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ABSTRACT  

   

Recent advances in medical imaging technology have greatly enhanced imaging 

based diagnosis which requires computational effective and accurate algorithms to 

process the images (e.g., measure the objects) for quantitative assessment. In this 

dissertation, one type of imaging objects is of interest: small blobs. Example small blob 

objects are cells in histopathology images, small breast lesions in ultrasound images, 

glomeruli in kidney MR images etc. This problem is particularly challenging because the 

small blobs often have inhomogeneous intensity distribution and indistinct boundary 

against the background. 

This research develops a generalized four-phased system for small blob detections. 

The system includes (1) raw image transformation, (2) Hessian pre-segmentation, (3) 

feature extraction and (4) unsupervised clustering for post-pruning. First, detecting blobs 

from 2D images is studied where a Hessian-based Laplacian of Gaussian (HLoG) 

detector is proposed. Using the scale space theory as foundation, the image is smoothed 

via LoG. Hessian analysis is then launched to identify the single optimal scale based on 

which a pre-segmentation is conducted. Novel Regional features are extracted from pre-

segmented blob candidates and fed to Variational Bayesian Gaussian Mixture Models 

(VBGMM) for post pruning. Sixteen cell histology images and two hundred cell 

fluorescent images are tested to demonstrate the performances of HLoG. Next, as an 

extension, Hessian-based Difference of Gaussians (HDoG) is proposed which is capable 

to identify the small blobs from 3D images. Specifically, kidney glomeruli segmentation 

from 3D MRI (6 rats, 3 humans) is investigated. The experimental results show that 

HDoG has the potential to automatically detect glomeruli, enabling new measurements of 
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renal microstructures and pathology in preclinical and clinical studies. Realizing the 

computation time is a key factor impacting the clinical adoption, the last phase of this 

research is to investigate the data reduction technique for VBGMM in HDoG to handle 

large-scale datasets. A new coreset algorithm is developed for variational Bayesian 

mixture models. Using the same MRI dataset, it is observed that the four-phased system 

with coreset-VBGMM has similar performance as using the full dataset but about 20 

times faster. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Structural objects exist everywhere in medical image analysis, like cells or nuclei 

in histopathology images or fluoroscopic images, renal stones in computed tomography 

(CT) images, cerebral blood vessels in magnetic resonance (MR) images, breast lesions 

in ultrasound images, glomeruli in kidney MR Images etc. Such structures have various 

shapes across the images: some are blob-like shape, some are curvilinear, and some are 

irregular. To identify those structures is of importance in medical image research fields 

for disease diagnosis and is very challenging due to their variant shapes as well as their 

inhomogeneous image intensity distributions. In addition, the computational cost problem 

may arise and become another main concern when the size and/or the dimension of 

images grow. 

In this research, the small structure identification problem, as a sub problem of 

structural object segmentation is of interest. Some example applications are cell or nuclei 

segmentation problem (Al-Kofahi et al. 2010, Bergeest et al. 2012, Zhang et al. 2014), 

glomerular segmentation problem (Beeman et al. 2014, Zhang et al. 2015), just to name a 

few. Here the specific challenges are (1) the medical images may often have the poor 

imaging quality, which makes the small structures harder to be labelled; (2) there exists 

large intensity variation for the structures and (3) boundaries of the structures are often 

fuzzy. Please note this type of small structure identification is also known as blob 

detection in the field of medical image analysis and computing vision. 
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Extensive studies have been done on blob detection, mainly in 2D medical images.  

However, there is currently a lack of unsupervised computationally efficient techniques 

to perform fast, reliable and accurate detection on large-scale small blobs in 3D images 

(e.g., MRI) due to the challenges of acquisition noise, partial volume effect (the mixture 

of several tissue signals in a voxel) and bias field (spatial intensity inhomogeneity). Such 

challenges are becoming even severe for those blobs (like glomerulus in 3D MR Kidney 

Images) are very small and the number of blobs is very large. To fill this gap, we have 

developed an efficient framework to identify the large-volume small blobs on both 2D 

and 3D images. 

 

1.2 Research Objective and Contributions 

The objective of this research is to develop computational efficient system to 

detect and segment small blobs in both 2D and 3D medical images. The contributions in 

this dissertation are: 

1. Hessian based pre-segmentation algorithm is proposed which can 

theoretically segment all the small blobs in images. 

2. Novel efficient regional features that can characterize the local geometry 

properties of blobs are derived for both 2D and 3D images.  

3. A novel detector termed Hessian based Laplacian of Gaussian (HLoG) is 

proposed for 2D blob detection. 

4. An extension of HLoG, an efficient detector termed Hessian based 

Difference of Gaussian (HDoG) is proposed which is capable for both 2D 

and 3D blob detections. 
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5. A new coreset construction algorithm is introduced for the post-pruning 

algorithm in HLoG and HDoG resulting a much improved computational 

efficient pipeline for small blob detection. 

 

1.3 Dissertation Organization 

In Chapter 2, we focus on 2D blob detection, specifically, cell detection in 2D 

histopathology images and/or fluoroscopic images. We propose a novel detector termed 

Hessian-based Laplacian of Gaussian (HLoG) using the scale space theory as the 

foundation. Like most imaging detectors, an image is first smoothed via Laplacian of 

Gaussian (LoG). Since small blobs (e.g., cell) may in general have similar sizes, Hessian 

analysis is launched to identify the single optimal scale based on which a pre-

segmentation is conducted. The second advantage of the Hessian process is it is capable 

to delineate the blobs. As a result, regional features can be retrieved. These features 

enable the unsupervised clustering algorithm for post pruning which shall be more robust 

than the traditional threshold-based post pruning commonly used in the most imaging 

detectors. To test the performance of the proposed HLoG, two sets of 2D grey medical 

images are studied. HLoG is compared against three state-of-the-art detectors: gLoG 

(Kong et al. 2013), Radial-Symmetry (Loy et al. 2003) and LoG (Lindeberg 1998) using 

precision, recall and F-score metrics. We observe HLoG has statistically outperformance 

over the compared detectors. 

In Chapter 3, HLoG is extended to 3D blob detection, specifically 3D glomeruli 

detection in MRI. A modified version of HLoG, termed efficient Hessian based 

Difference of Gaussians (HDoG) detector is proposed. The regional features proposed in 
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the first phase are extended to 3D to preserve the detectability on 3D blobs. Dataset 

consisting of six rat 3D kidney MR images, and three human 3D MR images are studied 

to test the applicability of HDoG for segmenting renal glomeruli. The experimental result 

shows that, Hessian based DoG can identify similar number of glomeruli as our 

maceration counts and stereology counts which have been taken as golden standard in 

medical research. 

In Chapter 4, in order to improve the computational speed of the post-pruning 

algorithm, Variational Bayesian Gaussian Mixture Models (VBGMM) for HLoG and 

HDoG, a data reduction technique called coreset (Agarwal et al. 2005) is introduced in 

VBGMM.  A new coreset algorithm is proposed which derives the importance of the 

representative data in the forms of weights to be fed into VBGMM. As a result, a 

modified version of VBGMM, weighted VBGMM is developed. To test the performance 

of this new weighted VBGMM, same two sets of 3D MR images discussed in Chapter 3: 

six rat kidney MR images and three human kidney MR images are evaluated. The results 

show while preserving the similar clustering performance, weighted VBGMM greatly 

reduces the computation time by about 20 times. 

Chapter 5 concludes the research studies in this dissertation and future works are 

discussed in this chapter. 
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CHAPTER 2 

SMALL BLOBS DETECTION IN 2D MEDICAL IMAGES 

Recent advances in medical imaging technology have greatly enhanced imaging 

based diagnosis which requires computational effective and accurate algorithms to 

process the images (e.g., measure the objects) for quantitative assessment. In this 

research, we are interested in one type of imaging object: small blobs. Examples of small 

blob objects are cells in histopathology images, glomeruli in MR images, etc. This 

problem is particularly challenging because the small blobs often have inhomogeneous 

intensity distribution and an indistinct boundary against the background. Yet, in general, 

these blobs have similar sizes. Motived by this finding, we propose a novel detector 

termed Hessian-based Laplacian of Gaussian (HLoG) using the scale space theory as the 

foundation. Like most imaging detectors, an image is first smoothed via LoG. Hessian 

analysis is then launched to identify the single optimal scale based on which a pre-

segmentation is conducted. The advantage of the Hessian process is it is capable of 

delineating the blobs. As a result, regional features can be retrieved. These features 

enable the unsupervised clustering algorithm for post-pruning which shall be more robust 

and sensitive than the traditional threshold-based post-pruning commonly used in most 

imaging detectors. To test the performance of the proposed HLoG, two sets of 2D grey 

medical images are studied. HLoG is compared against three state-of-the-art detectors: 

gLoG, Radial-Symmetry and LoG using precision, recall and F-score metrics. We 

observe that HLoG statistically outperforms the compared detectors.  
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2.1 Introduction 

The rapid development of medical imaging technology has dramatically increased 

the spatial and temporal resolution, and therefore size, of clinical imaging data. Typically, 

image segmentation methods are used to delineate specific objects and boundaries. The 

derived features, such as the number, size, and shape of the objects, are then used for 

clinical analysis. Some examples of objects in images for clinical studies include cell 

nuclei in histopathology images or fluoroscopic images to quantify cytology or histology 

(Al-Kofahi et al. 2010, Bergeest et al. 2012, Zhang et al. 2014), cerebral blood vessels in 

magnetic resonance (MR) images to diagnose vascular disease (Frangi et al. 1998), brain 

tumors in MR images to assess treatment (Prastawa et al. 2004), breast lesions in 

ultrasound images to stage breast cancer lesions (Moon et al. 2013), and glomeruli in 

kidney MR images to characterize renal disease (Beeman et al. 2014, Beeman et al. 2011, 

Zhang et al. 2015). Of particular interest in this research is a common type of object 

which is small in structure and convex elliptic in shape. In the field of computer vision, 

the problem of detecting such objects is known as blob detection. Using mathematical 

methods, blobs with different properties such as brightness or shape can be identified 

against the image background. 

Extensive research has proposed various blob detectors, among which one 

popular approach is to use local extrema in a transformed space in conjunction with a 

vector of derived features, (e.g., local intensity histogram or orientation histogram), to 

identify the blobs. In general, this type of blob detector can be categorized as an interest 

point detector or interest region detector. As interest point detectors, the Radial-

Symmetry (Loy et al. 2003) and the Radial Gradient Transform detectors (Takacs et al. 
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2013) use radial symmetric space as the transformation base. One advantage is that the 

Radial-Symmetry and Radial Gradient Transform detectors are fast to compute and are 

rotationally invariant, which would be beneficial to detect radial symmetric blobs. 

However, for radial asymmetric blobs, these two detectors may lose their sensitivities 

(Kong et al. 2013). Other types of interest point detectors like SIFT (Lowe 2004), SURF 

(Bay et al. 2008) and BRISK (Leutenegger et al. 2011) are rooted in a scale invariant 

space transformation. Scale invariant features are extracted, associated with affine 

invariant features such as the orientation histogram to characterize the local properties in 

the affine space. These detectors are claimed to be affine invariant such that local 

structures with similar affine properties within or across images can be identified. 

Note interest point detectors are developed for each pixel/voxel, ignoring the 

contributions of neighboring pixels/voxels to the object. Consequently, these detectors 

tend to be less tolerant of local noise. Motivated by the affine invariant interest point 

detector, interest region detectors are introduced to derive aggregated measures of a 

number of pixels/voxels within regions of local extrema. Some examples of interest 

region detectors are the Harris-Affine detector, Hessian-affine detector and Hessian-

Laplace detector (Mikolajczyk et al. 2004). While these detectors are shown to be more 

robust to noise, they are computationally expensive to adapt the shape estimation. In 

addition, the massive number of local extrema necessitates careful pruning, which adds to 

the computational burden. It is also challenging to identify the appropriate pruning 

parameter, which tends to be subjective for both interest point and interest region 

detectors. 
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Although both interest point and region detectors well describe affine invariant 

properties of local image structures, it is observed in the study by (Kong et al. 2013) that 

the performance of these detectors on some blob identification problems in pathological 

and fluorescent images are unsatisfactory. Instead, another type of detector, Laplacian of 

Gaussian (LoG) detector (Lindeberg 1998), under the scale space theory (Lindeberg 

1993b), has attracted great attention for the blob detection problem. Scale space theory is 

a formal theory that considers one image as a stack of images controlled by one 

parameter (scale parameter t), in the so-called scale space representation. The Gaussian 

scale space representation of an image is defined by the convolution of the image 

function with the Gaussian kernel, preserving important spatial properties of the imaged 

structures (Lindeberg 1993b). Specifically, as the scale parameter increases, the number 

of local minima in a dark blob does not increase, and the number of local maxima in a 

bright blob does not decrease. This means that neighboring blob objects will diffuse and 

eventually combine to be identifiable blobs at a specific scale. If a multi-scaled 

representation with regards to scale parameter t is constructed, there thus exists one 

“optimal” scale for blobs with similar sizes. Individual blobs can then be detected with 

corresponding scale parameters. Previous research has shown that the detector generated 

by applying the LoG kernels can successfully detect blobs (Lindeberg 1993a, 1998). 

However, the symmetric nature of the LoG detector limits its performance in rotational 

asymmetric blob detection and computational cost for scale adaption under multi-scale 

representation is expensive. Therefore, a number of LoG extensions have been proposed. 

For example, the Difference of Gaussian (DoG) (Lowe 2004, Mikolajczyk et al. 2004) is 

developed to approximate the LoG and improve computational performance. The 
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Generalized Laplacian of Gaussian (gLoG) (Kong et al. 2013) is proposed to extend the 

detection to rotational asymmetric structures by using different Gaussian kernels. The 

gLoG is thus able to detect general elliptical structures such as rotationally symmetric 

and asymmetric blobs.  

All detectors reviewed above use the same workflow, pinpointing the centroid of 

the blob and carefully pruning to remove the overlapping local extrema. A regular ellipse 

with a proper radius that is associated with its scale is then superimposed on the center to 

approximate the blob shapes. Consequently, the derived features (e.g., the volumes of the 

blobs) are only estimates rather than accurate measurements defined by true boundaries. 

Furthermore, while scale space theory provides the foundation for complex detectors, it is 

based on a multi-scale representation, which may waste computing effort in optimally 

selecting scales when the blobs are approximately uniform in size. Uniformly sized blobs 

are common in a number of clinical applications, such as in detecting cells and nuclei in 

pathologic or fluorescent microscopic images (Al-Kofahi et al. 2010, Bergeest et al. 2012, 

Zhang et al. 2014), and segmenting kidney glomerulus in 3D MR images (Beeman et al. 

2014, Beeman et al. 2011, Zhang et al. 2015). These images generally contain very large 

number of small blobs, each with a convex elliptical shape. Though “uniform size” may 

relax the blob recognition problem, there exist some unique challenges: (1) the blob’s 

small size corresponds to a high spatial frequency close to that of image noise. As a 

result, small blob detection is sensitive to local noise; (2) the heterogeneous distribution 

of intensities and heterogeneous boundaries make it difficult to threshold the small blobs 

from the image background. We contend features derived from small imaging 
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objects/regions may help address the challenges. This will require the detailed 

delineations of the blobs instead of estimating the blob boundaries.  

In this study, the convexity and elliptic shape of the blobs of interest motivates us 

to explore the Hessian analysis. Here we propose a novel approach, named Hessian-based 

Laplacian of Gaussian detector (HLoG) for small blob detection. Specifically, similar to 

the aforementioned detectors, a multi-scale representation is first derived using LoG for 

each image. Since the blobs are approximately homogeneous in size, an “optimal” scale 

can be identified from the Hessian analysis thus a single-scale representation can be 

obtained from the images. Hessian analysis is then applied to pre-segment the blob 

candidates. It is known that the theoretical foundation of Hessian guarantees the pre-

segmentation will recognize all the true blobs, as well as some non-blob objects. This 

leads to the need to fine-tune the pre-segmentation results. We want to note the detectors 

reviewed above such as LoG, gLoG, Radial-Symmetry all employ threshold-based fine 

prune procedure which may be less tolerant to image noises. Fortunately, the Hessian 

pre-segmentation has greatly reduced data size (by filtering out most non-blob regions) 

and delineated the boundary of blob candidates. As a result, we can afford to extract 

multiple features from the small blob candidates. In addition to the eight features 

commonly used in the literature, we introduce three new features to measure the 

“blobness.” After comprehensive assessment, three out of eleven significant features are 

selected and used in Variational Bayesian Gaussian mixture model (VBGMM) (Bishop 

2006) to finalize blob detection. VBGMM is chosen here since it is an unsupervised 

clustering algorithm which is also tuning-free. During the LoG transformation, a dark 

blob is converted to a bright blob and vice versa. To avoid confusion, we define the blob 
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after the LoG operation as transformed-blob hereafter. This paper focuses on the dark 

blob (transformed-bright blob) identification. Same process applies for the bright blob 

(transformed-dark blob) identification.  

The main contributions of this proposed HLoG detector for small blobs with 

similar sizes are three-fold. First, the proposed novel Hessian pre-segmentation is capable 

of generating blob candidate regions that theoretically enclose all the true blobs and 

accurately delineate the shape of imaging objects so multiple regional features can be 

extracted for post pruning. Second, the use of Hessian pre-segmentation enables the 

identification of a single optimum scale as the smoothing parameter for normalized LoG 

filter to greatly reduce the computational burden. Third, together with average intensity 

information (known from literature), two out of three new regional features, after 

evaluation, are introduced to characterize the local blobs to prune out the non-blob 

objects for improved final segmentation.  

The following sections are organized as follows: Chapter 2.2 describes our 

method in details followed by the comparison experiments in Chapter 2.3.  Conclusions 

are presented in Chapter 2.4. All code and results in this paper can be found at our 

website (http://swag.engineering.asu.edu/HLoG.htm). 

 

2.2 Hessian-based Laplacian of Gaussian Detector 

2.2.1 Normalized Laplacian of Gaussian Transformation  

http://swag.engineering.asu.edu/HLoG.htm
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Given 2D image 
2:f R R , the scale space representation     , ;L x y t  at point 

 ,x y with scale parameter t is the convolution of image  ,f x y with Gaussian kernel 

 , ;G x y t   

         , ; , , ;L x y t f x y G x y t    (2.1) 

Where ∗ is the convolution operator and

2 2

2

( )

2

1
( , ; )

(2 )

x y

tG x y t e
t




  . The Laplacian of 

( , ; )L x y t  is: 

      2 2, ; , , ;L x y t f x y G x y t     (2.2) 

Since differentiation commutes with convolution, we have: 

      2 2, ; , , ;L x y t f x y G x y t     (2.3) 

 A seminal paper by (Lindeberg 1998) explains that the LoG response always decreases 

when t increases resulting the maximum LoG is at the stage without the convolution.  A 

normalizing factor γ is introduced as the power of scale to obtain the maximum LoG 

invariance over scale by (Lindeberg 1998):  

      2, ; , , ;LoG x y t f x y t G x y t     (2.4) 

By using , the maximum of LoG responses are the same regardless of the scales. 

Ideally, let the intensity distribution of blob be a perfect Gaussian (without noise and 

distortion), it is proved that when 2  , the scale invariance is achieved (Lindeberg 

1998). As a result, the size of blobs can be determined at the scale when the normalized 

LoG reaches the maximum. Yet, in practice, the normalizing factor  needs to be tuned to 

make the LoG maxima invariant to the blob sizes (note we have adopted different γ 
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values in our experiments, see Chapter 2.3). Let γ be set, Eq. (2.4) transforms the raw 

image into LoG space, a t-controlled, smoothed space in which transformed-blobs are 

highlighted with enhanced boundaries.  

In scale space theory, different structures can be highlighted with regards to the 

scale parameter t in the multi-scale space representation. Every transformed-blob can be 

graphically represented by a circle centered at the local spatial maximum over LoG space 

with the radius r  proportional to the scale at which the maximum over scales is obtained. 

Since the blobs studied in this research have approximately uniform sizes, one optimal t 

may be identified for all the blobs in the image. When t is small, unnecessary details can 

inadvertently be highlighted, leading to over-segmentation. When t is large, several small 

structures could be identified as one object, leading to under-segmentation. Therefore, 

determining the optimum t to extract most of small blobs of interest is critical. 

Fortunately, Hessian analysis can assist in determining the optimum t. In addition, 

Hessian analysis can be used to highlight blob candidates and preserve the true geometric 

shapes of the candidate regions as pre-segmentation. 

 

2.2.2 Hessian Pre-segmentation 

2.2.2.1 Hessian Analysis 

It is known that the eigenvalues of the Hessian matrix of a blob-like structure can 

be used to describe the structure’s geometry. Let the image be smoothed via LoG first, 

for any pixel ( , )x y in the LoG image ( , ; )LoG x y t at scale t, the Hessian Matrix for this 

pixel is: 
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LoG x y t LoG x y t

x x y
H x y t

LoG x y t LoG x y t
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  (2.5) 

Given geometric classification as a pixel (Salden et al. 1991) and specific 

orientation patterns (Frangi et al. 1998), if pixel ( , )x y is concave elliptic, both of the 

eigenvalues 1 2λ ,λ of ( , ; )H x y t  are negative, meaning 1 2λ 0,λ 0   . This motivates us to 

identify the transformed-bright blobs by the following proposition. 

Proposition 1. In a transformed 2D LoG image, every pixel of a transformed-

bright blob has a negative definite Hessian. 

Proof. Since every pixel in the transformed-bright blob is concave elliptic, the 

eigenvalues of its Hessian are negative, requiring that the Hessian matrix is negative 

definite.∎ 

Proposition 1 provides one necessary but not sufficient property that a pixel in a 

transformed-bright blob must satisfy. In other words, if a pixel resides in a transformed-

bright blob, the Hessian matrix of the pixel is negative definite. But the pixel having 

negative definite Hessian may not be from a transformed-bright blob. This proposition 

provides us the theoretical foundation to identify the blob candidates by using Hessian 

matrix to ensure all true blobs are recognized.  

Hessian Pre-segmentation Algorithm:  A blob candidate T in LoG space can be 

segmented as a 4-connected component of set   

       { , | , , ; , , ; 1}U x y x y LoG x y t I x y t   , where    , ;I x y t  is the binary indicator 
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such that if the pixel ( , )x y  has a negative definite Hessian then    , ; 1I x y t  , otherwise 

   , ; 0I x y t  .  

Note the definiteness of the Hessian can be assessed by the leading principal 

minors instead of calculating its eigenvalues of the matrix. Taking a 2x2 matrix A  as an 

example, if 11A  is negative and | | 0A  , then A  is negative definite. Following the 

proposition and the definition, the Hessian matrix can populate the pool of blob 

candidates that theoretically is the superset of all the blobs with their geometric shapes. In 

this dissertation, we have proved that when blobs are symmetric Gaussians, Hessian pre-

segmentation algorithm is able to segment blobs and split touched blobs mixtures 

naturally (see Appendix B). Figure 1 is an illustrative example showing an identified blob 

candidate using the Hessian matrix and the true blob for a given scale. In the next section, 

we will explain how to use the Hessian analysis to obtain the optimal scale.  

 

 

Figure 1 Transformed-bright Blob Has a Negative Definite Hessian in Normalized LoG 

Space. (A) Dark Blob in the Raw Image. (B) Transformed- bright Blob after Normalized 

LoG Transformation from (A). (C) Region of Pixels having Negative Definite Hessian in 

(B) is Contoured in Green over (B). (D) Region of Pixels having Negative Definite 

Hessian in (B) is Contoured in Green over Original Image (A). As Seen in (D), Negative 

Definite Hessian Outlines the Blob over (A). The Irregular Shape of the Blob is Clearly 

Delineated. 

 

2.2.2.2 Hessian based Optimal Scale Identification 
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In addition to identifying blob candidates, Hessian analysis can be used to 

determine the optimal scale parameter t. For blobs in different scales, (Lindeberg 1998) 

uses the maximum normalized LoG (trace of Hessian) to select the optimum scales across 

the scale-space for each individual blob. Specifically, each blob achieves the most 

saliency at the scale at which its average of LoG reaches the maxima. Since only blobs of 

similar sizes are discussed in this paper, a single scale can be selected to approximate the 

size of all blobs. The maximum value of averaged normalized LoG is used here to auto-

determine the single optimum scale for small blobs. Let the image be transformed to a 

normalized multi-scale LoG space representation. To determine the optimum scale of the 

blob candidates, let the average LoG value per candidate pixel measure rC  be: 

  
 

   

 
 

,

,

| , ; | , ;

, ;

x y

r

x y

LoG x y t I x y t
C t

I x y t




  (2.6) 

Where  , ;I x y t is the binary indicator defined previous in Hessian Pre-segmentation 

Algorithm. As rC  increases, the blob candidates are more salient against their 

background. Therefore, the optimum scale tbest can be calculated as: 

  best t rt argmax C t   (2.7) 

Using 𝑡𝑏𝑒𝑠𝑡,  the raw image is transformed into a single-scale LoG space from 

which the blob candidates are populated. It is proved that when blobs are symmetric 

Gaussians and identical in size, the selected optimum scale is equal to the optimum scale 

selected from (Lindeberg 1998) for each individual blob (see Appendix B).  

 

2.2.2.3 Validation of Hessian Pre-segmentation 
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To evaluate the performance of Hessian pre-segmentation, the precision, recall 

and F-score metrics are used. Precision measures the fraction of retrieved candidates that 

are relevant to the ground-truth. Recall measures the fraction of ground-truth data 

retrieved. F-score measures overall performance. Since ground truth data are provided in 

the form of dots (the coordinates of the blob centers), the same as in the literature 

(Bernardis et al. 2011), A blob candidate i is considered as a true positive if and only if it 

is in a detection pair  ,i j  where the corresponding (nearest) true dot j that has not been 

paired, and their Euclidean distance
ijD is within the threshold d. Therefore the number of 

true positives (TP) is calculated by Eq.(2.8). Precision, recall, and F-score are calculated 

by Eqs.(2.9),(2.10) and (2.11), respectively: 

       1 1 # , : ,# , :m n

j ij i ijTP Min i j Min D d i j Min D d      (2.8) 

 
TP

precision
n

   (2.9) 

 
TP

recall
m

   (2.10) 

 
 

2
precision recall

F score
precision recall


  


  (2.11) 

Where m is the number of ground-truth and n is the number of blob candidates; d is a 

thresholding parameter for evaluation purpose and can be set to a positive value  0,  . 

If d is small, fewer blob candidates will be counted since the distance between blob 

candidate centroid and ground-truth should be small in order to be counted. If d is set to 

large, more blob candidates will be counted due to the relaxation of the distance. In this 

paper, since the local intensity extreme could be located anywhere within the small blob 
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region with an irregular shape, we set evaluation threshold parameter d to the average 

diameter of blobs 
( , )

( , ; )
2

x y
I x y t

d


 


 . The comprehensive experimental results 

with different values of d will be discussed in Chapter 2.3.3. 

  For validation purpose, three commonly used detectors are chosen for comparison. 

One is an interest point detector, Radial-symmetry detector, which is fast and has good 

performance on rational symmetric image structure detection (Loy et al. 2003). The other 

two are LoG detectors which are specifically designed for blob detection: the original 

LoG method (Lindeberg 1998) and its variant - gLoG method (Kong et al. 2013). Note 

that all three detectors employ threshold-based post pruning to finalize the segmentation. 

To validate the Hessian analysis as a pre-segmentation procedure, we compare the 

Hessian pre-segmentation with the three detectors without the post pruning. The 

comprehensive comparison of HLoG with the three detectors with post pruning is 

provided in Chapter 2.3.  

In this experiment, a dataset of fifteen 600×800 pathological cell images (Kong 

et al. 2013) is studied. The source code for the LoG and gLoG algorithms are 

implemented from (Kong et al. 2013) and source code of Radial-Symmetry is 

implemented from (Loy et al. 2003) (all those source codes are available online). Since 

the Radial-Symmetry Matlab package only provides the transformation from raw image 

to Radial-Symmetry space, we use the radial-symmetric centers (local extrema) with 

maximum intensity values as the centroids of the small blobs.  

The parameter settings for the proposed method are the following: the 

normalizing factor   is set to 2 based on our rough tuning experiments.  The optimum 
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scale bestt  of small blobs is automatically selected for each images with Eqs. (2.6) and 

(2.7) from the range of 2 to 10 and step size 0.5. For each image, all the algorithms adopt 

the same value d (
( , )

( , ; )
2

x y
I x y t

d


 


as discussed earlier in this section). 

 

Table 1 Comparison Results of HLoG, gLoG, Radial-symmetry and LoG on 15 

Pathologic Images without Post-pruning Process 

IMG 𝑑 
Hessian  gLoG (no thresholding) Radial-Symmetry (no thresholding) LoG (no thresholding) 

Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score 

1 13.85 0.915 0.946 0.931 0.929 0.924 0.927 0.339 0.997 0.506 0.038 0.997 0.073 

2 13.54 0.804 0.957 0.873 0.844 0.927 0.883 0.285 0.995 0.444 0.032 0.998 0.061 

3 14.30 0.696 0.985 0.815 0.677 0.974 0.799 0.246 0.991 0.394 0.018 1.000 0.036 

4 11.75 0.846 0.966 0.902 0.933 0.931 0.932 0.314 0.998 0.478 0.040 0.981 0.077 

5 13.88 0.884 0.942 0.912 0.907 0.925 0.916 0.339 0.995 0.506 0.040 0.969 0.076 

6 12.03 0.826 0.968 0.891 0.920 0.898 0.909 0.398 0.994 0.568 0.034 0.998 0.066 

7 14.01 0.781 0.970 0.865 0.822 0.959 0.885 0.304 0.993 0.466 0.030 1.000 0.059 

8 14.00 0.846 0.971 0.904 0.881 0.951 0.915 0.405 0.991 0.575 0.034 0.994 0.065 

9 14.06 0.836 0.972 0.899 0.875 0.943 0.908 0.354 0.987 0.522 0.029 0.997 0.057 

10 11.99 0.840 0.958 0.895 0.922 0.879 0.900 0.297 0.995 0.457 0.041 0.973 0.079 

11 14.00 0.808 0.971 0.882 0.850 0.957 0.900 0.296 1.000 0.456 0.031 0.991 0.061 

12 14.58 0.790 0.960 0.867 0.805 0.960 0.876 0.300 1.000 0.461 0.025 0.998 0.048 

13 13.87 0.774 0.969 0.860 0.812 0.950 0.876 0.281 0.998 0.438 0.028 0.993 0.055 

14 12.96 0.829 0.972 0.895 0.875 0.930 0.902 0.361 0.999 0.530 0.030 0.995 0.058 

15 13.14 0.809 0.968 0.881 0.862 0.952 0.905 0.335 1.000 0.502 0.027 0.993 0.053 

Avg 13.46 0.819 0.965 0.885 0.861 0.937 0.895 0.324 0.996 0.487 0.032 0.992 0.061 

Std 0.89 0.051 0.011 0.027 0.066 0.025 0.032 0.044 0.004 0.050 0.006 0.010 0.012 

 

The performance of Hessian pre-segmentation on the three metrics: precision, 

recall and F-score is summarized in Table 1 with regards to bestt  and d. It is interesting to 

note that though both gLoG and Radial-Symmetry detectors claim no post-pruning is 

necessary, the results indicate the room for much improvement. Indeed, in the literature, 

both detectors (Kong et al. 2013, Loy et al. 2003) have employed the post pruning for 

experiments. As for LoG, it is designed to have post pruning as a must. Therefore, it is 

not surprising the performance of LoG in this validation experiment is far inferior. 
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In looking at the average performance (Table 1), gLoG performs the best (0.861) 

in precision and F-score (0.895), Radial-Symmetry performs the best in recall (0.996). 

