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ABSTRACT  

   

A control method based on the phase angle is used to control oscillating systems. 

The phase oscillator uses the sine and cosine of the phase angle to change key properties 

of a mass-spring-damper system, including amplitude, frequency, and equilibrium. An 

inverted pendulum is used to show a further application of the phase oscillator. Two 

methods of control based on the phase oscillator are used for swing-up and balancing of 

the pendulum. The first control method involves two separate stages. The scenarios 

where this control works are discussed. The second control method uses variable 

coefficients to result in a smooth transition between swing-up and balancing. 
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CHAPTER 1 

INTRODUCTION 

The phase oscillator has been used mainly in wearable robotic systems. The control was 

used to pump energy into a person by oscillating a backpack assisting load carriage [1], to 

control an exoskeleton to assist running by aiding hip extension and flexion [2, 3], and to control 

a simple hopping robot [4]. Using the phase angle to control an oscillating system is not a new 

idea. A. Jan Ijspeert et al. [5-7] uses phase angles to control the motion of an elbow orthosis. In 

their case, phase angles are used as a state estimator for position and velocity. The estimated 

state is used to compute control signals that are then used to force the system to follow a 

behavior. The phase oscillator uses the phase angle to directly determine a desired torque and 

does not force the system to follow a specific behavior. Instead of forcing a specific position at a 

point in time, the overall characteristics, such as amplitude, frequency, and equilibrium, are 

controlled. 

This paper includes discusses the theory of the phase oscillator and how the phase 

oscillator can be used as a swing-up and balancing control for an inverted pendulum. Chapter 2 

gives a brief background of controls used for swing-up and balancing of pendulums. Chapter 3 

covers the theory of the phase oscillator. Chapter 4 discusses the theory of a pendulum and using 

the phase oscillator for swing-up and balancing. Chapter 5 gives the result of an experiment 

using Working Model 2D to simulate the swing-up and balancing of a pendulum. Chapter 6 

discusses the results, future work, and contributions. 
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CHAPTER 2 

BACKGROUND 

The swing-up and balancing of an inverted pendulum is a classic controls problem. The 

nonlinear system is seen in many places from Segways to rockets. Many approaches have been 

taken to control the system, including energy based control [8-15], feedback stabilization 

[14,15], bang-bang control [16], sliding mode control [17-19], robust control [20], hybrid control 

[21], partial linearization [22,23], machine learning [24], and simulator-based foresight control 

[25]. 

One of the more common controls is the energy based control. The energy control 

method considers the current energy in the system and the total energy needed. When the energy 

in the system is less than the total energy needed, the control adds energy to the system, usually 

by providing the full torque in the same direction as the angular velocity. Once the system has 

enough energy, the control switches to a different method for balancing. 

A problem with energy based control is the quick changes in the forcing function. When 

the velocity switches from positive to negative, the forcing function switches from full force 

positive to full force negative. In simulation, quick, large changes are not a problem. With a real 

motor, quick, large changes can damage the motor. The energy based control also has to be 

paired with another control for balancing. The switch in controls can cause another large change 

in the forcing function. The phase oscillator can be used for both swing-up and balancing and 

can create a continuous forcing function. 
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CHAPTER 3 

PHASE OSCILLATOR 

The general equation for a mass-spring-damper system is given by Equation 3.1 and 

solved by Equations 3.2 – 3.4. 

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 0 (3.1) 

𝑥 = 𝐴 cos 𝜔𝑡 (3.2) 

𝑥̇ = −𝐴𝜔 sin 𝜔𝑡 (3.3) 

𝑥̈ = −𝐴𝜔2 cos 𝜔𝑡 (3.4) 

The frequency of oscillations of the system modeled by Equation 1 is dependent on the 

mass, 𝑚, and the spring constant, 𝑘. The behavior of the amplitude of the oscillations is 

dependent on the damping coefficient, 𝑏. If 𝑏 > 0, the system has positive damping, and the 

oscillations will shrink and disappear over time. If 𝑏 < 0, the system has negative damping, and 

the oscillations will continue to grow. If 𝑏 = 0, the system has no damping, and the oscillations 

will remain a constant amplitude. 
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Figure 3.1:  Spring response due to positive, negative, and no damping. 𝑚 = 1 kg, 𝑘 = 

50 N/m, 𝑏 is in Ns/m, initial position = 1 m, initial velocity = 0 m/s. 

Figure 3.1 illustrates the how drastically changing the value of b can change the system. 

If the value of b is known, a forcing function can be used to manipulate the amplitude of the 

system. Equation 3.5 uses 𝑐𝑥̇ as a forcing function. 

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝑐𝑥̇ (3.5) 

𝑚𝑥̈ + (𝑏 − 𝑐)𝑥̇ + 𝑘𝑥 = 0 (3.6) 

By applying a forcing function proportional to the velocity, the effective damping of the 

system can be changed. Rearranging the terms in Equation 3.5 shows the new coefficient of 𝑥̇ to 

be 𝑏 − 𝑐 (Equation 3.6). The value of 𝑐 can be changed to grow, hold constant, or shrink the 
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amplitude of the system. However, the value of 𝑏 has to be known with extreme precision for 

this method to be effective, and a separate control must be used to control the value of 𝑐. 

A simpler method of control is a phase oscillator. A phase oscillator adds energy to the 

system based on the phase angle of the system. Figure 3.2 shows the phase angle, 𝜙, on a phase 

plot. 𝜙 is defined by Equation 3.7.  

 

Figure 3.2:  𝜙, shown on a phase plot.  

𝜙 = 𝑎𝑡𝑎𝑛2(𝑥̇, 𝑥) (3.7) 

The phase angle can be used to determine when to add energy to the system and how 

much energy to add. Figure 3.3 shows the phase plot for the case in Figure 3.1 where 𝑏 = 0, 

while Figure 3.4 shows the phase angle over time for the same case. 

