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ABSTRACT 

 

The application of novel visualization and modeling methods to the study of 

cardiovascular disease is vital to the development of innovative diagnostic techniques, 

including those that may aid in the early detection and prevention of cardiovascular 

disorders. This dissertation focuses on the application of particle image velocimetry 

(PIV) to the study of intracardiac hemodynamics. This is accomplished primarily though 

the use of ultrasound based PIV, which allows for in vivo visualization of intracardiac 

flow without the requirement for optical access, as is required with traditional camera-

based PIV methods.  

The fundamentals of ultrasound PIV are introduced, including experimental 

methods for its implementation as well as a discussion on estimating and mitigating 

measurement error. Ultrasound PIV is then compared to optical PIV; this is a highly 

developed technique with proven accuracy; through rigorous examination it has become 

the “gold standard” of two-dimensional flow visualization. Results show good agreement 

between the two methods.  

Using a mechanical left heart model, a multi-plane ultrasound PIV technique is 

introduced and applied to quantify a complex, three-dimensional flow that is analogous to 

the left intraventricular flow. Changes in ventricular flow dynamics due to the rotational 

orientation of mechanical heart valves are studied; the results demonstrate the importance 

of multi-plane imaging techniques when trying to assess the strongly three-dimensional 

intraventricular flow.  

The potential use of ultrasound PIV as an early diagnosis technique is 

demonstrated through the development of a novel elasticity estimation technique.  A 
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finite element analysis routine is couple with an ensemble Kalman filter to allow for the 

estimation of material elasticity using forcing and displacement data derived from PIV. 

Results demonstrate that it is possible to estimate elasticity using forcing data derived 

from a PIV vector field, provided vector density is sufficient. 
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Chapter 1 

 

INTRODUCTION 

 

According to a World Health Organization study published in 2012, the world’s 

leading cause of death, claiming the lives of 7.4 million people that year, was ischemic 

heart disease. Stroke and hypertensive heart disease claimed the 2nd and 10th spots, 

respectively, with 6.7 and 1.1 million deaths in 2012 [1]. Cardiovascular related diseases 

remain the leading cause of death for Americans and the world’s population. It is clear 

that the current methodology for diagnosing and treating cardiovascular disease is 

lacking.  

Perhaps one of the primary issues leading to the prevalence of cardiovascular 

diseases is the failure of patients to receive preventative treatment when such treatment is 

still viable. Treatment of cardiovascular diseases often occurs after the onset of initial 

symptoms. As an example, valvular stenosis; in particular, aortic stenosis, which is often 

caused by calcification of the aortic valve, usually manifests as shortness of breath or 

dizziness [2]. However, treatment after the onset of symptoms can be rigorous and may 

require lifelong use of medication and drastic lifestyle changes. Depending on the 

severity of valvular disease, corrective surgery such as valvular replacement may be 

necessary. If an aortic stenosis is detected early, when the patient is asymptomatic, the 

prognosis is much more favorable and treatment will be primarily focused on minor 

lifestyle changes to improve health. Treatment of cardiovascular diseases is not a primary 

focus of this dissertation; instead, this often requires methods that are patient-specific and 

must be determined by a clinician. The primary focus of this research is on the diagnosis 
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of cardiovascular diseases, particularly diagnostic methods that could potentially prevent 

a patient from requiring invasive treatment.  

Diagnosis techniques for heart diseases can be based on measurements of 

intracardiac hemodynamics, such as velocity or pressure; the structure of the 

myocardium; electrical conduction of the heart tissue; heart rhythm and rate; and cardiac 

output.  In the design and development of diagnosis techniques, several considerations 

must be taken into account. Such techniques should be inexpensive, especially given the 

prevalence of heart disease among the under-privileged; they must also be accurate, 

repeatable and reliable; finally, they should be relatively simple for a clinician to 

implement. Magnetic Resonance Imaging (MRI), a diagnosis method that is considered 

to be particularly reliable, is prohibitively expensive for use in all but the most extreme 

circumstances. In contrast, Doppler ultrasound, although relatively inexpensive and 

reliable, is highly susceptible to operator error and examinations must be performed by 

experienced sonographers [3].  

Perhaps one of the most important aspects in the development of diagnostic 

methods is the creation of early diagnosis techniques that allow for the detection of 

cardiovascular disease before treatment with medication or surgery is required. Early 

diagnosis techniques can allow a patient to make lifestyle changes, such as exercising 

regularly or implementing dietary changes, before their symptoms become more severe.  

Considering the early onset of cardiovascular diseases can result in pathophysiologies 

that are difficult to perceive, such as altered intraventricular flow, these techniques must 

be sensitive enough to detect such pathophysiologies before the patient is noticeably 

symptomatic. Baseline conditions can vary widely between patients based on overall 
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health, age, sex, and patient-specific physiology; thus, a diagnosis technique should also 

be adaptable for each patient.  

Several recent technological advancements allow for the development of novel 

diagnosis techniques that would have previously been impossible. Flow visualization 

methods that allow for direct measurement of in vivo hemodynamics can be coupled with 

experimental models to create entirely new diagnostic techniques, an example being the 

tissue compliance estimation routine discussed in Chapter 5. By altering boundary 

conditions, such models can also be used to assess patient-specific dysfunction.  

 

1.1 Background of Cardiovascular Modeling 

Study of the cardiovascular system, and, more specifically, study of intracardiac 

flow, has throughout history been of paramount importance to the medical field. Perhaps 

the first detailed observations of the cardiovascular system come from the teachings of 

the Greek philosopher Aristotle, one of the first scholars to postulate the important role 

the heart plays in human physiology. However, the most incredible of these early studies 

of hemodynamic function is found in the research journals (dating from 1508-1509, and 

1513) of Leonardo Da Vinci. Using what was believed to be a glass model of the left 

ventricle, he was the first to correctly predict, and accurately model, the occurrence of the 

ventricular vortex [2]. Da Vinci’s genius extended to his research of arteries, vessels, 

capillaries, accurate conceptualization of cardiac function, and detailed studies of heart 

valve mechanics. He was perhaps the first to understand the open and closure dynamics 

of heart valves in response to a pulsatile flow generated during each heartbeat [4]. 
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Confirmation of his early observations would take centuries and require technological 

advancements that would allow for quantification of cardiovascular function. 

Cardiac flow visualization has its basis in technology created during the Second 

World War. Following the war these advancement were adapted for peace time use, thus 

resulting in the creation of rudimentary ultrasound imaging devices and breakthroughs in 

the understanding of nuclear magnetic resonance [5]. With the advent of phased-averaged 

magnetic imaging systems and echocardiography, which allow for non-invasive, in vivo 

testing, scientists were finally able to demonstrate the existence of energy-conserving 

intraventricular vortices; thus confirming Da Vinci’s original hypothesis [4]. Within the 

last decade, methods allowing for direct in vivo visualization, and experimental methods 

such as computer-based numerical simulations and detailed in vitro studies have finally 

revealed the intricacies of cardiovascular hemodynamics.  

 

1.2 Organization of this Dissertation 

This dissertation is comprised of four distinct sections that offer incite into cardiac 

functioning, challenges of cardiac modeling and also an explanation of existing 

techniques. Chapters 3, 4, and 5 realted directly to the development of ultrasound PIV 

and novel diagnostic techniques; this is outlined in Figure 1.1.The primary focus of this 

dissertation is on the application of the PIV technique as a diagnostic tool; thus, a detailed 

analysis of the ultrasound PIV method is given along with examples of its 

implementation and potential to diagnose cardiac disorders. Descriptions of each section 

are provided below. 



 5 

 

Figure 1.1 Dissertation outline showing the development and validation of ultrasound 

PIV as a clinical diagnostic tool  

Chapter 2: Modeling of Intracardiac Hemodynamics. This section begins with a brief 

overview of cardiac functioning, including a detailed description of the cardiac cycle. 

Challenges associated with the modeling of cardiac functioning, including the irregular 

boundary conditions of the myocardium, are also discussed. Finally, an overview is 

provided for several modeling techniques, both computational and experimental, along 

with an analysis of intracardiac visualization techniques such as MRI and ultrasound PIV.  

 

Chapter 3: Flow Velocity Vector Fields by Ultrasound Particle Imaging Velcimetry: In 

Vitro Comparison to Optical Flow Velocimetry. This section introduces the fundamentals 

of ultrasound PIV, including experimental methods for its implementation as well as a 

discussion regarding the level of error in measurements. Ultrasound PIV is then 
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compared to optical PIV; this is a highly developed and accurate technique that, through 

rigorous examination, has become the “gold standard” of two-dimensional flow 

visualization.  

 

Chapter 4: Effects of Bileaflet Mechanical Mitral Valve Rotational Orientation on Left 

Ventricular Flow Conditions. This section demonstrates the application of multi-plane 

ultrasound PIV to quantify a complex, three dimensional flow that is analogous to the left 

intraventricular flow. Also of interest is the experimental use of a left heart model to 

approximate cardiac functioning and allow for in vitro testing. 

 

Chapter 5: Elasticity Estimation Using Optical Particle Image Velocimetry Velocity 

Fields. This section extends the use of PIV as a diagnostic tool through its application in 

a novel elasticity estimation routine that could potentially be used to measure the 

compliance of the myocardium or heart valve leaflets.  
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Chapter 2 

 

VISUALIZATION AND MODELING OF INTRACARDIAC HEMODYNAMICS 

 

 

 This chapter investigates the processes by which researchers are able to model, 

either through simulation or based on direct in vivo observation, the intracardiac flow. 

The primary focus of this dissertation will be on flow within the left ventricle (LV) and 

the transvalvular flow for the mitral and aortic valves, where the former is the ‘inlet’ and 

the latter being the ‘outlet’ of the LV. This selection is not arbitrary; the left heart is of 

extreme physiological importance considering its primary function is to pump 

oxygenated blood throughout the body [2]. Deviation from normal functioning of the left 

heart can, in many ways, be more debilitating when compared to similar 

pathophysiologies encountered in the right heart. Although not discussed, methods 

outlined within this chapter can be extended to the right ventricle and its valves (tricuspid 

and pulmonary valves), and also to the right and left atrium.  

This chapter will provide an overview of widely used hemodynamic flow 

visualization techniques and modeling considerations. The primary focus will be on 

ultrasound-PIV (echo PIV) and MRI visualization techniques, both of which are leading 

methods in the research of intracardiac flow. Much work has been dedicated to both of 

the aforementioned methods and detailed explanations are readily available. Before 

delving into the techniques used for intracardiac hemodynamic modeling, a brief 

overview of cardiac function is given. Although often described in a mechanical sense as 

a pump, the heart is a tremendously complex biological system that presents many 

challenges when researchers attempt to study or model its function, particularly if the 
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heart is diseased. Understanding these challenges is paramount to determine the benefits 

and limitations of each method used to model or measure intracardiac flow.  

 

2.1 Anatomy of the Heart  

 The function of the four-chambered heart is to pump oxygenated blood to cells 

throughout the body and then move deoxygenated blood back to the lungs. The 

cardiovascular system can be divided into the two separate circulatory systems: systemic 

circulation and pulmonary circulation. Systemic circulation carries oxygenated blood 

from the heart and into the body, and then transports deoxygenated back to the heart. 

Pulmonary circulation transports deoxygenated blood from the heart to the lungs and then 

carries oxygenated blood back to the heart [2].  

 The four chambers of the heart are: the left and right atria and the larger left and 

right ventricles. The function of the left and right atria is to allow continuous venous 

filling to occur, uninterrupted by the contraction of the ventricle. Unlike the ventricles 

there exists no valve at the inlet of the atria. The atrium prevents venous flow from being 

pulsatile; flow enters the atrium continuously, including when the atrium is being 

emptied into the ventricle. Atria are analogous to the priming mechanism of a mechanical 

pump system; where the ventricle is the actual pump mechanism and the volume of the 

ventricle corresponds to the displacement of the pump for each cycle. Because of this, 

both ventricles operate at higher pressures than the atria and are surrounded by a thicker 

myocardium. The left ventricle is responsible for pumping oxygenated blood into the 

aorta and throughout the body; this results in higher operating pressures than the right 
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ventricle, which is pumping deoxygenated blood through the pulmonary arteries directly 

to the lungs [2].    

The heart also has four distinct valves that control flow directionality. The two 

atrioventricular (AV) valves: the mitral valve, positioned between the left atrium and 

ventricle; and the tricuspid valve, positioned between the right atrium and ventricle. Also, 

the two semilunar (SL) valves:  the aortic valve, positioned between the left ventricle and 

aortic root; the pulmonary valve, positioned between the right ventricle and pulmonary 

artery. Each valve is comprised of two, three, and sometimes four leaflets that open and 

close due to pressure variations between the atrium and ventricle or ventricle and outflow 

tract [2].  