We further conduct Analysis of Variance (ANOVA) for statistical conclusion. As seen in 

Table 2, there is no significant difference in precision and F-score in comparing our 

Hessian pre-segmentation with gLoG. Same conclusion is drawn in comparing our 

Hessian pre-segmentation with Radial-Symmetry in recall. However, Hessian pre-

segmentation significantly outperforms gLoG in recall, and Radial-Symmetry in both 

precision and F-score.  

 

Table 2 ANOVA on Detectors without Post-pruning using Tukey’s HSD Pairwise Test 

on 15 Pathologic Images with 0.05 Significance Level 

Contrast 

( Hessian v.s ) 

Precision Recall F-Score 

𝑝 (Significant) 𝑝 𝑝 

gLoG 0.081(No) < 0.0001 (Yes) 0.813 (No) 

Radial-Symmetry < 0.0001 (Yes) 0.893 (No) < 0.0001 (Yes) 

 

Theoretically, all the true blobs with elliptic convex shape assumption can be 

retrieved by Hessian pre-segmentation which is proved by Proposition 1. However, in 

practice, as expected, the Hessian pre-segmentation in this experiment retrieves most true 

blobs (96.5% close to 100%). The discrepancy is due to the modeling error that some true 

blobs may not comply with the elliptic convex assumption.  

As discussed earlier, the results from Table 1 indicate that both gLoG and Radial-

Symmetry need post-pruning for improved performance. All three comparison detectors 

employ thresholding-based post-pruning process. We argue that the advantage of our 

proposed Hessian pre-segmentation enables the extraction of blob specific features to be 
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used in the post-pruning. Such advantage can be shown in the full comparison (see 

Chapter 2.3). 

 

 

Figure 2 Hessian Pre-segmentation Results on Selected Pathologic Cell Image. (A) Raw 

Image. (B) Auto Scale Selection: Section 7bestt t   is Selected. (C) LoG Transformed 

Image. (D) Hessian Pre-segmentation Result: Purple Mask Shows the Shapes Retrieved 

by Hessian Pre-segmentation Method. 

 

For illustration purposes, Figure 2 shows the process of our proposed Hessian pre-

segmentation on a selected pathologic image. For this specific image, 7bestt    (Figure 

2(B)). Figure 2 (C) shows the LoG-transformed image, in which small blob structures are 

enhanced. Based on the transformed image, Hessian pre-segmentation method generates 
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blob candidates, (purple in Figure 2 (D)), and the LoG intensity extrema are marked as 

green circles to represent the centroids of these candidates compared to the ground truth 

dots marked as yellow cross (see Figure 2 (D)). For a better view, we circle three 

representative blobs in Figure 2 (A). As seen, these blobs have inhomogeneous intensity 

distributions: blob 3 is much darker than blob 1 and blob 2. Blobs 1 and 2 also have 

ambiguous boundaries against the background. Figure 2 (D) shows that Hessian pre-

segmentation is able to recognize these blobs and we conclude the Hessian analysis is 

robust for identifying blobs with inhomogeneous intensity distributions and blurred 

boundaries. In the next section, the regional features extracted from the blobs are 

discussed. 

 

2.2.3 Features Extraction and Evaluation 

2.2.3.1 Regional-based Features Extraction 

There are two common geometric measures in blob detection: R- the likelihood of 

“blobness” measure,  and S- the second order structureness used by (Frangi et al. 1998): 

 1

2

R



   (2.12) 

  2 2

1 2S      (2.13) 

Where  1  and  2  are eigenvalues of the Hessian and 1 2| || |  . R is the ratio of the two 

principal curvatures and falls in (0,1]. (The negative definite Hessian guarantees

21, 0   ). If 1R   , and the curvatures along two principal directions are similar, the 

pixel most likely resides in a blob-like structure; If 0R , i.e. the curvatures along two 
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principal directions are fairly different and the pixel is most likely on a line. Measure S 

indicates the contrast of the pixel against the background. With larger S, the pixel within 

the object is more salient against the background. Given R and S, the single measure to 

describe blobness is given by (Moon et al. 2013) as: 

  
2 2

2 2
, 1 exp 1 exp

2 2

R S
B R S

c

     
         

     
  (2.14) 

Where β and c are constant parameters that control the sensitivity of R and S respectively, 

they are usually set to 0.5. Although these measures quantify the geometric information 

of blobs, the calculations are relatively computationally expensive. Computing the 

likelihood of blobness R is particularly expensive because it requires the calculation and 

sorting of all eigenvalues in every pixel. To efficiently calculate the likelihood of 

blobness, we propose a modified likelihood blobness measure R' for each pixel as: 

  
   

       
2

1 2

2 1

2 , ;2
' , ;

, ; 2 , ;

det H LoG x y t
R x y t

tr H LoG x y t det H LoG x y t 

 


 

 

  (2.15) 

Where ( )H  is the Hessian. The advantage of this modification is that instead of 

calculating the eigenvalues
21,  , only trace and determinant are calculated which is 

more computationally efficient. Moreover, R' functions the same as R for the 

measurement of blobness as replacement. Next we will prove that R' is a monotonic 

increasing function of R, thus preserving the ability to measure the blobness. 

Proposition 2. R' is a monotonic increasing function of R. 
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, when  0,1R  . R' is a monotonic 

increasing function of R. ∎ 

This proposition proves that R' is a valid and efficient replacement of R that 

preserves the measurement of blobness. The Eq.(2.15) shows that ' (0,1]R  . For any 

pixel, if it is within a blob-like structure, R is close to 1, the modified R' is also close to 1; 

otherwise, R is close to 0, the modified R' is also close to 0. We conclude R' is equivalent 

to R in measuring blobness, and R' is much efficient to compute compared to R since it 

only requires the computation of trace and determinant. Keeping second-order 

structureness the same, Eq.(2.13) can be rewritten using the trace and determinant of the 

Hessian: 

          
2

, ; , ; 2 , ;S x y t tr H LoG x y t det H LoG x y t     (2.16) 

The modified blobness measure based on R' and S is ' ( ', )B B R S . Since we are 

interested in the features within the regions, i.e. blob candidates instead of individual 

pixels, aggregated measures of the pixels within each region are required. One approach 

is to average the measures, giving us ,T meanR , ,T meanS  and ,T meanB . Alternatively, the 

maximum values of the measures within a region can be calculated as ,maxTR , ,maxTS  and

,maxTB . In this research, given the true shape information available from the Hessian pre-

segmentation and inspired by the design of Harris regional detectors (Mikolajczyk et al. 
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2004), we introduce three new measures: 
TR - regional likelihood of blobness, 

TS - 

regional structureness, and TB  for each blob candidate T (a function of TR  and TS , as 

Eq.(2.14)) based on  the matrix constructed by the sum of second-order derivatives over 

the candidate T:  
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  (2.17) 

Based on this matrix, we get the regional likelihood of blobness :  

 
 

2

2 T

T

T

det H
R

S


   (2.18) 

Where 

    
2

( ) 2T T TS tr H det H     (2.19) 

The summation of Hessian matrix in Eq. (2.17) describes the second-order 

derivative distribution within the region of blob candidate. The derivatives are equally 

weighted averaged (sum over the region T) at the centroid of T over the region. The 

eigenvalues of this matrix represent the two principal curvatures of the centroid over blob 

candidate. Thus this can be utilized to measure the likelihood of blobness over the region. 

Together we have three groups of features for blobness measures: mean-based, max-

based and blob-candidate based. In addition, the common features Average Intensity of 

candidate T ( TM ) and the Area of candidate T ( TA ) are added into the features list. Table 

3 summarizes the features and their calculations. 

 

TR
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Table 3 Summary of Features over Blob Candidate T 

Group Features Formulation Description 

Common Features 

𝑀𝑇 
∑ 𝑓(𝑥, 𝑦)(𝑥,𝑦)∈𝑇

𝐴𝑇
 Average Intensity  

𝐴𝑇 ∑ 𝐼(𝑥, 𝑦; 𝑡𝑏𝑒𝑠𝑡)

(𝑥,𝑦)∈𝑇
 Area   

Using regional max information 

𝑅𝑇,𝑚𝑎𝑥 max {𝑅′(𝑥, 𝑦; 𝑡𝑏𝑒𝑠𝑡), (𝑥, 𝑦) ∈ 𝑇} Max likelihood of  blobness  

𝑆𝑇,𝑚𝑎𝑥 max {𝑆(𝑥, 𝑦; 𝑡𝑏𝑒𝑠𝑡), (𝑥, 𝑦) ∈ 𝑇} Max Structureness  

𝐵𝑇,𝑚𝑎𝑥 max {𝐵(𝑅′, 𝑆), (𝑥, 𝑦) ∈ 𝑇} Max blobness  

Using regional mean information 

𝑅𝑇,𝑚𝑒𝑎𝑛 mean {𝑅′(𝑥, 𝑦; 𝑡𝑏𝑒𝑠𝑡), (𝑥, 𝑦) ∈ 𝑇} Mean likelihood of  blobness 

𝑆𝑇,𝑚𝑒𝑎𝑛 mean {𝑆(𝑥, 𝑦; 𝑡𝑏𝑒𝑠𝑡), (𝑥, 𝑦) ∈ 𝑇} Mean Structureness of 

𝐵𝑇,𝑚𝑒𝑎𝑛 mean {𝐵(𝑅′, 𝑆), (𝑥, 𝑦) ∈ 𝑇} Mean blobness 

Proposed Features 

𝑅𝑇 
2 × |𝑑𝑒𝑡(𝐻𝑇)|

𝑆𝑇
2  Regional likelihood of  blobness  

𝑆𝑇 √(𝑡𝑟(𝐻𝑇))2 − 2 × |𝑑𝑒𝑡(𝐻𝑇)|)   Regional structureness 

𝐵𝑇 𝐵(𝑅𝑇, 𝑆𝑇) Regional blobness  

 

2.2.3.2 Regional-based Features Selection 

With the features extracted above, a clustering algorithm based on the variational 

Bayesian Gaussian Mixture Model (VBGMM) (Bishop 2006) is used to evaluate the 

contributions from the features in identifying the blobs. Unlike the supervised learning 

algorithm, where every feature contributes with adjusted weights after training, the 

VBGMM is an unsupervised learning algorithm with equal weights for all features 

without training. Since this paper studies blobs with similar size, to verify the trivialness 

of blob size feature, we add additional tests with and without area features. Also, because 

blobness is the nonlinear combination of likelihood of blobness and structureness, these 

features need to have separate experiments to test their performances. Therefore, to 

evaluate the regional features based on different types of measures, the features listed in 

Table 3 are categorized into the eighteen features sets (2×3×3) listed in Table 4. The 

experiments are performed on the same dataset as for Hessian pre-segmentation. The 
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parameter settings and evaluation metrics are the same as in Chapter 2.2.2 for model 

setup and performance evaluations. The results are shown in Table 4. 

 

Table 4 Evaluation of Different Feature Sets on 15 Pathologic Images (Mean and 

Standard Deviation of the Measures on Precision, Recall, F-score) 

Feature Set 
Precision Recall F-Score 

Mean±Std Mean±Std Mean±Std 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇,𝑚𝑎𝑥, 𝑆𝑇,𝑚𝑎𝑥, 𝐵𝑇,𝑚𝑎𝑥 0.856±0.046 0.953±0.014 0.901±0.021 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇,𝑚𝑎𝑥, 𝑆𝑇,𝑚𝑎𝑥 0.865±0.046 0.950±0.014 0.904±0.021 

𝑀𝑇 , 𝐴𝑇 , 𝐵𝑇,𝑚𝑎𝑥 0.832±0.054 0.964±0.011 0.892±0.029 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇,𝑚𝑒𝑎𝑛 , 𝑆𝑇,𝑚𝑒𝑎𝑛, 𝐵𝑇,𝑚𝑒𝑎𝑛 0.821±0.051 0.965±0.011 0.886±0.027 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇,𝑚𝑒𝑎𝑛, 𝑆𝑇,𝑚𝑒𝑎𝑛 0.828±0.053 0.964±0.011 0.890±0.028 

𝑀𝑇 , 𝐴𝑇 , 𝐵𝑇,𝑚𝑒𝑎𝑛 0.832±0.053 0.964±0.011 0.892±0.029 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇 , 𝑆𝑇 , 𝐵𝑇 0.969±0.017 0.767±0.051 0.855±0.030 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇 , 𝑆𝑇 0.945±0.027 0.880±0.034 0.911±0.016 

𝑀𝑇 , 𝐴𝑇 , 𝐵𝑇 0.963±0.022 0.822±0.029 0.887±0.014 

𝑀𝑇 , 𝑅𝑇,𝑚𝑎𝑥, 𝑆𝑇,𝑚𝑎𝑥, 𝐵𝑇,𝑚𝑎𝑥 0.854±0.047 0.953±0.014 0.900±0.022 

𝑀𝑇 , 𝑅𝑇,𝑚𝑎𝑥, 𝑆𝑇,𝑚𝑎𝑥 0.862±0.047 0.950±0.014 0.903±0.022 

𝑀𝑇 , 𝐵𝑇,𝑚𝑎𝑥 0.828±0.057 0.964±0.011 0.890±0.030 

𝑀𝑇 , 𝑅𝑇,𝑚𝑒𝑎𝑛 , 𝑆𝑇,𝑚𝑒𝑎𝑛 , 𝐵𝑇,𝑚𝑒𝑎𝑛 0.822±0.053 0.965±0.011 0.887±0.028 

𝑀𝑇 , 𝑅𝑇,𝑚𝑒𝑎𝑛, 𝑆𝑇,𝑚𝑒𝑎𝑛 0.828±0.057 0.964±0.011 0.890±0.030 

𝑀𝑇 , 𝐵𝑇,𝑚𝑒𝑎𝑛 0.828±0.057 0.964±0.011 0.890±0.030 

𝑀𝑇 , 𝑅𝑇 , 𝑆𝑇 , 𝐵𝑇 0.972±0.015 0.775±0.049 0.861±0.029 

𝑴𝑻, 𝑹𝑻, 𝑺𝑻 0.924±0.036 0.925±0.025 0.924±0.013 

𝑀𝑇 , 𝐵𝑇 0.959±0.028 0.829±0.043 0.888±0.018 

 

Table 4 shows that the feature set (𝑀𝑇 , 𝑅𝑇 , 𝑆𝑇) provides the best performance on 

the testing data over other feature sets. This feature set balances the precision and recall 

measures leading to the highest F-score. Moreover, the feature set (𝑀𝑇 , 𝑅𝑇 , 𝑆𝑇)  is 

relatively more stable than other feature sets since it has minimal standard deviation 

across all the combinations. In addition, we conduct the ANOVA to test the statistical 

performance of the selected feature set against other features. As shown in Table 5, the 

test groups the feature sets into four groups (A, B, C, D). The selected feature set 
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(𝑀𝑇 , 𝑅𝑇 , 𝑆𝑇)  statistically outperforms the 12 feature sets from groups B, C and D. 

Though there is no significant difference between the feature set (𝑀𝑇 , 𝑅𝑇 , 𝑆𝑇) with the 

other five feature sets from group A, the other five feature sets have also been assigned to 

group B (inferior to group A). Therefore, we consider (𝑀𝑇 , 𝑅𝑇 , 𝑆𝑇)  as a reasonable 

feature set describing the characteristics of blobs. 

 

Table 5 Statistical Groups based on ANOVA Tukey’s HSD Pairwise Test 

Category F-score means Statistical Groups* 

𝑴𝑻, 𝑹𝑻, 𝑺𝑻 0.924 A 
   

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇 , 𝑆𝑇 0.911 A B 
  

𝑀𝑇 , 𝐴𝑇 , , 𝑅𝑇,𝑚𝑎𝑥, 𝑆𝑇,𝑚𝑎𝑥 0.904 A B 
  

𝑀𝑇 , , 𝑅𝑇,𝑚𝑎𝑥, 𝑆𝑇,𝑚𝑎𝑥 0.903 A B 
  

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇,𝑚𝑎𝑥, 𝑆𝑇,𝑚𝑎𝑥, 𝐵𝑇,𝑚𝑎𝑥 0.901 A B 
  

𝑀𝑇 , 𝑅𝑇,𝑚𝑎𝑥 , 𝑆𝑇,𝑚𝑎𝑥, 𝐵𝑇,𝑚𝑎𝑥 0.900 A B 
  

𝑀𝑇 , 𝐴𝑇 , 𝐵𝑇,𝑚𝑎𝑥 0.892 
 

B C 
 

𝑀𝑇 , 𝐴𝑇 , 𝑆𝑇,𝑚𝑒𝑎𝑛 0.892 
 

B C 
 

𝑀𝑇 , 𝑅𝑇,𝑚𝑒𝑎𝑛, 𝑆𝑇,𝑚𝑒𝑎𝑛 0.890 
 

B C 
 

𝑀𝑇 , 𝐵𝑇,𝑚𝑎𝑥 0.890 
 

B C 
 

𝑀𝑇 , 𝐵𝑇,𝑚𝑒𝑎𝑛 0.890 
 

B C 
 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇,𝑚𝑒𝑎𝑛, 𝑆𝑇,𝑚𝑒𝑎𝑛 0.890 
 

B C 
 

𝑀𝑇 , 𝐵𝑇 0.888 
 

B C 
 

𝑀𝑇 , 𝐴𝑇 , 𝐵𝑇 0.887 
 

B C D 

𝑀𝑇 , 𝑅𝑇,𝑚𝑒𝑎𝑛, 𝑆𝑇,𝑚𝑒𝑎𝑛, 𝐵𝑇,𝑚𝑒𝑎𝑛 0.887 
 

B C D 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇,𝑚𝑒𝑎𝑛, 𝑆𝑇,𝑚𝑒𝑎𝑛, 𝐵𝑇,𝑚𝑒𝑎𝑛 0.886 
 

B C D 

𝑀𝑇 , 𝑅𝑇 , 𝑆𝑇 , 𝐵𝑇 0.861 
  

C D 

𝑀𝑇 , 𝐴𝑇 , 𝑅𝑇 , 𝑆𝑇 , 𝐵𝑇 0.855 
   

D 

*Note: there is no statistically significant difference (with 0.05 significance level) 

between Feature sets within a statistical group.  

 

Figure 3 shows a comparison between Hessian pre-segmentation (from Figure 2) 

and final identification using the three regional features. False positive blobs are 

removed, as shown in the circles in Figure 3. We conclude that using the three features in 

VBGMM can refine the pre-segmentation by removing false positive blobs in the image. 
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Please note the pruning may also remove a few true blobs. This is seen by comparing 

Table 1 (Precision: 0.819, Recall: 0.965, F-Score: 0.885), and Table 3 (Precision: 0.924, 

Recall: 0.925, F-Score: 0.924). The recall measure decreases by 0.04, the precision 

increases from 0.819 to 0.924. The overall performance of F-score increases from 0.885 

to 0.924. We conclude regional features based post-pruning is promising to improve the 

blob detection. 

 

 

Figure 3 Blob Identification Result from Part of Figure 2 (A). (A) Pre-segmentation 

Result. (B) Final Identification Result. The Purple Regions are Blob Candidates and 

Their Centroids are Marked as Green Circle, while the Centroids of Ground Truth Data 

are Marked as Yellow Cross. 

 

 In the next section, we discuss the integration of Hessian analysis, regional feature 

extraction and clustering based final pruning for the blob identification problem. 

 

2.2.4 HLoG for Blob Identification  

We propose a three-phased HLoG workflow for blob detection, integrating raw 

image transformation, Hessian Pre-segmentation, feature extraction, and evaluation 

(Figure 4). First, the raw image is transformed into Normalized LoG space. Next, the 
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Hessian Pre-segmentation method is conducted for initial segmentation to generate the 

blob candidates. Finally the average intensity feature
TM , regional likelihood of blobness

TR , and regional structureness
TS , are used in VBGMM clustering algorithm for 

identification. The VBGMM is more robust than maximum likelihood Gaussian Mixture 

Models because it treats parameters i.e. mean vector and variance-covariance matrix in 

Gaussian Mixtures Models as distributions instead of deterministic values and uses hyper 

parameters to control them. This helps avoid the singularity issues faced by the maximum 

likelihood Gaussian mixture models. In addition, unlike other pruning algorithms like 

thresholding, the VBGMM requires no parameter tuning. The detailed steps are listed in 

Table 6. 

 

 

Figure 4 HLOG for Blob Detection 

 

Table 6 Detail Steps of HLoG 

1. Initialize the normalize factor 𝛾, range and step-size of parameter 𝑡 to transform 

the raw image into normalized LoG space 

2. Binarize each section of normalized LoG space with the negative definite 

Hessian (for dark small blob in raw image). 

3. Calculate average LoG intensity  
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 and 

find optimum scale section by arg max ( )best rt C t   

4. Choose the optimum scale section 𝑡 = 𝑡𝑏𝑒𝑠𝑡 and extract the regional 

features 𝑀𝑇 in raw image space and  𝑅𝑇 , 𝑆𝑇 in LoG space 
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5. Input those three features to variational Bayesian Mixture Models with 2 

clusters setting 

6. Choose the cluster with highest value of  𝑅𝑇 as final segmentation  

 

2.3 Comparison Experiments 

In this section, three sets of experiments are conducted to validate of the 

performance of our proposed HLoG detector. In the first set of experiments, the complete 

version of the three blob detectors above are compared on 15 pathological images and a 

new supplemental data consisting of 200 fluorescence microscopy cell images 

(Lempitsky et al. 2010a) is tested in the second set of experiments. The 200-cell image 

dataset is of interest because the blobs are small, and each image can be used to test the 

performance of the algorithm in tolerating the noise from the background. The first two 

sets of experiments are to evaluate the performance given the estimated diameter 𝑑, of 

blob candidates. As explained in Chapter 2.2, the choice of d may impact the evaluation 

outcomes. Here we further conduct a separate experiment to validate the performance of 

HLoG with different values of 𝑑 compared to the other detectors on both image datasets. 

 

2.3.1 Experiments on Pathologic Images  

Since the results of detection by the complete version of gLoG method, Radial-

Symmetry method and LoG methods on 15 pathological images are available online 

(Rasmussen 1999), the results are directly used in this paper to avoid any of the 

parameters tunings. The parameter settings for HLoG are the same as presented in 

Section II: the normalizing factor 𝛾 is set to 2, and the range of parameter 𝑡 is set from 2 

to 10 with step-size 0.5, resulting in 17 sections of normalized LoG space in total. For 
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each image, all the algorithms adopt the same value 𝑑, which is the estimated average 

diameter of all small blobs, to calculate the precision, recall and F-score. The results are 

shown in Table 7. 

As shown in Table 7, HLoG outperforms the three algorithms on the F-score for 

11 out of 15 images. HLoG underperforms the gLoG method for 4 images where the blob 

candidates are either under-pruned (image 4 and image 13) or over-pruned (image 5 and 

image 8) resulting in a lower F-Score. This is due to the fact that the parameter (𝛾) is 

tuned to the group of images instead of each individual image. We argue the under-

pruned and over-pruned issue may be overcome by tuning the parameter (𝛾) for each 

image, yet this will require manual processing. In looking into overall performance, our 

approach outperforms the three algorithms on average F-score with lower variation. 

Radial-symmetry and LoG do not perform as well as gLoG and HLoG, evidenced by 

lower detection of rotationally asymmetric blobs. HLoG balances the recall and precision 

metrics leading to overall better F-score. Although the average recall (0.925) of HLoG is 

marginally lower than that of the gLoG (0.928) and radial-symmetry (0.927), the 

precision performance is significantly better. The pruning algorithm sacrifices marginal 

recall to improve F-score and precision. 

 

Table 7 Comparison Results of Complete Version of HLoG, gLoG, Radial-Symmetry 

and LoG on 15 Pathologic Images. F-score Metric is Highlighted in Gray since it 

Provides a Comprehensive Measurement to Evaluate the Performance 

IMG 𝑑 
HLoG gLoG Radial-Symmetry LoG 

Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score 

1 13.85 0.980 0.886 0.931 0.950 0.903 0.926 0.932 0.903 0.918 0.832 0.897 0.863 

2 13.54 0.969 0.884 0.925 0.906 0.915 0.911 0.858 0.927 0.891 0.825 0.889 0.855 

3 14.30 0.858 0.930 0.892 0.769 0.971 0.858 0.704 0.958 0.812 0.691 0.932 0.793 
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4 11.75 0.900 0.949 0.924 0.943 0.916 0.929 0.939 0.863 0.899 0.825 0.769 0.796 

5 13.88 0.962 0.897 0.928 0.951 0.920 0.935 0.911 0.921 0.916 0.825 0.734 0.777 

6 12.03 0.902 0.943 0.922 0.941 0.899 0.919 0.944 0.871 0.906 0.810 0.885 0.846 

7 14.01 0.948 0.955 0.952 0.900 0.950 0.924 0.816 0.952 0.878 0.844 0.889 0.866 

8 14.00 0.957 0.910 0.933 0.939 0.947 0.943 0.897 0.951 0.923 0.811 0.855 0.833 

9 14.06 0.936 0.917 0.926 0.915 0.937 0.926 0.869 0.924 0.896 0.829 0.880 0.854 

10 11.99 0.898 0.946 0.922 0.939 0.865 0.901 0.943 0.857 0.898 0.822 0.803 0.812 

11 14.00 0.905 0.954 0.929 0.877 0.946 0.910 0.865 0.964 0.912 0.704 0.869 0.778 

12 14.58 0.897 0.943 0.919 0.856 0.947 0.899 0.810 0.970 0.882 0.802 0.854 0.827 

13 13.87 0.878 0.937 0.906 0.885 0.942 0.913 0.818 0.965 0.886 0.767 0.726 0.746 

14 12.96 0.937 0.935 0.936 0.904 0.926 0.915 0.905 0.942 0.923 0.810 0.858 0.833 

15 13.14 0.941 0.894 0.917 0.888 0.932 0.910 0.876 0.941 0.907 0.803 0.890 0.844 

Avg 13.46 0.924 0.925 0.924 0.904 0.928 0.915 0.873 0.927 0.897 0.800 0.849 0.821 

Std 0.89 0.036 0.025 0.013 0.048 0.026 0.020 0.065 0.038 0.027 0.045 0.062 0.036 

 

We further conduct ANOVA Tukey’s HSD test to draw statistical conclusions. 

Table 8 indicates, on F-score metric, HLoG statistically outperforms the Radial-

Symmetry and LoG methods (p<0.05) while comparable to the gLoG. 

 

Table 8 ANOVA using Tukey’s HSD Pairwise Test on 15 Pathologic Images with 0.05 

Significance Level 

Contrast 

( HLoG v.s ) 

Precision Recall F-Score 

p (Significant) p p 

gLoG 0.679 (No) 0.998 (No) 0.741 (No) 

Radial Symmetry 0.029 (Yes) 0.999 (No) 0.023 (Yes) 

LoG < 0.0001(Yes) < 0.0001 (Yes) < 0.0001 (Yes) 

 

2.3.2 Experiments on Fluorescence Images   

A new supplemental dataset is added in this experiment consisting of 200 

256 × 256 fluorescence-light microscopy cell images. Unlike the data used above, these 

images contain bright blobs rather than dark blobs. Therefore the data is converted into 



  34 

image with dark small structures by 1 − 𝑓(𝑥, 𝑦). (We assume 𝑓(𝑥, 𝑦) varies from 0 to 1, 

otherwise we need to standardize 𝑓(𝑥, 𝑦) into  0,1  range).  

For the LoG algorithm, the range 𝑡 is set as log( ) [0.5,3]t   with step-size 0.2, as 

suggested in (Kong et al. 2013), and the extrema intensity value is set to 0.005 based on 

our experiments after tuning. For the gLoG algorithm, 𝛼 = 1, 𝜎𝑠𝑡𝑒𝑝 = −1, 𝜃𝑠𝑡𝑒𝑝 =
𝜋

9
 and 

the post-pruning threshold is set to 100. (This algorithm uses the intensity range [0,255]   

rather than [0,1] ). The other parameter settings are the same as presented in (Kong et al. 

2013). For Radial-Symmetry detector, based on our tuning after experiments, the local 

intensity threshold is set to 0.0003, and the post pruning threshold is set to 1 for 

refinement. In HLoG, the normalizing factor 𝛾 is set to 1 to avoid over smoothing since 

many blobs are clustered in this set of images by observation. The scale-space 

representation is the same as that of the first experiment. Similarly, the parameter 𝑑 is the 

same for all the algorithms.  
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Figure 5 Comparison Results of Full Version of HLoG, gLoG, Radial-Symmetry and 

LoG on 200 Fluoro Images. The Error Bar Indicates the Standard Deviation of the 

Corresponding Measure across 200 Images. 

 

Figure 5 compares HLoG to the gLoG, LoG and Radial-Symmetry algorithms. 

The result shows that though HLoG is comparable to gLoG and Radial Symmetry 

algorithms on recall, it outperforms the three algorithms in both precision and F-score. 

The variation of our results is also lower than others (The standard deviation of F-score in 

HLoG is 0.0377, compared to 0.1436 with the gLoG method, 0.0795 with the Radial-

Symmetry method, and 0.0385 with the LoG method). We conclude that HLoG provides 

more accurate and stable detection of blobs in this dataset. Again, statistical analysis is 

performed with the results summarized in Table 9. It is observed that while comparable 

to the three algorithms on the recall metric, our approach statistically outperforms the 

comparison algorithms on precision and F-score.  
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Table 9 ANOVA using Tukey’s HSD Pairwise Test on 200 Fluorescent Images with 0.05 

Significance Level 

Contrast 

( HLoG v.s ) 

Precision Recall F-Score 

𝑝 (Significant) 𝑝 𝑝 

gLoG < 0.0001(Yes) 0.269 (No) < 0.0001(Yes) 

Radial Symmetry < 0.0001(Yes) 0.654 (No) < 0.0001(Yes) 

LoG < 0.0001(Yes) < 0.0001(Yes) < 0.0001(Yes) 

 

Figure 6 shows detection of cells in a single fluorescence image. In Figure 6(B), 

false positive blobs using gLoG algorithm (example as yellow circle 1 in Figure 6(B)) are 

caused by the added noise, since gLoG uses aggregated LoG map which may be sensitive 

to local noise. Some false positive blobs using Radial-Symmetry detector are due to the 

symmetric structures near true blobs as shown circle 2 in Figure 6 (C), because Radial-

Symmetry detector only detects symmetric structures and lacks the ability to distinct the 

differences between symmetric structures. There are false blobs using LoG around the 

edge of the image in Figure 6 (D) (circle 3 as an example). This is because many local 

extrema occurring around the boundary of the image in multi-scale space which are 

difficult to remove only by thresholding. However, those types of false positive blobs are 

not shown in HLoG as seen in circles 1, 2, 3 in Figure 6 (A). This is because rather than 

utilizing symmetric properties and using thresholding, HLoG uses the three regional 

geometric features for pruning and is therefore more robust in the presence of removing 

false positive blobs against noisy background. 
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Figure 6 Detection Results on Selected Fluorescent Image. (A) Detection Result by 

HLoG. (B) Detection Result by gLoG Algorithm. (C) Detection Result by Radial-

Symmetry Algorithm. (D) Detection Result by LoG. 

