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ABSTRACT  
   

Chemical and physical interactions of flowing ice and rock have inexorably 

shaped planetary surfaces. Weathering in glacial environments is a significant link in 

biogeochemical cycles – carbon and strontium – on Earth, and may have once played an 

important role in altering Mars’ surface. Despite growing recognition of the importance 

of low-temperature chemical weathering, these processes are still not well understood. 

Debris-coated glaciers are also present on Mars, emphasizing the need to study ice-

related processes in the evolution of planetary surfaces. During Earth’s history, subglacial 

environments are thought to have sheltered communities of microorganisms from 

extreme climate variations. On Amazonian Mars, glaciers such as lobate debris aprons 

(LDA) could have hosted chemolithotrophic communities, making Mars’ present glaciers 

candidates for life preservation. This study characterizes glacial processes on both Earth 

and Mars. 

Chemical weathering at Robertson Glacier, a small alpine glacier in the Canadian 

Rocky Mountains, is examined with a multidisciplinary approach. The relative 

proportions of differing dissolution reactions at various stages in the glacial system are 

empirically determined using aqueous geochemistry. Synthesis of laboratory and orbital 

thermal infrared spectroscopy allows identification of dissolution rinds on hand samples 

and characterization of carbonate dissolution signals at orbital scales, while chemical and 

morphological evidence for thin, discontinuous weathering rinds at microscales are 

evident from electron microscopy. Subglacial dissolution rates are found to outpace those 

of the proglacial till plain; biologically-mediated pyrite oxidation drives the bulk of this 

acidic weathering. 
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Second, the area-elevation relationship, or hypsometry, of LDA in the 

midlatitudes of Mars is characterized. These glaciers are believed to have formed ~500 

Ma during a climate excursion. Hypsometric measurements of these debris-covered 

glaciers enable insight into past flow regimes and drive predictions about past climate 

scenarios. The LDA in this study fall into three major groups, strongly dependent on 

basal elevation, implying regional and climatic controls on ice formation and flow. 

I show that biologically-mediated mineral reactions drive high subglacial 

dissolution rates, such that variations within the valley can be detected with remote 

sensing techniques. In future work, these insights can be applied to examining Mars’ 

glacial regions for signs of chemical alteration and biosignatures. 
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CHAPTER 1 

INTRODUCTION 

 

Approximately 10% of terrestrial landmass on Earth and up to 30% of Mars’s 

surface is covered by ice. The interactions of flowing ice with rock - chemical and 

physical - are inexorably shaping the surfaces of planets in our solar system. Chemical 

weathering in glacial environments is a significant link in biogeochemical cycles, such as 

the carbon cycle and the strontium cycle, on Earth, and may have once played an 

important role in altering Mars’ surface. Despite growing recognition in recent years of 

the importance of low-temperature chemical weathering in terrestrial glaciated 

catchments, the mechanisms controlling these processes are still not well understood 

[Anderson, 2007]. On Mars, the importance of midlatitude icy deposits has only recently 

been recognized [Head et al., 2005; Holt, 2008; Fastook et al., 2011; Levy et al., 2015]. 

Glaciers on Earth are reservoirs of water, powerhouses of mechanical and chemical 

weathering, and storehouses of nutrients in global biogeochemical cycles [Anderson et 

al., 2000]. In past climates (i.e. Snowball Earth), subglacial environments are thought to 

have sheltered communities of microorganisms from extreme climate variations 

[Hamilton et al., 2013]. Diverse and active microbiomes persist today, using the 

continual exposure of fresh mineral surfaces at the glacier bed for energy. On Amazonian 

Mars, approximately 500 million years ago, glacial ice could have potentially hosted 

similar chemolithotrophic communities, making Mars’ present-day glaciers especially 

significant to astrobiology. In this study we characterize glacial processes on Earth and 

Mars. 
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Glacial erosion is thought to be primarily driven by physical processes such as abrasion, 

fracture, and plucking, but in recent years the relative importance of chemical weathering 

at cold temperatures has been studied.  

Chapters 2 through 4 examine the weathering system of Robertson Glacier, 

Alberta, Canada. This alpine glacier is of key interest in past chemical and astrobiological 

studies due to the documented presence of subglacial microbes, some of which are 

thought to oxidize pyrite and add sulfuric acid to the system [Sharp et al., 2002; 

Hamilton et al., 2013; Boyd et al., 2014]. Chapter 5 examines debris-covered glacial 

features on Mars, past flow regimes, and distribution with respect to elevation as signal of 

past climate. 

Chapter 2 quantifies the weathering regime of Robertson Glacier using aqueous 

geochemical methods. The study demonstrates that, through iterative methods, cation 

abundances in solution can be transformed into quantifiable mineral abundances. This 

makes it possible to determine the minerals being actively weathered, and by which 

process. The study finds that the subglacial system is dominated by carbonate dissolution 

through sulfuric acid coupled with pyrite oxidation, and the proglacial system is 

dominated by carbonic acid dissolution of carbonate minerals. These findings imply that 

the proglacial moraine is an oxygen-limited system with a slower overall weathering rate, 

while the regularly replenished glacier bed has a relatively faster overall rate of 

weathering, contributing to overall erosion of the alpine valley. 

Chapter 3 demonstrates the utility of remote sensing data for the study of 

chemical weathering in inaccessible regions such as alpine glaciated valleys. Thermal 
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infrared (TIR) laboratory spectroscopy is used to characterize the weathering of cobbles 

in the glacial foreground, in the subglacial environment, and in supraglacial debris. 

Laboratory spectra indicate the formation of leached weathering rinds compared to inner, 

less weathered rock, due to dissolution of carbonate minerals from the surfaces of rocks. 

TIR remote spectra from the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) instrument show that this “leaching” signature can be detected 

from orbital imagery at 90 m resolution. The methods developed in this chapter can be 

used to explore inaccessible, alpine or Arctic glaciated regions for weathering signatures. 

Chapter 4 shows that discontinuous weathering rinds characterize the surfaces of 

clastic-carbonate cobbles from Robertson Glacier. These rinds are porous, thin, and form 

through preferential dissolution of carbonate minerals. Weathering rind voids are strongly 

associated with the oxidation of pyrite, indicating possible dissolution by sulfuric acid in 

localized microenvironments. Their overall thickness is most likely controlled by low-

temperature reactions rates, fluid flow rates, and glacial comminution.  

Chapter 5 explores the distribution of large glacial features in the midlatitudes of 

Mars. Lobate debris aprons (LDA) are icy features around scarps in several locations on 

the planet and subsequently experienced viscous flow. They are estimated to contain the 

largest nonpolar ice reservoir on the surface of Mars [Levy et al., 2014]. They are thought 

to have formed during past climate excursions between 700 and 100 Ma and 

subsequently became covered in debris during the end of their emplacement, armoring 

the surfaces and preventing or slowing sublimation to the atmosphere [Fastook et al., 

2014]. 
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Recent studies have found that mountain glacier loss since the 1970s has 

accelerated due to human influences on climate change [Marzeion et al., 2014]. 

Additionally, in recent years, glaciers’ significance as both agents of weathering and role 

as living ecosystems has begun to be recognized. Glacier beds are active, dynamic 

weathering systems, harboring diverse communities of chemolithotrophic 

microorganisms, and they have a detectable effect on large-scale weathering signatures. 

The rate of loss of glacial ice will translate into the effective loss of habitat for subglacial 

microbial communities, and in turn change the weathering budget of formerly-glaciated 

catchments. Thus, the major goals of the project are to quantify weathering inputs to the 

glacial energy budget, to link in situ sampling with remote sensing capabilities, and to use 

remote sensing to inform our knowledge of glacial flow on the surface of Mars. 
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CHAPTER 2 

AQUEOUS GEOCHEMISTRY OF ROBERTSON GLACIER 

 

2.1. Introduction and Background 

Glaciers and ice fields currently cover approximately 10% of the Earth’s land 

surface [Mitchell et al., 2013] and have a significant impact on global biogeochemical 

cycles, in particular through the comminution of bedrock and chemical weathering 

[Anderson, 2007]. Glacial chemical weathering is also of importance for study because of 

the potential for negative feedbacks to global climate through the carbon cycle [Sharp et 

al., 1995] and association with extremophile life [Boyd et al., 2010; Boyd et al., 2011]. 

The low temperatures, anoxic conditions, and lack of light in subglacial environments 

promote unique weathering pathways that can produce alteration minerals including 

weathering rinds, sulfates, iron oxides, carbonate and silica coatings, and poorly 

crystalline phases [Hallet, 1975, 1976; Whalley et al., 1990; Mitchell et al., 2001; 

Wadham et al., 2007; Raiswell et al., 2009, Rutledge and Christensen, 2012].  

Past studies have used aqueous geochemistry of glacial melt to investigate glacial 

weathering [Anderson et al., 2000; Tranter, 2003; Fortner et al., 2005; Anderson, 2007; 

Wadham et al., 2007]. Studies of glacier outwash stream chemistry and marginal glacier 

sediment microbial communities have found that subglacial weathering pathways are 

closely linked to microbially-mediated redox reactions [Bottrell and Tranter, 2002; 

Skidmore et al., 2005]. Abundant and active microbial populations have been shown to 

inhabit the persistently cold environments in terrestrial ice, marginal subglacial 

sediments, and proglacial meltwaters [Sharp et al., 1999, Skidmore et al., 2000, 2005; 
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Boyd et al., 2011, Hamilton et al., 2013] and are thought to be primarily supported 

through chemotrophic redox reactions involving iron sulfide minerals, resulting in 

weathering of the underlying bedrock [Sharp et al., 1999; Tranter et al., 2002; Skidmore 

et al., 2005]. 

Carbonate dissolution has been found to dominate solute fluxes from glaciated 

catchments [Sharp et al., 1995; Fairchild et al., 1999a; Hodson et al., 2002; Anderson, 

2007]. However, in many of these cases, carbonate minerals comprise only a few percent 

of the bedrock. The disproportionate amount of carbonate dissolution is most likely due 

in part to the roughly five orders of magnitude difference in rate constants between 

carbonate and silicate minerals [Anderson, 2007]. Other potential reasons for the 

mismatch include a disproportionate amount of calcite (Moh’s hardness of 3) being 

ground into powder with a relatively larger surface area through glacial action, and the 

fact that calcite dissolution is less sensitive to temperature effects than silicates under 

otherwise equal conditions [Morse and Arvidson, 2002].  

Sulfide oxidation is the next most important process in subglacial environments 

[Sharp et al., 1995; Anderson, 2007]. Trace amounts of sulfide minerals have been found 

to contribute a disproportionate amount of solute flux in glaciated valleys, much like 

carbonate minerals [Sharp et al., 1995; Sharp et al., 2002; Anderson et al., 2003]. Sulfide 

oxidation provides protons that drive additional carbonate weathering, leading to 

significantly enhanced amounts of dolomite and calcite being dissolved [Sharma et al., 

2013]. Sulfide oxidation is closely linked to subglacial microbial community processes 

[Hamilton et al., 2013; Mitchell et al., 2013]. 
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Research on carbonate systems has shown that in subglacial environments, 

chemical weathering is dominated by coupled pyrite oxidation and carbonate dissolution 

[Fairchild et al., 1994; Tranter, 1996; Anderson et al., 2000; Tranter, 2003; Szynkiewicz 

et al., 2013]. As this study is in a primarily carbonate (CaCO3, calcite and CaMg(CO3)2, 

dolomite) catchment with evidence for pyrite oxidation [Sharp et al., 2002; Skidmore et 

al., 2005], we assume that the bulk of solutes in solution are controlled by the following 

reactions: 

 

Calcite dissolution by carbonic acid: 

CaCO3(s) + CO2(g) + H2O  Ca+2
(aq) + 2HCO3

-
(aq)            (1) 

 

Dolomite dissolution by carbonic acid: 

CaMg(CO3)2(s) + 2CO2(g) + 2H2O  Ca+2
(aq) + Mg+2

(aq) + 4HCO3
-
(aq)         (2) 

 

Calcite dissolution by sulfuric acid: 

FeS2(s) + 2CaCO3(s) + ½ H2O + 15/4 O2(g)   

2Ca+2
(aq) + 2CO2

-
(g) + 2SO4

-2
(aq) + FeOOH(s)        (3) 

 

Dolomite dissolution by sulfuric acid: 

FeS2(s) + CaMg(CO3)2(s) + 3/2 H2O + 15/4 O2(g)   

Ca+2
(aq) + Mg+2

(aq) + 2CO2
-
(g) + 2SO4

-2
(aq) + H2O(aq) + FeOOH(s)          (4) 
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Robertson Glacier valley presents a unique testbed to untangle these acid 

dissolution reactions with respect to acid sources and types of carbonates minerals. 

 

2.2. Materials and Methods 

2.2.1 Field Site Description 

Robertson Glacier (50˚44’N, 115˚20’W) is one of two northern drainages of the 

Haig Icefield in Peter Lougheed Provincial Park, Kananaskis Country, Alberta, Canada. 