 The cardiac cycle describes the stages the heart undergoes from the initiation of a 

heart beat to the beginning of the subsequent heart beat. The cycle begins with a stage 

referred to as atrial systole, the atria contracts allowing blood to rush into the ventricle. 

During this stage as blood rushes through the mitral valve and into the LV, a vortex is 

generated from the inflow jet. The diastolic vortex, typically observed only in healthy 

hearts, is believed to aid in the closure of the mitral valve and also increase the overall 

cardiac efficiency [CITE]. The atrioventricular valves close during the second stage, 

isovolumic contraction, while the ventricle starts to contract while maintaining a constant 

volume. The third stage of the cardiac cycle is ventricular ejection, the semilunar valves 

open while the ventricles contract, pushing blood into the outflow tract. The fourth stage 

is isovolumic relaxation, the ventricle has stopped contracting and is now becoming 

relaxed, the semilunar valves close while the atrioventricular valves remain closed. The 

final stage is ventricular filling, the semilunar valves are closed while the atrioventricular 
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valves are open. Atrial systole and ventricular systole represents the moment when the 

atria and ventricles, respectively, are contracting. Atrial diastole and ventricular diastole 

represents the moment when the atria and ventricles, respectively, are relaxed. Due to the 

helical arrangement of the myocardium fibers around the ventricles, contraction of the 

ventricle occurs in a twisting manner. This helical arrangement of fibers also allows the 

ventricles to convert part of its kinetic energy during contraction into potential energy via 

elastic recoil to generate a pressure gradient that aids in the suction of blood into the 

ventricle during the isovolumic relaxation stage. This event is known as ‘untwisting’ and 

can be difficult to replicate in cardiac models. [2, 6] 

 

2.2 Review of Methods for Intracardiac Flow Visualization 

 Capturing in vivo hemodynamic measurements can be difficult. Researchers must 

contend with the many limitations of current visualization methods; this includes 

limitations related to temporal and spatial resolution, but special considerations must also 

include patient comfort and the invasiveness of the procedure. Scan time, breath holding, 

and the use of contrast agents all contribute to patient discomfort. Another consideration 

is the difficulty of obtaining pertinent measurements. As an example, ultrasound 

measurements of the peak transaortic velocity, used to diagnose aortic stenosis, may 

require imaging planes that are impossible to access external to the body; thus, 

transesophageal echocardiography may be required. 
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Common intracardiac visualization techniques: MRI, color Doppler, and 

ultrasound PIV are discussed in the next sections; however, a more detailed discussion 

has been performed by Sengupta et al [3].  

 

2.2.1 Cardiac Magnetic Resonance Imaging 

Velocity encoded cardiac magnetic resonance (CMR) phase-contrast imaging 

allows for multidirectional measurement of intracardiac hemodynamics. Real time two 

dimensional data acquisition is possible, however, averaging between multiple heart 

cycles using electrocardiogram gating allows for the acquisition of fully three 

dimensional velocity data, with high resolution in each dimension, over a complete 

cardiac cycle. The interrogation window can be large enough to encompass the entire 

heart. Both spatial and temporal resolutions are dependent upon interrogation window 

size.  High spatial resolution can be acquired within a 3mm cube with temporal resolution 

of 50 ms. Limitations of this method include the time required to acquire data, this may 

exceed 20 minutes depending on the desired resolution; poor resolution for real time data; 

and also the high cost of the MRI equipment [3].  

 

2.2.2 Echocardiography  

 Various ultrasound-based methods can be employed to measure intracardiac 

velocity; these include Doppler ultrasound, color flow Doppler, vector flow mapping 

(VFM), and ultrasound PIV. Only the latter two will be discussed due to their ability to 

resolve two dimensional velocity vector fields. VFM utilizes data derived from color 

flow Doppler, which typically only resolves one dimensional axial velocity within an 
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ultrasound beam, to calculate the out-of-beam radial velocity component. This is 

accomplished numerically by assuming the radial flow is comprised of laminar flow with 

a vortical component that has zero mean. The out-of-beam velocity is then estimated by 

assuming the flow satisfies the continuity equation; depending on the complexity of the 

flow, the aforementioned assumptions necessary for the calculation of the radial velocity 

may be incorrect [3].  

 Ultrasound PIV utilizes the principles of PIV to obtain a two dimensional velocity 

vector field. Two dimensional B-mode ultrasound scans are acquired and offline tracking 

of contrast agents seeded within a flow is performed. The spatial and temporal resolution 

is highly dependent on the size of the interrogation region. Temporal resolution can reach 

4 ms with a spatial resolution of 4 mm; however, much lower resolution can be expected 

if the imaging region encompasses the ventricles. Three dimensional data is not readily 

available unless multi-plane acquisition methods are used, although this has not been 

thoroughly studied for in vivo applications. The primary benefit to ultrasound techniques 

is the relatively low cost of the equipment and high temporal resolution, particularly 

when compared to MRI [3,6]; however, there is a tradeoff with spatial resolution and the 

ability to image in 3D.  

 

2.3 Considerations of Cardiac Modeling 

Numerous techniques exist for modeling the heart. A summary of popular 

computational fluid dynamic (CFD) methods, including a discussion on the incorporation 

of ultrasound PIV data to enhance modeling, is provided in Borazjani, Westerdale et al 

[6].  Of particular consideration when modeling cardiac function is the development of 
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boundary conditions that correctly simulate the myocardium. This can be especially 

difficult as the myocardium expands and contracts, in a twisting manner, with each heart 

beat. Furthermore, geometry of the heart is irregular and specific to each individual; also, 

the myocardium has nonhomegeneous elasticity and thickness. Visualization techniques 

that delineate the cardiac structure can be used to derive patient-specific boundary 

conditions and visualization techniques that capture the intracardiac flow can be coupled 

with models to improve the ability of the model to correctly simulate cardiac 

hemodynamics.  

Modeling of the cardiovascular system is often performed to aid in both the 

treatment and detection of cardiac diseases and their subsequent pathophysiologies. 

Replicating a particular disease can be extremely difficult; a cardiac infarction, for 

instance, can alter the twisting and untwisting motion of the myocardium and also change 

the electrical activity of the heart, leading to an irregular heartbeat. Ventricular 

hypertrophy, the thickening of the ventricular walls, can affect the ventricle globally or 

regionally, and the level of severity or extent of cardiac remodeling that occurs will be 

specific to each patient. Thus, each disease that is modeled often requires revised 

boundary conditions. 
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Chapter 3 

FLOW VELOCITY VECOTR FIELDS BY ULTRASOUND PARTICLE IMAGING 

VELOCIMETRY: IN VITRO COMPARISON TO OPTICAL FLOW VELOCIMETRY 

 

The objective of this study is to perform an in vitro study to assess the precision and 

accuracy of particle imaging velocimetry (PIV) data acquired using a portable ultrasound 

system via comparison with optical-PIV.  The performance of ultrasound-PIV, where 

data are collected using a GE Vivid i portable system, is compared with a LaVision 

optical-PIV system on a benchmark problem involving a vortical flow with a significant 

out-of-plane velocity component. Optical-PIV is capable of stereo image acquisition, thus 

measuring out-of-plane velocity components. This allowed us to quantify the accuracy of 

ultrasound-PIV, which is limited to in-plane acquisition. The system performance is 

assessed by considering the instantaneous velocity fields, without extracting velocity 

profiles by spatial averaging. Within the two-dimensional (2D) correlation window, using 

7 time-averaged frames, the vector fields were found to have a correlation of .867 in the 

direction along the ultrasound beam and .738 in the perpendicular direction. Out-of-plane 

motion greater than 20% of the in-plane vector magnitude was found to increase the 

standard deviation by 11% for the vectors parallel to the ultrasound beam direction and 

8.6% for the vectors perpendicular to the beam. The results show a close correlation and 

agreement of individual velocity vectors generated by ultrasound-PIV and compared to 

optical-PIV. Most of the measurement distortions occurred due to out-of-plane velocity 

components. 

 



 15 

3.1 Introduction 

Particle imaging velocimetry (PIV) is a velocity field measurement method that works 

by calculating the velocity of neutrally buoyant tracer particles seeded within the flow. 

Ultrasound-PIV, originally described by Shandas et al. [7, 8], is well suited for 

characterization of intracavitary blood flow velocity vectors by using microbubbles as 

ultrasound contrast agents (UCA) captured in sequences of 2D brightness (B)-mode 

ultrasound scans [9, 10]. In essence, ultrasound-PIV represents a novel use of existing 

engineering principles of optical-PIV applied to brightness signals generated by 

microbubbles and tracked in sequential ultrasound images by software. To obtain local 

flow velocity vectors and velocity maps, the software calculates displacements of UCA 

over a given time interval, which is typically determined by the actual frame rate. 

A measure of the accuracy of ultrasound-PIV measurements is essential for advancing 

the analyses of intracardiac flow patterns from rather descriptive and qualitative studies 

to quantitative blood flow analyses. Previous studies explored the versatility of the 

ultrasound-PIV method by investigating the range of measurable flow velocities, 

providing a quantitative analysis of spatially averaged velocity fields for a laminar flow, 

and offering a qualitative analysis of a 2D velocity vector map for a rotating flow [7, 8].  

Using an in vitro setup, the purpose of this study was to initially assess the suitability 

of ultrasound-PIV data produced from scan-converted serial images generated by a 

commercially available, portable, and relatively inexpensive ultrasound imaging system. 

This was accomplished by quantitative analysis of 2D velocity fields generated from 

ultrasound-PIV scans of flow with both in and out-of-plane components.  Precision 
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(correlation) and accuracy (bias) of local vector velocities generated by ultrasound-PIV 

was compared to optical-PIV used as the reference.  

3.2 Materials and Methods 

3.2.1 Optical Particle Image Velocimetry  

The reference optical-PIV measurements in this study were obtained using a LaVision 

Flow Master acquisition system and DaVis software (LaVision GmbH, Göttingen, 

Germany). The system consists of two charge-coupled device (CCD) Imager Intense 

cameras that are synchronized with a 700 mJ argon-ion laser, which acts as the ‘flash’ for 

the images. The laser light reflected by tracer particles provides contrast from 

background noise.  

The actual velocity is measured by tracking particle displacement between two high-

speed images recorded by the camera with a time step dependent upon flow velocity and 

window size (3 ms for the experiment presented here). To achieve this, the laser 

generates a double pulse and the CCD camera records the two corresponding images 

from two separate exposures. The optical-PIV system pauses for an increased time step 

(17.6 ms) until taking an additional image pair. The optical-PIV system used in this 

experiment acquires stereo data. Two cameras are situated at different viewing directions 

to record both the 2D in-plane components and the out-of-plane velocity components. 

The “angular displacement” system is the standard configuration for the cameras [11]. 

The actual visualization area, both in-plane and out-of-plane, is determined by the width 

of the laser sheet (approximately 2 mm at 75% intensity).  
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The images have been processed using DaVis software, version 7.2.2.80. Briefly, a 

fast Fourier transform cross-correlation technique is applied and images are processed 

using an iterative scheme with multiple passes of decreasing interrogation window size. 

For each iteration, the corresponding window size and weight, percent overlap, and 

number of passes can be selected. The determination of particle displacement between 

image pairs leads to the calculation of flow velocity. 

3.2.2 Ultrasound Particle Image Velocimetry 

The implementation of ultrasound-PIV is analogous to optical-PIV; the most 

significant difference is the image capturing technique. While optical-PIV requires visual 

access to the flow, ultrasound-PIV uses high-frequency sound transmission to detect the 

position of UCA dispersed within the flow. A Vivid i (GE Healthcare, Milwaukee, WI) 

portable ultrasound imaging system, was used in our study to produce B-mode 2D sector 

scans. The scans were obtained with a 3S-RS phased-array transducer operating at 3.6 

MHz frequency at a depth of 17cm with a mechanical index (MI) of 1.1. The 2D 

transducer imaging axis was aligned with the optical-PIV laser sheet (Figure 1). The 

DICOM video images exported by the Vivid I were scan converted and the resulting 

images have square pixels of 0.435 mm in size. 