 

2.3.3 Evaluation of HLoG at Different d 

The performance metrics (precision, recall, F-score) calculated by Eqs. (2.8) (2.9) 

(2.10) (2.11) could be highly affected by the value of parameter d. In the previous 

experiments, d is set to be the estimated diameter of blobs generated by Hessian pre-
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segmentation. To explore the effects of the change of d on the performance of HLoG 

detector, additional experiments are conducted.  

 

Figure 7 F-Score of HLoG, gLoG, Radial-Symmetry and LoG on 15 Pathological Images 

at Different Parameter d 

 
Figure 8 F-Score of HLoG, gLoG, Radial-Symmetry and LoG on 200 Pathological 

Images at Different Parameter d 
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Figure 7 and Figure 8 show the comparison results of HLoG, gLoG, Radial-

Symmetry and LoG at different d on 15 pathological images and 200 fluorescence images 

respectively. Since F-Score is the geometric average of precision and recall, only F-score 

is plotted in the Figure. As discussed in Chapter 2.2.2.3, when d is increasing, the average 

F-Score will increase. More and more blob candidates will be treated as true positives 

because more and more blob candidates have their distance to the ground truth within the 

range of d. Since the blob size and image size (256×256 ) of fluorescence data are smaller 

than the pathological image (600×800), the range of d is set to be small ([0,8]compared 

to [0,16]) to avoid it being greater than the distance of two neighboring blobs. 

From both Figures, it is evident that HLoG outperforms other detectors on F-

Score across the change of d. On the first set of images, HLoG is comparable to gLoG 

and outperforms the other two detectors on F-Score across the change of d. On the second 

set of images, HLoG outperforms the other three detectors on F-Score across the change 

of d. We conclude HLoG in general outperforms the three detectors regardless of the d 

value. 

 

2.3.4 Discussion on Computational Cost  

The proposed method was programmed in Matlab 2012b on a Windows 

(Microsoft, Inc) platform, and the experiments are done on a Windows PC with Intel 

Xeon 2.0 GHz CPU and 32GB of memory. For the 600 × 800 pathologic images, the 

average time cost is about 10.0 s/image compared to 30s/image for gLoG algorithm 

(Kong et al. 2013). The time cost spent on 200 256 × 256 fluorescence-light microscopy 

images of cells is 1.2s/image on average, compared to 10.0s/image for the gLoG 
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algorithm. This shows that our algorithm is efficient for 2D images and may be extended 

to 3D grey images. Also, the LoG transformation could be replaced by Difference of 

Gaussian approximation to improve the computational time . 

 

2.4 Conclusion 

In this Chapter, we propose a novel imaging detector, termed HLoG to identify 

small blobs in medical images. After the raw image is transformed into normalized LoG 

space, an optimum scale is automatically determined based on the Hessian analysis. The 

blob candidates are also populated with their geometric shapes as the result of Hessian 

pre-segmentation. This process allows us to extract multiple regional features to 

characterize the accurate regional properties of small blobs. Three regional features: the 

average intensity feature, the regional likelihood of blobness, and the regional 

structureness, are extracted and used in a tuning-free, Variational Bayesian Gaussian 

Mixture Model to prune the pre-segmentation results. One set of pathologic images (15) 

and one set of fluorescence-light microscopy images (200) are used to compare HLoG 

with gLoG, Radial-Symmetry and LoG using recall, precision and F-score metrics. In the 

experiments when d is estimated based on the size of the blobs, we observe HLoG 

outperforms Radial-Symmetry, LoG on both datasets, outperforms gLoG on the second 

dataset but with comparable performance for the first dataset for the precision metric. On 

the recall metric, HLoG only outperforms LoG on both datasets, but comparable to gLoG 

and Radial-Symmetry. In exploring the impact of d on the performance evaluation (F-

Score), we observe HLoG outperforms Radial-Symmetry, LoG on both datasets. In 

addition, HLoG is computational efficient and provides a tuning-free pruning process 
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with only one parameter, the normalizing factor γ, in the LoG transformation which 

needs to be specified. 
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CHAPTER 3 

DETECTING A LARGE-SCALE OF SMALL BLOBS IN KIDNEY 3D MR IMAGES 

In Chapter 2, a 2D blob detector-HLoG is proposed to detect 2D small blobs in 

medical images (e.g., cell images).  In this chapter, our objective is to extend HLoG to 

detect a large volume of 3D small blobs from the images. Specifically, the 3D kidney 

glomerulus (as an instance of 3D small blob) detection problem is studied. To achieve 

this goal, a first computational efficient 3D detector, termed Hessian-based Difference of 

Gaussians (HDoG), is proposed to segment glomeruli on 3D MR images. As with other 

similar detectors (from 2D), we first smooth the image with difference of Gaussians 

(DoG) kernel to identify all potential glomeruli. The Hessian analysis is applied to pre-

segment and outline the candidate glomeruli. Next, we identify novel regional features 

associated with each candidate and conduct post-pruning using an unsupervised 

clustering algorithm, eliminating any false glomeruli for the final segmentation. Since 

extensive literature proposes various detectors for 2D images only, we compare the 

performance of HDoG with that of three other detectors (Laplacian of Gaussian, 

generalized Laplacian of Gaussian and Hessian based Laplacian of Gaussian) using 15 

2D pathological images and 200 2D fluorescence microscopy images. HDoG 

outperforms the three detectors in identifying structures of interest and is more 

computationally efficient. We then test the HDoG to detect labeled renal glomeruli in 

both rat and human kidneys from 3D nanoparticle-enhanced MR images. The results 

indicate HDoG is a robust and efficient technique for unsupervised segmentation of blobs 

in 3D MRI.  
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3.1 Introduction 

 Nephrons are the primary functional units of the kidney. They balance the body’s 

water, electrolyte, and pH composition, and they maintain blood volume. Each nephron 

contains a glomerulus, which is a tuft of fenestrated capillaries that is responsible for 

filtering the blood that enters from the afferent arteriole. In humans, people with fewer 

functioning nephrons and glomeruli tend to be more susceptible to chronic kidney and 

cardiovascular disease (Hoy et al. 2008). Because nephrogenesis ends shortly before birth, 

any deficit in nephron number at birth is likely permanent. The number of functioning 

nephrons can also indicate kidney disease progression. As such, being able to count 

functional nephrons/glomeruli is critical for assessing disease risk and progression. 

Glomeruli have traditionally been counted using stereological or morphometric 

techniques applied to histological sections. One robust approach is the 

disector/fractionator stereological technique (Bertram et al. 1992, Cullen-McEwen et al. 

2012, Bertram 1995). While this technique is able to assess the total glomerular number, 

it is limited to kidneys obtained at autopsy. Furthermore, this method involves sampling 

just a fraction of the kidney tissue, offering a statistical estimate of the total glomerular 

number and volume.  

Recently, the advancement in Magnetic Resonance Imaging (MRI) has made it an 

important tool for investigating tissue microstructure (e.g., glomeruli). The relatively new 

field of molecular MRI is becoming important, for example, in studies of cardiovascular 

disease, therapy for diabetes, cellular therapy, liver disease, and detection of cancer. 

Nanoparticle contrast agents, meanwhile, have emerged as contrast agents that deliver a 

large payload to a specific site within the tissue, changing the image where they 
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accumulate and allowing detection of the labeled molecules or cells. One example is 

superparamagnetic cationic ferritin (CF) nanoparticles for kidney glomerular assessment. 

After intravenous injection, CF binds to anionic proteoglycans in the glomerular 

basement membrane, and the accumulation of CF is detected with T2*-weighted MRI in 

3D. In most cases, this local darkening is roughly spherical in shape. This technique can 

be used to detect, measure, and count every glomerulus in the whole kidney ex vivo and 

in vivo (Beeman et al. 2011, Bennett et al. 2008). However, this technique cannot be 

extensively used in preclinical and clinical studies because efficient image processing 

tools that reliably and accurately segment glomeruli from MR images do not yet exist. 

Initial investigations have only explored the use of local intensity thresholds to segment 

the glomeruli, which may not be accurate.  

A CF-labeled glomerulus appears as small, convex ellipse in 3D, CF-enhanced 

MR images - an object termed a blob in the field of computer vision. Detecting blobs in 

3D MR images is difficult because MR imaging produces acquisition noise, partial 

volume effects (several tissue signals mix in a voxel), and bias fields (inhomogeneity in 

spatial intensity). Furthermore, blob detection may require considerable computational 

effort; only highly efficient detectors are suitable for high-throughput in vivo studies. 

Another issue is that glomeruli are small; they have a high spatial frequency close to that 

of the image noise. Taking the rat kidney MRI as an example, the average volume of a rat 

glomerulus is ~6–710
5
 μm

3
 (Bertram et al. 1992), which is fewer than 10 voxels with a 

resolution of 62 x 62 x 62 μm
3
 in a 3D MR image. Therefore, a robust detector can 

segment glomeruli from the noisy images is needed.  
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Some studies have attempted to segment small structures from 3D images such as 

breast lesions detection in ultrasound images (Moon et al. 2013) , identification of 

coronary calcifications in CT scans  (Sanchez et al. 2012), just to name a few. However, 

to the best of our knowledge, most of them are focused on supervised methods, which 

require prior knowledge of labeled training blobs. If this information is unavailable, as in 

glomerular segmentation, this kind of approach does not work anymore. In addition, to 

manually create training labels for many small 3D blob is quite labor intensive. Indeed, it 

is almost impossible in glomeruli segmentation cases since the number of glomeruli is 

very large (~30k for rat (Beeman et al. 2011) and over 1 million for human  (Beeman et 

al. 2014)). Therefore we focused on unsupervised blob detectors in this work.      

Various unsupervised blob detectors have already been developed but most of 

them are restricted in 2D medical images. One classic blob detectors is Laplacian of 

Gaussian (LoG) (Lindeberg 1998) based on the scale-space theory. In scale-space theory, 

a 2D image or a slice of a 3D image is treated as part of a stack of images controlled by 

the scale parameter t. A multi-scale Gaussian scale-space representation of the image is 

derived as the convolution of the raw image over the Gaussian kernel with respect to the 

scale t, preserving the key spatial properties of the imaged structures (Lindeberg 1993b). 

When t increases, the number of local minima in a dark blob does not increase and the 

number of local maxima in a bright blob does not decrease, so a diffusion process can 

identify the blobs. For similarly sized blobs, one “optimal” scale exists. As such, 

detectors generated via LoG kernels have been successfully used to detect some blobs 

(Lindeberg 1998). But, the symmetric nature of the LoG detector means it cannot identify 

rotationally asymmetric blobs. To address this, the generalized Laplacian of Gaussian 
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(gLoG) (Kong et al. 2013) algorithm is proposed to detect rotational asymmetric 

structures by using different Gaussian kernels. One critical concern of these detectors is 

robustness. The way they work is to identify the centroid of the blob first, a regular 

ellipse with an estimated radius over the centroid is superimposed on the images to derive 

necessary measurements. This approach may be insufficient for MR images, which have 

considerable local noise. To improve the robustness of the detectors, Hessian-based 

Laplacian of Gaussian (HLoG) detector (Zhang et al. 2014) is proposed to accurately 

detect and delineate blob shapes upon which more accurate regional blob features can be 

extracted. As a result, HLoG detector is robust to local noise and can provide accurate 

detection. However, all the detectors reviewed above are designed for 2D applications, 

which is probably due to the computational burden of the LoG transformation. 

To address these challenges, we propose a Hessian-based Difference of Gaussians 

(HDoG) detector for blob detection in 3D MR images. HDoG is motivated by DoG 

(Lowe 2004, Mikolajczyk et al. 2004, Tuytelaars et al. 2008), which has great 

computational advantages over LoG because it uses the approximation of LoG in 

detection. In HDoG, we first obtain the DoG transformation of the raw image, smoothing 

local noises and producing enhanced blob structures. Hessian analysis is then applied to 

the transformed imaging matrix to pre-segment and delineate the blob (glomerulus) 

candidates. Since the theory behind the Hessian analysis guarantees that pre-

segmentation will recognize all true glomeruli and some “false” glomerular objects, post-

pruning is necessary to remove the false glomeruli. To do this, we introduce two novel 

features with fast computation termed regional blobness and regional flatness. With the 

average intensity (commonly used in literature), the three features are derived from each 
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Hessian-identified glomerulus candidate and fed to a tuning-free unsupervised clustering 

algorithm - the variational Bayesian Gaussian mixture model (VBGMM) (Bishop 2006), 

to remove the false detection. Since the detectors from existing literature are for 2D 

images, we first compare our HDoG with LoG, gLoG and HLoG using 15 pathological 

images and 200 fluorescence microscopy images of cells to determine how well HDoG 

detector identifies small blobs. Three metrics: precision, recall, and F-scores are used for 

comparison. We observe, while comparable to HLoG and gLoG (most cases), HDoG 

outperforms LoG. In addition, it requires the least computing time. This motivates us to 

apply the HDoG detector on six rat and three human kidney MR images, and compare the 

resulting glomerular counts with corresponding stereological glomerular counts. We 

conclude that HDoG detector is able to automatically and accurately segment glomeruli 

in 3D MR images. 

In summary, the main contribution of this research lies in the development of a 

novel detector, HDoG, a first 3D blob detector for kidney glomeruli from enhanced MR 

images. To alleviate the computational burden, HDoG employs DoG, the approximation 

of the LoG to speed up the detection. In addition, two new 3D features with fast 

calculation termed regional blobness and regional flatness are developed. To improve 

robustness, HDoG applies Hessian pre-segmentation to precisely delineate the blob 

structures based on which these regional features are to be extracted for post processing. 

The remaining of the paper is organized as follows: Chapter 3.2 describes our method in 

details followed by 2D validation experiments. Chapter 3.3 describes experiments using 

3D MRI followed by the discussion. The conclusions are drawn in Chapter 3.4. All code 
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and results in the paper can be found at the website 

(http://swag.engineering.asu.edu/HDoG.htm). 

 

3.2 Hessian-based Difference of Gaussian Detector  

The proposed HDoG analysis is a four-phase process that involves (1) 3D raw 

image transformation, (2) Hessian pre-segmentation, (3) 3D feature extraction, and (4) 

post-pruning for final identification. Each phase is discussed below.  

 

 

Figure 9 Flowchart of the Hessian-based Difference of Gaussians (HDoG) Analysis 

 

3.2.1 Phase I: DoG approximation of LoG transformation 

In this study, we treat each glomerulus as a blob - a region that is darker than its 

surroundings where the convexity of the intensity function within a blob is taken to be 

consistent. In reality, the convexity of the intensity function within a blob may have 

discontinuities because of image noise, so we must smooth out the noise to give the blob 

an asymptotic convex (or concave) shape. Here the DoG is chosen to serve the purpose 

because (1) it can smooth the image noise by enhancing the objects at the selected scale 

(Lindeberg 1993b), (2) it is a fast approximation of the LoG filter highlighting the blob 

structure (Lindeberg 1998), and (3) compared to LoG, DoG is computationally efficient 

http://swag.engineering.asu.edu/HDoG.htm
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and preserves the detection accuracy (Lowe 2004). These properties are crucial for 

detecting/segmenting glomeruli on 3D MR images.  

Let a 3D image be 𝑓: 𝑅3 → 𝑅, the scale-space representation 𝐿(𝑥, 𝑦, 𝑧; 𝑡) at point 

(𝑥, 𝑦, 𝑧) with scale parameter 𝑡 is the convolution of image 𝑓(𝑥, 𝑦, 𝑧) with the Gaussian 

kernel (𝑥, 𝑦, 𝑧; 𝑡): 

      , , ; , , ; * , ,L x y z t G x y z t f x y z   (3.1) 

Where ∗ is the convolution operator and 𝐺(𝑥, 𝑦, 𝑧; 𝑡) =
1

(2𝜋𝑡2)
3
2 

exp (−
𝑥2+𝑦2+𝑧2

2𝑡2 ). The 

Laplacian of 𝐿(𝑥, 𝑦, 𝑧; 𝑡) is: 

  2 , , ; xx yy zzL x y z t L L L      (3.2) 

Since ∇2𝐿(𝑥, 𝑦, 𝑧; 𝑡) = 𝜕𝑡𝐿(𝑥, 𝑦, 𝑧; 𝑡)/𝑡, we have: 
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To locate the optimal scale for the blobs, we follow what is done in (Lindeberg 

1998) and add 𝛾-normalization to the LoG detector as the normalized LoG detector 

𝑡𝛾∇2𝐿(𝑥, 𝑦, 𝑧; 𝑡). Thus, the approximation of normalized LoG is: 
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   (3.5) 

During the normalized DoG transformation, a dark glomerular blob is converted 

to a bright glomerular blob and vice versa. To avoid confusion, we subsequently refer to 

the normalized DoG blob as the “transformed blob”. We want to note that the following 
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discussion focuses on identifying the dark glomerulus blobs (which are transformed into 

bright blobs, called “transformed bright blobs”), but the same process applies to 

identifying bright blobs (transformed into dark blobs) for other applications as shown in 

the experimental validation in Chapter 3.2.5.2. This normalized DoG transformation 

underlies the Hessian analysis we use for pre-segmentation described next. 

 

3.2.2 Phase II: Hessian pre-segmentation 

If the image is smoothed via normalized DoG, for any voxel (𝑥, 𝑦, 𝑧)  in the 

normalized DoG image 𝐷𝑜𝐺𝑛𝑜𝑟(𝑥, 𝑦, 𝑧; 𝑡) at scale 𝑡, the Hessian matrix for this voxel is: 
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  (3.6) 

Since the transformed bright blob is shaped as a concave ellipse, (where 

brightness fades isotropically), every voxel within the blob is a concave ellipse. Therefore, 

we identify the transformed bright blobs using the following proposition. 

Proposition 1. In a transformed, 3D, normalized DoG image, every voxel of a 

transformed bright blob has a negative definite Hessian matrix. 

Proof.   Given the geometric classification of a voxel (Salden et al. 1991) and 

specific orientation patterns (Frangi et al. 1998), if voxel (𝑥, 𝑦, 𝑧) is concave elliptical, all 

the eigenvalues 𝜆1, 𝜆2, 𝜆3 of 𝐻(𝐷𝑜𝐺𝑛𝑜𝑟(𝑥, 𝑦, 𝑧; 𝑡)) are negative, meaning 𝜆1 < 0, 𝜆2 <

0, and 𝜆3 < 0. Since each voxel in the transformed bright blob is concave elliptical, its 

eigenvalues are all negative, the Hessian matrix of the voxel is negative definite.∎ 
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Proposition 1 provides one necessary but not sufficient property that a voxel in a 

transformed bright blob must satisfy: if a voxel resides in a transformed bright blob, the 

Hessian matrix of the voxel is negative definite. However, not every voxel that has a 

negative definite Hessian matrix must be within a transformed bright blob. This 

proposition only ensures that all the true blobs are identified in the group of blob 

candidates (see Hessian Pre-segmentation Algorithm).  

Hessian Pre-segmentation Algorithm: A blob candidate 𝑇 in the normalized 

DoG space can be calculated as a 6-connected component of set 𝑈 = {(𝑥, 𝑦, 𝑧)|(𝑥, 𝑦, 𝑧) ∈

𝐷𝑜𝐺𝑛𝑜𝑟(𝑥, 𝑦, 𝑧; 𝑡), 𝐼(𝑥, 𝑦, 𝑧; 𝑡) = 1}, where 𝐼(𝑥, 𝑦, 𝑧; 𝑡) is the binary indicator such that if 

the voxel (𝑥, 𝑦, 𝑧) has a negative definite Hessian matrix, then 𝐼(𝑥, 𝑦, 𝑧; 𝑡) = 1; otherwise, 

𝐼(𝑥, 𝑦, 𝑧; 𝑡) = 0. 

Fast Hessian analysis: Instead of calculating the eigenvalues 𝜆1, 𝜆2, 𝜆3 of 

𝐻(𝐷𝑜𝐺𝑛𝑜𝑟(𝑥, 𝑦, 𝑧; 𝑡)), the definiteness of the Hessian matrix can be assessed by the three 

leading principal minors. Specifically, let D1, D2 and D3 be the first, second and third 

leading principal minors, it is known the Hessian matrix is negative definite if and only if 

D1<0, D2>0 and D3<0. As a result, from Proposition 1 and Hessian Pre-segmentation 

Algorithm, we are able to highlight the voxels belonging to transformed bright blobs 

using the three leading principal minors which are much more computational efficient 

than computing the three eigenvalues. Theoretically, the set of the transformed bright 

blobs with the boundaries clearly delineated is the superset of all true blobs with some 

false identifications. To tackle this issue, we derived regional features (Phase III) from 

the superset and conduct post pruning (Phase IV) to remove the false blobs.  
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3.2.3 Phase III: Extracting 3D Regional Features   

Geometrically, the Hessian describes the second order ellipsoid of the blob 

structure and the absolute eigenvalues 𝜆1, 𝜆2, 𝜆3 of the Hessian denote the semi-axis 

lengths of the ellipsoid, (Frangi et al. 1998) introduce two classic geometric features in 

blob detection: 𝑅𝐵, the likelihood of blobness, and 𝑆𝐵, flatness (the second-order 

structureness). Based on the assumption that|𝜆1| ≤  |𝜆2| ≤ |𝜆3|, they are defined as: 
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1 2 3BS        (3.8) 

Where 0 < 𝑅𝐵 ≤ 1, for an idealized blob, that is, |𝜆1| =  |𝜆2| = |𝜆3|, 𝑅𝐵=1. 0 < 𝑆𝐵 ≤ ∞, 

the higher the 𝑆𝐵 value is, the more salient the blob is against its background.  

Fast Regional Blobness Extraction: To calculate 𝑅𝐵, eigenvalues 𝜆1, 𝜆2, 𝜆3 of the 

Hessian matrix 𝐻(𝐷𝑜𝐺𝑛𝑜𝑟(𝑥, 𝑦, 𝑧; 𝑡)) must be solved at each voxel which requires 

intensive computations. To address this concern, we propose regional blobness feature 

motivated by the Hessian-affine detector in (Mikolajczyk et al. 2004). 

Given the Hessian matrix of each voxel defined in Eq.(3.6), the regional Hessian 

matrix after the DoG transformation (smoothed image) is defined as: 

 
  

     

     

     

2 2 2

2

2 2 2

2

2 2 2

2

, , ; , , ; , , ;

, , ; , , ; , , ;
, , ;

, , ; , , ; , , ;

nor nor nor

nor nor nor

T nor

nor nor nor

DoG x y z t DoG x y z t DoG x y z t

x x y x z

DoG x y z t DoG x y z t DoG x y z t
H DoG x y z t

x y y y z

DoG x y z t DoG x y z t DoG x y z t

x z y z z

   
 

     
   
 

    

  

      

( , , )x y z T 





 (3.9) 



  53 

Eq.(3.9) is the summation of the Hessian matrices of the voxels within the 

candidate region 𝑇. This regional Hessian matrix describes the second-order derivative 

distribution of the blob candidate region. Now let 𝜆′1,   𝜆′2, 𝜆′3 be the eigenvalues of the 

regional Hessian matrix, Eq.(3.7) is rewritten as:  
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Then 𝑅𝑇 can be derived as 
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Note that 𝑅𝑇 still maintains the same property, that is, 0 < 𝑅𝑇 ≤ 1. Since 
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Based on Arithmetic-Geometric Mean Inequality, we have: 
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, 𝑅𝑇 maintains 

the same property, 0 < 𝑅𝑇 ≤ 1. 
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By this substitution the advantage is, instead of calculating the eigenvalues, we 

can use the principal minors to get the blobness feature:𝑅𝑇. Specifically, since the 

Hessian matrix is negative definite at every voxel within a blob candidate, the regional 

Hessian matrix is negative definite, meaning, 𝜆1
′ , 𝜆2

′ , 𝜆3
′ < 0. Thus,   
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Where 𝑝𝑚(𝐻𝑇) = 𝜆′
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3. By (Meyer 2000), 𝑝𝑚(𝐻𝑇) can be obtained 

by calculating three 22 principal minors of 𝐻𝑇: 
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Fast Regional Flatness Extraction: Similar to regional blobness, we introduce 

regional flatness as:  

 
2 2 2

321' ' 'TS        (3.15) 

It can be rewritten as: 

        
2 2

1 2 3 1 2 2 3 1 32 2T T TS tr H pm H                          (3.16) 

These two modified features greatly reduce the computational cost of Eqs. (3.7)

and (3.8), because first 𝑅𝑇 and 𝑆𝑇 are based on the regional Hessian matrix evaluated at 

each blob region instead of at every voxel. Secondly, 𝑅𝑇 and 𝑆𝑇 only require us to 

calculate the trace and determinant values rather than the roots (eigenvalues) of the 

Hessian matrix.  

In addition to 𝑅𝑇 and 𝑆𝑇, a third feature 𝐴𝑇 the average intensity of region 𝑇 

(commonly used in both literature and empirical studies), is derived. We then input these 
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three novel features into a clustering algorithm, the variational Bayesian Gaussian 

Mixture Model (VBGMM), to remove the false identifications from the glomeruli 

candidate pool.  

 

  

3.2.4 Phase IV: Variational Bayesian Gaussian Mixture Model 

Mixture models are computationally convenient ways to model complex 

probability distributions, and they are based on a linear combination of some number (𝑀) 

component distributions. We employ the VBGMM because (1) compared to the 

maximum likelihood Gaussian mixture model, the variational model cannot be trapped in 

a singularity solution, and (2) the variational model can automatically identify the 

number of clusters needed for optimum performance without requiring initialization and 

subjective parameter settings. 

In the VBGMM, given a 3D MR image, we assume that several multivariate 

Gaussian distribution components form the entire image. One of the components is the 

group of glomeruli, and the others make up background and image noise. If 𝑋 =

{𝑋1, … , 𝑋𝑁} is the observation, 𝑁(𝑋𝑖|𝜇, Λ) is the multivariate Gaussian distribution with 

mean 𝜇  and inverse covariance Λ  that 𝑋𝑖  follows. The mixture distribution for 𝑀 

components is 

  
1
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M

i i

j

j

P X N X   


   (3.17) 

Where 𝜋𝑗 is the weight for component 𝑗. 
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Assuming elements in 𝑋 are independent of each other, we introduce the binary 

latent variable 𝑍 = {𝑍1, … , 𝑍𝑁𝑀}, where 𝑧𝑖𝑚 = 1 indicates that 𝑋𝑖  belongs to class 𝑚 , 

and ∑ 𝑍𝑖𝑗 = 1𝑀
𝑗=1 . The conditional probability of the image dataset is 

    
1 1
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ijN M
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i

i j
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   (3.18) 

Thus, the VBGMM approximates the posterior 𝑃(𝜃|𝑋), given any distribution 

𝑃(𝑋) and unknown parameters 𝜃, by a simpler distribution 𝑄(𝜃) that marginalizes the 

unknown parameter 𝜃  (Bishop 2006). Here, observation 𝑋𝑖  is a vector of the three 

features 𝐴𝑇 , 𝑅𝑇 , 𝑆𝑇  for a glomerular candidate region. The observations (glomerular 

candidate regions) form a multivariate Gaussian mixture and therefore are clustered into 

glomerular regions and non-glomerular regions using a Bayesian inference method. 

 

3.2.5 Validation tests on 2D images  

To examine HDoG performance, we carry out initial tests on 2D images using 

three evaluation metrics: precision, recall, and F-score. Three state-of-art detectors, LoG, 

gLoG and HLoG, are studied for comparison.  

In the literature of 2D detectors, the ground truth data are usually provided in the 

form of dots (the coordinates of the blob centers). A blob candidate i is considered as a 

true positive if and only if it is in a detection pair (𝑖, 𝑗) where the corresponding (nearest) 

true dot 𝑗 that has not been paired, and their Euclidean distance 𝐷𝑖𝑗 is within the threshold 

d. Therefore the number of true positives (𝑇𝑃) is calculated by Eq.(3.19). Precision, 

recall, and F-score are calculated by Eqs.(3.20), (3.21) and (3.22), respectively: 
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   (3.19) 

   (3.20) 

   (3.21) 

   (3.22) 

Where 𝑚 is the number of ground truth points and 𝑛 is the number of blob candidates; 𝑑 

is a thresholding parameter and can be set to a positive value (0, +∞). In the following 

experiments, we set d >1 to tolerate the potential impact from the image noises. If 𝑑 is 

small, fewer blob candidates will be counted because the distance between the blob 

candidate centroid and the ground truth point must be small. If 𝑑 is large, more blob 

candidates will be counted because the threshold distance is relaxed. 

For 2D images, the 2D versions of the regional Hessian matrix 𝐻𝑇, the regional 

blobness 𝑅𝑇, and the regional flatness 𝑆𝑇 are used in (Zhang et al. 2014): 
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Where 𝜆1,2𝐷
′ , 𝜆′2,2𝐷 are eigenvalues of 𝐻𝑇,2𝐷. 
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3.2.5.1 Dataset 1: 2D pathological images 

15 pathological images were used to compare HDoG with the LoG, gLoG and 

HLoG methods (images available online (Kong et al. 2013)). Also, to thoroughly 

evaluate HDoG performance, the threshold parameter 𝑑 was varied from 2 to 16. The 

results are shown in Table 10. 

 

Table 10 Comparing HLoG, gLoG, and LoG Performance on Dataset 1: 15 2D 

Pathologic Images (the Normalizing Factor 𝜸 =2 based on Prior Experiments. Detailed of 

the Parameter Setting Please Refer to (Zhang et al. 2014)). Paired T-tests were Performed 

at a Significance Level of 0.05. Symbols in Cell Means: + Statistically Outperformed; = 

Statistically Comparable; - Statistically Underperformed 

d 
HDoG (Avg) HDoG v.s. LoG HDoG v.s. gLoG HDoG v.s. HLoG 

Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score 

2 0.411 0.400 0.405 + + + = = = = = = 

3 0.632 0.615 0.623 + + + = = = = = = 

4 0.749 0.728 0.738 + + + = = = = = = 

5 0.822 0.800 0.810 + + + = - = = = = 

6 0.860 0.837 0.847 + + + = - = = = = 

7 0.881 0.857 0.868 + + + = - = = = = 

8 0.897 0.874 0.885 + + + = - = = = = 

9 0.906 0.883 0.894 + + + = - = = = = 

10 0.913 0.890 0.901 + + + = - = = = = 

11 0.919 0.895 0.906 + + + = - = = = = 

12 0.924 0.900 0.911 + + + = - = = = = 

13 0.931 0.907 0.918 + + + = = = = = = 

14 0.936 0.911 0.923 + + + = = = = = = 

15 0.940 0.916 0.927 + + + = = = = = = 

16 0.944 0.920 0.931 + + + = = = = = = 

 

As shown in Table 10, in term of F-score, HDoG statistically outperformed LoG 

but was comparable to gLoG and HLoG. As for precision measure, we observed similar 

results, that is, HDoG statistically outperformed LoG and was comparable to gLoG and 

HLoG. While for recall measure, HDoG outperformed LoG, was comparable to HLoG, 



  59 

and gLoG in most cases. However, for d in the range of 5 to 12, HDoG underperformed 

gLoG. We contented this was because gLoG is a generalized detector which performs 

well robustly on the images where the blob candidates are within the distance (roughly 

the size of the blobs) to the ground truth. For cases where the blobs are very small objects 

in the images, (requiring tighter d), or for cases there are massive number of blobs, 

(requiring larger d to relax the threshold), its performance is equivalent to our HDoG. 

Please note that even for the 2D images, gLoG needed 30 seconds per image and HDoG 

was 5x faster than that of gLoG (6 seconds per image) on the same computational 

environment (Windows PC with Intel Xeon 2.0 GHz CPU and 32 GB of memory). The 

computation of HLoG is 10 seconds per image.  

