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ABSTRACT

With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved

beyond the Standard Model into a new epoch. Though the Standard Model particle

content is now completely accounted for, there remain many theoretical issues about

the structure of the theory in need of resolution. Among these is the hierarchy

problem: since the renormalized Higgs mass receives quadratic corrections from a

higher cutoff scale, what keeps the Higgs boson light? Many possible solutions to this

problem have been advanced, such as supersymmetry, Randall-Sundrum models, or

sub-millimeter corrections to gravity. One such solution has been advanced by the

Lee-Wick Standard Model. In this theory, higher-derivative operators are added to

the Lagrangian for each Standard Model field, which result in propagators that possess

two physical poles and fall off more rapidly in the ultraviolet régime. It can be shown

by an auxiliary field transformation that the higher-derivative theory is identical to

positing a second, manifestly renormalizable theory in which new fields with opposite-

sign kinetic and mass terms are found. These so-called Lee-Wick fields have opposite-

sign propagators, and famously cancel off the quadratic divergences that plague the

renormalized Higgs mass. The states in the Hilbert space corresponding to Lee-

Wick particles have negative norm, and implications for causality and unitarity are

examined.

This dissertation explores a variant of the theory called the N = 3 Lee-Wick

Standard Model. The Lagrangian of this theory features a yet-higher derivative oper-

ator, which produces a propagator with three physical poles and possesses even better

high-energy behavior than the minimal Lee-Wick theory. An analogous auxiliary field

transformation takes this higher-derivative theory into a renormalizable theory with

states of alternating positive, negative, and positive norm. The phenomenology of

this theory is examined in detail, with particular emphasis on the collider signatures
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of Lee-Wick particles, electroweak precision constraints on the masses that the new

particles can take on, and scenarios in early-universe cosmology in which Lee-Wick

particles can play a significant role.
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Chapter 1

INTRODUCTION

1.1 The Glashow-Weinberg-Salam Standard Model

1.1.1 Spontaneous Symmetry Breaking and Vector Boson Masses

It is an exciting time indeed to be a physicist. With the discovery of the Higgs

boson at CERN’s Large Hadron Collider (LHC) [3, 4], one of the greatest theoretical

constructs in the history of science is now complete: the Standard Model of particle

physics (SM). Independently formulated by Sheldon Glashow [5], Steven Weinberg

[6], and Abdus Salam [7] in the mid-1960s (see, e.g., [8] for historical background),

the SM is a gauge field theory that incorporates electromagnetism (generated by the

abelian group U(1)) and the weak nuclear force (generated by the non-abelian SU(2))

into a single semi-simple Lie group, SU(2)L × U(1)Y , often combined with the Lie

group SU(3)c of color. The Lagrangian of the SM is given by

LSM = Q̄i
Li /DQ

i
L + ūiRi/∂u

i
R + d̄iRi/∂d

i
R + L̄iLi /DL

i
L + ēiRi/∂e

i
R

+(DµΦ)†(DµΦ) + µ2Φ†Φ− λ
(
Φ†Φ

)2

−1

4
BµνB

µν − 1

2
tr[WµνW

µν ]− 1

2
tr[GµνG

µν ]

−
(
yuiε

ab(Q̄i
L)aΦ

†
bu
i
R + ydi(Q̄

i
L)aΦad

i
R + yei(L̄

i
L)aΦae

i
R + h.c.

)
, (1.1)

using the covariant derivative

Dµ = ∂µ − ig′Y Bµ − igT aW a
µ − igstaGa

µ, (1.2)

1



left-handed quark, lepton, and Higgs doublets

Qi
L =

uiL
diL

 , Ei
L =

νiL
eiL

 , Φ =

φ+

φ0

 , (1.3)

and Yang-Mills stress-energy tensors relevant to the three gauge groups:

Bµν = ∂µBν − ∂νBµ, W a
µνT

a =
i

g
[Dµ, Dν ], Ga

µνt
a =

i

g3

[Dµ, Dν ]. (1.4)

Here, the generators T a and ta are respectively given by the Pauli and Gell-Mann

matrices σa/2 and λa/2; the index i runs through the three generations of fermions

presently known; and the Yukawa interaction terms with couplings yui , ydi , yei pro-

duce masses for the ith generation of up-type quarks, down-type quarks, and leptons

(to be described in detail below). In Eq. (1.4), the covariant derivative is taken to

encompass only the gauge group relevant to the field strength tensor under consider-

ation. Its action on the gauge fields can be easily computed from Eq. (1.2):

i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] = ∂µA

a
νλ

a − ∂νAaµλa + gfabcAbµA
c
ν (1.5)

for arbitrary gauge field Aµ, generators λa, coupling g, and structure constants fabc.

We include the gluon fields Ga
µ here for completeness, but we will have no need

to consider them further in this chapter, focusing instead on the electroweak gauge

fields and the spontaneous symmetry breaking in which they participate. Unless

otherwise stated, the mathematical conventions here and throughout the rest of this

dissertation follow those of Peskin & Schroeder [9] (e.g., the choice of basis for the

Dirac γ matrices).

With the basic pieces of the theory in place, it is time to consider first the Higgs

potential (µ2 and λ terms) of Eq. (1.1). The Higgs field Φ is a complex-valued doublet

under SU(2)L, and may be split up into its charged (φ+), scalar (φ), and pseudoscalar

2



(P ) pieces:

Φ =

 φ+

1√
2
(φ+ iP )

 (1.6)

The negative mass-squared term, V (φ) ⊃ −1
2
µ2φ2, moves the global minimum of the

potential from 〈φ〉 = 0 (as would be the case in a conventional φ4 theory) to some

nonzero 〈φ〉 = v (as in Fig. 1.1). The location of the new vacuum is set by requiring

0 =
dV (φ)

dφ

∣∣∣∣∣
φ=v

= −µ2v + λv3, (1.7)

∴ v2 = µ2/λ. (1.8)

With the manifest symmetry of the system broken, we now expand the CP -even

Figure 1.1: V (φ) given for a scalar field φ with a positive mass-squared term

(dashes) and a negative mass-squared term (solid).

scalar Higgs component as φ = v + h(x), yielding a new scalar potential

V (h) =− 1

2
µ2v2 +

λ

4
v4 + v(−µ2 + λv2)h

+
1

2
(3λv2 − µ2)h2 + λv3h+

λ

4
h4 (1.9)

=− λ

4
v4 +

1

2
m2
hh

2 + λvh3 +
λ

4
h4, (1.10)

3



making use of Eq. (1.8). Whereas Eq. (1.1) boasted a Higgs potential with explicit

Z2 (φ → −φ) symmetry (in addition to the gauge symmetries contained in the co-

variant derivative), Eq. (1.10) contains an h3 term. This breaks the original φ→ −φ

symmetry. More important, however, is the effect this has on the gauge bosons in-

troduced in Eq. (1.1), as we now discuss.

