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ABSTRACT

The Kuiper Belt Object Haumea is one of the most fascinating objects in the

solar system. Spectral reflectance observations reveal a surface of almost pure water

ice, yet it has a mass of 4.006 × 1021 kg, measured from orbits of its moons, along

with an inferred mean radius of 715 km, and these imply a mean density of around

2600 kg m−3. Thus the surface ice must be a veneer over a rocky core. This model

is supported by observations of Haumea’s light curve, which shows large photometric

variations over an anomalously rapid 3.9154-hour rotational period. Haumea’s sur-

face composition is uniform, therefore the light curve must be due to a varying area

presented to the observer, implying that Haumea has an oblong, ellipsoidal shape.

If Haumea’s rotation axis is normal to our line of sight, and Haumea reflects with a

lunar-like scattering function, then its axis ratios are p = b/a = 0.80 (in the equa-

torial cross section) and q = c/a = 0.52 (in the polar cross section). In this work,

I assume that Haumea is in hydrostatic equilibrium, and I model it as a two-phase

ellipsoid with an ice mantle and a rocky core. I model the core assuming it has a

given density in the range between 2700–3300 kg m−3 with axis ratios that are free

to vary. The metric which my code uses calculates the angle between the gravity

vector and the surface normal, then averages this over both the outer surface and the

core-mantle boundary. When this fit angle is minimized, it allows an interpretation

of the size and shape of the core, as well as the thickness of the ice mantle. Results

of my calculations show that Haumea’s most likely core density is 2700–2800 kg m−3,

with ice thicknesses anywhere from 12–32 km over the poles and as thin as 4–18 km

over the equator.
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Chapter 1

BACKGROUND

1.1 Introduction

1.1.1 A Brief Introduction to Haumea

Of the variety of objects known in the solar system, none quite compares to the icy

dwarf planet named Haumea. Currently orbiting at a distance of 51 AU (Rabinowitz

et al. 2006; hereafter R06), roughly 10 AU beyond Pluto’s average distance in the

Kuiper Belt of the outer solar system, Haumea displays many intriguing qualities.

With a rotational period of roughly 3.9 hours and an apparent ellipsoidal shape with

longest axis around 2000 km, Haumea is the most rapidly rotating large (>100 km)

body in the solar system (R06). It is also one of the brightest known Kuiper Belt

Objects (KBOs) after Pluto and Makemake, another dwarf planet (Brown et al. 2006).

Its surface spectrum shows strong crystalline water ice absorption features covering

the entire surface (Trujillo et al. 2007, hereafter T07; Pinilla-Alonso et al. 2009),

yet its mass of 4.006 × 1021 kg, derived via observations of its two satellites’ orbits

(Ragozzine & Brown 2009; hereafter RB09), suggests an abnormally large density of

roughly 2600 kg m−3, so large that most of the body should be composed of rock and

not ice.

All models and calculations of Haumea thus far have treated it with a single

homogeneous density. In this work, Haumea is modeled as a two-phase ellipsoid

with an ice mantle surrounding a rocky core. The gravitational potential is then

calculated, with the primary goal of constraining Haumea’s core density and size,

thereby achieving a clearer understanding of Haumea’s interior. Our approach is to

1



calculate the average deviation between the gravitational potential and the surface

normal around the body, for both the outer surface and the core-mantle boundary

(CMB), in order to provide constraints on the density of Haumea’s core material.

This will then allow a determination of the size and shape of the core as well as the

thickness of the ice mantle.

1.1.2 Comparative KBOlogy

Given the many other large KBOs known currently, it is illustrative to examine

their physical properties, in order to gain more perspective about Haumea. Starting

with one of the largest KBOs and certainly the most well known, Pluto has a diameter

of 2306 km and a density of 2030 kg m−3 (Buie et al. 2006). Haumea’s mass is 31%

that of Pluto’s mass, 1.287× 1022 kg, which Buie et al. measured using observations

of three of Pluto’s moons. Pluto is also the only other known multiple KBO system,

with five satellites known currently. As for Pluto’s interior, two-layer thermal models

performed by Hussmann et al. (2006) assume a rocky core of density 3500 kg m−3

and an icy mantle of density 1000 kg m−3. They then calculated a core radius of 855

km and an ice mantle thickness of 282 km. Using the following equation to calculate

the silicate mass fraction f for a sphere,

f =
ρcore

ρmantle

((Rplanet

Rcore

)3 − 1
)

+ ρcore

, (1.1)

we find that according to this model, the amount of rock Pluto contains is around

72%.

These models found that the interior of Pluto is expected to be very similar to

that of Eris (Hussmann et al. 2006), another large KBO currently orbiting roughly

97 AU out, three times Pluto’s distance from the Sun (Brown et al. 2006). Using

observations of its moon Dysnomia, Brown and Schaller (2007) measured Eris’ mass

2



to be 1.66 × 1022 kg. From stellar occultation observations, Sicardy et al. (2011)

measured its density to be 2520±50 kg m−3 and its visual albedo to be 0.96+0.09
−0.04.

This makes Eris one of the brightest objects in the known solar system (Sicardy et

al. 2011). If Eris is given a diameter of 2600 km, Hussmann et al.́s thermal models

calculated Eris’ core radius to be 914 km and its ice mantle to be anywhere from

169 km to 242 km thick. The former thickness corresponds to the ice containing

31.5% NH3, while the latter value is derived if the ice mantle contains 3.4% NH3

(Hussmann et al. 2006). With these dimensional values for Eris’ interior, we calculate

its silicate mass fraction to be around 65%, less than that of Pluto’s, even though

Eris’ dimensions are slightly larger.

Makemake, the largest known KBO without a satellite, has been measured from

stellar occultation to be slightly elongated in the north-south direction, with a polar

diameter of 1420 km and an equatorial diameter of 1434 km (Brown 2013). It has

an albedo of 0.81, and since it lacks a satellite, there is no known mass. However,

Brown (2013) estimates its density to be anywhere in the range from 1400 kg m−3 to

3200 kg m−3. Perhaps Makemake never experienced a collision event, which would

have both potentially created satellites and increased its density (Brown 2013). In

contrast to Haumea, Pluto, Eris, and Makemake are all covered in CH4 ice, and are

sometimes referred to as “Methanoids” (Lacerda 2010).

Focusing on some of the smaller large KBOs, Sedna is another object with no

known mass, because it also has no known satellite (Pal et al. 2012). From thermal

measurements taken with the Herschel Space Observatory, Sedna’s diameter has been

measured to be 995±80 km, and its albedo is 0.32. This makes Sedna very red, but

yet still brighter than the average TNO (Trans-Neptunian Object) population (Pal

et al. 2012).

3



Quaoar’s diameter has been measured via stellar occultation to be 1138+48
−34 km,

just a bit larger than Sedna (Braga-Ribas et al. 2013). Through observations of its

moon Weywot, Quaoar’s mass is estimated to be 1.6×1021 kg (roughly 10% that

of Eris), with an estimated density of 4200±1300 kg m−3 (Fraser & Brown 2010),

an even higher density than that of Haumea! This unusually high density implies

little to no ice content, despite surface absorption features which show crystalline

water ice and ammonia hydrate (Jewitt & Luu 2004). This leads to the question of

whether Quaoar is a displaced asteroid (Fraser & Brown 2010). Another possibility

is that it experienced a collision which stripped it of its ice and left tiny Weywot

(diameter 74 km) in a highly eccentric and highly inclined orbit (Fraser & Brown

2010). However, Braga-Ribas et al. (2013) recently used equilibrium considerations

(which I will explain in a later section as applied to Haumea) to determine Quaoar’s

density to be 1990±460 kg m−3. This lower density still implies a large silicate

content, though now not as large as that of Haumea.

Last but not least, the KBO Varuna is another fascinating object for our purposes

here. Analysis of its light curve reveals a rapid rotation rate of 6.344 hours, and also

a shape that is ellipsoidal! Jewitt and Sheppard (2002) measured Varuna’s longest

dimension to be around 900 km and its shortest to be roughly 465 km. From its light

curve and equilibrium considerations for ellipsoids (also explained shortly), Lacerda

and Jewitt (2007) calculated Varuna’s density to be around 992 kg m−3. With this

low density, the silicate mass fraction is expected to be extremely low. Varuna is

significantly smaller than Haumea and evidence suggests it may be asymmetrical in

shape (Jewitt & Sheppard 2002), yet it still seems to be another case in addition to

Haumea in which the ellipsoidal shape is linked with a fast spin rate.

With this brief overview of the properties of many of the largest known KBOs,

their variabilities and their similarities, we will now examine Haumea in depth.
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Figure 1.1: Haumea’s Light Curve as a Function of Rotational Phase, Assuming a
Period of 3.9154 Hours. The Blue, Green, and Red Symbols Correspond to B-Band,
V-Band, and I-Band, Respectively, Measured with the SMARTS 1.3-m Telescope at
Cerro Tololo. The Black Circles and Squares Correspond to Additional Observations
with the 5.1-m Hale Telescope at Palomar Observatory and the 32-inch Telescope at
Tenagra Observatory, Respectively. The Dashed Line Represents the Median Average
of the Data (R06).

1.2 Observations of Haumea

1.2.1 Bulk Properties

Haumea was discovered December 28, 2004 by Brown et al. (2004) with the 48-

inch Samuel Oschin Schmidt telescope at Palomar. Originally nicknamed “Santa”, its

two moons, discovered later, were nicknamed “Rudolph” and “Blitzen” (Ragozzine

et al. 2008). Its current distance from the Sun is 51 AU, but it has quite an elliptical

orbit, with a semimajor axis of 43.3 AU, eccentricity of 0.19, and orbital inclination

of 28.2◦, making it a member of the classical Kuiper Belt (R06).
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Figure 1.2: A Rotating Haumea, Equatorial View (Left) and Polar View (Right).
The Equatorial View Produces a Light Curve, Whereas if Viewed Down the Line
of Sight of the Polar Axis, the Presented Area Would Stay Constant and No
Light Curve Would Be Produced (Adapted from http://en.wikipedia.org/wiki/
Haumea#/media/File:Haumea.svg).

Haumea’s magnitude over time exhibits a light curve, shown in Figure 1.1. R06

measured a double-peaked light curve for Haumea, from which they calculated its

rotational period to be 3.9154 hours. This is the shortest rotation period measured

for any Trans-Neptunian Body (TNO) (Sheppard & Jewitt 2002, 2004), as well as for

any solar system body larger than 100 km in size (Pravec et al. 2002). The double-

peaked light curve also suggests an oblong, ellipsoidal shape, because as an ellipsoid

rotates it changes the amount of light-reflecting surface area, thereby changing its

magnitude (Figure 1.2).

In working out Haumea’s exact dimensions, two primary shapes are considered.

The first is an ellipsoid of the type just described, a non-axially symmetric shape
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(a) Jacobi Ellipsoid: a > b > c. (b) Maclaurin Spheroid: a = b > c.

Figure 1.3: Two Possible Shapes of Haumea. (Figure (a) Is Adapted from
http://mathground.net/ellipsoid/, and Figure (b) Is Adapted from https:
//sciencequestionswithchris.wordpress.com/.)

more accurately referred to as a triaxial ellipsoid. If an ellipsoid’s three semimajor

axes or radii are referred to as a, b, and c, then a triaxial ellipsoid is defined as

one in which a > b > c. A special type of triaxial ellipsoid whose surface is in

hydrostatic equilibrium is more technically called a Jacobi ellipsoid, shown in Figure

1.3(a). The other shape considered in modeling Haumea is an oblate spheroid, in

which the equatorial axes a and b are equal and greater than c, the polar axis. A type

of oblate spheroid whose surface is in hydrostatic equilibrium is known as a Maclaurin

spheroid, one of which is shown in Figure 1.3(b). A rotating Jacobi ellipsoid will

produce the double peaked light curve but a Maclaurin spheroid will not, unless there

are albedo changes on the surface. Because of the symmetry displayed by Haumea’s

light curve, the ellipsoid shape is favored in the models. It is unlikely that Haumea

is a binary because its light curve amplitude is too small and its angular velocity too

high (R06). A binary configuration would also require an unrealistically high density

(Lacerda & Jewitt 2007). Details of how Haumea’s dimensions have been determined

are covered toward the end of this chapter in Section 1.4.
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1.2.2 Surface Properties

Haumea is one of the most reflective TNOs, with an albedo anywhere from 0.6 to

0.85, depending on its surface scattering properties (Lellouch et al. 2010). Trujillo et

al. (2007) found that water ice dominates Haumea’s spectrum, and that its surface is

a close fit to a mixture of roughly 81% crystalline water ice and 19% kaolinite (Figure

1.4). The kaolinite in this case is acting as a blueish neutral absorber. Pinilla-Alonso

et al. (2009) found the most probable surface composition to be an intimate mixture

of half crystalline and half amorphous water ice (Figure 1.5). Any other component

would comprise less than 10% of the surface. There is a particular absorption feature

at 1.65 µm which is found only in crystalline water ice and not in amorphous or high-

temperature crystalline ice. This poses a mystery, as crystalline water ice is unstable

on 10-Myr timescales, due to cosmic and solar ray fluxes and also by the fact that

amorphous ice is favored by the extremely cold temperatures found in that part of

the solar system (T07). Despite this, crystalline H2O ice has been reported for many

other solar system bodies, including Charon, Quaoar, Orcus, and many icy outer

satellites (T07). The rate of micrometeorite impacts in the outer solar system may

cause annealing of the ice, adequately enough to explain the amount of crystalline

water ice seen (Porter et al. 2010). Haumea’s surface composition is unusual, though,

since nearly all Pluto-size KBOs have methane-rich surfaces (Lacerda et al. 2008).

Trujillo et al. found no methane ice, and with their resolution, no more than 10% of

Haumea’s surface could be covered with methane ice without detection. There has

also been no evidence for N2 ice, which has an absorption band at 2.15 µm (Lacerda

et al. 2008).

Due to the global H2O coverage and a potentially additional blueish component,

Haumea displays an optically blue color (Tegler et al. 2007). As discussed above,
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Figure 1.4: This Spectrum of Haumea Shows a Good Fit with Material Consisting
Largely of Crystalline Water Ice with Kaolinite Mixed in (Trujillo et al. 2007).