𝑥̇ 

𝑥 

𝜙 
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Figure 3.3:  Phase plot of an oscillating system with no damping using the definition 

of 𝜙 given by Equation 3.7. 
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Figure 3.4:  Phase angle of an oscillating system with no damping using the definition 

of 𝜙 given by Equation 3.7. 

With the previously stated definition of the phase angle, the phase angle remains close to 

±
𝜋

2
 for the majority of each oscillation. The unbalance is due to 

𝑥̇

𝑥
 not being unitless. When the 

velocity is divided by the natural frequency (defined in Equation 3.8), the phase angle (redefined 

in Equation 3.9), becomes more linear. A linear phase angle allows for more precise phase 

oscillator controls. Figure 3.5 shows the phase plot and Figure 3.6 shows the phase angle for the 

previous case using the redefined 𝜙. 

𝜔 = √
𝑘

𝑚
 (3.8) 

𝜙 = 𝑎𝑡𝑎𝑛2 (
𝑥̇

𝜔
, 𝑥) (3.9) 
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Figure 3.5:  Phase plot of an oscillating system with no damping using the definition 

of 𝜙 given by Equation 3.9. 
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Figure 3.6:  Phase angle of an oscillating system with no damping using the definition 

of 𝜙 given by Equation 3.9. 

A forcing function proportional to the sine of the phase angle can be used to add energy 

to the system. The forcing function puts the system into a limit cycle. Equation 3.10 models the 

system with the phase oscillator. 

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝑐 sin 𝜙 (3.10) 
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Figure 3.7:  Spring response with phase oscillator (sine). 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 𝑘 = 

50 N/m, 𝑐 = 20 N, initial position = 1 m, initial velocity = 0 m/s. 
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Figure 3.8:  Spring response with phase oscillator (sine). 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 𝑘 = 

50 N/m, 𝑐 = 20 N, initial position = 6 m, initial velocity = 0 m/s. 

Figures 3.7 and 3.8 show the same system used previously, but with damping and a phase 

oscillator introduced. In both cases the oscillations fall into the same limit cycle. This limit cycle 

can be found by solving Equation 3.10 analytically. The sine of the phase angle is defined by 

Equation 3.11. The steady-state solution of Equation 3.10 is given by Equations 3.12, 3.13, and 

3.14 (shown below). 

sin 𝜙 =
(

𝑥̇

𝜔
)

√(
𝑥̇

𝜔
)

2
+𝑥2

 (3.11) 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡) (3.12) 

𝑥̇(𝑡) = 𝐴𝜔 cos(𝜔𝑡) (3.13) 



  12 

𝑥̈(𝑡) = −𝐴𝜔2 sin(𝜔𝑡) (3.14) 

Substituting Equations 3.12 and 3.13 into Equation 3.14 yields Equation 3.15. 

sin 𝜙 =
(

𝐴𝜔 cos(𝜔𝑡)

𝜔
)

√(
𝐴𝜔 cos(𝜔𝑡)

𝜔
)

2
+𝐴 sin(𝜔𝑡)2

=
𝐴 cos(𝜔𝑡)

𝐴√(cos(𝜔𝑡))2+(sin(𝜔𝑡))2
= cos(𝜔𝑡) (3.15) 

Equations 3.13, 3.14, 3.15, and 3.16 can be substituted into Equation 3.10, as shown in 

Equation 3.16, to show the dependence of the amplitude of the system, 𝐴, on the coefficient 𝑐. 

−𝑚𝐴𝜔2 sin(𝜔𝑡) + 𝑏𝐴𝜔 cos(𝜔𝑡) + 𝑘𝐴 sin(𝜔𝑡) = 𝑐 cos(𝜔𝑡) (3.16) 

𝑘 − 𝑚𝜔2 = 0 (3.17) 

𝑐 = 𝑏𝐴𝜔 (3.18) 

𝐴 =
𝑐

𝑏𝜔
 (3.19) 

Equations 3.18 and 3.19 show the relationship between 𝑐 and 𝐴. As an example, a steady-

state amplitude of 8 m can be achieved using the same system from Figure 3.8 by solving 

Equation 3.18 for the appropriate value of 𝑐. The result can be seen in Figure 3.9. 
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Figure 3.9:  Spring response with phase oscillator (sine). 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 𝑘 = 

50 N/m, 𝑐 = 56.57 N, initial position = 6 m, initial velocity = 0 m/s. 

Using the sine of the phase angle as a forcing function can be thought of as adding 

another damping term to the system. A positive coefficient in Equation 3.10 gives negative 

damping, as the forcing function is on the right-hand side of the equation, adding energy to the 

system. Unlike the damping provided by the term 𝑏𝑥̇, the damping provided by 𝑐 sin 𝜙 is 

bounded in the range of [−𝑐, 𝑐]. Also, the damping of the phase oscillator varies from −𝑐 to 𝑐 

even when 𝑥̇ is very small. The behavior of the bounded damping can explain intuitively the 

steady-state solution given by Equation 3.12. When 𝑥̇ is large, the positive damping from 𝑏𝑥̇ 

removes more energy from the system than the negative damping from 𝑐 sin 𝜙 adds to the 

system. When 𝑥̇ is small, the positive damping from 𝑏𝑥̇ removes less energy from the system 
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than the negative damping from 𝑐 sin 𝜙 adds to the system. In either case, the system is pushed 

toward the same limit cycle, as seen in Figure 3.7 and Figure 3.8. 

While giving the sine term a positive coefficient can be thought of as negative damping, a 

negative coefficient can be thought of as positive damping, removing energy from the system. 