Let us consider the mechanism of mass generation for the gauge bosons. Though

the mechanism is now synonymous with Peter Higgs [10, 11, 12], pioneering work by

others such as Englert and Brout [13] and Guralnik, Hagen, and Kibble [14] helped

to develop the modern understanding of spontaneous symmetry breaking. Taking

the Higgs kinetic term from Eq. (1.1) and allowing the Higgs to take on its vacuum

expectation value (VEV) prescribed, as above, by Φ −→ 〈Φ〉 = 1√
2

0

v

, one has

LSM ⊃
1

2

(
0 v

)(
gW a

µT
a +

1

2
g′Bµ

)(
gW µbT b +

1

2
g′Bµ

)0

v


=

1

2

v2

4

(
g2
(
W 1
µ

)2
+ g2

(
W 2
µ

)2
+
(
−gW 3

µ + g′Bµ

)2
)
, (1.11)

where explicit use has been made of the Pauli matrices and the Higgs SU(2)L hy-

percharge Y = 1/2. We can see from Eq. (1.11) that the VEV attained by the Higgs

field has the effect of generating masses for the gauge bosons, with the added twist

of producing a cross-term between W 3
µ and Bµ. Eq. (1.11) may also be understood as

a mass matrix with one null eigenvalue; one may define mass-diagonal fields Z0
µ, Aµ

using the field redefinitionZ0

A

 =

cos θW −sin θW

sin θW cos θW


W 3

B

 , (1.12)

where θW is called the weak mixing angle. Substituting Eq. (1.12) into Eq. (1.11), and

demanding that the new mass terms be fully diagonal, one has the following useful

4



relations:

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

, (1.13)

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, with mass mW =

1

2
gv, (1.14)

Z0
µ =

1√
g2 + g′2

(
gW 3

µ − g′Bµ

)
, with mass mZ =

√
g2 + g′2

v

2
, (1.15)

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
, with mass mA = 0. (1.16)

Since the gauge boson mass matrix mixes the W 3
µ and Bµ terms, the Z0

µ becomes

distinct from the other SU(2) bosons, and communicates the weak neutral current

(as originally predicted by Weinberg in [15]). We identify the massless Aµ with

the photon. Since this Abelian gauge field remains massless, we conclude that the

original SU(2)L×U(1)Y symmetry becomes spontaneously broken to U(1)EM. Using

the inverse transformationW 3
µ

Bµ

 =

 cos θW sin θW

−sin θW cos θW


Z0

A

 , (1.17)

we can then solve for the couplings:

gT 3W 3
µ = gT 3 1√

g2 + g′2

(
gZ0

µ + g′Aµ
)
,

g′Y Bµ = g′Y
1√

g2 + g′2

(
−g′Z0

µ + gAµ
)
, (1.18)

and we can see that the couplings and generators work out to

gg′√
g2 + g′2

(
T 3 + Y

)
Aµ ≡ eQAµ, (1.19)

1√
g2 + g′2

(
g2T 3 − g′2Y

)
Z0
µ =

1√
g2 + g′2

(
g2T 3 − g′2(Q− T 3)

)
Z0
µ,

=
√
g2 + g′2

(
T 3 − g′2

g2 + g′2
Q

)
Z0
µ =

g

cos θW

(
T 3 − sin2θWQ

)
Z0
µ. (1.20)

5



Using these new mass eigenstate fields, it is convenient to re-express the covariant

derivative as

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−
µ T

−)− i g

cos θW
(T 3 − sin2θWQ)Zµ − ieQAµ, (1.21)

where T± = 1
2
(σ1±iσ2) and Q = T 3+Y . Q, as the generator attached to the massless

gauge boson Aµ, remains the sole unbroken generator in the electroweak theory.

One important quantity is the so-called ρ parameter:

ρ ≡ mW

cos θWmZ

, (1.22)

which is identically equal to unity at tree-level in the SM. As may be seen from

Eqs. (1.13)-(1.16), in the limit g′ → 0, the hypercharge boson Bµ decouples from W 3
µ ,

leading to cos θW → 1 and mZ0 → 1
2
gv = mW . This relation, in which all three SU(2)

bosons possess the same mass in the small-sin θW limit, is referred to as custodial sym-

metry. There exist extensions of the SM in which this limit is not preserved (such as

theories including an extra Higgs transforming as an SU(2) triplet [16]). Violations

of custodial symmetry produced by such “Beyond-the-Standard-Model” (BSM) the-

ories are marked by deviations from unity in the ρ parameter, and such deviations

are strongly constrained by experiment (see, e.g., [17, 18] for work on precision con-

straints on the electroweak model). The experimental limits on observables such as

ρ will be exploited in subsequent chapters of this dissertation.

1.1.2 Generation of Masses for Chiral Fermions

In addition to generating the masses for vector bosons, the Higgs mechanism

also produces masses for chiral fermions in an interacting chiral gauge theory. The

archetypal Dirac Lagrangian,

L0 = iψ̄ /∂ψ −mψ̄ψ, (1.23)
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contains an explicit mass term; however, when these fields are made to interact under

a chiral gauge theory, one breaks the field ψ into its eigenstates of left- and right-

handed chirality1 ψ = ψL +ψR. The non-vanishing pieces of the free-field Lagrangian

reduce to

L0 → i(ψ̄L + ψ̄R)/∂(ψL + ψR)−m(ψ̄L + ψ̄R)(ψL + ψR)

= iψ̄L/∂ψL + iψ̄R/∂ψR −m(ψ̄LψR + ψ̄RψL). (1.24)

Since the left-handed fields transform non-trivially under SU(2)L, whereas the right-

handed fields do not, this produces a problem: the kinetic terms are perfectly accept-

able, as they are gauge-invariant combinations of fields and their conjugates, but the

mass terms mix fields from different SU(2)L representations and thus violate gauge

invariance. We therefore cannot write down explicit, gauge-invariant mass terms in

an interacting chiral theory. The solution is to write down a set of Yukawa terms

as in Eq. (1.1). The Higgs, as a doublet under SU(2)L, forms a tensor product with

other fermion doublets present in Eq. (1.1) which contains a gauge singlet. When the

Higgs attains its VEV, an effective coupling between left- and right-chiral fields is

produced which is identical to the conventional Dirac mass.

In a theory with multiple generations of fermions (such as we have), the possibility

arises for Yukawa couplings between quarks from different generations. In order to

obtain unambiguous mass terms for a mass-eigenstate quark of any given flavor, it is

helpful to define the family multiplets for up- and down-type quarks

uiL =

(
uL, cL, tL

)
diL =

(
dL, sL, bL

)
(1.25)

and then invoke unitary operators to diagonalize the quark fields in the mass basis:

uiL = U ij
u u
′j
L dL = U ij

d d
′j
L, (1.26)

1Chirality is the high-energy limit of helicity, which is the projection a particle’s spin against its

direction of motion. In the case of massless particles, these concepts are identical.
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where the primed multiplets are mass-diagonal. This re-assignment simplifies the

mass terms at the expense of complicating the gauge couplings; whereas the GWS

theory originally coupled only fermions within a single generation to one another,

there now exist couplings between quarks of different generations with ∆Q = ±1. As

an example, the quark current Jµ+
W coupling to the W+

µ transforms according to

Jµ+
W = ūiLγ

µdiL = ū′jLγ
µ(U †u)jiU ik

d d
′k
L = ū′iLγ

µ(U †uUd)
ijd′jL = ū′iLγ

µV ijd′jL, (1.27)

where V ij is called the Cabibbo-Kobayashi-Maskawa matrix [19, 20] connecting quarks

of the ith and jth generations. Flavor-changing neutral currents are forbidden in the

GWS model; they are a generic feature of many BSM theories, and strong experi-

mental constraints have been placed on them [21].

1.2 The Hierarchy Problem: Understanding the Renormalized Higgs Mass

It is a well-known feature that amplitudes in quantum field theory diverge beyond

the leading order, requiring the methods of the renormalization group in order to

properly regulate and subtract formally infinite quantities. For the sake of space,

no pedagogical introduction to the techniques of renormalization will be given here;

for historical background, see seminal papers by, e.g., Wilson and Fisher [22], and ’t

Hooft and Veltman [23], or comprehensive textbook surveys [9, 24]. After spontaneous

symmetry breaking has taken place, any Yukawa term coupling two fermions fL, fR

to the Higgs may be written

− Lint ⊃
1√
2
yf f̄L(v + h)fR + h.c. = mf f̄LfR

(
1 +

h

v

)
+ h.c., (1.28)
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from which the Feynman vertex joining the fermion current to the Higgs may be read

as

�f
f

h
= −imf

v
. (1.29)