Haumea displays a two-peaked light curve; however, the two peaks are not equal, as

the second peak is smaller by roughly 0.08 mag (Lacerda et al. 2008). This implies

a spot on Haumea’s surface that is darker than the rest. This asymmetry shown in

Figure 1.6 is difficult to produce with a symmetric ellipsoid. Figure 1.6 shows that the

asymmetry is less at red (J-band) wavelengths, hence the patch is also redder than

elsewhere on the surface. Thus, Lacerda et al. (2008) propose a Dark Red Spot (DRS)

on Haumea. According to their light curve, the DRS must lie in a leading quadrant
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Figure 1.5: Haumea’s Spectrum Is Well Fit By an Intimate Mixture of Crystalline
and Amorphous Water Ice (Pinilla-Alonso 2009).

with respect to both Haumea’s rotation and one of its semimajor axes (Lacerda et

al. 2008), as shown in Figure 1.7. Thermal mid-infrared lightcurve observations by

both Lellouch et al. (2007) and Lockwood et al. (2014) were unable to confirm the

existence of this spot. The visible data set of Lockwood et al. (2014) does agree with

a Dark Red Spot though. Constraints on the size of the DRS are broad: it may be

as small as a few percent of the maximum cross sectional area of Haumea if it is 20%

as reflective as the rest of the surface; alternatively, if it is 5% less reflective than the

rest of the surface, it may cover an entire hemisphere (Lacerda 2010). Most probably,

according to Lacerda (2010), the size is between 20–60% of Haumea’s maximum cross

sectional area, with an albedo of 0.55 – 0.65. This albedo would be consistent with

Eris and Makemake, as well as the bright regions on Pluto and Iapetus. It would be
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Figure 1.6: Light Curves for Haumea, Superimposed with Four Different Model
Curves. If Haumea Were a Symmetric, Uniform Albedo Ellipsoid with the Axial
Ratios p = b/a = 0.87 and q = c/a = 0.54, the Solid Line Would Be the Resultant
Curve. The Remaining Three Fit Lines Correspond to a Dark Spot (Located on the
Equator and Leading a by 45◦), of Varying Size (S) and Albedo (χ) as Follows: 6%
of the Maximum Cross-Sectional Area and 30% Albedo of the Surrounding Terrain;
60% of the Maximum Cross Section and 90% the Albedo of the Surroundings; and
Covering One Entire Hemisphere (Largest Cross Section) With 95% Albedo of the
Rest of the Surface (Lacerda et al. 2008).

inconsistent with the albedos of Charon, Phoebe, Chiron, Pholus, and darker regions

on Pluto’s surface (Lacerda 2010). Lacerda (2010) rules out the possibility of this

spot being due to surface relief, such as a mountain or valley, and he also speculates

that the DRS may be richer in crystalline H2O ice than the rest of the surface.

In their thermal lightcurve analysis, Lellouch et al. (2010) point out that the

large amplitude of the lightcurve implies a low thermal inertia, according to their

surface scattering models. If this is the case, Haumea may have a porous surface,

inconsistent with a compact water ice surface. The possibility of a loose regolith

covering the surface may be due to past collision events (Lellouch et al. 2010).
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Figure 1.7: Computer-Modeled Images Showing the Dark Red Spot’s Location
on Haumea as It Rotates (Adapted from http://www.space.com/7289-strange-
dwarf-planet-red-spot.html).

1.2.3 Satellites

In 2005, a team using the Keck II Telescope discovered two satellites around

Haumea (Brown et al. 2006). This makes the Haumea system the only known ternary

or higher system in the Kuiper Belt, aside from Pluto (Weaver et al. 2005). The larger

outer satellite, named Hi’iaka, orbits with a period of 49.46 days, with a semimajor

axis of 49,880 km. The inner smaller satellite is named Namaka, and it has a semima-

jor axis of 25,657 km with an orbital period of 18.28 days (RB09). Haumea rotates

more than 100 times during a single orbit of Namaka (RB09). The orbits of the

satellites are very close to an 8:3 resonance, and RB09 surmise that the moons have

possibly passed through a 3:1 resonance from time to time. Orbital analysis allows a

calculation of the masses of Haumea and its moons, which are reported in RB09 as

4.006×1021 kg for Haumea, 1.79×1019 kg for Hi’iaka, and 1.79×1018 kg for Namaka.

This gives Haumea a mass of roughly 32 percent that of Pluto (R06). Hi’iaka is

ten times more massive than Namaka and is massive enough that its orbital plane is

expected to be coincident with Haumea’s equatorial plane (RB09). Hi’iaka’s orbital

plane is inclined only 4◦ to our line of sight, and this gives a likely aspect angle of
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Haumea’s rotational axis to be close to 90◦ (R06). This may be important when

calculating the shape of Haumea below.

Haumea’s satellites are much fainter when compared to their primary than any

other known KBO satellites (Brown et al. 2006). Hi’iaka is roughly ten times fainter

than Haumea, while Namaka is about 3.7 times fainter than Hi’iaka (RB09). All

three have similar spectral (Barkume et al. 2006) and photometric properties (Fraser

& Brown 2009). Barkume et al. (2006) obtained a near-IR spectrum of Hi’iaka and

found that it shows strong water ice absorption features at 1.5 µm and 2 µm. The

features seen are deeper than typically observed on KBOs, so Barkume et al. conclude

that Hi’iaka’s surface is covered with smooth H2O ice, and that it is even purer water

ice than on Haumea. Dumas et al. (2011) later confirmed a strong 1.65 µm crystalline

water ice band in Hi’iaka’s spectrum. A grain size of 250 µm provides a good model

fit to the absorption lines (Barkume et al. 2006). The albedos of Haumea, Hi’iaka,

and Namaka should all be similar because of their similar spectral properties, and if

both moons have mostly water ice composition, their sizes can be determined. RB09

calculated Hi’iaka’s radius to be roughly 160 km, and Namaka’s radius to be about

80 km.

1.2.4 Collisional Family

Given Haumea’s rapid rotation rate, its anomalously high density for a KBO, and

its satellites which display nearly matching surfaces of ice, many suspected that an

impact stripping the ice mantle of a proto-Haumea could offer the best explanation

to all of these phenomena (Brown et al. 2007). Brown et al. (2007) announced the

discovery of a family of KBOs with surface properties nearly identical to that of

Haumea and orbital elements which very closely align with Haumea’s orbit. When

KBOs are graphed with respect to their orbital elements (semimajor axis a, orbital
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eccentricity e, and orbital inclination i), those few with optical colors indicative of

water ice are found to cluster together, compared to all other KBOs in their survey.

They form a unique group with similar surface characteristics and small dynamical

dispersion with respect to their orbital elements, clustering very close together in a,

e, and i. Amongst the six objects Brown et al. (2007) observed to cluster, the spread

in semimajor axes is 2.15 AU, the spread in eccentricities is 0.08, and the spread

in orbital inclination is 1.4◦. Their conclusion is that these objects, combined with

Haumea and its satellites, form a collisional family like those in the asteroid belt, and

all came from the same progenitor body, of which Haumea is the primary remnant.

An impact which imparted Haumea’s rapid spin rate easily could have ejected much

of its icy mantle, raising its bulk density and also throwing out many icy fragments,

which then became Hi’iaka, Namaka, and the rest of the family. On the basis of

orbital parameters, 36 potential candidates eventually were identified, of which 11

are now confirmed to have the icy surfaces unique to this family (Carry et al. 2012),

each with a diameter between 70 and 365 km (Leinhardt et al. 2010).

This is the first and only collisional family known in the Kuiper Belt (Ragozzine

& Brown 2007; hereafter RB07). While the existence of this family seems to fit well

into the puzzle about Haumea’s past, many more questions arise from studying these

fragments. For example, when estimating the amount of mass loss Haumea must have

experienced in a collision which could have caused the observed velocity spread in the

family, there is a major discrepancy. The total mass of the family members, plus

Haumea’s satellites, is less than 2% of Haumea’s mass and less than 6% of the total

amount of ice predicted to have been ejected (Cook et al. 2011). With simulations of

thermal evolution, Desch et al. (2009) show that KBOs with a radius in the range of

500 to 1000 km only partially differentiate, so that a thick undifferentiated rock/ice

crust can end up overlaying a differentiated icy mantle and rocky core beneath. This
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undifferentiated crust would be ejected in a collision event along with much of the

icy mantle. Lacking pure ice surfaces, these objects would not have been identified

as family members. If such a population were out there, it would make up much of

the missing mass. Cook et al. (2011) identify 7 possible candidates for what they

term “Black Sheep”, family members, and they argue that there may be many other

family members that remain to be discovered.

1.3 Theories on Haumea’s Origin

Many simulations have been done to constrain what type of impact caused the

observed features of Haumea and its collisional family, as well as what the proto-

Haumea and the impactor looked like before the collision. Brown et al. (2007) state

that if proto-Haumea had a density of 2000 kg m−3, similar to Pluto, Triton, Eris,

and Charon (other KBOs of comparable size), if its current density is taken to be

2600 kg m−3, and if it were struck by a small body, then its radius was roughly

830 km, and around 20% of its mass was removed in the collision. Typical orbital

velocities in the Kuiper Belt are around 5 km/s, as compared to roughly 20 km/s in

the asteroid belt (RB07). Kuiper Belt collisional families therefore may have a wider

spread of orbital parameters than do asteroid families. Brown et al. (2007) estimate

that if the collision velocity was 3 km/s, then the impactor’s radius was 60% of

proto-Haumea’s. From simulations, Brown et al. (2007) also calculated that ejection

velocities of around 400 m/s can explain the observed spread in orbital parameters.

Since Haumea is in a slightly different orbit from the other family members and also

from where it was assumed to be before the collision, it may have fallen into the

12:7 orbital resonance with Neptune after the collision. This would have increased its

eccentricity and changed other orbital parameters to match those of today (Brown et

al. 2007).
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The probability of a collision in the Kuiper Belt today is so low that the im-

pact most likely occurred much earlier in the solar system’s history, when the TNO

population was much higher (Morbidelli et al. 2008). RB07 support the idea of an

oblique impact, followed by debris disk formation to explain the satellites. According

to RB07, a minimum ejection velocity of 150 m/s from a Haumea impact would create

a collisional cloud that contains all the known family members. Resonance diffusion

causes changes in eccentricity over time, and studies of this process may provide a

constraint on the age of the family (Milani & Farinella 1994). RB07 report with 90%

confidence from resonance diffusion analysis that the Haumea family is older than 1

Gy, with an age estimate of 3.5±2 Gy. It is likely that the family is not only ancient

but also primordial with respect to the age of the solar system (RB07).

While Brown et al. (2007) favored a catastrophic impact, Leinhardt et al. (2010)

argue that the velocity dispersion is too small to allow that sort of collision. They

claim that a graze and merge impact between two similar sized bodies is the most

likely scenario, as it results in the most closely matching orbital parameters for all

post-impact objects. In a graze and merge scenario, the impactor hits the target at

an oblique angle, separates, and then recollides and merges with the target. The ice

mantles would experience severe deformation and subsequently fragment. After the

merge, the remnant undergoes solid state differentiation quickly. The satellites and

family members would then derive from the icy mantle of the merged, differentiated

body. Leinhardt et al. (2010) are able to achieve a close match to Haumea’s collisional

family with a graze and merge with an impact velocity of 800-900 m/s, if both the

impactor and the target were of equal size and density (2000 kg m−3).

Schlichting and Sari (2009) have a different idea for what caused Haumea’s col-

lisional family. They propose a double impact event: the first was a giant impact

which imparted to Haumea its high angular momentum and ejected a debris disk
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which then accreted into a satellite of radius 260 km. This satellite underwent tidal

evolution during which its orbit drifted further away from Haumea. The second col-

lision event was between another KBO and the satellite, which subsequently broke

apart the satellite and distributed the material into a collisional cloud with a velocity

dispersion of around 190 m/s. This model has the benefits of explaining the observed

velocity dispersion and the total mass of the family members (including Hi’iaka and

Namaka), but it is a little more complex. Schlichting and Sari argue that if the first

impact occurred very early on in the Kuiper Belt when it was more crowded and

collisions were much more likely, then the second collision could have occurred much

later, when the neighborhood was emptier. This could allow the collisional fragments

to spread out while retaining similar orbital parameters.

Simulations performed by Cook et al. (2011) led them to propose the idea of

the Black Sheep and a partially undifferentiated proto-Haumea. According to their

simulations, the target had a radius of 850 km and the impactor a radius of 450

km, both with equal densities (2000 kg m−3). Due to these sizes, the target (proto-

Haumea) will have fully differentiated after around 1 Gyr (almost fully completing

differentiation after only 70 Myr), while the impactor underwent differentiation within

600 Myr of formation (Cook et al. 2011). Their target had a rocky core mass of

3.21×1021 kg, an icy mantle mass of 1.05×1021 kg, and a rock/ice outer crust mass

of 0.87×1021 kg. The impactor was given a rocky core mass of 0.37×1021 kg, an ice

mantle mass of 0.12×1021 kg, and an outer crust mass of 0.27×1021 kg. After the

merge, the total ice mass would be 1.18×1021 kg and the total rock/ice crust mass

1.14×1021 kg. Most importantly, the total rock mass would have been 3.58×1021 kg,

which is close to the mass of rock inferred to be in Haumea today (Cook et al. 2011).

In the simulations done in my project, I will more accurately constrain the most likely

core mass for comparison.
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Further understanding Haumea and its collisional family will provide many impor-

tant insights. First, it will help us understand the surface processes on KBOs. Why is

there so much crystalline water ice and little or no reddening or surface darkening, as

expected for surfaces in the outer solar system (RB07)? It may also help us constrain

number densities in the Kuiper Belt in the past, in studying when in the past such

a collision was probable (RB07). Finally, understanding details of proto-Haumea’s

differentiation and combining this with studies of its surface, moons, and collisional

family objects, may possibly be our best chance at seeing the inside of a KBO.

1.4 The Shape of Haumea

In analyzing an object’s light curve such as Haumea’s, there are a few assumptions

that are used to derive the object’s dimensions. The first case is if Haumea is assumed

to have dimensions of a Jacobi ellipsoid. If the angle between our line of sight and

Haumea’s rotational axis, defined as the aspect angle φ, were 90◦, then as Haumea

rotates, the peak magnitude will occur when we see it displaying the size of its longest

axis, when it is showing its maximum cross-sectional area. So the maximum magni-

tude corresponds to the a axis, while the minimum magnitude corresponds to the b

axis. Relating the equatorial radii a and b with the change in apparent magnitude,

we have

m1 −m2 = 2.5 log
a

b
. (1.2)

Then the peak-to-peak amplitude m1 − m2 = ∆m of the light curve (0.28 mag ac-

cording to R06) gives a lower bound for a/b:

a

b
≥ 100.4∆m. (1.3)

The inequality in the above equation is dependent on the aspect angle, φ. For

lower angles of φ, we would be looking at Haumea’s axis closer to head on, there
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would be less magnitude variation from a changing surface area, and so a/b would

have to be larger to account for this. If φ is 90◦ then a/b is minimized, and both sides

of Equation 1.3 are then equal.

Once the ratio a/b is obtained, the next step is to consult the equation defining

equilibrium constraints for Jacobi ellipsoids,

ω2

πGρ
= 2abc

∞∫
0

u du

[(a2 + u)(b2 + u)(c2 + u)]1/2(a2 + u)(b2 + u)
. (1.4)

Chandrasekhar (1987) used this equation to constrain the axial ratios p = b/a and

q = c/a for given angular velocity ω and density ρ.

Combining the above two equations with the ellipsoidal mass-volume relationship,

M =
4

3
πabcρ, (1.5)

we now have three equations and three unknowns (a, b, and c) for a given ω and ρ.

Using the rotation period of 3.9154± 0.0002 hours measured by R06, the angular

velocity ω must be (2π)/(3.9154 hr) × (1 hr)/(3600 s) = 0.000446 rad/s. As for the

mass M , Ragozzine and Brown (2009) calculated Haumea’s mass to be 4.022× 1021

kg, using observations of its satellites’ orbits. Haumea’s bulk density is taken from

Lockwood et al. (2014) to be 2600 kg m−3.