Figure 3.10 shows energy being removed from a system by a phase oscillator. 

 

Figure 3.10:  Spring response with phase oscillator (sine). 𝑚 = 1 kg, 𝑏 = 0 Ns/m, 𝑘 = 

50 N/m, 𝑐 = -5 N, initial position = 1 m, initial velocity = 0 m/s. 

Equation 3.20 gives the definition of the cosine of the phase angle. The cosine of the 

phase angle has 𝑥 in the numerator instead of 
𝑥̇

𝜔
, meaning using cosine instead of sine as a 

forcing function will act as a spring instead of damping. Equations 3.21 through 3.24 show the 

steady state solution from Equation 3.12 is still valid for a system with no damping. Equation 
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3.24 gives the relationship to determine the new frequency of the system with the added spring 

term. 

cos 𝜙 =
𝑥

√(
𝑥̇

𝜔
)

2
+𝑥2

=
𝐴 sin(𝜔𝑡)

√(
𝐴𝜔 cos(𝜔𝑡)

𝜔
)

2
+𝐴 sin(𝜔𝑡)2

=
𝐴 sin(𝜔𝑡)

𝐴√(cos(𝜔𝑡))2+(sin(𝜔𝑡))2
= sin(𝜔𝑡) (3.20) 

𝑚𝑥̈ + 𝑘𝑥 = 𝑐 cos 𝜙 (3.21) 

−𝑚𝐴𝜔2 sin(𝜔𝑡) + 𝑘𝐴 sin(𝜔𝑡) = 𝑐 sin(𝜔𝑡) (3.22) 

(𝑘 − 𝑚𝜔2)𝐴 = 𝑐 (3.23) 

𝜔2 =
𝑘−

𝑐

𝐴

𝑚
 (3.24) 

A negative coefficient of the cosine of the phase angle results in a normal spring, which 

“pulls” toward 𝑥 = 0. Similar to the sine term, the force is bounded by and varies between 

[−𝑐, 𝑐]. A positive coefficient results in a spring which “pushes” away from 𝑥 = 0, but pushes 

with more force as position grows larger. 

Figure 3.11 shows how a system (without damping) changes with the addition of a phase 

oscillator using the cosine of the phase angle. As 𝑐 is negative, the phase oscillator acts as a 

spring, increasing the frequency. The increased frequency can be explained mathematically by 

Equation 3.24. A negative value of 𝑐 causes the numerator to be larger. 
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Figure 3.11:  Spring response without and with phase oscillator (cosine). 𝑚 = 1 kg, 

𝑏 = 0 Ns/m, 𝑘 = 20 N/m, 𝑐 = = -5 N, initial position = 1 m, initial velocity = 0 m/s. 

Similarly, the frequency of a system can be decreased by using a positive value for 𝑐. 

Figure 3.12 shows how a system (without damping) forced by a phase oscillator using the sine of 

the phase angle with a positive coefficient has a decreased frequency. A positive value of 𝑐 in 

Equation 3.24 leads to a smaller numerator. 
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Figure 3.12:  Spring response without and with phase oscillator (cosine). 𝑚 = 1 kg, 

𝑏 = 0 Ns/m, 𝑘 = 20 N/m, 𝑐 = 5 N, initial position = 1 m, initial velocity = 0 m/s. 

Figures 3.11 and 3.12 had no damping in order to demonstrate the frequency change 

before introducing the side effect of decreasing the frequency. Figures 3.13 and 3.14 introduce 

damping to the same system, described by Equation 3.25. 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑐 cos 𝜙 = 𝑐
𝑥

√(
𝑥̇

𝜔
)

2
+𝑥2

 (3.25) 
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Figure 3.13:  Spring response without and with phase oscillator (cosine). 𝑚 = 1 kg, 

𝑏 = 1 Ns/m, 𝑘 = 20 N/m, 𝑐 = -5 N, initial position = 1 m, initial velocity = 0 m/s. 
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Figure 3.14:  Spring response without and with phase oscillator (cosine). 𝑚 = 1 kg, 

𝑏 = 1 Ns/m, 𝑘 = 20 N/m, 𝑐 = 5 N, initial position = 1 m, initial velocity = 0 m/s. 

In Figures 3.13 and 3.14, the cases where 𝑐 ≤ 0 (for the “No Forcing” case 𝑐 = 0) have 

normal equilibrium positions (𝑥 = 0). However, the case where 𝑐 = 5 N has an equilibrium 

position less than the desired equilibrium position. The difference can be accounted for by 

examining Equation 3.35. At the equilibrium, 𝑥̇ = 0, so Equation 3.25 can be simplified and 

rearranged, as seen in Equations 3.26 and 3.27. 

𝑚𝑥̈ + 𝑘𝑥 =
𝑐𝑥

√𝑥2
 (3.26) 

𝑚𝑥̈ = 𝑐 𝑠𝑔𝑛(𝑥) − 𝑘𝑥 (3.27) 
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Suppose 𝑐 < 0. If 𝑥 > 0, then 𝑐 𝑠𝑔𝑛(𝑥) < 0 and −𝑘𝑥 < 0, so the system accelerates in a 

negative direction, toward 𝑥 = 0. Likewise, if 𝑥 < 0, then 𝑐 𝑠𝑔𝑛(𝑥) > 0 and −𝑘𝑥 > 0, so the 

system accelerates in a positive direction, toward 𝑥 = 0. 

However, suppose 𝑐 > 0. If 𝑥 > 0, then 𝑐 𝑠𝑔𝑛(𝑥) > 0 and −𝑘𝑥 < 0. When the 

magnitudes of the two terms are equal, the terms cancel. With no force, the system remains at an 

equilibrium where 𝑥 > 0. Likewise, if 𝑥 > 0, then 𝑐 𝑠𝑔𝑛(𝑥) > 0 and −𝑘𝑥 < 0, and another 

equilibrium is found where 𝑥 > 0. Equations 3.28 and 3.29 solve for the equilibriums. 