3.2.3 Ultrasound Contrast Agent 

Optison (GE Healthcare) was used in this study. In clinical applications, UCA is 

administered in a large enough quantity so as to produce maximum backscatter to 

delineate cardiac structures. However, when performing ultrasound-PIV, a significantly 

lower concentration is used so that individual particles can be tracked between frames 
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and their overlap within the interrogation (image sampling) window is minimized. The 

UCA concentration has been shown to significantly affect the quality of ultrasound-PIV 

results [8]. Because cross-correlation analysis is in the core of tracking particle motion 

between frames, we used cross-correlation index (CCI) [8] as the measure of optimal 

UCA concentration. CCI is defined as follows: 
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xF  is a Gaussian fitting function, )(xf is the cross-

correlation peak fitting function, x is the total number of pixels within the interrogation 

window,  is the standard deviation of the Gaussian fitting function, and   is the 

interrogation window size. The minimum interrogation window size is determined using 

the one quarter rule [12]. The rule, used for both optical- and ultrasound-PIV, states that 

particle displacement (in pixels) should be no greater than one quarter of the minimum 

interrogation window size [8].  Particles with a greater velocity will move out of the 

interrogation window, thereby necessitating a larger window size. Acceptable values for 

the CCI are within the range from 0.2 to 0.55 [8]. 
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3.2.4 Experimental Apparatus 

In order to investigate the correlation between vector maps generated by optical-PIV 

and ultrasound-PIV, a setup (Figure 3.1) was constructed so that both PIV analyses could 

be performed concurrently on a water jet injected into a water-filled chamber. The central  

 

Figure 3.1 Experimental configuration. Three mutually perpendicular axes defined 

orientation in three dimensions as follows: u-direction was the direction of ultrasound 

transducer imaging axis, w-direction was perpendicular to the u-direction and the u-w 

plane was parallel with the fluid surface; v-direction and u-v plane were perpendicular to 

the u-w plane.  

 

chamber, where imaging and ultrasound data are collected, is a closed, 15.4 cm cube 

manufactured using 1.2 cm thick transparent acrylic. The particular acrylic was selected 

based on the level of transparency and its distortion-free surface, making it ideal for 

optical-PIV measurements. There is a certain level of ultrasound attenuation as a result of 

the acrylic; however, it is not the goal of this study to investigate a scenario where 

attenuation is minimized, we instead investigate a scenario more similar to a clinical 

setting where attenuation is prevalent. The setup is a closed system whereby the inlet is 

connected to a pump submerged in a reservoir (at zero head with respect to the centerline 
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of the chamber) and the outlet vents directly into the reservoir. The inlet and outlet 

sections are both acrylic tubes 70 cm in length with a square cross-sectional area and 

inner diameter of 2.2 cm. This corresponds to the typical mitral valve annulus diameter of 

2.1 to 2.7 cm [13]. The length and square cross-sectional area of the inlet tube was 

chosen to reduce the amount of ‘swirl’ within the flow. The jet is generated by a 20W, 

centrifugal pump which is triggered for 200 ms. The size of each vortex ring is dependent 

upon the flow volume, Reynolds number, orifice diameter, and ejection time [13]. The 

duration of each pump pulse was specifically chosen based on a series of trials so as to 

generate a single vortex ring with no shedding while maintaining a laminar flow. The 

Reynolds number for the flow characterized by the inlet tube diameter was approximately 

1000, this ensures no turbulent effects are present. Thus, considering the flow is laminar, 

swirl is eliminated, and a precise triggering system employed, the jet pulses are fully 

repeatable. This allowed ultrasound-PIV and optical-PIV to be performed on separate 

occasions, which was necessary because the maximum imaging frequency of the optical-

PIV was 2.5 frames/sec, whereas the frame rate of the ultrasound machine under the 

given conditions was 60 frames/sec. To compensate for this difference, a triggering 

system was designed so that the optical-PIV system would commence imaging following 

a given delay after the pump was activated. The initial delay was chosen so that imaging 

began once the jet entered the chamber. The triggering system, coupled with the 

repeatability of the flow, allowed us to collect precisely delayed optical-PIV 

measurements and assemble them to a time sequence that matched ultrasound-PIV 

measurements.  
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The tested peak flow velocity was 30 cm/s. The set temporal resolution of the Vivid-i 

machine (ie, 60 frames/sec) was adequate for this peak velocity and was supported by the 

serial DICOM output. The dimension of each vortex ring (one portion of the double 

vortex ring structure) was approximately 2 cm in the u- and v-directions.  

 

We assessed precision by the Pearson’s linear correlation and accuracy by the 

Bland/Altman methods, including the effects of outliers, measurement scale, and bias 

[14, 15]. 

3.2.5 Ultrasound-PIV Analysis 

Optison, mixed in the original vial as instructed in the packaging, was injected in an 

amount of 0.5 mL into the tank and the pump was run for approximately 10 seconds to 

disperse the microbubbles evenly within the flow system. The initial UCA concentration 

was estimated at 71023.2  microbubbles/mL. However, a significant number of 

microbubbles was destroyed by the ultrasound beam, collision with the pump or other 

surfaces, and diffusion. To develop a range for determining the appropriate concentration, 

two sets of data were collected at 30 sec, 60 sec, and 90 sec after the initial injection of 

Optison, where each time step corresponds to a decrease in concentration due to particle 

destruction. The total time to conduct each experiment was approximately 10s after the 

water pump was activated. The maximum CCI of 0.34, found 30 sec after the initial 

injection, was within the range of acceptable values; data corresponding to this CCI was 

used for the PIV analysis.   
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A particle intensity normalization was applied to the scan converted image to enhance 

the contrast between individual particles and background noise. Raw data collected from 

the left and right cameras of the optical-PIV system and raw data from the ultrasound 

scan are shown in Figure 3.2. The data was processed by the DaVis software using the 

iterative cross-correlation technique with decreasing interrogation window size. The 

maximum window size was 128  128 pixels with 50% overlap with adjacent 

interrogation windows and 2 passes of the processing , and the minimum window size 

was 32  32 pixels with 75% overlap and 3 passes. Approximately 16 particles were 

evident per interrogation window. Weighting factors were not applied to either window 

size. Vectors with magnitude exceeding two times the root-mean-square magnitude of 

neighboring vectors were automatically labeled as outliers and eliminated.   

 

Figure 3.2 Raw data for the left camera of optical PIV (left), right camera of optical-

PIV (middle), and the DICOM ultrasound image.  

3.2.6 Optical-PIV Analysis 

The optical data was processed analogously to the echo data, with the primary 

difference being a higher visible particle density than the ultrasound data that allowed the 

use of a maximum window size of 64  64 pixels with 25% overlap and 2 passes, and a 

minimum window size of 16 16 pixels with 50% overlap and 2 passes. There were 
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approximately 20 particles per interrogation window. Considering that interrogation 

window size affects spatial resolution, and a smaller interrogation window was used 

when processing the optical data, the echo results were spatially interpolated to match the 

vector density provided by optical-PIV. A smaller interrogation window allowed for 

more detailed optical-PIV vector fields and more incite into the accuracy lost by the 

limited resolution of the ultrasound scan.  

The correlation window for the optical and ultrasound PIV velocity fields was 12.7 

mm along the u-direction and 38.4 mm in the v-direction. The vector density was 1.144 

vectors per mm2 with a total vector density of 558 vectors. Figure 3.3 shows the location 

of the correlation window as indicated by a translucent red square overlay on the echo 

and optical-PIV velocity fields.  

 

Figure 3.3 The red overlay indicates the location of the correlation window in relation 

to the velocity field for ultrasound-PIV (left) and optical-PIV (right). 
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3.3 Results 

To minimize the noise in the ultrasound-PIV measurements, a moving average time 

filter was applied to the ultrasound-PIV velocity fields. The filter was also applied to the 

optical-PIV data to ensure identical velocity fields are compared, i.e. 3 averaged 

ultrasound-PIV data sets will have the same characteristics as 3 averaged optical-PIV 

data sets. This allows us to study the effects of a time average filter on noise in ultrasound 

measurements without considering error introduced by averaging flow characteristics. In 

this particular instance the flow remains virtually steady throughout the averaging cycle 

and the frame rate is sufficiently high so that only minimal error is introduced via the 

time averaging filter; however, this may not be the case in other applications. Figure 3.4 

shows the relation between the number of frames averaged and the resulting correlation 

between the averaged echo and optical velocity fields. The correlation coefficient 

increased with increasing number of frames averaged and reached the peak value of 

0.802 with 7 frames averaged. The correlation factor was found to decrease when more 

than 8 frames were averaged. This is because the vortex ring gradually moves beyond the 

laser sheet and out of the field-of-view for optical-PIV.  
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Figure 3.4 Plot of the number of averaged frames (N) used in filter versus the linear 

correlation coefficient for echo and optical-PIV over time. The maximum correlation was 

found at N = 7. 

 

Within the correlation window, using 7 averaged frames, the ultrasound and optical 

velocity fields were found to have a correlation of 0.867 in the u-direction and 0.738 in 

the v-direction. The identity plot for the u-direction (Figure 3.5a) and v-direction 

(Figure 3.5b) show minimal visible bias in the data; the equation for the linear regression 

line further confirms this fact, where the  u-direction is given by y=.9564x+.0201 and the 

v-direction is given by .9804x+.0219. When considering both the u and v directions, the 

correlation of vector magnitudes of the velocity fields was 0.802. The average error in the 

u-direction (along the ultrasound beam) was 5% less than the average error in the v-

direction (perpendicular to the ultrasound beam). This discrepancy is indicative of the 

variations in ultrasound resolution in the axial (along the beam) and perpendicular 

directions. Perpendicular resolution is affected by factors such as beam width and 

interpolation due to the scan conversion process, where as axial resolution is a function of 

frequency [8].    
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.5 Identity plot of optical-PIV versus ultrasound-PIV velocities for (a) u-

direction and (b) v-direction at a time of .34 seconds, corresponding to the maximum 

correlation coefficient. In addition, data points where out-of-plane motion is greater than 

20% of the in-plane motion are plotted for (c) u-direction and (d) v-direction. More 

distortion is found in v-direction (perpendicular to ultrasound beam) than in u-direction.  

 

Along the u-direction, 86% of the vectors have less than 20% error between echo and 

optical PIV, and along the v-direction, 74% of the vectors have less than 20% error. A 
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significant portion of the error greater than 20% is caused by the inability of ultrasound-

PIV to track particles that move out-of-plane, as shown in Figure 5c and 5d, where only 

vectors with an out-of-plane component greater than 20% of the in-plane vector 

magnitude are plotted. These vectors are found to congregate in regions with the highest 

level of error, corroborating the idea that a significant part of the flow velocity error in 

ultrasound-PIV comes from out-of-plane movement of the tracer particles. This idea is 

furthered when considering the Bland Altman plots in Figures 3.6a and 3.6b; the 

standard deviation decreases by 11% for the u-direction vectors and 8.6% for the v-

direction vectors when points with high out-of-plane motion are ignored, as illustrated in 

Figures 3.6c and 3.6d, respectively.  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 3.6 Bland Altman plots of optical-PIV versus ultrasound-PIV velocities for (a) 

u-direction, SD = 0.0365m/s and (b) v-direction, SD = 0.0351m/s. The corresponding 

plots where data points corresponding to out-of-plane motion greater than 20% of the in-

plane motion are deleted for (c) u-direction, SD = 0.0324m/s (d) v-direction, SD = 

0.0321m/s. The 95% confidence intervals are indicated by ±1.96 SD. 

 

3.4 Discussion 

The primary finding of this study is that ultrasound-PIV measurements of 2D velocity 

fields obtained for in-plane components of a three dimensional flow strongly correlate 

(Figures 3.5a, 3.5b) and closely agree (Figures 3.6a, 3.6b) with the corresponding local 

velocities measured by optical-PIV. Expectably, out-of-plane motion of flow affected 

both the correlation (Figures 3.5c and 3.5d) and agreement (Figures 3.6c, 3.6d). But we 

deem the overall precision and accuracy of ultrasound-PIV, using measurements obtained 

from a widely available, portable system, remains suitable for the tested flow velocities 

and the method could be extended to clinical applications.  
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Analysis of blood flow patterns inside the cardiovascular system conveys important 

information about functioning [16] and health status [17] of the heart. The ability to 

visualize and quantitatively evaluate blood flow patterns are important prerequisites for 

early diagnosis in cardiology [18]. Conventional Doppler ultrasound imaging provides 

quantitative data about blood flow velocities and pressure gradients [19, 20], but this 

method is angle-dependent, one-dimensional, and limited in detecting flow alterations in 

early stages of cardiac disease [13,21]. Garcia et al. [22] reported successful 

reconstruction of 2D intraventricular flow velocity maps by digital processing of color-

Doppler velocities in combination with LV wall positions throughout the cardiac cycle. 

However, further validation of this method will be needed to show clinical utility. 

