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ABSTRACT

On Android, existing security procedures require apps to request permissions for

access to sensitive resources. Only when the user approves the requested permissions

will the app be installed. However, permissions are an incomplete security mechanism.

In addition to a user’s limited understanding of permissions, the mechanism does not

account for the possibility that different permissions used together have the ability

to be more dangerous than any single permission alone.

Even if users did understand the nature of an app’s requested permissions, this

mechanism is still not enough to guarantee that a user’s information is protected. Ap-

plications can potentially send or receive sensitive information from other applications

without the required permissions by using intents. In other words, applications can

potentially collaborate in ways unforeseen by the user, even if the user understands

the permissions of each app independently.

In this thesis, we present several graph-based approaches to address these issues.

We determine the permissions of an app and generate scores based on our assigned

value of certain resources. We analyze these scores overall, as well as in the context

of the app’s category as determined by Google Play. We show that these scores can

be used to identify overzealous apps, as well as apps that do not properly fit within

their category. We analyze potential interactions between different applications using

intents, and identify several promiscuous apps with low permission scores, showing

that permissions alone are not sufficient to evaluate the security risks of an app. Our

analyses can form the basis of a system to assist users in identifying apps that can

potentially compromise user privacy.
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Chapter 1

INTRODUCTION

Mobile devices are becoming increasingly widespread and pervasive. The avail-

ability of frameworks and SDKs for these devices make it easy for developers to create

apps for these devices. However, the ubiquitous nature of these mobile devices al-

lows them to collect more sensitive information about users; this makes them more

lucrative to attackers and other third parties, notably the app developers themselves.

As a result, Android comes with built-in security mechanisms. Individual apps

are sandboxed1 and cannot access the data of the other applications. Apps can only

access sensitive system resources by requesting the proper permissions at install time.

Finally, apps can still send data between each other by sending Intents.

However, these mechanisms have certain limitations. First, an application can

only be installed if the user accepts all of the permissions requested by an application.

This all-or-nothing approach may encourage a user to just accept everything, which

hinders the protection offered by permissions in the first place. Furthermore, many

users will not understand all of the permissions requested by an application and will

be inclined to accept out of ignorance Felt et al. (2012). As a result, users may not

know of the data that their downloaded applications collect. For example, a seemingly

benign wallpaper app that collects information such as their device ID and subscriber

ID2, much to the chagrin of the user Enck et al. (2014); does a wallpaper application

1 Note that apps signed by the same certificate can access each other’s data if configured to do

so. In any case, apps signed by the same certificate are from the same developer.
2The subscriber ID is a secret ID assigned by the phone company to identify the phone; an

attacker that knows the subscriber ID can impersonate the user.
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really need to know the user’s subscriber ID?

Second, applications can send or receive sensitive information from other applica-

tions even if they do not have the required permissions through the Intent mechanism.

For example, an app that does not request access to the internet can still send sen-

sitive data over the internet by constructing an intent with a custom URL attached;

when the Android device processes the intent, it might open that URL, which can leak

data via GET requests Qiu (2012). It is also possible for malicious apps to register

to accept any type of intent, leaking information to the app.

The more general problem is that the user is largely unaware of the information

that many apps collect, especially outside of their perceived context. Borrowing again

from the example in Enck et al. (2014), a user should not expect a wallpaper app to

necessitate the phone’s subscriber ID; after all, displaying wallpaper has nothing to

do with the cellular provider. Yet, users have installed the application anyway, most

likely ignoring the required permissions. It is likely that these users are completely

unaware that they are sending sensitive cellular information, even though they granted

the app access to the subscriber ID in the first place.

Some existing work targeting Android suggest different techniques to identify mal-

ware or malicious activity. Banuri et al. (2012) and Holavanalli et al. (2013) both

focus on detect malicious usages and potential information flows created from An-

droid permissions. While useful, these are used to detect malware, and not other

potential privacy violations by legitimate, but promiscuous adware apps. Other work

targets the leakage of permissions by using intents, such as ComDroid Chin et al.

2



(2011).

1.1 Motivation

As our motivating example, consider a popular Flashlight app for Android, called

Super Bright LED Flashlight3. This app has millions of downloads and over 4.4 million

reviews Surpax Technology Inc. (2015). It requests the following system permissions,

which grant the app access to the corresponding system resource4:

• CAMERA

• FLASHLIGHT

• CHANGE CONFIGURATION

• WRITE SETTINGS

• WAKE LOCK

• ACCESS NETWORK STATE

• INTERNET

Given that the flashlight app might possibly use the LED for the camera’s flash, these

permissions are not very aggressive. While it is curious that this app is requesting

access to the Internet (probably for ads), the app does not request much else that is

sensitive, suggesting that users might view this app as safe. As evidence, some of the

top reviews for this app are listed in Table 1.1. However, as we shall see later, this

3 This app is different from the Flashlight app considered by Felts et. al. (Felt et al., 2012); it

would be interesting to know whether this work motivated the less-intrusive permissions requested

by the Super Bright LED Flashlight app.
4 The full name of these permissions are usually prefixed with android.permission. We borrow

the convention in many academic papers on Android permissions, where this prefix is dropped and

inferred unless otherwise stated.
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Rating Comment

5 No doubt, i like it Its said require camera or flash hard-

ware...but my advice havn’t...morethan its used usefull...tq so

a lot.

1 Im uninstallin Just heard a report bout how everytime u turn

it on ppl n other countrys use that info its a spy kinda. confirmed

is russia and china and I highly recomend readin the terms b4

nstallin cuz it supposibly states that it spys cuz they had to

state it cuz they were sued

5 Does what it does. The people saying this spies: it needs cam-

era access to use the flash. Microphone and camera access are

lumped under one permission. There are no other permission,

such as contact list or browsing history. It’s not spying.

Table 1.1: This table lists some of the first reviews displayed on the Google Play
store for this app (Surpax Technology Inc., 2015). Out of the six reviews on the
first page, five reviews gave the app five stars, while one gave the app one star. We
have chosen to display these specific reviews as they talk about the app’s requested
permissions or security risks. The reviews were copied directly over, including any
misspellings.

flashlight app has the ability pass information to other apps to do things like send

email, compose SMS messages, and make phone calls, even though it never requests

those particular permissions.

1.2 Goals

Our goals in this thesis are to examine how collaboration between different re-

sources and applications can still result in security threats. We will demonstrate a

scoring on permissions that analyzes potential privacy violations due to collaboration

of the requested permissions. Then, we will demonstrate promiscuous information

4



flows that are possible between seemingly benign Android apps, some of which do

not request aggressive permissions. The remainder of this paper is structured as fol-

lows. First, we will describe our model for security. Second, we will describe the

Android ecosystem and its existing security mechanisms. Next, we will apply our

model to this ecosystem, then present the results of our work. The last chapter

concludes the paper.
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Chapter 2

RELATED WORK

Existing research in this area largely targets Android permissions, which indicate

specific resources that a particular app will have access to. Banuri et. al. suggest

detecting sequences of invoked permissions in order to identify malicious flows Banuri

et al. (2012). Holavanalli et. al. create a static analysis tool, Blue Seal, to detect po-

tential information flows created from Android permissions Holavanalli et al. (2013).

