuously delivered across the pulsed beam in the form of 

a liquid jet of nano/microcrystals in their mother liquor at ambient temperature, leading to 

hundreds of thousands of diffraction snapshots of individual crystal in random 

orientation. SFX eliminates the radiation problem suffered from micro-focused beam data 

collection at Synchrotrons as each snapshot is collected from a fresh crystal. The general 

scheme of SFX is illustrated in Figure 1.9. 

 Data analysis for SFX is a challenge. The diffraction gathered at synchrotrons, 

depends on a systematic continuous rotation of the crystal by a goniometer, where all 

planes of the crystal are systematically brought into conditions for diffraction. Thereby it 
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allows for the angular integration across all Bragg reflections. In contrast the SFX 

snapshot diffraction patterns are all random “still image” which sample a random slice 

through the Ewald sphere. Furthermore, the SFX beam shows larger intensity variations 

(of a factor of 4) and the energy profiles are not identical between individual X-ray 

pulses. Therefore structure determination by SFX requires a larger multiplicity of the data 

sets (Fromme & Spence, 2011). The merging of thousands or even millions of diffraction 

data poses a large challenge and requires new tools for the integration of the data, where 

the intensity of the individual Bragg reflections are determined by Monte Carlo 

Integration (Kirian et al., 2011).  Although the minimum number of the snapshots 

required is currently unknown and controversially debated, the first near-atomic 

resolution structure of a protein to be determined using SFX contained more than 12,000 

indexed diffraction patterns which is much more than what is needed for conventional 

crystallography (<1,000) at a synchrotrons (Boutet et al., 2012, Chapman et al., 2011, 

Redecke et al., 2013, Liu et al., 2013). 
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Figure 1.9: Serial femtosecond crystallography. Diffraction patterns from single 

crystals flowing in a liquid jet are recorded on Cornell-SLAC Pixel Array Detectors 

(CSPAD). Image adapted from (Boutet et al., 2012) 
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(This chapter has been adapted with permission from a previously published report: Lee, 

H-H et al. Expression, purification and crystallization of CTB-MPR, a candidate mucosal 

vaccine component against HIV-1. IUCrJ 1(Pt 5): 305-317 (2014)) 

 

2.1 Abstract 

 

CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the 

membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of 

Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the 

production of anti-HIV-1 antibodies with antiviral functions. To further improve the 

design of this candidate vaccine, X-ray crystallography experiments were performed to 

obtain structural information about this fusion protein. Several variants of CTB-MPR 

were designed, constructed and recombinantly expressed in Escherichia coli. The first 

variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals 

that diffracted to a resolution of 2.3 Å, but only the CTB region was detected in the 

electron-density map. A second variant, in which the CTB was directly attached to MPR, 

was shown to destabilize pentamer formation. A third construct containing a polyalanine 

linker between CTB and MPR proved to stabilize the pentameric form of the protein 

during purification. The purification procedure was shown to produce a homogeneously 

pure and monodisperse sample for crystallization. Initial crystallization experiments led 

to pseudo-crystals which were ordered in only two dimensions and were disordered in the 

third dimension. Nanocrystals obtained using the same precipitant showed promising X-

ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the 



  27 

Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results 

demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis 

based on nano/microcrystals of a protein for which no macroscopic crystals ordered in 

three dimensions have been observed before. 

 

2.2 Introduction 

 

The envelope glycoprotein of HIV-1 is a complex composed of three copies of a 

heterodimer consisting of gp120 and gp41. The latter (Figure 2.1a) is embedded in the 

viral membrane, mediates the fusion between viral and cellular membranes (Teixeira et 

al., 2011) and plays a major role in viral transmission across the epithelial barrier (Shen 

et al., 2010, Bomsel et al., 2011, Hessell et al., 2010, Tudor et al., 2009). Mucosal 

transmission of HIV-1 through monostratified epithelia depends on interactions between 

the viral envelope membrane protein gp41 and the glycolipid galactosyl ceramide 

(GalCer) on epithelial cells (Alfsen et al., 2001, Alfsen & Bomsel, 2002, Meng et al., 

2002), and also on dendritic cells, the most important class of antigen-presenting cells 

(Bomsel & Magerus-Chatinet, 2004, Magerus-Chatinet et al., 2007). The GalCer binding 

domain of gp41 is mediated by a highly conserved membrane-proximal region (MPR) of 

gp41 consisting of residues 649–684. This region of the protein spans the membrane-

proximal external region (MPER; residues 660–683) reviewed by (Zwick, 2005), which 

includes the epitopes for the broadly neutralizing and transcytosis-blocking monoclonal 

human antibodies 2F5, 4E10 and 10E8 (Zwick et al., 2001, Huang et al., 2012) and, 

unlike the MPER itself (residues 650–683), maintains important structural and functional 
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attributes of the native protein, including oligomerization and GalCer binding (Alfsen & 

Bomsel, 2002). 

 An effective vaccine against HIV-1 should ideally consist of components that 

target multiple steps of the viral transmission/infection process. Most importantly, it 

should engage the virus early in the cycle to minimize the chance of establishing viral 

reservoirs and subsequent re-dissemination (Valdiserri et al., 2003). From a worldwide 

perspective, HIV-1 transmission most commonly occurs through the exposure of mucosal 

surfaces to HIV-positive secretions (Pope & Haase, 2003, Hladik & McElrath, 2008, 

Haase, 2011). Therefore, the crucial involvement of the MPR in mucosal transmission of 

HIV and the well characterized, albeit rare, antiviral immune responses directed against 

this domain make it a prime candidate for an active vaccine. 

 However, by itself, the MPR was shown to act as a rather poor immunogen and 

was sensitive to its structural context (Denner, 2011). To overcome these limitations and 

in particular to boost immunogenicity at the mucosal surface, we have been exploring the 

MPR through its fusion to the mucosa-targeting cholera toxin B subunit, CTB (Matoba et 

al., 2004, Matoba et al., 2006, Matoba et al., 2008, Matoba et al., 2009). The CTB 

pentamer is taken up by mucosal immune cells through endocytosis mediated by binding 

to GM1 gangliosides (Merritt et al., 1994). Thus, a fusion protein comprised of CTB and 

MPR provides the target epitopes needed to elicit anti-HIV-1 antibodies directed at the 

MPR and combines the mucosal targeting of CTB and its immunogenicity. However, 

anti-MPR responses elicited by CTB-MPR were not optimal and indicated a need for an 

improved MPR-based immunogen (Matoba et al., 2004, Matoba et al., 2006, Matoba et 

al., 2008, Matoba et al., 2009, Matoba et al., 2011). 
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 Understanding the function of MPR and the membrane-associated processes it 

takes part in, such as transcytosis and membrane fusion, as well as its interactions with 

the immune system, requires knowledge of its structure. To better understand the 

immunogenicity of the fusion protein and to enable us to design even more immunogenic 

Figure 2.1: gp41 and CTB-MPR variants (a) The architecture of gp41. FP (residues 

512–527), fusion peptide; FPPR (residues 528–539), fusion peptide proximal region; 

NHR (residues540–590), N-terminal heptad-repeat region; CHR (residues 628–661), 

C-terminal heptad-repeat region; MPER (residues 662–684), membrane-proximal 

external region; MPR (residues 647–684, hatched), membrane-proximal region; TM 

(residues 685–705), transmembrane domain; CTD (residues 706–856), cytoplasmic C-

terminal domain. (b,c,d) DNA constructs for the expression in E.coli of the indicated 

CTB-MPR fusion proteins are based on elements of the pET-22b expression vector. P, 

T7 bacteriophage promoter; 5’-UTR, upstream untranslated region; pelB, the 

periplasmic targeting sequence of pectate lyase B of Erwinia carotovora; CTB, 

cholera toxin B subunit; MPR, the membrane-proximal region of the gp41 protein of 

HIV-1; 3’-UTR, downstream untranslated region; T, T7 terminator. The GPGP and 

AAAA linkers are indicated above their respective constructs. The three constructs 

encode the fusion proteins CTB
GPGP

MPR (b), CTBMPR (c) and CTB
AAAA

MPR (d) 

with expected molecular masses (after the processing of the pelB leader sequence) of 

16.7, 16.4 and 16.7 kDa, respectively. 
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MPR fusion proteins, we turned to structural investigation. Here, we report on the 

expression of several novel variants of CTB-MPR with different linkers between the two 

fusion partners. We further report the purification of these proteins and their biochemical 

characterization, as well as initial crystallization experiments and X-ray crystallographic 

analysis. 

 

2.3 Materials and methods 

Vectors for bacterial expression of CTB-MPR fusion protein variants 

 

The expression vectors used in this study were all based on the Escherichia coli 

periplasmic targeting vector pET-22b(-) (Novagen; Figure. 2.1b, 2.1c and 2.1d). The 

cloning of a synthetic gene encoding a fusion protein comprising CTB and the MPR with 

a flexible GPGP linker between them to obtain the plasmid pTM101 has been described 

previously (Matoba et al., 2004). To obtain a fusion protein without the C-terminal His 

tag engineered on the protein product of pTM101, we PCR-amplified the coding 

sequence with primers oTM066 and oTM123 (see Table 2.1 for a complete list of the 

oligonucleotides used in this work), and following digestion with NcoI and BlpI cloned 

them into the respective sites in the pET-22b(-) vector to obtain pTM199. In this work, 

the fusion-protein product of this vector is called CTB
GPGP

MPR. 
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Table 2.1: Oligonucleotides used as primers in this study 

No. Name 5’-Sequence-3’ 

1 oTM066 AGCCATGGGCACCCCACAAAACATCACTG 

2 oTM123 ATTGCTCAGCGGTTCAGATCTTGATATACCAAAGC 

3 oTM468 GGCAAATTCCCAAACCCAACAAGAGAAGAATG 

4 oTM469 CTTGTTGGGTTTGGGAATTTGCCATGCTAATGGCAGC 

5 oTM521 GCGGCCGCGGCCTCCCAAACCCAACAAGAG 

6 oTM522 GGCCGCGGCCGCATTTGCCATGCTAATGG 

 

  

 The plasmid pTM199 served as the template to construct two additional variants 

of the fusion protein by overlap PCR (Aiyar et al., 1996). Briefly, in two separate PCR 

reactions, the two ‘end’ primers oTM066 and oTM123 were used, respectively, with two 

‘mutagenizing’ primers oTM469 and oTM468 to amplify two partially overlapping 

fragments of the coding region of the fusion gene. The two fragments, now containing the 

deleted linker region, were gel-purified and used together as templates with the ‘end’ 

primers to PCR-amplify the complete fusion gene. The fragment was cloned into a 

pTOPO-TA vector (Invitrogen) to yield pTM545, and the correct sequence was verified. 

An NcoI–BlpI fragment from pTM545 was cloned into the corresponding sites of a pET-

26b(+) vector to yield pTM556. The periplasmic-directed, linker-less version of the 

fusion protein encoded by this vector is referred to here as CTBMPR. A similar strategy 

(employing the ‘end’ primers oTM066 and oTM123 together with the ‘mutagenizing’ 

primers oTM522 and oTM521) was used to create a vector, pTM646, encoding a variant 

fusion protein with a tetra-alanine linker dubbed CTB
AAAA

MPR. 
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Expression and purification of fusion-protein variants 

 

Bacterial expression of CTB-MPR fusion-protein variants followed our previously 

published protocol for the CTB
GPGP

MPR variant (Matoba et al., 2008). Similarly, we 

have modified the previously published purification protocol (Matoba et al., 2008) to 

avoid precipitation of the protein at high pH and to replace the previously used detergents 

with detergents that would be compatible with crystallization. Briefly, cell pellets from 2 

l culture (approximately 5 g) were resuspended in 20 ml ice-cold phosphate-buffered 

saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) 

containing 1 mM phenylmethanesulfonyl fluoride (PMSF), a serine protease inhibitor, to 

prevent protein degradation. The cells were lysed by passing them twice through a 

microfluidizer (Microfluidics Microfluidizer) with PMSF added again after the first pass. 

The lysate was collected in a 40 ml Oak Ridge tube and was centrifuged at 36,000 g for 

20 min. The insoluble fraction was washed once by repeated resuspension (in 30 ml ice-

cold PBS) and centrifugation. If not immediately used, the pellet was frozen at 80°C. 

 The pellet, containing the membrane fraction, was resuspended in 30 ml buffer 

(20 mM bicine pH 8.0, 500 mM NaCl). To fully homogenize the solution, the sample was 

sonicated at 20% amplitude in 30 s runs (Model 300V/T Ultrasonic Homogenizer, 

Biologics Inc.) until a homogenous turbid suspension was obtained. The detergent n-

dodecyl-β-D-maltoside (βDDM) was used for solubilization. A stock solution of 10% 

(w/v) was added to a final concentration of 1% (w/v). The protein was solubilized at 4°C 

overnight with agitation. 
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 The protein solution was centrifuged at 36,000 g for 20 min and the pellet was 

discarded. A gravity-driven column (Bio-Rad Econo-Column) containing cobalt affinity 

resin (40 ml bed volume; Talon, Clontech) was equilibrated with binding buffer 

(resuspension buffer supplemented with 0.05% βDDM). The sample was then loaded 

onto the column and washed with six bed volumes of binding buffer and ten bed volumes 

of wash buffer (20 mM bicine pH 8.0, 50 mM NaCl, 5mM imidazole, 0.05% βDDM) to 

remove weakly bound proteins. Tightly bound proteins were eluted by the application of 

three bed volumes of elution buffer (20 mM bicine pH 8.0, 50 mM NaCl, 150 mM 

imidazole, 0.05% βDDM). 