The glacier is approximately 2 km long, spans an elevation range from 2370 to 2900 m, 

and terminates on a flat till plain with glacially smoothed bedrock surfaces exposed along 

the glacier margins (Figure 3.1). 
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Figure 2.1. View south from Robertson Glacier moraine. Major geologic units and 

contacts labeled (inferred contacts under ice labeled with dashed lines). DMH: Mount 

Hawk Formation; DSS: Sassenach Formation; DPl: Lower unit of the Palliser Formation. 

Geochemists for scale.  

 

The glacial valley follows a NW-SE trending upright anticline, exposing three 

Upper Devonian units on both walls: the Mount Hawk Formation (DMH), overlain by the 

Sassenach Formation (DSS), which is in turn overlain by the lower unit of the Palliser 

Formation (DP1) [McMechan, 1988]. These units, part of the Winterburn Group, were 

deposited in the Western Canada Sedimentary Basin during the Late Devonian (~380 

mya) during a series of marine transgressions and regressions [Switzer et al., 2012] and 

subsequently folded by the Bourgeau Thrust Fault. This regional thrust fault also resulted 
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in small associated normal faults [McMechan, 1988]. Glacial action has enlarged and 

eroded the valley; lateral moraines form the neoglacial moraine deposits (QMR) identified 

by McMechan [1988]. These units are labeled in Figure 2.1. 

The oldest unit, the Mount Hawk Formation, forms the floor of the valley and is 

composed of calcareous shale and argillaceous limestone. Bedrock surfaces crop out in 

places through the till plain. The Sassenach Formation, composed of interbedded 

quartzose siltstone and silty limestone, rests unconformably on the Mount Hawk 

Formation to form the lower elevation slopes of the valley. The Sassenach Formation, 

also known as the Upper Gramima Silt, represents one of the most significant global 

mass extinction events of the Phanerozoic [Switzer et al., 2012]. The clastic component 

of the Sassenach Formation is thought to represent marine-reworked detrital/windblown 

material deposited in the Western Canada Sedimentary Basin [McLaren and Mountjoy, 

1962]. The lower unit of the Palliser Formation, which weathers to form the highest 

elevation cliffs, is composed primarily of massive dolomitic limestone. 

Robertson Glacier has eroded the valley walls and deposited recent lateral and 

ground moraines. The ground moraine is at present being downcut by glacial outwash 

streams, leaving perched terraces composed of poorly sorted sedimentary deposits. The 

till terraces contain rock types representing all three major bedrock units, indicating an 

upstream, glacially-transported origin. Robertson Glacier itself also has a discontinuous 

coating of supraglacial debris, consisting of bands of englacial rock and sediment 

exposed through ablation, as well as several recent rockfall deposits. The rockfall 

deposits are identifiable by morphology and proximity to the glacier margins.  
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2.2.2 Meltwater Collection and Analyses 

 Meltwaters were collected from Robertson Glacier on 11 September 2009, 14 

October 2010, and 25 September 2011. Sample locations are outlined in Figure 2.2. 

Water was filtered immediately in the field through a series of 0.8 and 0.2-mm filters 

(Supor, made of hydrophilic polyether-sulfone, Pall Scientific). Samples were collected 

after the filters were flushed with 20 ml of sample to minimize contamination. Samples 

for ion chromatography analysis of major ions were stored in 60-ml polypropylene 

bottles that were acid-washed, cleaned, and oven-dried before use in the field. pH and 

temperature were measured in the field using a WTW 330i meter and probe, and 

conductivity and temperature were measured with a YSI 30 conductivity meter. 

Alkalinity was determined with a Hach Digital Titrator, and dissolved oxygen was 

measured in the field with an AccuVac Ampule in a Hach DR/2400 Portable 

Spectrometer. A field blank (18.2 MW deionized water brought to the field in a 1-liter 

Nalgene bottle) was sampled using the equipment described above. 
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Figure 2.2. Location map of Robertson Glacier and Peter Lougheed Provincial Park 

within Alberta, Canada. Water sample locations labeled along the outwash stream, on 

glacier ice (shaded gray), and farther down-valley. AB = Alberta; BC = British 

Columbia. 

 

Dissolved inorganic cation (Ca+2, Mg+2, Na+, K+) and anion (Cl-, SO4
-2, F-, and 

NO3
-) concentrations were measured using ion chromatography (anions: Dionex DX 600 

Dual IC System; cations: Dionex DX 120 IC System). Certified standards were used to 

quantify cations and anions (Dionex Combined 6 Cations Standard II and Alltech 
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Multicomponent Certified Anion Standard Mix 6). Standard deviations (RSD%) for IC 

values were based upon duplicate analyses. Dissolved organic and inorganic carbon was 

determined by elemental analysis coupled to isotope-ratio mass spectrometry. Alkalinity 

(HCO3
-) was also calculated by charge balance using methods similar to Lafreniere and 

Sharp [2005]. All ions and field blank compositions are reported in Appendix A. Ions of 

particular interest to this study are reported in Table 2.1.
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Table 2.1. Water Compositions of Interest at Robertson Glacier 
  Concentrations in mM 

Location Sample # Ca+2 RSD % Mg+2 RSD % SO4
-2 RSD% HCO3

-* 
Subglacial 090914C 0.329 2.18 0.038 1.53 0.033 0.24 0.647 
 090915E 0.331 1.66 0.030 1.66 0.023 0.62 0.671 
 101014A 0.675 0.03 0.284 0.02 0.571 0.09 0.746 
 101016E 0.595 0.03 0.245 0.09 0.461 0.42 0.725 
 110925A 0.405 1.44 0.060 2.41 0.111 0.91 0.702 
 110926E 0.390 1.49 0.129 1.31 0.187 6.05 0.650 
         
Side seeps 101014B 0.720 0.02 0.448 0.04 0.403 0.33 1.500 
(Proglacial) 110925D 0.472 0.68 0.486 0.58 0.390 0.16 1.078 
 110927F 0.559 0.44 0.544 0.38 0.446 0.14 1.311 
 110927G 0.383 0.08 0.117 0.34 0.065 0.31 0.881 
         
Outwash 090914A 0.337 0.64 0.044 0.25 0.075 0.05 0.606 
stream 101016F 0.825 0.04 0.439 0.04 0.531 0.07 1.445 
         
Snow 101015C 0.003 3.29 0.000 0.00 0.002 0.92 0.000 
& 101016H 0.056 0.21 0.000 0.00 0.004 0.45 0.078 
Ice melt 101016G 0.099 0.29 0.005 0.21 0.003 0.30 0.190 
 090915F 0.221 0.80 0.008 0.24 0.001 2.12 0.452 
 090915G 0.513 1.76 0.078 1.47 0.055 0.09 1.066 
  110925C 0.290 4.11 0.018 5.70 0.001 1.51 0.658 
         
 Associated field blanks subtracted from each sample.   
 RSD = instrument error   
 *HCO3- calculated from charge balance (Appx. A)   
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2.2.3 Solute Source Tracking 

Table 2.1 and Appendix A show that the dominant (by an order of magnitude) 

ions in solution are associated with carbonate dissolution reactions. If we assume that 

these reactions, defined in Section 2.1, control the bulk of observed solutes, it can be seen 

that Equations (1) and (2), carbonic acid weathering of carbonate minerals, result in 

anion:cation ratios of 1:2, while reactions (3) and (4), sulfuric acid dissolution of 

carbonate minerals due to oxidation of pyrite, result in anion:cation ratios of 1:1. Figure 

2.3 illustrates these ratios with measurements (corrected for snow/ice contribution to 

solute totals) from Table 2.1 overlain. All measurements plot between the end-members 

of carbonic acid dissolution and sulfuric acid dissolution, implying that both processes 

are active in the Robertson Glacier catchment. 
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Figure 2.3. Subglacial (blue), side seep or proglacial (orange), and main outwash stream 

(green) measurements of total major cations (Ca+2 + Mg+2) are plotted versus total major 

anions (SO4
-2 + HCO3

-). Measurements have maximum snow/ice solute contributions 

subtracted (see Table 2.1). These measurements all plot between the ratios outlined for 

carbonic acid dissolution (1:2, blue) and sulfuric acid dissolution (1:1, red).  

 
 
 

The relative contribution of each reaction (Eq. 1-4) to the abundance of each ion 

is empirically determined through the following method. Measured solutes are compared 
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to solute ratios that should result from the occurrence of each reaction. Cations are 

compared to other cations (Figure 2.4), cations to anions (Figures 2.5 – 2.8), and anions 

in solution are compared to each other (Figure 2.9). The relative ratios of measured ions 

are compared to those expected for the dissolution of calcite and dolomite by different 

acids (Eq. 1-4).  

An example of this ion ratio method is shown in Figure 2.4. When idealized 

dolomite (i.e. a mineral composition of equal amounts of calcium and magnesium, 

CaMg(CO3)2) dissolves, equal proportions Ca+2 and Mg+2 are released into solution, 

moving abundances up the 1:1 line (Figure 2.4B).  When calcite (CaCO3) dissolves, only 

Ca+2 is released into solution. Abundances would plot to the right of the 1:1 line (Figure 

2.4C). Measured subglacial samples in this study plot to the right of the 1:1 line, 

indicating both calcite and dolomite dissolved during weathering (Figure 2.4D). If calcite 

is precipitated out of solution, Ca+2 is removed from the system. Abundances would then 

plot closer to or to the left of the 1:1 line (Figure 2.4E). Measured side seep samples in 

this study plot close to or to the left of the 1:1 line, indicating calcite deposition at these 

sites. Distance to the left of the line is taken as the “minimum precipitated calcite” for 

those samples (Figure 2.4F). Similar plots, shown in Figures 2.5 – 2.9, of major cations 

(Ca+2, Mg+2) vs. major anions (HCO3
-, SO4-2) were used to methodically work through all 

possible combinations of Equations 1-4. 

This method is iteratively applied to a series of such proportionate plots until a 

solution is found that satisfies all four defining equations. 
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Figure 2.4. Flowchart showing iterative plots for Ca+2 vs. Mg+2 ions as an example of the 

empirical method of determining relative reaction contributions of each major solute.  
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Figure 2.4 (cont’d). “C+C” = carbonic acid dissolution of calcite; “D+C” = carbonic acid 

dissolution of dolomite; “C+S” = sulfuric acid dissolution of calcite; and “D+S” = 

sulfuric acid dissolution of dolomite. 

 

 

 

Figure 2.5. Ca+2 vs HCO3
- abundances for subglacial meltwaters and proglacial “side 

seep” waters at Robertson Glacier. The 2:1 anion:cation ratio line indicates carbonic acid 

dissolution of calcite. 
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Figure 2.6. Ca+2 vs SO4
-2 abundances for subglacial meltwaters and proglacial “side seep” 

waters at Robertson Glacier. The 1:1 anion:cation ratio line indicates sulfuric acid 

dissolution of calcite. 
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Figure 2.7. Mg+2 vs HCO3
- abundances for subglacial meltwaters and proglacial “side 

seep” waters at Robertson Glacier. The 4:1 anion:cation ratio line indicates carbonic acid 

dissolution of dolomite. 
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Figure 2.8. Mg+2 vs SO4
-2 abundances for subglacial meltwaters and proglacial “side 

seep” waters at Robertson Glacier. The 2:1 anion:cation ratio line indicates sulfuric acid 

dissolution of dolomite. Departure from that line indicates anther source of Mg+2. 
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Figure 2.9. HCO3
- vs SO4

-2 abundances for subglacial meltwaters and proglacial “side 

seep” waters at Robertson Glacier. Abundances of each anion increase with different 

dissolution processes: HCO3
- results from carbonic acid dissolution of carbonate 

minerals, and SO4
-2 results from sulfuric acid dissolution of carbonate minerals. 

 

 

2.3. Results and Discussion  

The empirical method defined above resulted in average values for subglacial and 

proglacial (side seeps) dissolution. The distinct signatures of calcite and dolomite 

dissolution by two forms of acidic weathering are separated using this method. Tables 2.2 
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and 2.3 show type examples of the results of the solute tracking method. The subglacial 

sample shown in Table 2.2 contains solutes due to sulfuric acid dissolution of dolomite 

and carbonic acid dissolution of calcite, with the greater amount of solutes originating 

from sulfuric acid dissolution of dolomite. The final row of zero or near-zero values 

demonstrates that the solute tracking method accounted for nearly all the ions in solution. 

The proglacial “side seep” sample shown in Table 2.3 contains solutes due to 

carbonic dissolution of dolomite, as well as sulfuric acid dissolution of calcite and 

dolomite. Input from carbonic acid dissolution of calcite was zero in this unique solution 

of the four defining equations. The greatest amount of solute can be accounted for by 

carbonic acid dissolution of dolomite, with the next most important process being sulfuric 

acid dissolution of calcite. The final row of zero or near-zero values demonstrates that the 

solute tracking method accounted for nearly all the ions in solution. 