Ongtang et. al. propose improving Android permissions by allowing for encoding

runtime policies for them Ongtang et al. (2009).

Additional work has been done in detecting the leakage of permissions via intents.

Sbirlea et. al. demonstrated that some applications leak their access to sensitive,

permission-protected resources via intents due to poor configuration Sbirlea et al.

(2013). Chin et. al. develop a static analysis tool to analyze the intents sent out by

an application and identify whether it matches what is advertised via the registered

intent-filter Chin et al. (2011). This tool was designed to aid developers in making

their application more secure against malicious or incorrect usage of the different

components it adds to the device. This work is complementary to ours; while they

focus on securing intents within a single app, we focus on whether different apps can

intercommunicate.

Other solutions have considered information flow in a more general context. Enck

et. al. augment the Android runtime framework to append taints to data as it flows

through the system. The taints store origin and some provenance information about

each bit of data, demonstrating that even seemingly benign applications send out data

that the user does not expect Enck et al. (2010). Tiwari et. al propose a reworking

6



of the Android API to split the data for each user into light-weight contexts, which

they call bubbles. Each bubble models a specific context where application data can

be stored. This proposal requires a reworking of the Android API to grant users the

ability to identify which apps belong where Tiwari et al. (2012).

Complementary work has been done on improving the Android sandbox. For ex-

ample, Xu et al. (2012) creates a tool, Aurasium, that unpackages an Android app,

then repackages it with custom hooks that allow for tracking the apps behavior and

stopping any potential malicious activity Xu et al. (2012). This work is comple-

mentary to ours, since their custom sandbox still requires a configuration of desired

security policies.
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Chapter 3

ANDROID OVERVIEW

Before describing the approach, we provide an overview of the Android ecosystem.

The Android OS is built on top of special builds of the linux kernel, with custom

drivers and libraries to cater to the needs of mobile platforms. Many of the common

features in the linux kernel are removed, such as interprocess communication tech-

niques (Section 3.3), since they incur overhead that does not fit the requirements of

the mobile platform.

3.1 Structure of an Application

Each Android application is written in Java that links against the Android SDK.

These applications are typically compiled into Java bytecode, then recompiled into

Dalvik bytecode1. It is also possible for Android apps to contain native code written

in C/C++ through the Android NDK, but this is discouraged by Google unless

absolutely necessary for performance, such as for gaming apps. Even apps written in

the native NDK require a hook into the Android framework to load the native code,

which is written in Java.

Each Android application is distributed as an APK (Android Package) file, which

is a special Zip archive file that bundles the code, images, and other similar resources.

This Zip file is signed by the developer using their private key for their certificate,

1 Dalvik is a special Java virtual machine that is optimized for embedded environments. Newer

apps for Android 5.0 may use another, faster Java virtual machine called ART (Android Runtime),

though this is not yet mainstream Google (2015b). This difference does not affect any of the analysis

in this paper.
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Figure 3.1: This figure outlines the build process for Android applications as adapted
from Google (2015b). Note that the application must be signed in order to be released
to the Google marketplace.

and contains the following:

• AndroidManifest.xml – This binary XML file contains much of the meta-

data for the Android application, such as the specific components that this

application contains, and intent-filters (explained further in Section 3.3).

• X.509 certificate – This stores the public key and certificate of the developer

in PKCS#7 format. It is important to note that these certificates are self-signed.

• classes.dex – This contains the actual code for the application. If the applica-

tion also uses native code compiled from C/C++, then those libraries are also

included within the zip archive.

• Resource XML files – These files store the application’s resource information,

such as how to layout components on different screens, what strings to display

depending on locale and language, the locations of icons and images, and any

look and format information for UI elements.

The build process for Android applications is shown in Figure 3.1. Each Android ap-

plication is installed as a separate user within the linux kernel; this is what effectively

9



creates the application sandbox with limited access to system resources2.

3.2 Permissions

For an app to access additional, usually sensitive system resources, it must request

the corresponding permissions in its AndroidManifest.xml file. Permissions are imple-

mented in Android as user groups in linux; applications can only access the respective

resource if they are members of the proper user group. As such, the process of adding

apps to specific groups happens during install-time, and the permissions cannot be re-

moved or changed without reinstalling or updating the app. When installing an app,

the user may be prompted to check and approve of the app’s requested permissions;

any dangerous3 permission must be explicitly approved by the user before installing.

As an example, if an application wishes to access the camera on the Android

device, they must request the CAMERA permission. Since the CAMERA permission

is deemed dangerous by the Android ecosystem, a user will be prompted whether this

permission is okay for this application during install time. If the user declines (i.e.

does not grant the app the CAMERA permission), the app will not be installed.

3.3 Intents

Android does not allow for using the standard linux IPC mechanisms. Instead,

Android uses Binder, a custom driver, to share information between applications. The

Binder driver is optimized for embedded devices because it allows for more efficient

2 It is possible for several different applications to exist in the same sandbox if the apps request

as such and both apps are signed with the same developer certificate Google (2015b). We do not

consider this case because it is likely that two differing apps by the same developer could exchange

information anyway outside of the device.
3The sensitivity of the permission, i.e. whether it is dangerous, is specified when it is declared.

The sensitivity of system-defined permissions are documented at Google (2015b).

10



Component Type Description

Activity A component that can interact directly with the user (i.e.

a GUI component).

Service A component that performs work in the background.

Broadcast Receiver A component that respond to system notifications.

Content Provider A component that provides access to system and appli-

cation data.

Table 3.1: This table lists the Android components that can receive intents. Appli-
cations define their own components by subclassing one of these types offered by the
Android SDK.

sharing of resources and file descriptors between apps. If an app wishes to transfer

a photo to another app, for example, then the app can transfer the file descriptor

instead of the whole file, saving the additional overhead of maintaining a copy of the

file in a separate context. The Binder driver also allows for Remote Procedure Calls

(RPC), an important use case for the component-driven architecture that Android

uses.

To abstract away the complexities of using Binder directly, the Android ecosystem

defines Intents which encapsulate the parcels of data to be sent over the Binder

driver to different applications. Intents can be used to spawn the types of Android

components listed in Table 3.1.

An intent can contain the following fields:

• Action – (Required) A string representing the action to perform, or the target

component’s fully scoped package name.

• Category – The category of this intent.

• Data – A field that indicates the MIME type or URL of the data.

11



• Extras – A set of key-value pairs with additional metadata for the intent.

• Flags – A bitmask of options to customize how the Android framework resolves

the intent.

Intents that contain the target component’s package name are called explicit intents,

whereas intents with an action string, such as android.intent.action.VIEW are called

implicit intents. An intent is sent to the system to be resolved by a call to the

appropriate method, such as4:

• startActivity()

• startService()

• bindService()

These calls are accessible through the base classes of Android components provided

by the framework. We note that even native code requires using Java calls to the

system through the JNI interface5.