 The eluted fractions were pooled and then concentrated to approximately 2 mg 

ml
-1

 using 50 kDa molecular-weight cutoff (MWCO) concentrators (Vivaspin 20 

VS2031, Sartorius Stedim Biotech). Concentrated samples were further purified by size-

exclusion chromatography (SEC; Superdex 200, GE Healthcare; column volume 24 ml, 

fluid phase 8 ml) using a high-pressure liquid-chromatography instrument (HPLC; 

ÄKTAexplorer, Pharmacia). The running buffer consisted of 20 mM HEPES pH 7.5, 10 

mM calcium chloride, 0.02% βDDM. For analytical separations, a sample (200 µl) of 

concentrated CTB- MPR variant was loaded onto the SEC column and chromatography 

was performed at a flow rate of 0.5 ml min
-1

. The column was loaded with a maximum of 

1 ml sample for preparative separation runs, with only slight broadening of the peaks 

being observed. The protein elution was detected by absorption at 280 nm. Fractions 

corresponding to individual peaks were collected and pooled. 

 The concentrations of CTB-MPR variant preparations were determined 

spectrophotometrically (A280) using ɛ280 = 39,380 M
-1

cm
-1

 (ɛ280 was calculated with the 
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ProtParam web application; http://web.expasy.org/protparam/). Assembly of pentamers 

of the CTB-MPR variants was monitored by ELISA using GM1 gangliosides for capture 

and the MPR-specific human monoclonal antibody 2F5 as described previously (Matoba 

et al., 2008) and by nondenaturing SDS–PAGE (see below). 

 

SDS-PAGE and immunoblotting 

 

SDS–PAGE using tricine-based buffers in a Bio-Rad Mini-PROTEAN Tetra Cell was 

performed as previously described by (Lawrence et al., 2011) based on the method of 

(Schagger, 2006) Following electrophoresis, the gels were stained with Coomassie 

Brilliant Blue, subjected to silver staining (Lawrence et al., 2011) or processed for 

immunoblotting. 

 For immunoblotting, the acrylamide gel was rinsed with water and equilibrated in 

anode buffer consisting of 60 mM Tris, 40 mM N-cyclohexyl-3-aminopropanesulfonic 

acid (CAPS), 15% methanol. The PVDF membrane was prepared by soaking in 100% 

methanol and then equilibrated in cathode buffer consisting of 60 mM Tris, 40 mM 

CAPS,0.1%SDS.The gel and the membrane were sandwiched between extra-thick blot 

filter papers (Bio-Rad) soaked in the appropriate electrode buffer and proteins were 

electroblotted for 30 min at 120 mA (Bio-Rad Transfer-blot SD Semi-dry Transfer Cell). 

Following blocking for 1 h in PBSTM (PBS, 0.05% Tween 20, 5% dry milk), the PVDF 

membrane was further incubated in the presence of the 2F5 monoclonal antibody (kindly 

provided by the NIH’s AIDS Reagent Program; 1:10 000 dilution; (Purtscher et al., 

1996)). The membrane was then washed for 3 x 30 min in PBST (PBS, 0.05% Tween 20) 
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prior to incubation (1 h) with rabbit anti-human IgG conjugated to horseradish peroxidase 

(1:20 000 dilution in PBSTM; Santa Cruz Biotechnology sc-2923). Following three 

additional 30 min washes, the PVDF membrane was then soaked with Bio-Rad Clarity 

Western ECL substrate solution and imaged with a UVP BioSpectrum 500C Imaging 

System. 

 CTB forms a very stable pentamer that resists dissociation by SDS in a monomer 

concentration-dependent manner. Nonetheless, CTB pentamers can be denatured by heat 

and by reduction of the intermolecular disulfide bridges that stabilize the oligomers 

(Zrimi et al., 2010, Yasuda et al., 1998). Nondenaturing SDS–PAGE was conducted as 

described above except that DTT was omitted from the loading buffer and the samples 

were not boiled prior to loading them onto gels (Matoba et al., 2008). 

 

Dynamic light scattering 

 

Dynamic light-scattering (DLS) measurements were performed using a NaBiTec GmbH 

setup comprising a SpectroSize 302 (Molecular Dimensions) in combination with an S6D 

microscope (Leica). The purified protein sample (concentrated to 8 mg ml
-1

 as described 

above) was illuminated in a 3 µl hanging drop using a 24-well crystallization plate (VDX 

Greased Plate, Hampton Research) covered with siliconized-glass circular cover slides 

(22 mm; Hampton Research). The well itself was filled with 600 µl SEC running buffer. 

Prior to the measurement, the protein solution was centrifuged (1,000 g, 30min, 4°C) to 

remove possible dust particles. During the measurement, the temperature was set to 20°C. 

Ten consecutive measurements, each with an integration time of 20 s, were averaged. An 
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estimate of the hydrodynamic size was obtained with the instrument software using the 

following parameters: refractive index 1.33, viscosity 1.006, shape factor 1.0, hydrated 

shell 0.2 nm. 

 

Crystallization experiments 

 

For crystallization experiments, the fusion-protein preparations were concentrated to a 

final concentration of 10 mg ml
-1

 using 100 kDa MWCO concentrators (Amicon 

Centricon YM-100). Initial broad screening for crystallization conditions used NeXtal 

crystallization kits (The PEGs Suite, The MB Class Suite and The MB Class II Suite) 

with the vapor-diffusion technique. Screening was performed using 96-well plates 

(Qiagen CrystalEX 96-well Conical Flat Plate) with the sitting-drop method, where each 

reservoir well contained 100 µl precipitant solution. The purified protein solution was 

then mixed in a 1:1 ratio (1 µl:1 µl) with the reservoir solution in the sitting-drop well. 

 Conditions that produced crystals served to guide us in fine screening by the 

hanging-drop method using 24-well plates (Hampton Research VDX Greased Plates), 

with each reservoir well containing 900 µl precipitant solution. The purified protein 

solution was then mixed with the reservoir solution (3 µl each) on a siliconized glass 

circle cover slide (22 mm; Hampton Research) and the slide was used to seal the well. 

 As the broad screening produced crystals in the presence of polyethylene glycol 

(PEG), our fine screens centered on the addition of PEGs of various defined chain lengths 

(molecular weights ranging from 300 to 4000) under pH, salt and ionic strength 

conditions that produced crystals that were hexagonal from one viewing plane and 
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completely round as viewed perpendicularly. Specifically, combinatorial screens 

involved testing various buffers (50 mM of either sodium acetate pH 4.6, MES pH 6.5 or 

HEPES pH 7.5) and salts (100 mM of either NH4Cl, NaCl, CaCl2 or MgCl2). 

 Fine screens for optimal crystallization conditions of CTB
GPGP

MPR were 

conducted with 0.1 M HEPES pH 7.5 and varying concentrations of PEG 400. The best 

crystals appeared using a reservoir solution consisting of 34% PEG400, 0.2 M BaCl2, 

20% ethylene glycol. The hanging drop contained 1.5 µl reservoir solution, 0.5 µl 2M 

ammonium acetate, 2 µl protein sample and 0.41 µl 10% CYMAL-4 (yielding a final 

concentration of 0.74% or 2x the critical micelle concentration). 

 Fine screens for optimal crystallization conditions of CTBMPR were conducted 

with the choice buffer (50 mM HEPES pH 7.5) and focused on varying concentrations of 

choice PEGs (20–40% PEG 300, 5–20% PEG 3000 or 5–20% PEG 4000) in the presence 

of 100 mM NH4Cl, NaCl or CaCl2. In parallel, we conducted salt-concentration screens 

(50–200 mM) for NH4Cl, NaCl and CaCl2 in solutions that contained either 25% PEG 

300, 10% PEG 3000 or 10% PEG 4000. Finally, under the choice conditions of buffer, 

PEG and salt (50 mM HEPES pH 7.5, 25% PEG 300, 200 mM NH4Cl) we conducted an 

additive screen (Hampton Research Additive Screen), in which 96 different additives 

were added (1µl) to the individual drop well in a Qiagen CrystalEX 96-well Conical Flat 

Plate along with the protein and reservoir drop mixture, which consisted of 50 mM 

HEPES pH 7.5, 20% PEG 300, 10%(w/v) either glycerol, 2-propanol or CYMAL-4 and 

200 mM salt (either NH4Cl, NaCl or CaCl2). 

 Fine screens for optimal CTB
AAAA

MPR crystallization conditions were performed 

with 100 mM Tris pH 8.5 or 50 mM HEPES pH 7.5 while varying the concentrations of 
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either PEG 1000 (10–30%) or PEG 3350 (5–20%) in the presence of 200 mM of either 

NH4Cl, NaCl, CaCl2 or NH4HCO2. In parallel, salt-concentration screens of NH4Cl, 

NaCl, CaCl2 and NH4HCO2 from 0.05 to 0.2 M were set up with 100 mM Tris pH 8.5 or 

50 mM HEPES pH 7.5 and either 25% PEG 1000 or 10% PEG 3350. 

 Nano/microcrystals of CTB
AAAA

MPR were prepared by the ultrafiltration method. 

In this method, the supersaturated zone is reached by concentration of the protein by 

ultra- filtration while salt, precipitant and buffer concentrations remain constant. 300 µl 

purified protein (10 mg ml
-1

) was mixed with the same volume of precipitant solution 

consisting of 200 mM NH4HCO2, 30% PEG 3350, 10 mM CaCl2, 20 mM HEPES pH 7.5 

in a 100 kDa cutoff concentrator (Amicon Microcon YM-100). The setup was then 

centrifuged to reduce the retentate volume by half to regain the original protein 

concentration of 10 mg ml
-1

. Following overnight incubation, more precipitant solution 

was added (30µl) to further increase the yield of nano/microcrystals. Crystallization 

conditions are summarized in Table 2.2. 

 

 

 

 

 

 

 

 

 



  39 

Table 2.2: Crystallization conditions 

Construct Condition 

CTB
GPGP

MPR 34% PEG 400, 0.2 M BaCl2, 20% ethylene glycol, 

0.5 M ammonium acetate, 0.74% CYMAL-4 

 

25–30% PEG 400, 0.2 M CaCl2, 0.1 M HEPES pH 7.5, 

0.3M galactose, 80–100 mM NaCl 

 

CTBMPR 25-30% PEG 300, 0.2 M CaCl2, 0.05 M HEPES  

pH 7.5, 0.02% βDDM 

 

25–30% PEG 300, 0.2 M NaCl, 0.05 M HEPES pH 7.5, 

0.02% βDDM 

 

25–30% PEG 300, 0.2 M NH4Cl, 0.05 M HEPES 

pH 7.5, 0.02% βDDM 

 

CTB
AAAA

MPR 8-12% PEG 3350, 0.1–0.2 M NH4HCO2, 0.01 M CaCl2, 

0.05 M HEPES pH 7.5, 0.02% βDDM 

 

CTB
AAAA

MPR 

nano/microcrystals 

30% PEG 3350, 0.2 M NH4HCO2, 0.01 M CaCl2, 

0.05 M HEPES pH 7.5, 0.02% βDDM 

 

 

 

Standard X-ray crystallography 

 

Characterization of the CTB
GPGP

MPR crystals was performed using synchrotron X-ray 

radiation on beamline 8.2.2 at the Advanced Light Source (ALS) at a wavelength of 1 Å. 

The crystals were flash-cooled in liquid nitrogen with a cryoprotectant solution (15% 

ethylene glycol, 50% PEG 400, 100 mM HEPES, 60 mM NaCl, 200 mM BaCl2, 150 mM 

imidazole, 0.017% βDDM) and diffraction data were collected at 100 K using an Oxford 

Cryostream. A total of 520 data frames were collected using 0.25° oscillations and an 

exposure time of 2.275 s per frame with an ADSC 315 detector. 
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Serial femtosecond nano/microcrystallography 

 

Nano/microcrystals were grown on-site and were analyzed by DLS prior to serial 

femtosecond X-ray nano/micro-crystallography using the high-energy free-electron laser 

at the Coherent X-ray Imaging (CXI) endstation of the Linac Coherent Light Source 

(LCLS) at SLAC National Accelerator Laboratory (Experiment L432, February 2012). 