𝑘𝑥𝑒𝑞 = 𝑐 𝑠𝑔𝑛(𝑥) (3.28) 

𝑥𝑒𝑞 = ±
𝑐

𝑘
 (3.29) 

Equation 3.29 justifies the response seen in Figure 3.14. With 𝑐 = 5𝑁 and 𝑘 = 20
𝑁

𝑚
, 

𝑥𝑒𝑞 = ±0.25𝑚. 

The system will go to different equilibriums depending on the initial conditions. To 

analyze the equilibriums, the initial position can be set close to the equilibrium points. Figure 

3.15 shows the response of a system with 𝑐 < 0 when the initial position is set close to the 

equilibrium points. Figure 3.16 shows the response of the same system with the same initial 

positions but with 𝑐 > 0. 
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Figure 3.15:  Spring response with varying initial conditions. 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 

𝑘 = 20 N/m, 𝑐 = -2 N, initial velocity = 0 m/s. 
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Figure 3.16:  Spring response with varying initial conditions. 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 

𝑘 = 20 N/m, 𝑐 = 2 N, initial velocity = 0 m/s. 

For each initial condition in Figure 3.15, 𝑥𝑒𝑞 = 0. For each initial condition in Figure 

3.16, either 𝑥𝑒𝑞 =
𝑐

𝑘
 or 𝑥𝑒𝑞 = −

𝑐

𝑘
. 

The phase oscillator can use both the sine of the phase angle and the cosine of the phase 

angle simultaneously to control both the amplitude and the frequency of an oscillating system. 

Equation 3.30 shows a system forced by a phase oscillator using both the sine and cosine of the 

phase angle. The system can still be solved with Equation 3.12, as shown by Equations 3.31 

through 3.33. 

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝑐1 sin 𝜙 + 𝑐2 cos 𝜙 (3.30) 

−𝑚𝐴𝜔2 sin(𝜔𝑡) + 𝑏𝐴𝜔 cos(𝜔𝑡) + 𝑘𝐴 sin(𝜔𝑡) = 𝑐1 cos(𝜔𝑡) + 𝑐2 sin(𝜔𝑡) (3.31) 
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𝑏𝐴𝜔 = 𝑐1 (3.32) 

(𝑘 − 𝑚𝜔2)𝐴 = 𝑐2 (3.33) 

Equations 3.32 and 3.33 allow the designer to choose any amplitude and frequency. The 

𝜔 shown is the frequency of the solution, not necessarily the natural frequency of the system. 

Consider the physical system used in Figures 3.7 and 3.8. The system can be oscillated with 𝐴 =

7 (𝑚) and 𝜔 =
𝜋

2
 (

𝑟𝑎𝑑

𝑠
) by solving Equations 3.32 and 3.33. The response of the system is shown 

in Figure 3.17, and the forcing function generated is shown in Figure 3.18. 

 

Figure 3.17:  Spring response with Equation 3.30. 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 𝑘 = 50 

N/m, initial position = 1 m, initial velocity = 0 m/s, 𝑐1 = 10.996 N, 𝑐2 = 332.728 N. 
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Figure 3.18:  Forcing function used for the system in Figure 3.17. 

Using both sine and cosine in the phase oscillator is useful for visualizing the damping 

and spring components separately. However, the two terms can be combined into a single term 

for simplicity. Figure 3.19 and Equations 3.34 through 3.36 define the phase shift 𝛼 and the 

amplitude 𝑈. Equations 3.37 through 3.39 show the simplification of the phase oscillator. 
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Figure 3.19:  𝛼, in relation to 𝑐1 and 𝑐2  

sin 𝛼 =
𝑐1

√𝑐1
2+𝑐2

2
 (3.34) 

cos 𝛼 =
𝑐2

√𝑐1
2+𝑐2

2
 (3.35) 

𝑈 = √𝑐1
2 + 𝑐2

2 (3.36) 

𝑐1 sin 𝜙 + 𝑐2 cos 𝜙 = √𝑐1
2 + 𝑐2

2 (
𝑐1

√𝑐1
2+𝑐2

2
sin 𝜙 +

𝑐2

√𝑐1
2+𝑐2

2
cos 𝜙) (3.37) 

𝑐1 sin 𝜙 + 𝑐2 cos 𝜙 = 𝑈(sin 𝛼 sin 𝜙 + cos 𝛼 cos 𝜙) (3.38) 

𝑐1 sin 𝜙 + 𝑐2 cos 𝜙 = 𝑈 cos(𝜙 − 𝛼) (3.39) 

The balance between damping and spring provided by the phase oscillator depends on the 

phase shift of the forcing function, 𝛼. The maximum value reached by the forcing function is 

given by the amplitude, 𝑈. Figures 3.20 and 3.21 show the resulting phase shift and amplitude 

when the two coefficients are varied between -1 and 1. 

𝑐1 

𝑐2 

𝛼 

𝑈 
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Figure 3.20:  The phase shift, 𝛼, as 𝑐1 and 𝑐2 vary 

 

Figure 3.21:  The amplitude, 𝑈, as 𝑐1 and 𝑐2 vary 
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Figure 3.20 shows the spiral staircase behavior of the phase shift. 𝛼 is bounded by the 

interval [−𝜋, 𝜋]. Figure 3.21 shows the conical behavior of the amplitude. 𝑈 is bounded by the 

interval [0, ∞). 