One very important one-loop correction to the Higgs two-point function comes from

fermion loops

−iM2(p2) =

�
, (1.30)

which corrects the mass of the Higgs at leading order in perturbation theory. Solving

for the amplitude of this one-loop diagram using the standard methods of quantum

field theory, we know to expect a formally infinite result. However, it is also widely

accepted that the SM is only an effective field theory valid over a finite energy scale,

meaning that one need not integrate over the full four-momentum qµ running inside

the loop. The UV completion containing the field content of the standard model, be

it supersymmetry, extra dimensions, a grand unified theory (GUT), or some other

exotic model, is expected to take over at some parametric scale Λ. As no BSM

contender has yet been discovered experimentally, the scale at which new physics

becomes relevant remains unknown, though lower bounds do exist for the particle

masses in many of these models [25, 26, 27]. Some of the mass bounds obtained from

9



the CMS collaboration are given in Fig. 1.2 for convenience.2 For now, we will take

Λ to be an order-of-magnitude estimate of this scale for the sake of illustration, with

the tacit understanding that SM-only calculations will only be valid up to Λ. The SM

will be understood to be an effective field theory, whose predictions will be amended

by corrections of O(vSM/Λ). Let us calculate (1.30) using a cutoff regularization:

−iM2(p2) = −
(
−imf

v

)2
∫ Λ

0

d4q

(2π)4
tr
[ i(/q + /p+mf )

(q + p)2 −m2
f

i(/q +mf )

q2 −m2
f

]
= −4

(mf

v

)2
∫ Λ

0

d4q

(2π)4

q · (p+ q) +m2
f

((p+ q)2 −m2
f )(q

2 −m2
f )
. (1.31)

Now, we use the familiar technique of the Feynman integral and shift the variable of

integration by qµ → lµ = qµ + xpµ, in order to cast the divergent piece in a more

tractable form:

= −4
(mf

v

)2
∫ 1

0

dx

∫ Λ

0

d4l

(2π)4

l2 − x(1− x)p2 +m2
f

(l2 −∆)2
, (1.32)

where ∆ = m2
f − x(1− x)p2. Executing a Wick rotation on the timelike component,

l0 ≡ il0E, the integral can now be made to converge in four-dimensional Euclidean

space. This is most conveniently done by exploiting the manifest spherical symmetry

of the integrand:

=4i
(mf

v

)2
∫ 1

0

dx

∫ Λ

0

d4 lE
(2π)4

l2E + x(1− x)p2 −m2
f

(l2E −∆)2

=4i
(mf

v

)2 2π2

16π4

∫ 1

0

dx

∫ Λ

0

d|lE|
|lE|5 +

(
x(1− x)p2 −m2

f

)
|lE|3

(|l2E| −∆)2

=i
m2
f

4π2v2

∫ 1

0

dx

(
3∆Λ2 + Λ4

∆ + Λ2
+ 3∆ ln

(
∆

∆ + Λ2

))
. (1.33)

2For up-to-date results from the CMS collaboration, visit https://twiki.cern.ch/twiki/bin/

view/CMSPublic/PhysicsResults
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Now, expand the result in powers of Λ2, keeping only pieces that diverge in the limit

Λ→∞:

−iM2(p2) = i
m2
f

4π2v2

∫ 1

0

dx

(
Λ2 − 3∆ ln

(
Λ2

∆

))
= i

m2
f

4π2v2

(
Λ2 − 1

2
(6m2

f − p2)ln

(
Λ2

m2
f

))
. (1.34)

We see that the renormalized scalar mass is sensitive to the cutoff scale Λ, both

quadratically and logarithmically. This is unique to the scalar case, and is to be

contrasted with the solely logarithmic renormalization to fermion masses. Large

logarithms in renormalized amplitudes have been understood since the time of Gell-

Mann and Low [28], but the quadratic divergence renders the scalar mass extremely

sensitive to physics at the high scale. This clashes with the spirit of effective field

theories, in which one is permitted agnosticism regarding the exact dynamics and

scale of higher-energy physics.

This raises the following question, whose importance cannot be overstated:

Why is the Higgs mass near the electroweak scale, rather than at a much higher

value associated with new physics?

Numerically, the electroweak scale is defined by v ≈ 246.2 GeV [29], whereas the order

of magnitude for the onset of GUT physics is typically taken to be ΛGUT ∼ 1016 GeV

and the Planck mass (at which scale quantum gravity is expected to dominate) is

given by MP ≡
√

~c/GN = 1.22093(7)×1019 GeV [29]. If nothing new arises between

the electroweak scale and unification, a rough estimate of the hierarchy involved is

Λ2
GUT/v

2 = O(1028). One must fine-tune the parameters of the electroweak theory to

better than one part in 1028 in order to ameliorate this divergence, and produce the

Higgs mass observed today. This tension is known as the hierarchy problem.
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The situation can be understood more precisely by computing the same result

in the dimensional regularization scheme of ’t Hooft and Veltman [23], in which the

dimensionality of spacetime is set to d and the cutoff is removed. Renormalized

perturbation theory requires that we add to the one-loop diagram the counterterms

which cancel off divergences, thereby rendering the amplitude finite. This is done by

supplementing the loop diagram with another representing the counterterms:

−iM2(p2) =

�
+

�

= −iM2
0 (p2) + i(p2δZ − δm), (1.35)

where −iM2
0 (p2) is the formally divergent piece to be calculated, and δZ and δm

are respectively the wavefunction and mass renormalization counterterms. Beginning

from line 1 of (1.33), the divergent piece becomes

−iM2
0 (p2) = 4i

(mf

v

)2
∫ 1

0

dx

∫
d4 lE
(2π)4

l2E + x(1− x)p2 −m2
f

(l2E −∆)2

= 4i
(mf

v

)2
∫ 1

0

dx
1

(4π)d/2

(
d
2
Γ(1− d

2
)

∆1−d/2 −
∆Γ

(
2− d

2

)
∆2−d/2

)

=
4i(d− 1)

(4π)d/2

(mf

v

)2
∫ 1

0

Γ(1− d
2
)

∆1−d/2 , (1.36)

with ∆(p2) equivalent to that used above. The remaining gamma function records

the formal infinity as d → 4, as expected. Now, having calculated the correction

to the two-point function, one must impose further constraints in order to ensure

that the full amplitude is consistent with the tree-level field theory. This is done by

demanding that the loop amplitude vanish when p2 = m2
h (i.e. when the scalar goes
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Figure 1.2: An exclusion plot for SUSY particles from the CMS collaboration,

presented at ICHEP 2014.
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on-shell), and that the amplitude’s first derivative vanishes at p2 = m2
h as well:

−iM2(p2)|p2=m2
h

= 0, (1.37)

−i d
dp2

M2(p2)|p2=m2
h

= 0. (1.38)

These two constraints are sufficient to uniquely determine the counterterms δZ and

δm. Eq. (1.37) can be met by setting

δm =
4(d− 1)

(4π)d/2

(mf

v

)2
∫ 1

0

dx
Γ(1− d

2
)

(m2
f − x(1− x)m2

h)
1−d/2 +m2

hδZ , (1.39)

while Eq. (1.38) is satisfied by setting

δZ = −4(d− 1)

(4π)d/2

(mf

v

)2
∫ 1

0

x(1− x)Γ(2− d
2
)

(m2
f − x(1− x)m2

h)
2−d/2 . (1.40)

One immediately sees from the gamma functions that the counterterms so calculated

contain divergences of differing degrees. This is how the hierarchy problem is mani-

fested in dimensional regularization. Upon adding them back into Eq. (1.35), we now

have a finite one-loop correction to the Higgs mass of

− iM2(p2) = −
3im2

f

4π2v2

∫ 1

0

dx
(
−x(1− x)(p2 −m2

h) + ∆(p2)ln
(
∆(m2

h)/∆(p2)
))
,

(1.41)

which has a more manageable form in the p2 → 0 limit:

− iM2(0) = −
3im2

f

4π2v2

∫ 1

0

dx

(
x(1− x)m2

h +m2
f ln

(
m2
f − x(1− x)m2

h

m2
f

))
. (1.42)

1.3 The Lee-Wick Standard Model

Many theories have been proposed with the aim of solving the hierarchy problem.