In order for applications to receive Intents, they should generally specify the kinds

of intents they can receive. This is done by declaring an intent filter in their Android-

Manifest.xml file. The intent filter must declare the action it can handle, as well as

some optional additional information to filter what it receives, notably the allowed

categories and the allowed data for the intent. Figure 3.2 shows an example of an

intent filter for an activity within a sample Android app. Note that the intent filter

4 Note that this list is by no means exhaustive.
5 Recall that the Android ecosystem still requires certain hooks to be in place for the apps to

register with the system. These hooks require interfacing with the Java portion of the framework,

even if the app itself is otherwise written in another language like C++. This requirement is

leveraged by other tools as well, such as Aurasium Xu et al. (2012), to ensure the full security of

their sandboxes.
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<a c t i v i t y c l a s s=".EditMediaActivity" exported="true">

<in tent− f i l t e r>

<ac t i on android:name="android.intent.action.VIEW" />

<ac t i on android:name="android.intent.action.EDIT" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="image/*" />

<data android:mimeType="video/*" />

</ intent− f i l t e r>

</ a c t i v i t y>

Figure 3.2: A sample intent filter in the AndroidManifest.xml file. This example is
based on the developer documentation by Google (2015b).

,

can declare multiple actions, categories, and data that it can respond to in the same

filter.

The Android framework determines the possible component that an implicit intent

can be resolved with as follows:

1. Check whether the given Android component is exported. If not specified ex-

plicitly, the component is assumed to be exported.

2. Check whether the intent action matches any of the listed actions in the intent

filter. The intent must match one of the actions listed in the filter in order to

pass this check.

3. Check whether the intent category matches any of the listed categories in the in-

tent filter. Only intent-filters that allow for the android.intent.category.DEFAULT

are allowed to handle implicit intents. If the intent-filter contains this category,

the every category contained in the intent itself must also match a category
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listed in the filter to pass. If the intent does not contain any categories to

match, then it passes this check by default.

4. Check whether the intent matches any of the data parameters listed in the

intent filter. Resolving the data type here is more involved since the data tag

can contain a URL or a MIME type.

Android apps can also receive explicit intents if they are referenced directly by package

name; direct access from another application can only be avoided by setting the

exported attribute false.
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Chapter 4

GRAPHICAL REPRESENTATIONS OF SECURITY SETTINGS

Android applications are inherently isolated by the linux kernel Google (2015b). Thus,

the security of the Android ecosystem depends heavily on the information flows that

are possible in the system. We forumulate our graph-based approach with this obser-

vation.

4.1 Model Formulation

Motivated in part by the graph-based access control model from Xu et. al. Xu

et al. (2009), we define our abstract model as follows: Systems comprise of a set of

objects V , each with some state. Given two objects, vi, vj ∈ V , they can interact in

the following ways:

• write(vi, vj) implies that vi can write to vj.

• read(vi, vj) implies that vi can read the state of vj.

For the interactions above, the details of the objects are not relevant; it is only

necessary that these objects have some notion of read or write1. We define Ir and Iw

as the set of all possible read and write operations in the system respectively:

Iw = {(vi, vj) : write(vi, vj) is possible in the system.}

Ir = {(vi, vj) : read(vi, vj) is possible in the system.}
1 The paper from Xu et al. (2009) assumed a more sophisticated model involving processes, files,

and other objects on and between computers. The model that we present here is intentionally more

abstract, noting that such differences have little theoretical significance in the current context.
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We define a directed graph, G = (V,E) with the edges defined as follows:

E = {eij : (vi, vj) ∈ Iw or (vj, vi) ∈ Ir}

The element eij implies the directed edge from vi → vj. Note that the model above

makes no other assumptions about the properties of a given edge eij.

4.2 Application to Android Permissions

In order to apply the model above to Android permissions, we note that permis-

sions protect specific resources on the user’s device. We first make some observations

about the types of resources that permissions protect in Android.

Permissions can be used for arbitrary resources on the system 2, but they generally

protect two types of resources:

1. Sensitive Local Resources

2. Access to Remote Resources

For example, the READ CONTACTS permission protects access to the database with

the user’s contact information, and thus protects a Sensitive Local Resource. The

INTERNET permission, however, protects access to the creation of network sockets,

and thus protects Access to a Remote Resource. Both types of resources have the

ability to be written to or read from and thus fit into the graph model outlined in

Section 4.1.

If we assume that an application is self-contained, i.e. does not send data via

Intents to other installed applications on the device, then the possible information

flows between resources in the application depend on what permissions the application

2 Note that applications can actually create their own permissions, if desired. In these cases, the

resource in question is generally one provided by the application itself.
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requests. A cautious reader may note that this assumption is not likely to be valid

for all apps, a point which we shall discuss later in Section 4.3.

For an isolated application (one that does not communicate with other installed

apps), we observe that there two subjects that the app can still potentially commu-

nicate with:

1. The user himself.

2. The world.

The user is bidirectionally connected directly to every local resource the app implicitly

requests through its permissions; this is due to the fact that each local resource is

really some subset of the total information for the user, for which the user can read

and write. In a similar manner, every transit resource is bidirectionally connected

directly to the world.

When an application requests a permission that grants read access to a local

resource (such as READ CONTACTS), we construct an edge from that local resource

to all transit resources the application uses. This is because the application can read

that resource and send it out via any transit resource it has access to. When an

application requests a permission that grants write access to a local resource, we

construct an edge from all transit resources the application uses to that local resource.

Note that it is possible for a single permission to imply both read and write access,

such as the CAMERA. When an application requests a permission that protects a

transit resource, we add that node to the available transit resources; note that transit

resources are inherently bidirectional and the permissions that protect them imply

both read and write access.

The resulting graph generated above maps out the possible information flows for

an isolated application, but the details and implications for particular flows are not
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yet considered. For instance, an email application might request a user’s contacts

in addition to the internet. There are countless interactions that these particular

resources alone might legitimately use, such as3:

• Finding the email address in the contact list to send a new message.

• Sending a reply to some received message.

• Creating a new contact using the information from a received email.

• Syncing the phone’s contact list with the email server’s contact list.

At this stage, instead of capturing every detail of the potential flow, we can instead

assign each local resource a relative weight, based on its sensitivity and context.

For example, we believe that the user’s location is generally more sensitive than his

phone state; the location resource would thus have a higher value than the phone

state resource. Transit resources, by their nature, do not require a weight because

they only protect data passage to the outside world, instead of some sensitive internal

state. Since any given flow can leak anything, all edges are assumed to have infinite

capacity, while the local resources have some predetermined capacity.

We can now measure the potential risk of this application by calculating the

maximum flow between the user and world nodes. We call the maximum flow from the

user to the world the spy score of the application. This score suggests the maximum

value of the resources that the application can spy on, then leak out to the world.