This method allows data to be collected from hundreds of thousands of sub-micrometre 

nano/microcrystals (by spraying them across a pulsed X-ray laser beam) using X-ray 

snapshots so brief that they outrun radiation damage (for a review of the method, 

see(Spence et al., 2012)). Data were collected from a stream of fully hydrated 

nano/microcrystals. Experimental details of the beamline and data collection at CXI have 

been described by (Boutet & Williams, 2010) and (Boutet et al., 2012). A suspension of 

nano/microcrystals of CTB
AAAA

MPR (9.1 mg ml
-1

, total volume of 330µl) was supplied 

to the FEL X-ray beam using a gas-focused liquid microjet of 4µm diameter at 20°C, a 

temperature-controlled antisettling device and a flowrate of 10 µl min
-1

 using a gas 

dynamic virtual nozzle (Weierstall et al., 2012, DePonte et al., 2008, Weierstall et al., 

2008, Lomb et al., 2012). X-ray data were collected from the crystals at an energy of 6.3 

keV with a 50 fs pulse duration and an X-ray pulse repetition rate of 120 Hz. Diffraction 

patterns from protein crystals were identified and selected using the hit-finding program 

Cheetah (Barty et al., 2014), and indexing and merging was performed using CrystFEL 

(Kirian et al., 2011, White et al., 2012). 
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2.4 Results and discussion 

CTB
GPGP

MPR 

 

Previous work suggested that the immunogenicity of the MPR depends on its structural 

context, especially when fused to other proteins and peptides as is the case for CTB-MPR 

(Gach et al., 2011, Montero et al., 2012, Matoba et al., 2008, Matoba et al., 2011). Three 

different CTB-MPR fusion variants were designed that would differ in the linker peptide 

between the two fusion partners. 

 The original fusion protein that was described previously (Matoba et al., 2004) 

contained a GPGP linker. It is denoted here as CTB
GPGP

MPR (Figure 2.1b). Two 

additional variants were created as part of the present study with the GPGP linker either 

deleted (CTBMPR; Figure 2.1c) or replaced by a tetra-Ala linker (CTB
AAAA

MPR; Figure 

2.1d). To maximize expression levels in bacterial cells, all constructs reported here were 

devoid of a terminal histidine tag. Instead, we took advantage of a peculiarity of the CTB 

pentamer, preserved in the context of the fusion proteins, that allows it to specifically 

bind to metal-affinity resin (Dertzbaugh & Cox, 1998). Importantly, in the absence of a 

His tag only assembled pentamers can bind to the metal column (Dertzbaugh & Cox, 

1998). The fusion proteins were expressed as described by (Matoba et al., 2008) and were 

purified as described in §2 using the mild detergent βDDM for solubilization and in all 

further purification steps to facilitate crystallization efforts and biophysical analyses. 

 The purification scheme described above for CTB
GPGP

MPR fusion proteins 

resulted in >99% purity based on silver-stained polyacrylamide gels (Matoba et al., 

2008). As previously demonstrated by nondenaturing gel electrophoresis and by GM1 
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ganglioside ELISA (Matoba et al., 2008, Matoba et al., 2004), such protein preparations 

were highly homogeneous, consisting of primarily pentameric CTB
GPGP

MPR and only 

minor amounts of higher molecular-weight aggregates and monomeric protein. We were 

able to separate these various molecular forms by SEC–HPLC (Figure 2.2a). Oligomeric 

state assignment of the peaks was performed based on parallel SEC–HPLC runs with 

molecular-weight standards. This assignment was confirmed by resolving proteins in the 

pooled fractions corresponding to the peaks by SDS–PAGE under nonreducing 

conditions, which allows CTB to retain its pentameric organization (Figure. 2.2b; 

(Yasuda et al., 1998, Zrimi et al., 2010)). Taken together with the fact that that 

CTB
GPGP

MPR binds to the affinity resin, we conclude that the fusion protein is a stable 

pentamer. 

 Taking advantage of the presence of five tryptophan residues within the MPR 

domain (with one more within the CTB moiety), we subjected the proteins in the pooled 

fractions corresponding to CTB
GPGP

MPR pentamers to fluorescence spectroscopy (Figure 

2.2a, inset). The emission spectrum revealed that the Trp residues in the pentamers were 

exposed to the aqueous milieu (peak emission at 347 nm; (Ni et al., 2011, Reshetnyak et 

al., 2001)). The stability of the pentamers was demonstrated by the conservation of the 

Trp emission profile upon purification and concentration of the protein. 

 We screened a large number of crystallization conditions which included 

systematic variation of the protein concentration, pH, precipitant and ionic strength. 

Furthermore, we tested the reversibility of the crystallization conditions. The initial 

screens provided important information on the solubility of CTB
GPGP

MPR. The addition 

of galactose is essential for crystallization of the protein, while only irreversible 
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precipitation was observed in its absence. Reversible precipitation was observed at pH 7–

8 and at medium salt concentrations (50–250 mM). Crystallization was favored by the 

addition of divalent cations (e.g. Ca
2+

) over monovalent cations, and shorter-chain 

polyethylene glycol polymers (PEGs) were the preferred precipitants. 

 

 

Figure 2.2: CTB
GPGP

MPR oligomeric states (a) separation of aggregates and 

monomers from the pentameric CTB
GPGP

MPR protein by gel filtration on a Superdex 

200 column. Assembly status was estimated from parallel resolution of molecular-

mass standards (not shown). Inset, tryptophan fluorescence emission spectra of 

pentameric CTB
GPGP

MPR in pooled gel-filtration fractions corresponding to the major 

peak in (a). 1 (green), pentamers; 2 (blue), concentrated (Centricon 100) pentamers. 

Excitation was at 280 nm. (b) Proteins in the unconcentrated metal-affinity 

chromatography (MAC) eluate and in the size-exclusion chromatography (SEC) 

fraction corresponding to the main peak of the chromatogram in (a) were resolved by 

SDS–PAGE under nondenaturing (ND; no DTT and no boiling) and denaturing (D) 

conditions. Molecular-weight standards indicate that CTB
AAAA

MPR is organized into 

SDS-stable pentamers. The compact pentamers have a slightly higher electrophoretic 

mobility than expected based on their mass alone 



  44 

 We found multiple 

Figure 2.3: The 

CTB
GPGP

MPR 

structure reveals the 

expected pentameric 

ring arrangement 

typical of wild-type 

CTB but not the 

structure of the MPR. 

Cartoon representation 

of the crystal structure 

of CTB
GPGP

MPR in 

two orientations: (a) 

top view, (b) side view. 

Each subunit is 

indicated by a different 

color. The C-terminus 

of one of the subunits is 

indicated in red. This 

region is shown in 

close-up in (c). (c) 

2FoFc electron-density 

map at a contour level 

of 1.5 of the C-

terminus of CTB in 

CTB
GPGP

MPR, which 

was phased with the 

pentameric CTB model 

(PDB entry 1jr0; 

(Pickens et al., 2002)) 

using molecular 

replacement (McCoy et 

al., 2007) Electron 

density can be seen 

beyond the terminal 

asparagine of CTB 

where the GPGP linker 

and MPR connect. 
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conditions where crystals formed. The crystals were grown in 0.1 M HEPES pH 7.5, 25–

30% PEG 400, 0.2M CaCl2, 0.3 M galactose, 80–100 mM NaCl at a protein 

concentration of 5 mg ml
-1

. The vapor-diffusion method (sitting drop) using ‘screw-cap’ 

plates (NeXtal) was used. Isolated crystals were cooled in liquid nitrogen in 

crystallization buffer containing 36% PEG 400 as a cryoprotectant. X-ray data were 

collected on beamline 8.3.1 at the Advanced Light Source (ALS). Most of the 50 µm 

crystals diffracted to about 20 Å resolution. The reflections were broad and anisotropic, 

indicative of the low order of the crystals in three dimensions. One unit-cell parameter 

was identified to be 45 Å. 

 Under slightly different crystallization conditions that included the presence of 

Zn
2+

 and lipids, crystals were observed that diffracted to a resolution limit of 2.3 Å. A 

full data set was collected from these crystals at the Advanced Photon Source (Table 2.3). 

Unfortunately, only the CTB region was ordered in the electron-density map, definitively 

demonstrating its pentameric nature (Figure. 2.3a and 2.3b). Weak electron density was 

observed that extended the C-terminus of CTB, but the structure of the MPR region could 

not be resolved in the crystals (Figure 2.3c). We hypothesized that this may be caused by 

the flexibility of the GPGP linker allowing the MPR region to assume multiple positions 

in the crystals. 
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Table 2.3: Crystallographic data for CTB
GPGP

MPR 

Values in parentheses are for the highest resolution bin. 

Wavelength (Å) 1.0 

Resolution range (Å) 59.48–2.10 (2.21–2.10) 

Space group R3:H 

Unit-cell parameters (Å/°) a = b = 174.39, c = 64.71, 

   α = β = 90, λ = 120 

Multiplicity 3.8 (3.8) 

Completeness (%) 99.95 (100.00) 

Mean I/σ (I) 6.68 (1.93) 

Wilson B factor (Å
2
) 30.72 

Rmerge 0.136 (1.302) 

R factor 0.214 (0.315) 

Rfree 0.249 (0.388) 

No. of atoms 4365 

No. of macromolecules 4100 

No. of waters 265 

No. of protein residues 515 

R.m.s.d., bonds (Å) 0.008 

R.m.s.d., angles (°) 1.08 

Ramachandran favored (%) 98 

Ramachandran allowed (%) 1.8 

Ramachandran outliers (%) 0.2 

Clashscore 8.52 

B factors (Å
2
)  

   Average 40 

   Macromolecules 39.9 

   Solvent 42.6 
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CTBMPR 

 

To test our hypothesis regarding linker flexibility, we created a second fusion protein 

variant in which the movement of the MPR domain was expected to be restricted by 

direct fusion of the MPR to the C-terminus of the CTB protein (CTBMPR; Figure 2.1c). 

 The purification procedure for the linker-less fusion protein CTBMPR followed 

the same scheme as outlined above except that elution was conducted batchwise with 

extended incubation periods (from 10 min to 16 h) and higher concentrations of 

imidazole (300 mM) were required to elute most of the protein from the column (Figure 

2.4). The molecular mass of the fusion protein as estimated based on SDS–PAGE 

resolution (Figure 2.4a) and immunoblotting (Fig. 2.4b) fitted the calculated value based 

on the sequence of the protein (17 kDa). 

 The homogeneity of the fusion protein in the pooled eluted fractions was tested by 

SEC–HPLC. This demonstrated that the preparation can be resolved into various peaks 

(Fig. 5). The results showed that unlike CTB
GPGP

MPR, the linker-less fusion protein 

exists in an equilibrium between several oligomeric molecular forms. Assignment of the 

oligomeric forms is based on the similarity in the elution volumes of the respective peaks 

to those of CTB
GPGP

MPR. Pentamers are not the predominant form of the linker-less 

CTBMPR protein, at least under our purification conditions. A substantial monomeric 

population is present alongside the pentamers in preparations obtained under similar 

purification conditions to those used in the purification of CTB
GPGP

MPR. In fact, since all 

of the protein loaded onto the SEC–HPLC column was specifically eluted from the 

metal-affinity column (and consequently must have been pentameric), it is likely that the 
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CTBMPR pentamer undergoes (partial) disassembly during manipulation following the 

metal-affinity chromatography stage. 

 

 

Figure 2.4: Affinity chromatography purification of CTBMPR. Protein samples 

from various steps in the purification process were resolved next to molecular-weight 

markers (lane 1) by SDS–PAGE and the gel was stained with Coomassie Brilliant 

Blue (upper panel). The whole cell lysate (lane 2) was spun down and the aqueous 

fraction (lane 3) was discarded. Membrane proteins were extracted from the pellet 

with βDDM (lane 4) purified over an affinity chromatography column. The 

flowthrough was collected (lane 5) and the column was extensively washed as 

described in the text (lane 6, first wash fraction; lane 7, last wash fraction). Elution 

required a larger volume of imidazole elution buffer to elute most of the protein bound 

to the column (lanes 8–10) than expected based on previous results with CTB 

GPGP MPR (Matoba et al., 2008). Immuno-blotting was performed on the same 

samples using monoclonal 2F5antibodies (lower panel) 
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 While gp41 is generally assumed to form trimers (Liu et al., 2008, Atilgan et al., 

2010) in its pre-fusion form, the involvement of the MPR domain in trimerization is less 

clear and evidence for alternative associations exist (see, for example,(Alfsen & Bomsel, 

2002)). This suggests that the equilibrium between the various oligomeric states is 

dynamic and may be explained by the competing tendencies of the CTB fusion partner to 

form pentamers, while the MPR fusion partner may push the equilibrium against 

pentamerization. 

Figure 2.5: Size-exclusion chromatography of CTBMPR shows it exists in several 

metastable oligomeric forms. Affinity-purified CTBMPR was resolved by SEC–

HPLC, yielding three major peaks probably corresponding to pentamers (fraction 8) 

and monomers (fraction 16). Fractions 21 and 23 did not contain appreciable amounts 

of protein and are likely to contain high concentrations of imidazole. The shoulder at 

the right of the pentamer peak (fraction 11) may represent the less stable intermediates 

tetramers and dimers. These fractions (numbered in red), alongside the original sample 

and a precipitate that formed in the original sample, were analyzed by SDS–PAGE 

followed by silver staining (inset). 
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 To investigate this hypothesis, we separately pooled the fractions corresponding 

to the monomeric and the pentameric forms of CTBMPR, concentrated them and 

analyzed them separately by SEC–HPLC (Figure 6). The pentamer appeared to be stable,  

 

 

Figure 2.6: The CTBMPR oligomeric state is affected by the concentration of the 

protein. SEC–HPLC fractions corresponding to the pentamer (a) and monomer (b) 

peaks (Figure 5) were subjected separately to a second SEC–HPLC purification. 