 

3.2.5.2 Dataset 2: 2D fluoroscopic images 

In this second validation experiment, 200 256×256 fluorescence light microscopy 

images of cells were studied. The images were added with additional noise to test the 

robustness of the detectors (Lempitsky et al. 2010b). Moreover, unlike Dataset 1, these 

images contained bright blobs rather than dark blobs. Therefore, the data were converted 

into images containing small dark structures using 1 − 𝑓(𝑥, 𝑦) . (We assume 𝑓(𝑥, 𝑦) 

varied from 0 to 1, or we would have to standardize 𝑓(𝑥, 𝑦) to the [0,1]  range). The 

parameter settings for LoG and gLoG were as suggested in (Kong et al. 2013). Since the 

cell sizes in Dataset 2 were much smaller than those in Dataset 1, for comprehensive 

comparison, we varied the threshold parameter 𝑑 from 2 to 12. The results are 

summarized in Table 11. 
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Table 11 Comparing HLoG, gLoG, and LoG on Dataset 2: 200 2D Fluorescent Images 

(the Normalizing Factor 𝜸 =1 based on Prior Experiments. Details of the Parameter 

Settings are Described in (Zhang et al. 2014)). Paired T-tests were Performed at a 

Significance Level of 0.05. + Statistically Outperformed; = Statistically Comparable; - 

Statistically Underperformed 

d 
HDoG (Avg) HDoG v.s. LoG HDoG v.s. gLoG HDoG v.s. HLoG 

Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score 

2 0.623 0.559 0.586 + = + = - = = = = 

3 0.881 0.793 0.829 + + + + - + = = = 

4 0.944 0.851 0.890 + + + + = + = = = 

5 0.952 0.858 0.897 + + + + = + = = = 

6 0.953 0.859 0.898 + + + + = + = = = 

7 0.953 0.859 0.898 + + + + = + = = = 

8 0.953 0.860 0.898 + + + + = + = = = 

9 0.953 0.860 0.899 + + + + = + = = = 

10 0.954 0.860 0.899 + + + + = + = = = 

11 0.954 0.861 0.899 + + + + = + = = = 

12 0.955 0.862 0.900 + + + + = + = = = 

 

For smaller blobs in this dataset, HDoG outperformed LoG and gLoG on the F-

score measure, and was comparable to HLoG. On precision measure, HDoG 

outperformed LoG and gLoG, and was comparable to HLoG. As for recall, it is 

interesting to note that HDoG outperformed LoG in most cases (except d=2) and was 

comparable to HLoG and gLoG (except 𝑑 = 2,3). This may be explained by the 

outperformance of gLoG on images with the blob candidates tightly within the distance 

to the ground truth. Yet for the images with large number of blobs which may require a 

larger d to identify the blobs, it had a statistically similar performance as HDoG. In term 

of computing time, the average processing time for HDoG was 0.9 second/per image, 

HLoG was 1.2 second/ per image and gLoG was 10 second/per image (Windows PC with 

Intel Xeon 2.0 GHz CPU and 32 GB of memory).  
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In summary, initial tests with both 2D datasets showed that HDoG has the 

potential for blob detection in 3D images. It had a statistically similar performance (or 

even outperformance) compared to the 2D detectors from the literature, yet more 

computationally efficient. This advantage will be more obvious when the size of image 

increases and when it is 3D image.  

 

3.3 Experiments on 3D MR Images  

Because our initial tests on the 2D images were promising, we explored how well 

the HDoG segments renal glomeruli in 3D MR images. To test this, we performed two 

experiments. In the first (section 3.1), we evaluated preclinical data: six 3D kidney MR 

images from rats. We compared the resulting glomerular counts with those obtained 

through acid maceration and stereology. In the second experiment (section 3.2), we 

studied clinical data: three 3D kidney MR images from humans. We compared these 

glomerular counts with those obtained using stereology.  

 

3.3.1 Segmenting glomeruli from rat kidney MR images 

Six CF-labeled 3D MR images of rat kidneys were studied. After obtaining 

glomerular counts using HDoG, we compared our counts with counts obtained using a 

manual acid maceration method (Bonvalet et al. 1972), which uses acid to extract 

glomeruli from kidney tissue, as well as to the disector-fractionator stereological method 

(Bertram et al. 1992), whereby we estimated the number of glomeruli by analyzing pairs 

of histological sections. These methods are established histological techniques for 

estimating glomerular number, so we consider them to be “ground truth” data.   
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All rat studies were approved by the institutional animal care and use committee, 

consistent with the NIH Guide to the Care and Use of Laboratory Animals. A 19T NMR 

with a DOTY 3-axis imaging probe was used to scan rat kidneys. The total scan time was 

6 h per kidney with a 3D GRE sequence with TE/TR = 7/40 ms and a resolution of 

626278 μm
3
 and a re-sliced matrix size of 256256256. Table 12 shows the 

glomerular counts obtained with each method (HDoG, acid maceration, and disector-

fractionator stereology) for the six kidneys. 

 

Table 12 Glomerular Counts for Six Rat Kidneys using the HDoG, Acid Maceration, and 

Stereology
1
 Methods (𝜸 =2, Intel Xeon 2.0 GHz CPU and 32 GB of Memory). 

Rat Acid Maceration Stereology  HDoG  Time (seconds) 

CF1 27,504 34,504 29,484 268 

CF2 31,190 35,421 34,460 294 

CF3 28,944 24,156 27,051 242 

CF4 31,075 - 35,296 243 

CF5 33,321 - 31,196 237 

CF6 31,478 - 35,248 242 

Avg 30,585 31,360 32,122.5 255 

Std 2,053 6,256 3131.6 20 

 

  From Table 12, we observed that HDoG consistently identified glomeruli in all 

six kidneys with reasonable computing times (<5 min). Although there were some 

differences between the glomerular counts, the three methods generally agreed well. 

Figure 10 shows the segmentation results on representative axial view slices of the six 

rats, where slice 100 (of 256) is shown for rats CF1, CF2, and CF3, and slice 150 (of 256) 

is shown for rats CF4, CF5, and CF6. From the figure, we see that most glomeruli were 

identified and contoured in green. After comparing count numbers and visually checking 

                                                 
1
 Only 3 CF rats were counted by stereology.   
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the accuracy, we concluded that HDoG can automatically identify glomeruli in rat MR 

images.   

 

 
Figure 10 Glomerular Segmentation Results from 3D MR Images of Rat Kidneys 

(Selected Slices Presented). (A–C) Slice 100 for Rats CF1, CF2, and CF3. (D–F) Slice 

150 for Rats CF4, CF5, and CF6. (G–I) Identification Results for (A–C), respectively. 

Identified Glomeruli are Contoured in Green. (J–L) Identification Results for (D–F), 

respectively, where Identified Glomeruli are Contoured in Green. 

 

3.3.2 Segmenting glomeruli from human kidney MR images  

With Institutional Review Board approval and informed consent, we obtained 

three post-autopsy human kidneys through a donor network. The kidneys were perfused 

with cationized horse spleen ferritin (CF) and imaged with a Bruker 7T/35 MRI scanner 

using a T2*-weighted protocol. 3D MR images were acquired at 117117117 μm
3
 

resolution with an image matrix size of 512512896. On average, the total scan time 

was10 h, 39 min per kidney. The kidneys ranged from healthy (CF1) to untreated 

hypertensive (CF2) and treated hypertensive (CF3) (Beeman et al. 2014). This range of 

diseases allowed us to assess the robustness of automated segmentation to specific 

pathologies. We validated the MRI-based glomerular counts using the physical 
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disector/fractionator stereological method described by Cullen-McEwen et al. (Cullen-

McEwen et al. 2012, Cullen-McEwen et al. 2003). 

We applied the HDoG algorithm to each human 3D MR image using the same 

platform as for the rats. The results are shown in Table 13. 

 

Table 13 Glomerular Counts for Three Human Kidneys using the HDoG and Stereology 

Techniques (𝜸 =2, Intel Xeon 2.0 GHz CPU and 32 GB of Memory). 

Human Stereology HDoG 
Time (seconds) 

DoG & Feature Extraction VBGMM Total 

Human CF1 1,130,000 1,242,008 942 12,375 13,317 

Human CF2 740,000 711,397 935 2,366 3,301 

Human CF3 1,460,000 1,370,095 1,072 2,088 3,160 

Avg 1,110,000 1,107,833 983 5610 6593 

Std 360,416 349,246 77 5861 5824 

 

From Table 13, HDoG consistently counted glomeruli in all three kidneys with 

reasonable computing times (<1 h for CF2 and CF3, <4h for CF1). We again observed 

discrepancies between the glomerular counts, but our histology experts confirmed that the 

two methods generally agreed well. Figure 11 shows the segmentation results on selected 

axial-view slices of the human kidneys. As seen on the figure, almost all glomeruli were 

identified by HDoG, (contoured in green), and the image intensity distribution was 

inhomogeneous across slices. To illustrate the ability of HDoG to segment glomeruli in 

different regions, a top slice (slice 100/896) and a middle slice (slice 500/896) are shown. 

After comparing count numbers and visually checking the accuracy, we concluded that 

the HDoG algorithm can automatically identify glomeruli in human MR images. 
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Figure 11 Glomerular Segmentation Results for 3D MR Images of Human Kidneys 

(Selected Slices): (A–C) Original Slice 100 for Human CF1, CF2, and CF3 Kidneys. (D–

F) Slice 500 for Human CF1, CF2, CF3 Kidneys. (G–I) Identification Results for (A–C), 

respectively, where Identified Glomeruli are Contoured in Green. (J–L) Identification 

Results for (D–F), Respectively, where Identified Glomeruli are Contoured in Green. 

 

3.3.3 Discussion of Computation Time 

Since the computing time on the rat MRI is satisfactory (less than 5 

minutes/image), we focus the discussion on the human MRI in this section. We observe 

that the glomerular segmentation of Human CF1 kidney took a much longer time than the 

other two. The time is mainly contributed by the VBGMM clustering process. We 

contend the low contrast of CF1 vs. CF2 and CF3 may be the main factor leading to the 

longer time. To explore the variations of the contrasts among the three human kidney, the 

intensity distribution of both glomeruli vs. the whole image is generated and shown in 

Figure 12. As seen, the difference of the distribution mode between the true glomeruli 

and the image (an indicator of contrast), highlighted in the figure, shows that CF1 has the 

lowest contrast while CF3 has the highest contrast. As a result, CF1 requires longer time 

for VBGMM for converged solution (12,375 seconds). While CF2 has medium contrast, 

it has comparable computing time (2366 seconds) to that of CF3 (2088 seconds). This 

can be explained that CF2 is from the hypertensive patient, having fewer perfused 
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glomeruli and regions of vascular and glomerular sclerosis, coupled with glomerular 

hypertrophy in the perfused portions of the kidney (Beeman et al. 2014). We suspect that 

variation in image contrast, either through normal physiological variation or image 

acquisition, will impact computation time. 

 

 
Figure 12 Intensity Frequency Histograms of Glomeruli against Whole Kidney Image 

from: (A) Human CF1 (B) Human CF2 (C) Human CF3. Frequency Range is [0,0.6] and 

the Intensity Range is [0,1]  in the Figure. Vertical Lines Indicate the Modes of the 

Intensity Distribution. 

 

3.3.4 Discussion of HDoG Performance 

In HDoG, a significant contributor to its performance is the regional features 

which used in the post-pruning process. The distributions of the three features are shown 

in Figure 13. Figure 13 (A), Figure 13 (B) and Figure 13 (C) are the distributions for the 

true glomeruli, while the Figure 13 (D), Figure 13 (E) and Figure 13 (F) are the 

distributions for the non-glomeruli from CF1, CF2 and CF3 respectively. It is evident that 

the true glomerular cluster had distinct pattern on the distributions of average intensity (in 

blue), regional blobness (in red) and regional flatness (in green). We note that the true-

glomerular cluster has a higher regional blobness, a higher regional flatness and a lower 

average intensity compared to the non-glomerular cluster (e.g., background) as expected. 
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This can be explained that in the nanoparticle-enhanced MR imaging, a glomeruli is 

shown as a dark ellipse, which has higher blobness, higher flatness and lower intensity 

measures.   

 

 
Figure 13 Frequency Histograms of Average Intensity, Regional Blobness and Regional 

Flatness for Human CF1, CF2 and CF3 Kidney 3D MR Images. (A)-(C) True Glomerular 

Cluster Frequency Histograms for Human CF1, CF2 and CF3 respectively. (D)-(F) Non-

glomerular Cluster Frequency Histograms for Human CF1, CF2 and CF3 respectively. 

Frequency Range was [0,0.5]  and the x-axis Range was [0,1]  in the Figure. 

 

While promising, we do observe some limitations of HDoG in two ways: missed 

detection and false positive detection (Figure 14). For example, some glomeruli in the 

images may have shown discontinuity due to the imaging acquisition artifact. As in our 

Definition 1, a blob is a connected region, this discontinuity will lead to the missed 

detection even after applying the DoG transformation (smooth process). A second 

possible reason of missed detection may be the results of post-pruning process where 

some true glomeruli may be clustered to the non-glomeruli group (False negative, also 

known as Type II error). Similar issue from the post-pruning unsupervised algorithm is 
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the false positive (also known as Type I error). Both types of errors are acknowledged to 

be a universal issue with clustering algorithms (as compared to supervised learning 

algorithms). A possible solution is to explore a semi-supervised algorithm requiring 

partial labeling as training. Moreover, additional prior knowledge inputs, (for example, 

glomeruli mostly lie on the area of kidney cortex), may help improve detection accuracy.  

 

 
Figure 14 Glomerular Segmentation Results for 3D MR Images of Rat CF1 Kidney and 

Human CF1 Kidney (Part of the Slice on Figure 11): (A) Part of Slice for Rat CF1. (B) 

Identification Results for (A), where Identified Glomeruli Centers are Marked in Red-

cross. (C) Part of Slice for Human CF1. (D) Identification Results for (C), where 

Identified Glomeruli Centers are Marked in Red-cross. Circles Show the Error of Missed 

Detection while the Rectangles Show the Error of False Positive Detection 

 

3.4 Conclusion  

In this study, we propose a computationally efficient blob detector, called the 

Hessian-based difference of Gaussians (HDoG) detector, for labeling small objects, such 

as renal glomeruli, on 3D nanoparticle-enhanced MR images. First, images are smoothed 

via DoG approximation. The Hessian analysis is then conducted, which (1) theoretically, 

ensures that all true glomeruli are contained within the glomerulus candidate pool and (2) 

precisely generates the region of each glomerular candidate. In the following step, we 

derive three regional features including: a novel regional blobness, a novel regional 

flatness, and a commonly used regional average intensity. The three features are fed into 
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the variational Bayesian Gaussian mixture model, to remove false glomeruli from the 

candidate pool. To initially test the performance of HDoG, we compare the HDoG results 

with three known detectors, LoG, gLoG and HLoG using 15 pathological images and 200 

fluorescence light microscopy images, both in 2D. We observe that HDoG outperforms 

LoG, while is comparable to gLoG and HLoG with the least computing time. We then 

assess how well HDoG identifies kidney glomeruli on 3D MR images of six rat kidneys 

and three human kidneys. The glomerular counts obtained with HDoG are compared with 

counts obtained by design-based stereology and acid maceration. Overall, we conclude 

that HDoG automatically and accurately labels glomeruli in a reasonable time frame (<5 

minutes per rat MRI; <4 hours per human MRI). To our knowledge, this is the first report 

of a robust, unsupervised technique to detect a magnetically labeled structure in 3D from 

MR images. Thus, HDoG may be a powerful preclinical or clinical tool to noninvasively 

detect labeled molecular structures with MRI in tissue.  
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CHAPTER 4 

COMPUTATIONAL EFFICIENT VARIATIONAL BAYESIAN GAUSSIAN 

MIXTURE MODELS VIA CORESET 

In Chapter 2, we have successfully developed HLoG for small blob detection 

using 2D images. HDoG is then proposed for kidney glomeruli detection in 3D MR 

images in Chapter 3. It is noted in both HLoG and HDoG, Hessian pre-segmentation is 

able to identify all the true positive blobs (2D and 3D) with false positives. To remove 

the false positive detections, a reliable and efficient post pruning process is needed. In 

HLoG and HDoG detectors, we have proposed the application of Variational Bayesian 

Gaussian mixture model (VBGMM) to serve the purpose (Zhang et al. 2014). However, it 

is noted that the training of VBGMM model takes a long time, especially when dealing 

large scale of images. To address this issue and to detect large numbers of small blobs, an 

efficient post-pruning algorithm-weighted VBGMM via coresets is proposed in this 

chapter.  Specifically, a new coreset construction algorithm is first proposed. The weights 

derived from the coreset are applied to VBGMM, resulting weighted VBGMM as the 

post-pruning algorithm. The experiments tested on the same dataset as in Chapter 3, the 

six rat and three human kidney images show that with similar detecting performance, 

weighted VBGMM via coresets is about 20 times faster than the classic VBGMM. 

 

4.1 Introduction 

Gaussian mixture models (GMM), an unsupervised learning algorithm in data 

mining and pattern recognition, has been commonly used in medical imaging research. 

One standard method to estimate the GMM parameters is to employ Expectation-
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Maximization (EM) algorithm to maximize the likelihood function, known as MLGMM. 

Two criticisms of MLGMM exist: (1) it prefers to choose complex models to fit the 

dataset thus may lead to overfitting problem (Attias 2000); (2) its log likelihood function 

may lead to singularities when the Gaussian component ‘collapses’ into a single point 

(Bishop 2006). To address these issues, many researchers have adopted Bayesian 

approach (Attias 2000, Jordan et al. 1999, Bishop 2006, Rasmussen 1999) in the GMM 

estimation. In the Bayesian framework, the whole class of models rather than a single 

model is considered to evaluate the posterior distributions of the GMM parameters. The 

predictions from all the models, weighted averaging by their posterior are calculated as 

the overall prediction. As a result, the over-fitting and singularity problems are resolved. 

Apparently, how to derive the posterior probability is the key here. However, the large 

number of model parameters may prohibit numerical integration. In addition, the high 

complexity of the posterior distribution may have no closed-form analytical solutions. 

Therefore, it is often impossible to compute the exact posterior distribution. Instead, 

approximation approaches are taken to evaluate the posterior distribution.  

In general, the approximation approaches are categorized in two classes: 

sampling-based methods and variational inference methods. The sampling based 

approximation, such as Markov chain Monte Carlo (MCMC), requires intensive 

computational resources which limits it applications to large scale problems. The second 

limitation is it requires the pre-assumptions of the sampling distribution which in practice 

may not be easily available, and even if the distribution can be derived, it may not be 

accurate(Attias 2000, Bishop 2006). The variational inference methods, on the other hand, 

can provide analytical approximations to the posterior distributions over the parameters 
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with less computational burden. On the purpose of minimizing the Kullback-Leibler (KL) 

divergence, the posterior distributions can be estimated by maximizing the variational 

free energy (the variational lower bound). This procedure can be computed by an iterative 

approach which is very similar to Expectation-Maximization (EM) whose convergence is 

guaranteed. One example is VBGMM. While promising, for big dataset, the convergent 

time for model fitting is still of concern. For example, it requires 1 hour ~ 4 hours for 

human kidney glomeruli segmentation (see Chapter 3.3). To speed up the computation of 

VBGMM, a promising strategy is to reduce training data size for posteriors estimation.   

Lately, an emerging data reduction technique is coreset which has attracted great 

attentions (Agarwal et al. 2005, Feldman et al. 2011, Chen 2009). A coreset is a small 

subset of the original data, on which the solution has guaranteed approximation to that 

from the full dataset. Since coreset is initially introduced in the computational geometry 

field, its first applications have been focused on geometric approximations where the 

distances between/among the data points are studied. Example algorithms are K-means, 

K-median (Har-Peled et al. 2004). (Feldman et al. 2011) explores the application of 

coreset for maximum likelihood Gaussian mixture model (MLGMM), a generative 

modeling approach rooted on distribution of the dataset. It is worth noting that given the 

deterministic Gaussian parameters, the Gaussian probability density function can be 

represented as Euclidean distances. Since this will allow the expression of the likelihood 

function of a data point in a pure geometric manner, MLGMM indeed adapts the coresets 

construction in a similar manner as that of K-means. 

However, in variational inference setting, i.e. when the Gaussian parameters 

become stochastic variables, the application of coreset construction from MLGMM 
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would flatten the dataset distribution and increase the variability of the stochastic 

variables. Therefore, to directly implement the coreset construction algorithm from 

MLGMM in VBGMM is questionable (please refer to Chapter 4.5 Discussion for 

expanded discussions). To adopt the coreset in VBGMM, a new coreset construction 

algorithm is proposed in this chapter, which is trying to sharpen the data distribution 

while preserving the component modes in the mixture model. The posterior distributions 

are estimated via the new coresets with guaranteed performance on the predictions 

compared to the use of the whole dataset. To test the performance of VBGMM via the 

proposed new coresets, same two sets of 3D MR images discussed in Chapter 3: six rat 

kidney MR images and three human kidney MR images are evaluated. The results are 

compared with (1) HDoG using the VBGMM with uniform sampling dataset and (2) 

HDoG using the VBGMM on the full dataset. It is observed that the HDoG using the 

VBGMM with the coreset is improved greatly with much less computational cost which 

makes it possible to adopt HDoG for the clinical in vivo studies.   

The rest of the chapter is organized as following: Chapter 4.2 first introduces the 

basics of coresets followed by our proposed coreset construction algorithm. Chapter 4.3 

discusses the enhanced VBGMM with the new coresets. The comparison experiments are 

detailed in Chapter 4.4, with the discussion in Chapter 4.5 and conclusions drawn in 

Chapter 4.6. 

 

4.2 Coreset and Construction 

4.2.1 Coreset Basics 
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Coreset is a weighted subset of original data which guarantees that models fitting 

using the coreset will provide similar performance on fitting using the original dataset. 

Given a full dataset 𝐷, a cost function 𝑓, the subset 𝐶 ⊂ 𝐷 is an 휀-coreset of 𝐷 if for 

every test data 𝑥, we have: 

    1 ( | ) ( | ) 1 ( | )f D x f C x f D x       (4.1) 

Where 휀 is small, 0 ≤ 휀 ≤ 1.  

This equation means that for a test point 𝑥, the function 𝑓 evaluated at the coreset 

𝐶 has (1 ± 휀) approximation to the function 𝑓 evaluated at the whole dataset 𝐷. There 

are many ways to construct coreset 𝐶. The key is to partition the whole dataset space into 

smaller disjoint regions and the representative data point(s) from each region is (are) 

chosen forming the coreset. Sariel Har-Peled et. al (2004) propose an exponential grid 

method to construct coreset for K-median and K-means algorithms. Specifically, the 

whole dataset is partitioned into hierarchical grids and one arbitrary point is picked from 

each non-empty grid cell to construct the coreset, with the weight assigned based on the 

number of points in each cell. Instead of exponential grid partition, Chen (2006) 

partitions the whole dataset into disjoined ring sets and random sampling was applied to 

each ring set, with weights assigned based on the number of points in each cell for the 

multiple points selected. Please note earlier work on coresets has focused on forming the 

coreset using the geometric distances between the data points. It would be interesting to 

explore the application of coreset to generative models (e.g., GMM) which are built upon 

the data distributions, and the distribution functions are more complicated for cost 

function evaluations. One notable research effort is from Feldman et al. (Feldman et al. 

2011) which first proved the MLGMM adopts the same coreset constructs as the way as 
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that in the K-means. They showed that with the coreset constructed via adaptive sampling 

for k clusters (as shown in Table 14), given the testing Gaussian parameters 𝜃, the log-

likelihood function 𝐿(𝐶|𝜃) on coreset 𝐶 has (1 ± 휀) approximation on full data 𝐷 (i.e. 

𝐿(𝐷|𝜃)), with probability 1 − 𝛿 (𝛿 is a small number), that is:   

        1 | | 1 ( | )L D L C L D          (4.2) 

Where 𝜃 is the set of parameters for GMM.  

 

Table 14 Coreset Construction via Adaptive Sampling (Feldman et al. 2011) 

Input: Data set 𝐷, 휀, 𝛿, 𝑘  

Output: Coreset 𝐶 = {(𝛾(𝑥1), 𝑥1), … , (𝛾(𝑥|𝐶|), 𝑥|𝐶|)} 

1. 𝐷′ ← 𝐷; 𝐵 ← ∅; 𝛽 = 10𝑑𝑘𝑙𝑛 (
1

𝛿
) ; 

2. While |𝐷′| > 𝛽 do 

3. Sample set 𝑆 of 𝛽 points uniformly from 𝐷′; 

4. Remove ⌈|𝐷′|/2⌉ points 𝑥 ∈ 𝐷′ closest to 𝑆 (the minimum distance) 

from 𝐷′; 

5. Set 𝐵 ← 𝐵 ∪ 𝑆; 

6. Set 𝐵 ← 𝐵 ∪ 𝐷′; 

7. For each 𝑏 ∈ 𝐵 do 𝐷𝑏 ← the points in 𝐷 whose closest point in B is b. 

Ties broken arbitrary; 

8. For each 𝑏 ∈ 𝐵 and 𝑥 ∈ 𝐷𝑏 do 

9.  𝑚(𝑥) ← ⌈
5

|𝐷𝑏|
+

𝑑𝑖𝑠𝑡(𝑥,𝐵)2

∑ 𝑑𝑖𝑠𝑡(𝑥′,𝐵)2
𝑥′∈𝐷

⌉ 

10. Pick a non-uniform random sample 𝐶 of 10 ⌈𝑑𝑘|𝐵|2𝑙𝑛(
1

𝛿
)/휀2⌉ points 

from 𝐷 with probability 𝑝(𝑥) ← 𝑚(𝑥)/ ∑ 𝑚(𝑥′)𝑥′∈𝐷  for point 𝑥 ∈ 𝐷 

11. For each 𝑥′ ∈ 𝐶 do 𝛾(𝑥′) ←
1

|𝐶|𝑝(𝑥′); 

 

Table 14 shows the algorithm to construct coreset for MLGMM (Feldman et al. 

2011). At first, it selects the representative data points and adds them into set B iteratively 

by uniformly sampling data from the original dataset, and removing its neighborhood 

(line2-line6). In practice, the 𝛽 can be set accordingly based on the data. Then based on 
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the set 𝐵  as seeds, the whole dataset is partitioned into Voronoi diagram (see Figure 15 

(C) for example), which is a partitioning of a set into subsets based on distance to points 

in a specific subset (line 7). Each data point is then assigned with the probability to be 

selected in coreset (line 8). The probability is proportional to the distance between the 

point and the seed (point in 𝐵) within the region and penalized by the inverse of region 

density, as shown in Figure 15 (B). To make the expectation of the weights over whole 

dataset is equal to 1, i.e. ∑ 𝑝(𝑥)𝛾(𝑥)𝑥∈𝐷 = 1, the weight of the point in coreset is then 

assigned as the inverse of the probability normalized by the number of points in coreset 

to compensate the non-uniform probabilities (line 11). In practice, the number of points 

sampled for coreset can be set based on the problems as referred in (Feldman et al. 2011).  

It is noted Feldman’s approach attempts to remove denser data points but keep 

sparser data points with high probabilities. As a result, the distribution of the coreset 

varies from the full dataset and becomes flatter. This approach may perform well when 

dealing with discriminative clustering algorithms, since the boundary (extreme) points of 

clusters are of the main interests of the study. For generative model, given the 

deterministic parameters, MLGMM can be treated as soft K-means clustering (Hastie et 

al. 2009) and adapts the coresets construct in a similar manner as that of K-means 

(Feldman et al. 2011). However, when constructing coreset in variational inference 

setting, those parameters are stochastic variables, and the cost function is the variational 

lower bound that makes the application of coreset construction from Table 14 

questionable (see the discussion part). Therefore, this research proposes a new coreset 

construct for GMM with variational inference which requires preserving the data 

distribution from the full dataset in the coreset. 
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4.2.2 Proposed Coreset Construction 

 

 

Figure 15 Coreset Construction Comparison. (A) Full Dataset (B) Coreset Construction 

using (Feldman et al. 2011) (C) Coreset Construction using Proposed Algorithm. Radius 

of Point Reflects the Probability of the Data Point to be Sampled 

 

As discussed in Chapter 4.2.1, to make the coreset applicable to GMM in 

variational inference setting, the modes of data distributions need to be maintained 

instead of flattened. Here we introduce a new coreset construction algorithm that inverse 

the probability assigned to each point (highlighted in line 9, Table 15) as shown in Figure 

15 (C). This inverse operation will sharpen the data distributions to reduce the variability 

of Gaussian variables and enhance the discernibility among the modes for clustering. 

Indeed, the expectation of means remains the same as the previous since the weights are 

the normalized inverse of probabilities leading the weighted averages the same.     

 

Table 15 Proposed Coreset Construction for Variational Bayesian Framework 

Input: Data set 𝐷, 휀, 𝛿, 𝑘  

Output: Coreset 𝐶 = {(𝛾(𝑥1), 𝑥1), … , (𝛾(𝑥|𝐶|), 𝑥|𝐶|)} 

1. 𝐷′ ← 𝐷; 𝐵 ← ∅; 𝛽 ← 10𝑑𝑘𝑙𝑛 (
1

𝛿
) ; 
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2. While |𝐷′| > 𝛽 do 

3. Sample set 𝑆 of 𝛽 points uniformly from 𝐷′; 

4. Remove ⌈|𝐷′|/2⌉ points 𝑥 ∈ 𝐷′ closest to 𝑆 (the minimum distance) 

from 𝐷′; 

5. Set 𝐵 ← 𝐵 ∪ 𝑆; 

6. Set 𝐵 ← 𝐵 ∪ 𝐷′; 

7. For each 𝑏 ∈ 𝐵 do 𝐷𝑏 ← the points in 𝐷 whose closest point in B is b. 

Ties broken arbitrary; 

8. For each 𝑏 ∈ 𝐵 and 𝑥 ∈ 𝐷𝑏 do 

9. 𝒎(𝒙) ← 𝟏. 𝟓 − ⌈
𝟏

|𝑫𝒃|
+

𝒅𝒊𝒔𝒕(𝒙,𝑩)𝟐

∑ 𝒅𝒊𝒔𝒕(𝒙′,𝑩)𝟐
𝒙′∈𝑫

⌉; 

10. Pick a non-uniform random sample 𝐶 of 10 ⌈𝑑𝑘|𝐵|2𝑙𝑛(
1

𝛿
)/휀2⌉ points 

from 𝐷 with probability 𝑝(𝑥) ← 𝑚(𝑥)/ ∑ 𝑚(𝑥′)𝑥′∈𝐷  for point 𝑥 ∈ 𝐷 

11. For each 𝑥′ ∈ 𝐶 do 𝛾(𝑥′) ←
1

|𝐶|𝑝(𝑥′); 

 

With the coreset constructed by the algorithm, weighted VBGMM is built in next 

section and the experimental evaluations are discussed later in this chapter. 