Starting at any point on the surface in Figure 3.20 and moving directly toward or away 

from the vertical line defined by 𝑐1 = 𝑐2 = 0 results in a constant value of 𝛼, moving in or out 

on one of the “steps” of the staircase. Starting at any point on the surface in Figure 3.21 and 

moving as previously described results in decreasing or increasing 𝑈 at the largest rate possible, 

moving in to (toward the point) or out of (away from the point) the cone. The movement 

described is achieved by keeping the ratio 𝑐1: 𝑐2 constant. Figure 3.22 shows an example of the 

described movements when 𝛼 = 0. 

 

Figure 3.22:  Points from Figures 3.20 and 3.21 where 𝛼 = 0. 
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Starting at any point on the surface in Figure 3.20 and moving perpendicular to the 

previous motion results in decreasing or increasing 𝛼 at the largest rate possible, moving down 

or up the “steps” of the staircase. Starting at any point on the surface in Figure 3.21 and moving 

as previously described results in a constant value of 𝑈, circling along a ring on the cone while 

moving neither up nor down. Figure 3.23 shows an example of the described movements when 

𝑈 ≈ 1. 

 

Figure 3.23:  Points from Figures 3.20 and 3.21 where 𝑈 ≈ 1. 
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Figure 3.24:  Points from Figure 3.23, 𝑈 ≈ 1. 

The phase oscillator can be used to generate a step response using a feedforward loop. 

Equation 3.40 gives the forcing function. The terms are modifications of the definitions used in 

Equations 3.11 and 3.20. By replacing 𝑥 with 𝑥 − 𝑥𝑑𝑒𝑠, the reference frame is changed. 𝑥 − 𝑥𝑑𝑒𝑠 

is used instead of 𝑥𝑑𝑒𝑠 − 𝑥 in order to maintain similar behavior of the coefficients. When 𝑐1 =

𝑐2 = 0, the system simply oscillates around 𝑥𝑑𝑒𝑠, as seen in Figure 3.25. 

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 =
𝑐1(

𝑥̇

𝜔
)

√(
𝑥̇

𝜔
)

2
+(𝑥−𝑥𝑑𝑒𝑠)2

+
𝑐2(𝑥−𝑥𝑑𝑒𝑠)

√(
𝑥̇

𝜔
)

2
+(𝑥−𝑥𝑑𝑒𝑠)2

+ 𝑘𝑥𝑑𝑒𝑠 (3.40) 
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Figure 3.25:  Feedforward control for step response. 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 𝑘 = 50 

N/m, initial position = 0 m, initial velocity = 0 m/s, desired equilibrium = 5 m, 𝑐1 = 0 

N, 𝑐2 = 0 N. 

Changing 𝑐1 gives similar results to what was seen previously. A positive 𝑐1 gives 

negative damping, causing the system to oscillate in a limit cycle around the desired point. A 

negative 𝑐1 gives positive damping, causing the oscillations to diminish. Figure 3.26 shows the 

effects of changing 𝑐1. 
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Figure 3.26:  Effects of changing 𝑐1 with a feedforward control and phase oscillator 

for step response. 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 𝑘 = 50 N/m, initial position = 0 m, initial 

velocity = 0 m/s, desired equilibrium = 5 m, 𝑐2 = 0 N. 

Changing 𝑐2 also gives a similar result to what was seen previously. A negative 𝑐2 gives 

a pulling spring, increasing frequency. A positive 𝑐2 still gives a pushing spring, decreasing 

frequency, and changes the equilibrium. The equilibrium can still be found using Equation 3.29. 

Figure 3.27 shows the effects of changing 𝑐2. 
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Figure 3.27:  Effects of changing 𝑐2 with a feedforward control and phase oscillator 

for step response. 𝑚 = 1 kg, 𝑏 = 1 Ns/m, 𝑘 = 50 N/m, initial position = 0 m, initial 

velocity = 0 m/s, desired equilibrium = 5 m, 𝑐1 = 0 N. 
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CHAPTER 4 

PENDULUM APPLICATIONS 

A solid pendulum system is special, as the stiffness of the “spring”, that is, gravity, is 

nonlinear. The system can be modeled by Equation 4.1. Note that the pendulum modeled in this 

paper is a solid rod with mass (no mass attached at the end). 𝐼 is the moment of inertia of the 

pendulum, calculated by Equation 4.2, where 𝐿 is the length of the pendulum. 𝑏 is again the 

damping coefficient. The natural frequency for small oscillations, 𝜔0, can be calculated by 

Equation 4.3. The angle, 𝜃, is zero when the pendulum is pointing down, toward gravity. 

𝐼𝜃̈ + 𝑏𝜃̇ +
𝐿

2
𝑚𝑔 sin 𝜃 = 0 (4.1) 

𝐼 =
𝑚𝐿2

3
 (4.2) 

𝜔0 = √
3𝑔

2𝐿
 (4.3) 

Equation 4.4 defines 𝜁, the damping ratio. Equations 4.1 can be rewritten using Equations 

4.2 through 4.4 as Equation 4.5. Using the damping ratio allows a clearer understanding of how 

damping affects the system. 𝜁 = 0 corresponds to no damping, while 𝜁 = 1 corresponds to 

critical damping. Figure 4.1 shows a freely oscillating pendulum. Figure 4.2 shows the same 

pendulum with damping, and Figure 4.3 shows the phase plot of the response. 

𝜁 =
𝑏

2𝐼𝜔0
 (4.4) 

𝜃̈ + 2𝜁𝜔0𝜃̇ + 𝜔0
2 sin 𝜃 = 0 (4.5) 
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Figure 4.1:  Pendulum response. 𝐿 = 1 m, 𝑚 = 1 kg, 𝑔 = 9.81 m/s^2, 𝜁 = 0, initial 

angle = 
𝜋

6
 rad, initial angular velocity = 0 rad/s. 
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Figure 4.2:  Pendulum response. 𝐿 = 1 m, 𝑚 = 1 kg, 𝑔 = 9.81 m/s^2, 𝜁 = 0.15, initial 

angle = 
𝜋

6
 rad, initial angular velocity = 0 rad/s. 
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Figure 4.3:  Phase plot of system from Figure 4.2. 