 

 

Table 2.2. Relative Contributions of Subglacial Dissolution Reactions 
 Sample 101014A (subglacial)  
  Ca+2 (mM) Mg+2 (mM) HCO3

- (mM) SO4
-2 (mM) 

C+C 0.147 0.000 0.293 0.000 
D+C 0.000 0.000 0.000 0.000 
D+S 0.276 0.276 0.000 0.552 
C+S 0.000 0.000 0.000 0.000 
Total calculated 0.423 0.276 0.293 0.552 
Actual measurement 0.455 0.276 0.293 0.569 
Actual - calc 0.032 0.000 0.000 0.017 
C+C= carbonic acid dissolution of calcite; D+C= carbonic acid dissolution of dolomite 
D+S= sulfuric acid dissolution of dolomite; C+S= sulfuric acid dissolution of calcite 
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Table 2.3. Relative Contributions of Proglacial Dissolution Reactions 
 Sample 110927G (side seep) 
  Ca+2 (mM) Mg+2 (mM) HCO3

- (mM) SO4
-2 (mM) 

C+C 0.000 0.000 0.000 0.000 
D+C 0.107 0.107 0.429 0.000 
D+S 0.002 0.002 0.000 0.004 
C+S 0.060 0.000 0.000 0.060 
Total calculated 0.169 0.109 0.429 0.064 
Actual measurement 0.163 0.109 0.429 0.064 
Actual - calculated -0.006 0.000 0.000 0.000 
C+C= carbonic acid dissolution of calcite; D+C= carbonic acid dissolution of dolomite 
D+S= sulfuric acid dissolution of dolomite; C+S= sulfuric acid dissolution of calcite 

 

 

Based on the results outlined above, Figure 2.10 shows a schematic diagram of 

likely weathering paths and the associated dominant weathering processes. It can be seen 

that the subglacial meltwaters contain cations resulting from 1) the dissolution of 

dolomite by sulfuric acid, 2) the dissolution of calcite by sulfuric acid, and 3) the 

dissolution of calcite by carbonic acid. The side seep waters contain cations resulting 

from 1) the dissolution of dolomite by carbonic acid, 2) the dissolution of calcite by 

sulfuric acid, and 3) the dissolution of dolomite by sulfuric acid. The side seep waters 

also show evidence for calcite precipitation, based on the methods described in Figure 

2.4.  
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Figure 2.10. A model of subglacial and proglacial (side seeps) weathering processes, with 

measurements superimposed. The relative amounts of solutes due to weathering 

processes is shown as such: (1) carbonic acid dissolution of calcite: “C+C”, blue; (2) 

carbonic acid dissolution of dolomite: “D+C”, red; (3) sulfuric acid dissolution of calcite: 

“C+S”, green; and (4) sulfuric acid dissolution of dolomite: “D+S”, purple. Subglacial 

weathering is dominated by a “short-duration” flowpath, resulting in sulfuric-acid 

dissolution dominated weathering system. The side seep systems are dominated by a 

“longer-duration” flowpath including a greater amount of carbonic acid dissolution of 

dolomite and the precipitation of calcite. 
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 The subglacial system shows evidence for greater amounts of dolomite and calcite 

dissolution by sulfuric acid than the proglacial system. As sulfuric acid is formed in 

nature through oxidation of sulfides [Sharp et al., 1995], these results indicate the 

probable oxidation of pyrite in the subglacial and proglacial environments (see Chapter 4 

for more discussion of observed pyrite oxidation). At Robertson Glacier, this process is 

most likely enhanced by microbial action [Sharp et al., 2002; Hamilton et al., 2013]. A 

continual supply of oxygen is required in order for this process to occur at the inferred 

rate. A steady supply of oxygen could be entering the subglacial system through 

oxygenated supraglacial meltwater (sourced from snow and ice melt and precipitation) 

draining through the crevasses to the subglacial bed. Additionally, a steady supply of 

fresh pyrite must be readily available. Fresh surfaces could be supplied through 

subglacial grinding of bedrock. In the proglacial plain, finely powdered bedrock contains 

pyrite crystals, but it is not being resupplied in the same manner as the subglacial till. In 

order for pyrite oxidation and sulfuric acid dissolution to dominate the subglacial 

weathering system, the resupply of oxygen must be occurring on a steady timescale, as 

the kinetics of dolomite dissolution make it less reactive than calcite [Fairchild et al., 

1994]. There is also input from carbonic weathering of calcite observed in the subglacial 

meltwaters, indicating that the fluid is in contact with the atmosphere (i.e. contains 

dissolved carbon dioxide) and able to produce relatively weak carbonic acid. These 

factors taken together indicate that the subglacial weathering system is the relatively 

“short-duration” weathering path, dominated by sulfuric acid dissolution of carbonate 

minerals (Figure 2.5. It is likely that chemolithotrophic microbial populations are 
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involved in this process [Hamilton et al., 2013], making the subglacial bed a rich 

ecosystem due to a continual supply of fresh mineral surfaces through glacial grinding 

and oxygenated water through crevasse-driven resupply. 

 The proglacial, or “side seep” system measured solutes, however, show evidence 

for relatively more carbonic acid dissolution from dolomite, indicating a “long-duration” 

reaction path, as inferred from the kinetics of dolomite [Fairchild et al., 1994]. 

Meltwaters derived from snowmelt and precipitation potentially have longer residence 

times in the proglacial till than in the subglacial channels. As there is still some input 

from sulfuric acid dissolution of calcite and dolomite, we infer that this process takes 

place in the upper soil layers, where the waters are oxygenated. Once the oxygen is used 

up by pyrite oxidation, carbonic acid dissolution takes over and ultimately dominates the 

system. Thus, pyrite-oxidizing microbial populations are most likely confined to the 

upper soil layer, making the proglacial plain a less attractive habitat. 

 
 
2.4. Conclusions 

Herein, the weathering regime of Robertson Glacier is quantified using aqueous 

geochemical methods. It is demonstrated that, through iterative methods, one can 

transform cation abundances in solution to quantifiable mineral abundances. This makes 

it possible to determine the minerals subjected to active weathering, and the dominant 

weathering reactions. We find that the subglacial system is dominated by carbonate 

dissolution by sulfuric acid coupled with pyrite oxidation, and the proglacial system is 

dominated by carbonic acid dissolution of carbonate minerals. These findings imply that 

the proglacial moraine is an oxygen-limited system with a slower overall weathering rate, 
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while the regularly replenished glacier bed has a relatively faster overall rate of 

weathering, contributing to erosion of the alpine valley. 

Aqueous geochemistry data show that multiple carbonate dissolution reactions are 

occurring in different zones of the valley. The subglacial system is dominated by 

carbonate dissolution due to sulfuric acid, which is formed through microbial pyrite 

oxidation in subglacial sediments, while the deglaciated till plain is dominated by 

carbonic acid dissolution due to atmospheric interactions. These findings imply a more 

active microbial population in the subglacial environment, which is in line with previous 

studies [Sharp et al., 2002; Boyd et al., 2011; Hamilton et al., 2013]. The subglacial 

environment appears to be a habitat for chemolithoautotrophic microbes, providing a 

steady supply of fresh mineral surfaces and oxygenated meltwaters. 

These findings have important implications for astrobiology. While Mars is a 

volcanic planet, covered primarily by mafic rocks such as basalt, past studies have found 

that even at catchments dominated by noncarbonate crystalline rock such as gneiss and 

metasedimentary rock, carbonate dissolution contributes more than half – sometimes 

dramatically more – of the total solute flux [Sharp et al., 1995; Anderson et al., 2000; 

Tranter et al., 2002]. This implies that carbonate dissolution, sometimes coupled with 

sulfide oxidation, is the dominant weathering process in most subglacial environments 

[Anderson, 2007].  

The surface of Mars has long been known to have been mechanically affected by 

ice processes [Lucchitta, 1981] and modern-day debris-covered glaciers made of water 

ice have been observed [Holt et al., 2008]. When these glaciers flowed under past climate 

conditions, probably generating liquid water at their bases, carbonate dissolution should 
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have played a primary role in chemically weathering the basaltic bedrock. Consequently, 

the conditions under these glaciers – wet, dark, with a steady supply of fresh mineral 

surfaces – would have made excellent habitats for chemolithotrophic life. 
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CHAPTER 3 

THERMAL INFRARED SPECTROSCOPY OF ROBERTSON GLACIER 

 

3.1. Introduction and Background 

Glaciers and ice fields currently cover approximately 10% of the Earth’s land 

surface [Mitchell et al., 2013] and have a significant impact on global biogeochemical 

cycles, in particular through the chemical weathering of bedrock [Anderson et al., 2000; 

Anderson, 2007]. Glacial chemical weathering produces a wide range of alteration 

signatures such as dissolution rinds and iron oxides [Whalley et al., 1990; Raiswell et al., 

2009; Rutledge et al., 2013] but is not well characterized in great part due to the difficulty 

of accessing these mountainous and often isolated glaciated regions [Anderson, 2007]. 

Compositional remote sensing is one way of bridging the distance to these inaccessible 

areas. 

Thermal infrared (TIR) spectroscopy is a powerful tool for the compositional 

analysis of geologic materials. The shape, position, and depth of vibrational absorption 

features in infrared spectra are diagnostic of a material’s mineralogy [Vincent and 

Thompson, 1972]. The spectral signatures of minerals add linearly when mixed, assuming 

the proportions of minerals match their exposed surface areas [Ramsey and Christensen, 

1998]. This technique has been applied to determine the mineralogy of rocks in 

laboratory settings [Ruff, 1998; Hamilton and Christensen, 2000; Wyatt et al. 2001; 

Michalski et al., 2004, 2006; Rampe et al., 2013] and by remote sensing [Gillespie, 1992; 

Ramsey et al., 1999; Bandfield et al., 2000; Christensen et al., 2000a; Bandfield et al., 

2002; Michalski et al., 2004], through linear spectral deconvolution. The spectral 
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signature from a rock originates in the upper tens of microns of the rock surface, making 

TIR spectroscopy ideal for examining weathering products such as a leached rind. 

Previous studies have shown the utility of remote sensing data in studying rock 

composition in glacial regions [Casey, 2012; Casey et al., 2012]. TIR and near-infrared 

(NIR) satellite data has been used to characterize soils and minerals over large areas 

[Rockwell and Hofstra, 2008; Vicente and Filho, 2011]. Casey and Kääb [2012] showed 

that TIR data can be used in conjunction with visible and near-infrared imagery to 

estimate percent glacial surface dust and composition of glacial surface debris. The study 

focused on determining trace elements and mineralogy in volcanic and granitic terrains, 

however, and does not address the effects of weathering. Michalski et al. [2004] 

demonstrated that the removal of primary minerals in granitic rock surfaces can in fact be 

detected using TIR remote sensing, making this a valid technique for studying weathering 

at large scales. In this study, similar techniques are applied to carbonate rock weathering. 

In this study, Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) data is used to detect evidence of glacial weathering in the front 

range of the Canadian Rockies using remotely detected infrared spectra. Orbital 

observations are ground-truthed using laboratory infrared spectroscopy of field samples. 

The major goal of this chapter is to link in situ sampling with remote sensing capabilities. 

 

3.1.1 Geology of Robertson Glacier Valley 

Robertson Glacier (50˚44’N, 115˚20’W) is one of two northern drainages of the 

Haig Icefield in Peter Lougheed Provincial Park, Kananaskis Country, Alberta, Canada. 

The glacier is approximately 2 km long, spans an elevation range from 2370 to 2900 m, 
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and terminates on a flat till plain with glacially smoothed bedrock surfaces exposed along 

the glacier margins (Figure 3.1). 

 

 

 

Figure 3.1. View south from Robertson Glacier moraine. Major geologic units and 

contacts labeled (inferred contacts under ice labeled with dashed lines). DMH: Mount 

Hawk Formation; DSS: Sassenach Formation; DPl: Lower unit of the Palliser Formation. 

Geochemists for scale.  

 

The glacial valley follows a NW-SE trending upright anticline, exposing three 

Upper Devonian units on both walls: the Mount Hawk Formation (DMH), overlain by the 

Sassenach Formation (DSS), which is in turn overlain by the lower unit of the Palliser 
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Formation (DP1) [McMechan, 1988]. Glacial action has enlarged and eroded the valley; 

lateral moraines form the neoglacial moraine deposits (QMR) identified by McMechan 

[1988]. These units are labeled in Figure 3.1. 

The oldest unit, the Mount Hawk Formation, forms the floor of the valley and is 

composed of calcareous shale and argillaceous limestone. Bedrock surfaces crop out in 

places through the till plain. The Sassenach Formation, composed of interbedded 

quartzose siltstone and silty limestone, rests unconformably on the Mount Hawk 

Formation to form the lower elevation slopes of the valley. The lower unit of the Palliser 

Formation, which weathers massively to form the highest elevation cliffs, is composed 

primarily of dolomitic limestone. The geologic setting is further described in Chapter 2. 