 

4.3 Weighted Variational Bayesian Mixture Models via Coresets 

4.3.1 VBGMM Clustering 

Consider GMM with K components, let 𝑋 = {𝑥1, … , 𝑥𝑁} be the set of N i.i.d 

observations with dimension 𝑑, and the latent variable, 𝑍 = {𝑍1, … , 𝑍𝑁𝐾} is introduced 

where 𝑧𝑛𝑘 = 1 indicates that 𝑋𝑛 belongs to component 𝑘 and ∑ 𝑍𝑛𝑘 = 1𝐾
𝑖=𝑘 . Let the 

variables 𝜋𝑘, 𝜇𝑘, Λ𝑘 be the weight, mean, and precision matrix (inverse of covariance 

matrix) for component K of the mixture model respectively. Then the graphic model for 

GMM in Bayesian framework is shown in Figure 16. 
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Figure 16 Directed Acyclic Graph (DAG) for VBGMM 

 

Based on the directed acyclic graph, we have 
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𝐴(𝛼0) is the normalized constant for the Dirichlet distribution, 𝑝(Λ) is Wishart 

distribution governing the precision matrix. Those prior distributions are selected either 

naturally or at the convenience of computation, details can be found in (Bishop 2006).  

The key challenge of variational Bayesian approach is to compute the posterior 

distribution of the model variables i.e. 𝑝(𝑍, 𝜋, Λ, 𝜇|𝑋). In most cases, especially in GMM, 

it is computational prohibitive to calculate posterior distributions directly. Therefore, the 
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variational inference is employed to approximate the posterior distribution 𝑝(𝑍, 𝜋, Λ, 𝜇|𝑋) 

with other computable distribution 𝑞(𝑍, 𝜋, Λ, 𝜇) by minimizing their Kullback-Leibler 

(KL) divergence, which is: 

  
 

 
 

, ,Λ, |
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, ,Λ,
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KL q p q Z ln d Z
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     (4.9) 

The log marginal probability of X can also be decomposed as: 

     ( | | )lnp X L q KL q p    (4.10) 
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Since given the observations, the model evidence 𝑝(𝑋) is pre-determined. The 

minimization of 𝐾𝐿(𝑞||𝑝) leads to the maximization of variational lower bound 𝐿(𝑞). 

Assuming 𝑞(𝜋, 𝑍, Λ, 𝜇) follows the mean fields theory that is 𝑞(𝑍, 𝜋, Λ, 𝜇) =

𝑞(𝑍)𝑞(𝜋, Λ, 𝜇), considering the part 𝑞(𝑍), we can rewrite 𝐿(𝑞) as: 

          ,L q q Z lnp X Z dZ q Z lnq Z dZ const       (4.11) 

Where      ,Λ,
, , , ,Λ,lnp X Z E lnp X Z

 
      , and const consists of items that are 

independent of 𝑞(𝑍). 

To maximize 𝐿(𝑞) with regards to 𝑞(𝑍), we have: 

      *

,Λ,
, , ,Λ,lnq Z E lnp X Z const
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  (4.13)  

Similarly, to maximize 𝐿(𝑞) with regards to 𝑞(𝜋, Λ, 𝜇), we have 
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From the equations, it is learned 𝑞(𝑍) and 𝑞(𝜋, Λ, 𝜇) depend on each other. To 

maximize 𝐿(𝑞), we can fix one term to compute the other. Therefore, the maximization 

of 𝐿(𝑞) leads to an iterative procedure which is similar to EM algorithm, the variational 

inference treatment for GMM from (Bishop 2006) is listed in Table 16. 

 

Table 16 Variational Inference for Gaussian Mixture Models (Bishop 2006) 

Inputs: 𝛼0, 𝛽0, 𝑣0, 𝑚0, 𝑊0
−1, full dataset 𝑋 and initial labels 𝑍𝑛𝑘 

Outputs: labels 𝑍𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘(𝑟𝑛𝑘), hyper parameters: {𝛼𝑘 , 𝛽𝑘 , 𝑣𝑘 , 𝑚𝑘 , 𝑊𝑘
−1} 

1. Set 𝑟𝑛𝑘 = 𝑍𝑛𝑘 

2. While 𝐿(𝑞) not converged do 

3. M-Setp: calculate the posterior 𝑞∗(𝜋) and 𝑞∗(𝜇, Λ) 

4. First calculate:  

𝑁𝑘 = ∑ 𝑟𝑛𝑘

𝑁

1

, �̅�𝑘 =
1

𝑁𝑘
∑ 𝑟𝑛𝑘

𝑁

1

𝑥𝑛, 𝑆𝑘 =
1

𝑁𝑘
∑ 𝑟𝑛𝑘

𝑁

1

(𝑥𝑛 − �̅�𝑘)𝑇(𝑥𝑛 − �̅�𝑘)
 

5. Then we can calculate  

6. 𝑞∗(𝜋𝑘) = 𝐷𝑖𝑟(𝜋𝑘|𝛼𝑘) 

7. 𝑞∗(𝜇𝑘 , Λk) = 𝑁(𝜇𝑘|𝑚𝑘, (𝛽𝑘Λ𝑘)−1)𝑊(Λ𝑘|𝑊𝑘, 𝑣𝑘) 

8. by 

9. 𝛼𝑘 = 𝛼0 + 𝑁𝑘 

10. 𝛽𝑘 = 𝛽0 + 𝑁𝑘 

11. 𝑚𝑘 =
1

𝛽𝑘
(𝛽0𝑚0 + 𝑁𝑘�̅�𝑘) 

12. 𝑊𝑘
−1 = 𝑊0

−1 + 𝑁𝑘𝑆𝑘 +
𝛽0𝑁𝑘

𝛽0+𝑁𝑘
(�̅�𝑘 − 𝑚0)(�̅�𝑘 − 𝑚0)𝑇

 

13. 𝑣𝑘 = 𝑣0 + 𝑁𝑘 

14. E-Step: calculate the posterior 𝑞∗(𝑍𝑛) = ∏ 𝑟𝑛𝑘
𝑍𝑛𝑘𝐾

𝑘=1 , where 

15. 𝑟𝑛𝑘 =
𝜌𝑛𝑘

∑ 𝜌𝑛𝑘
𝐾
𝑗=1

 

16.        ,Λ

1
exp ln ln Λ ln 2 Λ

2 2 k k

T

nk k k n k k n k

d
E E E x x    
              

 

17. Re-evaluate 𝐿(𝑞) 
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From the table above, we know that the quantity 𝑟𝑛𝑘 plays the key role in 

VBGMM cluster. In discrete setting,  nk nkE Z r  . Since 𝑍𝑛𝑘 is a binary variable, 

𝑟𝑛𝑘 actually is the probability of data point 𝑥𝑛 belonging to the component 𝑘.   

 

4.3.2 Weighted VBGMM via Coresets 

To use the coreset in VBGMM, the coreset weight needs to be considered into 

weighted averaging. In the MLGMM setting, Feldman et al. (Feldman et al. 2011) assign 

the coreset weight 𝛾(𝑥𝑛) to the probability 𝑟𝑛𝑘
𝑀𝐿 of data point 𝑥𝑛  belonging to the 

component k, that is:  
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  (4.15) 

Taking a further step in comparing 𝑟𝑛𝑘
𝑀𝐿 in MLGMM and 𝑟𝑛𝑘 in VBGMM, we 

have: 

    
1

2Λ exp Λ
TML

nk k k n k k n kr x x       

   Λ exp W
2 2
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nk k k n k k n k

k

vd
r x m x m



 
     

 
 

Where  ln ,Λ ln Λk k k kE E      . Accordingly, in VBGMM setting, the 

coreset weight 𝛾(𝑥𝑛) naturally takes probability 𝑟𝑛𝑘 into account, that is 𝑟𝑛𝑘 =

𝛾(𝑥𝑛)𝑟𝑛𝑘 = 𝛾(𝑥𝑛)
𝜌𝑛𝑘

∑ 𝜌𝑛𝑘
𝐾
𝑗=1

. This modification makes the coreset weight takes effect on all 

the hyper parameter estimations. The details of weighted VBGMM via coresets algorithm 

are listed in Table 17. 
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Table 17 Weighted VBGMM via Coresets Clustering 

Training Process: 

Inputs: {𝛼0, 𝛽0, 𝑣0, 𝑚0, 𝑊0
−1}, coreset 𝐶 = {(𝛾(𝑥1), 𝑥1), … , (𝛾(𝑥|𝐶|), 𝑥|𝐶|)}, initial labels 𝑍𝑛𝑘 

Outputs: trained hyper parameters: {𝛼𝑘 , 𝛽𝑘 , 𝑣𝑘 , 𝑚𝑘 , 𝑊𝑘
−1} 

1. Set 𝑟𝑛𝑘 = 𝑍𝑛𝑘 

2. While 𝐿(𝑞) not converged do 

3. M-Setp: calculate the posterior 𝑞∗(𝜋) and 𝑞∗(𝜇, Λ) 

4. First calculate:  

𝑁𝑘 = ∑ 𝑟𝑛𝑘

|𝐶|

1

, �̅�𝑘 =
1

𝑁𝑘
∑ 𝑟𝑛𝑘

|𝐶|

1

𝑥𝑛, 𝑆𝑘 =
1

𝑁𝑘
∑ 𝑟𝑛𝑘

|𝐶|

1

(𝑥𝑛 − �̅�𝑘)𝑇(𝑥𝑛 − �̅�𝑘)
 

5. Then we can calculate  

6. 𝑞∗(𝜋𝑘) = 𝐷𝑖𝑟(𝜋𝑘|𝛼𝑘) 

7. 𝑞∗(𝜇𝑘 , Λk) = 𝑁(𝜇𝑘|𝑚𝑘, (𝛽𝑘Λ𝑘)−1)𝑊(Λ𝑘|𝑊0, 𝑣0) 

8. by 

9. 𝛼𝑘 = 𝛼0 + 𝑁𝑘 

10. 𝛽𝑘 = 𝛽0 + 𝑁𝑘 

11. 𝑚𝑘 =
1

𝛽𝑘
(𝛽0𝑚0 + 𝑁𝑘�̅�𝑘) 

12. 𝑊𝑘
−1 = 𝑊0

−1 + 𝑁𝑘𝑆𝑘 +
𝛽0𝑁𝑘

𝛽0+𝑁𝑘
(�̅�𝑘 − 𝑚0)(�̅�𝑘 − 𝑚0)𝑇

 

13. 𝑣𝑘 = 𝑣0 + 𝑁𝑘 

14. E-Step: calculate the posterior 𝑞∗(𝑍𝑛) = ∏ 𝑟𝑛𝑘
𝑍𝑛𝑘𝐾

𝑘=1 , where 

15. 𝒓𝒏𝒌 = 𝜸(𝒙𝒏)
𝝆𝒏𝒌

∑ 𝝆𝒏𝒌
𝑲
𝒋=𝟏

 

16.        ,Λ

1
exp ln ln Λ ln 2 Λ

2 2 k k

T

nk k k n k k n k

d
E E E x x    
              

 

17. Re-evaluate 𝐿(𝑞) 

 

Testing Process: 

     Inputs: {𝛼0, 𝛽0, 𝑣0, 𝑚0, 𝑊0
−1}, full dataset 𝑋 and {𝛼𝑘, 𝛽𝑘 , 𝑣𝑘 , 𝑚𝑘 , 𝑊𝑘

−1} 

     Outputs: labels 𝑍𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘(𝑟𝑛𝑘) 

18. Calculate the posterior 𝑞∗(𝑍𝑛) = ∏ 𝑟𝑛𝑘
𝑍𝑛𝑘𝐾

𝑘=1 , where 

19. 𝑟𝑛𝑘 =
𝜌𝑛𝑘

∑ 𝜌𝑛𝑘
𝐾
𝑗=1

 

20.        ,Λ

1
exp ln ln Λ ln 2 Λ

2 2 k k

T

nk k k n k k n k

d
E E E x x    
              

 

 

To implement weighted VBGMM in clustering data, two processes are needed as 

shown in Table 17. The training process trains the hyper parameters of VBGMM via 

coreset, and the testing process is to cluster the whole dataset with fitted VBGMM. With 

much less data to train the VBGMM, VBGMM converges very fast, thus the higher 
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efficiency can be achieved. The experimental evidences showing the efficiency and 

reliable performance of weight VBGMM clustering are discussed in next section. 

 

4.4 Experimental Validation of Weighted VBGMM via Coresets 

  To validate the performance of weighted VBGMM clustering, two experiments of 

clustering the glomeruli were performed. In the first experiment, weighted VBGMM via 

coresets was implemented to cluster the glomeruli candidates and identify the true 

glomeruli group on six 3D rat kidney MR images (matrix size: 256×256×256). The 

experiments were done in Matlab 2014b on a Windows platform with Intel Xeon 2.0 

GHz CPU and 32GB of memory. The results were compared with VBGMM via full 

dataset and VBGMM via uniform sampling. In the second experiment, three much larger 

datasets (matrix size: 512×512×896) from three 3D human kidney MR images were 

studied. The results of weighted VBGMM were also compared with other two VBGMMs. 

 

4.4.1 Evaluation on Rat Kidney MR Images 

Six 3D MR images of rat kidneys were studied in this experiment.  The image 

data were first processed by HDoG without post pruning. Therefore, glomeruli candidates 

were generated with three features average including intensity, regional blobness and 

regional flatness were extracted. The glomeruli candidates were clustered using weighted 

VBGMM via coresets, VBGMM via uniform sampling and full data VBGMM. The 

training sample size was chosen from 500, 1000, 2000, 5000, 8000 and 10000 for 

weighted VBGMM via coresets and VBGMM via uniform sampling, then the full 

datasets were tested. Each data sample was run 10 times. The results from full dataset 
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trained VBGMM were chosen as benchmark. The variational lower bounds L(q) for 

weighted VBGMM and VBGMM via uniform sampling are shown in Figure 17. 

 

 

Figure 17 Variational Lower Bound Comparison on Weighted VBGMM via Coresets, 

VBGMM via Uniform Sampling and VBGMM via Full Data 

 

Table 18 Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling (based 

on 5000 Sample Size) on Rat Kidney Data 

Evaluation Method 
Rat 1  

(86111)* 

Rat 2 

(94084)* 

Rat 3 

(94186)* 

Rat 4 

(81908)* 

Rat 5 

(81950)* 

Rat 6 

(92338)* 

Time (seconds) 

Full Dataset 20.907 18.684 10.647 10.711 13.095 11.083 

Coreset 1.678±0.236 1.951±0.427 1.86±0.791 1.664±0.294 1.399±0.155 1.798±0.431 

Uniform 1.205±0.437 1.354±0.373 0.728±0.237 0.74±0.217 0.596±0.069 0.583±0.108 

Variational 

Lower Bound 

Full Dataset 3.008 2.910 2.969 2.802 3.213 2.901 

Coreset 3.002±0.039 2.909±0.023 2.972±0.037 2.749±0.061 3.208±0.03 2.904±0.027 

**p-value 0.300 0.442 0.127 0.012 0.310 0.347 

Uniform 2.783±0.04 2.709±0.033 2.914±0.005 2.61±0.01 3.023±0.007 2.709±0.016 

***p-value 0.000 0.000 0.000 0.000 0.000 0.000 

Glomeruli Counts 

Full Dataset 29484 34460 27051 35295 31196 35248 

Coreset 30723±2949 34894±4675 30553±3150 33006±3354 32127±1358 34620±7265 

**p-value 0.108 0.388 0.003 0.030 0.029 0.395 

Uniform 42473±11641 38888±7970 31241±365 30843±2530 31523±223 31696±288 
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***p-value 0.003 0.056 0.000 0.000 0.001 0.000 

*number of all glomeruli candidates (data instances) 

**t-test on coreset with null hypothesis that coreset mean value is equal to full dataset 

value  

***t-test on uniform sampling with null hypothesis that uniform mean value is equal to 

full dataset value   

  

The results show that the variational lower bound on weighted VBGMM via 

Coreset is very close to the full dataset VBGMM and has no significant difference 

(𝛼 = 0.01), which is empirically proved the inequalities (1 − 휀)𝐿(𝑞|𝑋) ≤ 𝐿(𝑞|𝐶) ≤

(1 + 휀)𝐿(𝑞|𝑋) still hold in variational Bayesian framework. When the sample size 

changes, weighted VBGMM via coreset remains stable, which indicates its independency 

on sample size. In contrast, the VBGMM via uniform sampling highly depends on the 

sample size. When the sample size increases, it is more close to the population variational 

lower bound.  

Besides the variational lower bound, to evaluation the efficiency and detectability 

of weighted VBGMM via coreset on glomeruli identification, glomeruli counts and 

computational time were also examined to check how close that coreset and uniform 

sampling can approximate the performance of VBGMM on full dataset. The results are 

shown in Table 18. 

Due to the limit of page size, only the results from 5000 (~ 6% of the full dataset) 

sample size are listed here. From Table 18, we can see that for 5000 sample size, both 

coresets and uniform sampling can highly reduce the computation time dramatically 

(coreset construction time included). Regarding to the approximation to full dataset, 

coreset approach has better approximation than uniform sampling on all rats when 

checking the statistical p-values (the smaller, the more significant different compared to 
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full dataset). Readers can also check the full comparison in Appendix B. For the sample 

size less than 5000, coreset performed much better than uniform sampling. For other 

sample sizes, in most cases, coreset achieved better approximation than uniform sampling. 



  88 

 

Figure 18 Glomerular Identification Results for 3D MR Images of Rat Kidneys using 

Coresets (5000 Samples): (A–C) Segmentation Results from Slice 100 for Rat CF1, CF2, 

and CF3 Kidneys using Full Dataset. (D–F) Segmentation Results from Slice 100 for Rat 
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CF1, CF2, and CF3 Kidneys using Coreset. (G–I) Segmentation Results from Slice 150 

for Rat CF4, CF5, and CF6 Kidneys using Full Dataset. (J–L) Segmentation Results from 

Slice 150 for Rat CF4, CF5, and CF6 Kidneys using Coreset. 

 

Figure 18 shows the identification results from rat kidneys using weighted 

VBGMM via coreset compared to the VBGMM using full dataset. Glomeruli colored in 

green are the results using full dataset while the glomeruli colored in red are from the 

coreset using 5000 samples. By visually checking those results, there are no big 

differences between the results using full dataset and using coreset for rat datasets. This 

shows the result that the weighted VBGMM via coreset is an accurate approximation that 

can be used to detect the glomeruli in a much shorter time. 

 

4.4.2 Evaluation on Human Kidney MR Images 

To further investigate the computation efficiency and approximation performance 

of weighted VBGMM via coreset, three much larger data were examined from human 

kidney 3D MR images. The image data were also processed by HDoG in Chapter 3 

without post pruning. Glomeruli candidates were therefore generated with features 

average intensity, regional blobness and regional flatness. The glomeruli candidates were 

post-pruned using weighted VBGMM via coresets, VBGMM via uniform sampling and 

full data VBGMM. The training sample size was chosen from 500, 1000, 2000, 5000, 

8000 and 10000 for weighted VBGMM and VBGMM via uniform sampling, and 

predictions were made on full dataset. Each data sample was run 10 times in this 

experiment. The clustering results from full dataset trained VBGMM were consider as 
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golden standard for performance evaluation. The variational lower bounds L(q) for 

weighted VBGMM and VBGMM via uniform sampling are shown in Figure 19. 

 

 

Figure 19 Varional Lower Bound Comparison on Weighted VBGMM via Coresets, 

VBGMM via Uniform Sampling and VBGMM via Full Data on Human Kidney Dataset 

 

Figure 19 also confirmed that the inequalities (1 − 휀)𝐿(𝑞|𝑋) ≤ 𝐿(𝑞|𝐶) ≤

(1 + 휀)𝐿(𝑞|𝑋) still hold in variational Bayesian framework. In addition, by showing the 

independency on sample size, weighted VBGMM via Coreset can provide good 

approximation even on a small portion (~ 0.01% - 0.2%) of full dataset compared to 

uniform sampling. 

Computation time, glomeruli counts, features of identified glomeruli were also 

examined to evaluate the performance on weighted VBGMM via coresets comparing to 

VBGMM via uniform sampling and full dataset. The results are shown in Table 19. 

 

Table 19 Comparison of VBGMM on Full Dataset, Coreset and Uniform Sampling 

(based on 5000 Sample Size) on Human Kidney Data 

Evaluation Method 
Human 1  

(4886637)* 

Human 2 

(3912414)* 

Human 3 

(4816653)* 

Time (seconds) 

Full Dataset 1744.600 891.232 648.299 

Coreset 41.274±0.597 34.035±1.413 39.868±0.455 

Uniform 3.663±0.098 3.281±0.083 5.05±1.439 
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Variational Lower Bound 

Full Dataset 4.119 3.565 3.145 

Coreset 4.114±0.011 3.563±0.004 3.143±0.007 

**p-value 0.120 0.071 0.248 

Uniform 3.928±0.005 3.423±0.005 2.818±0.005 

***p-value 0.000 0.000 0.000 

Glomeruli Identified 

Full Dataset 1241144 711397 1370193 

Coreset 1287396±225512 787960±187001 1276104±163616 

**p-value 0.266 0.114 0.051 

Uniform 1893917±194489 1805765±84993 1082084±24045 

***p-value 0.000 0.000 0.000 

* number of all glomeruli candidates (data instances) 

**t-test on coreset with null hypothesis that coreset mean value is equal to full dataset 

value  

***t-test on uniform sampling with null hypothesis that uniform mean value is equal to 

full dataset value 

 

The same as previous section, only the results from 5000 sample size are listed. 

Table 19 shows that for 5000 sample size, both weighted VBGMM via coresets and 

VBGMM via uniform sampling are very computational efficient. Unlike the first set of 

experiment, sample size of 5000 instances is an extremely small portion (0.1%) of the full 

dataset. At this level, weighted VBGMM can still prove a very good approximation and 

has no significant difference (𝛼 = 0.01) compared to the full dataset in terms of both 

variational lower bound and glomeruli counts. However, as seen in the table, the 

VBGMM via uniform sampling lost its detectability on glomeruli identification. On other 

sample size, readers can check with the Appendix B, which also shows weighted 

VBGMM via coreset has much better approximation than VBGMM via uniform 

sampling. 

Figure 20 shows the identification results using weighted VBGMM via coresets 

compared to the VBGMM using full dataset. Glomeruli colored in green are the results 

using full dataset while the glomeruli colored in red are from the coreset using 5000 
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samples. By visually checking those results, there are no big differences between the 

results using full dataset and using coreset. This also confirms that the weighted 

VBGMM via coreset is an accurate approximation that can be used to detect the 

glomeruli in a much shorter time. 
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Figure 20 Glomerular Identification Results for 3D MR Images of Human Kidneys using 

Coresets (5000 Samples): (A–C) Segmentation Results from Slice 100 for Human CF1, 
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CF2, and CF3 Kidneys using Full Dataset. (D–F) Segmentation Results from Slice 100 

for Human CF1, CF2, and CF3 Kidneys using Coreset. (G–I) Segmentation Results from 

Slice 500 for Human CF1, CF2, and CF3 Kidneys using Full Dataset. (J–L) Segmentation 

Results from Slice 500 for Human CF1, CF2, and CF3 Kidneys using Coreset. 

 

4.5 Discussion 

 
Figure 21 Data Samples from Rat 1 Dataset. (A) Full Dataset (B) Coreset using (Feldman 

et al. 2011) (C) Coreset using Our Method. 

 

As mentioned before, Feldman’s coreset construction algorithm tends to remove 

the points from dense regions and keep the points from sparse regions. This algorithm 

first partitions the whole dataset into regions and then selects the boundary points with 

high probability for sparse region. This choosing “sparse of sparse” points strategy results 

in flattening the data distribution as seen in Figure 21 (B). Therefore, when the Gaussian 

parameters become random variables, the increased variability caused by the flattened 

coreset would lead to inaccurate predictions on full dataset.  Instead, after dataset 

partitioned into disjoint regions, our coreset construction algorithm tries to select the 

dense points compared to sparse points within the region. By preserving the distribution 

modes, this choosing “dense of dense” points strategy will sharpen the data distribution 

(Figure 21 (C)).  Thus the distribution modes are well modeled in the variational 
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inference setting, resulting in better approximation on predictions on full dataset. The Rat 

1 dataset is checked to compare the two coreset construction algorithms, and the results 

are shown in Table 20. 

 

Table 20 Comparison Results of Feldman Coreset and Our Coreset on Rat 1 Dataset 

Sample Size Method Converge Steps Time (s) Variational Lower Bound Glomeruli Counts 

86111 Full Dataset 230 20.907 3.008 29484 

500 
Feldman Coreset 118±103 1.091±0.29 2.935±0.079 36876±9566 

Our Coreset 88±33 1.056±0.266 2.95±0.125 35655±5847 

1000 
Feldman Coreset 100±50 1.103±0.172 3.013±0.063 42509±5937 

Our Coreset 100±53 1.153±0.192 2.983±0.028 31120±2982 

2000 
Feldman Coreset 73±18 1.128±0.09 3.056±0.008 43969±2450 

Our Coreset 126±97 1.404±0.444 3.016±0.054 33724±4826 

5000 
Feldman Coreset 70±7 1.318±0.065 3.067±0.002 44029±1704 

Our Coreset 103±30 1.678±0.236 3.002±0.039 30723±2949 

8000 
Feldman Coreset 90±19 1.794±0.224 3.07±0.002 44191±1949 

Our Coreset 127±35 2.262±0.31 2.995±0.017 30564±1907 

10000 
Feldman Coreset 80±7 1.827±0.094 3.071±0.001 44539±897 

Our Coreset 136±43 2.582±0.457 2.989±0.018 30929±2403 

 

Table 20 states though the variational lower bounds of weighted VBGMM using 

Feldman’s coreset are close to those on full dataset, the glomeruli counts are very 

different, showing that VBGMM using Feldman’s fails to cluster the full dataset. This 

result also indicates that even if the cost function of coreset has guaranteed 

approximation on full dataset, the model trained by coreset does not guarantee to 

maintain the similar clustering ability. It needs to be cautious when trying to employ 

coreset in model building. Further steps need to be done to evaluation the clustering 

ability rather than just taking advantages of its fast computing. In this chapter, though the 

empirical study showed that the weighted VBGMM trained by our proposed coreset 

maintains the similar clustering ability as the VBGMM trained using full dataset, and 
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their variational lower bounds (cost functions) are very close, more theoretic work needs 

to be done for solid proof. The theoretic analysis will be conducted as our future work.   

 

4.6 Conclusion  

In this chapter, to speed up the model fitting of VBGMM, which is the post-

pruning algorithm of HDoG, a new schema – weighted VBGMM via coresets is 

proposed. While preserving the similar glomeruli detectability, the weighted VBGMM 

via coresets takes the advantage of coresets for their efficient computations. To employ 

the coreset in variational Bayesian framework, a new coreset construction algorithm is 

also proposed aiming to preserve the distribution modes and to reduce the variations by 

sharpening the distribution. Two experiments on glomeruli detections were performed to 

evaluate the performance of weighted VBGMM via coresets, by comparing the VBGMM 

via uniform sampling. The results show the weighted VBGMM via coresets can much 

reduce the computation time comparing to the full dataset but with similar performance 

in glomeruli detections. In addition, unlike the VBGMM via uniform sampling, the 

weighted VBGMM via coresets is independent of sample size and can provide much 

better approximation in glomeruli detections. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Summary 

In this dissertation, we first propose a novel blob detector, termed Hessian-based 

Laplacian of Gaussian (HLoG) detector to identify 2D small blobs in medical images.  As 

an implementation, cell images are studied, which showed the good performance of 

HLoG in 2D images. However, for 3D large images, HLoG is computational expensive 

when using LoG kernel to convolve with higher dimension images. As an extension of 

HLoG in 3D space, Hessian-based Difference of Gaussians (HDoG) is proposed to 

approximate LoG kernel by using fast DoG kernel for 3D image convolution. In the 

HDoG, two novel efficient 3D regional features are derived that enable the HDoG to 

detect large-scale of small blobs in 3D medical images. To further improve the 

computation speed of HDoG, the post-pruning algorithm, i.e. variational Bayesian 

Gaussian mixture models (VBGMM) is examined, and an efficient post-pruning 

algorithm- weighted VBGMM via coresets is proposed which can greatly reduce the 

computation cost during the model training process.  Figure 22 summarizes the models 

and methods proposed in this dissertation. All those models aim to solve the small blob 

detection problem but in different scales of data size. These models naturally form a 

framework for small blob detection in medical images for different data size as seen in 

Figure 22.       
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Figure 22 Framework for Small Blob Detection 

 

Through comprehensive comparison experiments using datasets available from 

literature as well as our clinical partners, we conclude HLoG in general performs well for 

small blob detection in 2D images. Yet, the expensive computation prohibits its 

application to 3D images. Its extension, HDoG is demonstrated to be promising for small 

blob detection (e.g., glomeruli) from 3D images. Using intelligent sampling, coreset, the 

enhanced HDoG is capable to identify the small blobs, in this study, glomeruli, within 40 

second, making it a potential tool used in preclinical and clinical study.  

 

5.2 Discussion and Future Work  

In this research, we conclude that the Hessian pre-segmentation is an important 

process in blob detection, it can naturally segment the blobs and split the touched 

separable blob mixtures. When handling the ideal blobs (e.g., intensity distributions are 

Gaussians), theoretically, it can identify all the blobs. However, in practice, most blobs in 

the images may have discontinuities, which cause the frequent changes of intensity 
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convexity within a blob. Therefore, simply applying the Hessian pre-segmentation 

algorithm leads to unsatisfactory results. A smoothing procedure shall be employed prior 

to the Hessian implementation. In this dissertation, two smoothing techniques are 

explored: Laplacian of Gaussian (LoG) and its fast approximation Difference of 

Gaussians (DoG). The smoothing parameter of those two techniques is associated with 

the blob scales. When all the blobs are small and similar in size, which is the basic 

assumption in this dissertation, one optimum scale (smoothing parameters) can be 

selected for all the blobs. In this case, HLoG and HDoG algorithms can provide good 

performance on blob detection. However, when blobs are not identical in size, the 

selected single smoothing parameter will cause over-smoothing for some small blobs and 

under-smoothing for some large blobs. For over-smoothing blobs, some blobs will merge 

together and are not separable. For under-smoothing blobs, the discontinuities will cause 

the intensity convexity variations within a blob.  In this case, HLoG and HDoG 

algorithms may not perform well as expected. This situation drives the needs to develop a 

dynamic smoothing algorithm as our future work, that is, the smoothing parameters shall 

be adjusted according to the varied sizes from the blobs. This generalization to HLoG and 

HDoG will enable the detectors to be applicable to identify blobs with different sizes.  

Additionally, we only studied the application of coreset to VBGMM empirically. 

It is our intention to investigate the theoretical aspects of the coreset and propose its 

application to generative models in general.  
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APPENDIX A 

HESSIAN PRESEGMENTATION ON GAUSSIAN BLOBS 
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Assumption 1: the intensity function of blob is rotationally symmetric Gaussian. 

Assumption 2: All blobs are identical in size and intensity function.  

Consider two-blob mixture: 
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Where 𝑓1 is the intensity function of blob 1 with centroid (𝜇1𝑥, 𝜇1𝑦) and 

bandwidth related to size 𝜎; 𝑓2 is the intensity function of blob 2 with centroid (𝜇2𝑥, 𝜇2𝑦) 

and bandwidth related to size 𝜎. 

Let 𝐸2 = (𝜇2𝑥 − 𝜇1𝑥 )
2

+ (𝜇2𝑦 − 𝜇1𝑦 )
2
, we have Lemma 1 showing the 

condition that blobs i,j are seperatable. 

 

Lemma 1: In order to be able to split, the Euclidean distance between two blobs 

(Gaussian modes) satisfies 𝐸2 > 4𝜎2. 

Proof sketch.   