Absorbance is normalized to the highest peak 
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leading to a single peak with the same elution time. However, upon concentration of the 

monomer-containing fractions, most of the fusion protein was shown to elute as a fraction 

corresponding to the pentamer fraction, suggesting a reorganization of the protein into 

pentamers. These results provided support for our hypothesis that a dynamic 

concentration-dependent equilibrium exists between the various oligomeric forms of 

CTBMPR, where lower concentrations favor monomers and higher concentrations favor 

pentamer formation. 

 We carried out crystallization experiments of CTBMPR using the vapor-diffusion 

method and broad crystal screening, as described earlier, to identify conditions where 

crystals were able to form. Disappointingly, only a few conditions led to ordered 

precipitate or pseudo-crystals, and finer screens around the conditions did not produce 

three-dimensionally ordered crystals. A possible explanation is that the instability of the 

oligomeric states hinders the formation of crystals. 

 

CTB
AAAA

MPR 

 

Based on the results with CTBMPR, we designed a third variant of the CTB-MPR fusion 

protein, CTB
AAAA

MPR (Figure 2.1d), that links the two fusion partners with a short 

polyalanine peptide that is expected to assume an α-helical conformation (Oneil & 

Degrado, 1990). Our aim was to allow the fusion protein to assemble into stable 

pentamers by facilitating the ability of the MPR moieties to interact with each other while 

avoiding presumed disorder induced by the flexible GPGP linker. The SEC–HPLC 

purification profile resembled that for the CTB
GPGP

MPR variant (Figure 2.7a). The 
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formation of the pentamer, as verified by nondenaturing SDS–PAGE, was still 

concentration-dependent; however, the pentamer was much more stable for 

CTB
AAAA

MPR than for the linker-less construct CTBMPR (Figure 2.7b). 

 

 

 

 

 

Figure 2.7: CTB
AAAA

MPR resolved as an oligomer by SEC–HPLC. Pink line, the 

Talon column eluate (not concentrated). Blue line, 10 concentrated eluate sample. Red 

line, 20 concentrated eluate sample. Spectrograms were normalized to the highest 

peak. Inset: proteins in fractions corresponding to the main peak of the 20 

concentrated eluate chromatogram were resolved by SDS–PAGE under nondenaturing 

(ND; no DTT and no boiling) and denaturing (D) conditions. Molecular-weight 

standards indicate that CTBAAAAMPR is organized into SDS-stable pentamers. 
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Figure 2.8: DLS data of CTB
AAAA

MPR shows that it is monodisperse as a high-order 

oligomer. (a) DLS measurements were performed so that the size distribution in the 

sample was analyzed for 20 s and the measurement was repeated consecutively ten 

times. The moment-to-moment fraction of particles estimated to have a particular 

hydrodynamic radius is color-coded and shown as a heat plot (red, >90%; blue, none). 

The narrow vertical and red profile shown indicates high stability over the duration of 

the measurement and low polydispersity. Time: the total duration of the scanning 

session (200 s). (b) A distribution curve of particle-size frequencies gives a more 

quantitative evaluation of the polydispersity, with the mean  SD indicated next to the 

peak. The standard deviation of the size distribution is only 6% of the mean, 

indicating low polydispersity. 
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 We obtained the size distribution of the purified CTB
AAAA

MPR by dynamic light 

scattering (DLS) to determine whether the protein preparation was monodisperse (Figure 

2.8). At 8 mg ml
-1

, the hydrodynamic radius (Stokes radius, r) of the detergent-

solubilized protein (i.e. of the protein–detergent micelles) was determined to be 

6.2±0.4 nm. The polydispersity was estimated to be 6%, which is well below the 10–15% 

level considered as monodisperse (Proteau et al., 2010). Note that the DLS measurement 

in Figure 2.8 shows the direct scattering intensity, which is not corrected for the 

molecular mass of the particles to detect even traces of aggregates. As the increase in 

scattered intensity is proportional to r
6
, we calculated that the sample was highly 

monodisperse and contained less than 0.00001% aggregates. Since the exact geometry of 

CTB
AAAA

MPR is not known, a generic set of parameters was used assuming that the 

folded state is spherical with an estimated molecular mass of ~210 kDa, which includes 

the detergent bound to the protein. The DLS data indicated that CTBAAAAMPR may 

form a dimer of pentamers, corresponding to a molecular weight of 170 kDa for the 

protein, while a trimer of pentamers would be 250 kDa larger than the value calculated 

based on the DLS results. However, it is difficult to determine how much of the estimated 

molecular mass was associated with the detergent micelles around the hydrophobic 

regions of the protein. 

 A large set of crystallization experiments was carried out with purified 

CTB
AAAA

MPR similarly to that described above for the linker-less variant CTBMPR. 

Crystals were observed more frequently for CTB
AAAA

MPR than for CTBMPR, but 

despite the fact that CTB
AAAA

MPR appeared to be more stable and more homogeneous 

than CTBMPR, the crystal quality was still poor. Under most conditions, pseudo-crystals 
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were observed and were similar in shape to the CTB
GPGP

MPR crystals (Figure 2.9). The 

crystals shown in Figure 2.9a feature a hexagonal shape when viewed from the ‘top’, but 

are completely round when viewed from the side. X-ray diffraction patterns from these 

crystals show features of a hexagonal powder diffraction pattern, which may indicate that 

the crystals consist of stacks of two-dimensional crystals which are disordered in the third 

dimension. However, we noticed that crystal disorder seemed to be correlated with the 

size of the crystals, with larger crystals displaying more disorder. 

 

 

Figure 2.9: CTB
AAAA

MPR crystals form under different conditions of a fine screen. 

(a) 0.2 M ammonium formate, 8% PEG 3350. (b) 0.2 M ammonium formate, 5% PEG 

3350. (c) 0.2 M ammonium formate, 12% PEG 3350. (d) 0.1 M ammonium formate, 

10% PEG 3350 
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 Taking this into account, crystals were rapidly grown by a fast increase of the 

supersaturation state using ultrafiltration to concentrate the protein at a constant 

precipitant concentration (Figure 2.10). Most of the crystals were smaller than the 

shortest wavelength of visible light; they had the appearance of amorphous precipitates, 

with very small microcrystals also visible in the sample (Figure 2.10), and this mixture of 

small (1–2 mm) and very small (<1 mm) crystals will be referred to here as 

‘nano/microcrystals’. CTB
AAAA

MPR nano/microcrystals were grown on site at LCLS, 

characterized by DLS and SONICC and their diffraction quality was tested by the new 

method of serial femtosecond crystallography (SFX) on the CXI beamline at the LCLS. 

This beamtime was dedicated to the exploration of the use of SFX for structure 

elucidation of membrane proteins following the seminal work by (Chapman et al., 2011) 

and (Boutet et al., 2012). These articles provide detailed description of sample delivery 

and data collection that will only briefly be recounted here (see the review by(Spence et 

al., 2012)). Millions of X-ray data diffraction snapshots were collected from a stream of 

protein nanocrystals or microcrystals in their mother liquor at room temperature as they 

flow across the beam. Diffraction snapshots of individual crystals of CTB
AAAA

MPR were 

collected using X-rays pulses of extremely high intensity (10
9
 higher peak brilliance than 

the brightest third-generation synchrotrons). The 10–50 fs pulses are so brief that the 

diffraction of each nano/microcrystal is recorded before it is disintegrated. This diffract-

before-destroy principle (Barty et al., 2012) overcomes the X-ray damage problem in 

conventional crystallography and allows data collection from crystals that contain only a 

few hundred molecules (Chapman et al., 2011). The results from the LCLS beamtime 

were very promising, as we were able to grow crystals on site and detected the first  
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Figure 2.10: Nano/microcrystals of CTB
AAAA

MPR grown in 0.2 M ammonium 

formate, 30% PEG 3350 before (a) and after (b) filtering through a 20 mm filter. The 

crystals in (b) are shown at a higher magnification 
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single-crystal diffraction patterns from CTB
AAAA

MPR nano/microcrystals. While the 

larger crystals of CTB
AAAA

MPR were disordered in the third dimension, the 

nano/microcrystals are ordered in all three dimensions and show a low degree of disorder. 

We did not observe any anisotropy of the diffraction patterns even in the third dimension. 

This is particularly striking since the nano/microcrystals of the protein were grown using 

the same set of precipitants at initial higher concentration, therefore reaching the 

supersaturation and nucleation phase much faster than in the vapor-diffusion experiment 

leading to the larger disordered crystals. A single sort short run of the CTB
AAAA

MPR 

nano/microcrystals allowed us to collect 1006 patterns, most of which showed diffraction 

to 4–6 Å resolution and were successfully indexed (see two typical diffraction patterns 

and their indexed images in Figure 2.11; Table 2.4). From the indexed patterns, we were 

able to determine the space group and the unit-cell parameters. The crystals appear to be 

rhombohedral (consistent with point group R32 with unit-cell parameters a = b = c = 332 

Å, α = β = λ = 60°). There are only a few published examples of structures with space 

group R3 and a similar unit-cell parameter to that we observed here for the 

CTB
AAAA

MPR fusion protein. Interestingly, the three examples we could find in the PDB 

happen to be of viral origin. These PDB entries include the structure of Physalis mottle 

virus (PDB entry 1qjz;(Krishna et al., 1999)), with unit-cell parameters a = b = c = 294 Å, 

α = β = λ = 59.91°, and the structures of the Sesbania mosaic virus coat protein (PDB 

entry 1smv; (Bhuvaneshwari et al., 1995)) and its mutant (PDB entry 1x33; (Sangita et 

al., 2005)), with unit-cell parameters a = b = c = 291 Å , α = β = λ = 62°. 
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Figure 2.11: CTB
AAAA

MPR FEL diffraction pattern (a) Two CTBAAAAMPR 

diffraction patterns collected from nano/microcrystals on the CXI beamline at LCLS 

in February 2012. (b) Indexing of the diffraction patterns in (a). The yellow circles 

indicate the predicted positions of the reflections 
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Table 2.4: Crystallographic data for CTBAAAAMPR micro/nanocrystals 

 

Run time 10 min 40 s 

Total No. of raw frames 72767 

No. of crystal hits 1006 

Hi rate (%) 1.38 

No. of indexed patterns 55 

Indexing yielding (%) 5.46 

Unit cell parameters (Å,°) a = b = c = 332, α = β = λ = 60 

Space group R32 

 

 Since each diffraction pattern is a ‘still image’ and most reflections are partial, 

accurate determination of structure requires high redundancy of the data set, i.e. many 

recordings in the vicinity of each reflection, in order to provide angular integration across 

the Bragg condition. For example, the first near-atomic resolution structure of a protein to 

be determined using femtosecond crystallography contained more than 12,000 indexed 

diffraction patterns (Boutet et al., 2012). While the minimum number of single crystal 

hits that are required for structure analysis is currently unknown, the thousand reflections 

that we were able to collect with our very small sample size did not constitute a full 

native data set that could support structure determination; more data will have to be 

collected to this end. 

 It was surprising to see that the nano/microcrystals of CTB
AAAA

MPR (most of 

which are <1 mm) are ordered in three dimensions while the larger (100–300 mm) 

crystals grown with the same set of precipitants are completely disordered in the third 

dimension. We are currently screening conditions and applying seeding techniques to 

grow crystals of defined micrometer sizes from the nano/microcrystals for conventional 

X-ray data collection at synchrotron microfocus beamlines. The plan is to test the 

diffraction quality of crystals with target sizes ranging from 5 to 100 mm to determine up 
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to which size the crystals are still ordered in three dimensions, with the goal of 

identifying a ‘single-crystal threshold’ that may enable data collection at microfocus 

beamlines. We can then further optimize the crystal quality of the microcrystals by fine 

screening of the conditions, including the screening of additives. 

 NMR and crystal structures have been determined of small peptide derivatives of 

the MPR region that contain binding sites for neutralizing antibodies (Biron et al., 2005, 

Song et al., 2009, Pejchal et al., 2009) and the consensus is that this peptide can assume 

an α-helical conformation. Further structural information on the MPR region was 

obtained by studies involving an in vitro-assembled six-helix bundle consisting of 

separately produced peptide derivatives of gp41 (Shi et al., 2010) and a chimeric protein 

consisting of a series of gp41 peptides separated by linkers (Buzon et al., 2010). The 

conformations observed in these studies are very likely to represent the post-fusion form 

of MPR. However, the structure shows that the 2F5 binding site is deeply buried inside 

the three-helix bundle (Shi et al., 2010, Buzon et al., 2010) and therefore these constructs 

may not induce 2F5-like neutralizing antibodies. During the fusion process, large 

conformational changes must occur in gp41 that break the interaction between the trimers 

and expose the 2F5 antibody-binding site, thereby allowing 2F5 to block fusion and 

transcytosis; thus, a structure of the fusion-active form of MPR is highly desired. Our 

ultimate goal is to design an optimal CTB-MPR construct that can serve as a vaccine 

against HIV. Our design of the MPR fusion with CTB is based on the idea of a symmetry 

mismatch, where the pentameric oligomeric state of CTB hinders the formation of trimers 

of MPR and thereby stabilizes the MPR region of gp41 in its pre-fusion active form. 