 

 

3.2. Laboratory Spectroscopy of Field Samples 

3.2.1 Sample Collection and Preparation 

Over the course of two field seasons (October 2010 and September 2011), 

samples were collected from 24 sites on and around Robertson Glacier (Figure 3.2), 

including supraglacial samples from the glacier’s ablation zone, subglacial samples from 

melt-back ice caves at the glacier terminus, and proglacial samples from moraine deposits 

in the downstream valley. At each sample site, several cobbles representing the dominant 

rock type were selected. An effort was made to avoid sampling talus from recent rock 

falls, in order to target rocks altered by glacial action. Talus was defined as angular, fresh 

rocks contained in aprons originating at the valley walls. Exceptions were made in order 

to gain “fresh” rock from the higher elevation bedrock. 
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Samples large enough were sawed to expose “fresh” surfaces, and the cobbles’ 

natural surfaces were treated as the “weathered” surfaces. A total of 74 surfaces were 

prepared, 37 “fresh” and 37 “weathered.” A comprehensive list of samples, identifying 

which cobbles were large enough for the “fresh/weathered” preparation are listed in 

Appendix B. 

 

 

Figure 3.2. Locations of rock sample collection at Robertson Glacier (RG) over 2010 and 

2011 field seasons. Gray shaded areas represent extent of present-day ice. Peter Figure 
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3.2. (cont’d) Lougheed Provincial Park is located at the border of Alberta (AB) and 

British Columbia (BC), Canada. 

 

3.3.2 Laboratory Spectroscopy Methods 

Emission spectra of fresh and weathered sample surfaces were measured at the 

Arizona State University Mars Space Flight Facility, using a Nicolet Nexus 670 

spectrometer with 2 cm-1 spectral resolution and ~3 cm field of view. The setup, 

described in detail in Ruff et al. [1997] is configured to directly measure emitted energy, 

and the sample chamber was purged with N2 gas to minimize spectral contributions from 

water vapor and CO2 during measurement. 

Emission spectra were recorded during several sessions following each field 

season. Samples were heated overnight to 80˚C to increase the signal-to-noise ratio and 

180 spectra, collected over the course of ~3 minutes, from 200-2000 cm-1 with 2 cm-1 

spectral resolution, were co-added. Calibrated blackbodies at 70˚C and 100˚C 

blackbodies were measured periodically in order to calibrate raw data to radiance. 

Radiance spectra were then converted to emissivity by normalizing to the Planck curve 

corresponding to the sample temperature [Ruff et al., 1997]. 

Emissivity spectra of rocks were deconvolved to end-member abundances using a 

linear deconvolution algorithm described by Ramsey and Christensen [1998]. In this 

method, an input library of known emissivity spectra is used to model the measured 

spectrum of a sample by weighting the appropriate library end-members as to minimize 

the error difference between the measured and modeled spectra. A library of 30 

emissivity spectra was assembled using the Arizona State University thermal emission 
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spectral library [Christensen et al., 2000b] and several other sources (Table 3.1). End-

members were chosen based on a priori knowledge of the field site’s primary lithologies 

(e.g. McMechan [1998]; Sharp et al. [2002]) and possible weathering products present 

(amorphous components, sulfates, iron oxides).  
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Table 3.1. TIR Spectral Library   
Mineral 
group Spectral end-member Composition and source 
Silicates Silica 589-dark 20070323 SiO3

a 
 Opal-A SiO2·n(H2O)b 
 Quartz SiO2

b 
Feldspars Albite WAR-0612 NaAlSi3O8

c 
 Labradorite WAR-4524 Ab50An50-Ab30An70

c 
 Microcline BUR-3460 KAlSi3O8

c 
Amorphous Allophane 044 Si:Al 0.44d 
 Allophane 092 Si:Al 0.92d 
 Aluminosilicate gel ALLO560 Si:Al 5.6d 
Clay 
minerals Halloysite ECL:HAL001 Al2Si2O5(OH)4

e 
 Hectorite Na0.3(Mg,Li)3Si4O10(OH)2

e 
 Illite Imt-1 <0.2 microns (K1.35,Na0.02)Al3.41[Si7.26(Fe0.67,Mg0.55)O20](OH)4

c 
 Illite/Smectite ECL:ILS103 K1-1.5Al4(Si7-6.5Al1-1.5O20)(OH)4

e 
 Kaolinite Kga-1b Al4Si4O10(OH)8

c 
 Montmorillonite Swy-2 Na0.33(Al1.67Mg0.33)Si4O10(OH)2

c 
 Montmorillonite ECL:MON106 (½Ca,Na)0.7(Al,Mg,Fe)4((Si,Al)8O20)(OH)4·nH2O)e 
 Nontronite ECL:NON104 Na0.3Fe2

3+(Si,Al)4O10(OH)2·nH2Oe 
 Saponite Eb-1 <0.2 microns (Li0.09Mg2.72Fe3+

0.03Al0.07)(Al0.04Si3.96)O10(OH)2
d 

Sulfates Anhydrite S16 CaSO4
f 

 Bassanite S11 CaSO4·1/2H2Of 
 Gypsum S8 CaSO4·2H2Of 
Carbonates Calcite C9 CaCO3

c 
 Calcite C8 CaCO3

c 
 Calcite C27 CaCO3

c 
 Dolomite C20 CaMg(CO3)2

c 
 Dolomite C19 CaMg(CO3)2

c 
 Magnesite C55 MgCO3

c 
Oxides Goethite GTS2 FeOOHg 
 Goethite GTS4 FeOOHg 
  Hematite BUR-2600 Fe2O3

c 
a McDowell and Hamilton [2009], b Michalski et al. [2003], c Christensen et al. [2000b], 
d Rampe et al. [2012], e Cloutis et al. [2007], f Lane et al. [2006], g Glotch et al. [2004] 
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The deconvolution model also included a blackbody component to account for 

spectral contrast differences between the library and measured spectra, and phase 

abundances were normalized after excluding the blackbody end-member, as it contains 

no mineralogical information [Hamilton et al., 1997]. The error associated with linear 

deconvolution has been empirically determined to be 0-15% for rock-forming minerals 

[Feely and Christensen, 1999]. In addition, a common error that occurs with this method 

is the inclusion of inaccurate minerals at the 1-5% level, due to mathematical modeling of 

noise or other non-compositional information contained in emissivity spectra [Ramsey 

and Christensen, 1998]. 

 

 

3.3 Results from Laboratory Spectroscopy 

In general, emissivity spectra of weathered surfaces exhibit shallower absorption 

features than those of fresh surfaces (Figure 3.3). Weathered carbonate absorptions tend 

to narrow, while silicate (quartz) absorption features tend to broaden compared to fresh 

spectra. Spectra of weathered surfaces have shallower band depths than fresh surfaces, 

probably due to scattering on fresh natural surfaces that reduces the spectral contrast due 

to the presence of small cavities that act as blackbody cavities. Some of the spectral 

contrast reduction could also be due to particle size effects, as natural surfaces have rock 

flour clinging to them in some cases.  

 

 

 



  40 

 

Figure 3.3. Example of measured (red) and modeled (green) spectra for inner “fresh” 

rock surfaces and outer “weathered” rock surfaces. Spectral end-members used in each 

model are shown in other colors. The outer surface contains a relatively greater 

proportion of silicate with respect to carbonate. 
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Each fresh and weathered sample was measured for amounts of carbonate and 

silicate minerals, as illustrated in Figure 3.3, and total carbonate abundances for each 

fresh/weathered sample pair evaluated. Carbonate abundances for inner (fresh) and outer 

(weathered) surfaces are plotted in Figure 3.4. The 1:1 line in the figure represents an 

unweathered surface (i.e. the inner “fresh” surface has the same carbonate abundance as 

the outer “weathered” surface). The majority of samples (subglacial, supraglacial, and 

proglacial) fall below or on the 1:1 line within error bars. Points below the line indicate 

samples with a depleted outer surface with respect to carbonates, and points on or near 

the line indicate samples with little carbonate removal. The general trend indicates a 

removal of carbonate minerals from the outermost surface, implying the presence of 

dissolution rinds on a majority of rock samples. 
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Figure 3.4. Relative carbonate abundances of inner “fresh” rock surfaces and outer, 

“weathered” rock surfaces, including bars representing a maximum 15% possible error 

due to spectral deconvolution. The majority of samples - subglacial, supraglacial, and 

proglacial - fall below the 1:1 line, indicating a depleted outer surface with respect to 

carbonates. 
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The samples that plot above the 1:1 line in Figure 3.4 can be interpreted as 

relatively enriched surfaces with respect to carbonates. Two scenarios could explain this 

potential enrichment: local deposition of carbonate minerals onto rock surfaces, or 

“checkerboard” mixing of the host rock with small calcite veins at laboratory 

spectroscopy scales (~3 cm). Checkerboard mixing at these scales can result in an 

artificially elevated carbonate measurement, as the spectrometer used in this study cannot 

resolve individual, compositionally distinct features <3 cm in size. Chapter 4, 

microscopic investigations of these weathered surfaces, reveals the presence of small 

calcite veins cross-cutting the surfaces of several samples. The outliers in Figure 3.4 that 

plot far above the 1:1 line are most likely due to the presence of these veins. 

 

 

3.4. Orbital Spectroscopy of ASTER Data 

Infrared imagery of the region was collected with the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) satellite instrument aboard the 

NASA Earth Observing System satellite Terra. The ASTER instrument has 14 bands 

between 0.52-11.65 mm at 15-90 m/pixel resolution [Kahle et al. 1991; Yamaguchi et al., 

1998]. ASTER’s TIR emissivity data was used to remotely characterize the alteration 

mineralogy at the field sites. These bands, which have a ground spatial resolution of 90 

m, are described in Table 3.2. 
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Table 3.2 Measured Spectral Performance of ASTER TIR Bands 
ASTER Band Central wavelength (µm) Band width (µm) 

10 8.291 0.344 
11 8.634 0.347 
12 9.075 0.361 
13 10.657 0.667 
14 11.318 0.593 

Data from ASTER User's Guide (Earth Remote Sensing Data 
Analysis Center, 2005)   
   

 

Carbonate and silicate minerals are especially well characterized by strong 

vibrational absorption features within the 8-14 µm window measured by the five TIR 

bands of the ASTER sensor [Hook et al., 1999]. Reference spectra of carbonate and 

quartz minerals including diagnostic spectral absorptions are shown in Figure 3.5, at 

laboratory and ASTER resolutions. In Figure 3.5a, the emissivity absorption features of 

quartz at ASTER bands 10 and 12 are due to fundamental asymmetric Si-O stretching 

vibrations [Salisbury and D’Aria, 1992]. In Figure 3.5b, the emissivity absorption 

features of calcite and dolomite as ASTER band 14 are related to out-of-plane bending 

modes of the CO3 ion [Clark, 1999]. Dolomite exhibits a greater decrease in emissivity 

than calcite between bands 13 and 14, due to the greater width and shorter wavelength 

position of the bending feature of dolomite 11.15 µm relative to the bending feature of 

calcite at 11.27 µm [Rockwell and Hofstra, 2008]. However, this difference is only 

apparent when comparing dolomite and calcite exposures of great enough areal extent, 

due to the ASTER TIR spatial resolution of 90 m per pixel. ASTER bands 14, 12, and 10 

are useful in characterizing the silicate and carbonate minerals present at Robertson 

Glacier. 
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Figure 3.5. Sample laboratory spectra of a) quartz, and b) calcite and dolomite. Spectra 

convolved to ASTER resolution shown in red. After Rockwell and Hofstra [2008]. 
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3.4.1 ASTER investigation of Robertson Glacier 

ASTER Level 2 surface emissivity data products (AST_05) from the Land 

Processes Distributed Active Archive Center (LP DAAC) of the United States Geological 

Survey (USGS) are produced from Level 1B data (calibrated radiance) using a 

MODTRAN-based atmospheric correction and a temperature-emissivity separation 

algorithm developed by Gillespie et al. [1998]. Level 1B data are processed from Level 

1A format (uncorrected radiance at sensor) by the Earth Remote Sensing Data Analysis 

Center of Japan. A relatively-cloud free ASTER scene was acquired in August 2010 from 

the LP DAAC. This time frame was chosen to avoid excessive snow cover. 

Unfortunately, the tradeoff for minimizing snow cover meant that alpine vegetation was 

more abundant at the end of summer, effectively masking the composition of northern 

portions of Robertson Glacier’s moraine. 