Similar to Equation 3.10, a phase oscillator can be added to the system to put the 

pendulum in a limit cycle. The system can be modeled by Equation 4.6. Figures 4.4 and 4.6 show 

the same system with different initial conditions. Figures 4.5 and 4.7 show how the system in 

Figures 4.4 and 4.6 end up in the same limit cycle regardless of the initial conditions. 

𝐼𝜃̈ + 𝑏𝜃̇ +
𝐿

2
𝑚𝑔 sin 𝜃 = 𝑐1 sin 𝜙 (4.6) 

sin 𝜙 =
(

𝜃̇

𝜔
)

√(
𝜃̇

𝜔
)

2

+𝜃2

 (4.7) 
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Figure 4.4:  Pendulum response with phase oscillator. 𝐿 = 1 m, 𝑚 = 1 kg, 𝑔 = 9.81 

m/s^2, 𝜁 = 0.15, initial angle = 
𝜋

6
 rad, initial angular velocity = 0 rad/s, 𝑐1 = 1 N. 
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Figure 4.5:  Phase plot of response from Figure 4.4. 

 

Figure 4.6:  Same system as Figure 4.4, with initial angle = 
𝜋

2
 rad. 
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Figure 4.7:  Phase plot of response from Figure 4.6. 

The phase oscillator can be used for swinging up and balancing a pendulum. This paper 

covers two methods of swing up control. The breakpoint method involves one control for swing 

up and one control for balancing. The continuous method combines the two controls from the 

breakpoint method into a single, continuous control for both swing up and balancing. 

The breakpoint method uses Equation 4.8 during swing up and Equation 4.9 during 

balancing. The coefficients are chosen according to Equation 4.10 so the maximum magnitude of 

the forcing function is 𝐶. 𝜙1 is the phase angle calculated with 𝜃1, where 𝜃1 = 0 corresponds to 

the pendulum pointing down. 𝜙2 is the phase angle calculated with 𝜃2, where 𝜃2 = 0 

corresponds to the pendulum pointing up. The reason for multiple phase angles is discussed 

below. 

Controller for Breakpoint Method Swing Up: 
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𝐼𝜃̈ + 𝑏𝜃̇ +
𝐿

2
𝑚𝑔 sin 𝜃 = 𝐶(𝑐11 sin 𝜙1 + 𝑐21 cos 𝜙1) (4.8) 

Controller for Breakpoint Method Balancing: 

𝐼𝜃̈ + 𝑏𝜃̇ +
𝐿

2
𝑚𝑔 sin 𝜃 = 𝐶(𝑐12 sin 𝜙2 + 𝑐22 cos 𝜙2) (4.9) 

Relationship Between Coefficients: 

√𝑐11
2 + 𝑐21

2 = √𝑐12
2 + 𝑐22

2 = 1 (4.10) 

During swing up 𝑐11 = 1 and 𝑐21 = 0. 𝑐11 is positive in order to give negative damping 

and add energy into the system. 𝑐21 is zero, as a spring component is not needed during this 

stage. Once the pendulum swings past a defined angle, or breakpoint, the control changes to 

balance the pendulum. 𝑐12 is a negative value to provide positive damping. If 𝑐12 remained 

positive, the pendulum would be pushed down. Instead, positive damping resists motion. As 

gravity would still pull the pendulum down, 𝑐22 is a negative value to act as a spring, pulling the 

pendulum up towards the top. Figure 4.8 explains the breakpoint method visually. 
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Figure 4.8:  Breakpoint Method. In the purple zone (below the breakpoint), the phase 

angle is determined using 𝜃1. In the green zone (above the breakpoint), the phase angle 

is determined using 𝜃2. The red bar represents the pendulum. 

The phase oscillator breakpoint method can swing up and balance a pendulum using a 

torque too small to directly swing up the pendulum. As an example, Figure 4.9 shows a constant 

torque applied to a pendulum from two different initial conditions. Equation 4.11 describes the 

system. In both cases the pendulum levels out where the torque applied is equivalent to the 

torque due to gravity. Equations 4.12 and 4.13 justify the equilibrium position being 𝜃 = 0.7101 

radians. 

𝜃2 

𝜃1 

Breakpoint 

𝑐12 < 0 

𝑐22 < 0 

𝑐11 > 0 

𝑐21 = 0 
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Figure 4.9:  Pendulum response to constant torque (𝜃1 vs time). 𝐶 = 3.2 N*m, 𝐿 = 1 

m, 𝑚 = 1 kg, 𝑔 = 9.81 m/s^2, 𝜁 = 0.15, initial angle = 
𝜋

6
 rad, initial angular velocity = 

0 rad/s. 

𝐼𝜃̈ + 𝑏𝜃̇ +
𝐿

2
𝑚𝑔 sin 𝜃 = 𝐶 (4.11) 

𝐿

2
𝑚𝑔 sin 𝜃 = 𝐶 (4.12) 

𝜃 = sin−1 2𝐶

𝐿𝑚𝑔
 (4.13) 

Figure 4.10 shows the same maximum torque being applied with the phase oscillator 

breakpoint method. The relationship described in Equation 3.31 shows how the maximum torque 

applied during balancing is still less than the torque applied in Figure 4.9. Figure 4.11 shows the 

torque applied to the system in Figure 4.10. 
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Figure 4.10:  Pendulum response to breakpoint method (𝜃1 vs time). 𝐶 = 3.2 N*m, 

𝑐11 = 1, 𝑐12 = −
1

√2
, 𝑐21 = 0, 𝑐22 = −

1

√2
, 𝐿 = 1 m, 𝑚 = 1 kg, 𝑔 = 9.81 m/s^2, 𝜁 = 

0.15, initial angle = 
𝜋

6
 rad, initial angular velocity = 0 rad/s. 
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Figure 4.11:  Torque applied to system in Figure 4.10. 