To find the stationary points of 𝐿(𝑥, 𝑦; 𝜎2), we have 
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  (5.1) 

However, those equations are the transcendental equations that do not have 

analytical solution in general cases. In (Carreira-Perpiñán et al. 2003), it is proved that 

the number of modes (maxima) of the Gaussian mixture cannot exceed the number of 
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components having same covariance matrix and the modes lie in the convex hull of the 

components’ modes. Thus we assume that the modes of the mixtures are in the format of 

(𝑥∗, 𝑦∗) = (𝑎𝜇1𝑥 + (1 − 𝑎)𝜇2𝑥, 𝑎𝜇1𝑦 + (1 − 𝑎)𝜇2𝑦), where 0 < 𝑎 < 1. 
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  (5.2) 

Where 𝐷 =
𝐸2

𝜎2.  

Obviously, 𝑎 =
1

2
 is one of the solutions. Let  𝐹(𝑎) =

𝑎

1−𝑎
𝑒𝑥𝑝(−𝐷𝑎) −

𝑒𝑥𝑝 (−
𝐷

2
), to consider the solutions of 𝐹(𝑎) = 0, then we have: 
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Case 1: If 𝐷2 − 4𝐷 > 0 ⇒ 𝐷 > 4,  
𝜕

𝜕𝑎
 𝐹(𝑎) = 0 has two roots, that  𝐹(𝑎) = 0 

has three real roots, therefore, there are two modes of the mixtures lie between (𝜇1𝑥, 𝜇1𝑦)  

and (
1

2
(𝜇1𝑥 + 𝜇2𝑥),

1

2
(𝜇1𝑦 + 𝜇2𝑦)), (𝜇2𝑥, 𝜇2𝑦)  and (

1

2
(𝜇1𝑥 + 𝜇2𝑥),

1

2
(𝜇1𝑦 + 𝜇2𝑦)). 

Moreover, (
1

2
(𝜇1𝑥 + 𝜇2𝑥),

1

2
(𝜇1𝑦 + 𝜇2𝑦)) is the saddle point of 𝐿(𝑥, 𝑦; 𝜎2) since the 

Hessian of 𝐿(𝑥, 𝑦; 𝜎2) is indefinite (𝐿𝑥𝑥 > 0,  𝐿𝑥𝑥𝐿𝑦𝑦 − 𝐿𝑥𝑦𝐿𝑥𝑦 < 0). 
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Figure 23 Three Roots for F(a) in Case 1 

 

Case 2: If 𝐷2 − 4𝐷 ≤ 0 ⇒ 𝐷 ≤ 4, 
𝜕

𝜕𝑎
 𝐹(𝑎) ≥ 0, which means that  𝐹(𝑎) is a 

non-decreasing function of 𝑎, therefore, 𝑎 =
1

2
 is the only solution to 𝐹(𝑎) = 0. And the 

semi-Negative definite Hessian of 𝐿(𝑥, 𝑦; 𝜎2)  indicates that (
1

2
(𝜇1𝑥 + 𝜇2𝑥),

1

2
(𝜇1𝑦 +

𝜇2𝑦)) is the global maximum (the only mode) of the mixture. 

 

 
Figure 24 One Root for F(a) in Case 2 
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Thus, by following the discussion, in order to be spreadable (two Gaussian modes, 

Case 1) we need to have 𝐷 =
𝐸2

𝜎2 > 4, which means the Euclidean distance between two 

blobs should satisfy 𝐸2 > 4𝜎2.∎ 

 

 

Lemma 2: the Gaussian distribution 𝑔(𝑥, 𝑦; 𝑡1
2) convolutes a Gaussian kernel 

𝑔(𝑥, 𝑦; 𝑡2
2) is Gaussian, i.e. 𝑔(𝑥, 𝑦; 𝑡1

2) ∗ 𝑔(𝑥, 𝑦; 𝑡2
2) = 𝑔(𝑥, 𝑦; 𝑡1

2 + 𝑡2
2). 

 

Theorem 1: In order to avoid merging any blobs, the Gaussian smoothing kernel 

parameter 𝑡 should satisfy: 4𝑡2 < 𝐸2 − 4𝜎2 

Proof sketch. By Lemma 2, we have 𝐿(𝑥, 𝑦; 𝜎2) ∗ 𝑔(𝑥, 𝑦; 𝑡2) = 𝐿(𝑥, 𝑦; 𝜎2 + 𝑡2), 

to be spreadable, we have 𝐸2 > 4(𝜎2 + 𝑡2) ⇒ 4𝑡2 < 𝐸2 − 4𝜎2. ∎ 

 

Theorem 2: Hessian pre-segmentation algorithm is able to split the separable 

blobs. 

Proof sketch. From Lemma 1, it is learned that the saddle point which has 

indefinite Hessian is between the two Gaussian modes which have Negative definite 

Hessian, therefore using the Hessian pre-segmentation algorithm can split separable blobs 

naturally in different regions that are of negative definite Hessian. ∎ 
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Figure 25. Blob Transformation. Left to Right: Raw blob, LoG Transformed Blob, Purple 

Area of Positive Definite Hessian 

 

Lemma 3: The convex region of LoG kernel in 2D is (𝑥2 + 𝑦2) <
1

2
(7𝜎2 −

√33𝜎2) 

Proof sketch.  

Since we have 
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   (5.4) 

The convex regions of 𝐿𝑜𝐺(𝑥, 𝑦; 𝜎2) which is of positive definite Hessian: 
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7 33

2
x y        (5.6) 

Proved.∎ 

 

Lemma 4: The Gaussian convolved with LoG kernel is still LoG, i.e. 𝐺(𝑥, 𝑦; 𝜎2) ∗

𝐿𝑜𝐺(𝑥, 𝑦; 𝑡2) = 𝐿𝑜𝐺(𝑥, 𝑦; 𝜎2 + 𝑡2)  
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Proof sketch.  
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Let 𝑡𝑘
2 = 𝜎2 + 𝑡2, then we have  

Theorem 3: For a single blob, the optimum scale selected from normalized LoG 

   
 

   

2 2 2 2

2 2 2 2

2
1

7 33
* 2

1
7 33

2

,| ; |
k k

k k

k
x y t t

t

x y t t

t LoG x y t dxdy

t argmax
dxdy



  

  


 

 
  is the same as the optimum scale 

selected from 2| ( , ; ) |t kt argmax t LoG x y t   in (Lindeberg 1998) 
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For the proposed part, we have  
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Then we have 
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Therefore 𝑡∗ = 𝑡+. ∎ 

 

Note that for individual blob,
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continuous case of 
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 , where 𝐼(𝑥, 𝑦; 𝑡) is the binary 

indicator such that if the pixel (𝑥, 𝑦) of the blob has a positive definite Hessian matrix, 

then 𝐼(𝑥, 𝑦, 𝑧; 𝑡) = 1, otherwise, 𝐼(𝑥, 𝑦, 𝑧; 𝑡) = 0. If all the blobs have the identical size 

and intensity function,
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 capture the 

optimum size of all the blobs. 

Note that the lemmas and theorems can be extended to 3D following the same 

way. 
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APPENDIX B 

EXPERIMENTAL RESULTS OF CORESETS ON RAT AND HUMAN DATASETS 
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Table 21 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Rat 1 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

Samples 

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 161 43 1.792 0.259 2.925 2.197 36476 78921 0.171 0.905 0.035 0.323 0.857 0.028 

500 

2 72 51 0.958 0.282 3.056 2.189 44606 78008 0.368 0.931 0.027 0.324 0.861 0.028 

3 114 100 1.086 0.422 2.973 2.177 39032 80791 0.238 0.922 0.030 0.317 0.848 0.028 

4 60 147 0.901 0.516 2.650 2.206 33627 77044 0.185 0.925 0.047 0.325 0.865 0.028 

5 92 102 1.012 0.410 2.997 2.238 42177 72752 0.364 0.933 0.023 0.333 0.880 0.028 

6 94 72 1.026 0.330 2.839 2.213 25777 75176 0.554 0.908 0.014 0.329 0.872 0.028 

7 55 77 0.907 0.375 3.063 2.185 35119 78873 0.225 0.908 0.048 0.324 0.857 0.028 

8 64 52 0.950 0.268 3.041 2.240 33461 70962 0.226 0.911 0.050 0.342 0.885 0.028 

9 59 65 0.909 0.303 2.998 2.199 38306 76564 0.199 0.910 0.040 0.324 0.867 0.029 

10 109 159 1.018 0.548 2.962 2.099 27965 84898 0.178 0.935 0.041 0.317 0.824 0.028 

Avg 88 86.8 1.056 0.371 2.950 2.194 35654.6 77398.9 0.271 0.919 0.035 0.326 0.862 0.028 

Std 33.407 40.061 0.266 0.102 0.125 0.039 5847.008 3963.658 0.122 0.012 0.012 0.007 0.017 0.000 

1 69 82 1.211 0.534 2.989 2.427 26293 71267 0.186 0.940 0.044 0.341 0.884 0.028 

1000 

2 185 122 1.463 0.605 2.996 2.414 30579 72876 0.191 0.933 0.041 0.340 0.878 0.027 

3 44 77 0.924 0.444 2.944 2.444 27856 69156 0.183 0.936 0.042 0.345 0.890 0.028 

4 202 538 1.492 1.977 2.997 2.439 31042 73108 0.187 0.931 0.042 0.333 0.878 0.027 

5 82 153 1.059 0.721 3.030 2.436 29502 72034 0.198 0.935 0.041 0.334 0.882 0.028 

6 90 68 1.040 0.396 2.991 2.455 29568 69547 0.182 0.932 0.042 0.343 0.889 0.028 

7 60 99 1.008 0.522 2.957 2.443 33665 70236 0.182 0.922 0.037 0.339 0.887 0.028 

8 77 104 1.054 0.560 3.011 2.450 35980 69633 0.218 0.926 0.036 0.340 0.889 0.028 

9 114 87 1.212 0.457 2.948 2.434 33934 70900 0.188 0.924 0.037 0.338 0.885 0.028 

10 79 60 1.063 0.369 2.964 2.437 32779 71915 0.176 0.922 0.038 0.338 0.882 0.028 

Avg 100.2 139 1.153 0.658 2.983 2.438 31119.8 71067.2 0.189 0.930 0.040 0.339 0.885 0.028 

Std 52.616 142.825 0.192 0.475 0.028 0.012 2982.291 1409.077 0.012 0.006 0.003 0.004 0.004 0.000 

1 90 77 1.353 0.522 3.089 2.569 35732 38633 0.218 0.914 0.047 0.181 0.913 0.039 

2000 

2 72 266 1.097 1.362 2.953 2.638 30974 65648 0.174 0.926 0.037 0.345 0.899 0.027 

3 174 278 1.631 1.444 2.996 2.573 28316 38733 0.189 0.937 0.043 0.173 0.908 0.038 

4 48 92 1.086 0.608 3.094 2.631 33529 66420 0.230 0.914 0.048 0.353 0.895 0.027 

5 146 97 1.519 0.651 2.966 2.649 35864 66639 0.190 0.917 0.037 0.346 0.897 0.027 

6 51 83 1.062 0.522 2.963 2.555 31928 39157 0.178 0.926 0.037 0.174 0.908 0.038 

7 69 327 1.071 1.694 2.965 2.650 34075 65849 0.171 0.916 0.038 0.347 0.899 0.028 

8 177 127 1.658 0.747 3.055 2.651 45614 66116 0.358 0.932 0.028 0.347 0.898 0.027 

9 73 94 1.100 0.601 3.040 2.667 30547 63033 0.195 0.934 0.039 0.346 0.906 0.028 

10 364 89 2.466 0.574 3.036 2.671 30665 63286 0.196 0.935 0.039 0.348 0.905 0.028 

Avg 126.4 153 1.404 0.872 3.016 2.625 33724.4 57351.4 0.210 0.925 0.039 0.296 0.903 0.031 

Std 96.567 96.871 0.444 0.445 0.054 0.043 4826.206 12831.9 0.055 0.009 0.006 0.083 0.006 0.005 

1 134 84 2.001 0.946 3.003 2.848 28149 58521 0.187 0.937 0.043 0.375 0.906 0.027 

5000 

2 95 108 1.632 1.106 3.004 2.759 27538 34594 0.185 0.938 0.043 0.159 0.912 0.039 
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3 95 132 1.599 1.246 3.003 2.757 30177 34824 0.187 0.932 0.043 0.169 0.917 0.039 

4 73 169 1.389 1.499 2.970 2.843 33703 59409 0.180 0.921 0.038 0.372 0.905 0.027 

5 64 109 1.464 1.126 3.000 2.753 28261 35962 0.183 0.936 0.042 0.163 0.910 0.039 

6 85 86 1.565 0.891 2.968 2.756 33161 35860 0.179 0.922 0.037 0.159 0.908 0.039 

7 92 96 1.474 0.977 2.993 2.764 27019 33746 0.188 0.939 0.042 0.165 0.919 0.040 

8 109 298 1.713 2.315 2.969 2.827 33627 59941 0.177 0.920 0.037 0.377 0.902 0.027 

9 166 74 2.096 0.805 3.003 2.762 30609 36869 0.193 0.933 0.041 0.175 0.914 0.038 

10 120 123 1.848 1.139 3.104 2.756 34983 35001 0.228 0.913 0.048 0.157 0.909 0.039 

Avg 103.3 127.9 1.678 1.205 3.002 2.783 30722.7 42472.7 0.189 0.929 0.041 0.227 0.910 0.035 

Std 30.273 65.847 0.236 0.437 0.039 0.040 2948.953 11640.94 0.015 0.009 0.003 0.102 0.005 0.006 

1 111 96 2.127 1.360 3.006 2.829 29587 34142 0.192 0.934 0.043 0.164 0.916 0.039 

8000 

2 106 120 2.081 1.485 3.007 2.826 30231 33654 0.189 0.932 0.042 0.159 0.915 0.039 

3 98 84 1.953 1.263 2.970 2.834 33358 34052 0.181 0.923 0.038 0.163 0.916 0.039 

4 119 100 2.183 1.430 2.970 2.824 32997 34340 0.182 0.924 0.037 0.165 0.916 0.039 

5 171 72 2.684 1.071 3.007 2.828 29297 34998 0.186 0.934 0.042 0.168 0.915 0.039 

6 192 72 2.820 1.071 3.007 2.835 30028 34203 0.192 0.933 0.042 0.172 0.920 0.039 

7 118 82 2.235 1.275 3.002 2.834 28449 33890 0.185 0.935 0.043 0.163 0.916 0.039 

8 88 80 1.912 1.206 2.972 2.833 33285 34709 0.177 0.920 0.037 0.170 0.918 0.039 

9 162 93 2.532 1.199 3.006 2.835 28728 33441 0.186 0.935 0.042 0.162 0.917 0.039 

10 109 84 2.093 1.177 3.007 2.831 29677 35197 0.188 0.934 0.042 0.167 0.914 0.038 

Avg 127.4 88.3 2.262 1.254 2.995 2.831 30563.7 34262.6 0.186 0.930 0.041 0.165 0.916 0.039 

Std 34.821 14.530 0.310 0.139 0.017 0.004 1906.674 564.297 0.005 0.006 0.002 0.004 0.002 0.000 

1 137 89 2.717 1.501 3.006 2.857 28889 32943 0.186 0.935 0.043 0.160 0.917 0.039 

10000 

2 114 80 2.319 1.428 2.973 2.859 33032 32438 0.176 0.922 0.038 0.163 0.920 0.040 

3 153 91 2.777 1.367 3.007 2.859 28458 33649 0.187 0.936 0.043 0.164 0.917 0.039 

4 126 73 2.458 1.441 3.007 2.860 28790 34260 0.185 0.934 0.042 0.166 0.916 0.039 

5 90 62 2.095 1.370 2.973 2.854 33506 34369 0.178 0.921 0.038 0.169 0.918 0.039 

6 216 88 3.386 1.462 3.007 2.861 29307 32736 0.191 0.935 0.042 0.166 0.921 0.039 

7 76 87 1.871 1.416 2.972 2.860 32922 33827 0.179 0.923 0.038 0.164 0.916 0.039 

8 180 75 3.018 1.305 3.004 2.860 28055 33264 0.185 0.937 0.043 0.165 0.919 0.039 

9 105 103 2.301 1.563 2.972 2.865 33941 32490 0.181 0.921 0.037 0.168 0.923 0.039 

10 164 77 2.874 1.316 2.968 2.860 32385 33929 0.183 0.926 0.038 0.167 0.918 0.039 

Avg 136.1 82.5 2.582 1.417 2.989 2.860 30928.5 33390.5 0.183 0.929 0.040 0.165 0.918 0.039 

Std 43.039 11.492 0.457 0.081 0.018 0.003 2402.804 716.7531 0.005 0.007 0.003 0.003 0.002 0.000 

 

Table 22 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Rat 2 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

samples 

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 64 94 1.457 0.374 3.001 2.174 42978 86231 0.256 0.922 0.055 0.293 0.861 0.034 

500 

2 115 51 1.115 0.272 2.868 2.127 33009 88377 0.179 0.944 0.050 0.290 0.851 0.034 
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3 60 48 0.963 0.267 2.843 2.153 27403 84268 0.168 0.950 0.055 0.295 0.869 0.035 

4 77 61 1.039 0.298 2.926 2.147 44543 7 0.325 0.936 0.030 0.098 0.874 0.747 

5 177 87 1.256 0.381 2.904 2.131 46765 88415 0.332 0.934 0.042 0.291 0.851 0.034 

6 52 63 0.919 0.292 2.772 2.178 39854 81843 0.137 0.901 0.039 0.297 0.877 0.035 

7 70 80 0.962 0.328 2.895 2.207 37526 80693 0.201 0.938 0.049 0.301 0.881 0.035 

8 190 86 1.388 0.412 2.918 2.192 34224 82025 0.173 0.939 0.048 0.296 0.876 0.035 

9 129 299 1.262 1.071 2.922 2.187 33190 83448 0.196 0.946 0.050 0.296 0.871 0.035 

10 120 129 1.174 0.477 2.937 2.102 43835 90748 0.249 0.936 0.040 0.289 0.839 0.034 

Avg 105.4 99.8 1.154 0.417 2.899 2.160 38332.7 76605.5 0.222 0.935 0.046 0.274 0.865 0.106 

Std 49.253 73.965 0.186 0.239 0.061 0.033 6285.96 27115.12 0.067 0.014 0.008 0.062 0.014 0.225 

1 197 180 1.485 0.768 2.967 2.384 46670 76888 0.321 0.936 0.038 0.304 0.891 0.034 

1000 

2 56 111 0.987 0.618 2.996 2.353 40047 78851 0.231 0.922 0.056 0.310 0.884 0.034 

3 74 131 1.067 0.625 2.875 2.362 34227 80364 0.185 0.942 0.051 0.303 0.880 0.034 

4 112 101 1.176 0.536 2.865 2.413 29807 73762 0.162 0.946 0.051 0.313 0.898 0.035 

5 64 85 1.043 0.456 2.892 2.385 32025 75713 0.175 0.944 0.050 0.307 0.894 0.034 

6 90 115 1.107 0.549 2.939 2.362 31609 80520 0.165 0.944 0.048 0.301 0.880 0.034 

7 90 132 1.124 0.589 2.965 2.380 47162 79211 0.302 0.937 0.033 0.303 0.883 0.034 

8 244 140 1.671 0.651 2.962 2.413 44053 73105 0.317 0.941 0.038 0.308 0.901 0.035 

9 62 116 1.015 0.538 2.889 2.369 34161 77705 0.172 0.940 0.051 0.310 0.887 0.034 

10 322 183 1.931 0.790 2.959 2.295 47192 53852 0.263 0.933 0.041 0.161 0.886 0.043 

Avg 131.1 129.4 1.261 0.612 2.931 2.372 38695.3 74997.1 0.229 0.938 0.046 0.292 0.888 0.035 

Std 91.562 31.725 0.323 0.104 0.046 0.034 7088.667 7856.753 0.066 0.007 0.008 0.046 0.007 0.003 

1 170 223 1.723 1.125 2.977 2.535 46537 73993 0.320 0.937 0.037 0.313 0.896 0.034 

2000 

2 69 202 1.134 1.095 2.903 2.521 32016 44127 0.184 0.945 0.052 0.157 0.915 0.046 

3 75 121 1.147 0.797 2.884 2.541 31800 74145 0.176 0.945 0.049 0.319 0.894 0.034 

4 81 67 1.229 0.526 2.898 2.579 33411 71053 0.166 0.940 0.050 0.319 0.903 0.034 

5 116 84 1.374 0.537 2.967 2.497 48396 45670 0.285 0.934 0.037 0.157 0.909 0.045 

6 153 76 1.504 0.497 2.967 2.520 42883 42583 0.255 0.940 0.042 0.159 0.920 0.046 

7 89 136 1.223 0.732 2.901 2.517 33121 43965 0.175 0.942 0.050 0.155 0.913 0.046 

8 86 69 1.180 0.505 2.889 2.588 29091 68847 0.173 0.949 0.053 0.320 0.908 0.035 

9 96 139 1.264 0.797 2.962 2.504 47186 46813 0.323 0.936 0.035 0.168 0.913 0.044 

10 84 150 1.171 0.873 2.899 2.576 38726 69847 0.205 0.936 0.051 0.315 0.907 0.035 

Avg 101.9 126.7 1.295 0.748 2.925 2.538 38316.7 58104.3 0.226 0.940 0.046 0.238 0.908 0.040 

Std 34.099 54.817 0.188 0.235 0.038 0.033 7357.458 14333.41 0.063 0.005 0.007 0.083 0.008 0.006 

1 80 151 1.496 1.307 2.906 2.762 32523 61145 0.176 0.943 0.051 0.349 0.910 0.035 

5000 

2 195 169 2.211 1.381 2.905 2.679 32600 38150 0.177 0.943 0.051 0.140 0.920 0.048 

3 178 154 2.089 1.356 2.895 2.674 31891 37871 0.176 0.945 0.052 0.141 0.921 0.047 

4 92 96 1.657 0.950 2.900 2.734 32011 34243 0.180 0.945 0.051 0.158 0.938 0.053 

5 97 134 1.571 1.096 2.906 2.740 33813 35373 0.171 0.940 0.049 0.162 0.937 0.051 

6 239 132 2.477 1.163 2.906 2.685 35023 37296 0.189 0.940 0.051 0.146 0.926 0.048 

7 245 229 2.586 1.751 2.895 2.739 37162 34318 0.186 0.936 0.048 0.157 0.938 0.052 

8 200 294 2.297 2.217 2.973 2.677 47411 37013 0.325 0.936 0.037 0.134 0.919 0.048 
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9 82 97 1.484 1.093 2.900 2.723 33026 35225 0.172 0.941 0.051 0.165 0.939 0.052 

10 103 119 1.642 1.229 2.900 2.681 33481 38247 0.176 0.942 0.051 0.144 0.922 0.048 

Avg 151.1 157.5 1.951 1.354 2.909 2.709 34894.1 38888.1 0.193 0.941 0.049 0.170 0.927 0.048 

Std 66.791 61.516 0.427 0.373 0.023 0.033 4675.041 7969.718 0.047 0.003 0.005 0.064 0.010 0.005 

1 74 77 1.698 1.140 2.906 2.800 32219 34268 0.174 0.944 0.051 0.165 0.940 0.052 

8000 

2 158 92 2.488 1.184 2.977 2.792 48227 34734 0.316 0.936 0.036 0.163 0.938 0.052 

3 177 95 2.640 1.159 2.907 2.791 33910 34196 0.181 0.942 0.050 0.163 0.939 0.052 

4 107 177 1.996 2.063 2.908 2.796 33666 34085 0.181 0.942 0.051 0.163 0.939 0.052 

5 125 87 2.132 1.206 2.978 2.795 46568 33981 0.289 0.937 0.038 0.161 0.939 0.052 

6 78 100 1.890 1.226 2.895 2.795 32761 33921 0.178 0.943 0.051 0.164 0.940 0.053 

7 124 88 2.215 1.188 2.907 2.801 32431 33787 0.174 0.943 0.051 0.161 0.940 0.052 

8 95 137 1.979 1.574 2.908 2.793 33629 34586 0.180 0.942 0.051 0.163 0.939 0.052 

9 172 95 2.534 1.159 2.978 2.799 46327 33398 0.300 0.938 0.038 0.162 0.941 0.053 

10 90 82 1.778 1.096 2.903 2.798 31846 34190 0.172 0.944 0.051 0.163 0.939 0.052 

Avg 120 103 2.135 1.299 2.927 2.796 37158.4 34114.6 0.215 0.941 0.047 0.163 0.939 0.052 

Std 38.023 30.710 0.328 0.299 0.035 0.003 6868.835 382.791 0.061 0.003 0.007 0.001 0.001 0.000 

1 210 77 3.453 1.219 2.976 2.820 46329 33923 0.298 0.939 0.037 0.164 0.940 0.053 

10000 

2 100 94 2.131 1.495 2.906 2.824 33238 33551 0.175 0.942 0.051 0.160 0.939 0.052 

3 108 69 2.165 1.274 2.903 2.821 33372 33368 0.179 0.942 0.050 0.164 0.941 0.052 

4 72 82 1.822 1.299 2.908 2.819 32803 33859 0.174 0.943 0.051 0.163 0.940 0.052 

5 76 78 1.920 1.266 2.904 2.819 32202 32969 0.177 0.944 0.051 0.161 0.941 0.053 

6 201 79 3.082 1.366 2.975 2.822 45575 33968 0.282 0.938 0.038 0.163 0.939 0.052 

7 67 94 1.880 1.445 2.906 2.822 32498 33596 0.175 0.943 0.051 0.165 0.940 0.053 

8 94 70 2.194 1.209 2.905 2.818 33178 33579 0.180 0.943 0.051 0.164 0.941 0.052 

9 72 85 1.938 1.248 2.902 2.821 32764 33832 0.171 0.942 0.050 0.164 0.940 0.052 

10 104 87 2.284 1.342 2.906 2.825 33926 33367 0.178 0.941 0.052 0.162 0.940 0.052 

Avg 110.4 81.5 2.287 1.316 2.919 2.821 35588.5 33601.2 0.199 0.942 0.048 0.163 0.940 0.052 

Std 52.248 8.708 0.545 0.095 0.030 0.002 5485.912 310.8725 0.048 0.002 0.006 0.001 0.001 0.000 

 

 

Table 23 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Rat 3 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

samples  

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 40 37 1.387 0.215 2.943 2.094 38642 35661 0.286 0.935 0.084 0.228 0.937 0.084 

500 

2 64 54 0.966 0.252 2.971 2.091 29312 42317 0.228 0.956 0.094 0.175 0.864 0.080 

3 49 34 0.896 0.225 2.937 2.101 25298 39854 0.227 0.963 0.082 0.190 0.898 0.082 

4 37 54 0.884 0.291 2.967 2.065 34483 42633 0.250 0.941 0.089 0.177 0.865 0.080 

5 132 144 1.194 0.504 2.969 2.031 29348 42774 0.228 0.956 0.093 0.176 0.862 0.080 

6 43 134 0.893 0.476 2.938 2.073 29957 41687 0.225 0.955 0.093 0.177 0.874 0.081 
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7 50 42 0.899 0.254 2.962 2.101 29872 41441 0.226 0.955 0.094 0.180 0.878 0.081 

8 57 36 0.938 0.225 2.970 2.046 29801 43776 0.230 0.956 0.093 0.181 0.861 0.079 

9 48 36 0.927 0.212 2.973 2.071 28933 40994 0.227 0.958 0.091 0.188 0.891 0.081 

10 42 64 0.870 0.283 2.819 2.053 32499 42513 0.641 0.909 0.025 0.179 0.869 0.080 

Avg 56.2 63.5 0.985 0.294 2.945 2.073 30814.5 41365 0.277 0.948 0.084 0.185 0.880 0.081 

Std 27.832 41.067 0.170 0.107 0.046 0.024 3630.059 2277.817 0.129 0.016 0.021 0.016 0.024 0.002 

1 54 45 0.956 0.298 2.960 2.361 29145 39895 0.227 0.957 0.094 0.181 0.889 0.082 

1000 

2 43 44 0.931 0.271 2.967 2.357 28896 40427 0.228 0.957 0.094 0.178 0.883 0.082 

3 34 21 0.906 0.210 2.928 2.442 30944 32992 0.247 0.952 0.085 0.229 0.945 0.088 

4 123 26 1.204 0.232 2.940 2.431 26519 33704 0.231 0.962 0.084 0.234 0.945 0.087 

5 50 25 0.964 0.236 2.959 2.428 30271 33433 0.226 0.953 0.094 0.230 0.945 0.087 

6 45 22 0.933 0.194 2.863 2.433 34934 33703 0.659 0.900 0.022 0.230 0.944 0.087 

7 43 66 0.943 0.375 2.935 2.432 28468 33818 0.227 0.959 0.093 0.224 0.942 0.087 

8 42 31 0.939 0.254 2.971 2.446 34948 33793 0.258 0.942 0.089 0.218 0.941 0.087 

9 67 166 1.004 0.701 2.864 2.455 35638 33612 0.657 0.900 0.022 0.223 0.943 0.087 

10 32 44 1.008 0.278 2.977 2.457 29765 32796 0.228 0.956 0.092 0.224 0.946 0.089 

Avg 53.3 49 0.979 0.305 2.937 2.424 30952.8 34817.3 0.319 0.944 0.077 0.217 0.932 0.086 

Std 26.441 43.443 0.085 0.148 0.042 0.036 3144.128 2839.544 0.179 0.024 0.029 0.020 0.024 0.002 

1 49 21 1.033 0.278 2.999 2.680 34573 32660 0.253 0.942 0.089 0.232 0.947 0.089 

2000 

2 38 33 0.956 0.349 2.924 2.686 29026 32499 0.236 0.959 0.091 0.229 0.948 0.089 

3 76 26 1.136 0.294 2.886 2.660 34773 32616 0.201 0.927 0.092 0.231 0.947 0.089 

4 63 25 1.069 0.266 2.984 2.673 29449 32325 0.227 0.956 0.094 0.232 0.948 0.089 

5 50 30 1.052 0.262 2.986 2.680 29222 32093 0.228 0.957 0.092 0.230 0.948 0.089 

6 41 54 1.015 0.379 2.968 2.655 29583 32091 0.228 0.956 0.094 0.228 0.949 0.090 

7 47 43 1.100 0.363 2.979 2.679 28528 32512 0.228 0.958 0.093 0.226 0.947 0.089 

8 20 59 0.873 0.386 2.988 2.674 31101 32251 0.229 0.950 0.093 0.227 0.948 0.089 

9 98 25 1.213 0.252 2.948 2.652 29189 32142 0.226 0.957 0.093 0.230 0.949 0.089 

10 50 27 1.063 0.259 2.983 2.666 29636 32005 0.227 0.956 0.093 0.230 0.949 0.089 

Avg 53.2 34.3 1.051 0.309 2.965 2.671 30508 32319.4 0.228 0.952 0.092 0.229 0.948 0.089 

Std 21.555 13.191 0.093 0.054 0.035 0.012 2292.836 238.4632 0.013 0.010 0.001 0.002 0.001 0.001 