In order to highlight the compositional differences between rock units, a 

decorrelation stretch of the ASTER scene was performed using DaVinci 

(davinci.asu.edu), an open-source software package developed at Arizona State 

University. A decorrelation stretch, (DCS) is a three-band image stretch, based on 

principal-component analysis, designed to maximize variation within a scene [Gillespie 

et al., 1986]. In this case it is used to maximize compositional variation and map those 

relative differences to colors. DCS have been used before to map compositional variation 

on terrestrial [Cooper et al., 2012] and planetary surfaces [Edwards et al., 2008; Edwards 

et al., 2011]. ASTER Bands 14, 12, and 10 were selected for mapping Robertson Glacier 

and the surrounding region as they exhibit distinctive absorption features for silicate and 

carbonate minerals (Figure 3.5).  
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Figure 3.6 shows the DCS image, oversampled from 90 m to 15m spatial 

resolution and draped over ASTER visible-near-infrared band 2 (0.66 µm) in order to 

better visualize topography and highlight different rock units. Based on field observations 

and the geological map of the region [McMechan, 1988], blues and greens are inferred to 

represent relatively carbonate-rich rock, while pink and purple tones are inferred to 

represent relatively silicate rich rock units. Large expanses of snow and ice are marked 

by hatches, and vegetation is dark gray. 
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Figure 3.6. Google Earth overview, ASTER Band 2, and ASTER decorrelation stretch 

(Bands 14-12-10) of Robertson Glacier valley. Within the DCS image, blue and green 

Figure 3.6 (continued). colors indicate relatively carbonate-rich rock, while pink colors 

are indicative of relatively silicate-rich rock. Ice and snow are masked out for clarity, and 

dark gray indicates vegetation. Spectral regions of interest are indicated with colored 

circles. 

 

 

Five-point TIR spectra were extracted from the regions of interest (see Figure 3.6 

for locations) and examined for evidence of carbonate dissolution as seen in laboratory 

spectra. Figure 3.7 illustrates the orbital spectra used to investigate Robertson Glacier for 

evidence of weathering by dissolution. It can be seen that the supraglacial debris exhibits 

a deeper silicate absorption feature than any of the surrounding rock units. This is 

inferred to be evidence for carbonate leaching from the surface of this rock debris.  
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Figure 3.7. ASTER spectra of regions of interest at Robertson Glacier. Locations of 

sampled pixels are shown in Figure 3.6. Spectra vary from carbonate-rich (west wall) to 

silicate-rich (east wall). The supraglacial debris shows an even deeper silicate absorption 

than the east wall, yet still contains a carbonate absorption feature, and the moraine pixels 

exhibit a shallow silicate absorption feature as well as a carbonate absorption feature. 
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3.4.2 Examination of Nearby Glacial Valleys 

The methods developed at Robertson Glacier valley were applied to surrounding 

glaciated valleys: French Glacier, a NW-facing, narrow, steep-walled valley parallel to 

Robertson Valley, and the broad, wide valley of Haig Glacier, which drains to the SE 

(Figure 3.8). Spectra from French Glacier show that the moraine is made up of leached 

carbonate-silicate rocks, following the same trend as Robertson Glacier. When comparing 

sidewall spectral signatures to that of the French Glacier moraine, deeper carbonate 

absorption is seen in the moraine spectrum. This implies a similar carbonate dissolution 

process to that of Robertson Glacier is taking place in and around French Glacier. 

However, moraine spectra from the main Haig Glacier outwash plain compared to the 

source headwalls do not show deepening carbonate absorptions and thus no obvious 

signals of carbonate dissolution. 
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Figure 3.8. Spectral comparison of regions of interest in French Glacier, another NW 

glaciated valley, and the Haig Glacier drainage, a SE-facing valley. The base imagery is 

from Google Earth, 2013. 
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3.5. Discussion and Conclusions 

Laboratory spectra results indicate the presence of weathering rinds formed 

through the dissolution of carbonates. A general trend of decreasing carbonate 

abundances from the inner to the outer surfaces of rocks is consistent with the alteration 

regime indicated by the aqueous geochemistry of the glacial environment (Chapter 2). A 

similar spectral signature indicating a dissolution-weathered rock deposit is observed at 

90 m scales in Robertson and French Glacier valleys, while no such trend is observed at 

SE-facing Haig Glacier. 

The lack of a dissolution signature at Haig Glacier could be the result of: (1) a 

different weathering regime than that of the NW-facing valleys in which carbonate 

dissolution is not the dominant process; (2) lower rates of carbonate dissolution, perhaps 

due to a lack of subglacial, pyrite-oxidizing microbial communities; (3) higher rates of 

weathered material removal, i.e. greater ice and snow melt due to insolation and higher 

associated transportation rate of bedload, or some combination of these. Wasiuta et al. 

[2015] found that atmospheric conditions differed greatly between the opposing 

Robertson and Haig Valleys, suggesting that their orientation relative to the physiography 

of the Western Canadian Cordillera exerts the greatest control over differing weather 

patterns. This suggests that hypothesis (3) is the most likely scenario. 
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CHAPTER 4 

MICROSCOPIC INVESTIGATIONS OF WEATHERING RINDS 

 

4.1. Introduction and background 

4.1.1 Formation of Rock Rinds in Cold Regions 

Geochemical processes occurring in glacial regions are not well understood, 

though the importance of chemical weathering at low temperatures has begun to be 

recognized in recent decades [Fairchild et al., 1999b; Anderson et al., 2000; Dixon et al., 

2002]. While traditional models of weathering in cold regions assume that physical 

processes (e.g. frost) are dominant [Tricart, 1969; Washburn, 1979], more recent studies 

have led to a new framework in which chemical and biological processes play an 

important role [Darmody et al., 2000; Etienne, 2002; Thorn et al., 2007]. Dixon and 

Thorn [2005] found that chemical weathering in periglacial terrains to be the same as 

elsewhere, only with generally slower rates. However, except for a few key studies 

[Dixon et al., 2002; Etienne, 2002; Dixon et al., 2006] the formation of weathering rinds 

on rocks in glacial regions has not been studied. Dixon et al. [2002] performed an in-

depth study of weathering rinds forming in metamorphic rocks, but the topic of 

carbonate-clastic weathering rinds is still understudied. 

Colman and Pierce [1981] defined weathering rinds as zones of oxidation whose 

inner boundaries are approximately parallel to the rock surface. Dixon et al. [2002] 

defined weathering rinds as zones of alteration on the outer surfaces of rock debris in 

which the original rock fabric has been modified and/or where the mineral constituents of 

the original material have undergone chemical alteration. On the other hand, rock 
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coatings are defined as chemical accretions on a rock surface whose components have 

been largely derived externally instead of from the underlying rock. However, under 

favorable conditions they may be derived from their host rock through chemical 

weathering [Dorn, 1998]. Coatings generally exhibit abrupt boundaries with the host 

rock, though this is not always true in the case of underlying rock with strong cleavage 

[Dixon et al., 2002]. 

Weathering rind formation mechanisms are not well understood, though several 

studies have shed light on rind formation in granite and schist [Hodgkins et al., 1997; 

Thorn et al., 2001; Dixon et al., 2002]. Etienne [2002] demonstrated the role of biology 

in rind formation on basaltic terrain in periglacial environments. Dixon et al. [2002] 

showed that geochemically complex rock rinds and coatings form concurrently in 

plagioclase feldspar-rich rock in a subaerial Arctic environment due to low temperature 

processes. 

Previous detailed studies of low temperature weathering rind formation have 

primarily focused on the development of weathering rinds on granite, while the faster-

weathering carbonates have been largely overlooked. This is most likely due to the fact 

that carbonate weathering occurs through dissolution, and rarely involves deposition on 

the same surface. The dissolution of carbonates results in diagnostic rock textures such as 

microcavities, and can result in silicate minerals armoring a rock surface as the carbonate 

minerals are removed into solution. This paper describes weathering rinds and/or coatings 

in carbonate-clastic rocks in a glaciated valley. 
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4.1.2 Geology of Robertson Glacier Valley 

Robertson Glacier (50˚44’N, 115˚20’W) is one of two northern drainages of the 

Haig Icefield in Peter Lougheed Provincial Park, Kananaskis Country, Alberta, Canada. 

The glacier is approximately 2 km long, spans an elevation range from 2370 to 2900 m, 

and terminates on a flat till plain with glacially smoothed bedrock surfaces exposed along 

the glacier margins (Figure 4.1). 

 

 
 
Figure 4.1. View south from Robertson Glacier moraine. Major geologic units and 

contacts labeled (inferred contacts under ice labeled with dashed lines). DMH: Mount 

Hawk Formation; DSS: Sassenach Formation; DPl: Lower unit of the Palliser Formation. 

QMR: Neoglacial moraine. Geochemists for scale.  
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The glacial valley follows a NW-SE trending upright anticline, exposing three 

Upper Devonian units on both walls: the Mount Hawk Formation (DMH), overlain by the 

Sassenach Formation (DSS), which is in turn overlain by the lower unit of the Palliser 

Formation (DP1) [McMechan, 1988]. Figure 4.1 shows these rock units. The oldest unit, 

the Mount Hawk Formation, forms the floor of the valley and is composed of calcareous 

shale and argillaceous limestone. The Sassenach Formation, composed of interbedded 

quartzose siltstone and silty limestone, rests unconformably on the Mount Hawk 

Formation to form the lower elevation slopes of the valley. The lower unit of the Palliser 

Formation, which weathers massively to form the highest elevation cliffs, is composed 

primarily of dolomitic limestone. The geologic setting is further described in Chapter 2.  

Figure 4.2 shows the location of Robertson Glacier in Alberta, Canada. Aqueous 

geochemical and thermal infrared spectroscopy studies (Chapters 2 and 3) provide 

evidence for dissolution of carbonate rocks at Robertson Glacier, potentially forming 

weathering rinds (Figure 3.4). However, several samples from Chapter 3 appeared to 

exhibit surfaces enriched with carbonate relative to silicate (Figure 3.4), possibly 

indicative of rock coatings. This study uses microscopic techniques to interrogate the 

surfaces of representative samples in order to determine whether weathering rinds, rock 

coatings, or both, are present. 
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4.2. Methods 

4.2.1 Sample Collection and Preparation 

As part of an overarching study investigating the chemical weathering regime and 

habitability of Robertson Glacier, samples were collected over the course of two field 

seasons (October 2010 and September 2011) from four sites on and around Robertson 

Glacier (Figure 4.2), including subglacial samples from melt-back ice caves at the glacier 

terminus and proglacial samples from moraine deposits in the downstream valley. At 

each sample site, several cobbles representing the dominant rock type were selected. 
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Figure 4.2. Location of samples collected for microscopic analysis at Robertson Glacier, 

Canada. Location of Robertson Glacier in Peter Lougheed Provincial Park, Alberta, 

Canada. 

 

 

Polished thin-sections of seven representative samples, several of each formation 

(see Appendix B) were prepared by Petrographic Services (Montrose, CO, USA). Rock 

tablets (approximately 27 x 46 mm) were cut from the exterior surface inwards, to 



  60 

facilitate examination of the weathered rind. These tablets were impregnated with epoxy 

(EpoTek 301, Epoxy Technologies, Billercia, MA) to preserve the weathered surfaces. 

These sections were mounted on glass slides with epoxy (FH-5313A, Andover 

Corporation, CT) before subsequent grinding, and were then hand-finished to a thickness 

of 30 ± 2 µm. The samples were examined under reflected and transmitted light in order 

to identify features of interest along the weathered edges (Figure 4.3). Before loading into 

the electron microprobe, the samples were carbon-coated in order to eliminate surface 

charging, which interferes with imaging and analysis. 
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Figure 4.3. Examples of potential thin, discontinuous rinds/coatings observed under 

reflected light. (A) Subglacial Sassenach Fm sample exhibiting a light-toned surface with 

an apparently abrupt contact with the underlying rock; this is inferred to be a relict calcite 

vein. (B) Supraglacial Palliser Fm sample exhibiting a light-toned surface with an abrupt 

contact with the underlying rock; inferred to be a relict calcite vein. (C) Proglacial Mount 

Hawk Fm sample exhibiting a darker surface with an apparently gradational contact with 

the underlying rock; this is inferred to be a dissolution rind. (D) Subglacial Palliser Fm 

sample exhibiting a darker surface with an apparently gradational contact with the 

underlying rock, inferred to be a dissolution rind. Note the light-toned veins (inferred to 

be calcite) cutting through (A) and (D). 
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4.2.2 Electron Microprobe Analysis 

The electron microprobe (the JEOL JXA-8530F Hyperprobe) at the LeRoy Eyring 

Center for Solid State Science (LE-CSSS), Arizona State University was used to 

characterize these weathered surfaces at microscopic scales. The microprobe’s scanning 

electron microscope (SEM) uses a focused beam of electrons to scan the surface of the 

thin section and register an image of various signals. The probe was operated at 15-20 

keV and 10-30 nA. 

This study utilized backscattered electrons (BSE), secondary electron imaging 

(SEI), and energy-dispersive X-ray spectroscopy (EDS) [e.g. Goldstein et al., 1981; 

Reimer, 1985]. BSE images show variations in chemical composition based on average 

atomic number. Materials with lower average atomic numbers appear dark, while 

materials with higher average atomic numbers appear bright [Ball and McCartney, 1981]. 

SEI images are useful for investigating surface topography and morphology of samples 

constituents. EDS was used to make chemical maps of sample edges ranging in 

magnification from 40X to 2,500X. EDS was also used to collect compositional 

information in transects from the outer weathered edge of each sample inward. In order to 

measure chemical depletion/enrichment of weathered surfaces, EDS measurements were 

averaged over 10 µm x 100 µm areas, profiling approximately 1000 µm into each sample 

rind. Figures 4.9 and 4.10 show examples of one transect. 
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4.3. Results 

4.3.1. Micromorphology 

Weathering rinds developed on rock surfaces in the Robertson Glacier catchment 

display both directly measureable chemical alteration and morphological evidence for 

chemical weathering. While EDS element maps do not show obvious chemical 

weathering trends at the millimeter scale (Figure 4.4), closer examination reveals 

morphological weathering textures. Porous textures at multiple scales are observed in the 

weathering rinds. Large voids (probable dissolution pockets) are present in samples (e.g. 