While we present major strides in this work, further improvement of both the traditional 
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X-ray crystallography approach (including co-crystallization with neutralizing 

antibodies) and less-explored innovations such as serial femtosecond crystallography are 

needed to allow us to meet this goal. 

 This work presents a proof of principle that three-dimensionally ordered 

nano/microcrystals can be grown from a protein that had so far resisted growth of any 

macroscopic crystals that were ordered in three dimensions. Most remarkable is the fact 

that the SFX diffraction patterns clearly indicate that the nano/macrocrystals were single 

crystals, while macroscopic crystals grown with the same chemical compounds as 

precipitants showed the features of two-dimensional crystals stacked nearly randomly in 

the third dimension. Further enhancement of the quality of the nano/microcrystals by 

application of improved methods of nanocrystal growth (Kupitz et al., 2014) and the 

collection of a full data set from these crystals by serial femtosecond nanocrystallography 

would allow us to determine the structure of CTB
AAAA

MPR. 
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3.1 Abstract 

 

CTB
AAAA

MPR is a fusion protein consisting of the cholera toxin B subunit (CTB) and the 

membrane proximal region (MPR) of gp41, which is the transmembrane envelope protein 

of human immunodeficiency virus 1 (HIV-1). The two proteins are fused together with a 

tetra-alanine linker. It is a candidate vaccine component aimed at inducing the production 
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of antibodies targeting the early steps of HIV-1 mucosal transmission. Here we report on 

crystallization experiments and preliminary X-ray crystallographic analysis of crystals 

formed from a solution of the fusion protein. The final goal of the study is to investigate 

the structure of CTB
AAAA

MPR with MPR in its fusion-active form to guide 

improvements of the immunogenicity of the fusion protein design.  A 1.9 Å data set was 

obtained from needle-like crystals grown from the monodisperse solution of 

CTB
AAAA

MPR. However, X-ray structure analysis revealed that the crystals contained 

CTB but no electron density was observed in the structure beyond the final residue of 

CTB suggesting that the MPR domain and alanine linker was cleaved. CTB was found to 

be arranged in a unique crystal packing and unit cell that has not been observed before for 

CTB nor any of its fusion proteins. The structure contains two unaligned CTB pentamers 

in the asymmetrical unit, which suggests that MPR was present during crystallization and 

influenced the crystal packing. Further investigation by monitoring crystallization on a 

day by day basis showed that the fusion protein is very stable under conditions that do not 

lead to formation of crystals, but is cleaved as soon as large well-ordered crystals are 

formed. 

 

3.2 Introduction 

 

Efforts to develop drugs and vaccines against acquired immune deficiency syndrome 

(AIDS) have prompted significant research efforts on the envelope glycoproteins of HIV-

1. The viral envelope consists of two glycoproteins: 1) gp41 is the transmembrane 

glycoprotein that contains an ectodomain largely responsible for the trimizeration of the 
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complex and 2) gp120 is an exterior glycoprotein which covers part of gp41. Both 

glycoproteins play an important role in viral transmission and infection (Wyatt & 

Sodroski, 1998). Although high mutation rates in HIV-1 lead to high antigenic 

variability, researchers have identified several well conserved regions of the envelope 

protein that are crucial to viral functions, which is reviewed in (Zolla-Pazner, 2004). One 

such region is the transmembrane-proximal region of the gp41. Although it is poorly 

immunogenic, many of the antibodies that bind to this region, such as 2F5, 4E10, and 

Z13, are broadly neutralizing against HIV-1 (Zwick et al., 2001, Zolla-Pazner, 2004). 

Residues 649-684 of gp41, which we termed MPR, play a crucial role in viral epithelial 

transcytosis by binding to glycosphingolipid galatosylcermide (GalCer) on the surface of 

epithelial cells and is transcytosed using a non-fusogenic mechanism (Bomsel, 1997, 

Alfsen et al., 2001, Alfsen & Bomsel, 2002). Antibodies (Abs) that target gp41, such as 

2F5 or secretory IgA, are present in mucosal secretions of people that have been highly 

exposed to HIV, but persistently test negative for HIV in their blood sera; these 

antibodies were shown to have high efficiency in blocking viral transcytosis (Devito et 

al., 2000a, Devito et al., 2002, Miyazawa et al., 2009, Tudor et al., 2009). These studies 

support the hypothesis that inducing Abs against MPR in the mucosal immune system 

may be an effective method to prevent viral entry into the body, as over 90% of global 

HIV transmissions occur across the mucosal surface (Kresina & Mathieson, 1999, 

Overbaugh et al., 1999). 

 To ensure efficiency, the ideal vaccine should contain components that target 

various steps of the viral transmission and infection process, especially in the early stages 

of the viral cycle to take advantage of viral vulnerabilities of the low founder viral 
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population and to minimize the establishment of systematic infection (Haase, 2010). The 

crucial involvement of MPR in these viral functions makes this domain a prime candidate 

for vaccine development. These findings led us to construct a fusion protein, consisting 

of the mucosal adjuvant CTB and MPR as a vaccine component aimed at inducing Abs 

that would target the step of viral transcytosis in the mucosal epithelial cells. The fusion 

protein has been shown to induce transcytosis by blocking anti-MPR antibodies in mice 

and rabbits (Matoba et al., 2004, Matoba et al., 2006, Matoba et al., 2008). However, the 

immune response of the MPR is overshadowed by the immuno-dominant CTB. 

 We began structural investigation of CTB MPR with the goal to understand the 

function of MPR and the viral infection processes it is involved in, and its interaction 

with the immune system as a fusion protein. Structural information could help us 

elucidate the immunogenicity of the fusion protein and enable designing even more 

immunogenic fusion proteins. We have recently published work on structural 

investigation of various CTB-MPR constructs with different linkers between the fusion 

partners (Lee et al., 2014). A flexible glycine-proline-glycine-proline linker proved to be 

too flexible for structure determination using X-ray crystallography as the electron 

density of the MPR region can be seen but is not resolved well enough for model fitting. 

Removing of the linker completely, so as to directly attach MPR to CTB, proved difficult 

for crystallization due to the instability of the pentameric oligomeric state. A third 

construct was designed using a more rigid tetra-alanine linker, which initially proved 

difficult for macroscopic crystal formation, however some promising data was collected 

on micro/nano-crystals using the X-ray free electron laser (XFEL); however the data set 

was only partial due to sample and XFEL beamtime limitations (Lee et al., 2014). 
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 In this report, we further investigated crystallization conditions that initially 

produced the micro/nano-crystals and optimized it for obtaining macroscopic crystals for 

structure analysis at Synchrotron X-ray sources. 

 

 

Figure 3.1:  gp41 and CTB
AAAA

MPR fusion protein (a) A schematic diagram of 

HIV-1 gp41. Fusion peptide (FR. Residues 512-539); fusion peptide proximal region 

(FPPR residues 528–539; N-terminal heptad-repeat region (NHR, residues 540–590); 

C-terminal heptad-repeat region (CHR, residues 628–661); membrane proximal 

external region (MPER, residues 662–684); membrane proximal region (MPR, 

residues 647–684, blue), transmembrane domain (TM, residues 685–705); 

cytoplasmic C-terminal domain (CTD, residues 706–856). The epitopes of 2 broadly 

neutralizing antibodies 2F5 and 4E10 are marked. (b) DNA construct for the 

expression in E.coli of the CTB
AAAA

MPR fusion protein based on elements of the 

pET-26b(+) expression vector.  P, T7 bacteriophage promoter, 5’UTR, upstream 

untranslated region; pelB, the periplasmic targeting sequence of pectate lyase B of 

Erwinia carotovora; CTB, cholera toxin B subunit; AAAA, tetra-alanine linker; MPR, 

the membrane-proximal region of gp41 protein of HIV-1; 3’UTR, downstream 

untranslated region; T, T7 terminator. (c) Amino acid sequence of fusion protein 

CTB
AAAA

MPR with expected molecular mass of 16.7kDa. The CTB domains are 

labeled orange followed by the tetra-alanine linker and the MPR regions labeled in 

blue 
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3.3 Materials and Methods 

Protein preparation 

 

The cloning of the gene encoding the CTB and the MPR649-684 with tetra-alanine linker 

(AAAA) between the two proteins (hereafter dubbed CTB
AAAA

MPR) shown in Figure 3.1 

has been described in previously published work (Lee et al., 2014). The gene was 

inserted into an expression vector derived from pET26B(+) (Novagen), which contains an 

N-terminal pelB signal sequence for periplasmic localization, to obtain the plasmid 

pTM646. The construct was verified by DNA sequencing. 

 The CTB
AAAA

MPR protein was overexpressed in Escherichia coli BL21 (DE3) 

cells following a protocol derived from previously published work for another variant of 

the fusion protein (Matoba et al., 2008, Lee et al., 2014). Modifications were made to 

optimize the protocol to improve the expression as well as reduce the viscosity of the 

detergent extract for purification purposes. 

 An overnight starter culture was grown in 50 ml lysogenic broth (Luria-Bertani 

medium, LB) at 37°C on a shaker set at 200 rpm.  A 1:200 dilution of the starter culture 

was used to inoculate 4 l expression cultures and grown to an OD600nm of 0.8 at 37°C. The 

expression of recombinant protein was then induced with isopropyl β–D-1-

thiogalactopyranoside (IPTG) at a final concentration of 0.3 mM at 37°C for 3h. The 

cells were harvested by centrifugation at 5000 g yielding approximately 2.5 g to 3.0 g of 

wet cell pellet per liter of culture and frozen at -80°C. 

 The cell pellets were then thawed on ice before being combined by resuspended 

in 80 ml of ice-cold phosphate buffer saline (PBS; 137mM NaCl, 2.7 mM KCl, 10mM 
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Na2HPO4, and 1.8 mM KH2PO4) supplemented with 1mM phenylmethylsulfonylfluoride 

(PMSF). Cells were lysed by passing three times through a microfluidizer (Microfluidics 

Microfluidizer) with the re-supplement of PMSF between the passes. The lysate was 

collected by centrifugation at 36,000 g and the supernatant was discarded. The insoluble 

fraction was washed once by resuspension in ice-cold PBS and centrifugation then frozen 

at -80°C. 

 The cell pellet, containing the membrane fraction was thawed on ice before 

resuspending in 60 ml of ice-cold buffer containing 500 mM NaCl, 20 mM bicine pH 8.0. 

A sonicator (Model 300 V/T Ultrasonic Homogenizer, Biologics, Inc.) was used to fully 

homogenize the solution by running 30 s on/off cycles at 20% amplitude until a 

homogenous suspension was obtained. 8 ml of a stock solution containing 10% (w/v) n-

dodecyl-β-D-maltoside (βDDM) was added to the homogenized solution and brought to a 

final volume of 80 ml using more ice-cold solubilization buffer for overnight 

solubilization at 4°C with agitation. 

 The detergent extraction solution was centrifuged at 36,000 g and the pellet was 

discarded. A gravity-driven column (Bio-Rad Econo-column) containing 40 ml of cobalt 

affinity resin (TALON, Clontech) was equilibrated with binding buffer (solubilization 

buffer supplemented with 0.05% βDDM). The detergent extraction supernatant was then 

loaded onto the column and washed with six bed volumes of binding buffer followed by 

ten bed volumes of wash buffer (50mM NaCl, 20mM bicine pH 8.0, 5 mM imidazole, 

0.05% βDDM) removing weakly bound proteins. Three bed volumes of elution buffer 

containing 50mM NaCl, 20mM bicine pH 8.0, 150 mM imidazole, 0.05% βDDM was 

used to elute the tightly bound proteins. The eluted fractions were pooled and then 
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concentrated to approximately 2mg ml
-1

 using 50kDa molecular-weight cutoff (MWCO) 

concentrators (Vivaspin 20, Sartorius Stedim Biotech). The concentrated solution was 

then subjected to size-exclusion chromatography (Superdex 200, GE Healthcare) in 

buffer consisting of 10 mM calcium chloride, 20mM 4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES) pH 7.5, 0.02% βDDM running at 0.5 ml min
-1

 shown in 

Figure 3.2. The protein elution was detected by absorption at 280 nm and manually 

collected to separate shoulders from main peaks. Only the main pentamer peak that eluted 

at minute 28 was used for crystallization experiments. The concentration of 

CTB
AAAA

MPR preparations were determined spectrophotometrically using ɛ280 = 39380 

M
-1

cm
-1

. 