Figure 4.10 shows the pendulum swing up and balance. Figure 4.11 shows a smooth 

forcing function during swing up, a jump in the forcing function just after 5 sec when the 

pendulum passes the breakpoint, and the forcing function jumping between positive and negative 

values very quickly during balancing. The last swing of the pendulum in Figure 4.10 would end 

up near the top, making for easy balancing. Figure 4.12 shows the phase oscillator slow the 

pendulum at the top to prevent overshoot. 
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Figure 4.12:  Pendulum response to breakpoint method. 𝐶 = 4 N*m, 𝑐11 = 1, 𝑐12 =

−
1

√2
, 𝑐21 = 0, 𝑐22 = −

1

√2
, 𝐿 = 1 m, 𝑚 = 1 kg, 𝑔 = 9.81 m/s^2, 𝜁 = 0.15, initial 

angular velocity = 0 rad/s. 
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Figure 4.13:  Torque applied to system in Figure 4.12. 

Two phase angles are used due to the shifting equilibrium. During swing up, the 

oscillations occur around the bottom of the swing. On a phase plot, the system circles the origin, 

so the phase angle can be any value in the range [0, 2𝜋). During balancing, the oscillations occur 

around the top. On a phase plot, the system circles around the point (±𝜋, 0), limiting the phase 

angle to either a small range close to zero or a small range close to ±𝜋. By measuring angle from 

the top, the phase plot is translated horizontally, allowing the oscillations to occur around the 

origin. Figure 4.14 shows the phase plot for the system in Figure 4.10 with the unaltered angular 

positions measured from both top and bottom. Figure 4.15 shows the same phase plot but with 

the angular positions limited to the range [−𝜋, 𝜋], as used by the control to calculate the phase 

angles. 
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Figure 4.14:  Phase plot of the system in Figure 4.10 using unaltered angular positions. 

 

Figure 4.15:  Phase plot of the system in Figure 4.10 using modified angular positions. 
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Figure 4.15 gives the impression of the positional angle measured from the top being the 

only angle necessary for the phase oscillator. In cases with large initial angular positions or 

velocities, the control may still be successful in swing up. However, smaller initial conditions 

make swing up increasingly difficult. As the initial angular position and velocity get smaller, the 

phase angles during the first portion of swing up get closer to zero and ±𝜋, meaning the sine 

term, which adds energy, will stay very small. Figure 4.16 shows the response of the system 

from Figure 4.10 when the phase oscillator only uses 𝜙2. The pendulum motion eventually dies 

out due to the damping given by 𝑏. The torque applied, seen in Figure 4.17, is much smaller than 

the maximum available due to the phase angle, seen in Figure 4.18. 

 

Figure 4.16:  Response of the system from Figure 4.10 using only 𝜙2. 
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Figure 4.17:  Forcing function for system in Figure 4.16. 

 

Figure 4.18:  Phase plot for system in Figure 4.16. 
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Figure 4.19:  Map of breakpoint method outcomes. 𝐿 = 1 m, 𝑚 = 1 kg, 𝑔 = 9.81 

m/s^2, 𝜁 = 0.15, initial angle = 
𝜋

6
 rad, initial angular velocity = 0 rad/s. 

Figure 4.19 shows combinations of motor torque and breakpoints. The yellow section 

(left) is where the pendulum could not swing up to the top. The dark blue section (top) is where 

the pendulum swung past the top and continued spinning. The light blue section (bottom right) is 

where the control successfully balances the pendulum. 

The second controller is the continuous phase oscillator method and will be discussed 

below. The continuous phase oscillator method is more complex than the breakpoint method but 

results in a smoother forcing function. Equation 4.14 describes a system with a continuous phase 

oscillator control. 

𝐼𝜃̈ + 𝑏𝜃̇ +
𝐿

2
𝑚𝑔 sin 𝜃 = 𝐶𝐾1(𝐾2 sin 𝜙1 + 𝐾3 cos 𝜙2) (4.14) 
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𝐶 is again the constant scalar for the forcing function. 𝐾1 is a function of the angular 

position relative to the top, 𝜃2, scaling down the overall torque when the pendulum is close to the 

top. 𝐾2 is a function of the energy in the system, adding energy when the system does not have 

enough and removing energy when the system has too much. 𝐾3 is a function of 𝜃2, pulling the 

pendulum up when the pendulum is close to the top. 

Equation 4.15 defines 𝐾1. 𝐾1 scales down the applied torque when the pendulum is close 

to the top, where 𝜃2 = 0, in order to keep the torque from quickly changing between large 

positive and negative values, as seen in Figures 4.11 and 4.13. 𝑓1 is a constant that changes the 

steepness of the relationship between 𝐾1 and 𝜃2, as seen in Figure 4.20. 

𝐾1 = 1 −
4

𝑒𝑓1𝜃2+2+𝑒−𝑓1𝜃2
 (4.15) 

 

Figure 4.20:  𝐾1 for different values of 𝑓1. 
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Equation 4.16 defines 𝐾2. 𝐾2 changes the damping term from positive (negative damping, 

adding energy) to negative (positive damping, removing energy) depending on the current 

amount of energy in the system. 𝑓2 is a constant that changes the steepness of the relationship 

between 𝐾2 and 𝑟, as seen in Figure 4.21. 