Figures 4.5 and 4.6), indicative of rock porosity allowing fluid circulation to a minimum 

depth of 450 µm. These voids are inferred (due to observed locations) to have initially 

formed along mineral grain boundaries, and to have increased in volume through 

dissolution.  Figure 4.6 demonstrates the initial stage of dissolution, wherein local fluids 

exploit preexisting planes of weakness, causing dissolution and resulting in widened 

fractures parallel to the rock surface. 
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Figure 4.4. Proglacial Mount Hawk Fm sample. (A) Backscattered electron image (40X 

magnification), location outline in (A); (B) EDS chemical map of Fe; (C) EDS chemical 

map of Si; and (D) EDS chemical map of Ca. A ~0.1 mm diameter calcite vein can be 

seen paralleling the weathered surface. At this scale no obvious chemical trends are 

observed, but potential dissolution-induced voids surrounding the Fe-bearing crystals can 

be seen. 
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Figure 4.5. Backscattered electron image of proglacial Mount Hawk Fm (magnification 

110X), sample 101016xB. This sample is a second thin section prepared from the same 

cobble as 101016xA, and represents the same groundmass and weathered surface. Pyrite 

crystals (bright shades), calcite crystals (light gray) and silicate minerals (dark gray) are 

visible. The rock has been weathered by chemical dissolution to form interstitial voids 

and surface pitting. 

 
 
 
 

 
 



  66 

 
 

Figure 4.6. Backscattered electron (BSE) image of proglacial Mount Hawk Fm sample 

exhibiting dissolution features and/or fractures at the surface, as well as calcite veins of 

varying thicknesses. This type of near-surface fracturing has often been attributed to frost 

action, but here is interpreted to be the result of exploitation by fluids of existing fractures 

in close proximity to fluids. 

 

 

While some samples appear to be coated with calcite (i.e. carbonate-enriched 

surfaces, e.g. Chapter 3), these surfaces are ruled out as rock coatings because no 

depositional layering is observed (Figures 4.7 and 4.8). Rather, crystal boundaries are 
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seen within these potential surface coatings. The “coating” is thus inferred to be a relict 

calcite vein, exposed to the rock surface through fracture and subsequently subjected to 

carbonate dissolution, rather than a secondary rock coating formed through deposition. 

Cross-cutting calcite veins are observed in most rock samples (Figures 4.3 and 4.6), 

giving an additional line of evidence for this hypothesis. 
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Figure 4.7. Microscopic images of supraglacial Palliser Fm sample with a candidate rock 

coating are shown in (A) a backscattered electron image (100X magnification); (B) an 

EDS chemical map of Fe; (C) an EDS chemical map of Si; and (D) an EDS chemical 

map of Ca. Large dark areas are Al-K phyllosilicates (unmapped in this figure). No 

immediate chemical trend is evident at this scale, but a discontinuous calcite rind is 

observed at the surface.  



  69 

 
 

Figure 4.8. Subglacial Palliser Fm example of mineral-grain dissolution. Pits and pockets 

due to dissolution are observed at the weathered surface, a relict calcite vein. Note the 

calcite rims around dolomite crystals in the rock groundmass.  
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4.3.2. Chemistry  

The textural evidence for weathering rinds described above is accompanied by 

geochemical changes mainly due to carbonate dissolution. Both grain-boundary 

dissolution (Figures 4.5 and 4.6) and mineral-grain dissolution (Figure 4.8) are indicated 

by the presence of voids resulting from the removal of soluble carbonate minerals. 

Electron microprobe analyses of areally-averaged transects inward from the rocks’ 

surfaces show a general trend of decreasing Ca+2 cation abundances in the upper 

millimeter. One such example is shown in Figure 4.9. Calcium-silicon ratios decrease 

with distance into the rock rind. One outlier, shown in Figure 4.10, shows an inverse 

trend. This trend is inferred to be due to a relict calcite vein composing the weathered 

surface of this rock. The morphology of the veins observed in Figure 4.6 and 4.10 are 

comparable to the surface calcite layer in Figure 4.8. These surface features do not 

exhibit layering, as would be expected if they were depositional in nature, but rather are 

composed of proportionately large calcite crystals (Figure 4.8), giving weight to the relict 

calcite vein hypothesis. 
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Figure 4.9. Example of EDS transect into proglacial Mount Hawk Fm sample (Figure 

4.4), magnification 110X. Average spectra were collected over 10 µm x 500 µm areas 

(represented by yellow boxes), and measurements were repeated ~770 µm into sample. 

Lower plots show CaO (blue) and SiO (red) profiles into sample. Upper plot represents 

overall increasing trend of CaO relative to total CaO + SiO.  
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Figure 4.10. Example of EDS transect into subglacial Palliser Fm sample (Figure 4.7), 

magnification 110X. Average spectra were collected over 10 µm x 500 µm areas 

(represented by yellow boxes), and measurements were repeated ~900 µm into sample. 

Lower plots show CaO (blue) and SiO (red) profiles into sample. Upper plot represents 

overall decreasing trend of CaO relative to total CaO + SiO due to a calcite vein at the 

weathered surface.  
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4.3.3. Evidence for Pyrite Oxidation 

The observed porous textures are strongly associated with the presence of pyrite 

and iron oxides, indicating a probable role for sulfuric acid in rock weathering (see 

Chapter 2 for further discussion). When subglacial waters contact iron sulfide crystals at 

the till bed, these iron-bearing minerals are exposed to oxygenated fluids, which results in 

sulfuric acid weathering of the surrounding carbonate crystals. Pyrites weathering and 

forming iron oxides are observed approximately 300 µm into one sample (Figure 4.11), 

indicating depth of fluid penetration. Weathered pyrite crystals are also associated with 

clays, which could provide a more permeable path from the sample exterior to the interior 

(Figure 4.12). Permeability is inferred from the amount of void space within the rock 

rinds (Figures 4.5 and 4.12). 
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4.11. Evidence for pyrite oxidation in a subglacially-weathered sample. (A) Backscatter 

electron image; (B) secondary electron image of Fe2S crystal surrounded by layers of iron 

oxide, ~300 µm from weathered surface (2,500X magnification); (C) EDS map of Fe2S 

crystal surrounded by Fe-oxide, associated with calcite crystals and Al-K phyllosilicates; 

and (D) backscatter electron image of Fe2S crystal and associated Fe-oxides. 
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Figure 4.12. Fe2S nodules are often associated with Al-K phyllosilicate minerals along 

planes up to ~800 µm from the weathered surface, implying potential access for surface 

waters. Images shown are backscattered electron (upper left) and secondary electron 

(5,500-8,000X magnification). 
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4.4. Discussion and Conclusions 

The complex nature of weathering rinds formed by low-temperature weathering 

has received little attention until recently, and is still not well understood. This study 

investigates the formation of weathering rinds in glacially-altered, carbonate-clastic 

rocks. The weathering rinds presented in this study are evidently dominated by the 

dissolution of mineral grains by glacial meltwaters penetrating the rocks through 

preexisting fractures or clay mineral zones. The dissolution of carbonate minerals is 

accomplished through acidic weathering, probably dominantly sulfuric acid forming from 

pyrite oxidation within these rinds. Mineral-grain and grain-boundary dissolution has 

resulted in these weathering rinds exhibiting considerable porosity.  

The fairly thin (≤ 1 mm) weathering rind thicknesses are potentially controlled by 

glacial flow, i.e. the mechanical comminution of the subglacial till bed. As weakened 

zones form at the rock surface due to ion dissolution, void formation and fracturing, 

glacial action then pulverizes this outmost porous weathered zone. In the case of relict 

calcite veins being exposed at the rock surface through fracture, dissolution still takes 

place and a porous zone still occurs, but is prevented from migrating inward until 

dissolution pitting penetrates the surface “coating.” Texturally speaking, no layered 

depositional coatings are observed in these samples. 

Weathering rinds are abundant at Robertson Glacier. From previous aqueous 

geochemistry work in this valley (Sharp et al. [2002]; Chapter 2) and work in the 

geology of these cobbles (Chapter 3), it is obvious that acidic weathering - due to pyrite 

oxidation and atmospherically-coupled acid formation - plays a role in depleting the 

surfaces of glacially-associated rocks of carbonate minerals. This microscopic 
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investigation of weathering rinds shows that pyrite oxidation plays a dominant role in 

these surfaces’ formation.  

In conclusion, this study finds that discontinuous weathering rinds characterize 

the surfaces of clastic-carbonate cobbles from Robertson Glacier, Canada. These rinds 

are porous, thin, and form through the preferential dissolution of carbonate minerals. 

Weathering rind voids are strongly associated with the oxidation of pyrite, indicating the 

source of dissolution is primarily sulfuric acid. Their overall thickness is most likely 

controlled by low-temperature reaction rates, fluid flow rates, and glacial comminution. 

The findings of this study strongly argue for further study of chemical weathering 

in glaciated terrains. While chemical processes clearly play a significant role in rock 

breakdown and ion transport, cold regions are still often thought of in terms of primarily 

mechanical weathering. The paradigm of future study should be that of chemical-

mechanical breakdown of rock by glacial action and meltwaters.  
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CHAPTER 5 

HYPSOMETRY OF LOBATE DEBRIS APRONS ON MARS 

 

5.1. Introduction and Background 

It has long been known that geologic features on Mars show evidence of 

modification by water and water ice [Lucchitta, 1981; Squyres, 1984; Baker et al., 1992; 

Parsons and Head, 2005]. Past obliquity variations are theorized to have promoted the 

exchange of volatiles between the polar ice reservoirs and the midlatitude, allowing the 

accumulation of glaciers and the subsequent formation of periglacial terrain [Fanale et 

al., 1986; Head et al., 2003; Forget et al., 2006]. 

Probable glacial features, such as lobate debris aprons (LDA), lineated valley fill 

(LVF), hourglass craters containing flow features concentric crater fill (CCF), and ice-

cemented mantling deposits at the heads of gullies have been observed on the eastern rim 

of Hellas Basin and in Deuteronilus Mensae, ranging from latitudes of 30°N to 60°N and 

30°S to 60°S (Figure 5.1) [Crown et al., 1992; Tanaka and Leonard, 1995; Christensen, 

2003; Forget et al., 2006; Dickson et al., 2007; Levy et al., 2009]. 
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Figure 5.1. Distribution of midlatitude glaciers on Mars, with areas highlighted in this 

study outlined by black boxes and features of interest labeled. Icy features identified 

include linearted valley fill (LVF, in green), lobate debris aprons (LDA, in yellow) and 

concentric crater fill (CCF, in pink). Background is MOLA gridded topography, modified 

from Levy et al. [2014]. 

 

 

LDA originate at the base of steep massifs or scarps (Figure 5.2) and are 

characterized by lobes of gently sloping, convex-upward surfaces with relatively steep 

outer margins. The flow-like morphology of these features, including radial and 

concentric lineations, suggests these features formed by glacier-like viscous flow 

processes [Pierce and Crown, 2003; Head et al., 2005]. The shallow radar (SHARAD) 

instrument aboard the Mars Reconnaissance Orbiter (MRO) returned results for these 

features consistent with massive ice deposits, supporting the hypothesis that these are 
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debris-covered glaciers [Holt et al., 2008; Plaut et al., 2009]. These features are thought 

to have formed from atmospheric precipitation of water ice during the late Amazonian 

[Forget et al., 2006]. Studies using Thermal Emission Imaging System (THEMIS) 

analyses indicate that the surface temperature of debris aprons is cooler than the 

surrounding terrain, implying that the aprons are probably armored by relatively fine 

material compared to the surrounding material [Piatek and Moersch, 2007]. The ice is 

thought to have precipitated and flowed during climate excursions and became covered 

with debris during or towards the end of its emplacement [Fastook et al., 2014]. 
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Figure 5.2. Typical LDA on the eastern rim of Hellas Basin, surrounding a central massif. 

Image centered at 45°S, 102°E. Imagery is THEMIS Day infrared imagey from the Global 

Mosaic [Christensen et al., 2009]. Arrows indicate glacier snout. 

 



  82 

Fastook et al. [2014] modeled LDA formation and found that collapsing regional 

ice sheets, coupled to a changing climate, is likely to be responsible for the formation of 

LDA (Figure 5.3).  

 

 

 
 

Figure 5.3. Possible formation mechanism for LDA proposed and modeled by Fastook et 

al. [2014]. (A) Larger regional ice sheet that buries topography. (B) As ice sheet 

collapses in ablating environment, surface drops below scarp level and debris begins to 

accumulate on ice surface. (C) Debris cover armors the surface and reduces sublimation 

(ablation). (D) As initial armoring begins, ice sheet evolves a surface slope and carries 

debris away from the scarp. As ice sheet collapse continues, the entrained debris reached 

the glacier snout and encompasses the entire LDA with an armored surface. Final LDA 

thickness and extent are controlled by sublimation and temperature in the Fastook et al. 