Magnetic resonance phase contrast velocity mapping, which is another imaging 

alternative for analysis of intracardiac flow, is burdened by high cost, has limited 

temporal resolution when compared to Doppler, and can lead to patient discomfort [23-

25]. Considering these limitations, the technique is unlikely to be used widely in a 

clinical setting and, despite spatial resolution superior to ultrasound-PIV, the limited 

temporal resolution can restrict the imaging of heavily time dependent flows. 

Ultrasound-PIV, with high temporal resolution and relatively low cost (particularly if 

conducted using readily available ultrasound equipment), offers several benefits over 

previous visualization techniques that may make it suitable for future clinical use. 

Advances in imaging techniques for mapping flow patterns with ultrasound-PIV 

[9,10,16] have enabled noninvasive and potentially broadly usable assessment of 

intracardiac flow patterns and fluid transport efficiency. Hong et al. [9] used ultrasound-

PIV to analyze intraventricular blood flow in hearts of normal subjects and patients with 
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systolic dysfunction and demonstrated that ultrasound-PIV and depiction and vorticity 

analysis of intracardiac blood swirls could serve as a novel approach to qualitatively and 

quantitatively assess intraventricular flow structure. Gharib et al. [26] characterized 

optimal intracardiac hemodynamic conditions for diastolic vortex formation by the vortex 

formation time parameter and showed in a clinical study that vortex formation can be an 

index of cardiac health. We have also shown intracardiac vortex formation in the context 

of left ventricular function [27] and documented alterations of intraventricular vortices 

during asynchronous isovolumic phases of the cardiac cycle [10]. Moreover, we 

demonstrated that increased left ventricular pressure loading impairs diastolic vortex 

formation [16] and increases required transmitral flow forces [28].    

Investigators in Shandas’ group optimized ultrasound-PIV by microbubble backscatter 

modeling [29] and initially experimentally validated the method [7, 25]. The present 

study validates ultrasound-PIV in vitro against optical-PIV in a setting simulating 

diastolic vortex ring formation and demonstrates the ability of ultrasound-PIV to 

precisely and accurately assess local flow velocities. In this way, the presented work 

contributes to more extensive validation, further refinement and, ultimately, clinical 

implementation of the echo-PIV method.  

3.4.1 Limitations 

In the current study, flow velocities tested are relatively low flow velocities in 

comparison to the left ventricular diastolic filling flow and diastolic vortex formation 

[16]. Development of a more advanced flow model is anticipated to provide higher range 

of flow rates and options for testing various complex flow patterns. Higher temporal 
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resolution and, thus, frame rates in the order of hundreds of frames/sec, will be demanded 

by the new model. The Vivid-i system including its pulser/receiver hardware is 

miniaturized but its diagnostic performance is similar to high-end systems such as Vivid 

7 or Vivid E9 (communication with GE Healthcare). However, full featured systems 

typically have faster processing hardware and software; thus if frame rates in the order of 

hundreds of frames/sec will be required, a high-end ultrasound system will be considered 

for echo-PIV to assure a sufficient reserve in temporal resolution. 

The displacement of particles between consecutive frames is dependent upon the flow 

velocity. Referring to the one quarter rule [12], which dictates that particle displacement 

(in pixels) should be no greater than one quarter of the minimum interrogation window 

size [8], it is possible to estimate the frame rate for a desired interrogation window 

resolution at a given velocity. For instance, if a given velocity corresponds to a 16 pixel 

displacement between frames, then the minimum window size is 64x64 pixels; however, 

if a 32x32 pixel interrogation window is desired, then the frame rate will need to be 

doubled. If a time filter is to be used to minimize noise in ultrasound data, than a much 

higher frame rate will be required based on the level of filtering necessary.     

The ideal situation for ultrasound-PIV data processing would be to use radiofrequency 

signals. The next best option would be saving the data as DICOM-raw files and perform 

ultrasound-PIV analysis prior to scan-conversion to minimize distortion of microbubbles 

by interpolation and smoothing typically used in the scan-conversion process. Kim et al. 

[7] demonstrated that such distortion can negatively impact flow analysis, as indicated by 

spurious velocity vectors along the top and bottom edges of the scan-converted images. 

To minimize the effect of distortion along the edges, here we chose the depth and width 
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of the ultrasound scan so that the area of interest (position of the vortex rings) was within 

the center of the sector image.  Overall, our approach of using standard DICOM output 

and scan-converted images simulated a simple, clinically feasible workflow, and the 

results confirmed precision and accuracy of the measurements. 

3.5 Conclusion 

In the given experiment, 2D velocity vector fields obtained by a clinically available, 

portable ultrasound machine coupled with DaVis PIV processing software are shown to 

be highly correlated and in a close agreement with those generated by optical-PIV, a 

technique well established as a standard for flow visualization [12,13,25]. The vortex ring 

imaged in this experiment contained a significant out-of-plane component, and much of 

the measurement error is shown to occur from the inability of 2D ultrasound to measure 

out-of-plane flow motion. Additional measurement error can be attributed to distortion 

due to the scan conversion process of ultrasound data. Given sufficient ultrasound frame 

rate, a time filter can be applied to minimize noisy data. Using 7 averaged frames on a 

flow with 30cm/s peak velocity measured at 60fps, the correlation was found to be .867 

in the direction along the ultrasound beam and .738 in the perpendicular direction. Thus, 

ultrasound-PIV is precise and accurate in the measured velocity range with most 

limitations related to 2D scanning of flow, which naturally contains velocity vectors in 

multiple directions. 
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Chapter 4 

EFFECTS OF BILEAFLET MECHANICAL MITRAL VALVE ROTATIONAL 

ORIENTATION ON LEFT VENTRICULAR FLOW CONDITIONS 

 

We studied left ventricular flow patterns for a range of rotational orientations of a 

bileaflet mechanical heart valve (MHV) implanted in the mitral position of an elastic, 

ellipsoidal model of a beating left ventricle (LV). The valve was rotated through 3 

angular positions (0, 45, and 90 degrees) about the LV long axis. Ultrasound scans of the 

elastic LV were obtained in four apical 2D imaging projections, each with 45 degrees of 

separation. Particle imaging velocimetry was performed during the diastolic period to 

quantify the in-plane velocity field obtained by computer tracking of diluted 

microbubbles in the acquired ultrasound projections. The resulting velocity field, 

vorticity, and shear stresses were statistically significantly altered by angular positioning 

of the mechanical valve, although the results did not show any specific trend with the 

valve angular position and were highly dependent on the orientation of the imaging plane 

with respect to the valve. We conclude that bileaflet MHV orientation influences 

hemodynamics of LV filling. However, determination of ‘optimal’ valve orientation 

cannot be made without measurement techniques that account for the highly 3-

dimensional intraventricular flow. 
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4.1 Introduction 

The use of MHVs is widely accepted. However, the blood flow patterns following 

MHV implantation are altered compared to those in a healthy heart. In addition, MHV 

leads to increased levels of hemodynamic stress, thus undesirably stimulating 

thrombogenic conditions [30,31]. But MHV implantation can also result in platelet and 

red blood cell destruction.  

Much work has been dedicated to the study of MHV hemodynamics, through 

direct experimentation and simulation, both in vitro and in vivo, for a wide range of 

MHV designs [32]. In addition, many investigators studied long-term clinical outcome in 

patients following aortic or mitral valve replacement by a mechanical prosthesis or 

bioprosthesis, as summarized by Rahimtoola [33,34]. These studies documented that, 

besides the hemodynamic and thrombogenic effects of the valve prostheses, comorbid 

conditions have key roles in clinical outcomes. However, these studies also revealed, but 

have not elucidated a considerable variance in the survival rates in cohorts of patients 

with different mitral valve replacements.  

In this context, far less attention has been given to quantifying the effects of 

rotational orientation of MHVs in the mitral position and the resulting interactions 

between the filling jet and cardiac structure. Most importantly for the purpose of our 

study, it appears that a mitral MHV can impair LV diastolic filling efficiency if oriented 

arbitrarily [30,35]. Considering that tilting disc and bileaflet mitral MHVs generate 

highly directional flow patterns [36, 37] their implantation orientation has a direct effect 

on the resulting fluid-structure interactions. Given the directionality of MHV flow 
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dynamics, multiple imaging planes are necessary before the resulting hemodynamics can 

be accurately quantified, which so far has been one of the limiting factors for further 

investigations.  

The primary focus of this work is on systematic in vitro tests utilizing a 

mechanical left heart model and a frequently clinically used bileaflet MHV (St. Jude 

Medical, Inc., St. Paul, Minnesota) placed in the mitral position. The goal was to 

quantitatively characterize LV fluid dynamics by vorticity and turbulent shear stresses at 

defined echocardiographic (echo) imaging projections for predetermined MHV angular 

positions, while maintaining constant heart rate and stroke volume. 

4.2 Materials and Methodology 

Testing was performed on a mechanical left heart model (ViVitro Labs, Inc., 

Victoria, Canada) (Figure 4.1). The model simulates the function of the left atrium, LV, 

and aortic root. Fluid such as saline or diluted glycerin (used to more closely approximate 

the viscosity of blood) circulates in a closed loop. The ellipsoidal LV is made of a 

homogeneous elastic polymer material that models the elasticity of the myocardium, 

allowing for expansion and contraction through the cardiac cycle. The left ventricle is 

completely submerged in a water filled chamber (called the hydraulic chamber) with a 

displacement pump fixed to one end of the hydraulic chamber. The pump displacement 

acts on the ventricle by causing it expand and contract with each pump cycle. Various 

waveforms can be used as inputs for the pump motion, including those that simulate a 

more natural cardiac rhythm. The left atrium compartment can be separated from the LV 

by a removable atrioventricular module, in which a tested mitral valve could be placed in 
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various angular positions. Similarly, the aortic root can be removed to allow placement of 

various aortic valves. In this study a tricuspid porcine valve was placed in the aortic valve 

position. 

 

 

Figure 4.1. Photo of left heart model used in this study. On the upper right is the atrium, 

the lower center portion of the model is the LV and hydraulic chamber, the upper left is 

the aortic root.  (ViVitro Labs, Inc., Victoria, Canada) 
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The ultrasound probe was positioned directly below the LV apex and data was 

acquired in four distinct imaging planes, each with 45 degrees of separation (Figure 

4.2A). 

  

Figure 4.2. A) Photo of a partially disassembled mechanical left heart model showing a 

transparent elastic left ventricle (LV) viewed from the apex), the mechanical heart valve 

(MHV) and the aortic root (AR). Imaging planes are denoted by white lines and 

correspond to: 1 (90°), 2 (45°), 3 (0°), 4 (-45°). B) Placement of the bileaflet mechanical 

heart valve in the removable atrioventricular module in 0, 45, and 90 degree angular 

positions (viewed from the left atrium). 

 

The selected valve was a St. Jude Medical bileaflet MHV with a 28 mm diameter 

which was placed in the mitral position. The studied angular positions of the mitral valve 

were 0, 45, and 90 degrees (Figure 4.2B) with respect to a plane intersecting the center 

of the aortic valve, LV apex, and the mitral valve. A pulsatile, sinusoidal flow was 

generated by an external pump that acted on the elastic LV from outside and produced 

two phases of controlled flow of saline through: 1) the aortic valve during “systolic” LV 

contraction (ejection phase) and 2) the mitral valve during “diastolic” LV expansion 
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(filling phase). Other LV phases that are present in a native heart, for example, 

isovolumic contraction and relaxation, or early and late filling, were not modeled. All 

data was collected during the transmitral filling period determined from the motion 

waveform of the external pump, which was set to simulate 70 beats per minute and a 

stroke volume of 70 ml. 

Measurements were acquired using a cardiac ultrasound system Vivid 7 (GE 

Vingmed Ultrasound AS, Horten, Norway) equipped with a three-dimensionally (3D) 

scanning transducer (3V, GE Healthcare), which supported two-dimensional (2D) 

imaging with electronically rotated planes while the transducer itself was clamped in a 

fixed position. The rotational scans were projected through the existing ultrasound-

transparent window in the mechanical model (Figure 4.2A). The window location 

allowed approximating clinical apical long-axis projections, ie, interrogating the heart 

from the LV apex towards the mitral and aortic valves. The scans were acquired in 1) a 

conventional (grayscale) B-mode to obtain “anatomical” projections through the LV and 

2) a contrast-enhanced mode for imaging of Optison (GE Healthcare) microbubbles 

(Figure 4.3A) diluted 1:10 in saline. The ultrasound transmit power was set to 0 dB (ie, 

maximum “clinically-permissible” power) to obtain clear depiction of the microbubbles. 