𝐾2 = 1 −
2

1+𝑒𝑓2(1−𝑟) (4.16) 

 

Figure 4.21:  𝐾2 for different values of 𝑓2. 

Equation 4.17 defines 𝐾3. 𝐾3 activates the spring to pull the pendulum up when the 

pendulum is close to the top, where 𝜃2 = 0. 𝑓3 is a constant that changes the steepness of the 

relationship between 𝐾3 and 𝜃2, as seen in Figure 4.22. 

𝐾3 = −
4

𝑒𝑓3𝜃2+2+𝑒−𝑓3𝜃2
 (4.17) 



  53 

 

Figure 4.22:  𝐾3 for different values of 𝑓3. 

𝑟 is the ratio of energy in the system to energy needed in the system. The system is 

considered to have no energy when the pendulum is pointing down (𝜃1 = 0, 𝜃2 = 𝜋) and has no 

velocity. The energy needed in the system is defined as the energy present when the pendulum is 

pointing up (𝜃1 = 0, 𝜃2 = 𝜋) and has no velocity, and is calculated by Equation 4.19. The current 

energy in the system is the sum of the current kinetic and potential energy, given by Equations 

4.20 through 4.22. 

𝑟 =
𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐸𝑛𝑒𝑒𝑑𝑒𝑑
 (4.18) 

𝐸𝑛𝑒𝑒𝑑𝑒𝑑 = 𝑚𝐿𝑔 (4.19) 

𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (4.20) 
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𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
𝑚𝐿2

6
𝜃̇2 (4.21) 

𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =
𝑚𝐿𝑔

2
(1 − cos 𝜃) (4.22) 

Figure 4.23 shows the response of a pendulum being forced by the continuous phase 

oscillator function. Figure 4.24 shows the forcing function used. The system takes the same 

number of swings to swing up and balance as the system from Figure 4.10 (which uses the 

breakpoint method), but does not have a balanced position as quickly. However, the forcing 

function is much smoother than the forcing function seen in Figure 4.11. 

 

Figure 4.23:  Pendulum response to continuous method. 𝐶 = 3.2 N*m, 𝑓1 = 20, 𝑓2 =

500, 𝑓3 = 10, 𝐿 = 1 m, 𝑚 = 1 kg, 𝑔 = 9.81 m/s^2, 𝜁 = 0.15, initial angle = 
𝜋

6
 rad, 

initial angular velocity = 0 rad/s. 
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Figure 4.24:  Torque applied to system in Figure 4.23. 
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CHAPTER 5 

WORKING MODEL 2D SIMULATION 

The continuous phase oscillator method was used to control a motor in Working Model 

2D to swing up and balance a pendulum. The pendulum is shown by Figure 5.1. Instead of an 

infinitely thin rod, the pendulum was a two-dimensional rectangle with a length of 1m, a width 

of 0.1m, and a mass of 0.1kg (density 1kg/m^2). The simulation used a rotational damper with a 

value of 0.05 Nms/rad to simulate damping in the system. The pendulum was given an initial 

position of 𝜃1 =
𝜋

4
 rad and 𝜃̇ = 0 rad/s. 

 

Figure 5.1:  Pendulum in Working Model 2D. 

The system was forced by the forcing function described in Equation 4.14 with 𝐶 = 1.5 

Nm, 𝑓1 = 20, 𝑓2 = 30, and 𝑓3 = 10. Figure 5.2 shows the angular position of the pendulum 

measured both from the bottom (𝜃1) and the top (𝜃2). Figures 5.3 and 5.4 show the two phase 

angles, 𝜙1 and 𝜙2. Figure 5.5 shows the torque applied. 
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Figure 5.2:  Pendulum position. The pendulum only took one swing to reach the top. 

 

Figure 5.3:  Pendulum 𝜙1. One large swing followed by oscillations at the top. 



  58 

 

Figure 5.4:  Pendulum 𝜙2. One large swing followed by oscillations at the top. 

 

Figure 5.5:  Pendulum forcing. 

The pendulum responded in a manner very similar to what was expected, with the 

exception of the time period around 0.2s. In the first simulation, 𝑓2 was set equal to 500, similar 
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to Chapter 4. However, a large value of 𝑓2 means a very sudden change from negative damping 

to positive damping. While the quick change was not an issue in previous simulations, it resulted 

in chatter in the forcing function for the Working Model 2D system (and was verified in the 

same system in MATLAB). 𝑓2 was reduced to 30 to eliminate the chatter, though the forcing 

function does still change fairly quickly around 0.2s. A system with a lower torque to mass ratio 

(such as the system in Chapter 4) needs a larger value of 𝑓2 to keep adding energy longer. 
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CHAPTER 6 

CONCLUSION 

A phase oscillator can be used to change key properties of oscillating systems, including 

amplitude, frequency, and equilibrium. The control swings up and balances an inverted 

pendulum using multiple methods. The first control method involves two separate stages. The 

scenarios where this control works are discussed. The second control method uses variable 

coefficients to result in a smooth transition between. 

The phase oscillator was developed by Dr. Thomas Sugar. I have contributed to the phase 

oscillator by showing the sine and cosine of the phase angle can change both the damping and 

stiffness of a system, modeling sine and cosine as a single cosine term with as phase shift, 

studying the response of the system when forced to a desired point, and developing two methods 

for using the phase oscillator for swing up control of a pendulum. Future work includes using the 

swing up and balancing methods described in this paper to control an experimental physical 

system. 

Portions of this work have been used in academic papers, including one ASME journal 

paper (reference [3]) and one submitted conference paper to IROS (C63. Sugar, T. G., Bates, A. 

R., Kerestes, J., Redkar, S. “Using a Phase Oscillator to Control Behavior,” IROS 2016). 
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