[2014] model. 
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These fairly young icy features, which contain the greatest volume of mid-latitude 

ice deposits [Levy et al., 2014] are especially important because they represent significant 

amounts of present-day, near-surface ice, with implications for martian climate and 

geologic history, studies of the regional and global water distribution, and astrobiology 

studies. This study characterizes the area-elevation relationship, or hypsometry, of large 

glacial features known as lobate debris aprons (LDA) on the surface of Mars.  

 
 
 
5.2. Materials and Methods 

Terrestrial glaciology uses the hypsometric curve, or the empirical cumulative 

distribution function of elevations, as a method of constraining parameters such as the 

equilibrium line altitude (ELA) and mass balance of a glacier [Adhikari and Marshall, 

2012]. ELA is the position, or elevation, at which accumulation is balanced by ablation. 

Mass balance, the difference between accumulation and ablation, is crucial to the survival 

of a glacier over time. Both these parameters can serve as key indicators of climate 

change, as they are closely related to temperature and precipitation. 

We apply terrestrial glaciology inventory methods to the lobate debris aprons on 

the eastern rim of Hellas Basin and in the northern region of Deuteronilus Mensae, Mars 

to complete a detailed areal inventory of the buried ice deposits and to evaluate the 

hypsometric curve of each feature. We then examine the relationship between LDA 

hypsometry, latitude and elevation in order to understand the effect of past climatic 

variations on present-day, nonpolar ice distribution. Finally, we compare the hypsometric 



  84 

curves and distribution of different curve types of the Deuteronilus Mensae population of 

LDA to the eastern Hellas population.  

The Thermal Emission Imaging System (THEMIS) daytime infrared 100m Global 

Mosaic was used in conjunction with Mars Reconnaisance Orbiter Contact Camera 

(CTX) images to determine areal extent, and Mars Orbiter Laser Altimeter (MOLA) data 

were used to ascertain elevations [Edwards et al., 2011]. The JMARS geographic 

information system software, developed at Arizona State University was used to process 

and assess these datasets (Figure 5.4 and 5.5) [Christensen et al., 2009]. 
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Figure 5.4. An example of the mapping method used in JMARS to determine the area-

elevation bins used when determining the hypsometric curve of an LDA. THEMIS day 

IR base imagery overlain with MOLA elevation contours. Image centered at 45°S, 102°E. 
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Figure 5.5. Sample hypsometric analysis of a high-elevation, higher-latitude lobate debris 

apron (LDA) surrounding a massif on the eastern rim of Hellas Basin, identified in Figure 

5.1. Base imagery is THEMIS daytime infrared imagery in JMARS [Christensen et al., 

2009]. The base of the apron is at MOLA elevation -350m and it is centered at 45°S, 

102°E. Average elevation bins are identified by color.  
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5.3. Results 
 

Results from this survey show that in both the northern and southern populations, 

LDA exhibit three types of hypsometric curves: those with a single peak, classified as 

Type I curves; those with curves with two peaks where the downslope peak is larger than 

the upslope peak, classified as Type II; and double-peaked curves, where the upslope 

curve is larger than the downslope peak, classified as Type III (Figure 5.6.). 
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Figure 5.6. Types of hypsometric curves observed on LDA on Mars. Type I: A 

hypsometric curve similar to classic terrestrial alpine glaciers; the curve is steep at the 

upper and lower boundaries, and flattens in the midsection. This type of curve is 

indicative of a typical glacier with preserved (relict) accumulation and ablation zones.  
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For the southern population in eastern Hellas, at elevations above 500m MOLA, 

LDA exhibit hypsometric curves with a single peak, classified in this study as Type I 

curves. At MOLA elevations between -2000m and 500m, LDA hypsometry exhibits 

curves with two peaks, where the downslope peak is larger than the upslope peak (Figure 

5.6.) These curves, classified as Type II, are similar to classic terrestrial alpine glaciers – 

they can be indicative of a typical glacier with both accumulation and ablation zones, and 

could potentially be used to determine the (probably defunct) equilibrium line altitude of 

a lobate debris apron. Finally, LDAs below -2000m MOLA elevation generally exhibit 

double-peaked curves, were the upslope curve is larger than the downslope peak. These 

hypsometric curves have been classified as Type III. Figure 5.7 illustrates the relationship 

of curve type to elevation and latitude. The observed change in hypsometry with 

elevation at Hellas Basin potentially signals a past shift in temperature and precipitation 

dependent on elevation. 

Results from Deuteronilus Mensae indicate that the northern population of LDA 

exhibit Types I or Type II hypsometric curves, with no apparent trend with latitude or 

elevation (Figure 5.7). This lack of change in hypsometry with latitude could signal a 

regional trend, such as a large collapsing ice sheet during a climate shift. The ice sheet 

would have to be large enough to remain unaffected by local topography, as proposed in 

Fastook et al. [2014].  
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Figure 5.7. Hypsometric type distribution, plotted as base elevation versus latitude. The 

northern (Deuteronilus Mensae) population of LDA show no discernible trend but 

contain both Types I and II. No Type III curves are present in the northern population. 
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Figure 5.7. (cont’d) The southern (east Hellas) population exhibit all three types of 

curves, with the majority of Type III curves confined to the lowest elevations. 

 

 

5.4. Discussion and Conclusions 

Based on the observed results, several trends can be seen. The northern and 

southern LDA populations differ in that only the southern Hellas population has 

hypsometric curves of Type III. Types I and II appear to be somewhat dependent on 

elevation in the southern population, while in the northern population there appears to be 

no clear distinction between Types I and II based on elevation or latitude. Based on the 

three curve types, several conceptual models for formation can be proposed (Figure 5.8). 

These conceptual flow regimes coupled to hypsometry are consistent with Fastook et al. 

[2014] findings, which concluded that LDA in Deuteronilus Mensae could not have 

experienced much further flow once the stabilized post-ice sheet collapse. In our model, 

the LDA at lower elevations in Hellas Basin, temperatures could have approached or 

reached the ice melting point post-armoring, leading to pulses of subsequent flow, and 

resulting in the hypsometry of Type III aprons. 
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Figure 5.8. Potential formation mechanisms proposed for LDAs Types I, II, and III. 

Modified from Fastook et al. [2014]. (A) Debris cover advances as ablation begins, 

sublimation lag forms and armors surface against further sublimation. This process 

effectively preserves original glacial flow form, resulting in a hypsometric Type I, similar 

to terrestrial alpine glaciers. (B) Debris cover/surface armoring forms slowly while 

ablation thins the glacier terminus. This results in a hypsometric curve of Type II, in 

which the bulk of ice is preserved at higher local elevations. (C) Debris cover/sublimation 

lag forms while glacier continues to experience pulses of temperature-induced flow due 

to elevation; but accumulation ceases as the regional ice sheet has collapsed. This process 

results in a hypsometric curve Type III, wherein glacial ice is preserved in multiple 

lobes/volume stored at lower elevations. 
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This study characterized the area-elevation relationship, or hypsometry, of large 

glacial lobate debris aprons on the surface of Mars. The hypsometry of these large, 

debris-covered icy features, which formed around scarps in Mars’ midlatitudes, gives us 

insight into their past flow regime and allows us to make predictions about past climate 

scenarios in the Late Amazonian (~700 Ma to ~100 Ma) that allowed snow and ice to 

accumulate and flow. The LDA in this study were found to fall into three major groups, 

strongly dependent on scarp elevation, implying regional controls on ice flow. The LDA 

at the lowest elevations on the rim of Hellas Basin likely experienced temperatures close 

to the melting point, allowing flow after LDA at higher elevations had stagnated due to 

changing climate conditions. 
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CHAPTER 6 

CONCLUSION 

 

This study examines glacial processes, chemical and physical, on Earth and Mrs. 

First, I use multidisciplinary methods to examine the weathering regime of Robertson 

Glacier, a small alpine glacier in a carbonate-clastic catchment. Aqueous geochemistry 

data show that multiple carbonate dissolution reactions are occurring in different zones of 

the valley. The subglacial system is dominated by carbonate dissolution due to sulfuric 

acid, which is formed through microbial pyrite oxidation in subglacial sediments, while 

the deglaciated till plain is dominated by carbonic acid dissolution due to atmospheric 

interactions. These findings imply a more active microbial population in the subglacial 

environment, which is in line with previous studies [Sharp et al., 2002; Boyd et al., 2011; 

Hamilton et al., 2013]. TIR spectroscopy shows that dissolution signatures are detectable 

on rock surfaces at laboratory and orbital scales. The signature detection is extended to 

other valleys in the region with remote sensing data, finding that NW-facing valleys have 

a more detectable weathering signature than SE-facing valleys. It is proposed that 

regional topography controls runoff rates, leading the high-insolation southern valley to 

lack a detectable weathering signature. Finally, glacially-weathered carbonate rock 

surfaces are characterized with electron microscopy, which shows evidence for thin, 

porous weathering rinds. These rinds are characterized by chemical trends caused by 

carbonate dissolution, most likely due to sulfuric acid formed by pyrite oxidation. 

Second, the area-elevation relationship, or hypsometry, of large glacial features 

known as lobate debris aprons (LDA) on the surface of Mars is characterized. The 
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hypsometry of these large, debris-covered icy features, which formed around scarps in 

Mars’ midlatitudes, provides insight into their past flow regime and allows us to make 

predictions about past climate scenarios that allowed snow and ice to accumulate and 

flow. The LDAs in this study were found to fall into three major groups, strongly 

dependent on scarp elevation, implying regional controls on ice flow during emplacement 

by a regional ice sheet. A thinning atmosphere and associated climate change was most 

likely the major control of stagnating ice flow. 

Glacial processes, both chemical and weathering, have affected planetary surfaces 

throughout the Solar System. Biological processes enhancing mineral breakdown affect 

how glacial weathering functions on Earth, contributing positive inputs to the global 

carbon cycle. If biology was once present under the ice on Mars, similar signatures may 

be detectable at orbital and rover scales. In terrestrial subglacial systems dominated by 

crystalline and noncarbonate sedimentary rocks, carbonate dissolution nonetheless 

dominates total solute fluxes [Sharp et al., 1995; Anderson et al., 2000; Tranter, 2003]. 

Thus, on the glaciated basaltic-andesitic surface of Mars, one might expect a similar 

incongruent weathering system to develop. As much as 10% of Mars’ observed ice is 

sequestered in flowing, glacial form today [Levy et al., 2015]. If these glacial forms were 

wet-based glaciers during past climate excursions, subglacial carbonate dissolution 

should have played a significant role in weathering the surface of Mars. Terrestrial analog 

studies on glaciated basalt flows could provide insight into pertinent weathering 

processes. Proposed sites for future study are highlighted in Figure 6.1. 
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Figure 6.1. Map highlighting terrestrial analogs to Mars glaciers. All highlighted sites 

contain glaciers overriding mafic terrain. A) Collier Glacier, Oregon, USA; B) 

Skaftafellsjökull Glacier, Iceland; C) Southern Ice Field, Kilimanjaro, Tanzania; D) 

Taylor Glacier, Dry Valleys, Antarctica. 