To address the dependence of the shape on the aspect angle φ, Binzel et al. (1989)

describe a relationship between φ, the axial ratios, and ∆m:

∆m = 2.5
[
log
(a
b

)
− log

(r1

r2

)]
, (1.6)

where

r1 =

√
a2 cos2 φ+ c2 sin2 φ (1.7)

and

r2 =

√
b2 cos2 φ+ c2 sin2 φ. (1.8)

19



Another possibility is that Haumea has taken the shape of a Maclaurin spheroid,

so that a = b > c. If this is the case, then instead of Equation 1.4, Maclaurin’s

formula (Chandrasekhar 1987) is consulted:

ω2

πGρ
=

√
1− e2

e3
2(3− 2e2) sin−1 e− 6

e2
(1− e2). (1.9)

This equation relates the spheroid’s eccentricity e = [1− q2]1/2 with angular velocity

and density, where q = c/a as before, and p = b/a ≡ 1. If Haumea exists in this type

of shape, then ∆m will only be due to surface albedo heterogeneities and not to the

body’s shape, so that Equation 1.3 is not valid.

If Haumea were a Maclaurin spheroid, then equilibrium requires its density to be

greater than 2530 kg m−3, via Maclaurin’s formula (R06). At lower densities, only

a Jacobi ellipsoid shape is stable, and since it is expected that KBOs have densities

no greater than that of our Moon (3300 kg m−3), the range of possible densities for

Haumea is narrow (R06). R06 used the Jacobi and Maclaurin relations (Equations 1.4

and 1.9) to calculate four possible shapes of Haumea: two possible Jacobi ellipsoids

at differing aspect angles, and two possible Maclaurin spheroids. Lacerda and Jewitt

(2007) used a Lambert scattering law in their modeling of the light curve, which they

took as representative of “icy-type” surfaces, to calculate a bulk density of 2551 kg

m−3. Lellouch et al. (2010) then used thermal lightcurve observations to calculate

two different ellipsoidal shapes, one corresponding to a Lambert scattering law and

the other corresponding to a Lommel-Seeliger law. The best fit they found to be

with the Lommel-Seeliger law describing surface scattering. Lockwood et al. (2014)

subsequently obtained the first light curve of Haumea apart from its satellites, both

optical and thermal, and they confirmed Lellouch et al.’s previous shape calculation.

Specifically, they derived axial ratios of b/a = 0.80 and c/a = 0.52, along with an

overall density of 2600 kg m−3. We used this value for bulk density in our models,

20



and the dimensions of Haumea according to these values would then be a = 960 km,

b = 770 km, and c = 495 km. To investigate the most likely equilibrium shape in

our models with respect to gravity and rotation, we consider as inputs five possible

shapes: the four Rabinowitz shape models and the shape confirmed by Lellouch et

al. (2010) and Lockwood et al. (2014). These five shapes are listed in Table 1.1.

Shape a (km) b (km) c (km) p q φ Reference

1 980 759 498 0.77 0.51 90◦ R06

2 1250 540 430 0.43 0.34 > 47◦ R06

3 870 870 500 1 0.57 n/a R06

4 750 750 524 1 0.70 n/a R06

5 960 770 495 0.80 0.52 90◦ Lockwood et al. 2014

Table 1.1: Five Different Shapes for Haumea Used in This Work.

In calculating shape 1, R06 assumed that Haumea’s rotational axis is aligned with

the orbital plane of Hi’iaka. This would give a strong constraint on the aspect angle φ.

Since Hi’iaka’s orbit is inclined to our line of sight by 4◦ (R06), this means the aspect

angle φ must be 86◦. At this angle, there is minimal error in assuming that φ = 90◦.

Then there is no angular lessening of the magnitude of the equatorial radii. Therefore

the ratio a/b = 1/p is precisely equal to 100.4∆m (Equation 1.3), which is 1.294, so

that p = 0.773 and a = 1.294b. Using the mass-volume relationship (Equation 1.5)

and taking the bulk density to be 2600 kg m−3, we then find that c = 2.8426×1017b−2.

Plugging these expressions for a and c into the Jacobi ellipsoid equation (Equation

1.4), gives, according to R06, (a, b, c) = (980, 759, 498) km. Because we are assuming

that we are viewing Haumea’s equatorial plane nearly edge on in this example, a/b is

at a minimum. Thus a will be no less than 980 km, b will be no greater than 759 km,
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and c will be no greater than 498 km. This shape is considered by R06 to be the most

likely shape for Haumea, and it is very close in dimensions to the shape calculated

by Lellouch et al. (2010).

In the unlikely event that we are viewing Haumea’s rotation axis closer to pole-on,

then its calculated shape must be different. In particular, a/b will have to be larger,

to accommodate the fact that the light curve will be shallower with greater aspect

angle tilt. According to R06, the upper stability limit for a/b occurs at φ = 47◦ and

with a density no greater than ρ = 3340 kg m−3. If this is the case, then we will find

a Jacobi ellipsoid with an upper limit of a = 1250 km, a lower limit of b = 540 km,

and a lower limit for c as 430 km. This leads to (p, q) = (0.43, 0.34), and this is shape

2.

In calculating shapes 3 and 4, now the attention is shifted to whether Haumea

could possibly be a Maclaurin spheroid. At Haumea’s rotation rate, for a Maclaurin

spheroid the lowest the density could possibly be is 2530 kg m−3, for any lower density

and the object is unstable and will undergo fission (Farinella et al. 1981). Using this

density in Maclaurin’s formula (Equation 1.9), q = 0.58 is the only solution. Using

a = b and the mass-volume relationship, we find the approximate axes for shape 3:

(a, b, c) = (870, 870, 500) km.

For shape 4, a Maclaurin spheroid with an upper density limit of 3300 kg m−3

(since we are not expecting Haumea to be denser than our Moon), Maclaurin’s formula

then requires that q take on the value 0.7. With this value and using the method above

for shape 3, we find that the axes according to these constraints will be approximately

(a, b, c) = (750, 750, 524) km.

Shape 5 was derived by Lellouch et al. (2010) in a similar manner to shape 1 and

2 above by R06. The difference was that Lellouch et al. found the best model fit

to the light curve to be a surface described by the Lommel-Seeliger function. They
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subsequently updated the axes to be:

a = 960 km

b = 770 km

c = 495 km.

The axial ratios for shape 5 are then (p, q) = (0.80, 0.52). Lockwood et al. (2014)

obtained the first light curve of Haumea separate from its moons, and they then used

their data to confirm these axial dimensions. It is this shape for the outer surface of

Haumea that we focus on as the most likely shape.

In summary, we estimate from Haumea’s axial dimensions (from the light curve)

and mass (from orbital observations of its satellites) that the bulk density is 2600 kg

m−3 and the axial ratios are (p, q) = (0.80, 0.52). These values seem consistent with

Haumea in the shape of a Jacobi ellipsoid, but because of its ice surface, clearly it is

not of homogeneous density.

The primary question investigated in this work involves finding the most likely

density of Haumea’s core. This will then determine the size and shape of the core,

which will in turn shed light on the thickness of the ice mantle and its variation

throughout the surface, as well as provide constraints on the collision Haumea suffered

in the past. Finding the most likely core density will allow a complete determination

of the configuration of Haumea as a two-phase body.

With Haumea’s backstory and its likely properties discussed, I will next investigate

some of the theory of rotating ellipsoids in equilibrium in Chapter 2. In Chapter 3 I

will explain the considerations taken in building the code. In Chapter 4, I will then

delve into the panoply of results which were obtained and how we used those results

to predict Haumea’s most likely configuration. Finally, I conclude in Chapter 5 by

discussing the most likely configuration of the interior and exterior of Haumea.
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Chapter 2

REVIEW OF ELLIPSOIDS

In this chapter, I delve into the theory regarding what shape a rotating fluid object

will take in an equilibrium state, where the object’s self-gravity and rotation are the

only contributing effects. Chandrasekhar (1987) collected and expanded upon much

of this theory, and much of his work is paraphrased and fleshed out in this chapter. It

should be kept in mind that ultimately none of the following equations can directly

apply to Haumea, since they apply exclusively to homogeneous bodies and Haumea

is being treated in this work as a two-phase body. However, much insight may come

from examining the possibilities for homogeneous bodies.

2.1 The Case for an Equipotential Shape

As determined from its light curve, Haumea is probably oblong in shape and not

axially symmetric. It is probably a Jacobi ellipsoid (a triaxial ellipsoid in hydrostatic

equilibrium), similar to a flattened football. When a homogeneous spheroid is set

rotating, then for a given mass, volume, and angular velocity there exists a particular

equilibrium spheroidal shape. Because of Haumea’s large size, we assume that its

outer surface must align with that of a gravitational equipotential.

Though we assume that Haumea is in a state of hydrostatic equilibrium with

respect to its outer surface and its core-mantle boundary, this is not assured. Sat-

urn’s moon Iapetus, which is just larger than Haumea (Rmean ≈ 736 km), displays

a shape that is extremely out of equilibrium (Thomas et al. 2007). Iapetus has an

oblate spheroidal shape that suggests relaxation at a spin rate of around 16 hours,
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much larger than its current angular velocity, as it is now tidally locked to Saturn

(Thomas et al. 2007). Iapetus has thus retained a shape which it took very early on

and it has frozen in that shape, despite being in a very different dynamical situation

today (Thomas et al. 2007). Jupiter’s moon Callisto also may not be in hydrostatic

equilibrium, as it is much larger than Haumea with Rmean = 2410 km, yet it has only

partially differentiated (Anderson et al. 2001). However, the assumption of hydro-

static equilibrium for Haumea may be justified if its strain rates ε̇ are significantly

fast (i.e., ε̇ & 10−17 s−1, so that ε̇−1 ≤ 1017 s = 3 Gyr).

To be more precise about finding what the strain rate ε̇ is, if we first take the

internal stress σ as proportional to the central pressure Pc inside Haumea, then

σ ∼ Pc =
3

8π

GM2

R4
, (2.1)

where M is Haumea’s mass, R is its mean effective radius, and G is the universal

gravitational constant. Plugging in the values of each, M = 4.006×1021 kg (Ragozzine

& Brown 2009), R ≈ 7.15× 105 m (R06), and G = 6.67× 10−11 N ·m2/kg2, we then

find that σ ≈ 5 MPa. Since viscosity η is described by

η =
σ

2ε̇
, (2.2)

we find that ε̇ depends on both σ and η. However, η also depends on temperature.

Thomas et al. (1987) describe viscosity with the following formula:

η(T ) = 1014exp
[
25
(273

T
− 1
)]

Pa · s. (2.3)

Though viscosity depends on other factors such as grain size and flow rate (Rubin et

al. 2014), we will use Equation 2.3 in the following calculations for strain rate.

At ice’s melting point, T = 273 K, we find η ∼ 1014 Pa · s. This then yields

ε̇ ' (5 × 106 Pa)/(2 × 1014 Pa · s) = 2.5 × 10−8 s−1, an extremely fast strain rate
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as expected. Of course, at T ∼ 40 K, we may have an effectively infinitely large

viscosity, which implies ε̇ ' 0 Pa · s, and thus there would be no flow. Somewhere in

between these two temperature extremes, there is a temperature (∼ 160 K) for which

η = 3.5×1021 Pa ·s. This is the critical viscosity below which convective overturn can

effectively operate within a Charon-like body (Rubin et al. 2014). At this viscosity,

ε̇ ∼ 7×10−16 s−1, which allows flow on timescales of ε̇−1 ∼ 1.4×1015 s ∼ 45 Myr. For

flow to proceed on the order of 3 Gyr (ε̇ = 10−17 s−1 as discussed above), a viscosity

no greater than 2.5 × 1023 Pa · s is needed, which occurs at a temperature of ∼ 150

K. Using the same argument yet again, a temperature of ∼ 170 K is critical to flow

on the order of 10 Myr.

This argument brackets the temperatures needed within Haumea for convective

flow necessary to achieve hydrostatic equilibrium to the range 150 – 170 K. However,

when considering Haumea’s origin, it has experienced significant heating over its

lifetime. It originated as the core of a larger progenitor body, at the time of impact it

probably experienced temperatures� 200 K or more, and then it stayed hot for more

than 10 Myr (Desch & Neveu 2015). Therefore Haumea would have experienced flow

on short timescales, and thus it would have assumed a state of hydrostatic equilibrium.

2.2 Uniform Density Case

Isaac Newton, in his Principia Mathematica (1687), was the first to attempt a

theory of a rotating object’s shape, and the main subject of his theory was the Earth.

Newton predicted that if the Earth were a homogeneous body of uniform density,

then its shape would be flattened at the poles due to a larger centrifugal force at the

equator exerting a larger outward force. This oblateness of the Earth was confirmed in

1738 when Maupertuis and Clairaut took geodetic measurements in extreme northern

Lapland (Chandrasekhar 1987).
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A few years later, in 1742, Colin Maclaurin expanded on the oblateness of homo-

geneous spheroids, and the culmination of his work is known as Maclaurin’s formula.

The three axes of a spheroid (or ellipsoid) will be referred to often as a, b, and c. Let

i be an axial index ranging from 1 to 3 so that a1 = a, a2 = b, and a3 = c. (These

are how the axes will in general be referred to in this chapter, but I will make use of

both conventions.) Maclaurin’s formula states the following:

ω2

πGρ
=

√
1− e2

e3
2(3− 2e2) sin−1 e− 6

e2
(1− e2), (2.4)

where ω is the angular velocity, ρ is the bulk density, and e = [1 − (a2
3/a

2
1)]1/2 is

the eccentricity of the meridional (polar, a-c plane) cross section. Oblate spheroids,

which are defined by a = b > c, are known also as Maclaurin spheroids if they are

in hydrostatic equilibrium. This equation exclusively applies to Maclaurin spheroids.

(The derivation of Maclaurin’s formula is shown in Appendix A.)

In 1834, Carl Gustav Jacob Jacobi argued that if a hole were drilled through

each axis of a spheroid and each were filled with fluid, then the weights of each fluid

column would be equal. He found that if a1 6= a2 6= a3 (in other words, if we had

an ellipsoidal shape rather than a strictly spheroidal shape), then the relationship

between the axes, the body’s angular velocity, and the density would be

ω2

πGρ
= 2a1a2a3

∞∫
0

u du

(a2
1 + u)(a2

2 + u)∆
, (2.5)

where ∆ =
√

(a2
1 + u)(a2

2 + u)(a2
3 + u). This equation will be referred to in this

work as Jacobi’s formula, as it exclusively applies to Jacobi ellipsoids. Jacobi was

the first to maintain that an ellipsoid is a possible equilibrium shape for a rotating

homogeneous fluid body. Triaxial ellipsoids, in which a1 > a2 > a3, are also known

as Jacobi ellipsoids if in hydrostatic equilibrium. (The derivation of Jacobi’s formula

is shown in Appendix B.)
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Figure 2.1: The Square of Normalized Angular Velocity, ω̂2, Versus Polar Cross-
Sectional (a − c) Eccentricity e13, for a Maclaurin Spheroid (Solid Line) and a
Jacobi Ellipsoid (Dashed Line). (Adapted from http://farside.ph.utexas.edu/
teaching/336L/Fluidhtml/node39.html.)