The most notable examples studied to date include supersymmetry (reviews may be

found in Refs. [30, 31]), the Randall-Sundrum model [32], and gauge-gravity unifica-

tion at the weak scale [33]. In each case, the Standard Model is augmented by a new
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symmetry, extra spatial dimensions, new fields at or above the electroweak scale, or

some combination of the above, and more. This dissertation concerns itself with a

different sort of approach altogether: the Lee-Wick Standard Model (LWSM).

Recent developments in the LWSM have built on the original work of T.D. Lee and

G.C. Wick [34, 35], who investigated the Pauli-Villars (negative quantum-mechanical

norm) regulator [36] taken as a physical degree of freedom. QED augmented by a

photon with such properties corresponds to a higher-derivative formulation of the

theory. The modified gauge field of the theory has a higher-derivative propagator

containing two poles: one with positive residue (corresponding to the standard pho-

ton), and one with negative residue (corresponding to the Lee-Wick (LW) photon).

Classically, this negative residue is associated with a pathological instability in the

theory; on the quantum level, it heralds the existence of nonpositive-definite norms

in the Hilbert space, leading to problems with unitarity.

Lee and Wick argued that one can make physical sense of such a theory if there

exists a mechanism whereby the effects of the offending nonpositive-normed states are

systematically removed from the Hilbert space. Since the LW photon is massive, the

state corresponding to it develops a width and subsequently decays. The quantum

stability of the theory can be further preserved by imposing a boundary condition

in the far future, which has the consequence of introducing a strange acausal time-

ordering of scattering events [37, 38]. Hawking and Hertog argue that such boundary

conditions are natural from the perspective of the Euclidean integral, in which the

action is required to fall off exponentially with τ = it → ±∞ [39]. Viewed from

this perspective, the future boundary condition is no more odious than requiring the

action to be well-behaved and bounded in space.

We construct the Lee-Wick Lagrangian of the Standard Model by augmenting

each field with a corresponding higher-derivative (HD) term, chosen to satisfy the
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most basic requirements of gauge and Lorentz invariance. This is done at the ex-

pense of introducing one new parameter for each field: namely, a mass parameter

suppressing the dimension-6 HD term. We denote this dimensionful constant as ΛLW

when considering simple theories in which there can be no room for misinterpreta-

tion. Since this new parameter characterizes the scale at which LW dynamics become

relevant, we expect the parameter to take on values in the terascale (with energies ≈

a few TeV) and beyond. It should also be noted at this point that the dimension-six

operators under consideration are not part of an effective field theory, since we are

interested in physics at energies E ∼ ΛLW.

The remainder of this section is organized as follows: In § 1.3.1, the original theory

of Lee and Wick is discussed, focusing on quantum states defined on a Hilbert space

of indefinite metric. In § 1.3.2, a more modern approach is taken, beginning with the

imposition of higher-derivative equations of motion on the familiar spin-zero field.

This results in a few key features of LW theories, which are explored in turn. The

cancellation of UV divergences is demonstrated in § 1.3.3. Implications for unitarity

comprise the focus of § 1.3.4, while the effects of LW theories on causality are studied

in § 1.3.5. The reader interested only in how to do calculations in LW-type theories

is advised to focus on § 1.3.2; the other sections illuminate some of the deep theo-

retical roots of higher-derivative theories, but serve little purpose in straightforward

analyses of collider phenomenology and precision electroweak constraints, to name a

few contemporary topics.

1.3.1 Historical Development: Negative Metric & Quantization

In a pair of seminal papers [34, 35], T.D. Lee and G.C. Wick advanced a finite the-

ory of quantum electrodynamics (QED). The original formulation of the theory was

motivated by the troubling preponderance of infinities for even the most basic calcu-
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lations, for instance, the mass difference between the π± and π0 mesons. Attributing

this mass difference (≈ 4.5936(5) MeV [29]) to the electromagnetic interaction, this

should have been a simple problem in the then-established framework of QED, but

infinities persist. To put the theory in historical perspective, it is worthwhile to note

that the modern understanding of the renormalization group had not yet evolved, viz.

coupling constant flows and relevant, marginal, and irrelevant operators, which tame

the divergences in field theories. It then made sense to seek a finite theory of QED.

In this subsection, the aim is not to reconstruct the original theory of Lee and Wick,

but rather to introduce the Hilbert space metric and quantization scheme necessary

to build of a quantum theory of negative-norm states.

Lee and Wick sought to construct states on a Hilbert space equipped with an

indefinite metric. The idea of negative-metric quantization is not new; it first gained

currency in 1942, when Dirac considered using it to render QED finite [40]. The

origin and transformation properties of such a metric can be made clear through the

following setup:

Given a Hilbert space H with complex-valued vectors | x〉, | y〉, establish a set of

basis vectors | 1〉, | 2〉, . . . such that

| x〉 =
∑
i

xi | i〉, | y〉 =
∑
i

yi | i〉 (1.43)

for xi, yi ∈ C. Define the scalar product between the two to be the Hermitian form

〈x | y〉 =
∑
i,j

x∗i yj〈i | j〉 ≡
∑
i,j

x∗i ηijyj. (1.44)

This serves as the definition for the metric η = ηij, which we take to be Hermitian and

non-singular. The action of an operator Ô on a basis state in H may be represented

by

Ô | i〉 =
∑
i

Oji | j〉, (1.45)
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which leads directly to the expectation value between any two states | x〉, | y〉

〈x | Ô | y〉 =
∑
i,j

x∗i 〈i | Ô | j〉yj =
∑
i,j,k

x∗i 〈i | Okj | k〉yj =
∑
i,j,k

x∗i ηikOkjyj. (1.46)

It is also possible at this time to define the adjoint of an operator as follows:

〈x | ¯̂O | y〉 = 〈y | Ô | x〉∗ =

(∑
i,j,k

〈i | y∗i Ôkjxj | j〉

)∗
=

(∑
i,j,k

y∗i ηikÔkjxj

)∗
=
∑
i,j,k

x∗jÔ
†
jkηkiyi , (1.47)

while manipulating the left-hand side of Eq. (1.47) yields

〈x | ¯̂O | y〉 =
∑
i

yi〈x | ¯̂O | i〉 =
∑
i,j,k

x∗jyi〈j | Ōki | k〉

=
∑
i,j,k

x∗jyiηjkŌki, (1.48)

from which it is seen that η
¯̂O = Ôη, or

¯̂O = η−1Ôη. (1.49)

Of course, we know that physically robust statements must be independent of the basis

chosen. Suppose we introduce new basis vectors | 1′〉, | 2′〉, . . . via the transformations

| i′〉 =
∑
j

Tji | i〉. (1.50)

The same state vectors | x〉 may be represented in terms of them as

| x〉 =
∑
i

xi | i〉 =
∑
i

x′i | i′〉 =
∑
i,j

x′iTji | j〉. (1.51)

Let us now consider the effect of such a basis change on the action of a typical

operator:

Ô | i′〉 =
∑
i

O′j′i′ | j′〉, or also

=
∑
i

ÔTii′ | i〉 =
∑
ij

OjiTii′ | j〉 =
∑
ijj′

OjiTii′
(
T−1

)
j′j
| j′〉,

∴ Ô′ = T−1ÔT (1.52)

18



Now, since the metric itself is of interest to us, it is worthwhile to consider its trans-

formation properties as well:

〈i | j〉 = ηij

−→ 〈i′ | j′〉 =
∑
i,j

〈i | (T †)i′iTj′j | j〉 =
∑
i,j

(T †)i′iηijTjj′ , (1.53)

from which one gets the transformation law

η′ = T †ηT. (1.54)

Although Eq. (1.54) bears some resemblance to Eq. (1.52), this is misleading. The in-

definite character of the metric and precludes any proof one might write which would

enforce the hermiticity of T . As such, T−1 6= T † in the general case, and the trans-

formation law of η sets it apart from the set of “operators” in the usual sense. Any

two metrics related by Eq. (1.54) are said to belong to the same class. Furthermore,

the transformation (1.54) means that the eigenvalues of η have no special meaning

(at least in their magnitudes), as they can be rotated into another set of eigenvalues

by a change of basis. This means that we are at liberty to choose a basis such that η

is a diagonal matrix with elements ±1. The focus now changes from considering how

different metrics may be related to one another to the question of what metrics may

be permitted in a consistent quantum theory.