 

 

 

Figure 3.2: Size exclusion chromatograph of CTB
AAAA

MPR shows a dominate 
pentameric peak at minute 28 with a trailing shoulder that is discarded. The small peak 

at 42 minute corresponds to the monomeric fusion protein and imidazole from the 

metal affinity column elution buffer at minute 52. 
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SDS-PAGE and immuno-blot-analysis 

 

 SDS-PAGE gels for protein samples were done using tricine-based buffers and 

Bio-Rad Mini-PROTEAN Tetra Cell following procedures  based on the method 

developed by (Schagger, 2006) and adapted by Lawrence et al. (2011). SDS-PAGE for 

dissolved crystals was performed using the PhastSystem-High Speed Electrophoresis 

System (Pharmacia) using High Density PhastGels (Pharmacia) and PhastGel buffer 

strips (Pharmacia). After electrophoresis, the gels were subjected to silver staining 

(Lawrence et al., 2011) or processed for immunoblotting with monoclonal antibody 2F5 

or 4E10 (AIDS Reagent Program) or polyclonal anti-CTB antibodies (List Biological 

Laboratories, Inc.) following the protocol described in (Lee et al., 2014). The assembly of 

pentamers of the CTB
AAAA

MPR was monitored by enzyme-linked immunosorbent assay 

(ELIZA) using GM1 gangliosides to capture CTB pentamers and detected with 

monoclonal antibody 2F5 as previously described in (Matoba et al., 2008). 

 

Crystallization experiments 

 

CTB
AAAA

MPR protein in buffer from the size-exclusion chromatography was 

concentrated to 10 mg ml
-1

 for crystallization experiments using 100kDa MWCO 

concentrators (Millipore, Centricon). 

 Broad matrix screening was done using the Phoenix crystallization robot (Rigaku) 

with commercial screening kits from Qiagen and Hampton Research. The experiments 

were set up by sitting-drop vapor-diffusion method using MRC Crystallization Plates 
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(Hampton Research) that contained 96 wells and 2 drop chamber per well. The reservoirs 

were filled with 65 µl of precipitate solutions from the screening kits. In the drop well, 

the protein was mixed with the reservoir solution in 1:1 and 2:1 ratios, 100 nl protein plus 

100 nl precipitant solution and 200 nl protein plus 100 nl precipitant solution 

respectively.  

 Additional crystallization screening and optimization experiments were 

performed based on the condition that had previously produced micro/nanocrystals (Lee 

et al., 2014), which contained 200 mM ammonium formate, 30% polyethylene glycol 

(PEG) 3350, 10 mM calcium chloride, 20 mM HEPES pH 7.5 with the batch method 

described in (Lee et al., 2014). 

 The goal was to grow larger crystals suitable for conventional X-ray structure 

analysis using Synchrotron Radiation. These fine screening and optimization experiments 

were performed by the hanging-drop vapor-diffusion method using 24-well plates 

(Hampton Research VDX greased plates). The reservoir well contained 900 µl of 

precipitate solution and 3 µl of the protein sample was mixed with an equal volume of 

reservoir solution on siliconized glass covers slides before the wells were sealed. The 

plates were incubated in a 20°C incubator. The concentration of ammonium formate 

tested ranged from 50 mM to 500 mM, and the PEG 3350 concentration ranged from 5% 

to 30%. Calcium chloride was present to maintain the oligomeric stability of the 

CTB
AAAA

MPR pentameric fusion protein and HEPES for maintaining the pH, the 

concentration of both chemicals were used at low concentrations of 5-15 mM calcium 

chloride and 10-30 mM HEPES pH 7.5. 
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 After an incubation time of seven days at 20°C, thin needles were observed in 

several crystallization drops at PEG concentrations between 8-15% PEG 3350. After 

further optimization, large needle shaped crystals were grown. The condition that 

produced the best diffracting crystals contained 200 mM ammonium formate, 10 mM 

calcium chloride, 20mM HEPES pH 7.5, and 8% PEG. Please note that all the various 

concentration of PEG 3350 that have been used for the vapor diffusion experiments were 

with 10-25% lower than the initial conditions of 30% PEG established for the growth of 

the micro/nano-crystals for the serial femtosecond crystallography experiments. Figure 

3.3 shows results from a set of crystallization experiments where the PEG concentration 

was systematically varied. The results indicated that the concentration of PEG 3350 has a 

direct effect on the size of the needle-like crystals, where the increase in PEG 

concentration results in the decrease in crystal size. 

 The crystals were cryo-protected in a solution containing 0.3M ammonium 

formate, 15 mM calcium chloride, 30 mM HEPES pH 7.5, 50% PEG3350 and flash 

frozen in liquid nitrogen prior to X-ray data collection at the Advanced Light Source 

(ALS). 

 CTB
AAAA

MPR crystal seeding experiments were conducted using micro/nano-

crystals grown with batch method described in (Lee et al., 2014) using the microseeding 

method base on (Bergfors, 2003). The experiments were set up on a 24-well plate that 

contained 900 µl reservoir solutions and the protein solution was mixed in a 1:1 ratio (3 

µl to 3 µl) on the siliconized glass cover. A human hair washed with ethanol and rinsed 

repeatedly in deionized water was streaked through the micro/nano-crystal solution and  
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Figure 3.3: CTB
AAAA

MPR crystals of various sizes formed under different PEG3350 

concentrations. All conditions contained 200 mM ammonium formate, 10 mM 

calcium chloride, 0.02M HEPES pH 7.5, (A) 8% PEG3350; (B) 9% PEG3350; (C) 

10% PEG3350; (D) 11% PEG3350; (E) 12% PEG3350; (F) 13% PEG3350 
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placed in hanging drops before the wells were sealed. The condition that produced the 

crystal clusters contained 200 mM ammonium formate, 10 mM calcium chloride, 20mM 

HEPES pH 7.5, and 15% PEG3350. 

 

X-ray crystallography 

 

X-ray data on the needle-like crystals grown from the solution of CTB
AAAA

MPR was 

performed using synchrotron X-ray radiation on beamline 8.2.1 at the Advanced Light 

Source (ALS) in Berkeley at a wavelength of 1 Å. The best data set consisted of 390 

frames collected using 0.33° oscillation with an ADSC 315 detector (see table 3.1 for the 

data statistics). 

 Data integrating and merging was done using XDS (Kabsch, 2010). Scaling was 

performed using the CCP4 program suite AIMLESS (Evans & Murshudov, 2013). The 

space group was determined to be P212121 with unit cell dimensions of a=43.35Å, 

b=114.63Å, c=213.20Å and α=β=γ=90°. The structure was solved by molecular 

replacement using Phaser (McCoy et al., 2007) with a model derived by molecular 

replacement from the CTB structure in the PDB entry 1JR0 as the search model. The best 

solution showed that there are two CTB pentamers in the asymmetric unit (TFZ = 22.9 

and LLG = 20201). Primary refinement was done using CCP4 program suite REFMAC5 

(Murshudov et al., 2011) and further refinement was performed with PHENIX (Adams et 

al., 2010). All residues were in the in the allowed regions of the Ramachandran plot with 

98% in favored regions. Results of the data-processing and refinement statistics are 



  77 

shown in Table 3.1. Structural representations were prepared with PyMOL (Delano, 

2002) and views from various angles are shown in Figure3.4. 

 

3.4 Results and discussion 

Cleavage of CTB
AAAA

MPR 

 

The X-ray structure analysis and data statistics of the needle-shaped crystals grown from 

the solution containing CTB
AAAA

MPR was very encouraging. The crystal featured the 

space group P212121 with unit cell constants of a = 43.35 Å, b = 114.63 Å, c= 213.20 Å, 

α = β = λ = 90°. The data sets could be evaluated to 1.9 Å resolution, with high 

completeness even in the highest resolution shell. The R-values were low with R-work of 

0.183 (0.252) and an R-free of 0.219 (0.308) (see Table 3.1 for full data statistics). The 

structure revealed the typical ring of wild-type CTB pentamer. The crystals contain an 

unusual packing of CTB not observed in any CTB crystals so far with two pentamers 

molecules in the asymmetric unit. However, no electron density was observed beyond the 

CTB domain. The structure is shown in Figure 3.5 (A-C). The packing of CTB in the 

crystals, shown in Figure 3.5 (D), visualize the extremely tight packing of the CTB 

molecules leaving very little room for MPR. To verify whether cleavage of the fusion 

protein had occurred, the crystals were retrieved from the cryo-loops after returning from 

ALS and analyzed with SDS-PAGE using the PhastSystem (Pharmacia). The crystals 

were dissolved 5 µl SDS sample buffer and compared with pre-crystallized sample from 

the same sample preparation batch. The expected size of CTB
AAAA

MPR is 16.7kDa and 

this is the molecular weight identified for the fusion protein in the pre-crystallization  
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Table 3.1: Crystallographic data for data collected from crystals grown from a 

solution containing for CTB
AAAA

MPR at ALS 8.2.1(Berkeley) 

Values in parentheses are for the highest resolution bin. 

Wavelength (Å) 1 

Resolution range (Å) 48.33-1.9   (1.97-1.9) 

Space group P 21 21 21 

Unit cell parameters (Å / °) a = 43.35, b = 114.63, c = 213.20, 

   α = β = γ = 90 

Total reflections 164002 (16588) 

Unique reflections 84204 (8404) 

Multiplicity 1.9 (2.0) 

Completeness 0.99 (1.00) 

Mean I/sigma(I) 6.42 (1.90) 

Wilson B-factor 24.42 

R-merge 0.058 (0.408) 

R-meas 0.082 (0.577) 

CC1/2 0.992 (0.687) 

CC* 0.998 (0.902) 

Reflections used for R-free 4116 (425) 

R-work 0.183 (0.252) 

R-free 0.219 (0.308) 

CC (work) 0.937 (0.841) 

CC (free) 0.927 (0.811) 

Number of atoms 8968 

Number of Macromolecules 8140 

Number of water 828 

Protein residues 1030 

RMS (bonds - Å) 0.008 

RMS (angles - degree) 1.09 

Ramachandran favored (%) 98 

Ramachandran allowed (%) 1.6 

Ramachandran outliers (%) 0 

Rotamer outliers (%) 3.3 

Clashscore 4.17 

Average B-factor 28.2 

Macromolecules B-factor 27.4 

Solvent B-factor 36.0 
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sample in Figure 3.4. However, the protein from the dissolved crystals shows a lower 

molecular weight band around 11.5kDa, which is the expected molecular weight of CTB 

without the MPR domain. 

 To confirm the result, we performed an immunoblotting experiment with 4E10 

antibodies (anti-MPR) which confirmed that the dissolved crystal sample does not 

contain MPR, while the polyclonal Abs against CTB showed activity with both the 

crystal and the pre-crystallization sample. We concluded that the fusion protein was 

cleaved between CTB and the alanine linker during the crystallization process so that the 

crystals do not contain the MPR domain and the alanine-linker. 

 

 

 

Figure 3.4: SDS-PAGE of dissolved CTB
AAAA

MPR crystal using the Phastsystem 

and a high density PhastGel. A molecular weight marker (Bio-Rad, Precision Plus 

Protein
TM

 Dual Color Standards) is shown in lane 1, followed by the dissolved 

CTB
AAAA

MPR crystals that were used for data collection at ALS in lane 2. Lane 3 

contained the positive control of the sample before crystallization and lane 4 is the 

negative control containing only the crystallization buffer. 
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 Even though the MPR has been cleaved and is not present in the crystals, we 

hypothesize that it contributed to the formation of the new crystal form of CTB. The 

majority of the CTB structures in the PDB are from crystals that feature the monoclinic 

C2 space group (Figure 3.6A) while the CTB structure in our crystal grown from a 

solution of CTB
AAAA

MPR showed an orthorhombic P212121 space group (Figure 3.6B). 

Cholera toxin has shown to form crystals in orthorhombic space groups, but these cases 

involved either mutations, crystallization with the A-subunit as AB5 complex (van den 

Akker et al., 1997) or feature CTB with ligands or inhibitors bound to the receptor sites 

of CTB shown in Figure 3.6C and 3.6D (Aman et al., 2001, Fan et al., 2001). 

Furthermore, the packing of CTB in our crystals is unique. Nearly all the CTB structures 

in the PDB contain only one CTB pentamer per asymmetric unit, while there are two 

CTB pentamer molecules per asymmetric unit side by side present in our crystals. The 

two pentamers are inverted and unaligned facing different planes as shown in Figure 

3.6B. 
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Figure 3.5: Structural 

representation of the 

protein-structure in the 

crystals grown from the 

solution containing 

CTB
AAAA

MPR. The 

structure was phased with 

the pentameric CTB model 

(derived from PDB entry 

1JR0) using molecular 

replacement. The structure 

shows two CTB pentamer 

molecules per asymmetrical 

unit. (A) Top view. (B) Side 

view with the C-terminus of 

one of the subunit marked, 

which is shown in close-up 

view in (C). (C) Electron 

density map at a contour 

level of 1δ of the C-terminus 

of CTB. No electron density 

can be seen beyond the 

terminal asparagine residue 

of CTB, which indicates that 

the crystal contain only the 

fusion partner CTB. (the 

figure was produced using 

the program PyMOL 

(Delano, 2002), (D) CTB 

asymmetric unit shown with 

20 Å surrounding in the 

crystal packing. Adjacent 

CTB molecules are shown in 

gray. 
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Figure 3.6: CTB crystal packing. Structures obtained from PDB and generated using 

PyMol (Delano, 2002). Each asymmetric unit is shown in green and symmetric mates 

in gray. (A) The most common CTB space group is C2. CTB molecules in the same 

column alternate facing opposite directions. The structure is generated using 1JR0 

(Merritt et al., 1994) All the CTB molecules crystallized with C2 space group show 

extremely similar packing arrangements. (B) CTB packing from CTB
AAAA

MPR 

crystals featuring the P212121 space group. There are two CTB molecules per 

asymmetric unit and they are facing opposite directions and are not aligned. (C) A 

CTB mutant with P212121 space group PDB ID: 1G8Z (Aman et al., 2001). CTB 

molecules in the same column faces the same direction however the molecule is 

turned nearly 90 degrees between the columns. (D) CTB complexed with m-

nitrophenyl-α-D-galactose shows the P212121 space group PDB ID: 1EE1 (Fan et al., 

2001) but with a different packing than our crystals grown from the protein 

CTB
AAAA

MPR. The CTB molecules next to each other are perpendicular to each 

other. 
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Daily observation of crystallization and crystal seeding 

 

In order to determine if the crystallization process induces the cleaving of the fusion 

protein, experiments were set up to observe the crystallization process day by day. With 

these experiments we tried to determine whether freshly grown crystals still retained the 

MPR domain and if the cleavage of the fusion protein was just an artifact from crystal 

age and freezing. Crystallization trials were set up using 24-well plates with all wells 

containing the same condition that produced the best diffracting needle-like crystals and 

the experiment was performed at two different temperatures, 20°C and 10°C. Whole 

crystallization droplets on the siliconized glass slide from two of the wells were harvested 

and frozen at -80°C each day. 