In a similar manner, we call the maximum flow from the world to the user the bully

score of the application. This score suggests the maximum value of the resources

that the outside world can tamper with on the user’s device, through the use of the

application.

3 We observe that some orderings and flows may in fact be malicious, as suggested by Banuri

et al. (2012).
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We note that as a matter of convenience, instead of assigning each local resource

node a value directly, all edges between the local resource and the user are instead set

to the value of the node, while all other edges are implied to have infinite capacity.

To demonstrate how this works, consider the Candy Crush Soda app, which re-

quests the following system permissions4

• com.android.vending.BILLING – Allows the app to make in-app purchases.

• INTERNET – Allows access to the internet and network sockets.

• ACCESS NETWORK STATE – Allows the app to check whether the device is

connected to the internet (including cellular data).

• ACCESS WIFI STATE – Allows the app to access whether the device is con-

nected to WiFi.

• GET ACCOUNTS – Allows the app to request authorization tokens from the

system.

• WAKE LOCK – Allows the app to prevent the phone from sleeping.

• READ CONTACTS – Allows the app to read from a list of available contacts.

With these permissions, Candy Crush has access to the user’s accounts and contact

information, resources that affect battery life (i.e. WAKE LOCK), as well as the

Internet, which is a transit resource. In other words, Candy Crush can read the all

of the user’s contacts and upload them to the world, as well as purchase content for

the user.

4This app declares and requests a few additional custom permissions, which are not of concern

here.
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Resource Weight

Account 10

Contacts 20

Network State 5

Battery 3

Table 4.1: This table shows the resource values for the Candy Crush Soda app. A
full listing of these weights is elaborated on in Appendix A.

Figure 4.1: This shows the permission graph for applications with the same per-
missions as Candy Crush Soda. Note that edges without any edge weight are assumed
to pass infinite flow.

If we assume that the user values his resources with the weights as assigned in

Table 4.1, then the resulting graph is shown in Figure 4.1. Note that the weights

of each resource and the implications of each permission for each resource are com-

pletely customizable; a more thorough explanation of the resource weights is given in

Appendix A. The resulting spy score for Candy Crush Soda is 55, and the resulting

bully score is 43. We note that Candy Crush may not leak everything to the internet,
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but these flows indicate the most aggressive actions that can be achieved with these

permissions.

We make one other observation about this approach. Some apps are expected

to inherently request more permissions than others. Facebook, for example, will

request many different resources, such as access to contacts, location, calendar, and

the camera, along with the internet. This is not particularly surprising, since it is

a social media application. However, it would be strange for a flashlight application

to request the same permissions; why would the flashlight need access to the user’s

location or contact information? Since the spy and bully scores are dependent only

on the permissions requested, it only really makes sense to compare apps by category.

4.3 Application to Android Intents

Analyzing only the permissions of an application can be insufficient because appli-

cations do not always require access to a transit resource to leak data. As suggested

in Section 3.3, Android applications can also send out intents to other applications

installed on the user’s device without declaring any permissions.

4.3.1 Code to Create Intents

For an app to send data to another app (or even to a different component of itself),

an intent object must be created and sent to the system for resolution. This process

used throughout Android and is required to even start the application from the home

screen5.

Before sending off an intent to the system for resolution, various aspects of the

intent should be set. The code in Figure 4.2 illustrates a typical usage of creating an

5 Any application that can be launched from the home screen must be able to receive an intent

with a MAIN action and a LAUNCHER category 6.
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public void sendNoteText ( S t r ing emai l addr ) {

In tent i n t e n t = new In tent ("android.intent.action.VIEW" ) ;

i n t e n t . setType ("text/plain" ) ;

i n t e n t . putExtra ("email" , emai l addr ) ;

s t a r t A c t i v i t y ( i n t e n t ) ;

}

Figure 4.2: This shows a typical snippet of code to create an intent.

intent. The sendNoteText method will create an intent, then send it out to the world

with the following properties:

Action android.intent.action.VIEW – A default action implying that the user wishes

to view the file, whatever that means in this context.

Type text/plain – A MIME type which suggests how to interpret the data. In this

case, it should be interpreted as a plaintext file.

Extra 〈email,email addr〉 – A key-value pair of extras. The details of the extra fields

are interpreted by the receiving application and often include sensitive meta-

data, like the email address in this example.

The startActivity() call then instructs the Android system to resolve the intent to

any Activity component that matches this intent.

4.3.2 Code to Receive Intents

Intents can be received only by one of the types of components listed in Table 3.1.

For an application to receive intents, it defines an intent-filter in the AndroidMani-

fest.xml that declares the properties of the intents that it can handle. For example,

the intent created in Figure 4.2 can be resolved by a component with the intent-filter

in Figure 4.3.
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<a c t i v i t y class=".TextViewer">

<in tent− f i l t e r >

<ac t i on android : name="android.intent.action.VIEW" />

<ac t i on android : name="android.intent.action.EDIT" />

<category android : name="android.intent.category.DEFAULT"/>

<data android : mimeType="text/*" />

</intent− f i l t e r >

</a c t i v i t y >

Figure 4.3: This shows a possible intent-filter for a component that can view and
edit text.

4.3.3 Android Application Graphs

Examining the properties of intents allows for another use of the graph approach

in Section 4.1 to model flows between applications. Since Android applications each

have a state, and are initially isolated due to the Android sandbox, they can be

modeled as nodes. We construct a directed edge between two nodes if the source

node is capable of sending an intent to the sink. The properties of this edge are

augmented with the properties of the intent.

For example, suppose that we have a notes application that can edit and export

plain text, an addressbook app that can access and edit the user’s contact information,

a camera application that can take and share pictures, and an email application to

send email. The Notes app may define an intent-filter like that in Figure 4.3, since it

is capable of viewing and editing text data. The Notes app may also allow the user

to export their notes, which would imply that it could send an intent with a SEND

action and text data.

In a similar manner, the email app might define an intent-filter that allows for

sending any type of data, like the one shown in Figure 4.4. Since the SEND action
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<a c t i v i t y class=".ComposeEmailActivity">

<in tent− f i l t e r >

<ac t i on android : name="android.intent.action.SEND" />

<category android : name="android.intent.category.DEFAULT"/>

<data android : mimeType="*/*" />

</intent− f i l t e r >

</a c t i v i t y >

Figure 4.4: This shows a possible intent filter for an activity that will send Email.

from the Notes application can be handled by the Email app based on its intent-filter,

we construct a directed edge from the Notes app to the Email app.

In an analogous manner, if the Addressbook app allows for the user to edit text

data and send it out for various contacts and the camera app allows for sending images,

then the resulting application graph can be represented by Figure 4.5. Whether the

user wants these applications to all interact will depend on the task at hand.

Figure 4.5: This shows a possible graph for the Notes app, Email app, Addressbook
app, and Camera app as described in Section 4.3.3. The edges include the properties
of the sent intent.
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Chapter 5

IMPLEMENTATION

5.1 Analyzing Android Permissions

To calculate the flows for the requested resources of an Android application, we

must first identify and determine the values of the differing resources. Most of the per-

missions protected resources that are self-explanatory, such as READ CONTACTS.