It is noteworthy that in clinical settings, the transmit power (expressed as a mechanical 

index) is often reduced to minimize microbubble destruction during continuous scans 

because the overall dose that can be administered is limited. In our setting, however, the 

diluted microbubbles were added to the circulating saline solution in repeated boluses of 

0.1 ml as needed. Continuous echo scans were collected through many heart cycles to 
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capture the microbubbles in optimal dilution and distribution to obtain high-quality scans 

for off-line microbubble tracking.  

The tracking of the microbubbles (“particles”) was done using PIVlab freeware 

[9](Thielicke) programmed in Matlab (The MathWorks, Natick, Massachusetts) and 

resulted in echo particle imaging velocimetry (PIV). Echo PIV [39, 40, 7] was used to 

generate and quantify velocity vector fields (Figure 4.3B) because of the ability to track 

particle motion without the need for visual access to the flow, which is typically 

necessary with optical PIV techniques that utilize a high-speed camera to visualize 

particle movement and a high-energy laser sheet to act as the flash. Echo PIV was 

performed off-line using the recorded echo DICOM images captured at 112 frames/s (ie, 

approximately 9 ms temporal resolution). Tracking through subsequent image frames 

included an adjustable multi-step pattern-matching search process resulting in generation 

of vector fields with an adequate range of detected velocities, such as in (Figure 4.3B). 

PIV analysis was performed using a standard fast Fourier transform cross-correlation 

algorithm and Gaussian 2×3 point sub-pixel estimator. Interrogation window size is 

reduced iteratively from 64×64 to 16×16 pixels (3.54 pixels/mm) with a 50% overlap.  
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Figure 4.3. Representative scan (projection 3, valve angle 90 degrees) with A) 

Microbubbles, with mechanical heart valve (MHV), aortic root (AR), and LV apex (A) 

labeled. B) echo PIV velocity vector field (m/s) obtained by microbubble tracking 

averaged over series of images. 

 

The velocity vector fields served for generation of shear and vorticity fields, again 

by using off-line processing in Matlab. We reconstructed the velocity, shear, and vorticity 

fields in four clockwise (as viewed from the LV apex) 2D projections electronically 

rotated in 45-degree increments:  

Projection 1 (90 degrees; resembling a clinical “4-chamber” echo view);  

Projection 2 (45 degree; resembling a clinical “2-chamber” echo view);  

Projection 3 (0 degree; resembling a clinical “3-chamber” echo view); and 

Projection 4 (-45 degree, ie, orientation perpendicular to Projection 2).  

Using echo PIV, a 2D velocity vector field (such as the one demonstrated in 

(Figure 4.3B) was generated for each of the 4 echo projections and for each of the three 

mitral MHV angular positions. Therefore, we obtained twelve 2D velocity vector fields 

characterizing flow inside the LV during the period of transmitral “diastolic” LV filling. 
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Based on these velocity vector fields, we calculated the corresponding fluid vorticity and 

shear stress values.  

Vorticity (ω) was calculated by taking the difference between the gradient of the y-

component of velocity ( ) with respect to the x-direction and the gradient of the x-

component of velocity with respect to the y-direction: 
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Vorticity reflects the rotational hemodynamic movement inside the biological LV. Due to 

energy dissipation from viscous interactions, a well-defined single vortex (ie, a relatively 

high magnitude of vorticity) leads to less kinetic energetic losses than chaotic (turbulent) 

flow with many small vortices [41]. Previous studies have demonstrated that formation of 

the LV diastolic vortex could serve as an indicator of cardiac health [26].  

Shear stress ( ) is directly related to the time-rate-of-strain (velocity gradient) of 

a fluid: 
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Here, μ is the molecular viscosity coefficient of the fluid. Previous work [41]has 

established that high levels of shear stress will cause blood cell destruction or hemolysis 

in a biological heart [42]. 

The data was statistically analyzed for the LV filling period, during which the LV 

vortex is formed. PIV vector fields are temporally averaged over the LV filling cycle to 

minimize measurement noise.  The numerical results of vorticity and shear stress are 
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expressed as means and standard deviation based on data from seven consecutive, 

temporally averaged filling cycles. One-way ANOVA was used for parametric 

comparisons of measurements obtained 1) at incremental angular mitral valve position 

for a given projection and 2) at incremental angular echo projections for a given angular 

position of the mitral valve. Paired comparisons between angular mitral valve positions at 

a given echo projection were assessed using paired two-tailed T-tests. Box-and-whisker 

plots , which show the median (center mark), the 25th and 75th percentiles (box edges) 

and the most extreme data not considered outliers (whiskers), were used for quick 

visualization of data distribution at given mitral valve angular position and echo 

projection and to reveal trends, if any, in the data as mitral valve or echo projection is 

incremented. 

4.3 Results 

The numerical results of vorticity and shear stress are summarized in (Tables 1 

and 2). In both tables, the negative values are a consequence of counterclockwise rotation 

of the flow in the original velocity vector fields.  

In Table 4.1, the ANOVA p-values document a dependence of vorticity on both 

the echo projection and mitral valve position angles. Individual paired comparisons 

(marked by asterisks and crosses) indicate significant differences between mitral valve 

angular positions. However, a close observation of the individual measurements does not 

suggest any clear trend towards a systematic increase or decrease with mitral valve 

angular position. 
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In Table 4.2, a strong dependence of shear stress on both the echo projection 

angle and mitral valve angular position is again present (as in Table 4.1 for vorticity) 

without a clear trend towards a systematic increase or decrease with mitral valve angular 

position.   

The results in both Tables 4.1 and 4.2 demonstrate that angular orientation of the 

mitral valve is a critical factor in producing flow shear and vorticity, without any clear 

Table 4.1. Results for Vorticity (1/s) 

Projection # 
Mitral Valve Angular Position ANOVA 

P-value 0 degrees 45 degrees 90 degrees 

1   1.906 (0.198) 0.646 (0.153)* 0.478 (0.174)* <0.001 

2   -1.631 (0.201) -1.231 (0.133)* -1.384 (0.186)*† <0.001 

3     -1.703 (0.144) -2.058 (0.193) * -2.593 (0.211)*† <0.001 

4  -3.678 (0.255) -2.689 (0.196)* -3.039 (0.223)*† 0.002 

ANOVA, P-value <0.001 <0.001 <0.001  

Results in parentheses represent standard deviation of the corresponding mean value. 

*P<0.05 vs. 0 degrees 

†P<0.05 vs. 45 degrees 

Table 4.2. Results for Shear Stress (Pa) 

Projection # 
Mitral Valve Angular Position ANOVA 

P-value 0 degrees 45 degrees 90 degrees 

1   0.439 (0.12) 0.307 (0.102)* 0.254 (0.071)*  0.010 

2   0.001 (0.114) -0.031 (0.083) 
0.317 

(0.143)*† 
<0.001 

3     -0.431 (0.108) -0.301 (0.101)* -0.302 (0.091)* 0.040 

4  -0.907 (0.105) -0.485 (0.097)* 
-0.679 

(0.113)*† 
<0.001 

ANOVA, P-

value 
<0.001 <0.001 <0.001  

Results in parentheses represent standard deviation of the corresponding mean value. 

*P<0.05 vs. 0 degrees 

†P<0.05 vs. 45 degrees 
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trend with regard to an incremental change in the valve angular orientation. Furthermore, 

the ANOVA of values of vorticity and shear stress for any given mitral valve angular 

position clearly shows that the magnitudes of the two tested parameters are strongly 

influenced by the used projection. 

Distribution of shear and vorticity values, as visually represented by box-and-

whisker plots in Figures 4.4A and 4.4B, respectively, confirm that both the mitral valve 

angular position and the used echo projections affect the results, and that there is no clear 

systematic trend in the values with respect to angular placement of the mitral valve. 
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Figure 4.4. Box-and-whisker plots. Change in A) vorticity (1/s) and B) shear stress (Pa) 

with respect to the mitral valve angular position at each tested echo projection.  

 

Based on mean values in Tables 4.1 and 4.2, images in Figure 4.5 are illustrative 

examples of 2D intraventricular flow vorticity and shear stress fields with the lowest and 
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highest magnitudes. While a high vorticity and low shear stress magnitudes of 

intraventricular flow would be beneficial, the results obtained in our model did not reveal 

any clearly “optimal” mitral valve angular position that would combine the two desirable 

conditions.  

 

Figure 4.5. Vector flow fields temporally averaged over inflow period with A) lowest 

vorticity magnitude (1/s; projection 1, valve at 90 degrees), B) highest vorticity 

magnitude (1/s; projection 4, valve at 0 degrees), C) lowest shear stress magnitude (Pa; 

projection 2, valve at 0 degrees) and D) highest shear stress magnitude (Pa; projection 4, 

valve at 0 degrees).   

 

4.4 Discussion 

The main finding of this experimental study, which utilized an elastic mechanical 

model of a beating LV and a bileaflet MHV in the mitral position, is that the rotational 
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position of the valve is a critical determinant of the LV flow characteristics. This finding 

is important in the context of other studies that implied the importance of the prosthetic 

valve rotational orientation on the downstream turbulence and risk of microembolization 

using both in vivo experimentation and computational methods [43, 44] as well as animal 

studies [45]. So far, however, existing research has focused on anatomical and anti-

anatomical rotational orientation of MHVs using fixed two-dimensional (2D) ultrasound 

and MRI imaging planes [31, 44, 45]. Our study extends these results by showing the 

significant effect of 45-degree incremental rotational positioning of the mitral valve on 

intraventricular flow patterns, vorticity, and shear stresses. 

Furthermore, it is demonstrated that selection of a 2D projection for visualization 

of velocity vector patterns or quantitation of vorticity and shear stresses, which are indeed 

complicated 3D intraventricular flow phenomena, is another critical factor. In several 

studies investigating LV hemodynamics influenced by MHV orientation, only a single 

imaging plane has been utilized and calculations were based on optical-PIV, echo-PIV, or 

MRI data obtained within that plane [43,31]. This study implies that to fully quantify 

mitral MHV performance based on rotational orientation, it is necessary to obtain data 

from all standard echo imaging planes. Clearly, using just one projection could be 

significantly misleading in assessing hemodynamic impact, such as the magnitude of 

vorticity and shear stress. It is speculated that it may be necessary to not only use the 

standard projections but, in fact, come up with additional “non-standard” projections 

optimized for evaluation of hemodynamic patterns and parameters.  

Noticeably, projections 2 and 4 (ie, perpendicular projections at 45 and -45 

degrees, respectively) did not produce opposite shear and vorticity values with the same 
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magnitude. It is possilbe that there was some asymmetricity in the LV shape, 

transvalvular flow, off-axis aiming of the ultrasound transducer, or combination thereof, 

which would be the case also in a clinical setting. Ideally, the evaluation should be 

performed in a fully 3D echo imaging mode. Although the current real-time 3D 

ultrasound imaging systems have recently made tremendous technological advances, they 

still do not provide sufficient temporal resolution for analyses of transmitral and 

intraventricular fluid dynamics.  

The results do not clearly convey an “optimal” bileaflet mitral MHV angular 

position, which would be characterized by a well-developed diastolic rotating fluid mass 

(ie, high magnitude of vorticity) with low shear stresses. Although, close assessment of 

the magnitudes in (Tables 4.1 and 4.2) and, especially, visual inspection of some trends 

in (Figure 4.4) suggest that an angular position of the mitral valve between 0 and 45 

degrees approaches to some extent the desirable combination of high vorticity with low 

shear stresses. In this context, it is of note that the two tested parameters, ie, vorticity and 

shear stress, although they have a different physical meaning, have been derived from the 

same source data (ie, velocity vector fields) and thus, may not be entirely independent. 

Simulation of cardiac performance at various heart rates, stroke volumes, and pressure 

loading would have likely shed more light on the mitral angular position for optimal fluid 

dynamic performance.  

The limitations of this study are that the measurements were influenced by the 

lack of the right ventricular cavities and pulmonary circulation, and the simplified 

“anatomy” of the elastic LV lacking, for example, native cardiac wall, papillary muscles, 

trabecules, or considerable natural asymmetric shapes of the LV and its outflow tract. 
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Implantation of the MHV into a native (porcine or dog) beating hearts ex vivo or in vivo 

at different angular positions of the mitral would alleviate the aforementioned limitations, 

although at a cost of reduced or no control to achieve perfectly constant hemodynamic 

conditions during measurements, as we could during the current study. Another limitation 

is that the results were not obtained during systematically changed loading conditions. In 

our present model, these interventions were not entirely separable and, therefore, we 

elected to conduct this initial study under a well-defined single steady-state condition. 

Clinically, replacement of a severely damaged and hemodynamically detrimental 

native mitral valve by a mechanical prosthesis is an important therapeutic solution. 