 For the experiment performed at 20°C, small round crystals were observed after 

three days and needle-like crystals appeared after the fourth day. A photo of the well on 

day 6 (last day) is shown in Figure 3.8. The analysis of the whole crystal drop on SDS-

PAGE showed cleavage of the fusion protein after three days coinciding with the 

formation of the first crystal. Figure 3.7 show the results of western-blot analysis with 

anti-MPR and anti-CTB antibodies. The results confirm that the uncleaved fusion protein 

binds to both types of antibodies while the cleaved product showed only binding to anti-

CTB antibodies, confirming that the alanine linker and MPR has been cleaved off. 

 The experiment was repeated at 10°C. Here crystal formation was observed after 

two weeks and showed the same results on silver-stain in Figure 3.9; the fusion protein is 

cleaved when crystals are forming in the hanging droplet. No cleavage takes place when 

the fusion protein is incubated for the same amount of time at the corresponding 
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temperature in the crystallization buffer where the PEG concentration has been reduced 

to 0 and 2% or the protein is just incubated in the isolation buffer. We concluded that the 

cleavage of the fusion protein is coupled with the crystallization of the fusion protein and 

it is not an artifact from crystal handling. 

 

 

Figure 3.7: Immunoblotting of day to day crystallization experiments. Lane 1 

represents the molecular weight marker (Bio-Rad, Precision Plus Protein
TM

 Western C 

Standards), followed by sample at time = 0 in lane 2; t = 1 day in lane 3; t = 2 days in 

lane 4; t = 3 days in lane 5; t = 4 days in lane 6; t = 5 days in lane 7; (A) Samples 

tested against monoclonal 4E10 (anti-MPR) antibodies. Signal was only detected at 

the band corresponding to uncleaved CTB
AAAA

MPR at 17kDa. (B) Samples tested 

against polyclonal anti-CTB antibodies. The signal was detected for both the 

uncleaved CTB
AAAA

MPR at 17kDa and the cleaved product at 11.5kDa. 
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Figure 3.8: Day 6 of daily observation crystallization experiment at 20°C. Small 
round crystals were formed on the third day while long needle-like crystals were 

observed on the fourth day. 

Figure 3.9: SDS-PAGE of daily observation crystallization experiment at 10°C. 

Std represents the molecular weight standard. Control represents the pre-

crystallization sample solution. Lane numbers correspond to the day number since 

crystallization experiment was set up. Small round crystals appeared after two weeks 

shown in the lane labeled 15 with the cleaved product. 



  86 

 In previous work on CTB
AAAA

MPR, data on the micro/nano-crystals of the fusion 

protein were collected at the Linac Coherent Light Source (Lee et al., 2014). Although 

there was not enough data for structure determination, the space group and unit cell 

dimensions were completely different from the needle shaped crystals described here. 

The nanocrystals crystallized in the rhombic space group R32 with huge unit cell 

constants of a = b = c = 332 Å, α = β = λ = 60°. This unit cell is very rare in the pdb with 

only three virus structures reporting similar unit cell constants and space groups. We have 

reproduced the nanocrystals under exactly the same conditions as described in (Lee et al., 

2014) and analyzed the nanocrystals with SDS-PAGE. The result in Figure 3.10 shows 

that the MPR domain is present in these showers of micro/nano-crystals, i.e. the 

nanocrystals with the large rhombic space group contain the intact fusion protein. 

 

 

Figure 3.10: SDS-PAGE silver-stain of CTB
AAAA

MPR nanocrystal. Lane 1 

represents a molecular weight marker. Lane 2 represents the pre-crystallization 

solution. Lane 3 represents the nano-crystals. The signal is weak due to the low 

volume used and possible loss of protein on the concentrator during the batch method. 
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 We therefore explored if seeding with the nanocrystals of the intact fusion protein 

could induce the formation of larger crystals of the intact fusion protein with the rhombic 

space group. When these micro/nano-crystals were used for microseeding, it produced 

larger crystals in a clustered formation shown in Figure 3.11. However, upon examining 

the protein content of these clustered-crystals, the protein also showed auto-cleavage of 

the MPR domain. 

 In conclusion, we have determined that the cleavage of the fusion protein 

CTB
AAAA

MPR is coupled with the crystallization process leading to the formation of 

large well-ordered crystals of CTB in a new crystal packing.  Rapid crystallization of 

CTB
AAAA

MPR in form of nanocrystals through the batch method lead to crystals of a 

large rhombic space group which contained the full length fusion protein CTB
AAAA

MPR, 

but required a XFEL that produce X-rays more than a billion time brighter than a 

synchrotron(Fromme & Spence, 2011) to obtain diffraction (Lee et al., 2014). 

 Even though MPR is not present in the crystal structure of CTB in the space 

group P212121, it may have contributed to the crystallization as the crystals show a unique 

packing of CTB with two pentamers in the asymmetrical unit not aligned to each other. 
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Figure 3.11: CTB
AAAA

MPR crystal cluster obtained from seeding with micro/nano-

crystals view with two different polarized lens microscopes. 
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CHAPTER 4 

ADDITIONAL EXPERIMENTS, CONCLUSION, AND OUTLOOK 

4.1: N105A CTB
AAAA

MPR 

 

Unable to receive additional beamtime to complete our partial SFX data sets for 

CTB
AAAA

MPR at LCLS, we opted to create a new construct with the goal to make the 

fusion protein more resistant to cleavage. Self-splicing of proteins has been reported 

through the cyclization of asparagine residues into succinimide, a reaction that lead to the 

cleavage of the peptide bond (Clarke, 1994, Mathys et al., 1999, Shemella et al., 2007). 

Indeed, the last amino acid of CTB is an asparagine. The structure determined by X-ray 

crystallography of CTB crystallized from the solution of CTB
AAAA

MPR (see chapter 3) 

confirmed that the last amino acid that is visible in the electron density map is the 

terminal residue of CTB, which provided further evidence that the self-cleavage have 

occurred there.  

 Testing the hypothesis, we decided to design a new construct where we changed 

the asparagine residue into an alanine by site directed mutagenesis there by extending the 

poly-alanine linker, hoping to hinder the cleavage of the fusion protein. 

 

Mutation of Expression Vector 

 

We have attempted to perform site directed mutagenesis, where the pTM646 (expression 

vector for CTB
AAAA

MPR) was used as the template, using site directed mutagenesis kits 

(QuikChange and QuikChange II, Agilent), However the cloning has failed. We  
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Table 4.1: Oligonucleotides used as primers 

No. Name 5’-Sequence-3’ 

1 oTM850 GCCATTAGCATGGCAGCTGCGGCCGCGGCCTCCC 

2 oTM851 GGGAGGCCGCGGCCGCAGCTGCCATGCTAATGGC 

   

3 oTM856 ATGAAATACCTGCTGCCGACCGCTGC 

4 oTM857 CCCATTCGCCAATCCGGATATAGTTCCTCC 

 

contribute the problem to the extremely high GC-content of the flanking alanine residues 

(GCC and GCG codons) in the sequence region, as we could not obtain PCR products 

using the primers of the mutated sequence. A different set of primers (see table 4.1) were 

tested but the experiments were not successful, as the binding of the primers to each other 

was irreversible due to the high GC-content of the primers. 

 Switching to overlapping PCR (Aiyar et al., 1996), two PCR reactions were 

conducted to generate the mutation using oTM850/oTM851 mutational primers and 

oTM856/oTM857 end primers that are located upstream and downstream of the gene. In 

reaction I, oTM851 and oTM856 were used to generate the PCR fragment upstream of 

the mutation, and reaction II using oTM850 and oTM857 to generate the PCR fragment 

downstream of the mutation with overlapping at the mutation. The two fragments were 

then extracted from the gels and joined together in a 3rd
 
PCR reaction using the end 

primers oTM856 and oTM857 to produce the full length mutational gene. The resulting 

PCR product was treated with NcoI–BlpI restriction digestion then ligated into NcoI–BlpI 

digested pET-26b(+) vector (see Figure 4.1). The vector was electroporated into DH5α 

cell lines and grown overnight. The colonies were screened for CTB-MPR by colony 

screening PCR. The resultant positive colonies were further tested for the desired 

mutation by isolating plasmids followed by DNA sequencing of the region of interest  
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using primers oTM 856/oTM 857. Upon confirmation of the desired clone, the plasmid 

(named as pTM 922), was electroporated into BL21 cell lines. 

 

Expression and purification 

 

The initial expression and purification of N105A CTB
AAAA

MPR construct following 

procedures similar to the protocols established for CTB
AAAA

MPR and described in 

Chapter 3. 

 However, problems occurred during the metal affinity chromatography 

purification step. The protein does not bind strongly to the cobalt-affinity column and the 

Figure 4.1: PCR products of N105A mutation (a) DNA standard (lane 1), Reaction I 

product (lane 2-3), positive control template (lane 4) Reaction II product (lane 5-6). 

(b) DNA standard (lane 1), PCR product with 50ng of each Reaction I and II (lane 2-

3), PCR product with 100ng of each Reaction I and II (lane 4-5). (c) DNA standard 

(lane 1), NcoI–BlpI digestion reaction (lane 2), undigested control (lane 3) 
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vast majority of the protein was lost in the flow through and washes. Only extremely 

small amounts of the protein N105A CTB
AAAA

MPR was detected in the fractions that 

were eluted with imidazole elution. The protein band was not even detected with silver 

staining and was barely visible on immunoblots against CTB and MPR (Figure 4.2 a). 

 The binding of fusion protein to the Talon metal affinity column solely depends 

on the natural pentameric formation of CTB. This is the reason why CTB and its fusion 

proteins can be isolated with cobalt-affinity chromatography without an HIS-tag 

(Dertzbaugh & Cox, 1998). The finding that N105A CTB
AAAA

MPR does not bind to the 

cobalt-affinity column indicates that the additional alanine may destabilize the 

pentameric structure of CTB. The low concentration of the eluted protein will further 

destabilize the pentameric structure as the formation of CTB oligomers is dependent on 

the concentration of the protein (Yasuda et al., 1998). 

 The protocol was modified by using terrific broth (TB) for cell growth instead of 

the LB medium. TB is a rich growth medium and it has been shown in the literature to 

increase the cell density and protein concentration in over-expression experiments 

(Tartoff & Hobb, 1987). Cells were grown at 37°C until an OD600nm of 0.6 was reached. 

Expression was induced at 25°C with 1 mM IPTG and cells were grown overnight after 

induction. The wet cell mass yielded from a one-liter TB culture was increased by a 

factor of 4. Approximately 10 grams were harvested in contrast to a yield of only 2.5 

grams per liter for the LB culture. The cells were lysed with a microfluidizer 

(Microfluidics) and the isolated membrane pellet was frozen at -80°C. 

 The detergent extraction buffer volume was also decreased from 80 ml to 50ml 

per 10 grams of wet cell mass. We anticipated to obtain higher concentration of N105A 
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CTB
AAAA

MPR protein using this procedure, but we were aware of the fact that there 

might be a trade-off as with a lower volume of the detergent containing solubilization 

buffer we may not solubilize all the proteins possible. A second detergent extraction step 

was performed to examine the cell pellet of the first detergent extraction step. The goal 

was to check if it is possible to extract additional N105A CTB
AAAA

MPR protein. 

Although additional N105 CTB
AAAA

MPR can be detected in the second extraction, the 

concentration proved to be not high enough for significant binding to the metal affinity 

column. 

 Further purification continued using the detergent extracts described above. The 

target protein was traced through purification using immunoblot as shown in Figure 4.2. 