For the others, we read the documentation provided by Google Google (2015b).

We assigned the values for each resource based on our estimates of their sensitivity.

Location information as well as Billing information were seen as the most sensitive,

and so these resources were given a value of 30. Other resources, such as a user’s

contact information, voicemail, and SMS/MMS which were seen as sensitive were

given a value of 20. Table 5.1 lists the values for some of the more common local

resources that applications request; a more complete list is available in Appendix A.

To calculate the spy and bully scores of an application, we wrote the permission

graph analyzer in Java. It constructs the graph based on the Resource Values file,

which specifies the resources, their weights, along with the set of permissions that they

respond to. The flows in the graph are calculated using the Edmond-Karp algorithm

provided by the JGraphT library JGr (2015).

To acquire the permissions from an application, we wrote the permission graph

analyzer to accept and parse the AndroidManifest.xml directly. However, since the

AndroidManifest.xml file is not always directly available, it can also read the permis-

sions from AAPT1 output, or even from a newline-separated list. The process for

1Android Application Packaging Tool, which is part of the Android SDK
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Local Resource Weight

Contacts 20

External Storage 10

SMS/MMS 20

Location 30

Voicemail 20

Table 5.1: This stores the values of common resources that are used when calculating
the spy and bully scores. This table only includes several common resources; a more
complete list is in Appendix A.

Figure 5.1: This shows the process for calculating the spy and bully scores for an
application. Note that either the AndroidManifest.xml file can be used, or the output
from the AAPT tool can be used if only the application APK is available.

calculating the scores is shown in Figure 5.1.

We also identified the categories from the Google Play store, which are fully listed

in Appendix B. We use these implicit categories, provided by the Google Play store

and set by the developer, to classify applications based on their functionality. While

it is possible for a developer to miscategorize their application, they should not be

inclined to do so; putting applications in the correct category increases exposure,

since users should search a particular category if they already know what they are

looking for.

We reiterate that even after considering each category, this approach can still only
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estimate the worst-case behavior of a given app based on its requested permissions. It

is possible that the app does not leak these resources or uses them in a secure manner

that the user would otherwise expect. This is an inherent limitation in assigning

numeric edge weights; a single number cannot capture the entire nature of potential

interactions between resources. This formulation is designed to quantify the possible

risks of installing an application.

5.2 Analyzing Code

To construct the Application graphs for a collection of Android applications, we

need to know the intents that an application can receive, as well as the intents it sends

out. Extracting the intents that an application can receive can be done by parsing

the AndroidManifest.xml file and searching for the available intent-filters; this is the

precise purpose of intent-filters in the first place.

Extracting the intents that an application sends out, however, is more complicated.

In many cases, the source code for Android applications is not directly available.

Instead, we decompile the Android applications and search for specific method calls.

We note that the calls to create an Intent instance (i.e. call its constructor) cannot

be obfuscated easily since these calls are only available from the Android framework.

Thus, malicious apps cannot obfuscate the creation of the Intent without dynamically

loading code, or obfuscating the strings used to create it. Still, there are inherent

limitations for decompilation and static analysis, which we address in Section 5.2.3.

5.2.1 Extracting Possible Sent Intents

In order to detect the types of intents that an app can send out, we trace the

locations of where intents are created and follow them through the code as they are

modified. The intent class in the Android framework has specific methods that modify
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Figure 5.2: This shows the process of extracting the intents and intent-filters from an
Android app. Since the source code for the application is not available, we decompile
the APK files using Androguard and calculate the different intents that can be sent
out and received. Finally, we determine which intents can be resolved by certain apps
to construct the Application graph.

its internals; the full list of methods that we consider and what they do is listed in

Appendix C.

Many of these modification functions take in strings as input arguments; these

strings are very often constants that do not change at runtime. For example, an-

droid.intent.action.VIEW is a common action that is used by numerous intents

throughout the Android system; this string is almost always a constant hard-coded

string. Even some of the properties that do change (i.e. the putExtra() functions) will

be indexed by a revealing key that does not, like the ”email” text in sample shown

in Figure 4.2.

Our process for extracting the intents sent out by an application is as follows:

1. Identify locations in the code where intents are created.

2. Create a property list that holds the possible fields for the created intent. It is

initially empty.

3. When an intent method is called, determine possible values for the input argu-

ments. This can be done as follows:
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new−i n s t anc e v3 , In tent ;

const−s t r i n g /jumbo v0 , ’android.intent.action.SEND’

invoke−d i r e c t v3 , v0 , In tent;−>< i n i t >( S t r ing ; )V

const−s t r i n g /jumbo v0 , ’plain/text’

invoke−v i r t u a l v3 , v0 , In tent ;−>setType ( St r ing ; ) In tent ;

const−s t r i n g /jumbo v4 , ’android.intent.extra.SUBJECT’

invoke−d i r e c t v6 , v0 , ge tSub jec t ;−>h( I ) S t r ing ;

move−r e s u l t−ob j e c t v5

invoke−v i r t u a l v3 , v4 , v5 , In tent ;−>putExtra ( S t r ing ; S t r ing ; ) In tent ;

const−s t r i n g /jumbo v4 , ’android.intent.extra.TEXT’

Figure 5.3: This shows how part of the code in Figure 4.2 might compile into Dalvik
instructions. Of course, the code could be compiled in different ways depending on the
compiler and optimizations used. For brevity, the class and method names without
their full namespace scoping; the Intent class in the above really has a fully scoped
name of android.content.Intent, and the String class really has a fully scoped name
of java.lang.String.

(a) Backtrace to where the input arguments were set.

(b) If the argument is a constant string or integer, add it to the possible values

in the property list.

4. Return the property list, indicating all possible intents.

In order to extract these intents, we built the application graph analyzer with the

open-source Androguard framework written by Desnos and Gueguen (2015). This

framework is written in Python and decompiles Android applications directly from

the APK file. The framework allows for printing the Dalvik instructions for each

method, as well as identifying calls into the Android framework.

To explain the algorithm used to extract intents, consider code snippet in Fig-

ure 4.2. This code might compile into the Dalvik bytecode shown in Figure 5.3. It is

clear that many of the constant strings are recognizable by the const-string class of
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instructions in Dalvik. By tracking which registers these constant strings are stored to

and by tracking where these variables are used, it is possible to determine when Intent

methods are called and what the values for some of their arguments are. This infor-

mation, in turn, can be combined to generate a list of intents (and their properties)

that the application can send out. In this analysis, other types of instructions, such

as branch and jump instructions are ignored; this will be discussed in Section 5.2.3.

To perform the decompilation of applications, we used the open-source Andro-

guard framework written by Desnos and Gueguen (2015). This framework is written

in Python, and decompiles an application allowing for querying and tracing the byte-

code for individual methods of an application.