A sensible quantum theory requires (anti-)commutation relations to be defined

among the creation and annihilation operators that operate on the space of states. Let

us begin by considering the familiar Fermi-Dirac case. Owing to the class invariance

of η, two choices are immediately available:

(i) aā+ āa = 1, (1.55)

(ii) aā+ āa = −1. (1.56)
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Are there any relationships between a, ā? From Eq. (1.49), we can write the trans-

formation law

ā = η−1a†η, (1.57)

which is invariant under η → −η. Since a change in sign does not affect the opera-

tors responsible for creating and annihilating operators, it can have no effect on the

physical spectrum, and so we can include metrics related by η → −η as being in the

same class alongside the relationship (1.54).

If one chooses case (i) for the Fermi-Dirac oscillators, the sign invariance of the

metric means that it can always be chosen to be equal to the identity matrix, and

this corresponds to the usual 〈x | x〉 = 1 case of positive-normed states. If instead

case (ii) is chosen, one can consistently require that

〈x | (−1)āa | x〉 > 0, (1.58)

for all | x〉 in H. The exponent āa appearing in Eq. (1.58) is to be understood as an

eigenvalue of the operator āa acting on | x〉. The metric is therefore indefinite, and

one may choose η = (−1)āa in order to enforce positivity in (1.58). The quantum

created by these operators is said to be of positive or negative metric, depending on

whether case (i) or (ii) holds.

The Bose-Einstein case possesses additional subtlety. The conventional quantiza-

tion

aā− āa = 1, (1.59)

may be turned into

aā− āa = −1, (1.60)

by simply swapping the roles of a, ā. Due to this property, the total range of possi-

bilities for quantizing bosons falls into three distinct groups:
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1. Definite metric. 〈x | x〉 > 0 and η may be set to 1. This corresponds to

establishing a vacuum state |0〉 such that a |0〉 = 0.

2. Indefinite metric. Eq. (1.58) holds, and η = (−1)āa is permissible. This

corresponds to a vacuum state defined by a† |0〉 = 0.

3. Neither. η is indefinite; this corresponds to āa | x〉 returning non-integer

eigenvalues for all vectors | x〉 ∈ H. The spectrum so produced is bounded

neither from above nor below.

We are interested in constructing a consistent quantum theory with some meaningful

ground state, and so choice (3) is excluded from further consideration. It is enough

to then stipulate whether the spectrum should be bounded from above or below; the

class of metric is then specified uniquely by demanding that it be either definite or

indefinite.

This concludes the treatment of the basic quantum theory of Lee-Wick states. This

topic will arise again in the chapter concerning thermodynamics and the LW effective

action, where further subtleties in defining the metric and quantization condition

can lead to interesting predictions. For now, let us turn to the subject of making a

quantum field theory of LW states.

1.3.2 The Simplest Case: A Higher-Derivative Scalar Theory

Modern work on LW theories may share the spirit of the original papers by Lee

and Wick, but the implementation has tended to follow a seminal paper by Grinstein,

O’Connell, and Wise [41]. The roadmap here entails the explicit invocation of a HD

action, followed by its Ostrogradsky transform into a theory of two quantum fields

of opposite norm (rather than beginning with negative-norm states on the Hilbert

space from the outset). The use of modern QFT technology in [41], such as the
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renormalization group and spontaneous symmetry breaking, will be more familiar to

contemporary practitioners than the original paradigm set forth by Lee and Wick.

Let us begin by considering the simplest case, involving a single interacting scalar

field φ̂ with a HD term:

Lhd =
1

2
∂µφ̂∂

µφ̂− 1

2
m2φ̂2 − 1

2Λ2
LW

(∂2φ̂)2 − V (φ̂). (1.61)

One may then obtain the Euler-Lagrange equations of motion in the usual way, re-

sulting in the HD propagator

D̂(p2) =
i

p2 −m2 − p4/Λ2
LW

. (1.62)

This propagator has simple poles at p2 =
Λ2
LW

2

(
1±

√
1− 4m2/Λ2

LW

)
. In the limit of

interest, Λ2
LW � m2, this expression reduces to p2 = m2 and p2 = Λ2

LW −m2 ∼ Λ2
LW.

The meaning of Eq. (1.62) is clear: the propagator following from a single HD action

cleanly resolves itself into two independent degrees of freedom, which is most obvious

when its mass scales are far separated.

We can explicitly see these new degrees of freedom by inserting an auxiliary field

φ̃ into Eq. (1.61):

L =
1

2
∂µφ̂∂

µφ̂− 1

2
m2φ̂2 − φ̃∂2φ̂+

1

2
Λ2

LWφ̃
2 − V (φ̂). (1.63)

The equation of motion, φ̃ = ∂2φ̂/Λ2
LW, is exact at the quantum level: the path

integral over the degrees of freedom associated with φ̃ can be comptued exactly.

Substitution of this result for φ̃ in Eq. (1.63) returns Eq. (1.61), as expected. Now,

define a new field by φ = φ̂+ φ̃. Eliminating φ̂, the Lagrangian of Eq. (1.63) becomes

L =
1

2
∂µφ∂

µφ− 1

2
∂µφ̃∂

µφ̃+
1

2
Λ2

LWφ̃
2

−1

2
m2(φ− φ̃)2 − V (φ− φ̃). (1.64)
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In this form, we can see that there are clearly two scalar fields at work: the conven-

tional scalar φ, and its partner, φ̃. The terms in Eq. (1.64) quadratic in φ̃ display

a curious property: both the kinetic and the mass terms enter with a sign opposite

to what one expects in a standard quantum field theory. The above is to be con-

trasted with ghosts and/or tachyons (which have an opposite-sign kinetic term only)

and the unstable vacua associated with the Higgs field in the unbroken symmetry

phase (which has an opposite-sign mass term only). The φ̃-only terms enter as a

complete copy of an otherwise-standard free scalar field theory, with an overall minus

sign appended. Eq. (1.64) gives rise to the propagator

D̃(p2) =
−i

p2 − Λ2
LW

. (1.65)

This signals the existence of nonpositive-definite normed states in the Hilbert space.

If this state were to be stable, then a scattering process taking a collection of positive-

norm states into a collection of negative-norm states could not be done by means of

a unitary operator on the Hilbert space. Put succinctly, a complete S-matrix in this

case demands the violation of unitarity. However, as emphasized by Lee and Wick

in their original work, unitarity may be preserved if φ̃ is unstable and decays, thus

acquitting its quantum states from consideration as long-lived states on the Hilbert

space. This is achieved at the level of Feynman diagrams if V (φ, φ̃) contains a term

enabling the decay of the heavy φ̃.

One complication persists in the absence of an easily recognizable mass term for

φ. As it stands, Eq. (1.64) contains a φ − φ̃ two-point interaction, mixing the two

fields. In order to gain a clearer picture in which each field has its own distinct mass

term, it is possible to execute a symplectic diagonalization in the basis of fields (which
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preserve the metric η), φ
φ̃

 =

cosh θ sinh θ

sinh θ cosh θ


φ′
φ̃′

 . (1.66)

A solution exists if θ satisfies

tanh 2θ =
−2m2/Λ2

LW

1− 2m2/Λ2
LW

, (1.67)

which provides real solutions, as long as Λ2
LW > 4m2. If this inequality is not met,

this corresponds to the case of the heavy φ field decaying to φφ on-shell with zero

phase space volume; in other words, the heavy LW state is unable to decay. It should

then be little wonder that a well-defined theory of two interacting fields, of opposite

norms, does not exist; the failure of symplectic diagonalization presages the looming

disaster of a non-unitary S-matrix.