The higher protein concentration led to a significant reduction in the protein loss in the 

Talon flow through and washes (Figure 4.2 lanes 4 and 5) and the protein could be eluted 

from the column with imidazole (lane 7).  The large improvement in binding and 

isolation is evident from the comparison of the protein yields achieved in the original 

protocol (a, lanes 7-9) and the modified protocol (b, lane 7). 
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Figure 4.2: Extraction and Talon purification of N105A Western blots with 2F5 

monoclonal Ab against gp41. (a) Purification using same procedure as CTB
AAAA

MPR 

in LB media. Showing whole cell lysate (lane 1), aqueous fraction (lane 2), detergent 

extraction (lane 3), Talon flowthrough (lane 4), washes (lane 5 and 6), elutions (lane 

7-9). (b) Purification using TB media and reduced detergent extraction volume. Whole 

cell lysate (lane 1), aqueous fraction (lane 2), first detergent extraction (lane 3), 

second detergent extraction (lane 3*), Talon flowthrough (lane 4), washes (lane 5 and 

6), elution (lane 7) 
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 The sample from the Talon elution was concentrated 20x using 50 kDa molecular-

weight cutoff (MWCO) concentrators (Vivaspin 20 VS2031, Sartorius Stedim Biotech) 

and loaded on a SuperDex200 column for size-exclusion chromatography (SEC) with the 

same running buffer as described for the CTB
AAAA

MPR experiments in chapter 3.  The 

chromatogram is shown in Figure 4.3. The peak intensity for N105A CTB
AAAA

MPR was 

considerably lower than CTB
AAAA

MPR and the chromatogram indicated the presence of 

aggregates. The protein compositions of the pentamer peak along with its shoulders were 

examined by SDS-PAGE. The results (insert in Figure 4.3) confirmed that the main peak 

and its shoulders all contained the fusion protein. 

 

 

Figure 4.3: Size-exclusion chromatography of N105A shows an aggregation peak 

shoulder before the elution of the main pentamer peak. The peaks fractions were 

examined by SDS-PAGE shown in the inlet. Lane 1 is a molecular standard and each 

of the lane numbers corresponds with the marked fraction number indicated on the 

chromatogram.  
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 The pentamer peak was collected from four runs of SEC and the corresponding 

fractions containing out fusion protein were pooled together.  The concentration was 

determined spectrophotometrically using the molar extinction coefficient of ɛ280 = 39380 

M
-1

cm
-1 

(calculated with the ProtParam web application; web.expasy.org/protparam/), 

and concentrated to a final concentration of 10 mg/ml
 
using 100 kDa MWCO 

concentrators (Amicon Centricon YM-100). Dynamic light-scattering measurements 

were performed using a NaBiTec GmbH setup. The DLS instrumental setup combines 

the SpectroSize 302 DLS instrument (Molecular Dimensions) with an S6D microscope 

(Leica) and an IR camera and allows DLS measurements of concentrated solution in 

drops as small as 0.5 microliter. The DLS measurements of the protein sample were 

performed in a 3 µl hanging drop using a 24-well crystallization plate (VDX Greased 

Plate, Hampton Research) covered with siliconized-glass circular cover slides (22 mm; 

Hampton Research). The well itself was filled with 600 µl SEC running buffer. Prior to 

the measurement, the protein solution was centrifuged (1,000 g, 10 minutes at 4°C) to 

remove any dust particles. During the measurement, the temperature was set to 20°C. Ten 

consecutive measurements, with an integration time of 20 seconds each, were averaged. 

An estimate of the hydrodynamic size was obtained with the instrumental software using 

the following parameters: refractive index 1.33, viscosity 1.006, shape factor 1.0, 

hydrated shell 0.2 nm.  

 At 10 mg ml
-1

, the hydrodynamic radius (Stokes radius, r) of the detergent-

solubilized protein was determined to be 7.56±0.45 nm. The results of 7 DLS 

measurements are shown in Figure 4.4. The left plot shows a graphic representation of 

the size distribution of particles from each of the 7 runs (each time point on the Y-axis 
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represents one run, the X-axis indicates the Stokes radius determined from each of the 

runs). The right plot shows the direct scattering intensity, which is not corrected for the 

molecular mass of the particles to detect even traces of aggregates. Both plots indicate 

that the sample is highly monodisperse as a high molecular weight oligomer. The 

molecular weight determined from the DLS experiment is 343.3 kDa . 

 

 

 

 

 

 

Figure 4.4: DLS data of N105A CTB
AAAA

MPR shows that it is monodisperse at 

10mg/ml and forms an high-order oligomer. (left) The size distribution of particles 

determined from each of the 7 DLS runs. The plot shows the particular hydrodynamic 

radius determined from each run (indicated by the time line on the Y-axis). The 

fractions of particles of a particular size are shown color-coded and as a heat plot (red, 

>90% of particles; dark blue, none). The narrow vertical red profile indicates high 

stability of size distribution over the duration of all 7 measurements indicative of a 

low polydispersity. (right) The distribution curve of particle-size frequencies gives a 

more quantitative evaluation of the polydispersity, with the mean Stokes radius and its 

error margin indicated next to the peak. 
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Crystallization experiments 

 

Several broad combinatorial crystallization screens were setup using commercial 

screening kits from NeXtal and Hampton Research with the vapor diffusion technique. 

Screening was performed using 96-well plates (Qiagen CrystalEX 96-well Conical Flat 

Plate) with the sitting-drop method, where each reservoir well contained 100 µl 

precipitant solutions. The purified protein solution was then mixed in a 1:1 ratio (1 µl:1 

µl) with the reservoir solution in the sitting-drop well. 

 However, no crystal formation was observed and the majority of the wells showed 

amorphous precipitates. Precipitate was also observed after five days storing at 4°C in the 

concentrated protein sample at 10mg ml
-1

 without the addition of precipitate solution. We 

examined the precipitates that formed without the addition of precipitate solution with 

SONICC for nano-crystals but have detected no signal, we therefore assumed that the 

precipitates were very likely amorphous and not nano-crystalline. The same precipitates 

were further examined with SDS-PAGE and the SDS gel. The results shown in Figure 4.5 

showed that the precipitate showed cleavage of the N105A CTB
AAAA

MPR fusion protein. 

The concentrated sample from SEC clearly shows the molecular weight of the protein to 

be approximately at the expected 17kDa (Figure 4.3 insert), however, the precipitate 

formed without addition of precipitate solution ran well below the 15kDa marker and 

correspond to the molecular weight of CTB only at around 11.5kDa. 

 This result indicates that the cleavage of the fusion protein is NOT auto-catalyzed 

by the terminal asparagine residue. 

 



  99 

 

 

4.2: Conclusion 

 

Our studies of the different variants of the CTB-MPR fusion protein with different 

linkers, we have revealed differences in their biophysical characteristics. Crystallization 

of the different fusion protein was very challenging possibly due to the symmetry 

mismatch between the pentameric CTB and the trimeric MPR.  Protocols for the 

purification of all constructs has been established and optimized for each of the 

individual variants of CTB-MPR. Crystallization experiments led to the determination of 

growth conditions for the different variants of the fusion protein and several diffraction 

data sets and protein structures were obtained. 

Figure 4.5: SDS-PAGE of N105A Precipitate: Molecular weight standard (lane 1) 

and the protein precipitate (lane 2). It shows the molecular weight of the precipitate to 

be below 15kDa, corresponding to the approximate molecular of a cleaved product 

that only contains CTB at 11.5kDa. 
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 While the CTB
GPGP

MPR formed crystals of the intact fusion, the electron density 

beyond the CTB was not well defined, most likely due to the flexible linker, leading to 

difficulties to fit a structure model of MPR into the electron density map. The removal of 

the linker compromised the pentameric state of CTB and crystallization proved to be 

difficult to achieve. Only round pseudo-crystals that only produced powdered diffraction 

were observed. A more rigid tetra-alanine linker seems to have re-stabilized the CTB 

pentamer. However, the macroscopic crystals grown from CTB
AAAA

MPR showed 

cleavage of the poly-alanine linker and MPR from CTB during the formation of the 

crystals. 

 The micro/nanocrystals of CTB
AAAA

MPR contained the intact fusion protein, but 

only a partial data set has been collected at the Free Electron Laser and we are unable to 

complete the data set due to the severe limitations in beamtime at the X-ray FEL at 

LCLS. We will apply again in May 2015 for protein screening beamtime to collect a 

complete data set for structure determination of CTB
AAAA

MPR. 

 The large difference in the space group and unit cell size between the data 

collected from the large crystals that contained only CTB and the nanocrystals of the 

intact fusion protein for which data have been collected by serial femtosecond 

crystallography highlight significance of serial micro/nanocrystallography for difficult to 

crystallize proteins especially membrane proteins. 

 The diffraction data that were gathered from the micro/nanocrystal contained the 

intact CTB
AAAA

MPR while macroscopic crystals were either unordered and gave only 

powder diffraction or contained only the cleaved product, i.e. the structure consisted of 

CTB-only. 
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 The cleavage was originally attributed to the presence of the asparagine residue as 

the last amino acid of CTB as it has been reported in the literature that asparagine can 

self-cyclize into succinimide which is a common “protein splicing” technique in bacteria 

(Clarke, 1994, Mathys et al., 1999, Shemella et al., 2007). However, the asparagine 

proved to be not the cause of cleavage as the mutant protein N105A CTB
AAAA

MPR that 

was isolated after a long elaborate process of cloning and protein isolation optimization 

showed similar cleavage as the original CTB
AAAA

MPR construct. 

 Independent results with a different fusion protein (MBP-MPR-TM) indicate that 

MPR with an alanine linker might be highly prone to self-cleavage (Gong, 2014). The 

cleavage of both CTB
AAAA

MPR and N105A CTB
AAAA

MPR is highly similar to the 

situation where cleavage of a fusion protein that consisted of maltose binding protein 

(MBP) fused with the membrane proximal region and transmembrane domain of gp41 

(MPR-TM) was observed. In this construct, cleavage was observed when MPR-TM and 

MBP were linked with a triple alanine linker (Gong, 2014). The cleavage could be 

triggered when MPR is being attached to a large soluble protein with a rigid alanine 

linker. 

  The cleavage problem might be overcome by the use of micro/nanocrystals, 

which contain the full length fusion protein. This showed that the MPR is initially present 

in the tiny crystals with the large rhombic unit cell. Macroscopic crystal formation is then 

triggering cleavage of the fusion protein leading to the formation of larger crystals with a 

small orthorhombic unit cell that only contains CTB. 

 However, the initial presence of MPR may contribute to the crystal formation as 

the structures of the cleaved CTB protein shows a different space group and unit cell 
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parameters compared to the native fusion partner alone, both for the CTB and MBP 

fusion proteins. 

 Although the structure of the fusion protein of MPR with CTB was not solved, 

this work has elucidated new information on the fusion protein and very valuable 

knowledge was gained on self-cleaving process induced by crystallization that may have 

a huge impact on future studies not only of MPR but also other fusion proteins of 

membrane or membrane attached proteins. The work sets the foundations for the 

structure determination of various CTB-MPR variants of potential HIV vaccines and 

shows the significance of the new method of SFX for difficult to crystallize proteins. 

 

4.3: Outlook 

 

The final medicinal goal of the project is to develop a HIV-1 vaccine component that 

induces the production of Abs that can block the transcytosis of HIV-1 across the 

epithelial membrane. For the past few years our work has been focused on the structure 

determination of fusion proteins of the membrane proximal region of the HIV membrane 

protein gp41. New CTB-MPR constructs were produced with the purpose of structure 

determination, however so far only few new immunization experiments were performed 

with these constructs. Although the different variants proved to be difficult for structural 

determination with crystallography, they could be very useful for immunology.  

 It would be interesting to see the effects of the different linkers on CTB-MPR 

have on the immunization response as previous immunization experiments only explored 

the first CTB
GPGP

MPR construct. The constructs CTBMPR and N105A CTB
AAAA

MPR 



  103 

might be especially interesting targets for immunization. The results have shown that it 

forms a stable pentamer at high concentrations but the pentameric oligomeric state is 

unstable at lower concentrations. The major difficulty in the previous immunization 

experiments with CTB-MPR was the fact that after initial antibody production against 

MPR and CTB, boosting only further increased the immune response against CTB. 

CTBMPR and N105A CTB
AAAA

MPR open the possibility to destabilize the CTB part of 

the construct in vivo as the dilution of the protein after injection may lead to the 

disassembly of the CTB pentamer which may then be less immunogenic thereby 

increasing the chances for formation of Abs against MPR. 

 The goal of structure determination of CTB-MPR should also continue using the 

SFX method. The diffraction from LCLS showed great promise and should be further 

pursued. With the availability of additional XFEL instruments worldwide and additional 

beamlines at the current two XFELs in Stanford and at SACLA in Japan, it may be 

possible to receive additional beam time for the CTB-MPR project and collect a full data 

set. 

 From the structural point of view, we should also explore the structure of gp41 

beyond the MPR region. Currently most of the published structures of gp41 contained 

only parts of the ectodomain of gp41 (Chan et al., 1997, Melikyan et al., 2000, Shi et al., 

2010, Pancera et al., 2014, Reardon et al., 2014), and limited structure information of the 

transmembrane domain or c-terminal domain has been published. These domains of gp41 

may offer additional information in the viral infection cycle of HIV-1. 
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