In 1842, C.O. Meyer was the first to show a connection between Maclaurin spheroids

and Jacobi ellipsoids, in that one shape can transform into the other with a changing

angular velocity. Later, in 1846, Joseph Liouville decided to examine the axial ratios’

relationship to angular momentum (L), instead of angular velocity. He showed that

for Maclaurin spheroids, L can range from 0 to ∞. But Jacobi ellipsoids are only

possible as equilibrium shapes above a critical value of L (Chandrasekhar 1987).
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The relationship between Maclaurin spheroids and Jacobi ellipsoids is illustrated

in Figure 2.1. If we define ω2/(πGρ) = ω̂2 as normalized angular velocity (since

(πGρ)1/2 has angular velocity-equivalent units of s−1), Figure 2.1 shows ω̂2 versus

the eccentricity e13 in the polar (a − c) direction. This graph can be interpreted as

follows: when a homogeneous fluid sphere (e13 = 0) is set rotating, it soon takes on an

oblateness (e13 > 0) and becomes a Maclaurin spheroid. This oblateness increases for

increasing angular velocity, so that the Maclaurin spheroid will flatten out. If the spin

rate continues to increase beyond a certain point (ω̂2 = 0.187), then if there is any

dissipative mechanism such as viscosity or internal friction, the Maclaurin spheroid

shape becomes dynamically unstable. The body will then evolve into a Jacobi ellipsoid

as it grows equatorial bulges (the a axis) and its spin rate will slow (Tassoul 1978).

The solid line in Figure 2.1 represents the sequence of polar cross-sectional shapes that

a Maclaurin spheroid will take with increasing spin, while the dashed line represents

the changing polar cross sections of a Jacobi ellipsoid. The deformation into the

Jacobi ellipsoid lowers the rotational kinetic energy and increases the gravitational

potential energy. The loss in kinetic energy is greater than the gain in potential

energy, and this is the cause of the spheroid’s instability (Binney & Tremaine 2008).

The Jacobi ellipsoid shape is the lower energy configuration at these spin rates. If no

dissipative mechanisms are present when the body exceeds the transformation spin

rate, then as can be seen from the rest of the solid line in Figure 2.1, the object will

remain a Maclaurin spheroid and flatten further until it reaches a maximum angular

velocity. It will then slow its spin while it continues to flatten.

In his treatise on ellipsoidal figures of equilibrium, Chandrasekhar (1987) also

addresses Maclaurin’s Theorem, which deals with gravitational potentials of nested

ellipsoids. First, two definitions of nested ellipsoids must be made. Two ellipsoids

that have identical axial ratios (i.e. are geometrically similar) and which share the
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(a) Homeoidal Ellipsoids, Also Known as a

Homeoid.

(b) Confocal Ellipsoids, Also Known as a

Focaloid.

Figure 2.2: Two Different Ellipsoidal Configurations. Homeoidal Ellipsoids
Are Geometrically Similar, and Confocal Ellipsoids Have the Same Foci. (Fig-
ure (a) Adapted from http://en.wikipedia.org/wiki/Homoeoid#/media/File:
Homoeoid3d.jpg, Figure (b) Adapted from http://en.wikipedia.org/wiki/
Focaloid#/media/File:Focaloid3d.jpg.)

same center are defined as homeoidal ellipsoids. The shape described by the space

between them is called a homeoid, shown in Figure 2.2(a). If two concentric ellipsoids

instead share the same foci, they will not be geometrically similar. Such ellipsoids

are defined as confocal ellipsoids. The space between two confocal ellipsoids is called

a focaloid, shown in Figure 2.2(b). It is the confocal ellipsoids to which Maclaurin’s

Theorem applies.

Maclaurin’s Theorem states that the gravitational attraction on a point external

to two nested confocal ellipsoids as in Figure 2.2(b) is in the same direction for

both ellipsoids, as well as proportional to both masses. This theorem could make it

difficult to detect Haumea’s internal structure with a spacecraft flyby through purely

gravitational means, as it says that an inner ellipsoid which is confocal to the outer

surface will have its true shape masked. Fortunately, the method we have
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implemented considers every possible shape of two nested ellipsoids, of which the

confocal case is just one.

While the possible outer surface dimensions of Haumea have been calculated via

the Jacobi formula (for ellipsoids of uniform density) and the Maclaurin formula (for

homogeneous spheroids), our model sets up Haumea as a heterogeneous body with a

dense rocky core and a less dense icy mantle. If the silicate fraction ends up being

high enough, these approximations will still be valid.

2.3 Nonuniform Density Case

Haumea is being modeled in this work as a heterogeneous ellipsoid, a two phase

ellipsoid with a mantle of ice and a core composed of some silicate rock. This will

look like a higher density ellipsoid nested inside a lower density ellipsoid. Since our

model of Haumea has nonuniform density, the ellipsoid relationships above may not

be directly applicable. If we find that the bulk of Haumea is rock, though, with only

a small amount of ice, then it may yet be treated as a roughly homogeneous object.

There is also a second constraint: the core-mantle boundary (CMB) must be an

equipotential. We expect the CMB to conform to an equipotential surface just as we

expect the same of Haumea’s outer surface. Modeling the size and shape of the core

is crucial to understanding Haumea’s interior. If the CMB is not an equipotential,

then a baroclinicity must exist at the CMB that will drive vortical flows in the ice. In

other words, if any part of the CMB surface is not level with the local equipotential

surface, it is expected to be unstable and to flow so that it becomes level.

Since Haumea is in hydrostatic equilibrium, it follows that the pressure gradient

∇P is parallel to∇Φ, the effective gravitational force vector. But the density gradient

∇ρ is normal to the CMB because it is a surface of sharp density change. Therefore,
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if the CMB is not an equipotential, then ∇Φ×∇P 6= 0, from which it follows that

d~Ω

dt
=

1

ρ2
(∇ρ×∇P ) 6= 0, (2.6)

where ~Ω is the vorticity (Holton 1992). So the CMB not coinciding with an equipo-

tential would generate vorticity in the ice and rock at the boundary and the energy

would dissipate until the CMB aligned with an equipotential surface.

Whether or not the CMB can retain topography is unknown, but the timescale

over which the flow may happen is probably very short. The viscosity and timescale

of CMB adjustment in Haumea would be extremely temperature dependent. If the

temperature is not high enough at the CMB presently to allow for flow, it would have

been high enough after the impact that Haumea underwent, as discussed earlier in

Section 2.1. The relaxation timescale then is expected to have been short enough

and the viscosity low enough to allow for the CMB to flow and resolve itself to an

equipotential.

In summary, we are modeling Haumea’s outer surface and CMB surface assuming

they are in hydrostatic equilibrium. The timescales upon which each surface will

align with an equipotential are expected to be short, at least immediately following

the impact that created Haumea.
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Chapter 3

METHODS

We have written a code (in Python) to calculate the gravitational potential in a

multilayered ellipsoid, with an icy outer layer and a denser rocky core. The way the

code works is described through the sequence of this chapter.

3.1 Step 1: Generating Different Core Shapes

We discretize the volume around a two-phase ellipsoid, with a rocky density as-

signed to the inner ellipsoid and an icy density assigned to the outer ellipsoid. Cells

in a three-dimensional grid are populated with mass. A Monte Carlo method is used

to randomly generate points in cells that straddle the core-mantle boundary (CMB).

The outer surface is assumed to correspond with particular axis ratios given in R06

and Lockwood et al. (2014), and these five outer shapes (listed in Table 1.1) were

tested, each with a range of different core densities. For a fixed outer surface shape,

different shapes of the core were tested, covering the entire possible range of shapes

for triaxial ellipsoids.

The values for axes that we use for the surface of Haumea (i.e. shapes 1 through

5 from Table 1.1) were calculated using either Jacobi’s formula (Equation 1.4) or

Maclaurin’s formula (Equation 1.9). These equations provide an equilibrium restric-

tion for the c (rotational) axis. However, in calculating the core axes ac, bc, and cc,

we relax this particular constriction that there must be one and only one value of

qc = bc/ac for each value of pc = cc/ac. Instead, our calculations of the metric are
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tested over every possible combination of pc and qc, subject only to the constraint

that 0.43 < qc < pc.

Fixed quantities input to the code included axes of the outer surface, as well as the

angular velocity of Haumea’s spin, equal to 0.000446 rad/s. This corresponds to one

rotation every 3.9154 hours, as observed by R06. Also input was the measured mass

of Haumea of 4.006 × 1021 kg (Ragozzine & Brown 2009), along with the universal

gravitational constant. Additionally, the measured average density of 2600 kg m−3

(Lellouch et al. 2010) was input, as well as a core density and a mantle density. The

mantle density was kept constant and was assumed to be water ice. For this ice

mantle, we exclusively used a density of 935 kg m−3 (Rubin et al. 2014), but the core

density was tested in the range 2700–3300 kg m−3, at intervals of 100 kg m−3. Each

of the quantities just described were held fixed for each run.

The primary variables built into the code were the axes of the core, which de-

termine the core-mantle boundary (CMB). Many different shapes of the core were

tested. First a core that is homeoidal in shape to the outer surface was tested for a

range of core densities. In this construction, each core axis is a particular fraction

of the corresponding outer axis, and this fraction is the same for all axes. A second

configuration tested for a range of core densities was for a case in which the core is

confocal to the outer surface, so that the CMB surface and the outer surface share

the same foci, but are not similar shapes.

Ultimately, the code that was used most frequently set up the CMB axes as follows.

When we focus on the simple mass-volume-density relationship that must hold for a

two-phase Haumea (dense rocky core surrounded by less dense icy mantle), we find

the following:

M =
4

3
πacbccc ρrock +

4

3
π(abc− acbccc)ρice, (3.1)

where ac, bc, and cc are the axes of the core, ρrock is taken to be the density of the
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core, and ρice is the density of the mantle. Collecting terms in acbccc and rearranging,

M

(4/3)π
= acbccc(ρrock − ρice) + abc ρice. (3.2)

If acbccc were rewritten in terms of the core axial ratios pc = bc/ac and qc = cc/ac,

then

acbccc = a3
cpcqc (3.3)

and

a3
cpcqc =

3M/4π − abc ρice

ρrock − ρice

. (3.4)

Finally, solving for ac, we end up with the following non-restrictive formula for the

longest core axis:

ac =
[ 1

pcqc(ρrock − ρice)

(3M

4π
− abc ρice

)]1/3

. (3.5)

This equation was used in our code. We combined it with the expressions bc = pc×ac

and cc = qc × ac to calculate the full shape of the core.

To visualize the shape of the core changing via the axial ratios, when p of an

ellipsoid is changed, it alters the ellipticity of the equatorial plane. When p is 1,

the equatorial plane is a circle, and the planet is then an oblate spheroid. As p gets

smaller, the equatorial plane narrows to more of a sausage shape at the extreme.

Since the ratio q involves an axis coincident with the rotational axis, then as q gets

smaller, the entire planet will flatten out from top to bottom. We limited the range

of p to [0.43, 1] and the range of q to [p, 1], because this is the range restricted for

Jacobi ellipsoids (triaxial ellipsoids in hydrostatic equilibrium), even though we are

not restricting the core shapes to Jacobi ellipsoids.

3.2 Step 2: Equipotential Test: the Metric M

The primary goal of this work is to ascertain the density of Haumea’s core and

the most likely shapes of its core and outer surface. The crux of this problem lies in
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the gravitational potential. If Haumea is assumed to be a body in gravitational and

rotational equilibrium, then its outer surface should be coincident with an equipo-

tential surface, taking into account both gravity and the centrifugal force, or else the

fluid would flow parallel to the surface. The same is also assumed for the core-mantle

boundary’s shape. What is needed is a way to test whether or not a surface is an

equipotential, and if not, how close to an equipotential it is.

If the surface is an equipotential, then the surface normal vector ~n will be parallel

to the gravitational acceleration vector ~geff = ~g+ω2rêρ, where ω is the angular velocity

and rêρ is the radius perpendicular from the rotation axis. Likewise, the unit vector

of the surface normal n̂ = ~n/|~n| should be parallel along the effective gravity unit

vector ĝeff = ~geff/|~geff |. Therefore, the dot product between these two unit vectors

will be 1, and the average of this quantity around each surface is the primary metric

we use to test the surface stability.

We define the “metric”M as the quantity n̂ · ĝeff averaged over the surface (either

the outer surface or the CMB):

M≡

∮
S

n̂ · ĝeff dS∮
S

dS
. (3.6)

Whichever shape configuration of the core and mantle maximizes M should be the

most stable shape.

3.3 Step 3: Generating Points Along the Surface

The metricM is calculated using spherical coordinates (r∗, θ, φ), where * denotes

points on the surface. The code generates points along the core surface by generating

a grid of angles θ on [0, π] and angles φ on [0, 2π], thereby creating an array of vectors
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~r∗, where

~r∗ = x∗ êx + y∗ êy + z∗ êz (3.7)

= a cosφ sin θêx + b sinφ sin θêy + c cos θêz. (3.8)

When dealing with the CMB rather than the outer surface, then a, b, and c are

replaced by ac, bc, and cc.

3.4 Step 4: The Surface Normal

At each point on the surface (i.e. for each ~r∗), n̂ is readily found. The surface of

the ellipsoid is defined mathematically by the following function:

f(x∗, y∗, z∗) =
(x∗)2

a2
+

(y∗)2

b2
+

(z∗)2

c2
= 1. (3.9)

Then the surface normal is defined as the gradient of the function f :

~n = ∇f(x, y, z)
∣∣
x∗,y∗,z∗

= ∇
(x2

a2
+
y2

b2
+
z2

c2

)∣∣∣∣
x∗,y∗,z∗

=

(
∂f

∂x
êx +

∂f

∂y
êy +

∂f

∂z
êz

)∣∣∣∣∣
x∗,y∗,z∗

=
2x∗

a2
êx +

2y∗

b2
êy +

2z∗

c2
êz. (3.10)

The surface normal we use here is the downward facing surface normal to align

with the downward acceleration vector, so each component is multiplied by −1. Using

the notation ~n = nxêx+nyêy+nz êz, then it follows that the components of the surface
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Figure 3.1: The Discretized Volume of Our Code, Encompassing the Ellipsoid Rep-
resenting Haumea.

normal are

nx = −2x∗

a2
(3.11)

ny = −2y∗

b2
(3.12)

nz = −2z∗

c2
. (3.13)

Then the unit normal vector n̂ is obtained by dividing each component of ~n by its

magnitude, |~n| =
√
n2
x + n2

y + n2
z. The final forms of the components of the downward

unit normal vector which the code uses are

n̂x = − 2x∗

a2|~n|
(3.14)

n̂y = − 2y∗

b2|~n|
(3.15)

n̂z = − 2z∗

c2|~n|
. (3.16)
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3.5 Step 5: Finding ~g

To calculate the acceleration vector due solely to gravity, ~g, we have to integrate

over the whole mass:

~g(~r∗) = −
∫

Gρ(~r ′)

|~r∗ − ~r ′|3
[
~r∗ − ~r ′

]
d3~r ′. (3.17)

To do this we discretize a computational volume including the ellipsoid, as shown in

Figure 3.1. First a three-dimensional cartesian grid is defined for only positive values,

in one octant. The cartesian grid is divided into Nx, Ny, and Nz zones in the x, y, and

z directions, respectively. We define axes and indices according to Figure 3.1, so that

the x axis is indexed by i, the y axis is indexed by j, and the z axis is indexed by k.