This transformation being made, the Lagrangian of Eq. (1.64) becomes

L =
1

2
∂µφ

′∂µφ′ − 1

2
m′2φ′2 − 1

2
∂µφ̃

′∂µφ̃′ +
1

2
M2

LWφ̃
′2 − V (φ′, φ̃′), (1.68)

where the introduction of m′2, M2
LW accounts for the adjustment of the original mass

parameters:

m′2, M2
LW =

Λ2
LW

2

(
1∓

√
1− 4m2

Λ2
LW

)
. (1.69)

Furthermore, since the potential in the form of Eq. (1.61) changes from V (φ̂) to V (φ−

φ̃), the coupling constants of the HD theory will receive multiplicative corrections from

the diagonalization. For instance, if

V (φ̂) =
1

n!
gφ̂n −→ V (φ− φ̃) =

1

n!
g(φ− φ̃)n, (1.70)

diagonalization will turn this into

V (φ′ − φ̃′) =
1

n!
g(cosh θ − sinh θ)n(φ′ − φ̃′)n. (1.71)
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This new multiplicative factor can simply be reabsorbed into the definition of the

coupling constant, giving g′ = g(cosh θ − sinh θ)n, and

V (φ− φ̃) =
1

n!
g′(φ− φ̃)n. (1.72)

For Λ2
LW � m2, hence θ � 1, this is a minor redefinition of approximately g′ =

(1− nθ)g. For notational convenience, we will drop the primes from the notation in

all subsequent calculations. Only mass-eigenstate fields and their associated couplings

will be used throughout the rest of this work, and no ambiguity will arise.

Loop effects will come to play a substantial role in this work, and it therefore

behooves us to consider the self-energy of LW fields due to their self-interactions:

D̃(p2) =
−i

p2 −M2
LW

+
−i

p2 −M2
LW

(
−iΣ(p2)

) −i
p2 −M2

LW

+ . . .

=
−i

p2 −M2
LW

∞∑
n=0

−Σ(p2)

p2 −M2
LW

=
−i

p2 −M2
LW

× 1

1 + Σ(p2)/(p2 −M2
LW)

=
−i

p2 −M2
LW + Σ(p2)

. (1.73)

This is to be contrasted with the case for ordinary scalar fields, for which the de-

nominator has the form p2 − m2 − Σ(p2). This result is significant in light of the

Breit-Wigner formulation of resonance widths. Taking the denominator of Eq. (1.73)

to be of the form p2 −m2 + imΓ for some width Γ, the LW field possesses a negative

width. This result could also have been demonstrated by a straightforward calculation

using tree-level Feynman diagrams. If

V (φ− φ̃) =
1

3!
g(φ− φ̃)3 ⊃ −1

2
gφ2φ̃, (1.74)

then the width associated with the decay channel φ̃→ φφ is simply

Γ = − g2

32πMLW

√
1− 4m2

M2
LW

. (1.75)
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The overall minus sign comes from the fact that an odd number of LW fields are

present in the Feynman diagram of interest, as in Eq. (1.74). This will have interesting

implications for causality, as addressed in § 1.3.5.

The result of Eq. (1.75) helps to address the previously-mentioned issues with

unitarity. It is well-known that the optical theorem, taken as a criterion for unitarity,

demands that the imaginary part of the forward scattering amplitude be positive. In

φφ scattering under the influence of the potential (1.74), one has (following implicitly

the Feynman +iε prescription)

iM = (ig)2 −i
p2 −M2

LW + iMLWΓ
= +ig2 p2 −M2

LW − iMLWΓ

(p2 −M2
LW)2 +MLWΓ2

, (1.76)

leaving M with imaginary part

ImM = −g2 MLWΓ

(p2 −M2
LW)2 +MLWΓ2

. (1.77)

The negative sign buried within Γ cancels the explicit sign associated with the propa-

gator. The optical theorem is vindicated at tree level, thus occasioning some optimism

that the theory is indeed unitary. However, one must be forewarned that a proof of

the optical theorem for LW theories to all orders in perturbation theory is wanting at

the time of this writing. No known violation yet exists, although attempts to settle

the unitarity question through path integrals have proven null [42]. One must then

approach the question of unitarity with some caution.

1.3.3 Cancellation of UV Divergences

As advertised, one can show with relatively little work that the higher-derivative

degrees of freedom present in the LWSM can cancel off the UV divergences that

plague scalar mass renormalization, thereby resolving the hierarchy problem. Since

the SM possesses three types of fields - fermion, scalar, and gauge boson - three new
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HD Lagrangians need to be written down:

LHiggs = (D̂µΦ̂)†(D̂µΦ̂) − 1

M2
Φ

(D̂µD̂
µΦ̂)†(D̂νD̂

νΦ̂) − λ

4

(
Φ̂†Φ− v2

2

)2

, (1.78)

LYang−Mills = − 1

2
tr F̂µνF̂

µν +
1

M2
A

tr (D̂νF̂µν)(D̂
λF̂ ν

λ ), (1.79)

Lfermion =
¯̂
QLi /DQ̂L +

1

M2
Q

¯̂
QLi /D /D /DQ̂L, (1.80)

with covariant hatted derivatives D̂µ defined in analogy to Eq. (1.2) with respect to

HD gauge fields. It is also necessary to write down the HD Yukawa interaction for

completeness, though its form is easy to guess:

− LYuk = yuiε
ab(

¯̂
Qi
L)aΦ̂

†
bû
i
R + ydi

¯̂
Qi
LΦ̂d̂iR + yei

¯̂
LiLΦeiR + h.c. (1.81)

With this information, one has the basic ingredients necessary to perform an Ostro-

gradsy transformation on the HD terms by way of auxiliary fields, such as Q̃L, etc.

Let us briefly respectively work out the the Ostrogradsky formalism for the gauge

and fermion fields, utilizing auxiliary fields Ŵ µa = W µa − W̃ µa and Q̂L = QL − Q̃L:

Laux =− 1

2
tr F̂µνF̂

µν −M2
A tr W̃µW̃ν + 2 trF̂µνD̂

µW ν ,

−→− 1

2
trFµνF

µν +
1

2
tr (DµW̃ν −DνW̃µ)(DµW̃ ν −DνW̃ µ)

− ig tr([W̃µ, W̃ν ]F
µν)− 3

2
g2 tr ([W̃µ, W̃ν ][W̃

µ, W̃ ν ])

− 4ig tr([W̃µ, W̃ν ]D
µW̃ ν)−M2

A tr (W̃µW̃
µ). (1.82)

In Rξ gauge, the propagators for regular and LW gauge bosons with group in-

dices a, b read

Dab
µν = −i δ

ab

p2

(
gµν − 1(1− ξ)pµpν

p2

)
, (1.83)

D̃ab
µν =

i δab

p2 −M2
A

(
gµν − 1

pµpν
M2

A

)
. (1.84)

Note in particular the opposite sign of the LW propagator, the explicit pole mass

M2
A, and the fact that the LW gauge boson still preserves the Ward identity in the
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technical sense (pµ dotted into Eq. (1.84) vanishes). We will not need to consider LW

gauge bosons in what is to follow; let us proceed on to the case of the HD fermion

theory. Exploiting the auxiliary field formalism as before, one has

L =
¯̂
QLi /DQ̂L +MQ( ¯̃QLQ̃

′
R + ¯̃Q′RQ̃L) + ¯̃QLi /̂DQ̂L+

¯̂
QLi /̂DQ̃L − ¯̃Q′Ri /̂DQ̃

′
R

−→ Q̄Li /DQL − ¯̃QLi /DQ̃L − ¯̃Q′Ri /DQ̃
′
R +MQ( ¯̃QLQ̃

′
R + ¯̃Q′RQ̃L)− Q̄LγµÃ

µQL

+ ¯̃QLγµÃ
µQ̃L + ¯̃Q′RγµÃ

µQ̃′R, (1.85)

where Ãµ sums over all auxiliary field gauge bosons (and their generators). The

introduction of a right-handed fermion Q̃′R is necessary in order to produce a vectorlike

mass term. Since QL, Q
′
R combine to form a single spinor in Eq. (1.85), there are

only two propagators, with the forms

DF (p) =
i

/p
, (1.86)