5.2.2 Application Graph Generation Overview

Intents are resolved depending on the receiving application’s intent filter as de-

scribed in Section 3.3. Once the intents sent out by an application are known, they

can be cross-referenced with another application’s intent filter to see whether they

communicate. Androguard was again used for this phase since it also allows for ex-

tracting and printing the intent filters from an application’s AndroidManifest.xml file.

After determining the intents sent out by an application, they are compared against

every other application’s intent filter to determine whether they can communicate. If

they can, then an edge is added on the graph between these two applications with a

weight that reflects the properties of the resolving intent(s).

An overview of this process to generate the application graphs is shown in Fig-

ure 5.2.
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5.2.3 Limitations

The process of decompiling an application to determine its behavior has inherent

limitations. Without executing the code itself, it is a difficult problem to determine

what outputs a particular method will produce; this problem is computationally

equivalent to the halting problem, which is undecidable in the general case. As such,

we rely on constant strings and values to determine the properties of a sent intent,

instead of executing the code directly. Our decompilation approach does not find

any applications that obfuscate any strings used for intents or otherwise load them

dynamically through some other means. We suggest that legitimate applications

should not have any reason to hide the intents that they send out, and any applications

that do obfuscate these strings are inherently suspicious2.

Our treatment of branch and jump instructions is also not complete. Consider

the example in Figure 5.4. Here, the two Extras parameters, url and email for the

intent are mutually exclusive; however, the resulting list of sent intents will include an

intent with both used simultaneously. While cases like these do arise, they are rare

from our experience because most branch instructions used when creating intents

are used to include additional data if available instead of mutually excluding two

different parameters. It is usually to the developer’s advantage to provide as much

information as possible to another application resolving the intent for better usability.

Furthermore, the application graph is trying to construct possible information flows,

even if a particular branch is not all that likely in practice.

2 It is possible that some applications (especially games) which use native code may create intents

through the JNI interface instead of directly in Java. This is out of scope for this work, and we

observe again that most applications considered here do not have native code to worry about.
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// . . . In tent i n t e n t ;

i f ( ! hasEmail ) {

i n t e n t . putExtras ("url" , addr ) ;

} else {

i n t e n t . putExtras ("email" , addr ) ;

}

// . . .

Figure 5.4: This code shows the limitations of branch instructions on our decompi-
lation approach.

32



Chapter 6

RESULTS

To test these approaches, we downloaded the Top 20 free applications in the Google

Play Store, as well as the top 10 applications from each category, except games and

widgets1. In the cases of categories that did not offer a Top Free selection screen,

we chose the first available selection. Some apps also were not compatible with the

device type we registered the account for, in which case, we downloaded the next app

on the list. Since these apps were chosen based on their ranking and accessibility on

the Google Play store, we feel that the 10 selected apps are representative of their

respective categories. Here, we analyze the results.

6.1 Permission Graph Analysis

We ran the Permission Graph Analyzer on the downloaded applications. The

resulting scores for the Top 20 are displayed in the histogram in Figure 6.1, while

the mean and standard deviation are shown in Table 6.1. We notice that in general,

Statistic Value

Mean 73.4

Standard Deviation 41.27

Table 6.1: This shows the mean and standard deviation for the flow scores of the
top 20 applications in the Google Play store.

1 Games were not included because there were different subcategories to choose from, and because

they were more likely to use native C/C++ code with JNI interface. Widgets were not included

because many of the apps in this category were already downloaded and the category itself is rather

vague. The full set of categories is listed in Appendix B.
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Figure 6.1: This chart shows a histogram of the flow scores for the top ten free
applications from the Google Play Store. Observe how the spy scores are generally
higher than the bully scores.

the spy scores are higher than the bully scores. This is likely due to the fact that

reading and analyzing user information is usually required for writing, and is also

generally more valuable for benign applications. We also notice from Table 6.1 that

the standard deviation is rather high; the lowest score possible is 0, which falls less

than two standard deviations below the mean. This suggests the inherent variability

in applications on the Google Play store, due to the different scopes of different apps.

The mean flow scores were also calculated for each category and are displayed in

Figure 6.2. These values suggest that certain categories of apps may require more

resources than others. The mean scores for apps in the Social and Communication

categories are both high, which is not surprising since apps in these apps often request

access to the user’s camera, microphone, location, and other such data. Apps in the

Personalization category, on the other hand, seem to score much lower, probably
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because these apps only affect things like the user’s dictionary, wallpaper, or other

resources that are not as sensitive.

In addition to the mean score, we plot the distribution for the scores in each

category using box plots, as shown in Figure 6.3 and Figure 6.4. These box plots

also show outliers for each category, which are apps in the category whose score is 1.5

times the interquartile range.

The resulting means and distributions suggest commonalities between several cat-

egories. For example, the Communications category and the Social category both

have similar means and distributions. This is due to the fact that many communica-

tion apps have social media features, like GroupMe or Yahoo Messenger.

One thing to note is that there are a fairly large number of outliers among all of

the categories. Table 6.2 displays the list of applications that were outliers with spy

scores above the median. We do not consider outliers below the median here because

these apps that request less intrusive permissions than average are more desirable, at

least in terms of risk.

Of the two outliers for the Education category, the Night Sky Tools application

requests Camera and Location access, making the score higher. As per the description

on Google Play, the application is an astronomy app that creates star maps for the

user. It requests the Location and Camera permissions to create the appropriate star

maps for the user, an action that is not common in the Education category as a whole.

Given what the app does, we believe that it still falls into the Education category

and its existence as an outlier is a rare case.

The other outlier in the Education category, TpT (Teachers pay Teachers), allows

for teachers to share and sell content for their lesson plans. As such, the app allows

for in-app purchases which boosts the spy and bully scores. This app appears to be

more of a store application with an education theme than an actual Education app.
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While some might still consider this as properly categorized, we still believe that it

should receive extra care when downloading, since this app can make purchases on

the user’s behalf.

The two outliers in the Library category appear to be cases of miscategorization.

The Cardboard application is advertised on the Google Play Store as an app that

”puts virtual reality on your smartphone” Google (2015a). The app offers various

functionality to view your videos and take virtual tours of various places around the

world. This application really doesn’t have much to do with a Library, and might be

more appropriate in the Travel category, with more comparable scores. The INOVA

Text to Speech app is designed to read text from different sources out loud. Again,

this does not really fit into the Library category and might be more appropriately

placed in either the Productivity, Tools, or Business categories, all of which have

comparable scores.

Cymera is an interesting outlier because it is listed in the Photography app and

advertises itself as Photo-editing app. Yet, Figure 6.3 shows that this application

scores higher than 75% of all the top apps in the Social Media category. It requests

access to the user’s contacts, SMS/MMS, Location, as well as in-app purchases. This

app is overzealous in what it requests and definitely deserves more scrutiny by the

user before installing.

The other outliers are more straightforward. CM Security is an antivirus program,

which inherently requires access to most of the system resources. Outside of an explicit

Antivirus category, this really only fits into the Tools category. Waze is a GPS app

with various social media plugs; it might be better categorized in the Social category.