However, suboptimal “arbitrary” angular positioning of the mitral prosthesis may have an 

undesired effect on intraventricular hemodynamics. For instance, impared generation of 

the intraventricular vortex ring is now recognized as a contributing mechanism of 

diastolic dysfunction in patients with hypertrophic cardiomyopathy [46]. Consequently, 

impairment of the natural diastolic vortex flow by the suboptimal positioning of the 

MHV could result in kinetic energetic losses or have thrombogenic effects, and may 

therefore undesirably affect the long-term clinical outcome.  

4.5 Conclusion  

This initial study strongly suggests that angular positioning of the mechanical 

mitral valve is an important determinant of intracardiac hemodynamic conditions. 

Furthermore, it is demonstrated that a comprehensive understanding of LV dynamics is 

necessary to fully quantify mitral valve performance. The LV flow is a complex and 

strongly three-dimensional. When studying the left intraventricular flow using two 
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dimensional imaging techniques that fail to resolve the three dimensionality of the flow, 

it is possible that incorrect assumptions can be made.  This study demonstrates that using 

a single two dimensional plane to quantify MHV performance is unacceptable and can 

lead to incorrect conclusions about the preferred positioning of an MHV.   

With the advent of improved ultrasound system, particularly those that allow for 

three dimensional imaging with high spatial and temporal resolution, it will likely be 

possible to fully quantify the LV flow. Additionally, a better understanding of the 

interactions between blood flow and heart walls is also necessary to quantify MHV 

performance. Studies need to be done ultimately leading to optimization of mitral valve 

angular placement, and, thus, contributing to long-term patient life quality and survival.  
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Chapter 5 

 

ELASTICITY ESTIMATION USING OPTICAL PARTICLE IMAGE VELOCIMETRY 

VELOCITY FIELDS 

 

 

 

This chapter focuses on the development of a novel technique for estimating the 

elasticity of a thin, cellulose acetate flap using forcing data derived from optical PIV 

velocity fields. A flap is affixed to a stand, submerged within a water-filled tank, and 

deformed using a water jet pulse. PIV is then performed at the interface between the thin 

film and water jet throughout the deformation cycle; the resulting velocity field allows 

the determination of localized forcing measurements along the film surface. An optimal 

estimation technique is coupled with a finite element analysis (FEA) program to 

determine the flap’s elasticity. Results show good agreement with actual elasticity 

measurements for both homogeneous and non-homogeneous elasticity thin-film sheets. In 

addition, a quantitative study is performed to determine the optimal vector density for a 

given element size to achieve an accurate elasticity estimation value.    
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5.1 Introduction 

The ability to accurately measure the cardiac structure noninvasively is critical for 

the development of early diagnostic techniques [47]. Determining localized changes in 

elasticity of the mitral valve, for instance, would aid in clinical diagnosis of mitral valve 

prolapse or additional valve pathophysiology [48]. Various methods have employed in 

vivo measurements for determining cardiac elasticity [49]; however, these techniques are 

for experimental purposes only and not for use as a diagnostic technique.  

Several techniques have been developed that allow for in vitro measurements of 

blood flow dynamics. In particular, echocardiographic particle imaging velocimetry 

(echo-PIV) [13, 25, 29, 50] stands out as cost-effective with high temporal resolution and 

ease of use. Described by Shandas’s group [25,8], echo-PIV is well suited for tracking 

the complex spatial features of intracavitary blood flow using contrast microbubbles 

captured in sequences of high-frame-rate two-dimensional (2D) brightness-mode 

ultrasonographic images [47, 9]. In essence, echo-PIV is a result of processing with 

software designed for optical-PIV analysis that can also track the brightness signals 

generated by the microbubbles in the serial image frames. To obtain local flow velocity 

vectors and velocity maps, the software calculates displacements of microbubbles over a 

given time interval, which is typically determined by the actual frame rate. 

As a step towards practical applications of optical- and echo-PIV methods, this 

paper presents a methodology for estimation of elastic properties of materials immersed 

in a flow, by using velocity field measurements only. Such an approach can be invaluable 
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to noninvasive estimations of elastic properties of cardiac valves or tissues in vivo. To 

validate our approach, we use a cellulose acetate film immersed in water and deform the 

film by a jet pulse. The Young’s modulus of a particular material is estimated using 

forcing data generated from optical-PIV velocity fields. Considering the fundamental 

similarity between optical- and echo-PIV, the success of elasticity estimation using 

optical-PIV implies that elasticity estimation with echo-PIV should also be possible, 

provided accurate velocity fields can be generated. In addition, considering the elasticity 

of the mitral valve, particularly a diseased valve, is non-homogeneous [51, 52], the 

elasticity estimation of non-homogeneous thin sheets employed in this study closely 

simulates clinical conditions of a leaflet exposed to blood flow.  

The process of estimating the elasticity is carried out in three distinct routines: 

data acquisition using an optical-PIV method, forcing determination using flow velocity 

data, and the use of an estimator coupled with a Finite Elements Analysis (FEA) program 

to determine the elasticity.  The process is detailed in Figure 1 and a more thorough 

description is provided in the next section.  
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Figure 5.1 Flow chart indicating the steps required for elasticity estimation using 

velocity field and displacement data acquired from PIV  

 

5.2 Materials and Methods 

 

 This section outlines the development and implementation of each section of the 

elasticity estimation routine detailed in Figure 5.1. Velocity data obtained from PIV is 

input to a forcing solver routine. This allows the determinations of a pressure field from 

the velocity field, and thus the determination of forcing. The forcing and displacement 

data, which is obtained based on visual inspection, is input into the elasticity estimation 

routine. The estimation routine determines the optimal elasticity based on repeated 

sampling of a finite element analysis model with the known forcing and displacement, 

and varying elasticity “guesses”.   
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5.2.1 Optical Particle Image Velocimetry 

 

PIV is a velocity field measurement technique that calculates the velocity of 

neutrally buoyant tracer particles seeded within the flow. An optical-PIV system consists 

of a high-speed charge-coupled device (CCD) camera that is synchronized with a 700mJ, 

argon-ion laser that acts as the ‘flash’ when imaging. The laser light reflected by tracer 

particles provides contrast from background noise and the particle movement is then 

tracked between image sequences. The optical-PIV measurements in this study are 

obtained using a LaVision acquisition system and DaVis software (LaVision GmbH, 

Göttingen, Germany). 

 

The velocity is measured by tracking particle displacement between a set of two, 

high-speed images recorded by the camera, where the time step between images is 

dependent upon flow velocity and window size. The optical-PIV system pauses for an 

increased time step until taking an additional image pair. The determination of particle 

displacement between image pairs, for a given time step, leads to the calculation of flow 

velocity. The PIV setup used for this particular experiment utilizes a single camera to 

capture data; allowing the determination of two-dimensional data.   

 

The images are processed using DaVis software, version 7.2.2.80. A Fast Fourier 

Transform (FFT) cross-correlation technique is applied and images are processed using 

an iterative scheme with multiple passes of decreasing interrogation window size. For 
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each iteration, the corresponding window size and weight, percent overlap, and number 

of passes can be selected.  

 

 

5.2.2 Experimental Apparatus 

A flexible plastic film (7mm wide, 2cm long, .1mm thick, E = 0.45GPa) is 

attached to a stand and submerged in water filled tank (Figure 5.3). The flap is then 

deformed with 200ms pulse of water generated using a 20W aquarium pump rated at 30 

GPM at 0 head. The exit orifice diameter and width of the flap were chosen so that (1) 

laminar flow would traverse over rather than around the flap, thereby making the flow 

primarily two-dimensional, and (2) the laser sheet (approximately 6mm thick where it 

contacts the deformed, steady-state film surface) encompasses the flow entirely.  

 

Figure 5.2 Setup employed to determine forcing values using PIV measurements 
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The laser sheet (as indicated in gray in Figure 5.3) is projected downward from 

above the tank and spread using a concave lens.  

Images are captured for the opening and closing process and velocity fields are 

generated from the images using PIV software. A 200 ms jet duration was chosen so that, 

after the film is fully deformed (approximately 100 ms after the jet start), a ‘steady state’ 

is achieved where laminar flow over the film surface remains relatively constant with 

respect to time and the film remains in the deformed position for 100 ms. The Reynolds 

number, based on film length, for the steady state condition is approximately 10,000. The 

velocity vectors obtained over this 100 ms duration are then temporally averaged to 

minimize out-of-plane movement; thereby allowing for a static rather than transient FEA 

analysis 

 

Using a 1,376 x 1,040 pixel ImagerIntense CCD camera, the field of view was 52 

x 41mm2. Given the pulse separation of 174 μs and a maximum jet velocity of 1.05 m/s, 

the maximum particle displacement is 4.8 pixels. The images were processed by the 

DaVis software using the iterative cross-correlation technique with decreasing 

interrogation window size. The maximum window size was 256  256 pixels with 50% 

overlap and 2 passes, and the minimum window size was 32  32 pixels with 75% 

overlap and 2 passes. Approximately 8 particle pairs were evident per interrogation 

window. Weighting factors were not applied to either window size. Vectors with 

magnitude exceeding two times the root-mean-square magnitude of neighboring vectors 

were automatically labeled as outliers and deleted. An example of the resulting 
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instantaneous velocity field is shown in Figure 5.3. It is evident that the flow remains 

primarily laminar over the surface of the film, the transition to turbulence begins at the 

tip. 

 

Figure 5.3 Instantaneous PIV velocity field for flow over thin film surface. Velocity in 

m/s and spatial resolution in mm 

 

 

5.2.3 Computation of Forcing Based on Velocity Vector Fields 

 

Using the Navier-Stokes equations for incompressible flow, determination of the 

pressure field is possible based on PIV velocity field measurements [53]. Recent work by 

Charonko et al [54] quantitatively assessed the three primary approaches used to derive 

pressure fields from velocimetry data. These techniques are: (1) integration of pressure 
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gradients as derived using the Navier Stokes equations, (2) solution of the pressure 

Poisson equation boundary value problem, and (3) CFD modeling based on PIV data.  

 

Starting with the Navier-Stokes equations for incompressible flow,  
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Where p is pressure, u is the velocity vector,  is a constant viscosity,   is constant 

density, and F is a vector field representing body forces such as gravity or centrifugal 

force. The pressure gradient can readily be calculated using 2D PIV velocity data to solve 

for terms on the right hand side. Through the application of numerical integration 

techniques to the pressure gradient field, the pressure field can then be determined over 

the entire flow domain. This requires starting from a direct pressure measurement, or 

expected pressure measurement, and then integrating over single or multiple paths. 

Typically, averaging is performed between multiple paths or between multiple pressure 

fields solved with varying initial conditions; this process tends to smooth errors 

accumulated in the solution process due to inconsistencies in the velocity data [54].  

For all solution techniques, errors in the PIV velocity data pose a significant 

problem. Charonko et al. demonstrated that, even for relatively small errors, the derived 

pressure fields quickly became unusable [54]. In applications with steady state flow, 

where studying flow dynamics in a mean rather than instantaneous nature is acceptable, 
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the data can be time averaged to minimize measurement noise. Taking the time average 

of Eq. 1 and writing in tensor notation, results in: [55]  
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Where the overbar indicates time averaged properties. The right hand side is comprised 

of mean momentum, turbulent momentum (fluctuating components), and viscous stress 

terms.  These can be computed using averaged and statistical data derived from 2D PIV 

measurements and the time averaged pressure field can be determined using an 

aforementioned integration scheme.    

From the instantaneous velocity fields generated by optical-PIV, it is also possible 

to determine pressure through the application of the pressure Poisson equation. The 

Poisson equation is found by taking the divergence of Eq 1. and by applying the 

incompressibility form of the continuity equation, given by: 

 

0 u           (5.3) 

 

The result is the pressure Poisson equation, 

 

 uuP  2          (5.4) 

 

This can be solved as a boundary value problem with either Neumann or Dirichlet 

boundary conditions.  
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Previous work [53,54] has demonstrated that the solution of the Poisson equation 

is highly susceptible to errors due to out of plane particle movement and other data 

anomalies. This is primarily due to the application of the continuity equation to the 

divergence of the Navier-Stokes equations, which creates third order derivatives that 

amplify error in the measured data.    

Second-order central difference approximations were used to discritize the PDE’s, 

the Poisson equation can then be solved on a non-staggered, regular grid. The accuracy of 

this technique is detailed by Gurka et al [53] and Charonko et al [54]. Neumann boundary 

conditions were applied to the film/water interface along with the other boundaries. 