D̃F (p) = − i

/p−MQ

. (1.87)

With this set of free-field Lagrangians firmly in place, it is time to turn to the task

at hand. In the Yukawa Lagrangian of Eq. (1.81), each HD fermion is replaced by

ψ̂ → ψ − ψ̃. This leads to a LW Yukawa Lagrangian of familiar form,

−LYuk = yuiε
ab(Q̄i

L −
¯̃Qi
L)a(Φ

†
b − Φ̃b)

†(uiR − ũiR)

+ ydi(Q̄
i
L −

¯̃Qi
L)(Φ− Φ̃)(diR − d̃iR)

+ yei(L̄
i
L −

¯̃LiL)(Φ− Φ̃)(eiR − ẽiR) + h.c. (1.88)

From this, one learns some very useful information. Not only do SM fermions couple

to the Higgs, but so do their LW partners, and there also exists a trilinear coupling be-

tween the SM and LW fermions and the Higgs. Now, one can take the diagram (1.30),

but augment it with three new diagrams: one where only the top fermion line is LW,

one where only the bottom is LW, and one where both are LW. This means that the
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LW result can be directly imported from Eqs. (1.33), (1.34) with a judicious choice of

∆ (p2, x) for the three cases above. Referring to them respectively as ∆1, ∆2, and ∆3,

we have

∆1 =m2
fx+M2

LW(1− x)− p2x(1− x), (1.89)

∆2 =m2
f (1− x) +M2

LWx− p2x(1− x), (1.90)

∆3 =M2
LW − p2x(1− x). (1.91)

Before performing the loop calculation, one must keep in mind that, due to the

opposite sign of the LW propagator, a diagram with N internal LW-lines will possess

an overall relative factor of (−1)N relative to a purely-SM diagram. One may now

calculate each loop diagram; for organizational convenience, denote each diagram

−iM2
(N)(p

2), where N counts the number of internal LW lines:

−iM2
(1)(p

2) = − i
m2
f

4π2v2

∫ 1

0

dx

(
2Λ2 − 3∆1 ln

(
Λ2

∆1

)
− 3∆2 ln

(
Λ2

∆2

))
(1.92)

−iM2
(2)(p

2) = i
m2
f

4π2v2

∫ 1

0

dx

(
Λ2 − 3∆3 ln

(
Λ2

∆3

))
. (1.93)

Adding these results back to Eq. (1.34), it is seen that the quadratic divergence

cancels off cleanly. However, the logarithmic divergence persists; this prompts the

observation that

The Lee-Wick Standard Model is free of quadratic divergences, but unlike the earlier

formulation of quantum electrodynamics by Lee and Wick, it is not a finite theory.

This is a significant departure from the original incarnation of the theory. The modern

formulation of LW theory accepts logarithmic divergences as necessary, and in fact

desirable, in light of the understanding of the renormalization group that has emerged

since the time of Refs. [34, 35].
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This concludes the elementary treatment of the LWSM resolution of the hierarchy

problem; but what of the other new fields introduced into the theory? It must be

remembered that the fermion contribution to −iM2(p2) is the leading divergence at

quadratic order, and all other diagrams calculated within the auspices of the SM

are at worst logarithmically divergent. Invoking HD equations of motion can only

increase the convergence (or at any rate, slow the divergence) of loop diagrams, since

their propagators fall off even more rapidly with energy as one approaches the UV

cutoff.

1.3.4 Unitarity in Lee-Wick Theory

The existence of negative-norm states, non-Hermitian Hamiltonians, and higher-

derivative terms in the Lagrangian all seem to point to a violation of unitarity in

Lee-Wick theories. If true, the theory would indeed be sick beyond the help of any

ad hoc procedure. However, the question of unitarity turns out to be quite nuanced,

and yields a somewhat surprising answer.

The fact that Lee and Wick’s seminal paper [34] began with a proof of S-matrix

unitarity offers a sense of the issue’s importance. It assumes a metric η (as defined

in § 1.3.1) between states |x〉 on a Hilbert space H. There exists a pseudo-Hermitian

Hamiltonian, in the vein of Eq. (1.49). Given that the unitarity of S is related closely

to the hermiticity of H, one would be permitted some skepticism that a pseudo-

Hermition Hamiltonian can produce a viable theory. After all, a Hamiltonian defined

by (1.49) yields the relationship

S†ηS = η, (1.94)

which clearly does not comply with the expectation that S†S = 1.

The prescription suggested by Lee and Wick is to divide the particle spectrum

into two classes: “normal” (η = 1) and “abnormal” (η = −1). It would indeed
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be disastrous for abnormal particles to survive into the far future as scattering out-

states; but if the theory contains interactions and mass parameters allowing abnormal

particles to decay into their normal counterparts, then the S matrix (which connects

past and future infinity) never “sees” the abnormal particles in any meaningful way.

This can be thought of as the total Hilbert space H having some subset H+ ⊂ H of

positive-norm states on which the S-matrix acts.

Non-Hermitian operators are associated with complex eigenvalues, which can be

seen from the action of H on a complete set of states. Let the eigenstates of H be

spanned by α, β, obeying

H |α〉 = Eα |α〉, (1.95)

H |β±〉 = E±,β |β±〉, (1.96)

for ImEα = 0 and ImE+,β = −ImE−,β 6= 0. With these tools in place, we are able to

make a mathematically concise statement regarding the stability of the theory. All

eigenstates |α〉 of real eigenvalues Eα possess positive norm-squared with respect to

the metric η, i.e.,

〈α |η |α〉 > 0. (1.97)

All remaining states will have purely oscillatory time-dependence. It also follows from

ηH†η = H that the three partitions of states possess a vanishing inner product with

one another:

〈β+ |η |α〉 = 〈β− |η |α〉 = 0, (1.98)

〈β′+ |η |β+〉 = 〈β′− |η |β−〉 = 0, (1.99)

for different β, β′. One can also act repeatedly with H to show that, for different
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α, α′,

〈α′ |η |α〉 = 0, (1.100)

〈β′+ |η |β−〉 = 0. (1.101)

These inner products serve a direct purpose in attempting to build a completeness

relation (which cannot be proven to exist in general for non-Hermitian operators):

we can expand any state on H in terms of the eigenvectors of H. Though this is an

assumption, a theory without a completeness relation bears little resemblance to the

mathematical framework of quantum mechanics, and so we press on. The general

expression is

|ψ〉 =
∑
α,β±

〈α | η |ψ〉 |α〉+ 〈β+ | η |ψ〉 |β−〉+ 〈β− | η |ψ〉 |β+〉 (1.102)

If a state is to have negative norm-squared, i.e. 〈ψ |η |ψ〉 < 0, it must be a coherent

mixture of |β+〉 and |β−〉. The contrapositive of this statement gives one an idea of

how to ensure that the theory remains stable.

One may now formulate a scattering theory in the usual way, using asymptotic in-

and out-states |αin〉 and |αout〉. The S-matrix is then defined as the inner product

between in- and out-states:

Sα′,α = 〈α′out |η |αin〉. (1.103)

One is free to substitute the above, by way of Eq. (1.102), back into Eq. (1.94). Using

the completeness of the full vector space H, all unphysical states are projected out,

leaving only

S†S = 1, (1.104)

as desired.
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Following this result of Lee and Wick, Boulware and Gross [42] attempted a path-

integral formulation of the theory. Their study centered on the troubling nature of

indefinite metrics and runaway states: as an example, the state

|ψ〉 =|+〉 ± |−〉, (1.105)

for which 0 < 〈+ | +〉 = −〈− | −〉, has zero norm. Modes corresponding to such

states have the potential to grow or decay exponentially while inner products remain

bounded. To compare with a classical case, this is similar to a theory with indefinite

energy. Such a theory can be quantized in regular Minkowskian time, and a functional

integral exists, but there will in general be growing modes and no ground state. This

latter fact precludes the possibility of a Euclidean-time quantization, which presents

problems for the orthodox connections between path integral quantum mechanics and

statistical mechanics.