The mass in each grid cell is calculated and a density ρijk calculated for each cell. For

cells that straddle the core and mantle, we use a Monte Carlo method (Press et al.

1992) to find the average density in the cell. Once the two-phase solid is constructed

within one octant (including zero density in all grid cells beyond the outer surface),

the grid space is then extended by mirroring over each of the axes. Mass and density

values assigned to points from the one-octant space are also extended into the full

mirrored space. In this way, the entire solid of Haumea is created as an ellipsoid with

a rocky core and an icy mantle. Because the outer surface ends up being pixellated,

the outer boundary of the grid space is extended a small distance away from the outer

surface to accommodate all of the solid material (as can be somewhat seen in Figure

3.1). The space is extended by 5 percent of the ellipsoidal radius beyond the outer

surface, and this extra room provides enough space for all of the non-zero density

points created. With this construction in mind, our gravitational acceleration vector

then becomes

~g = −
∑
i

∑
j

∑
k

G(dM)ijk
|~r∗ − ~rijk ′|3

[
|~r∗ − ~rijk ′|3

]
, (3.18)
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Figure 3.2: The Setup of the ijkth Cell of Our Code.

where dMijk represents the mass in cell ijk, and ~rijk
′ is the radius vector to the

center of the ijkth cell.

If a cell contains uniform density ρ, then (referring to Figure 3.2),

dMijk = ρ(xi − xi−1)(yj − yj−1)(zk − zk−1). (3.19)

Otherwise, if a cell straddles the CMB surface boundary, then dMijk is solved using

a Monte Carlo method.

For those particular grid cells straddling the CMB, we randomly populated them

with points in each axial direction, with those deemed inside the CMB assigned rock

density and those deemed outside the CMB given ice density. Utilizing Monte Carlo

methods this way, the precise location of points which make up the solid vary for

each run, thus providing a more robust construction. To verify the accuracy of this

method, we sum up the mass values of all the cells and then divide by the actual mass

from Ragozzine and Brown (2009). The resulting mass error is reported for each run.
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3.6 Step 6: Putting it All Together

To calculate the total acceleration vector, taking into account both gravitational

and rotational forces, first the coordinates at the centers of each cell (shown in Fig-

ure 3.2) were defined by taking the average of the sum of the ith and the (i − 1)th

coordinates:

xc =
xi + xi−1

2
(3.20)

yc =
yi + yi−1

2
(3.21)

zc =
zi + zi−1

2
, (3.22)

where the subscript c refers to “center.” With these coordinates, the radius ~r pointing

from each zone directly to the center of the ellipsoid can be defined. The components

of ~r are defined as |~rx| = xc − x∗, and so on:

~r = (xc − x∗)êx + (yc − y∗)êy + (zc − z∗)êz. (3.23)

Again, (x∗, y∗, z∗) are components of the radial vector pointing from the ellipsoid’s

center to the outer surface. It follows that the magnitude of ~r is defined as

r = |~r| =
√

(xc − x∗)2 + (yc − y∗)2 + (zc − z∗)2. (3.24)

Keeping in mind that the centrifugal acceleration only acts in the x and y direc-

tions, since the z axis is the rotational axis, the total effective acceleration vector ~geff

due to both gravitational and rotational forces then has components:

geff,x =
GM

r3
(xc − x∗) + ω2x∗ (3.25)

geff,y =
GM

r3
(yc − y∗) + ω2y∗ (3.26)

geff,z =
GM

r3
(zc − z∗), (3.27)
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where G is the universal gravitational constant and M is the total mass. As for the

surface normal components, these components are also normalized via division of the

magnitude of ~geff : |~geff | =
√
g2

eff,x + g2
eff,y + g2

eff,z.

Finally, we measure how well each unit area of the surface aligns with the local

equipotential surface. This is defined with the inner product of n̂ and ĝ:

n̂ · ĝeff = n̂xĝeff,x + n̂yĝeff,y + n̂zĝeff,z. (3.28)

We find this quantity on each point generated on the surface by a combination of θ and

φ, then we add up all the (n̂ · ĝeff)’s and divide by the number of (θ, φ) combinations.

Our metric is calculated as

M =
∑
Nθ

∑
Nφ

n̂ · ĝeff

NθNφ

, (3.29)

where Nθ is the number of values of θ in which points were generated, and Nφ is the

number of values of φ over which points were generated. Usually we picked ten values

of each. It is this metric M which is then computed for each combination of CMB

axial ratios pc = bc/ac and qc = cc/ac. If the surface coincides with an equipotential

surface, then M is equal to 1.

3.7 Sequence of Runs Done and Contour Plots

We define Nx as half the number of cells in the x direction, and similarly for Ny

and Nz. In all of the runs, Nx = Ny = Nz, and I will usually just refer to Nx when

discussing the resolution. A low-resolution run set Nx = 15, a medium-resolution run

has Nx = 30, and a high-resolution set Nx equal to 60. Three low resolution runs

(Nx = 15) were done for each of the four shapes calculated by R06, corresponding to

core densities of 2700, 3000, and 3300 kg m−3. During each run every possible triaxial

ellipsoid pc and qc ratio for the core was tested. For each combination of pc and qc,

M and the total mass error were calculated. We then calculated a quantity from the
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metric that we call “fit angle”:

Θ = cos−1M. (3.30)

This represents the angle between n̂ and ĝeff averaged over the whole surface (either

the outer surface or the CMB).

In our first formulation, the code described above took more than two weeks to

complete a low-resolution run. We then took all of the functions and definitions in

the code and, where possible, vectorized all array operations. As a result of this

vectorization, the code was optimized greatly from its previous state, so that it now

takes around ten days to complete a high-resolution run.

Two pc vs. qc contour plots in Θ were produced corresponding to each run, one

plot for the outer surface and another for the CMB surface. This way, the plots

can be visually scanned to look for which combination of pc and qc for the core best

minimizes the metric for both the outer surface and CMB surface. Two particular

shape configurations which looked promising were then run again at medium resolu-

tion (Nx = 30) and high resolution (Nx = 60). These shapes correspond to shape 1

(from Table 1.1), the Jacobi ellipsoid with its rotation axis perpendicular to our line

of sight, with a core density of 2700 kg m−3; and also to shape 4 (also from Table

1.1), the Maclaurin spheroid which is more spherical in shape, with a core density of

3300 kg m−3.

A new way of displaying contour plots was created for many of our results. Contour

lines for the surface fit angles were overlain onto a contour plot of the CMB fit angles,

and markers were placed at the points on the plots corresponding to where the fit angle

was minimized, for both the surface and the CMB. Using this type of combination

plot overlay, we have the ability to see which configurations have ideal regions that

overlap most closely. Those regions that show the best overlap between the surface
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and CMB are considered to be the most stable solutions. This will tell us which is

the most likely core density for a given outer surface shape. The core shape can then

be calculated from the solution’s location on the contour plot, and from the core’s

shape, dimensions, and density, we can then build a complete picture of what the

interior of Haumea looks like.

We also focused on a fifth shape, from Lockwood et al. (2014). This shape is a

Jacobi ellipsoid very similar to shape 1, but it was calculated in a more robust way,

using data from the first observations of Haumea in which it was resolved from its

satellites (Lockwood et al. 2014). This provided a pure light curve of Haumea alone,

and Jacobi’s formula was used in concert with the light curve to calculate this new

shape (Lockwood et al. 2014). More attention was given to the low core density

(2700 kg m−3) case for shape 5 instead of shape 1, and most of our highest-resolution

runs (Nx = 60) were performed for shape 5. The combination contour plot technique

described above was used largely for this shape, as well as for shape 4.
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Chapter 4

RESULTS

4.1 Initial Resolution Runs

Each time our code is run with a fixed value of core density ρc, it generates a

series of calculations for each possible combination of pc and qc for the core, subject

to the constraint 0.43 ≤ qc < pc ≤ 1. Running through all values of pc and qc will

morph the core’s dimensions through all allowable shapes of a triaxial ellipsoid. A

run also calculates the core’s longest axis ac, from which the other two core axes can

be quickly calculated, as well as the mass error- how closely the code approximated

Haumea’s actual mass after the density distribution was discretized. The outer surface

is held fixed for five different shapes: shapes 1 through 4 from R06, and shape 5 from

Lellouch et al. (2010) and Lockwood et al. (2014). These shapes are relisted in Table

4.1 (repeated from Table 1.1). So a single run will calculate the average metric (and

hence, average fit angle between potential and surface normal) on both the outer

surface and the core-mantle boundary (CMB), for all possible shapes of the core.

Before embarking on all of the runs we thought we needed, the code was tested

for speed and for numerical convergence as a function of resolution. Two factors

determine the code’s resolution. The first, Nx, is the number of grid spaces in a

particular dimension, in this case, x. Though the axes are of different lengths, Nx

was set equal to both Ny and Nz, so that each axis contained the same number of

grid spaces. Table 4.2 shows the results of the average outer surface fit angle (Θsurf)

for two trials each of five different values of Nx, in which the entire body of Haumea

was set at a uniform density of 2551 kg m−3 and the outer surface was defined by
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Shape a (km) b (km) c (km) p q φ Reference Nx

1 980 759 498 0.77 0.51 90◦ R06 15, 30

2 1250 540 430 0.43 0.34 > 47◦ R06 15

3 870 870 500 1 0.57 n/a R06 15

4 750 750 524 1 0.70 n/a R06 15, 30, 60

5 960 770 495 0.80 0.52 90◦
Lockwood
et al. 2014 30, 60

Table 4.1: Five Different Shapes for Haumea Tested in This Work.

shape 1. This density is taken from Lacerda and Jewitt (2007), assuming the angle

between the rotational axis and our line of sight (the aspect angle) was 90◦. Since

this is an analytic solution, we expect this uniform density case to produce a fit angle

of 0◦. Due to imperfect resolution, the outer surface is not smooth; therefore, Θsurf

will not be exactly zero, but it is expected to more closely approach zero with higher

resolution. The table shows the generally expected pattern, as the fit angle lessens

with higher resolution, although a question mark hangs over the Nx = 120 resolution

runs, in which the fit angle seemed to increase. In any event, the Nx = 120 resolution

was prohibitively time consuming. Thus, Nx = 60 was taken as our highest resolution

cases and considered sufficiently converged, at the 0.5◦ level.

Nx = Ny = Nz 8 8 15 15 30 30 60 60 120 120

Trial 1 2 1 2 1 2 1 2 1 2

Θsurf (◦) 7.87 7.84 5.52 4.86 1.79 2.09 0.47 0.42 1.16 1.24

Table 4.2: The Relationship Between Resolution (Nx) and Θsurf , the Fit Angle (in
Degrees) Between the Gravity Vector and the Surface Normal, Averaged Over the
Outer Surface. Nx Is the Number of Grid Spaces Along Each Axis, and Nx = Ny =
Nz.
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The second factor determining resolution is N , the number of Monte Carlo points

used to calculate the density in grid cells straddling the core-mantle boundary. This

value was varied between 10 and 104, and the results of varying both N and Nx =

Ny = Nz are shown in Table 4.3. For each resolution case, three runs were per-

formed (with the exception of the (Nx, N) = (15, 104) case, for which four runs were

performed). The average of the outer surface fit angle for the three runs and the

standard deviation σ of the three runs from the mean are listed for each case. Due

to time constraints, we ultimately chose (Nx, N) = (60, 102) as our highest resolution

runs, (Nx, N) = (30, 102), as our medium resolution runs, and (Nx, N) = (15, 102) as

our lowest resolution runs. For each value of Nx, especially Nx = 60, there is very

little difference in Θsurf average between the N = 102 and the N = 104 cases, so

we considered the N = 102 case sufficiently converged. At the lowest resolution, the

average of Θsurf was constant only to within 5◦; at medium resolution, the precision

of Θsurf is about 2◦; and at highest resolution the average Θsurf is converged to within

about 0.5◦. The majority of our runs will employ Nx = 60 and N = 102. Given

the mismatch of 0.5◦ from the analytic solution for this resolution, we consider ĝ and

n̂ aligned if Θsurf ≤ 0.5◦. This is then our finest sensitivity of checking how closely

aligned are the gravitational potentials and the surface normals around each surface.

4.2 pc − qc Contour Plots

In this section I present the graphical outputs of my simulations. As explained

above, each figure graphs the axial ratios of the core pc vs. qc, and within this region

representing all possible ellipsoidal shapes of the core, a color coded contour plot

is overlain, which represents the values of the average fit angles over the respective

surface (either the outer surface, Θsurf , or the CMB, Θcmb). This representation allows

for a visual verification of the minimum Θsurf (or Θcmb) between the surface normal
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Nx N Average Θsurf (◦) σ

15 101 4.7033 0.9094

102 4.9133 0.1007

103 4.8900 0.0529

104 4.7925 0.0340

30 101 1.6167 0.0751

102 2.0267 0.1677

103 2.0067 0.0404

104 2.0000 0.0000

60 101 0.4993 0.0872

102 0.4370 0.0030

103 0.4467 0.0058

104 0.4457 0.0006

Table 4.3: Fit Angle Computed in Test Runs with Various Resolutions of the Ana-
lytic Case for ρ = 2551 kg m−3. Nx Is the Number of Grid Spaces in Each Direction,
While N Is the Number of Monte Carlo Points Populating Each Grid Space. For
Each Value of Nx, Five Runs Were Produced. The Average Fit Angle (in Degrees)
of These Runs Is Θsurf , and σ Is the Standard Deviation for Each Set of Three Runs.

(or CMB normal) and effective gravity over the surface, to within a precision of 0.5◦.

If the optimal (lowest fit angle) (pc, qc) combination for the CMB matches the optimal

(pc, qc) for the outer surface, and the optimal fit angle for each is ≤ 0.5◦, then that

set of pc and qc is a solution for the shape of both the CMB and the outer surface.

This minimum fit angle gives the core shape required for the most stable surface.

Therefore, when the optimal Θ (≤ 0.5◦) appears in the same spot on both the outer

surface and CMB plots, there is a stable configuration for Haumea.
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I performed runs on each of the five shapes by changing the density of the core

throughout the range 2700 kg m−3 to 3300 kg m−3. The first set of runs were all

low-resolution (Nx = 15), to survey the parameter space and determine which config-

urations merited higher-resolution runs. Shapes 1-4 were each run at low resolution

for core densities of 2700 kg m−3, 3000 kg m−3, and 3300 kg m−3.

The results for shape 1 are shown in Figures 4.1-4.3. All of these figures show that

the match of the CMB to an equipotential surface is much more insensitive to changes

in core shape than is the outer surface’s match to an equipotential surface. The CMB

plots also reveal spots of poor equipotential match in places, but these spots diminish

with increasing resolution. When the core density is 2700 kg m−3, Θsurf shows a

minimum and most stable point in the region around (pc, qc) = (0.88, 0.5). This

corresponds to a core that is highly pole-flattened and has a moderately elliptical

equator. The axial ratios for the outer surface of shape 1 are (p, q) = (0.774, 0.508).

Also, it is apparent that for a core density ρc of 2700 kg m−3, the minimum Θ core

shape is very similar for both the surface and the CMB plots as expected, as the

simulation approaches the analytic solution. Figures 4.2 and 4.3 show that as the

core density increases, there is less of an overlap between the surface and CMB plots.