Schwarz-Christoffel mapping is applied to transform the irregular geometry Fig 4. (a) 

into a rectangular grid via conformal mapping Fig 4. (b) on which the two dimensional 

Poisson equation can be solved. This grid offers high spatial resolution along the flap 

surface. The Schwarz-Christoffel toolbox (version 2.3) developed by Tobin Driscoll and 

used to generate the conformal transformations [55]. To avoid excessive interpolation 

errors, the grid size should correspond to the resolution of the velocity field. In this case, 

pressure was solved on a 40x40 grid.   
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(a) (b) 

 

Figure 5.4 Physical location of fully deformed flap (a);  mapped canonical domain for 

deformed flap (b), note: mesh density is reduced in this image 

The film is then divided into segments and the forcing distribution along its length 

can be determined from the local pressure measurements through pAF  , where p is the 

average value of the pressure along each segment of the film (a total of 40 segments were 

used) and A is equivalent to the surface area of each segment exposed to the 

corresponding pressure. Considering the width of the jet was selected to match the film 

width, the entire area of each segment was assumed to be exposed to the corresponding 

pressure.  

 

5.2.4 Finite Element Analysis 

Euler-Bernoulli (classical) beam theory with Hermitian elements is employed to 

determine the elasticity of both the homogeneous and non-homogeneous films. 

Considering only two-dimensional data is available from the optical images, three-
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dimensional models would be underdetermined and predictions about the geometry 

would be required. The use of quadrilateral or linear triangular plane stress elements 

would be possible; however, because of the high aspect ratio of the thin film geometry 

(the length is considerably greater than the thickness), a prohibitively high number of 

elements would be required to preserve the element aspect ratio (generally around 1).  

 

Euler-Bernoulli beam theory was selected for this FEA analysis because of the fast 

computational time and relatively accurate analysis. Unlike Timoshenko beam theory, 

Euler-Bernoulli beam theory does not account for the effects of transverse shear strain; 

however, considering the high aspect ratio of the geometry, these effects are of minor 

importance [56]. Hermitian beam elements are used with two degrees of freedom per 

node: transverse deflection and slope. A brief derivation of the FEA equations for 

Hermitian beam elements is provided [57]. The bending equation for Euler- Bernoulli 

beam theory is  
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Where E is the Young’s modulus, I is the inertia, v(x,t) is the transverse displacement and 

q(x,t) is a pressure loading along the beam that is both spatially and time dependent. The 

Galerkin method of weighted residuals is applied to the beam equation to derive the 

element equations for the finite element analysis. The averaged weighted residual of the 

bending equation is given by  
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Where L is the beam length and w is a test function. Discretization of the beam into   

elements gives 
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Where V is the shear force and M is the bending moment. Each element has two end 

nodes, where each node has variables for transverse deflection v and slope θ; this gives a 

total of four degrees of freedom per element. Two connecting elements must have 

continuous deflection and slope at the common nodal point. Continuity along elements 

can be accomplished using Hermitian cubic shape functions. The interpolation formula 

for the transverse deflection of a beam element with length l is given by 

 

214231211 )()()()()(  xHvxHxHvxHxv        (5.8) 

 

Where 
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The stiffness matrix for the beam element is found through the application of 

Galerkin’s method and Hermitian shape functions to  
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Eq. (6) can be modified for an instance where the elasticity is non homogeneous along 

the beam length. An equation for a distributed pressure forcing can be derived from 

 qwdx . The forcing matrix is found from 

 


l

TBxqF
0

)(           (5.10) 
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Finally, the nodal displacements d for the finite element system can be solved from the 

stiffness and forcing matrices using the following relation 

 

FKd            (5.11) 

 

5.2.5 Parameter Estimation: The Ensemble Kalman Filter 

An Ensemble Kalman Filter [58] is used to estimate elasticity. The standard 

structure for the model to be estimated is 

 

  kkk wEFfd  ,1          (5.12) 

 

kkk wEE 1                           (5.13) 

    

kkk vdy            (5.14) 

 

Where k counts the iteration of the model, kd  is a state vector containing the plate 

displacements, kE  is the current estimate for the elasticity; the first equation in the 

standard form represents the solution of eq. (11) using the forcing F calculated from PIV 

data; the second equation is added to the standard model and it expresses the fact that the 

elasticity kE being estimated is a constant; the last equation is conventionally called the 

measurement equation, in estimation theory. The noise terms kk ww , and kv  are generated 
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white Gaussian noise that is associated with modeling and measurement errors. Their 

covariance matrices, Q, Q’, and R respectively, govern the performance of the estimator.  

 

An Ensemble Kalman filter is structurally similar to a linear Kalman filter [59], with an 

important difference: the linear Kalman filter evolves a covariance matrix for the 

estimations together with the estimations themselves, and the modeling and measurement 

noise are assumed to be Gaussian; the ensemble Kalman filter evolves an ensemble of 

potential candidate solutions, rather than providing an explicit equation for evolving the 

covariance matrix for the estimations. This eliminates the necessity to operate on a linear, 

or linearized, model. Full details on the implementation of the Ensemble Kalman Filter 

are given in [58]. The primary focus is on the choice for the matrices Q, Q’ and R, that is 

crucial to ensure that the estimator works correctly. For all cases, 100 ensemble points are 

used, and it was found that this number had negligible effects on the accuracy of the 

estimations. 

Since the measured displacements are used to calculate the estimation error, the 

natural choice for the measurement covariance matrix R is to define it as a diagonal 

matrix of the variances of the actual deformation measurements; those variances are 

estimated by analyzing 8 snapshots of the plate, taken when it was close to its maximum 

extension.  

The covariance of the state model is determined from the ensemble set. For the 

homogeneous flap using three elasticity estimates, the covariance Q’ of the elasticity and 

the initial guess 


x  were chosen as: 
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]111[' diagQ  x 710  and  ]111[


x x 810  

 

For the non homogeneous flap, the values are: 

 

]11020[' diagQ  x 710  and  ]11010[


x  x 810  

It was necessary to increase the initial guess for the stiff portion of the non 

homogeneous flap to ensure stability in the estimator routine. Considering the difference 

between the elasticities of the more and less stiff regions on the film is an order of 

magnitude, it is possible to theorize that the initial guess must always be within an order 

of magnitude from the true elasticity. 

 

5.3 Results 

Three separate tests were conducted to determine the overall effectiveness of the 

elasticity estimation technique. The first test is performed using a thin film with a 

homogeneous elasticity of 4.5x108 Pa. The elasticity estimation process is designed so 

that one elasticity value will be applied to the 30 beam elements. The second test also 

uses a thin film of homogeneous elasticity; however, for this case, the elasticity 

estimation code is altered so that three separate elasticity values are computed along the 

beam length. The first third of the beam will share one particular elasticity (E1) the next 

third of the beam will share an elasticity (E2) and the final third of the beam will share an 

elasticity (E3). The estimator will then determine which combination of E1, E2 and E3 

matches the actual deformation. When testing the film with uniform elasticity, the values 
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of E1, E2, E3 should be equivalent. The final test involves a film with non-homogeneous 

elasticity, half of the film has elasticity 4.5x108 Pa and the other half has elasticity 

3.6x109 Pa. The model will be discretized using three elasticities E1, E2 and E3. This will 

test the ability of the elasticity estimator to detect changes in elasticity along the length of 

the film.  

 

The outputs of the ensemble Kalman filter for the three tests are shown in the 

following figures and the results are summarized in Table 5.1. In each case, a certain 

initial value for the elasticity is chosen that is sufficiently far from the actual value yet 

still allows for convergence after 100 iterations.  

 

Figure 5.5.  Elasticity estimation for a film of homogeneous elasticity using a single 

elasticity model. The filter estimate is within 2% of the true solution of 4.5x108 Pa.  The 

standard deviation for the estimate is +/- 2.5x107 Pa. 
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Figure 5.6  Elasticity estimation for a film of homogeneous elasticity using three separate 

elasticities in the FEA model. The estimated elasticity of the upper section and mid 

section are within one standard deviation of the actual elasticity value of 4.5x108 Pa. The 

estimated elasticity of the lower section is within two standard deviations of the actual 

value.  
 

 

Figure 5.7  Elasticity estimation for bi-elastic film using three separate elasticities in the 

FEA model. The estimated elasticity of the upper section and lower section are within 

one standard deviation of the actual elasticity values of 3.6 x109 Pa and 4.5x108 Pa, 

respectively. The actual elasticity of the mid section is unknown as it is a combination of 

the upper section elasticity and lower section elasticity.  
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Table 5.1: Results of elasticity estimation using three elasticity segments 

 Homogeneous Flap Non Homogeneous Flap 

Element Avg. Estimate Error  Avg. Estimate Error 

1(Base) 1.8 x108 +/-1.3 x108 71.1% 4.2 x108+/- 7.1 

x107 

6.4% 

2 (Mid) 4.4 x108 +/-4.3 x107 2.2% 2.1 x109+/- 3.5 

x108 

N/A 

3(Tip) 4.9 x108 +/-4.8 x107 10.2% 3.3 x109+/- 3.1 

x108 

13.8% 

The average estimate includes +/- SD taken over 100 filter iterations. The error is 

computed using the average estimated elasticity and the known elasticity of the flap.  

 

5.4 Discussion 

The result for the elasticity estimation of a single elasticity film using a 

homogeneous elasticity model (Figure 5.1) is within 2% of the true solution of 4.5x108 

Pa. This indicates that the elasticity estimator is well suited for measuring the elasticity of 

a homogeneous film.  

The results for the elasticity estimation of a single elasticity film using three 

separate elasticities in the FEA model are also in close agreement to the actual elasticity 

value of 4.5x108 Pa, as demonstrated in Figure 5.6. The error in the elasticity estimates 

of the upper, mid and lower sections are 10.2%, 2.2%, 71.1%, respectively. Although 

there is significant error in the estimated value for the lower section, it is within two 

standard deviations of the actual value. The standard deviation for the upper, mid and 

lower sections are 4.8 x107 Pa, 4.3 x107 Pa, 1.3 x109 Pa, respectively. The high level of 
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error in the estimate of the lower section elasticity can be attributed to the lack of 

sufficient velocity vectors to provide forcing data. In this case, the flow is primarily in 

contact with mid section and upper section; therefore, the velocity field at the lower 

section is sparse.  

The elasticity estimates of the bi-elastic film using three separate elasticities in the 

FEA model are also in close agreement to the actual values of 3.6 x109 Pa for the tip and 

4.5x108 Pa for the lower section. The error in the elasticity estimate is 13.8% for the 

upper section and 6.4% for the lower section. The actual elasticity of the mid section is 

unknown as it is a combination of the upper section elasticity and mid section elasticity; 

however, it is expected that it should lie between the estimates for the upper and lower 

section, this is confirmed in Figure 5.7. In this case, the elasticity estimate of the lower 

section is more accurate; this due to the stiffer elasticity of the upper section. The film 

deflects less than the previous case; this forces a greater portion of the flow downward 

and results in a higher vector density than for the previous case. However, the overall 

vector density is still approximately 20% lower than for the upper and mid section. It 

only becomes obvious that there exists a high level of discrepancy in the data when 

considering the standard deviations of the elasticity estimates; in this case, it is clear the 

standard deviation of the lower section data is significantly higher than for the mid or 

upper section. A comparison between vector density and error in the estimate is provided 

in Figure 5.8; it is apparent there is a strong correlation between vector density and error 

(the Pearson correlation is .954). For this particular scenario, it appears that a minimum 

of 23 velocity vectors along the length of the elasticity segment are required to produce 

estimates with less than 10% error.  
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Figure 5.8 Plot of vector density along the length of each elasticity segment versus the 

error in the average elasticity estimate for that particular segment 

 

Proper selection of Q, the elasticity covariance, and the initial guess 


x  are 

required to ensure the stability and repeatability of the estimator routine. It was found that 

the initial guess must be of the same order of magnitude as the actual elasticity, as 

evident by the initial guess choice for the non homogeneous case where the actual 

elasticity is 3.6 x109 Pa for the tip and 4.5x108 Pa for the lower section and the 

corresponding initial guesses are 1 x109 and 1 x108. In addition, the covariance of the 

elasticity for this particular experiment was always an order of magnitude less than the 

corresponding elasticity. The actual values of Q and 


x  can be further modified until a 

fully repeatable estimate is achieved.  

 

5.5 Future Work 

Direct in vivo application of the outlined elasticity estimation technique will 

require advancements in intracardiac flow visualization techniques. Current methods, 
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such as cardiac magnetic resonance (CMR), color ultrasound, or ultrasound PIV, each 

have limitations in temporal and spatial resolution that must be addressed before this 

elasticity estimation technique could be applied to in vivo data. This is primarily due to 

the susceptibility of the pressure measurement techniques to dramatically compound even 

small errors in the velocity data. Improvements in visualization techniques coupled with 

the design and implementation of filtering techniques [54] to remove noise in the PIV 

vector field would greatly aid in the future development of a tissue compliance 

measurement models. 