Talking Angela is a virtual pet app, which may be better classified as a game; however,

the properties of the game category were not considered here.

One limitation that we acknowledge is that the downloaded apps are all free. Since
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all of these apps are free, there is a potential bias as free apps often have ads and

other such mechanisms that can still profit the developer. Some developers even have

a free and paid version of the same app, with ads disabled on the paid version.

6.2 Application Graph Analysis

For a simple example, we have generated the graph for interactions between the

following apps in Figure 6.5:

• Skype

• Walmart

• Facebook

While it is not all that surprising that Facebook and Skype can intercommunicate, it is

curious that the Walmart app can communicate with both. Walmart can most likely

communicate with Skype to allow users to call a particular store, while it probably

lets a user ”like” Walmart on Facebook.

One application of interest alluded to earlier was the popular free Super Bright

LED Flashlight app. This application has over 3 million downloads and numerous

5 star reviews. The Google Play store has classified it in the Productivity category.

The spy score for this app is 35 and the bully score is 36; the permissions it requests

score lower than average for the Productivity category.

However, when decompiling the application, we notice that this flashlight app has

the ability to send out the intents shown in Table 6.3. We observe that many of

these intents can be resolved directly by sensitive system applications, like the phone,

2Note that for space constraints, only the last portion of the full text of the action is listed here.

For example, VIEW is really android.intent.action.VIEW. The borrowed convention is similar to

that for Android permissions.
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email, SMS, and the calendar. Figure 6.6 shows possible interactions with some of

the Google apps, like Gmail and Hangouts.

6.3 Discussion

The distribution of the flow scores shown in Figure 6.3 and Figure 6.4 show a

number of outliers, suggesting that these scorings can identify overzealous or miscat-

egorized apps in certain categories. We observe that some categories had a much more

diverse set of scores to consider, making them less effective in identifying outliers; the

interquartile ranges for the Business, Lifestyle, Productivity, and Transportation all

exceeded a value of 60. These categories are generally broader in terms of what they

do; the Productivity category includes both the Kingston Office app with a spy score

of 5 and the Evernote app which scores around 157. This suggests that a possible

improvement might be to score different resources differently based on category.

One use of Permission Graphs and the resulting flow scores might be to augment

the appearance and behavior of the Google Play store. The values and meanings of

this score could be displayed whenever the user downloads an app; work by Felt et.

al. has suggested that users can be responsive to some warning messages Felt et al.

(2012).

Of course, some users ignore the existing warnings as it is, and are likely to ignore

these new ones as well. In these cases, the scores could be used by the Google Play

store more explicitly. When a developer classifies their app in one of the Google Play

categories, the Google Play store could calculate the flow scores. Then, if that app is

an outlier in its respective category, the maintainers of Google Play can identify this

and take appropriate action, such as requiring the developer to reclassify their app,

or requiring additional justification for the requested permissions.

Application graphs could also further augment the scoring. Since it can commu-
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nicate with GMail, it is possible for the Flashlight app to access resources like SMS,

email, and the phone, even though it never requests the desired permissions. In this

way, the Flashlight app can be seen as implicitly having some of the permissions that

GMail has access to, even though they are never explicitly requested. This case is

particularly interesting because these types of transactions might not even involve a

leakage of permissions that tools such as ComDroid will find. For example, on the

system phone, the DIAL action requires no permissions and will load the number

to be dialed, but will stop short of actually making the call, while the CALL action

requires the proper permissions and can invoke the call directly. This difference is

subtle enough that the user is not likely to notice.

Application graphs also show that simply analyzing Android permissions is not

sufficient to understand the security of an app, even legitimate ones. Some apps can

score low in terms of permissions, but still interact with sensitive resources via intents,

as demonstrated by the Flashlight app. These graphs can also be used to generate

additional information for the user before they download it; Google Play could use

the application graphs to identify whether an app is capable of communicating with

certain system apps (SMS, Phone, Email) and warn the user accordingly, in addition

to the existing permissions.
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Figure 6.2: This chart shows the mean flow scores for each category of apps consid-
ered. The lines on the plot show the mean of all apps taken, regardless of category.
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Figure 6.3: This shows the box-and-whisker plot for the spy scores by category. No-
tice the number of outliers, suggesting that some apps are miscategorized or promis-
cuous.
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Figure 6.4: This shows the box-and-whisker plot for the bully scores by category.
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App Name Description

Education

Night Sky Tools This astronomy app uses location and the

camera for custom star maps.

TpT This app allows users to purchase teaching

resources.

Entertainment

Talking Angela Virtual Pet application.

Libraries

Cardboard A Virtual Tour app

INOVA Text to Speech App to read text out loud. Text can be

read from other sources, like Google Maps.

Media

Video Kik Video-editing app

Photography

Cymera Photo-editing app

Tools

CM Security Antivirus app

Travel

Waze GPS App with Social Media features

Table 6.2: This table shows the applications that are outliers in their respective
categories for the spy score. Note that the Sports category was omitted because the
interquartile range was smaller than expected.
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Method Action2 Data Extras

composeSms() VIEW sms body

createCalendarEvent() INSERT vnd.android.cursor.item/event

composeEmail() SEND plain/text Email, Subject, Text

call() CALL/VIEW

Table 6.3: This table shows some of the different intents that the Super Bright LED
Flashlight has the ability to send out. Notice that this flashlight application has the
ability to send intents to apps that can send text messages, create calendar events on
its behalf, even though it never requests the permissions necessary to do that on its
own.
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Figure 6.5: This shows some possible interactions between the Walmart app, Skype,
and Facebook.
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Figure 6.6: This figure shows part of the graph between the popular Super Bright
LED Flashlight app and some of the default Google apps.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

The security mechanisms provided by Android are incomplete. Understanding An-

droid permissions require knowledge and patience that many users do not have. Even

if they did, these permissions do not fully secure access to these resources since appli-

cations can still communicate using intents. Furthermore, permissions do not always

track flows of information from the apps, which are often at odds with the user’s

expectation of what they have access to.

7.1 Summary

This work proposes a new way to look at Android security by examining informa-

tion flow between apps using a graph-based approach. We first present a method for

scoring an application based on the nature of its requested permissions. The resulting

scores for each app were not effective on the apps at large, but were more effective

when considering applications within their specific categories. This is because certain

categories of applications, such as social media, inherently require more permissions.

Outliers and extremities within each category show apps that are miscategorized or

promiscuous.