1 54 41 2.360 0.563 2.979 2.859 28750 31097 0.228 0.958 0.088 0.227 0.952 0.091 

5000 

2 185 21 2.087 0.358 2.980 2.846 28249 31258 0.228 0.959 0.087 0.230 0.950 0.091 

3 78 49 1.489 0.545 3.012 2.852 32099 31580 0.235 0.947 0.092 0.231 0.949 0.091 

4 84 33 1.663 0.407 2.987 2.864 29367 31323 0.228 0.956 0.093 0.231 0.950 0.091 

5 68 24 1.356 0.425 2.927 2.841 30494 31170 0.236 0.954 0.092 0.230 0.951 0.090 

6 66 42 1.346 0.462 2.965 2.866 26492 31654 0.227 0.962 0.085 0.231 0.949 0.091 

7 139 43 1.753 0.471 2.982 2.858 29317 31096 0.228 0.956 0.094 0.228 0.952 0.091 

8 31 27 1.104 0.366 2.963 2.853 26447 31090 0.227 0.962 0.083 0.228 0.952 0.092 

9 26 41 2.755 0.484 2.989 2.845 29430 31207 0.228 0.957 0.093 0.228 0.952 0.090 

10 54 31 1.317 0.588 2.988 2.844 29638 31312 0.227 0.956 0.093 0.230 0.950 0.091 

Avg 78.5 35.2 1.723 0.467 2.977 2.853 29028.3 31278.7 0.229 0.957 0.090 0.229 0.951 0.091 

Std 48.890 9.319 0.526 0.080 0.022 0.009 1702.59 198.3516 0.003 0.004 0.004 0.001 0.001 0.000 

1 45 27 1.697 0.738 2.989 2.918 29442 31563 0.228 0.956 0.093 0.231 0.949 0.091 8000 
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2 93 82 1.742 1.193 2.957 2.914 28414 31365 0.225 0.959 0.092 0.231 0.950 0.091 

3 50 26 1.493 1.008 2.985 2.914 29428 31508 0.228 0.956 0.093 0.231 0.949 0.091 

4 338 47 3.990 0.694 2.957 2.904 28968 30728 0.227 0.958 0.093 0.227 0.953 0.091 

5 121 45 2.129 0.750 3.006 2.916 31877 30765 0.234 0.948 0.092 0.228 0.953 0.092 

6 83 52 1.852 0.786 2.951 2.911 27589 30728 0.235 0.959 0.083 0.228 0.953 0.092 

7 30 26 1.186 0.455 3.011 2.916 31868 31461 0.234 0.948 0.092 0.231 0.949 0.092 

8 51 45 1.446 0.711 2.989 2.910 29499 31685 0.228 0.956 0.092 0.231 0.949 0.091 

9 50 26 1.512 0.479 2.990 2.916 29785 31307 0.228 0.956 0.092 0.231 0.950 0.091 

10 69 24 1.552 0.462 2.885 2.924 38663 31296 0.191 0.900 0.089 0.231 0.950 0.092 

Avg 93 40 1.860 0.728 2.972 2.914 30553.3 31240.6 0.226 0.950 0.091 0.230 0.951 0.091 

Std 90.197 18.318 0.791 0.237 0.037 0.005 3150.447 364.5665 0.013 0.018 0.003 0.002 0.002 0.000 

1 82 26 1.869 0.686 3.009 2.923 33110 31281 0.241 0.944 0.091 0.230 0.950 0.091 

10000 

2 32 46 1.699 0.851 3.009 2.933 32105 30630 0.235 0.947 0.092 0.228 0.954 0.091 

3 109 31 2.217 0.706 2.967 2.932 27504 31299 0.227 0.960 0.086 0.230 0.950 0.092 

4 65 35 1.819 0.633 3.012 2.930 32503 30439 0.238 0.946 0.091 0.228 0.954 0.092 

5 35 24 1.440 0.552 3.012 2.941 32270 31568 0.237 0.947 0.092 0.232 0.949 0.092 

6 33 21 1.289 0.505 3.014 2.938 32642 31553 0.238 0.946 0.091 0.232 0.949 0.091 

7 77 48 1.802 1.005 3.010 2.931 33936 30466 0.247 0.943 0.090 0.227 0.954 0.092 

8 232 41 3.460 0.754 2.966 2.932 25895 30540 0.227 0.962 0.083 0.228 0.954 0.092 

9 46 30 1.428 0.701 3.014 2.939 32823 31711 0.239 0.945 0.091 0.232 0.948 0.091 

10 90 43 1.920 0.803 2.966 2.938 26704 31549 0.227 0.962 0.085 0.232 0.949 0.092 

Avg 80.1 34.5 1.894 0.720 2.998 2.934 30949.2 31103.6 0.236 0.950 0.089 0.230 0.951 0.092 

Std 59.607 9.583 0.615 0.145 0.022 0.005 2998.101 521.1914 0.007 0.008 0.003 0.002 0.002 0.000 

 

Table 24 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Rat 4 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

sample  

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 69 38 1.403 0.257 2.731 1.999 26205 38035 0.485 0.925 0.035 0.078 0.902 0.094 

500 

2 113 121 0.983 0.423 2.706 1.975 25294 35334 0.439 0.940 0.051 0.074 0.912 0.101 

3 35 315 0.781 0.999 2.643 1.921 27497 69934 0.074 0.942 0.115 0.282 0.896 0.059 

4 222 75 1.296 0.320 2.807 2.013 29110 38876 0.168 0.948 0.115 0.063 0.871 0.093 

5 66 249 0.879 0.819 2.752 1.919 34688 70689 0.361 0.938 0.063 0.288 0.890 0.056 

6 57 52 0.839 0.265 2.743 2.024 34673 39439 0.342 0.938 0.065 0.065 0.871 0.093 

7 68 90 0.871 0.358 2.802 1.964 31289 67918 0.180 0.945 0.111 0.295 0.897 0.055 

8 70 89 0.883 0.424 2.759 1.991 38273 38555 0.307 0.946 0.058 0.484 0.858 0.026 

9 65 92 0.900 0.440 2.731 2.009 31637 39199 0.371 0.944 0.051 0.065 0.872 0.092 

10 37 43 0.818 0.268 2.692 2.017 28886 40279 0.488 0.916 0.032 0.072 0.879 0.092 

Avg 80.2 116.4 0.965 0.457 2.736 1.983 30755.2 47825.8 0.322 0.938 0.070 0.177 0.885 0.076 

Std 54.203 92.186 0.211 0.251 0.049 0.038 4159.88 15036.48 0.141 0.010 0.032 0.150 0.017 0.025 
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1 72 85 1.012 0.413 2.668 2.276 27103 36783 0.085 0.950 0.117 0.066 0.892 0.097 

1000  

2 94 95 1.036 0.473 2.769 2.238 33850 38208 0.299 0.946 0.059 0.475 0.874 0.028 

3 55 128 0.896 0.590 2.778 2.244 34475 35927 0.379 0.937 0.051 0.067 0.900 0.098 

4 72 62 0.975 0.367 2.662 2.251 32163 36973 0.069 0.920 0.108 0.062 0.883 0.096 

5 66 69 0.943 0.430 2.644 2.277 32374 36087 0.068 0.917 0.108 0.061 0.888 0.097 

6 42 152 0.913 0.721 2.645 2.265 29153 37698 0.085 0.944 0.113 0.066 0.886 0.096 

7 74 92 1.029 0.495 2.782 2.289 30897 34160 0.432 0.930 0.046 0.073 0.917 0.101 

8 50 111 0.988 0.557 2.661 2.284 33478 34936 0.069 0.913 0.106 0.072 0.912 0.099 

9 52 40 0.966 0.289 2.707 2.288 29482 34531 0.488 0.913 0.030 0.075 0.917 0.101 

10 43 123 0.901 0.587 2.622 2.215 27688 60518 0.075 0.944 0.113 0.305 0.914 0.054 

Avg 62 95.7 0.966 0.492 2.694 2.263 31066.3 38582.1 0.205 0.931 0.085 0.132 0.898 0.087 

Std 16.459 33.784 0.052 0.126 0.061 0.025 2612.308 7820.676 0.174 0.015 0.034 0.142 0.016 0.025 

1 104 53 1.231 0.459 2.785 2.478 33450 30900 0.378 0.940 0.055 0.078 0.935 0.107 

2000 

2 46 35 0.972 0.281 2.677 2.455 27663 31854 0.080 0.946 0.114 0.078 0.932 0.105 

3 99 50 1.136 0.404 2.786 2.479 31785 30879 0.422 0.931 0.045 0.076 0.934 0.108 

4 166 46 1.492 0.356 2.778 2.475 30956 31471 0.263 0.945 0.084 0.072 0.928 0.106 

5 69 124 1.114 0.708 2.791 2.452 33416 32636 0.387 0.938 0.052 0.073 0.924 0.103 

6 89 221 1.128 1.094 2.673 2.449 26527 46860 0.083 0.950 0.120 0.364 0.920 0.047 

7 167 71 1.511 0.504 2.795 2.467 33436 31523 0.375 0.937 0.055 0.074 0.930 0.106 

8 219 48 1.722 0.359 2.790 2.471 33565 31302 0.357 0.938 0.062 0.079 0.935 0.107 

9 89 316 1.205 1.550 2.686 2.454 26562 32889 0.084 0.951 0.119 0.071 0.921 0.103 

10 61 92 1.004 0.585 2.682 2.454 27729 31411 0.081 0.948 0.115 0.077 0.933 0.106 

Avg 110.9 105.6 1.252 0.630 2.744 2.464 30508.9 33172.5 0.251 0.942 0.082 0.104 0.929 0.100 

Std 55.252 92.507 0.244 0.399 0.056 0.012 3056.829 4854.509 0.151 0.006 0.032 0.091 0.006 0.019 

1 87 62 1.466 0.628 2.683 2.609 28014 30249 0.082 0.947 0.114 0.075 0.934 0.111 

5000  

2 128 83 1.695 0.771 2.675 2.603 31646 30877 0.074 0.927 0.110 0.072 0.929 0.109 

3 97 72 1.484 0.725 2.679 2.611 29557 29725 0.080 0.940 0.113 0.080 0.940 0.111 

4 233 169 2.409 1.299 2.798 2.635 34082 37965 0.366 0.939 0.057 0.400 0.927 0.046 

5 107 56 1.656 0.628 2.794 2.611 33142 30364 0.378 0.939 0.052 0.078 0.937 0.110 

6 110 46 1.546 0.575 2.798 2.603 36749 29649 0.348 0.940 0.056 0.080 0.941 0.110 

7 110 53 1.552 0.637 2.796 2.602 36272 30077 0.319 0.943 0.062 0.079 0.938 0.111 

8 145 49 1.799 0.541 2.679 2.614 28962 29938 0.079 0.941 0.114 0.076 0.937 0.111 

9 127 81 1.692 0.796 2.798 2.604 34311 29764 0.340 0.943 0.060 0.078 0.939 0.111 

10 76 67 1.342 0.801 2.794 2.609 37326 29819 0.340 0.942 0.057 0.079 0.939 0.111 

Avg 122 73.8 1.664 0.740 2.749 2.610 33006.1 30842.7 0.241 0.940 0.079 0.110 0.936 0.104 

Std 43.957 35.786 0.294 0.217 0.061 0.010 3353.898 2529.833 0.140 0.005 0.029 0.102 0.005 0.021 

1 63 258 1.486 2.650 2.684 2.686 27751 35780 0.081 0.947 0.115 0.403 0.931 0.045 

8000  

2 100 58 1.832 0.909 2.795 2.636 34341 29547 0.309 0.942 0.070 0.079 0.940 0.112 

3 142 59 2.258 0.809 2.798 2.640 34724 29629 0.360 0.939 0.059 0.078 0.939 0.112 

4 75 139 1.783 1.665 2.680 2.689 30307 39572 0.075 0.934 0.111 0.369 0.934 0.049 

5 124 47 2.064 0.733 2.685 2.645 29065 29249 0.081 0.943 0.114 0.082 0.943 0.112 

6 140 87 2.181 1.234 2.795 2.639 33930 30022 0.355 0.938 0.061 0.080 0.939 0.111 
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7 70 116 1.708 1.487 2.799 2.639 34942 29299 0.370 0.938 0.054 0.077 0.939 0.112 

8 73 61 1.525 0.804 2.801 2.637 34636 30185 0.359 0.940 0.057 0.078 0.937 0.111 

9 154 58 2.385 0.834 2.685 2.646 29230 29462 0.079 0.941 0.113 0.080 0.941 0.112 

10 61 93 1.502 1.258 2.685 2.639 28490 29366 0.077 0.942 0.114 0.078 0.940 0.112 

Avg 100.2 97.6 1.872 1.238 2.741 2.650 31741.6 31211.1 0.215 0.941 0.087 0.140 0.938 0.099 

Std 36.514 63.631 0.331 0.590 0.060 0.020 3001.647 3535.35 0.144 0.004 0.028 0.130 0.003 0.027 

1 89 167 2.019 2.322 2.799 2.699 35932 35189 0.344 0.941 0.057 0.418 0.927 0.042 

10000  

2 88 119 2.099 1.793 2.686 2.713 27950 38784 0.082 0.948 0.114 0.354 0.940 0.053 

3 79 61 1.929 1.025 2.797 2.649 35023 29974 0.359 0.940 0.054 0.077 0.937 0.112 

4 83 128 2.010 1.778 2.799 2.652 36525 28979 0.351 0.940 0.056 0.081 0.943 0.113 

5 51 61 1.671 1.044 2.681 2.655 29425 29120 0.078 0.939 0.113 0.082 0.943 0.113 

6 81 66 1.895 1.151 2.797 2.650 35337 29935 0.350 0.940 0.060 0.077 0.937 0.112 

7 79 49 1.781 1.049 2.798 2.655 32727 29348 0.386 0.937 0.054 0.082 0.943 0.112 

8 62 55 1.658 0.923 2.686 2.652 27937 29319 0.081 0.946 0.115 0.080 0.942 0.112 

9 91 66 1.956 1.250 2.800 2.651 34577 29705 0.370 0.939 0.055 0.078 0.938 0.113 

10 306 44 4.390 0.829 2.839 2.656 33776 29502 0.205 0.943 0.105 0.081 0.941 0.112 

Avg 100.9 81.6 2.141 1.316 2.768 2.663 32920.9 30985.5 0.261 0.941 0.078 0.141 0.939 0.099 

Std 73.144 41.318 0.804 0.484 0.059 0.023 3292.998 3290.017 0.134 0.003 0.029 0.130 0.005 0.027 

 

Table 25 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Rat 5 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

samples  

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 37 124 1.358 0.459 3.161 2.282 31150 6 0.286 0.953 0.068 0.095 0.899 0.827 

500 

2 26 71 0.792 0.315 3.236 2.291 36909 70188 0.292 0.941 0.063 0.416 0.900 0.038 

3 108 71 1.124 0.306 3.129 2.198 34907 39405 0.268 0.942 0.069 0.196 0.889 0.061 

4 30 59 0.785 0.276 3.121 2.206 35895 40308 0.222 0.920 0.069 0.203 0.892 0.060 

5 65 90 0.882 0.336 3.174 2.184 32090 39816 0.264 0.949 0.070 0.201 0.894 0.061 

6 23 56 0.755 0.293 3.222 2.264 33985 2 0.282 0.944 0.068 0.119 0.994 0.916 

7 76 85 0.884 0.338 3.121 2.335 35732 5 0.205 0.911 0.068 0.113 0.945 0.849 

8 40 75 0.801 0.347 3.146 2.326 33449 6 0.252 0.942 0.070 0.095 0.899 0.827 

9 41 64 0.804 0.310 3.168 2.324 35292 69397 0.228 0.924 0.070 0.413 0.904 0.038 

10 51 65 0.847 0.275 3.174 2.212 30858 40758 0.262 0.951 0.071 0.206 0.893 0.060 

Avg 49.7 76 0.903 0.325 3.165 2.262 34026.7 29989.1 0.256 0.938 0.069 0.206 0.911 0.374 

Std 26.500 19.961 0.191 0.053 0.039 0.058 2094.557 28230.9 0.029 0.014 0.002 0.119 0.033 0.415 

1 262 64 1.643 0.373 3.258 2.622 31070 64604 0.325 0.956 0.051 0.421 0.917 0.039 

1000 

2 33 44 0.921 0.286 3.267 2.633 33199 63924 0.281 0.945 0.065 0.422 0.918 0.039 

3 45 89 0.850 0.444 3.184 2.542 31745 37975 0.262 0.949 0.070 0.204 0.905 0.062 

4 63 207 0.926 0.857 3.192 2.545 29164 37231 0.252 0.953 0.064 0.219 0.919 0.062 
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5 46 145 0.850 0.618 3.184 2.579 29864 37152 0.263 0.954 0.069 0.232 0.927 0.062 

6 107 66 1.093 0.374 3.251 2.550 30682 36004 0.301 0.956 0.058 0.207 0.916 0.063 

7 45 113 0.889 0.490 3.172 2.604 31200 64153 0.259 0.950 0.069 0.422 0.918 0.039 

8 47 70 0.867 0.364 3.179 2.559 32735 36159 0.247 0.943 0.071 0.211 0.918 0.063 

9 57 97 0.919 0.458 3.168 2.540 35756 36713 0.226 0.922 0.069 0.204 0.910 0.063 

10 41 103 0.850 0.503 3.170 2.598 35511 35132 0.224 0.923 0.069 0.248 0.939 0.063 

Avg 74.6 99.8 0.981 0.477 3.202 2.577 32092.6 44904.7 0.264 0.945 0.065 0.279 0.919 0.055 

Std 68.964 47.457 0.244 0.162 0.039 0.035 2217.085 13356.74 0.031 0.013 0.007 0.099 0.009 0.011 

1 33 136 0.891 0.764 3.274 2.799 33192 34164 0.272 0.945 0.066 0.242 0.939 0.064 

2000 

2 120 68 1.266 0.494 3.181 2.820 34909 33456 0.235 0.932 0.069 0.234 0.938 0.065 

3 61 49 0.995 0.401 3.174 2.817 35141 34088 0.230 0.927 0.070 0.237 0.938 0.064 

4 70 67 1.020 0.541 3.182 2.825 33917 33442 0.255 0.941 0.069 0.243 0.942 0.064 

5 113 77 1.260 0.489 3.199 2.822 31234 32467 0.258 0.950 0.070 0.237 0.942 0.066 

6 50 51 0.978 0.387 3.188 2.811 33514 33899 0.245 0.940 0.070 0.239 0.939 0.064 

7 66 63 1.033 0.427 3.207 2.820 31152 33223 0.270 0.952 0.061 0.233 0.938 0.065 

8 71 71 1.033 0.477 3.174 2.800 35409 34296 0.224 0.924 0.069 0.225 0.932 0.064 

9 54 141 0.951 0.809 3.188 2.809 33845 34167 0.245 0.939 0.070 0.241 0.939 0.064 

10 95 142 1.162 0.812 3.175 2.808 35927 34412 0.234 0.926 0.069 0.237 0.937 0.064 

Avg 73.3 86.5 1.059 0.560 3.194 2.813 33824 33761.4 0.247 0.938 0.068 0.237 0.938 0.064 

Std 27.865 37.672 0.128 0.169 0.030 0.009 1639.744 607.5368 0.017 0.010 0.003 0.005 0.003 0.001 

1 103 63 1.580 0.612 3.203 3.018 31307 31880 0.260 0.950 0.070 0.245 0.946 0.065 

5000 

2 41 53 1.103 0.554 3.289 3.023 33799 31366 0.281 0.945 0.067 0.247 0.947 0.068 

3 92 69 1.449 0.669 3.179 3.026 34777 31292 0.234 0.930 0.070 0.247 0.947 0.068 

4 82 45 1.380 0.498 3.209 3.028 30959 31261 0.261 0.951 0.070 0.247 0.947 0.069 

5 80 65 1.358 0.690 3.192 3.024 33063 31851 0.250 0.942 0.070 0.243 0.945 0.066 

6 102 52 1.463 0.607 3.209 3.031 31190 31412 0.263 0.951 0.069 0.246 0.947 0.069 

7 101 47 1.552 0.545 3.206 3.030 31777 31386 0.259 0.949 0.070 0.248 0.948 0.067 

8 99 58 1.490 0.554 3.207 3.021 30765 31539 0.261 0.952 0.070 0.245 0.946 0.066 

9 51 56 1.167 0.690 3.201 3.017 31177 31713 0.264 0.952 0.069 0.245 0.946 0.069 

10 99 43 1.445 0.537 3.189 3.007 32453 31531 0.251 0.945 0.070 0.246 0.947 0.068 

Avg 85 55.1 1.399 0.596 3.208 3.023 32126.7 31523.1 0.258 0.947 0.069 0.246 0.947 0.067 

Std 22.201 8.762 0.155 0.069 0.030 0.007 1357.902 223.4072 0.012 0.007 0.001 0.001 0.001 0.001 

1 88 56 1.706 0.922 3.181 3.093 36069 31100 0.227 0.923 0.069 0.248 0.948 0.069 

8000 

2 75 55 1.566 0.774 3.182 3.091 35586 31086 0.234 0.928 0.069 0.249 0.948 0.069 

3 97 65 1.774 0.971 3.193 3.096 32972 30774 0.252 0.944 0.070 0.248 0.949 0.066 

4 42 54 1.336 0.795 3.180 3.094 35848 30921 0.229 0.925 0.069 0.251 0.949 0.069 

5 127 43 2.121 0.768 3.185 3.097 35457 30972 0.230 0.927 0.069 0.250 0.949 0.069 

6 49 53 1.436 0.767 3.180 3.093 36207 30677 0.225 0.922 0.068 0.249 0.949 0.069 

7 86 41 1.650 0.641 3.204 3.098 31536 30885 0.259 0.950 0.070 0.250 0.949 0.069 

8 73 76 1.577 0.982 3.182 3.086 35877 31401 0.228 0.924 0.069 0.250 0.948 0.069 

9 114 55 2.106 0.812 3.183 3.090 35162 30797 0.236 0.931 0.069 0.251 0.949 0.069 

10 218 57 2.771 0.867 3.211 3.100 30673 30854 0.262 0.952 0.069 0.250 0.949 0.069 
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Avg 96.9 55.5 1.804 0.830 3.188 3.094 34538.7 30946.7 0.238 0.933 0.069 0.250 0.949 0.069 

Std 49.912 9.936 0.425 0.106 0.011 0.004 2037.792 207.6236 0.014 0.011 0.000 0.001 0.000 0.001 

1 57 42 1.483 0.862 3.181 3.122 36068 30969 0.225 0.922 0.069 0.251 0.949 0.069 

10000 

2 57 63 1.551 0.998 3.180 3.119 36075 30864 0.223 0.921 0.069 0.249 0.949 0.069 

3 50 47 1.466 0.783 3.180 3.118 36199 31031 0.224 0.921 0.068 0.250 0.949 0.069 

4 71 48 1.703 0.905 3.183 3.123 35612 30988 0.230 0.926 0.069 0.252 0.949 0.069 

5 103 56 1.966 0.964 3.182 3.121 36055 30746 0.229 0.924 0.069 0.251 0.950 0.069 

6 152 43 2.467 0.758 3.208 3.123 31280 30850 0.265 0.952 0.069 0.251 0.949 0.070 

7 62 42 1.567 0.986 3.176 3.124 35770 30986 0.233 0.926 0.069 0.250 0.949 0.069 

8 214 75 3.266 1.231 3.185 3.115 34210 31155 0.243 0.936 0.070 0.253 0.950 0.068 

9 61 47 1.503 0.852 3.183 3.113 35358 31018 0.232 0.928 0.069 0.250 0.949 0.069 

10 83 41 1.846 0.809 3.199 3.126 32653 30976 0.252 0.945 0.070 0.250 0.949 0.069 

Avg 91 50.4 1.882 0.915 3.186 3.120 34928 30958.3 0.236 0.930 0.069 0.250 0.949 0.069 

Std 52.907 11.098 0.576 0.139 0.010 0.004 1695.142 113.1911 0.014 0.011 0.001 0.001 0.000 0.000 

 

Table 26 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Rat 6 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

samples  

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 32 120 1.406 0.430 2.939 1.941 32745 87722 0.263 0.938 0.066 0.420 0.856 0.033 

500 

2 88 408 1.012 1.176 2.777 2.061 29766 74615 0.196 0.934 0.055 0.448 0.903 0.035 

3 63 102 0.926 0.450 2.828 2.043 28112 76834 0.224 0.951 0.070 0.445 0.897 0.034 

4 110 138 1.047 0.538 2.829 1.886 26751 92249 0.218 0.955 0.071 0.419 0.828 0.033 

5 139 70 1.256 0.352 2.821 2.006 32981 78603 0.319 0.957 0.049 0.447 0.890 0.034 

6 61 186 0.960 0.623 2.769 2.013 39285 76995 0.637 0.900 0.013 0.443 0.897 0.035 

7 67 179 1.025 0.614 2.785 1.932 34536 87509 0.645 0.910 0.012 0.424 0.856 0.033 

8 52 90 0.952 0.394 2.805 2.063 37570 75357 0.643 0.901 0.013 0.449 0.901 0.035 

9 32 116 0.852 0.482 2.875 1.869 32033 92208 0.257 0.943 0.067 0.419 0.828 0.033 

10 101 73 1.175 0.376 2.792 1.923 44324 3 0.475 0.943 0.033 0.079 0.847 0.936 

Avg 74.5 148.2 1.061 0.543 2.822 1.974 33810.3 74209.5 0.388 0.933 0.045 0.399 0.870 0.124 

Std 34.632 99.500 0.169 0.241 0.051 0.072 5362.569 26979.15 0.192 0.022 0.025 0.113 0.031 0.285 

1 44 59 0.930 0.354 2.939 2.268 33153 73492 0.251 0.940 0.065 0.451 0.905 0.034 

1000 

2 75 109 1.030 0.533 2.828 2.277 26478 73618 0.223 0.956 0.062 0.453 0.904 0.034 

3 29 65 0.869 0.373 2.945 2.286 33480 73295 0.273 0.937 0.066 0.458 0.904 0.034 

4 47 98 0.947 0.489 2.827 2.270 26630 74372 0.209 0.952 0.073 0.453 0.902 0.034 

5 175 72 1.369 0.378 2.811 2.244 34791 75423 0.647 0.912 0.013 0.456 0.898 0.033 

6 51 61 1.033 0.340 2.949 2.291 35062 72700 0.281 0.936 0.064 0.457 0.906 0.034 

7 62 46 1.008 0.297 2.953 2.296 35456 71232 0.268 0.937 0.063 0.454 0.911 0.035 

8 80 62 1.082 0.344 2.867 2.293 27291 71494 0.210 0.953 0.068 0.453 0.910 0.034 

9 45 60 0.913 0.325 2.934 2.244 31706 33292 0.239 0.938 0.067 0.203 0.933 0.061 
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10 71 89 1.003 0.496 2.853 2.307 27276 71022 0.212 0.953 0.070 0.453 0.912 0.035 

Avg 67.9 72.1 1.018 0.393 2.890 2.278 31132.3 68994 0.281 0.941 0.061 0.429 0.909 0.037 

Std 40.883 19.980 0.139 0.082 0.059 0.021 3786.04 12623.2 0.131 0.013 0.017 0.079 0.009 0.008 

1 74 77 1.193 0.541 2.959 2.461 33834 30070 0.267 0.939 0.065 0.195 0.940 0.064 

2000 

2 51 70 1.045 0.561 2.866 2.473 27499 29521 0.212 0.952 0.071 0.191 0.940 0.065 

3 1164 84 5.884 0.539 2.848 2.495 28626 65649 0.250 0.954 0.059 0.455 0.922 0.035 

4 96 50 1.216 0.368 2.873 2.499 26059 30890 0.215 0.955 0.068 0.217 0.945 0.064 

5 97 81 1.278 0.557 2.910 2.492 39236 66815 0.368 0.949 0.042 0.455 0.920 0.034 

6 108 69 1.306 0.462 2.912 2.486 42985 32126 0.421 0.947 0.038 0.222 0.943 0.062 

7 51 72 1.081 0.572 2.872 2.482 26642 29656 0.213 0.955 0.070 0.194 0.941 0.065 

8 86 98 1.197 1.054 2.889 2.476 34744 67135 0.329 0.952 0.043 0.454 0.920 0.036 

9 186 100 1.627 0.608 2.893 2.470 35563 68218 0.324 0.949 0.044 0.459 0.914 0.032 

10 97 80 1.263 0.633 2.804 2.481 35175 29295 0.644 0.912 0.014 0.191 0.940 0.066 

Avg 201 78.1 1.709 0.589 2.882 2.481 33036.3 44937.5 0.324 0.947 0.051 0.303 0.933 0.052 

Std 340.466 14.525 1.475 0.180 0.041 0.012 5692.158 18975.69 0.133 0.013 0.018 0.132 0.012 0.016 

1 115 53 1.835 0.655 2.895 2.686 33855 31018 0.305 0.951 0.048 0.216 0.946 0.067 

5000 

2 109 39 1.588 0.530 2.918 2.704 44117 31628 0.427 0.947 0.037 0.202 0.947 0.068 

3 288 72 2.816 0.728 2.880 2.687 25217 31577 0.213 0.957 0.068 0.218 0.948 0.067 

4 153 35 1.906 0.485 2.897 2.730 33505 31684 0.311 0.953 0.047 0.216 0.947 0.066 

5 136 47 1.779 0.558 2.893 2.726 35411 31900 0.329 0.951 0.044 0.220 0.949 0.066 

6 74 39 1.373 0.573 2.880 2.713 27023 31582 0.210 0.954 0.068 0.214 0.949 0.067 

7 84 61 1.516 0.788 2.910 2.692 43781 31960 0.427 0.948 0.038 0.201 0.948 0.067 

8 174 34 2.169 0.462 2.914 2.712 43260 31728 0.428 0.947 0.037 0.217 0.947 0.067 

9 78 33 1.499 0.494 2.971 2.719 34218 32051 0.276 0.938 0.065 0.218 0.947 0.066 

10 93 47 1.494 0.560 2.882 2.723 25815 31833 0.212 0.957 0.065 0.219 0.947 0.066 

Avg 130.4 46 1.798 0.583 2.904 2.709 34620.2 31696.1 0.314 0.950 0.052 0.214 0.948 0.067 

Std 64.510 12.841 0.431 0.108 0.027 0.016 7265.146 288.4323 0.089 0.006 0.013 0.007 0.001 0.001 

1 178 43 2.536 0.829 2.918 2.803 43303 29406 0.428 0.948 0.037 0.221 0.948 0.067 

8000 

2 100 37 1.926 0.693 2.915 2.799 43833 29197 0.421 0.948 0.038 0.218 0.948 0.067 

3 113 57 2.127 0.877 2.896 2.758 35006 28387 0.328 0.951 0.045 0.205 0.949 0.067 

4 55 36 1.544 0.745 2.883 2.801 26935 28775 0.211 0.954 0.069 0.218 0.949 0.068 

5 159 37 2.580 0.700 2.895 2.796 35758 29089 0.336 0.951 0.043 0.219 0.948 0.067 

6 74 53 1.725 0.861 2.970 2.761 33076 28132 0.266 0.939 0.066 0.204 0.949 0.067 

7 70 42 1.748 0.749 2.971 2.797 33077 28976 0.267 0.938 0.066 0.219 0.948 0.068 

8 64 40 1.600 0.772 2.881 2.799 26987 29649 0.213 0.955 0.070 0.223 0.947 0.067 

9 116 33 2.036 0.673 2.894 2.801 32914 29334 0.316 0.953 0.046 0.220 0.947 0.068 

10 59 49 1.501 0.945 2.971 2.797 34988 29555 0.281 0.936 0.064 0.222 0.948 0.067 

Avg 98.8 42.7 1.932 0.784 2.919 2.791 34587.7 29050 0.307 0.947 0.054 0.217 0.948 0.067 