5.5.1 In Vivo Flow Analysis with Ultrasound  PIV 

This method uses high-frequency sound transmission to track commercially 

available ultrasound contrast agents (Optison, Definity), or microbubbles, of 

approximately 4 microns in diameter, that are dispersed within the fluid and serve as flow 

tracers. By off-line tracking the microbubbles in consecutive frames, a velocity vector 

field is created. Figure 5.9 is an illustrative example of echo PIV obtained in vivo. 

 

 

Figure 5.9 Echo PIV vector fields of early filling. A) Baseline. A well formed vortex 

lasted approximately 30ms. B) Effect of elevated afterload: vortex is disorganized. (Ao, 

aorta; LA, left atrium) 
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High temporal resolution of 4 ms [3] is obtainable with an available, clinically 

used, Vivid 7 ultrasound system. Tracking of particles (microbubbles) can be 

accomplished by using dedicated DaVis software (La Vision, Inc.) or freeware such as 

PIVlab [38]. Recent studies validated 2D echo PIV by demonstrating that it generates 2D 

velocity vectors that closely correlate to those reconstructed from fully 3D optical PIV 

data (“gold standard”) [60, 39].  Multi-plane echo PIV acquisition, (Figure 10 A) can be 

used to provide more complete spatial representation of blood flow velocities when 

compared to single-plane echo PIV. A rotational device (TomTec) with a fitted 

transducer (Figure 10 B) can be held in a fixed position and rotated in incremental 

angular steps about a central axis. At each angular plane, several cardiac cycles can be 

acquired and echo PIV data averaged to reduce measurement noise; the array of 2D scans 

can then be assimilated to obtain the 3D reconstruction.  

 

 

Figure 5.10 A. Multiplane ultrasound acquisition device. B, Available (TomTec Life 

Sciences, Hamden, CT) rotational stepper device fitted with an ultrasound transducer.  
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Estimation of localized ventricular rigidity, as a diagnosis for hypertrophy, for 

instance, would likely require a fully 3D reconstruction of the intraventricular flow field. 

This is due in part to the strongly 3D, turbulent flow encompassing the diastolic vortex 

(or vortices). Forcing data would likely be especially difficult to obtain given the 

ensemble size necessary to bring noise in echo-PIV measurements to an acceptable level.    

 

5.5.2 Application to Valvular Physiology 

The initial physiological applications of a tissue compliance estimation routine 

will likely be related to the aortic or mitral valve. Valvular calcification, which leads to 

stiffening of the leaflets, could be detected without the need for invasive procedures. The 

boundary conditions of heart valves are more easily defined than the myocardium, and 

the transmitral (or transaortic) flow is more strongly 2D than the flow field in either the 

ventricles or atrium. Forcing data can be generated using Doppler ultrasound, which 

allows for one dimensional in-beam velocity measurements and is often used to the find 

peak transvalvular velocity when diagnosing valvular stenosis [3]. Another possibility to 

obtain forcing estimates would be direct measurement of the transvalvular pressure 

gradient using pressure catheters, this method is reliable but invasive and causes patient 

discomfort.  

As an example of the physiological application of tissue modeling, a brief study is 

performed using the FEA model outlined in section 5.2.4 to estimate the closure 

dynamics of the mitral valve. Assuming the elasticity of the mitral valve to be a constant 

2090 KPa  [61], a distributed, sinusoidal pressure of 13.8 kPa (based on in vivo 

measurements of the transmitral pressure gradient) is applied along the length of the 
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beam [62]. The thickness of the mitral valve leaflet is assumed to be 1mm and the density 

is 1.06 g/cc [62], both figures are based on clinical measurements. The simulation results 

are presented in Figure 5.11.  

 

 

Figure 5.11 Tip displacement vs. time for mitral valve simulation. The valve leaflet is 

fully open at .0402 s  
 

The valve is found to be fully open at 0.0402 s. Previous in vivo studies have 

shown that the time required for the mitral valve to fully open is 0.04 s with a standard 

deviation of .01 s, this is based on echocardiogram measurements [63]. This demonstrates 

that a simplified FEA routine using beam elements can be used to generate a highly 

accurate FEA analysis of the mitral valve. The deformation of the beam is shown in 

Figure 5.12. It is difficult to make a thorough comparison between the FEA solution and 

the actual deformation data (obtained from echocardiogram data), primarily because the 

resting positions are inconsistent and the actual forcing is not a constant. Furthermore, the 

actual valve utilizes chordae tindineae, small tendons that aid with valve closure, their 

function is not represented in this model.  
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The stretch of the valve leaflet was also estimated using the FEA routine. 

Previous studies investigating leaflet stretching use Sonometric crystals implanted along 

the length of a porcine heart valve, the position of the crystals can be tracked temporally. 

Such research has demonstrated that, using a left heart model, stretching along the central 

portion of the mitral valve leaflet during systole may approach 1.5 times the unstretched 

length [64]. Using the simplified FEA hermetian beam simulation, leaflet length is shown 

to stretch by a factor of 2.5. The discrepancy between the results is likely due to the 

oversimplified geometry of the FEA simulation; as previously mentioned, only a beam 

like structure is simulated and the effects of the full leaflet and chordae are disregarded.   

 

 

Figure 5.12. Deformation of beam using FEA mitral valve simulation. 

 

 

 



 81 

True estimates for the mitral valve elasticity, for example, may be impossible to 

derive without invasive techniques such as direct measurement of transvalvular pressures 

with a catheter. However, estimates for localized changes in elasticity, based on localized 

forcing data as derived from ultrasound PIV, could offer incite into early stages of valve 

calcification or other stiffening and degradation conditions. Despite their limitations, 

simplified models such as the FEA routine used to model a leaflet could be used as a 

clinical diagnostic method. Performing a comprehensive FEA simulation of the ventricle 

would be extremely difficult in a clinical setting. Thus, it is up to the researcher to 

develop simplified techniques that can be implemented clinically, but have been verified 

through rigorous experimentation.     

 

5.6 Conclusion 

An elasticity estimation process is developed that utilizes forcing data derived 

from optical-PIV to measure the elasticity of a thin, cellulose acetate film. Three distinct 

subroutines are required for elasticity estimation: (1) velocity field acquisition via 

optical-PIV (2) solving Poisson’s equation to determine pressure, and (3) using an 

ensemble Kalman filter coupled with an FEA program to derive the elasticity. The 

estimation process in applied to films of both homogeneous and non homogeneous 

elasticity and elasticity values along the length are determined.  

The results show that it is possible to estimate the elasticity of a thin film based on 

PIV velocity fields and displacement measurements. In addition, it is possible to 

accurately determine the elasticity  
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Chapter 6 

 

CONCLUSIONS AND FUTURE WORK 

 

 This dissertation represents a culmination of my research on PIV techniques 

related to the study of intracardiac flow. When compared to various existing modeling 

and visualization methods that are being used by researchers, ultrasound based methods 

offer clear benefits: they are inexpensive and data can be acquired in almost any clinical 

setting; temporal resolution exceeds that of other in vivo techniques, performing scans is 

noninvasive and results in little patient discomfort; finally, data can be processed offline 

using techniques like PIV. Three separate studies are presented that demonstrate the 

importance of ultrasound PIV as a visualization tool: the accuracy of the ultrasound PIV 

method is demonstrated in Chapter 3, a novel multi-plane ultrasound PIV system is 

implemented in Chapter 4 to resolve LV flow, and Chapter 5 introduces a modeling 

technique that estimates cardiac tissue compliance using data derived from PIV.  

In Chapter 3 it is demonstrated that 2D velocity vector fields obtained by a 

clinically available, portable ultrasound machine coupled with DaVis PIV processing 

software correlate closely with those generated by optical-PIV, a technique well 

established as a “gold standard” for flow visualization. The vortex ring imaged in this 

study, which was dimensionally similar to the diastolic vortex, contained a significant 

out-of-plane component; much of the measurement error is shown to occur from the 

inability of 2D ultrasound to measure out-of-plane flow motion. Additional measurement 

error can be attributed to distortion due to the scan conversion process of ultrasound data. 

Given a sufficiently high ultrasound frame rate, a time filter can be applied to minimize 

noisy data. Thus, ultrasound-PIV is precise and accurate in the measured velocity range 



 83 

with most limitations related to 2D scanning of flow, which naturally contains velocity 

vectors in multiple directions [39]. 

 The study performed in Chapter 4 utilizes a multi-plane ultrasound PIV system to 

resolve the left intraventricular flow in a heart model. The results strongly suggest that 

angular positioning of the mechanical mitral valve is an important determinant of 

intracardiac hemodynamic conditions. Furthermore, it is demonstrated that a 

comprehensive understanding of LV dynamics is necessary to fully quantify mitral valve 

performance. The LV flow is complex and strongly three-dimensional; thus, studying the 

left intraventricular flow using two dimensional imaging techniques can lead to 

inaccurate findings.  This study demonstrates that using a single two dimensional plane to 

quantify MHV performance is unacceptable and can lead to misleading conclusions about 

the preferred positioning of an MHV. Imaging techniques such as multi-plane PIV can be 

used to mitigate this problem.  

In Chapter 4, an elasticity estimation process is developed that utilizes forcing 

data derived from optical-PIV to measure the elasticity of a thin, cellulose acetate film. 

Three distinct subroutines are required for elasticity estimation: (1) velocity field 

acquisition via optical-PIV (2) solving Poisson’s equation to determine pressure, and (3) 

using an ensemble Kalman filter coupled with an FEA program to derive the elasticity. 

The estimation process in applied to films of both homogeneous and non homogeneous 

elasticity and elasticity values along the length are determined. The results show that it is 

possible to estimate the elasticity of a thin film based on PIV velocity fields and 

displacement measurements. In addition, it is possible to accurately determine the 

elasticity of films with non-homogeneous elasticity. Considering the success of this 
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technique using optical-PIV, it should also be possible to estimate elasticity based on 

echo-PIV data, which is a future direction of my research. 

Existing work that establishes a basis for ultrasound PIV [7 ,8] focused on the 

development of the technique based on comparisons with know solutions and 

qualitatitative alanysis of complex flows, this work advances technical knowledge by 

specifically quantifying the ability of ultrasound PIV to analyze intracardiac 

hemodynamics. This establishes a basis for clinical use of  ultrasound PIV, particularly in 

the context of ventricular hemodynamics. Furthermore, the development of a novel tissue 

compliance diagnostic technique in Chapter 5 demonstrates how researchers could utilize 

the ultrasound PIV technique for in vivo, clinical measurements.  

6.1 Summary of Future Work 

With the creation of improved ultrasound systems, particularly those that allow 

for three dimensional imaging with high spatial and temporal resolution, it will likely be 

possible to fully quantify the LV flow. This could allow for precise measurements of 

cardiac efficiency and also detailed analysis of the effects of MHVs, pacemakers, and 

other cardiac dysfunctions. Additionally, a better understanding of the interactions 

between blood flow and heart walls is also necessary to quantify MHV performance. The 

effects of tissue-flow interactions remain mostly unknown; yet, this knowledge is vital to 

the creation of improved replacement heart valves. Innovation in this field will require 

models that precisely replicate the intricate boundary conditions of the myocardium.  

Perhaps the most important direction of future work is on the creation of early 

diagnostic techniques that are immediately viable in a clinical setting. Although 

ultrasound PIV has high temporal and spatial resolution, the measurements are noisy and 
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can be difficult to interpret. It is important that researchers continue to search for 

parameters and techniques that can be readily extrapolated from visualization methods. 

The advents of improved data filtering techniques for ultrasound or the study of the 

diastolic vortex as a measure for cardiac health are two examples.  

 My future work will include the creation of devices that allow for more precise 

multi-plane ultrasound data acquisition. This will involve the development of servo 

controlled holders for the ultrasound transducers so that the 2D imaging plane can sweep 

laterally and rotate to fully image a particular region. This will require data processing 

routines that can convert multiple 2D planes into a unified 3D model. The result of this 

work will be the creation of a 3D imaging technique that can easily and inexpensively be 

performed in a clinical setting. Ultrasound equipment is used extensively in clinical 

settings, thus only the transducer controller and data processing software would be 

required. Additional future work involves the improvement of existing techniques used 

by clinicians for the diagnosis of aortic and mitral stenosis, an example being extensive 

study of contrast enhanced Doppler. I will also focus on creating new estimates for valve 

leakage and leaflet openness, parameters that can be difficult to assess.  
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