We also present a method for analyzing the intercommunication between different

applications, revealing some unexpected possible flows. We have identified some

applications that do not request many permissions, yet they can still send out more

than desired. The work here can aid the future design of a system to educate users

on apps that can compromise their privacy.
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7.2 Future Work

This work proposes a new way to look at Android security and how applications

interact with each other using a graph-based approach. However, this work only

focuses on constructing these graphs and analyzing their properties. One way this

work could be improved is using the application graphs to modify the permission

scoring; as it stands now, it is nontrivial to do this since the score will depend on

the selection of apps in the application graph. The decompiler tool built to extract

sent intents could also be improved to produce a more thorough listing of intents sent

out by an application. Additional work could also work on capturing the sent intents

at runtime and enforcing policies thereof. Finally, future studies could focus on user

studies testing whether they can understand and customize security policies within a

graph-based framework.
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APPENDIX A

PERMISSION RESOURCE WEIGHTS

Here, we outline the full list of system permissions and how they map to certain
resources. The weights of each resource and the permissions that pertain to that
resource (including the direction of interaction) are fully configurable. This allows
for adding resources as new permissions and features are added, as well as updating
existing resources with different weights.

The list of initial resources that we considered are listed in Table A.1. The values
and responding permissions of these resources are listed in Table A.2, though some
have been omitted for brevity.

One problem that pervaded the assignment of the weights was the comparison
of relative values between apps that requested many minor resources like Battery,
Phone state, and so forth, and apps that only requested a few major resources like
Location. As a result, the value of sensitive resources like Location is much higher
than other non-sensitive resources, so that apps requesting many minor resources are
not unfairly punished.

The general Permission Graph approach does not depend explicitly on the actual
values of the resources1, meaning that different values for different conditions are
possible. In fact, the Permission Graph Analyzer tool itself assigns values based
on the contents of a text file, which can be edited with different values as needed.
Identifying better values of these resources or defining conditional values that depend
on the particular category of the app under consideration is left as future work.

1Technically, the maximum flow algorithm approach does require that each Resource’s value is
non-negative.

2Note that for an app to access to any account, the user will be prompted whether to allow it.
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Resource Description

Contacts The user’s contacts and address book.
Storage Access to external SD cards or other mediums.
Account Access to authentication tokens for different accounts,

like Facebook or Gmail.2

System Access to system events, like boot, as well as some other
informative fields.

Wallpaper The user’s selected wallpapers.
Camera Access to the camera.
Battery Features that may drain the battery more quickly.

SMS/MMS Access to a user’s text messages.
Device Alarm Access to the device alarm.

Phone Allows the user to make calls.
Bluetooth Allows for using and setting up Bluetooth devices.

Sync Settings Allows for querying whether apps can sync offline.
System Clock Allows for updating the clock.

Location Access to the user’s location, using GPS and WiFi.
Browser Data Access to browsing bookmarks and history.

System Display Access to modal system dialogs.
Calendar Access to the calendar.

Personal Profile Access to the user’s profile (contact) information on the
device.

User Dictionary Access to the user’s spell-checking dictionary.
Microphone Allows for recording audio.

Internet Access to network sockets and the internet.
NFC Near-field communication on some devices.

Voicemail Access to Voicemail.
Billing Allows for in-app purchases.

Network State Connectivity information.
DRM Access to new or custom DRM features.

Table A.1: This table lists the different resources and brief descriptions.
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Name Value Type Responding Permissions

Contacts 20 Local READ/WRITE CONTACTS
Storage 10 Local READ/WRITE EXTERNAL STORAGE
Account 10 Local GET ACCOUNTS, AUTHENTI-

CATE ACCOUNTS, MANAGE ACCOUNTS,
USE CREDENTIALS

System 3 Local RECEIVE BOOT COMPLETED,
CLEAR APP CACHE, GET PACKAGE SIZE,
BROADCAST STICKY

Wallpaper 2 Local SET WALLPAPER HINTS, SET WALLPAPER
Camera 30 Local CAMERA
Battery 3 Local TRANSMIT IR, VIBRATE, WAKE LOCK,

FLASHLIGHT
SMS/MMS 20 Local READ/WRITE SMS, SEND/RECEIVE SMS,

RECEIVE MMS
Device Alarm 5 Local SET ALARM

Phone 10 Local CALL PHONE, READ PHONE STATE
Bluetooth N/A Transit BLUETOOTH, BLUETOOTH ADMIN

Sync Settings 2 Local READ SYNC STATS, READ-
/WRITE SYNC SETTINGS,
WRITE SYNC SETTINGS

System Clock 1 Local SET TIME ZONE
Location 30 Local ACCESS FINE LOCATION, AC-

CESS COARSE LOCATION
Browser Data 5 Local ACCESS DOWNLOAD MANAGER, READ-

/WRITE HISTORY BOOKMARKS
System Display 5 Local SYSTEM ALERT WINDOW

Calendar 10 Local READ/WRITE CALENDAR
Personal Profile 7 Local READ/WRITE PROFILE
User Dictionary 3 Local READ/WRITE USER DICTIONARY

Microphone 10 Local RECORD AUDIO
Internet N/A Transit INTERNET

NFC N/A Transit NFC
Voicemail 20 Local ADD VOICEMAIL

Billing 30 Local BILLING
Network State 5 Local ACCESS/CHANGE WIFI STATE, AC-

CESS/CHANGE NETWORK STATE
DRM 30 Local INSTALL DRM, ACCESS DRM

Table A.2: This shows the values and responding permissions for the system re-
sources.
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APPENDIX B

CATEGORIES IN THE GOOGLE PLAY STORE

At the time of this writing, the categories in the Google Play store that we considered
are:

• Books & Reference

• Business

• Comics

• Communication

• Education

• Entertainment

• Finance

• Health & Fitness

• Libraries & Demo

• Lifestyle

• Live Wallpaper

• Media & Video

• Medical

• Music & Audio

• News & Audio

• Personalization

• Photography

• Productivity

• Shopping

• Social

• Sports

• Tools

• Transportation

• Travel & Local

• Weather

We did not consider these categories:

• Widgets

• Games – which has the following subcategories:

– Action

– Adventure

– Arcade

– Board

– Card

– Casino

– Casual

– Educational

– Family

– Music

– Puzzle

– Racing

– Role Playing

– Simulation

– Sports

– Strategy

– Trivia

– Word
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APPENDIX C

INTENT METHODS

Here, we list the methods of the android.content.Intent class that we care about and
their properties, derived directly from Google (2015b):

• addCategory() – Adds a new category to the intent.

• addFlags() – Adds flags to the intent.

• getAction() – Returns the action for this intent.

• get*Extra() – A series of methods that allow for getting the extras stored in this
intent. The various names and overloads of this method allow for extracting
specific Java types, like Char, Boolean, etc.

• getDataString() – Returns the data this intent is operating on.

• getExtras() – Returns a map of all the extras for this intent.

• getFlags() – Gets the flags for this intent.

• getPackage() – Returns the application package this intent is limited to.

• getType() – Returns any explicit MIME type included in the intent.

• put*Extra() – A series of method that allow for setting the extras stored in this
intent.

• setAction() – Set the action for this intent.

• setDataAndType() – Set the data for this intent.

• setPackage() – Set an explicit application package name that limits the compo-
nents this Intent will resolve to.

• setType() – Set an explicit MIME data type for this intent.

There are more methods than what is listed here. When decompiling, we check various
regexes for the method names, since the input arguments for each of the methods is
straightforward.
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