 

 

Glacier beds are active, dynamic weathering systems, harboring diverse 

communities of chemolithotrophic microorganisms. In recent years their significance as 

both agents of weathering and role as living ecosystems has begun to be recognized. This 

work adds weight to the argument that glacial systems are an important link in the global 

weathering and biogeochemical cycles (e.g. the carbon and strontium cycles), and may 

have played a similar role in weathering the surface of Mars in the past. 
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Table A.1 Water chemistry of Robertson Glacier     
Sample Location pH T (°C) 
2009 season   
090914A Primary glacial outwash ~20 m from edge of glacier 8.784 0.3 
090914B Pore water from 090914A nd nd 
090914C East-side outflow 8.713 0.1 
090914D Field blank nd nd 
090915E Subglacial flow, east side 8.774 0.2 
090915F Supraglacial water middle of glacier 8.597 0.1 
090915G Flowing yet ponded melt water east portion of glacier 8.35 0.1 
090915H Melted glacial ice nd nd 
2010 season   
101014A Outwash at glacier edge (primary outwash) 8.087 0.2 
101014B Filament Crick (side seep fed by subsurface ice) 8.18 3.8 
101015C Field Station Fresh Snow (snowfall in night/AM) 4.954 3.7 
101015D Blank (collected at Field Station) nd nd 
101016E Outwash at glacier edge (same place as 101014A) 8.082 0.1 
101016F Glacial Outwash at treeline (~2.5 miles from glacier) 8.104 0.8 
101016G Glacier ice 8.81 21* 
101016H Local Snow at glacier 9.049 21.2* 
2011 season   
110925A Subglacial seds with supraglacial outflow 8.56 0.3 
110925B Cryoconite sample 8.209 0.1 
110925C Supraglacial outflow 8.393 0.1 
110925D Filament Creek 7.994 2.9 
110926E Subglacial runoff 8.374 0 
110927F Filament Dew 8.011 2.2 
110927G Filament Tree 8.123 2.6 
110929I Equipment blank (DI in the lab) nd nd 
        
* Collected after melting ice over stove.   
nd = not detected   
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Table A.1 (cont'd) Water chemistry of Robertson Glacier   
 Ca+2 Mg+2 Na+ Ni+2 K+ Fe 
Sample (mol/kg) 
2009 season      
090914A 3.64E-04 4.41E-05 7.09E-06 5.11E-09 4.70E-06 2.12E-05 
090914B 4.49E-04 6.15E-05 2.65E-05 1.82E-08 1.12E-05 5.17E-05 
090914C 3.57E-04 3.81E-05 bdl 5.11E-09 bdl 4.35E-04 
090914D+ 2.73E-05 bdl bdl 7.84E-09 bdl 2.61E-05 
090915E 3.59E-04 3.01E-05 bdl 2.73E-08 bdl 1.83E-04 
090915F 2.48E-04 7.62E-06 bdl 2.21E-09 bdl 1.49E-05 
090915G 5.40E-04 7.82E-05 4.69E-06 3.75E-09 7.11E-06 2.01E-04 
090915H 1.35E-04 bdl 4.67E-06 1.33E-08 bdl 8.95E-05 
2010 season      
101014A 6.75E-04 2.84E-04 6.56E-06 1.94E-08 7.25E-06 1.61E-08 
101014B 7.20E-04 4.48E-04 8.06E-06 6.99E-09 1.52E-05 1.79E-08 
101015C 3.49E-06 bdl 3.96E-06 1.87E-08 bdl 3.17E-08 
101015D+ bdl bdl bdl 1.36E-09 bdl 5.91E-09 
101016E 5.95E-04 2.45E-04 4.28E-06 1.19E-09 7.08E-06 1.45E-08 
101016F 8.25E-04 4.39E-04 5.54E-06 1.53E-09 7.57E-06 1.56E-08 
101016G 9.86E-05 4.77E-06 5.83E-07 2.39E-09 bdl 2.76E-08 
101016H 5.58E-05 bdl 8.10E-06 9.88E-09 5.19E-06 4.60E-08 
2011 season      
110925A 4.05E-04 6.05E-05 4.84E-06 7.33E-09 bdl 2.85E-08 
110925B 2.40E-04 1.06E-05 5.42E-05 4.43E-09 bdl 3.28E-07 
110925C 2.90E-04 1.77E-05 6.32E-05 2.42E-09 bdl 6.45E-08 
110925D 4.72E-04 4.86E-04 1.12E-05 5.03E-09 2.05E-05 1.37E-08 
110926E 3.90E-04 1.29E-04 1.20E-05 5.33E-09 4.92E-06 2.04E-08 
110927F 5.59E-04 5.44E-04 2.94E-05 6.44E-09 1.13E-05 3.12E-08 
110927G 3.83E-04 1.17E-04 3.84E-05 5.45E-09 bdl 4.83E-08 
110929H 1.84E-04 1.15E-05 6.77E-06 2.08E-09 5.31E-06 1.04E-08 
110929I+ bdl bdl 1.06E-05 9.88E-10 bdl 1.86E-08 
       
"+" = field blank      
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Table A.1 (cont'd) Water chemistry of Robertson Glacier   

 NH4
+ Cu Zn Mo Li Al 

Sample (mol/kg) 
2009 season      
090914A bdl 7.40E-09 1.04E-08 2.40E-09 6.34E-07 6.12E-07 
090914B 3.38E-06 4.42E-08 1.99E-08 1.07E-08 1.55E-06 8.97E-07 
090914C bdl 1.46E-08 2.29E-08 2.61E-09 6.34E-07 3.11E-06 
090914D+ bdl 4.25E-07 7.65E-08 3.13E-09 1.48E-07 1.82E-06 
090915E bdl 4.25E-08 4.89E-08 1.77E-09 6.56E-07 5.41E-07 
090915F bdl 5.98E-09 6.42E-08 2.29E-09 6.05E-07 7.41E-07 
090915G bdl 8.81E-09 1.84E-08 5.63E-09 6.48E-07 7.52E-07 
090915H bdl 1.35E-08 2.60E-08 7.09E-10 6.05E-07 6.56E-07 
2010 season      
101014A bdl 5.98E-09 4.43E-08 1.15E-08 3.86E-07 5.52E-07 
101014B bdl 2.05E-09 2.75E-08 1.29E-08 4.03E-07 7.08E-07 
101015C bdl 4.25E-08 1.21E-07 2.08E-09 2.16E-07 2.59E-07 
101015D+ bdl 2.20E-09 4.89E-08 5.11E-10 1.22E-07 1.07E-07 
101016E bdl 7.87E-10 1.97E-08 1.36E-09 4.28E-07 2.63E-07 
101016F bdl 7.40E-10 3.06E-08 1.04E-09 3.65E-07 2.59E-07 
101016G bdl 1.02E-09 3.52E-08 1.25E-09 2.98E-07 1.22E-06 
101016H 2.39E-06 2.68E-09 5.20E-08 1.56E-08 2.13E-07 3.04E-07 
2011 season      
110925A bdl 2.00E-09 5.96E-09 8.23E-09 1.25E-07 2.82E-07 
110925B 2.88E-06 5.05E-09 7.34E-08 2.92E-10 1.12E-07 8.75E-07 
110925C bdl 2.30E-09 2.63E-08 2.81E-10 1.05E-07 2.11E-07 
110925D bdl 6.61E-09 8.76E-08 8.96E-09 3.27E-07 2.13E-07 
110926E bdl 4.48E-09 2.22E-08 5.43E-09 2.31E-07 2.15E-07 
110927F bdl 6.92E-09 6.41E-08 7.30E-09 8.36E-07 2.52E-07 
110927G bdl 1.48E-08 7.34E-08 3.34E-10 5.19E-07 4.45E-07 
110929H 3.21E-06 1.29E-09 6.42E-08 8.96E-10 4.47E-07 1.67E-07 
110929I+ bdl 4.56E-10 2.80E-07 6.78E-10 1.70E-07 2.04E-07 
       
"+" = field blank      
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Table A.1 (cont'd) Water chemistry of Robertson Glacier 
 Cl- SO4

-2 S  DIC 
Sample (mol/kg) 
2009 season     
090914A 5.54E-06 7.51E-05 6.05E-06 4.76E-04 
090914B 2.47E-05 8.21E-05 bdl 7.30E-04 
090914C 1.44E-06 3.33E-05 8.05E-06 5.20E-04 
090914D+ bdl bdl bdl 5.20E-05 
090915E 3.00E-06 2.28E-05 3.56E-06 6.03E-04 
090915F 1.72E-06 1.25E-06 4.37E-07 4.05E-04 
090915G 3.17E-06 5.47E-05 4.99E-07 8.96E-04 
090915H 4.10E-06 7.45E-07 bdl 1.54E-04 
2010 season     
101014A 2.85E-06 5.71E-04 3.12E-07 9.94E-04 
101014B 4.01E-06 4.03E-04 2.18E-07 1.92E-03 
101015C 7.20E-06 2.00E-06 bdl 9.82E-06 
101015D+ bdl 6.25E-08 bdl 1.03E-05 
101016E 2.40E-06 4.61E-04 5.30E-07 9.94E-04 
101016F 4.17E-06 5.31E-04 bdl 1.78E-03 
101016G 4.25E-06 2.94E-06 bdl 1.60E-04 
101016H 1.36E-05 4.56E-06 bdl 8.61E-05 
2011 season     
110925A 4.27E-06 1.11E-04 1.03E-06 6.37E-04 
110925B 3.16E-05 5.74E-06 1.88E-05 3.22E-04 
110925C 8.61E-06 1.76E-06 3.74E-07 4.64E-04 
110925D 4.17E-06 3.91E-04 3.74E-07 1.73E-03 
110926E 2.41E-06 1.87E-04 2.49E-06 5.88E-04 
110927F 1.09E-05 4.46E-04 5.93E-07 2.21E-03 
110927G 7.05E-06 6.53E-05 2.18E-07 6.88E-04 
110929H 1.28E-05 3.26E-06 bdl 3.35E-04 
110929I+ 2.90E-06 5.29E-07 bdl 3.15E-05 
     
"+" = field blank    
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Table A.1 (cont'd) Water chemistry of Robertson Glacier 

 SiO2(aq)  F- PO4
-3 NO3

- 
Sample (mol/kg) 
2009 season    
090914A 8.82E-05 5.71E-07 bdl 2.04E-06 
090914B bdl 1.68E-05 bdl 7.60E-06 
090914C 7.66E-05 3.16E-06 bdl 2.97E-06 
090914D+ bdl bdl bdl bdl 
090915E 1.45E-04 4.61E-07 bdl bdl 
090915F 6.82E-05 6.84E-08 bdl bdl 
090915G 7.99E-05 8.79E-06 bdl 2.52E-06 
090915H bdl 1.63E-06 bdl  
2010 season    
101014A 7.32E-05 2.47E-06 bdl 1.39E-05 
101014B 5.74E-04 3.05E-06 bdl 1.62E-05 
101015C bdl 2.84E-06 bdl 3.14E-06 
101015D+ bdl 3.37E-07 bdl bdl 
101016E 1.78E-04 2.26E-06 bdl 1.37E-05 
101016F 7.16E-05 2.37E-06 bdl 1.00E-05 
101016G bdl 1.03E-05 bdl 2.90E-07 
101016H 6.16E-05 6.00E-06 bdl 7.42E-06 
2011 season    
110925A bdl 3.86E-06 bdl 1.02E-06 
110925B bdl 4.13E-06 bdl 6.75E-06 
110925C bdl 2.34E-07 bdl 6.94E-07 
110925D bdl 2.93E-06 2.10E-06 2.29E-05 
110926E bdl 1.85E-06 bdl 5.93E-06 
110927F bdl 1.08E-06 bdl 8.62E-06 
110927G bdl 8.87E-07 bdl 4.71E-06 
110929H bdl 3.49E-05 2.09E-07 6.54E-07 
110929I+ bdl 2.61E-07 bdl 3.37E-07 
     
"+" = field blank    
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Table B.1. Rock samples from Robertson Glacier 
Location Sample Inferred lithologic unit 
Supraglacial 110922Ai* Sassenach 
 110922Ai2 Sassenach 
 110922Bi* Sassenach 
 110922Bii Mount Hawk 
 110922Bii2 Sassenach 
 110921Ci* Mount Hawk 
 110922Ci* Palliser 
 110922Ci2 Mount Hawk 
 110922Cii* Sassenach 
 110922Cii2 Palliser 
 110922Di* Palliser 
 110922Di2 Sassenach 
 110922Ei* Sassenach 
 110922Eii Sassenach 
 110922Fi* Sassenach 
 110922Fi2 Sassenach 
 110922Gi* Sassenach 
 110922Gi2 Sassenach 
 110922Hi* Sassenach 
 110922Hi2 Sassenach 
 110922Hii Palliser 
 110922I* Sassenach 
 110922I2 Sassenach 
 110922J* Sassenach 
 110922J2 Mount Hawk 
 110921Ci Palliser 
 110921C_fresh* Mount Hawk 
 110921Ciii Sassenach 
 101014D1 Sassenach 
 101014E1 Sassenach 
 101014E2 Mount Hawk 
 101014E3 Palliser 
 101014D1sed* Palliser 
 101014Bsed* Palliser 
  101014Dsed* Palliser 
*sample too small to bisect with rock saw 
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Table B.1. (cont'd) Rock samples from Robertson Glacier 
Location Sample Inferred lithologic unit 
Subglacial 110921Ai* Palliser 
 110921Ai2 Sassenach 
 110921Ai3 Sassenach 
 110921Aii* Mount Hawk 
 110921Aii2 Mount Hawk 
 110921Aii3 Palliser 
 110921Aiv* Palliser 
 110921Bi Mount Hawk 
 110921Bi2 Mount Hawk 
 110921Bii* Palliser 
 110921Bii2 Sassenach 
 110921Bii3 Sassenach 
 110921Biv* Palliser 
 110921Biv2 Mount Hawk 
 101016H1 Sassenach 
 101016I Mount Hawk 
   
   
   
Proglacial 101014C2 Mount Hawk 
 101016K1 Palliser 
 101014C1 Palliser 
 101014B1 Mount Hawk 
 101014A3 Sassenach 
 101014A2 Mount Hawk 
 101014A4 Palliser 
 101014A1* Mount Hawk 
 101014C2* Mount Hawk 
 101016K* Mount Hawk 
 101014B6* Mount Hawk 
 101014C1* Sassenach 
 101014B3* Mount Hawk 
 101014x* Mount Hawk 
 101014xp* Mount Hawk 
 110923Bsed* Palliser 
  110921Aiiised* Palliser 
*sample too small to bisect with rock saw 

 