While there is a decent optimized Θ overlap between the plots for ρc = 3000 kg m−3,

the overlap appears stronger for ρc = 2700 kg m−3. There appears to be little to

no optimized Θ overlap for when ρc = 3300 kg m−3. This suggests that a low core

density of 2700 kg m−3 with an outer surface corresponding to shape 1 and a core

shape of around (pc, qc) = (0.88, 0.5) is a valid solution.

Figures 4.4-4.6 show the results from testing shape 2. These plots show practically

no overlap in optimized Θ between the surface and CMB for any possible core shape or

any feasible core density. This suggests that shape 2 does not provide a configuration

in which Haumea can reach interior and exterior equilibrium, and therefore shape 2
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(a) Contour pq Plot for Shape 1. (b) Contour CMB pq Plot for Shape 1.

Figure 4.1: Contour Plots of Fit Angle at CMB and Fit Angle at Surface Versus
Core Axis Ratios pc and qc with Core Density 2700 kg m−3.

(a) Contour pq Plot for Shape 1. (b) Contour CMB pq Plot for Shape 1.

Figure 4.2: Same as Figure 4.1, Except for a Core Density of 3000 kg m−3.
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(a) Contour pq Plot for Shape 1. (b) Contour CMB pq Plot for Shape 1.

Figure 4.3: Same as Figure 4.1, Except for a Core Density of 3300 kg m−3.

is not a solution. Shape 2 is the alternate Jacobi ellipsoid calculated by R06; however

its outer axial ratios are (p, q) = (0.432, 0.344). Neither axial ratio can take values

less than 0.43 and still fall in the realm of a stable Jacobi ellipsoid. Thus, it might

be mathematically expected that shape 2 would not provide a stable solution for any

core density or shape.

Shape 3 and 4 correspond to Maclaurin spheroids, in which p = 1. The ratio

c/a = q describes the polar flattening ratio for these equatorially symmetric shapes.

Figures 4.7-4.9 show contour plots for shape 3, which has axial ratio q = 0.545. There

appears to be slight optimized fit angle (Θ) overlap between the surface and CMB

plots when ρc = 2700 kg m−3, but for higher core densities, there is no apparent

overlap.

Shape 4 is a Maclaurin spheroid with q = 0.699, a rounder spheroid than shape

3. The contour plots for shape 3 show that when the core shape is made more

spherical in the polar direction (i.e. when polar flattening decreases), the match to
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(a) Contour pq Plot for Shape 2. (b) Contour CMB pq Plot for Shape 2.

Figure 4.4: Same as Figure 4.1, but for Shape 2, with Core Density 2700 kg m−3.

(a) Contour pq Plot for Shape 2. (b) Contour CMB pq Plot for Shape 2.

Figure 4.5: Same as Figure 4.4, Except for a Core Density of 3000 kg m−3.
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(a) Contour pq Plot for Shape 2. (b) Contour CMB pq Plot for Shape 2.

Figure 4.6: Same as Figure 4.4, Except for a Core Density of 3300 kg m−3.

(a) Contour pq Plot for Shape 3. (b) Contour CMB pq Plot for Shape 3.

Figure 4.7: Same as Figure 4.1, but for Shape 3, with Core Density 2700 kg m−3.
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(a) Contour pq Plot for Shape 3. (b) Contour CMB pq Plot for Shape 3.

Figure 4.8: Same as Figure 4.7, Except for a Core Density of 3000 kg m−3.

(a) Contour pq Plot for Shape 3. (b) Contour CMB pq Plot for Shape 3.

Figure 4.9: Same as Figure 4.7, Except for a Core Density of 3300 kg m−3.
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(a) Contour pq Plot for Shape 4. (b) Contour CMB pq Plot for Shape 4.

Figure 4.10: Same as Figure 4.1, but for Shape 4, with Core Density 2700 kg m−3.

an equipotential surface of Haumea’s outer surface largely decreases. shape 4 shows

this effect is only more pronounced in Figures 4.10-4.12, as the match is extremely

low when the core is more spherical. While there is little to no overlap between outer

surface and CMB optimized Θ regions for low to medium core densities, there seems

to be a fairly good overlap for ρc = 3300 kg m−3. This overlap occurs around the

region where the core has a shape (pc, qc) = (1, 0.64), quite similar in shape to the

outer surface but flatter.

Between shapes 1-4 and all of the core density cases, the two most stable con-

figurations appear to be shape 1 with a low density, 2700 kg m−3 core, and shape

4 with a high density, 3300 kg m−3 core. These two configurations were then run

at medium (Nx = 30) and high (Nx = 60) resolution, with an improved faster code

which was optimized through vectorization. The results for shape 1 are shown in

Figures 4.13 and 4.14. With higher resolution, the regions with optimized surface

fit angle show up with much sharper detail in the same core shape location, roughly
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(a) Contour pq Plot for Shape 4. (b) Contour CMB pq Plot for Shape 4.

Figure 4.11: Same as Figure 4.10, Except for a Core Density of 3000 kg m−3.

(a) Contour pq Plot for Shape 4. (b) Contour CMB pq Plot for Shape 4.

Figure 4.12: Same as Figure 4.10, Except for a Core Density of 3300 kg m−3.
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(a) Contour pq Plot for Shape 1. (b) Contour CMB pq Plot for Shape 1.

Figure 4.13: Same as Figure 4.1, but for Higher Resolution (Nx = 30).

around (pc, qc) = (0.88, 0.50). Higher resolution also has an effect on all CMB plots

to smooth out the field and to shrink all of the poor fit angle spots, which were often

quite large and numerous at lower resolution. The region in the CMB plot containing

the optimized Θcmb also is more easily seen, as that region of the plot contrasts more

with its surroundings. The overlap between both plots’ optimized Θ regions is seen

more strongly with higher resolution. Higher resolution supports shape 1 with a low

density core being a more stable configuration.

The higher resolution plots for shape 4 with a high core density are shown in

Figures 4.15 and 4.16. A similar sharpening of the optimized minimum fit angle

regions appears in these figures as for shape 1, and the core shape which most closely

matches an equipotential surface here looks to be around (pc, qc) = (1, 0.70), rather

than (1, 0.64) as appeared in lower resolution.

As an additional case, we lastly considered the axes reported by Lockwood et al.

(2014). Lockwood et al.́s observations are important because they captured the first
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(a) Contour pq Plot for Shape 1. (b) Contour CMB pq Plot for Shape 1.

Figure 4.14: Same as Figure 4.13, but for Higher Resolution (Nx = 60).

(a) Contour pq Plot for Shape 4. (b) Contour CMB pq Plot for Shape 4.

Figure 4.15: Same as Figure 4.12, but for Higher Resolution (Nx = 30).
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(a) Contour pq Plot for Shape 4. (b) Contour CMB pq Plot for Shape 4.

Figure 4.16: Same as Figure 4.15, but for Higher Resolution (Nx = 60).

light curve of Haumea in which Haumea was resolved separately from its satellites.

From this light curve, more accurate dimensions are expected, and they confirmed the

dimensions calculated by Lellouch et al. (2010) through thermal observations. These

dimensions are then our shape 5 from Table 4.1, which is similar to shape 1. Shape 5

has axial ratios (p, q) = (0.802, 0.515), as opposed to shape 1 having the dimensions

(p, q) = (0.774, 0.508). So shape 5 is a bit less flattened in the polar direction, but

it is significantly rounder in the equatorial direction. From this point shape 5 was

exclusively focused on instead of shape 1.

Medium and high resolution plots for both the surface and CMB of shape 5 are

shown in Figures 4.17 and 4.18, for a core density of 2700 kg m−3. Figures 4.19 and

4.20 show shape 5 with a core density of 3000 kg m−3 at medium and high resolution.

Similarly, Figures 4.21 and 4.22 show shape 5 with ρc = 3300 kg m−3 at medium and

high resolution. As expected due to its similarity with shape 1, shape 5 shows the

best overlap between regions of optimized Θ for surface and CMB at low core density,
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(a) Contour pq Plot for Shape 5. (b) Contour CMB pq Plot for Shape 5.

Figure 4.17: Same as Figure 4.13, but for Shape 5, with Core Density 2700 kg m−3

and Nx = 30.

ρc = 2700 kg m−3. As the core density increases, these minimum fit angle regions

between the outer surface and the CMB plots are seen to move away from each other

more and more, signifying that Haumea is not stable with a higher core density in

this shape. The most stable configuration at low core density appears to be at a core

shape of around (pc, qc) = (0.80, 0.50), almost exactly matching the shape of the outer

surface.

Because shape 5 with low core density is such a promising candidate for overall

gravitational and rotational stability for Haumea, we focus more in detail on this

Jacobi ellipsoid by testing it out at seven different core densities, spanning the range

from 2700 kg m−3 to 3300 kg m−3 in increments of 100 kg m−3. As mentioned earlier,

this range of core densities covers the entire range of feasible silicate densities expected

in the Kuiper Belt.

In these seven high-resolution runs, we improved our ability to see how well (pc, qc)

combinations yielding the optimized Θ match by superimposing the contour plots for
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(a) Contour pq Plot for Shape 5. (b) Contour CMB pq Plot for Shape 5.

Figure 4.18: Same as Figure 4.17, but for Higher Resolution (Nx = 60).

(a) Contour pq Plot for Shape 5. (b) Contour CMB pq Plot for Shape 5.

Figure 4.19: Same as Figure 4.17 (Nx = 30), Except for a Core Density of 3000 kg
m−3.
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(a) Contour pq Plot for Shape 5. (b) Contour CMB pq Plot for Shape 5.

Figure 4.20: Same as Figure 4.19, but for Higher Resolution (Nx = 60).

(a) Contour pq Plot for Shape 5. (b) Contour CMB pq Plot for Shape 5.

Figure 4.21: Same as Figure 4.17 (Nx = 30), Except for a Core Density of 3300 kg
m−3.
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(a) Contour pq Plot for Shape 5. (b) Contour CMB pq Plot for Shape 5.

Figure 4.22: Same as Figure 4.21, but for Higher Resolution (Nx = 60).

the outer surface and the CMB. In these plots, shown in Figure 4.23 onward, the

contour plot that forms the base color represents the CMB fit angle Θcmb, with values

reported in the legend. Line contours for surface fit angle (Θsurf) values were then

overlain on top of this plot, with number values printed in the contours. Since the

accuracy at this resolution is around 0.4◦, contours were placed every 0.5◦. A white

star marks the particular core shape that gives a minimum fit angle for the outer

surface, and a yellow star marks the corresponding minimum fit angle for the CMB.

The closer these stars are, the closer is the configuration to equipotential surfaces.

By analyzing these seven combination contour plots in Figures 4.23-4.29, the white

and yellow stars do indeed separate further with increasing density beyond 2800 kg

m−3. Both stars are roughly the same distance away from each other at core densities

of 2700 kg m−3 and 2800 kg m−3, however. Also, the 0.5◦ contour circle around the

white star shrinks with increasing core density, indicating a larger acceptable range

of core shapes with lower core density. The minimum Θsurf and the minimum Θcmb

63



are both less than 0.5◦ for ρc equal to both 2700 and 2800 kg m−3. The (pc, qc)

combination at optimized Θcmb lies within 3 times the precision (0.5◦) of the (pc, qc)

combination for minimum Θsurf for both core densities, also.

High-resolution combination plots similar to those for shape 5 are shown for shape

4 in Figures 4.30-4.36. The (pc, qc) combinations which lead to the optimized fit angle

Θ for surface and CMB plots are closest for shape 4 at a core density of 3300 kg m−3,

in Figure 4.36. In this example, they are within 0.5◦ of one another, which is a closer

overlap than for shape 5 at ρc = 2700 kg m−3. The minimum fit angle Θ for each

plot in Figure 4.36 also has a value less than 0.5◦, so that for this configuration, the

outer surface and CMB both closely match equipotential surfaces. The optimized fit

angles also seem to have these values and similarities for a core density of 3200 kg

m−3, as well, though they are not quite as close together in that case.

Here, I briefly address the marked splotchiness of the CMB contour plots. I suspect

that these spots are caused by the random nature in which the grid cells straddling the

CMB are populated. This leads to the code creating a bumpiness in the CMB surface.

It can be seen from the figures in this chapter that the spots decrease in size with

increasing resolution. While more spots appear with higher resolution, they obscure

the fit angle trends much less than the larger but fewer spots at lower resolution. A

convergence test was done to draw a relationship between the largest spot size and

the resolution, and the result of this test is shown in Figure 4.37. Convergence occurs

rapidly for increasing resolution.

In summary, only shape 4 with a core density of 3200–3300 kg m−3 has optimal

(pc, qc) for the CMB and the outer surface that overlap to within the code’s precision

( 0.5◦). The only other case which comes close to this is shape 5 with a core density

of 2700–2800 kg m−3, although in that case the optimal (pc, qc) for the CMB and

surface overlap only to within three times the precision of our code. Shape 5 with
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Figure 4.23: Contour Plot of Fit Angle at CMB Versus Core Axis Ratios pc and qc
(Blue Color), and Fit Angle at Surface (White Contours).
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Figure 4.24: Same as Figure 4.23, Except for a Core Density of 2800 kg m−3.
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Figure 4.25: Same as Figure 4.23, Except for a Core Density of 2900 kg m−3.
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Figure 4.26: Same as Figure 4.23, Except for a Core Density of 3000 kg m−3.
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Figure 4.27: Same as Figure 4.23, Except for a Core Density of 3100 kg m−3.
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Figure 4.28: Same as Figure 4.23, Except for a Core Density of 3200 kg m−3.
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Figure 4.29: Same as Figure 4.23, Except for a Core Density of 3300 kg m−3.
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Figure 4.30: Same as Figure 4.23, but for Shape 4.
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Figure 4.31: Same as Figure 4.30, Except for a Core Density of 2800 kg m−3.
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Figure 4.32: Same as Figure 4.30, Except for a Core Density of 2900 kg m−3.
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Figure 4.33: Same as Figure 4.30, Except for a Core Density of 3000 kg m−3.
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Figure 4.34: Same as Figure 4.30, Except for a Core Density of 3100 kg m−3.
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Figure 4.35: Same as Figure 4.30, Except for a Core Density of 3200 kg m−3.
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Figure 4.36: Same as Figure 4.30, Except for a Core Density of 3300 kg m−3.
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core densities ≥ 2900 kg m−3 do not present viable solutions. Shape 4, however, is

unlikely to be the true shape of Haumea, because as a Maclaurin spheroid, it does

not present varying areas to the observer as it rotates, like a Jacobi ellipsoid does, in

order to produce a light curve like Haumea’s, and it would require implausible albedo

variations to mimic the light curve. For the ellipsoid cases that we investigated

(shapes 1, 2, and 5), none show results to within the code’s precision. This implies

that for an ellipsoidal outer shape, only a very homogeneous body with near uniform

density is a hydrostatic equilibrium solution.
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Figure 4.37: The Relationship Between Largest Spot Size (Measured in Terms of
Axial Ratios from the Contour Plots) and the Resolution Nx. If the Spots Are Caused
by the Bumpiness of the CMB, Then This Graph Shows a Convergence of the Surface
with Higher Resolution.
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Chapter 5

CONCLUSIONS

5.1 Review

Haumea’s surface of pure water ice (Trujillo et al. 2007) and bulk density of 2600

kg m−3 (Lockwood et al. 2014) are surprising features, and seemingly contradictory

at first glance. The surface ice must take up a very small amount of the bulk volume

of Haumea, while the rest of it must be a core of denser rock. Its surface features

apparently belie a very different interior.