Std 42.887 7.903 0.388 0.090 0.037 0.017 5645.451 495.2824 0.075 0.007 0.014 0.007 0.001 0.000 

1 95 35 2.149 0.950 2.918 2.831 41604 29413 0.405 0.950 0.038 0.221 0.946 0.068 

10000 

2 126 37 2.455 0.942 2.917 2.828 42287 29164 0.424 0.949 0.037 0.221 0.948 0.068 

3 65 44 1.780 1.068 2.881 2.788 26858 27757 0.212 0.955 0.069 0.206 0.951 0.068 

4 47 50 1.718 1.029 2.972 2.789 32214 27778 0.256 0.938 0.067 0.205 0.951 0.069 
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5 114 35 2.234 0.998 2.916 2.822 42883 28594 0.419 0.948 0.038 0.218 0.949 0.068 

6 60 40 1.587 0.951 2.968 2.823 33005 29130 0.265 0.938 0.066 0.221 0.948 0.068 

7 101 71 2.154 1.235 2.899 2.782 34697 27789 0.326 0.952 0.045 0.204 0.950 0.069 

8 75 34 1.949 0.838 2.970 2.829 33124 28997 0.264 0.939 0.066 0.222 0.948 0.068 

9 49 37 1.641 0.852 2.971 2.831 33432 28968 0.265 0.939 0.066 0.222 0.948 0.068 

10 98 34 2.197 0.843 2.897 2.830 36303 29325 0.338 0.949 0.043 0.219 0.947 0.068 

Avg 83 41.7 1.986 0.971 2.931 2.815 35640.7 28691.5 0.317 0.946 0.054 0.216 0.949 0.068 

Std 27.633 11.490 0.293 0.122 0.035 0.020 5169.908 669.908 0.077 0.006 0.014 0.008 0.002 0.000 

 

Table 27 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Human 1 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

 samples 

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 127 37 40.492 3.196 4.033 3.195 1281760 7837 0.069 0.919 0.079 0.378 0.762 0.219 

500 

2 99 28 39.798 3.142 4.038 3.218 1025904 6265 0.040 0.917 0.084 0.399 0.769 0.223 

3 117 25 39.800 3.182 4.053 3.255 1370061 12991 0.074 0.924 0.076 0.356 0.774 0.194 

4 288 36 40.497 3.172 4.010 3.223 451121 8298 0.123 0.894 0.046 0.373 0.770 0.218 

5 121 26 40.206 3.184 4.014 3.220 973453 6177 0.040 0.918 0.086 0.395 0.765 0.227 

6 50 23 39.563 3.177 4.085 3.240 1438468 6828 0.066 0.899 0.076 0.395 0.754 0.218 

7 152 24 40.352 3.157 4.059 3.231 1586434 6492 0.101 0.901 0.036 0.381 0.770 0.233 

8 124 35 40.132 3.181 4.023 3.232 1846632 6457 0.097 0.901 0.043 0.391 0.763 0.225 

9 111 25 40.026 3.205 4.053 3.259 668755 6955 0.038 0.937 0.097 0.384 0.769 0.225 

10 140 57 39.817 3.255 4.049 3.239 1004098 7032 0.038 0.914 0.085 0.375 0.768 0.230 

Avg 132.9 31.6 40.068 3.185 4.042 3.231 1164669 7533.2 0.069 0.912 0.071 0.383 0.766 0.221 

Std 60.993 10.373 0.322 0.030 0.023 0.019 423018.9 2034.085 0.031 0.013 0.021 0.013 0.006 0.011 

1 141 91 40.302 3.424 4.102 3.408 1064492 13673 0.045 0.917 0.086 0.329 0.782 0.209 

1000 

2 142 54 40.140 3.440 4.096 3.427 1304441 22008 0.044 0.899 0.079 0.286 0.792 0.196 

3 145 118 40.411 3.504 4.096 3.440 1061748 21092 0.045 0.917 0.086 0.288 0.791 0.199 

4 154 97 40.253 3.453 4.049 3.433 2013782 24121 0.103 0.880 0.042 0.281 0.792 0.192 

5 112 93 40.207 3.406 4.100 3.429 1471726 18879 0.057 0.899 0.077 0.295 0.790 0.203 

6 141 107 40.120 3.433 4.062 3.416 1543844 13772 0.054 0.887 0.077 0.322 0.787 0.212 

7 152 98 40.108 3.457 4.087 3.446 870379 24426 0.043 0.930 0.090 0.285 0.791 0.189 

8 223 100 40.329 3.611 4.077 3.405 935395 16275 0.051 0.924 0.092 0.310 0.787 0.206 

9 153 76 39.933 3.368 4.082 3.420 1303922 18197 0.068 0.904 0.083 0.308 0.780 0.198 

10 349 89 40.918 3.405 4.079 3.405 913378 19316 0.067 0.885 0.098 0.305 0.783 0.195 

Avg 171.2 92.3 40.272 3.450 4.083 3.423 1248311 19175.9 0.058 0.904 0.081 0.301 0.787 0.200 

Std 68.443 17.436 0.264 0.067 0.017 0.015 357610.5 3839.489 0.018 0.017 0.015 0.017 0.005 0.008 

1 238 195 40.908 3.933 4.112 3.710 1290949 2644485 0.048 0.908 0.079 0.090 0.890 0.053 

2000 2 197 115 40.544 3.662 4.078 3.682 1001179 2743249 0.060 0.914 0.093 0.091 0.885 0.053 

3 50 240 39.815 4.125 4.137 3.699 1679588 2434056 0.072 0.898 0.061 0.087 0.898 0.056 
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4 111 160 40.412 3.758 4.086 3.696 840799 2805776 0.045 0.927 0.094 0.092 0.882 0.052 

5 139 140 40.287 3.690 4.115 3.684 1330409 2970784 0.052 0.907 0.078 0.093 0.874 0.051 

6 274 99 40.848 3.564 4.109 3.703 1440765 2647263 0.051 0.899 0.077 0.091 0.889 0.053 

7 65 141 40.166 3.693 4.128 3.691 1516706 2744728 0.066 0.900 0.071 0.090 0.885 0.053 

8 256 131 40.757 3.785 4.115 3.706 1316744 2472669 0.047 0.905 0.079 0.088 0.897 0.055 

9 142 83 40.273 3.554 4.070 3.700 926009 2913639 0.055 0.925 0.094 0.092 0.877 0.051 

10 222 96 40.686 3.529 4.137 3.706 1480137 2761518 0.062 0.907 0.069 0.092 0.884 0.052 

Avg 169.4 140 40.470 3.729 4.109 3.698 1282329 2713817 0.056 0.909 0.079 0.091 0.886 0.053 

Std 79.524 48.302 0.344 0.185 0.024 0.009 275177.9 171324.7 0.009 0.010 0.011 0.002 0.008 0.002 

1 355 69 42.442 3.670 4.113 3.927 1441665 1841968 0.048 0.894 0.077 0.075 0.910 0.063 

5000 

2 167 38 40.874 3.549 4.116 3.919 1099549 1692455 0.045 0.918 0.084 0.070 0.912 0.067 

3 174 66 40.779 3.637 4.103 3.935 1146237 1855072 0.051 0.911 0.086 0.074 0.909 0.063 

4 122 67 40.679 3.609 4.099 3.929 920588 2136008 0.045 0.929 0.089 0.083 0.906 0.058 

5 338 67 42.058 3.742 4.111 3.924 1182225 2288962 0.049 0.912 0.084 0.086 0.901 0.056 

6 180 63 40.971 3.604 4.117 3.933 1447640 1867728 0.054 0.902 0.076 0.073 0.909 0.063 

7 223 94 40.952 3.903 4.114 3.923 1385883 2008377 0.047 0.899 0.077 0.079 0.907 0.060 

8 223 68 41.197 3.651 4.115 3.931 1458243 1703158 0.052 0.900 0.076 0.068 0.911 0.067 

9 240 60 41.738 3.654 4.143 3.933 1665169 1799352 0.068 0.900 0.062 0.073 0.911 0.064 

10 172 62 41.051 3.609 4.110 3.928 1126762 1746090 0.051 0.913 0.086 0.070 0.910 0.066 

Avg 219.4 65.4 41.274 3.663 4.114 3.928 1287396 1893917 0.051 0.908 0.080 0.075 0.909 0.063 

Std 75.275 13.501 0.597 0.098 0.011 0.005 225512.4 194489.2 0.007 0.011 0.008 0.006 0.003 0.004 

1 158 59 41.450 3.784 4.109 4.007 1561785 1577792 0.055 0.895 0.075 0.065 0.912 0.069 

8000 

2 422 49 43.606 3.777 4.118 4.006 1379264 1564884 0.054 0.908 0.077 0.064 0.912 0.070 

3 658 96 45.672 4.084 4.119 4.006 1230519 1533427 0.048 0.912 0.080 0.061 0.911 0.070 

4 255 103 42.069 4.179 4.116 4.004 1370380 1500801 0.050 0.904 0.078 0.061 0.912 0.071 

5 225 72 41.994 3.963 4.117 4.010 1417151 1505617 0.051 0.902 0.077 0.061 0.911 0.071 

6 370 68 43.015 3.976 4.115 4.001 1352375 1879920 0.051 0.905 0.079 0.074 0.908 0.062 

7 190 95 41.671 4.144 4.115 4.005 1448653 1648100 0.051 0.902 0.076 0.065 0.910 0.068 

8 807 75 47.020 3.973 4.142 4.006 1566019 1690060 0.065 0.903 0.066 0.067 0.909 0.067 

9 505 90 44.363 4.276 4.114 4.004 1365471 1590606 0.048 0.902 0.078 0.065 0.912 0.068 

10 137 102 40.979 4.191 4.116 4.007 1173765 1645936 0.050 0.912 0.084 0.064 0.909 0.068 

Avg 372.7 80.9 43.184 4.035 4.118 4.006 1386538 1613714 0.052 0.905 0.077 0.065 0.911 0.068 

Std 226.238 18.918 1.981 0.170 0.009 0.003 124391.7 112548.3 0.005 0.005 0.005 0.004 0.002 0.003 

1 196 92 41.830 4.709 4.115 4.028 1201801 1493637 0.051 0.911 0.084 0.062 0.913 0.071 

10000 

2 218 90 42.352 4.223 4.117 4.039 1184036 1502305 0.048 0.909 0.084 0.060 0.910 0.071 

3 297 101 43.160 4.345 4.117 4.033 1276478 1785993 0.049 0.905 0.081 0.072 0.908 0.064 

4 128 111 41.601 4.527 4.115 4.028 1171293 1379112 0.049 0.911 0.084 0.054 0.910 0.075 

5 251 95 42.344 4.531 4.117 4.031 1430239 1597582 0.049 0.898 0.077 0.063 0.910 0.069 

6 161 93 41.479 4.307 4.115 4.035 1170650 1430740 0.047 0.909 0.084 0.058 0.912 0.073 

7 168 91 41.612 4.302 4.116 4.030 1158588 1379955 0.046 0.911 0.084 0.057 0.913 0.074 

8 246 99 42.612 4.373 4.115 4.032 1240230 1662655 0.051 0.911 0.082 0.066 0.909 0.067 

9 804 77 48.456 4.138 4.117 4.033 1359968 1566589 0.050 0.905 0.078 0.063 0.911 0.069 
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10 219 99 42.166 4.555 4.117 4.030 1198936 1467514 0.047 0.908 0.083 0.058 0.910 0.072 

Avg 268.8 94.8 42.761 4.401 4.116 4.032 1239222 1526608 0.049 0.908 0.082 0.061 0.911 0.071 

Std 194.376 8.829 2.068 0.175 0.001 0.003 90886.51 129120 0.002 0.004 0.003 0.005 0.002 0.004 

 

Table 28 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Human 2 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

samples  

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 296 37 33.282 2.614 3.520 2.880 1378847 3911097 0.098 0.881 0.078 0.150 0.716 0.052 

500 

2 155 36 32.109 2.571 3.532 2.871 1024468 3911290 0.109 0.901 0.089 0.150 0.716 0.052 

3 202 40 32.468 2.611 3.532 2.865 1266611 1096 0.141 0.902 0.079 0.364 0.718 0.290 

4 210 33 32.506 2.613 3.527 2.867 1248821 3911288 0.188 0.865 0.037 0.150 0.716 0.052 

5 213 35 32.284 2.588 3.554 2.887 1669439 1306 0.149 0.888 0.055 0.333 0.726 0.295 

6 214 50 32.401 2.647 3.533 2.885 1468217 1916 0.154 0.893 0.054 0.346 0.719 0.264 

7 132 35 32.159 2.593 3.531 2.877 1026338 3910369 0.130 0.910 0.083 0.150 0.716 0.052 

8 52 38 32.074 2.613 3.499 2.876 1195367 2404 0.136 0.900 0.081 0.359 0.716 0.243 

9 125 28 32.338 2.559 3.545 2.900 886026 1377 0.109 0.883 0.097 0.345 0.718 0.285 

10 123 25 32.050 2.608 3.496 2.900 1046991 1361 0.126 0.903 0.086 0.349 0.719 0.285 

Avg 172.2 35.7 32.367 2.602 3.527 2.881 1221113 1565350 0.134 0.892 0.074 0.270 0.718 0.187 

Std 68.365 6.767 0.361 0.025 0.018 0.012 237964.9 2018823 0.026 0.014 0.019 0.103 0.003 0.117 

1 225 94 32.658 2.847 3.564 3.030 2003197 4270 0.145 0.874 0.055 0.248 0.776 0.264 

1000 

2 123 76 32.261 2.794 3.547 3.054 885546 5857 0.108 0.890 0.095 0.208 0.802 0.264 

3 245 467 32.496 4.095 3.541 3.010 858116 3233054 0.084 0.917 0.086 0.149 0.799 0.054 

4 176 338 32.499 3.747 3.540 3.048 822865 4321 0.074 0.911 0.088 0.239 0.782 0.268 

5 194 135 32.227 3.021 3.553 3.036 1068828 2932 0.117 0.898 0.087 0.253 0.771 0.284 

6 256 137 32.855 2.963 3.557 3.019 901548 1085 0.104 0.892 0.095 0.268 0.839 0.319 

7 146 108 32.356 2.937 3.556 3.019 1063118 2301 0.100 0.903 0.085 0.269 0.763 0.291 

8 145 85 32.205 2.872 3.551 3.010 842628 2272 0.105 0.898 0.097 0.289 0.743 0.282 

9 167 119 32.591 2.950 3.546 3.019 854013 3629 0.083 0.910 0.090 0.268 0.760 0.265 

10 155 80 32.466 2.790 3.553 3.047 891197 4282 0.108 0.895 0.095 0.244 0.775 0.266 

Avg 183.2 163.9 32.461 3.102 3.551 3.029 1019106 326400.3 0.103 0.899 0.087 0.243 0.781 0.256 

Std 45.411 131.131 0.207 0.446 0.007 0.016 356478.4 1021295 0.020 0.012 0.012 0.040 0.027 0.073 

1 275 106 33.048 2.998 3.557 3.258 879625 2135764 0.075 0.907 0.087 0.140 0.879 0.062 

2000 

2 90 211 32.307 3.395 3.569 3.253 1608564 2371778 0.130 0.887 0.062 0.146 0.865 0.059 

3 145 66 32.378 2.844 3.552 3.247 918452 2389466 0.090 0.909 0.088 0.144 0.864 0.059 

4 273 155 32.913 3.185 3.559 3.276 833695 1909459 0.103 0.895 0.097 0.139 0.891 0.064 

5 319 106 33.235 2.977 3.545 3.263 1244451 2154769 0.119 0.908 0.077 0.143 0.878 0.061 

6 154 87 32.411 2.965 3.564 3.267 885852 2125750 0.112 0.900 0.095 0.142 0.879 0.062 

7 361 122 33.359 3.054 3.577 3.268 1586715 2133858 0.146 0.891 0.053 0.143 0.879 0.061 
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8 174 136 32.827 3.165 3.543 3.269 1077360 1802195 0.116 0.921 0.080 0.134 0.895 0.065 

9 72 124 31.982 3.102 3.562 3.262 1677518 2094183 0.132 0.887 0.063 0.142 0.881 0.061 

10 586 178 34.539 3.272 3.567 3.268 1740699 1616996 0.139 0.886 0.055 0.130 0.902 0.068 

Avg 244.9 129.1 32.900 3.096 3.559 3.263 1245293 2073422 0.116 0.899 0.076 0.140 0.881 0.062 

Std 154.263 43.095 0.726 0.163 0.011 0.008 372399.3 239211.3 0.022 0.012 0.016 0.005 0.012 0.003 

1 196 87 33.483 3.294 3.563 3.416 659494 1937841 0.073 0.923 0.094 0.136 0.887 0.064 

5000 

2 198 87 33.134 3.190 3.565 3.426 1064953 1652549 0.106 0.899 0.087 0.125 0.896 0.068 

3 188 96 33.236 3.322 3.566 3.432 912963 1741937 0.095 0.894 0.093 0.131 0.894 0.066 

4 178 91 33.230 3.257 3.561 3.421 697073 1841789 0.074 0.918 0.093 0.136 0.893 0.065 

5 330 86 34.053 3.233 3.564 3.422 778996 1861490 0.108 0.887 0.101 0.131 0.888 0.065 

6 543 108 35.503 3.335 3.566 3.423 852023 1868729 0.098 0.893 0.096 0.138 0.892 0.064 

7 202 125 33.393 3.448 3.568 3.416 1039199 1863613 0.103 0.897 0.089 0.136 0.892 0.064 

8 210 105 33.342 3.335 3.562 3.426 770253 1807024 0.085 0.916 0.093 0.129 0.891 0.066 

9 236 87 33.447 3.219 3.563 3.426 649642 1739727 0.080 0.921 0.098 0.136 0.897 0.066 

10 856 87 37.525 3.174 3.554 3.425 455005 1742955 0.068 0.935 0.102 0.130 0.894 0.067 

Avg 313.7 95.9 34.035 3.281 3.563 3.423 787960.1 1805765 0.089 0.908 0.095 0.133 0.892 0.065 

Std 220.519 12.974 1.413 0.083 0.004 0.005 187001.1 84993.32 0.015 0.016 0.005 0.004 0.003 0.001 

1 312 89 34.566 3.622 3.567 3.479 1081143 1763696 0.110 0.892 0.088 0.135 0.895 0.065 

8000 

2 150 146 33.435 4.026 3.562 3.477 711499 1841128 0.080 0.916 0.096 0.136 0.892 0.063 

3 211 123 34.000 3.868 3.562 3.474 706822 1670024 0.077 0.921 0.092 0.126 0.895 0.068 

4 307 135 34.523 3.895 3.562 3.473 717717 1664345 0.077 0.920 0.093 0.126 0.895 0.068 

5 143 104 33.487 3.611 3.565 3.474 900553 1687928 0.097 0.902 0.093 0.131 0.897 0.066 

6 256 110 34.484 3.850 3.568 3.477 1005969 1787442 0.105 0.894 0.091 0.134 0.893 0.065 

7 201 115 33.551 3.820 3.567 3.484 980298 1812036 0.096 0.902 0.089 0.135 0.892 0.064 

8 182 120 33.685 3.851 3.568 3.469 1010513 1632010 0.107 0.900 0.089 0.120 0.894 0.069 

9 282 104 34.632 3.813 3.568 3.480 946102 1804848 0.105 0.892 0.093 0.133 0.893 0.064 

10 196 84 33.644 3.491 3.568 3.470 1049565 1870216 0.102 0.896 0.088 0.138 0.891 0.064 

Avg 224 113 34.001 3.785 3.566 3.476 911018.1 1753367 0.096 0.903 0.091 0.131 0.894 0.066 

Std 61.738 19.189 0.499 0.160 0.003 0.005 146082.9 83397.69 0.013 0.011 0.003 0.006 0.002 0.002 

1 351 110 35.962 3.839 3.562 3.497 684167 1889640 0.078 0.915 0.097 0.138 0.889 0.062 

10000 

2 222 282 34.563 5.553 3.568 3.494 946883 1780771 0.104 0.892 0.093 0.131 0.892 0.065 

3 172 199 33.799 4.994 3.564 3.491 716564 1756764 0.078 0.920 0.093 0.133 0.894 0.065 

4 163 224 33.569 5.286 3.558 3.493 751566 1810429 0.071 0.914 0.090 0.136 0.893 0.064 

5 201 227 34.286 5.103 3.569 3.489 904041 1769251 0.101 0.895 0.094 0.132 0.893 0.065 

6 299 243 35.415 5.133 3.569 3.498 930999 1838040 0.101 0.894 0.093 0.136 0.891 0.063 

7 308 245 35.100 5.192 3.580 3.500 1739286 1757399 0.149 0.883 0.051 0.131 0.892 0.065 

8 312 132 35.220 4.352 3.581 3.499 1720794 1773957 0.144 0.886 0.054 0.129 0.892 0.065 

9 221 674 34.397 9.326 3.569 3.475 942677 750303 0.104 0.892 0.093 0.084 0.913 0.095 

10 162 178 33.599 4.733 3.566 3.496 1052255 1799123 0.107 0.903 0.087 0.132 0.892 0.065 

Avg 241.1 251.4 34.591 5.351 3.569 3.493 1038923 1692568 0.104 0.900 0.084 0.128 0.894 0.067 

Std 70.270 157.540 0.816 1.482 0.007 0.007 382324.9 333619.3 0.026 0.013 0.017 0.016 0.007 0.010 
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Table 29 Full Comparison of VBGMM on Full dataset, Coreset and Uniform Sampling 

on Human 3 Kidney Data 

Run 

VBGMM Steps Time Vbound Count Features 

samples  

Coreset Uniform Coreset Uniform Coreset Uniform Coreset Uniform 

Coreset Uniform 

Int Blob Flat Int Blob Flat 

1 98 52 39.466 3.220 3.077 2.038 1444332 382 0.565 0.892 0.025 0.245 0.883 0.366 

500 

2 293 44 39.529 3.146 3.101 2.020 1439993 253 0.260 0.910 0.080 0.240 0.863 0.381 

3 140 24 39.237 3.119 3.122 2.035 1515049 366 0.525 0.897 0.033 0.242 0.878 0.367 

4 116 27 39.064 3.105 3.109 2.018 1218102 245 0.242 0.917 0.088 0.241 0.860 0.382 

5 93 23 39.024 3.090 3.070 2.027 1291536 333 0.231 0.901 0.085 0.244 0.874 0.371 

6 221 57 39.330 3.179 3.061 2.071 793657 68 0.216 0.936 0.103 0.219 0.845 0.443 

7 152 1125 39.214 6.179 3.122 2.002 1401897 164 0.229 0.892 0.081 0.232 0.835 0.398 

8 264 37 39.636 3.116 3.106 2.046 1209679 349 0.217 0.903 0.087 0.246 0.879 0.369 

9 123 24 39.282 3.083 3.112 2.011 1216222 202 0.217 0.892 0.087 0.239 0.852 0.390 

10 50 24 38.637 3.127 3.112 2.046 1653895 390 0.553 0.880 0.025 0.244 0.882 0.365 

Avg 155 143.7 39.242 3.437 3.099 2.031 1318436 275.2 0.325 0.902 0.070 0.239 0.865 0.383 

Std 79.006 345.024 0.287 0.964 0.022 0.020 235050.9 107.33 0.154 0.016 0.030 0.008 0.017 0.024 

1 107 50 39.125 3.194 3.130 2.182 1493641 3705 0.245 0.889 0.080 0.245 0.912 0.292 

1000 

2 78 133 39.110 3.491 3.127 2.283 1301201 341 0.216 0.891 0.084 0.250 0.884 0.370 

3 137 175 39.210 3.691 3.126 2.318 1546300 3168817 0.250 0.894 0.078 0.424 0.883 0.048 

4 191 99 39.315 3.398 3.103 2.305 1524386 351 0.384 0.903 0.045 0.247 0.875 0.368 

5 173 108 39.341 3.433 3.127 2.259 1364369 430 0.568 0.894 0.026 0.244 0.921 0.360 

6 66 162 38.959 3.599 3.119 2.308 1523820 3447161 0.545 0.894 0.028 0.430 0.868 0.046 

7 151 123 39.366 3.485 3.115 2.266 1467796 246 0.280 0.894 0.082 0.250 0.871 0.382 

8 162 159 39.562 3.747 3.116 2.294 1584345 3459475 0.287 0.905 0.077 0.428 0.868 0.046 

9 67 90 39.031 3.395 3.127 2.268 901586 414 0.212 0.931 0.098 0.244 0.915 0.362 

10 87 90 39.033 3.375 3.130 2.332 1443551 855262 0.244 0.900 0.081 0.190 0.925 0.098 

Avg 121.9 118.9 39.205 3.481 3.122 2.282 1415100 1093620 0.323 0.899 0.068 0.295 0.892 0.237 

Std 46.637 39.102 0.189 0.163 0.009 0.042 199616 1586881 0.132 0.012 0.025 0.093 0.023 0.156 

1 168 251 39.647 4.289 3.154 2.529 1217715 2690611 0.236 0.918 0.087 0.398 0.901 0.053 

2000 

2 121 106 39.305 3.703 3.127 2.574 1437494 1108917 0.275 0.913 0.081 0.211 0.918 0.088 

3 78 159 39.056 3.796 3.145 2.540 1011642 1062592 0.216 0.925 0.093 0.190 0.910 0.087 

4 221 103 39.867 3.500 3.129 2.567 1524608 1099306 0.261 0.900 0.079 0.209 0.917 0.089 

5 103 160 39.307 3.714 3.135 2.568 1422901 1165950 0.561 0.895 0.026 0.208 0.911 0.086 

6 216 177 39.669 3.886 3.138 2.537 1323649 2670252 0.225 0.895 0.084 0.407 0.903 0.053 

7 97 121 39.005 3.578 3.146 2.574 1129152 1133794 0.222 0.918 0.089 0.212 0.916 0.088 

8 250 178 39.963 3.818 3.134 2.569 1293030 1134222 0.232 0.903 0.086 0.208 0.914 0.087 

9 139 77 39.547 3.436 3.130 2.574 1573101 1159338 0.284 0.904 0.078 0.212 0.915 0.087 

10 94 93 39.137 3.480 3.136 2.565 1272597 1028160 0.232 0.910 0.086 0.201 0.918 0.091 

Avg 148.7 142.5 39.450 3.720 3.137 2.560 1320589 1425314 0.274 0.908 0.079 0.246 0.912 0.081 

Std 61.467 52.595 0.338 0.253 0.009 0.017 174887.9 662844.5 0.103 0.010 0.019 0.083 0.006 0.015 



129 

1 105 197 39.436 4.362 3.140 2.817 1382570 1058369 0.234 0.897 0.083 0.206 0.918 0.089 

5000 

2 73 242 39.578 4.704 3.152 2.820 1080114 1059570 0.219 0.920 0.091 0.198 0.914 0.089 

3 111 165 39.503 4.151 3.142 2.814 1402495 1077857 0.234 0.894 0.082 0.199 0.913 0.088 

4 118 164 39.686 4.191 3.140 2.826 1407542 1104854 0.228 0.890 0.082 0.203 0.913 0.087 

5 114 416 39.799 5.707 3.141 2.815 1340387 1058685 0.222 0.893 0.083 0.199 0.915 0.089 

6 200 869 39.940 8.859 3.130 2.813 1474095 1122303 0.508 0.905 0.034 0.208 0.915 0.087 

7 116 154 39.450 4.096 3.151 2.825 1051815 1081356 0.220 0.924 0.092 0.203 0.915 0.088 

8 236 267 40.708 4.791 3.151 2.821 1034855 1110317 0.219 0.924 0.093 0.204 0.914 0.087 

9 233 199 40.593 4.333 3.140 2.817 1241218 1089524 0.211 0.891 0.086 0.203 0.915 0.088 

10 151 329 39.985 5.303 3.143 2.815 1345947 1058004 0.226 0.893 0.084 0.200 0.916 0.089 

Avg 145.7 300.2 39.868 5.050 3.143 2.818 1276104 1082084 0.252 0.903 0.081 0.202 0.915 0.088 

Std 57.302 216.374 0.455 1.439 0.007 0.005 163616.1 24045.18 0.090 0.014 0.017 0.003 0.001 0.001 

1 108 205 39.785 5.292 3.138 2.921 1518410 1110898 0.250 0.892 0.079 0.210 0.916 0.088 

8000 

2 121 268 39.946 5.433 3.143 2.908 1422839 1106794 0.234 0.891 0.082 0.210 0.916 0.089 

3 168 230 40.647 5.147 3.140 2.914 1327481 1065915 0.229 0.898 0.084 0.205 0.917 0.090 

4 114 151 39.793 4.413 3.140 2.914 1477388 1087838 0.567 0.888 0.025 0.204 0.915 0.089 

5 104 183 39.991 4.732 3.142 2.912 1438729 998809 0.240 0.895 0.081 0.195 0.917 0.091 

6 143 197 39.952 4.910 3.143 2.919 1325998 1017176 0.222 0.892 0.084 0.197 0.915 0.091 

7 109 175 39.725 4.672 3.142 2.913 1395836 1067340 0.230 0.891 0.082 0.205 0.917 0.090 

8 99 193 39.741 4.789 3.142 2.915 1361113 1011253 0.231 0.895 0.083 0.195 0.915 0.091 

9 195 224 40.647 5.066 3.138 2.913 1415154 998833 0.240 0.898 0.082 0.196 0.917 0.091 

10 128 130 40.322 4.336 3.142 2.919 1344229 1055165 0.223 0.891 0.083 0.203 0.917 0.090 

Avg 128.9 195.6 40.055 4.879 3.141 2.915 1402718 1052002 0.267 0.893 0.077 0.202 0.916 0.090 

Std 31.143 39.727 0.357 0.360 0.002 0.004 64603.42 43106.74 0.106 0.003 0.018 0.006 0.001 0.001 

1 126 162 40.395 4.912 3.153 2.953 1030735 1038093 0.214 0.923 0.092 0.202 0.917 0.091 

10000 

2 154 145 40.434 4.773 3.143 2.954 1363219 1034491 0.229 0.895 0.083 0.203 0.918 0.091 

3 93 191 39.816 5.088 3.142 2.956 1354890 1092108 0.228 0.896 0.083 0.207 0.916 0.089 

4 85 162 39.690 4.797 3.143 2.955 1349044 1061773 0.227 0.894 0.083 0.202 0.915 0.090 

5 169 139 40.344 4.619 3.140 2.950 1478606 1041176 0.562 0.891 0.026 0.203 0.917 0.090 

6 133 145 40.151 4.639 3.143 2.951 1364013 1041494 0.232 0.895 0.083 0.201 0.915 0.090 

7 138 178 40.302 4.981 3.143 2.959 1330780 1075490 0.222 0.892 0.084 0.207 0.917 0.090 

8 132 254 40.332 5.672 3.143 2.952 1329364 1076654 0.223 0.894 0.084 0.201 0.913 0.089 

9 113 159 39.810 4.777 3.143 2.951 1367514 1028604 0.233 0.896 0.083 0.203 0.918 0.091 

10 227 324 41.072 6.388 3.143 2.946 1338795 1119470 0.223 0.892 0.084 0.207 0.913 0.088 

Avg 137 185.9 40.235 5.065 3.144 2.953 1330696 1060935 0.259 0.897 0.079 0.204 0.916 0.090 

Std 40.541 58.887 0.401 0.555 0.003 0.004 113708.5 29613.15 0.107 0.009 0.019 0.002 0.002 0.001 

 

 

 