Haumea displays a 3.1954-hour periodic light curve, which is double-peaked with

a magnitude variation of ∆m = 0.28 (R06). Because its surface displays a lack of sig-

nificant spectral variation and uniformly deep water-ice absorption features (Pinilla-

Alonso et al. 2009), its light curve must be the result of Haumea having an oblong

shape, specifically one consistent with a Jacobi ellipsoid in hydrostatic equilibrium.

This shape presents a changing area to the observer as it rotates, and its equatorial

axial ratio has been measured from the light curve to be p = b/a = 0.80 (Lockwood

et al. 2014). Jacobi’s relation for a triaxial Jacobi ellipsoid in equilibrium was used

to estimate the polar axial ratio as q = c/a = 0.52 (Lockwood et al. 2014), under the

assumption that Haumea is uniform in density. But Haumea cannot be uniform in

density and also consist of a rocky core with an icy mantle.

We addressed this problem by writing a code which simulated a two-phase el-

lipsoid, made up of a core with silicate-like density in the range 2700 to 3300 kg

m−3 and a mantle coating with ice-like density of 935 kg m−3. We discretized the

space making up this ellipsoid and then altered the core’s axial ratios pc = bc/ac and
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qc = cc/ac to let it take every shape subject to the constraint for Jacobi ellipsoids:

0.43 ≤ qc < p ≤ 1. All other parameters (angular velocity, density of core and mantle,

outer surface dimensions) were kept fixed. We then calculated the angle of fit between

the downward surface normal and the total acceleration vector (including gravity and

centrifugal force), averaged over selected points around the entire surfaces, both the

outer surface and the CMB. If Haumea is in hydrostatic equilibrium, then the outer

surface and the CMB should both conform to equipotential surfaces. Therefore, the

core shape that simultaneously minimizes both the average surface fit angle and the

average CMB fit angle will be a solution to a possible configuration of Haumea.

Upon taking a full range of core shapes and densities into consideration for a

variety of outer shapes of Haumea (shapes 1–5 from Table 4.1), shape 4 (from R06)

with a core density of 3200–3300 kg m−3 and shape 5 (which represents Lockwood

et al.́s (2014) measurements) with a core density of 2700–2800 kg m−3 emerged as

the two best solutions (ignoring shape 1 due to its similarity to shape 5). The low

density shape 5 configuration (surface and CMB) matched up to an equipotential

surface to within 3 times our code’s precision, while the high core density shape 4

configuration displayed a match of its outer and CMB to equipotential surfaces to

within our code’s precision. For shape 5, our equipotential metric differs from a match

by several percent if ρc > 2800 kg m−3.

While a Maclaurin spheroid with a high density, 3300 kg m−3 core such as shape

4 may prove to be a stable solution, it is unlikely to be Haumea’s actual shape. The

reason is because the only way for an equatorially symmetric body like a Maclaurin

spheroid to produce the symmetrical double-peaked light curve that Haumea exhibits

would be for its surface to display roughly equal surface heterogeneities on perfectly

antipodal points along the equator. While this is within the realm of possibility, it is

probabilistically very unlikely. Therefore, the most likely shape to produce Haumea’s
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observed light curve is a Jacobi ellipsoid. Our results show that a Jacobi ellipsoid such

as shape 2 displays no stability for any core density, but that an ellipsoid with axial

ratios corresponding to shape 1 and shape 5 does exhibit stability for core densities

less than about 2700–2800 kg m−3. Since shape 1 and shape 5 have very similar

dimensions, only shape 5 will be discussed here, as it is a more robust solution to

Haumea’s shape taken from more recent and more stringent measurements (Lellouch

et al. 2010, Lockwood et al. 2014).

5.2 Discussion

I conclude that Haumea most likely has a triaxial Jacobi ellipsoid shape very

similar to shape 5, with a low core density no greater than 2700 to 2800 kg m−3. This

configuration represents the most likely outer shape, as well as the most stable outer

shape and core shape with respect to the gravitational/rotational equipotential. In

this configuration, Haumea’s outer radial axes are a = 960 km, b = 770 km, and

c = 495 km, with c also doubling as the rotation axis. The axial ratios of this outer

shape are then (p, q) = (0.802, 0.516). If the core density is 2700 kg m−3, then the

core shape that optimizes the surface fit angle (at a value of 0.266◦) has axial ratios

(pc, qc) = (0.798, 0.499), very close in shape to the outer surface. Assuming the core

axes are aligned with the outer surface axes, the radial axis dimensions for the core

under these conditions are ac = 956 km, bc = 763 km, and cc = 477 km. This would

lead to ice thicknesses of only 4 km over the a axis, just 7 km over the b axis, and 18

km at the poles. This configuration of Haumea is shown in Figures 5.1 and 5.2, in

polar and equatorial cross sectional views.

The mass error in this particular run of the code (shape 5 with ρc = 2700 kg m−3,

Nx = 60) was 0.06%, and the core mass would be 3.93 × 1021 kg, as compared to

3.58× 1021 kg, as calculated by Cook et al. (2011). If the silicate mass fraction f for
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an ellipsoid is calculated with the following equation,

f =
ρcore

ρmantle

(
abc

acbccc
− 1
)

+ ρcore

, (5.1)

then in the case of core density being 2700 kg m−3, Haumea’s silicate mass fraction

is 98.2%. This contrasts with silicate mass fractions of 72% for Pluto and 65% for

Eris, according to models by Hussmann et al. (2006).

From Figures 5.1 and 5.2, it is clear that Haumea’s interior is remarkably uniform

and possesses very low density for silicates, which typically have densities around

3300 kg m−3. This may mean the core consists of hydrated silicate. Desch and Neveu

(2015) predict that Haumea has a core made up of hydrated silicates at a density

of 2900 kg m−3. This prediction follows calculations in which they assumed that

following an impact of two large differentiated progenitor bodies, the core contained

some ice. As per the discussion below in Section 5.3, following the impact, the rock

and water reacted to form serpentines and underwent convection, which homogenized

and thoroughly hydrated the interior (Desch & Neveu 2015).

The ice crust is extremely thin, which becomes more apparent from the figures. It

is especially thin over the equator (less than 10 km) and it is at its thinnest over the

long (a) axis, as little as 4 km. The Dark Red Spot is along the equator, and while

not directly over the a axis, it does lie over some of the thinnest ice regions. Since the

ice fraction by mass is less than 2%, we can approximate Haumea to be uniform in

density, thus the use of Jacobi’s formula to aid in calculating Haumea’s dimensions

and bulk density is still valid.

It is also strikingly apparent from Figure 5.1 just how flattened Haumea is in the

polar direction. When compared to the a− b cross section in Figure 5.2, we see that

Haumea is much more elongated in the polar direction than in the equatorial plane, in

which it is significantly rounder. Yet this is the shape for this particular a, b, angular
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velocity, and bulk density that is in hydrostatic equilibrium, according to Jacobi’s

formula.

If Haumea’s core density were 2800 kg m−3 instead of 2700 kg m−3, the configu-

ration will change slightly. For this core density, the minimum surface fit angle (of

0.407◦) occurs for a core shape of (pc, qc) = (0.793, 0.488), and with axes of ac = 948

km, bc = 752 km, and cc = 463 km. This core shape leads to ice thicknesses of 12 km

over the a axis, 18 km over the b axis, and 32 km over the poles. The ice with a core

density of 2800 kg m−3 is thicker everywhere since the core would be smaller, in order

to allow the total density of Haumea to remain 2600 kg m−3. For this particular

shape of the core, the calculated mass error is 0.22%, and the mass of the core is

3.87 × 1021 kg. The silicate mass fraction for this configuration is 96.5%, leaving us

with a significantly larger fraction of ice. The uniform density approximation may

still be made, but it is a weaker assumption than with ρc = 2700 kg m−3. Based on

our results, I would not expect the core density to be much higher than 2800 kg m−3.

In ascertaining whether the core density is more likely to be 2700 kg m−3 or

2800 kg m−3 for shape 5, the minimum fit angles for both the surface and the CMB

are clues. For ρc = 2700 kg m−3, the minimum surface fit angle is 0.266◦ and the

minimum CMB fit angle is 0.488◦. But for ρc = 2800 kg m−3, the minimum surface

fit angle is 0.407◦ while the minimum CMB fit angle is 0.518◦. At this resolution

(Nx = 60), the accuracy of the code was determined to be about 0.4◦, and while

both surface fit angles are close to this, the smallest fit angles are both for a core

density of 2700 kg m−3. There is an expectation that the core density is actually

lower than this still, but if the core density was much smaller, the equations I use

to calculate the core axes (i.e. Equation 3.5 and associated formulas) will generate

a core with dimensions exceeding those of the outer surface. Deviations of pc and qc

from the homeoidal core shape are less possible with decreasing core density, so that
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the density of the core material is probably no less than 2650 kg m−3. Since I have

tested the core densities at intervals of 100 kg m−3, and because 2600 kg m−3 is an

unattainably low density, 2650–2700 kg m−3 seems a very likely lower limit to the

core density from my calculations.

It should be stressed that I based the core axis calculations for Figures 5.1 and

5.2 on the minimum fit angle for the outer surface, and not that of the CMB. This is

primarily because the minimum was more sharply visible for the outer surface plot,

as opposed to the flat, spread out CMB plot, where there is a large area of similar

value around the minimum CMB fit angle. If the core axes were calculated for the

CMB minimum fit angle, then the ice would be thinnest at the poles and thicker over

the equator (restricting this discussion to the case of shape 5 with a core density of

2700 kg m−3).

The possibility that the Dark Red Spot is an impact scar is intriguing. Revisiting

ice thicknesses from above, if the core density is 2700 kg m−3 the ice thickness of the

mantle ranges from 4–18 km, and if the core density is 2800 kg m−3 the ice thickness

ranges from 12–32 km. This ice thickness is too small to avoid significant losses by

impacts, especially over the equator. Rubin et al. (2014) calculate that the probability

of an impact of an object greater than 15 km onto a Charon-sized target to be less

than 10−3 in the first billion years of the Solar System. Haumea’s radius is 18% larger

than Charon’s, which makes its cross-sectional area 40% larger, yet Haumea is likely

to have a similar impact probability to Charon’s in the first billion years of the Solar

System (see Theories on Haumea’s Origin, Chapter 1). The DRS is likely to be a more

recent scar, though, if it is one at all. Since the Late Heavy Bombardment, there may

have been approximately only 1 impact by an object with diameter ≥ 15 km onto a

body as large as Haumea in the Kuiper Belt (Rubin et al. 2014). Impactors with sizes

of a few km across were probably very common, however, and such impactors would
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have preferentially removed the ice at the equator. Therefore, cratering considerations

allow us to set a rough lower limit to the core density of ρc & 2800 kg m−3. From

the calculations in this work, a rough upper limit to the core density can be set of

ρc . 2800 kg m−3. Using these arguments, we can conclude that the most likely core

density of Haumea is ρc ≈ 2800 kg m−3.

5.3 Implications

The fact that Haumea shows a closer match to equipotential surfaces with a lower

core density suggests much about its formation history. If ρc = 2700 kg m−3, then

the core would most likely consist of a hydrated silicate, perhaps hydrated olivine.

This would suggest much mixture between water and silicate in the past.

Desch and Neveu (2015) provide a scenario that may explain our current picture

of Haumea. They propose a collision which merges two progenitor bodies, each with

radius 650 km and bulk density 2000 kg m−3, sometime during the Late Heavy Bom-

bardment period. If this collision occurred around this timeframe, then the progenitor

bodies will have had time for radioactive decay to allow for heating and differentiation

into structures with rocky cores, icy mantles, and thin crusts composed of an undif-

ferentiated rock/ice mixture. During the collision, Desch and Neveu propose that

the cores merged and that the undifferentiated crusts and most of the icy mantles

were ejected. Immediately after the impact, ice is melted throughout the interior,

almost all the way to the surface. After the collision, Haumea would consist of a core

composed of mostly rock and some ice, with a very thin ice mantle, only tens of kilo-

meters thick. Hydrothermal circulation throughout the core would then fully hydrate

the rock, and the rock and water would react to form serpentines. Convection would

uniformly mix and homogenize the core, while also cooling the interior and preventing

temperatures from rising high enough to dehydrate the rock. Their conclusion is that
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Haumea would end up with a core density of 2900 kg m−3 and a bulk density of 2530

kg m−3. If some more ice convects in, which may be likely, this can further lower the

core density, leading to numbers which conform with this work’s conclusions.

That almost all but not all of the ice was ejected is an interesting occurrence.

One possibility may be that all of the ice was ejected and the ice present now was

emplaced later. This may have happened via outgassing of water from the interior.

According to our calculations, the ice mantle appears to be at its thinnest over

the equator, specifically over the a axis. This may allow some material to show

through from beneath the ice, especially if the Dark Red Spot is an impact scar.

Though this has been ruled out as a topographic feature (Lacerda 2010), it could be

a topographically relaxed impact scar.

5.4 Caveats and Future Work

Several assumptions and potential limitations were applied to Haumea in this

work that may have implications on future work that can be done. First of all, it

was assumed that the core axes are aligned with the outer surface axes. Perhaps

Haumea’s rapid rotation rate has caused the a axis of the outer surface to lag behind

the ac axis of the core. If the axes are actually misaligned, then significant changes

must be made to the equations that were used to calculate the core axes. An angular

term must be introduced to allow the core to be rotated with respect to the outer

surface. The outer surface shape will remain fixed, but the more the core is rotated,

the more the ac axis will be limited to smaller lengths. This may allow pc to approach

values closer to 1, and it may also change the nature of Haumea’s equilibrium state.

This leads to consideration of another assumption that was made in this work,

namely that Haumea is in a state of hydrostatic equilibrium. If it turns out that

Haumea is not in hydrostatic equilibrium, then that would change our assumption
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about the metric our code calculates. The surface normal would not necessarily be

parallel to the gravity vector at any given point, on the outer surface or on the core-

mantle boundary. It then would make the conclusions in this work less valid, though

our results would still serve to narrow down the core density, shape, and size in a

general manner. If Haumea is not in hydrostatic equilibrium, that may also imply

that its CMB is not a sharp boundary.

Future considerations should not only include misalignment of the axes and devi-

ations from hydrostatic equilibrium, but also a closer look at the implications of the

minimum fit angle for the CMB contour plots. If the CMB is a well-defined boundary

within Haumea, then a further development of how baroclinicity and vorticity affect

the stability of that boundary could be performed. This may affect our interpretation

that the thinnest ice is on the equator, and we may end up finding the thinnest ice

over the poles.

5.5 Final Thoughts

Because of its collisional family and its unusual interior structure, Haumea is one

of the most important objects to study in that it may provide our best opportunity

to see the inside of a KBO. Understanding the makeup of a KBO can further help us

understand how KBOs and other objects may have formed in that part of the solar

system. Understanding further details of Haumea’s impact history may also shed

further light on how populated the Kuiper Belt may have been at certain times. The

upcoming flyby this summer of the New Horizons spacecraft past Pluto, the other

known multiple KBO system, may shed more light on these questions. This will be

our first close encounter with a KBO, and perhaps it will allow us to gain new insights

into Haumea. We are standing on the edge of knowing our outer solar system better

than we have ever known it before.
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Figure 5.1: Vertical Cross Section of Haumea (the a− c Section).

90



Figure 5.2: Horizontal Cross Section of Haumea, Cut Through the Equatorial Plane
(the a− b Section).
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Appendix A

DERIVATION OF MACLAURIN’S FORMULA

To derive the equilibrium shapes of a homogeneous body rotating with a uniform

angular velocity ω, we must first start with the second order virial equation. This

equation relates potential energy, moment of inertia, and pressure tensors. But to

show where the second order virial equation comes from, first we must take one more

step back, to the hydrodynamic equation which describes fluid motions within the

body. (Unless otherwise referenced, this material is collected from Chandrasekhar

1987). Let P ≡ P(x, t) be isotropic pressure, and let ρ ≡ ρ(x, t) be density. Also,

let xi be the coordinate in the ith direction, ui be the velocity component in the ith

direction, and similar for ωi. Some other physical definitions are in order before we

get to the hydrodynamic equation. The gravitational potential is defined as

Φ(x) = G

∫
V

ρ(x′)

|x− x′|
dx′, (A.1)

where ρ(x′)/|x − x′| is integrated over the entire volume V of the body. Using this

potential, the potential energy is calculated according to the following equation:

P = −1

2

∫
V

ρ Φ dx (A.2)

and kinetic energy is defined as

K =
1

2

∫
V

ρ|~u|2dx. (A.3)

Another important physical quantity will be the moment of inertia I, which is defined

as

I =

∫
V

ρ(x)|x|2dx. (A.4)
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A final quantity of importance is the work done by the system, Π:

Π =

∫
V

Pdx. (A.5)

What will be needed in the second order virial equation are the tensor forms of

the gravitational potential, potential energy, kinetic energy, and moment of inertia,

respectively:

Φij(x) = G

∫
V

ρ(x′)
(xi − x′i)(xj − x′j)
|x− x′|3

dx′, (A.6)

Pij = −1

2

∫
V

ρΦijdx =

∫
V

ρxi
∂Φ

∂xj
dx, (A.7)

Kij =
1

2

∫
V

ρuiujdx, (A.8)

and

Iij =

∫
V

ρxixjdx. (A.9)

With the proper physical quantities defined, now we are ready to begin deriving

the second order virial equation by beginning with the hydrodynamic equation. If

gravity is the only force to which the body is subject, then in a frame of reference that

is rotating with the body’s own uniform angular velocity, the hydrodynamic equation

is

ρ
dui
dt

= −∂P
∂xi

+ ρ
∂Φ

∂xi
+

1

2
ρ
∂

∂xi
|~ω × ~x|2 + 2ρεilmulωm. (A.10)

The notation εilm is the Levi-Civita symbol, defined with respect to the permutation

of i, l, and m according to the following convention (Tyldesley 1975):

εilm =


1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (2, 1, 3), or (1, 3, 2),

0 if i = j, j = k, or k = i.

(A.11)
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The last two terms on the right side of the hydrodynamic equation represent the

centrifugal potential and the Coriolis acceleration, respectively. To obtain the virial

equation of second order, the hydrodynamic equation above must be multiplied by

xj and then integrated over the entire volume V :∫
V

ρ
dui
dt
xjdx = −

∫
V

xj
∂P
∂xi

dx+

∫
V

ρxj
∂Φ

∂xi
dx+

1

2

∫
V

ρxj
∂

∂xi
|~ω×~x|2dx+2

∫
V

ρεilmulωmxjdx.

(A.12)

Each of these terms simplifies and will be treated from left to right. Beginning

with the term on the left side, since d(uixj)/dt = (dui/dt)xj +uiuj, and if ρ is treated

as a constant for each fluid element, then∫
V

ρ
dui
dt
xjdx =

∫
V

ρ[
d

dt
(uixj)− uiuj]dx

=

∫
V

ρ
d

dt
(uixj)dx−

∫
V

ρuiujdx

=
d

dt

∫
V

ρuixjdx− 2Kij. (A.13)

Addressing the first term on the right side, using integration by parts,

−
∫
V

xj
∂P
∂xi

dx = −Pixj
∣∣∣∣
V

+

∫
V

Pidxj.

Since P = 0 on the boundary of the volume, the first term on the right vanishes. The

second term on the right will vanish if i 6= j, since Pi must be acting in the same

direction as xj, so

−
∫
V

xj
∂P
∂xi

dx = δij

∫
V

Pdx = δijΠ, (A.14)

where δij is the Kronecker delta, defined as

δij =


0 if i 6= j

1 if i = j

(A.15)
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Moving on to the second term on the right side of the virial equation, this expres-

sion is simplified by starting elsewhere, with the definition of Pij:

Pij = −1

2

∫
V

ρΦijdx

= −1

2
G

∫∫
V

ρ(x)ρ(x′)
(xi − x′i)(xj − x′j)
|x− x′|3

dxdx′. (A.16)

Since xi = −x′i,

Pij = −G
∫∫
V

ρ(x)ρ(x′)
xi(xj − x′j)
|x− x′|3

dxdx′

= +G

∫∫
V

ρ(x)xidx
∂

∂xj

∫
ρ(x′)

|x− x′|
dx′

=

∫
V

ρxi
∂Φ

∂xj
dx. (A.17)

So the second term on the right side of the virial equation is Pij. Or rather, to be

more precise, the term is Pji, which is equivalent to Pij.

The simplification of the third term (the centrifugal force term) on the right side

of Equation (A.12) starts with the expansion of the |~ω × ~x|2 component. Since

~ω × ~x = (ωjxk − ωkxj )̂ı+ (ωkxi − ωixk)̂+ (ωixj − ωjxi)k̂, (A.18)

it follows that

|~ω × ~x|2 = (ωjxk − ωkxj)2 + (ωkxi − ωixk)2 + (ωixj − ωjxi)2. (A.19)

Differentiating |~ω × ~x|2 with respect to xi, after some algebra it turns out that

∂

∂xi
|~ω × ~x|2 = 2ω2

kxi − 2ωiωkxk + 2ω2
jxi − 2ωiωjxj. (A.20)
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Plugging this expression back into the centrifugal force term of the virial equation,

1

2

∫
V

ρxj
∂

∂xi
|~ω × ~x|2dx =

1

2

∫
V

ρ(2ω2
kxixj − 2ωiωkxkxj + 2ω2

jxixj − 2ωiωjx
2
j)dx

=

∫
V

ρ(ω2
k + ω2

j )xixjdx−
∫
V

ρ(ωiωk)xkxjdx−
∫
V

ρ(ωiωj)x
2
jdx.

Since the angular velocity about one direction is 0, we can set that to be the i

direction. Then ω2
k + ω2

j = ω2
i + ω2

j + ω2
k = |~ω|2 = ω2. Using this along with the

definition of Iij, we then have

1

2

∫
V

ρxj
∂

∂xi
|~ω × ~x|2dx = ω2Iij − ωiωkIkj − ωiωjIjj. (A.21)

According to Chandrasekhar, Ijj = I, and this term vanishes. The centrifugal force

term finally simplifies to

1

2

∫
V

ρxj
∂

∂xi
|~ω × ~x|2dx = ω2Iij − ωiωkIkj. (A.22)

Simplifying the final Coriolis acceleration term on the right side of the virial

equation is the quickest one, as the Levi-Civita symbol and angular velocity are

taken out of the integral:

2

∫
V

ρεilmulωmxjdx = 2εilmωm

∫
V

ρulxjdx. (A.23)

After simplifying all of its terms, the second order virial equation in a rotating refer-

ence frame can be written as

d

dt

∫
V

ρuixjdx = 2Kij + δijΠ + Pij + ω2Iij − ωiωkIkj + 2εilmωm

∫
V

ρulxjdx. (A.24)

If the body is in steady state, in other words, if Haumea’s mass is not migrating

from one place to another within the body, then the term on the left side of the

virial equation vanishes. If the object is static in rotating frame, so that there are
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no motions of the body within the frame of reference, then the kinetic energy term

vanishes, as well as the last term on the right side, since the velocity ul = 0. The

second order virial equation then simplifies to

Pij + ω2Iij − ωiωkIkj = −δijΠ. (A.25)

Since rotation is about the x3-axis, we will set k = 3. Then −ωiωkIkj = −ω2δi3I3j,

and the final form of the virial equation appropriate to our setup of a rotating object

with homogeneous density is

Pij + ω2(Iij − δi3I3j) = −δijΠ. (A.26)

Examination of the diagonal elements of this equation leads to the following rela-

tionships:

P11 + ω2I11 = −Π. (A.27)

Similarly,

P22 + ω2I22 = −Π (A.28)

and

P33 = −Π, (A.29)

so that

P11 + ω2I11 = P33. (A.30)

This last equation will be used to derive Maclaurin’s formula. Before starting

this directly, though, at this point, another group of definitions needs to be made.

A particular integral form pops up commonly when dealing with ellipsoids, which

relates the three ellipsoidal axes. Two primary forms, in singly index dependent and

doubly index dependent versions, are defined as follows:

Ai = a1a2a3

∞∫
0

du

∆(a2
i + u)

(A.31)
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Aij = a1a2a3

∞∫
0

du

∆(a2
i + u)(a2

j + u)
(A.32)

Bi = a1a2a3

∞∫
0

u du

∆(a2
i + u)

(A.33)

Bij = a1a2a3

∞∫
0

u du

∆(a2
i + u)(a2

j + u)
(A.34)

where

∆ =
√

(a2
1 + u)(a2

2 + u)(a2
3 + u). (A.35)

With some quick algebra, an important relation between the above definitions can

be shown:

Bij = Aj − a2
iAij. (A.36)

According to Corollary 2 of Theorem 14, on page 57 of Chandrasekhar (1987),

Pij
πGρ

= −2AiIij. (A.37)

Plugging this relationship into Equation (A.30) results in the following equation:

− 2A1I11 +
ω2

πGρ
I11 = −2A3I33. (A.38)

And again, if eccentricity e is defined as that of the a1 − a3 plane, e = [1 −

(a2
3/a

2
1)]1/2, then solving the above equation for ω2/(πGρ) gives

ω2

πGρ
=

2A1I11 − 2A3I33

I11

= 2(A1 − A3
I33

I11

). (A.39)

But I11 ∝ a2
1 and I33 ∝ a2

3, so then

ω2

πGρ
= 2(A1 − A3

a2
3

a2
1

) = 2(A1 − A3(1− e2)). (A.40)
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Alternate definitions in terms of e can be made for A1, A2, and A3. In the case

where a1 = a2 > a3, in other words when we have a Maclaurin spheroid, then

A1 = A2 =
(1− e2)1/2

e3
sin−1 e− 1− e2

e2
(A.41)

and

A3 =
2

e2
− 2(1− e2)1/2

e3
sin−1 e. (A.42)

If these alternate forms for A1 and A3 are plugged into Equation (A.40), then the

following relationship emerges:

ω2

πGρ
=

2(1− e2)1/2

e3
(3− 2e2) sin−1 e− 6(1− e2)

e2
. (A.43)

This equation is Maclaurin’s formula. It is important in shape dynamics, as it relates

the eccentricity or oblateness of an oblate spheroid to the spheroid’s rate of spin and

its density. This equation only applies to bodies of homogeneous density, and so it

will only be useful to model Haumea if we consider it to be made of the same material

inside and out. We know this cannot be the case, however, since Haumea’s overall

density suggests a large component of a material much denser than water ice, which

is all that we see on its surface.
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Appendix B

DERIVATION OF JACOBI’S FORMULA

Revisiting Equation A.26,

Pij + ω2(Iij − δi3I3j) = −δijΠ, (B.1)

we will now search for a solution of triaxial shape, i.e. a shape in which all three axes

are unequal. In speaking about triaxial ellipsoids, also known as Jacobi ellipsoids,

we will use the convention a1 > a2 > a3, where in the case of Haumea (and in most

all cases), the smallest axis (a3) is coincident with the rotational axis. Rewriting the

diagonal elements of the above relationship, we find again that

P11 + ω2I11 = P22 + ω2I22 = P33, (B.2)

since each of these elements is equal to −Π. Making use of Equation A.37, the above

expression becomes

ω2

πGρ
I11 − 2A1I11 =

ω2

πGρ
I22 − 2A2I22 = −2A3I33. (B.3)

And since I1 ∝ a2
1, I2 ∝ a2

2, and I3 ∝ a2
3, then

ω2

πGρ
a2

1 − 2A1a
2
1 =

ω2

πGρ
a2

2 − 2A2a
2
2 = −2A3a

2
3. (B.4)

Now, if the term 2a2
1a

2
2A12 is added to each side of the equation above, and knowing

that A12 = A21 and B12 = B21, we will make use of Equation A.36 to get

a2
1(

ω2

πGρ
− 2A1 + 2a2

2A12) = a2
2(

ω2

πGρ
− 2A2 + 2a2

1A12) = 2(a2
1a

2
2A12 − A3a

2
3)

⇒ a2
1(

ω2

πGρ
− 2(A1 − a2

2A21)) = a2
2(

ω2

πGρ
− 2(A2 − a2

1A12)) = 2(a2
1a

2
2A12 − A3a

2
3)
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⇒ a2
1(

ω2

πGρ
− 2B21) = a2

2(
ω2

πGρ
− 2B12) = 2(a2

1a
2
2A12 − A3a

2
3). (B.5)

If a1 6= a2, then the solutions to these equations conform to the following conditions:

ω2

πGρ
= 2B12 (B.6)

and

a2
1a

2
2A12 = a2

3A3. (B.7)

These conditions were derived by Jacobi. The first condition, when expanded,

gives the following relationship between angular velocity, density, and all three axes:

ω2

πGρ
= 2a1a2a3

∞∫
0

u du

∆(a2
1 + u)(a2

2 + u)
. (B.8)

This equation is one of the primary tools used to model homogeneous triaxial ellip-

soids. Again, Haumea is not a homogeneous ellipsoid, but if it turns out to be mostly

composed of silicate material with just a thin ice veneer on the outside, then this

equation is useful and will allow us to achieve a close approximation to Haumea’s

true nature.

The second condition provides a geometric constraint to the body, as it sets up

a relationship between the three axes. This condition must be met in order for

equilibrium to be achieved within the object. Thus, it describes a Jacobi ellipsoid.

This condition can be partially rewritten in terms of the axial ratios. If a2/a1 = p

and a3/a1 = q, then the second condition can be written as

a2
1p

2A12 = q2A3 (B.9)

⇒ p2

∞∫
0

a2
1 du

∆(a2
1 + u)(a2

2 + u)
= q2

∞∫
0

du

∆(a2
3 + u)

. (B.10)

An interesting occurrence is that, at the precise point where ω2/(πGρ) = 2B11,

the object’s shape can quasistatically deform from a Maclaurin spheroid to a Jacobi
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ellipsoid. When this angular velocity is exceeded, the equilibrium shape can then be

either an oblate spheroid or a triaxial ellipsoid. This is the point at which the Jacobi

curve becomes separate from the Maclaurin curve.
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