The case for the unitarity of Lee-Wick theory is embattled, to be sure, but not

without optimism. The Lee-Wick prescription successfully decouples the offending

negative-norm states from the physical spectrum, needing a caveat or two and per-

turbation theory in order to do so. The non-existence of a path integral formulation,

however, merits some serious concern. As of this writing, we stand in the uncomfort-

able middle ground of there being no non-perturbative proof of Lee-Wick unitarity,

but no glaring examples of unitarity violation either.

1.3.5 Causality in Lee-Wick Theory

Causality and time-ordering experience some counter-intuitive developments when

transitioning to Lee-Wick theories. Acausality, understood mathematically as a pe-

culiar time-ordering of events, has been studied in Refs.[35, 37, 38, 43]. It was argued

in [35] that, aside from pathologies and paradoxes such as closed timelike curves, a
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mathematically consistent theory cannot lead to bona fide paradoxes along the lines

of acausality as it is commonly conceived. Rather than grapple with such ill-defined

notions, one would profit from rephrasing the question in terms of Lorentz invariance.

Touching on the foundations of quantum field theory, causality can be stated as the

requirement that the two-point correlation function

〈0 |φ(y)φ(x) |0〉 = 0 for gµνx
µyν < 0, (1.106)

that is, for spacelike (x− y)µ. This demand is satisfied in [35].

Ref. [38] pursues the question non-perturbatively by basing the LW state space

on a set of distributions formulated by Gel’fand and Shilov [44, 45]. The author

addresses the problem concerning loop diagrams with Lee-Wick particles, which are

taken to have complex masses in some studies [46]. Such graphs introduce non-

analytic regions whose shape depends on the frame in which they are calculated - a

clear violation of Lorentz invariance. The problem arises due to the elimination of

internal negative metric particles through the Lee-Wick prescription, which operates

on a set of states that is not Lorentz-invariant in the first place. The problem may be

overcome by recasting the theory in terms of strictly a covariant state space. However,

the states so constructed have real energy eigenvalues, and so they seem to be at risk

of violating the Lee-Wick real-energy constraint for removing unphysical degrees of

freedom. This is avoided by imposing a large-distance cutoff, thereby moving the

negative-definite states away from the real line. The Lee-Wick real-energy constraint

is then applied, after which time the cutoff is removed, resulting in a causal theory

free of negative-norm states.

In [37], the authors assert that causality as commonly conceived is a classical,

macroscopic phenomenon, appropriate only at large length scales that coarse-grain

over degrees of freedom. The Lorentz invariance of LW theory is emphasized, and
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causality here is understood to be an emergent phenomenon only appropriate for

macroscopic time scales (which can be as short as microseconds, given the smallness

of Λ−1
LW). In order to probe the nature of that emergence, they study an O(N) con-

struction of LW theory, and find that the time ordering one would associate with

causal fields emerges in the N →∞ limit.

The analysis of [43] centers on the topic of vertex displacement. It had been es-

tablished in [41] that the decay products of LW particles move toward their vertex of

production, not away from it; this is a way of phrasing the apparent acausality in scat-

tering (hence, S-matrix) terms. The author uses the Weiszäcker-Williams approach

of [47] to calculate vertex displacement effects one might see in the Bremsstrahlung

radiation of a LW photon, i.e. e−Z → e−ÃZ. The author finds that the cross-section

for this LW process is not substantially affected by a momentum cut representing the

sensitivity and thickness of a detector. This latter fact is significant, because for a

sufficiently thin detector, the vertex displacement could put the decaying LW particle

“behind” the detector, while its decay products move from this point into the detector

proper. In the particular case of LW photons produced by a beam of incident energy

E0 on the target, the opening angle into which decay products travel is found to be of

order mÃ/E0. This small, though in principle measurable, angle would be a smoking

gun for the identification of LW particles at colliders and fixed-target experiments.

This theme will be explored further in the subsequent chapter concerning LW collider

phenomenology.
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Chapter 2

COLLIDER SIGNATURES OF THE N = 3 LEE-WICK STANDARD MODEL

With the core ideas and implementation of the Lee-Wick Standard Model in place,

it is time to consider some applications of the theory to contemporary problems of

collider phenomenology, electroweak precision tests, and cosmology.

Consider the basic HD Lagrangian of Eq. (1.61). Though it may seem an unnec-

essary or unwelcome extension, only attached to serve one very specialized purpose,

there is another perspective from which to view it. Equation (1.61) invokes a HD,

dimension-six operator. But is this the end? If we entertain the thought that there

may exist HD operators at the fundamental level, narrowing the field of view to only

one such class of operators can only provide a special case of a more generic the-

ory featuring still-higher powers of the derivative operator. In order to keep things

straight, some clarifying notation is in order. An Lee-Wick theory of order N is one

whose Lagrangian has terms with up to 2(N − 1) extra derivatives beyond that in

the original theory. In this notation, the conventional Standard Model is an N = 1

theory; the model developed throughout Ch. 1 is an N = 2 theory; and the subject

of this chapter, and the primary focus of this dissertation, will be N = 3 theories.

We expect the introduction of dimension-8 operators to add complexity to the

theory, both in the number of parameters to be constrained (in the form of mass

scales and diagonalization angles, similar to Eq. (1.66)) and in the number of new

interactions to be generated by the Ostrogradsky decomposition of the HD fields.

However, the improved convergence of loop diagrams ameliorates this cost somewhat;

we can expect internal lines to fall off as O(p−6) at high energies, taming the Standard

Model hierarchy problem even more rapidly. We can immediately see an emerging

36



trend: a Lee-Wick theory of arbitrarily high N improves the covnergence of loop

diagrams arbitrarily well, at the cost of increasingly ungainly computation. It be-

comes imperative to know just how many terms are needed for the purpose of a given

problem, while not ignoring other relevant terms for the sake of keeping calculations

manageable.

Fortunately, a natural hierarchy exists due to the dimensionful couplings that

attend each derivative operator. In a prototypical Lee-Wick Lagrangian,

LNHD =
N∑
i=1

(
−Ciφ̂(∂2)iφ̂

)
+

1

2
m2φ̂2, (2.1)

the only choice of Ci resulting in a dimensionally consistent Lagrangian is of the form

Ci =
1

M
2(i−1)
i

, (2.2)

for some heavy mass scale Mi. Even in the case that all Mi are comparable - which

is most interesting for phenomenology - the higher-derivative irrelevant operators

quickly trail off. We then see the N = 3 Lee-Wick Standard Model as being the

next-to-minimal approximation to an expansion in M−2
i . The N = 3 LWSM was

pioneered in Ref. [48], influenced by earlier work in O(p6) scalar theories1 studied in

Refs. [49, 50, 51]. We turn now to the task of mapping the N = 3 HD theory onto

a renormalizable field theory, in a manner similar to the Ostrogradsky formalism

exploited earlier.

2.1 An N = 3 Toy Theory

As we saw from Eq. (1.61) and the discussion following, we can obtain a compu-

tationally convenient form of the theory by first adding auxiliary fields (AF) to a HD

Lagrangian, and then following an Ostrogradsky-like formalism.

1We pause to note the distinction that O(p4) terms are absent in these theories, hence, they are

not in the direct pedigree of the LWSM.
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The archetypal N = 3 Lagrangian for an interacting, higher-derivative scalar φ̂

is 2

LN=3
HD = −1

2
φ̂�φ̂− 1

2M2
1

φ̂�2φ̂− 1

2M4
2

φ̂�3φ̂− 1

2
m2
φφ̂

2 + Lint(φ̂), (2.3)

where the masses M1, M2 roughly correspond to the location of the Lee-Wick poles,

and are assumed to be comparable. A quick calculation yields the higher-derivative

N = 3 propagator,

D̂N=3
HD (p) =

i

p2 −m2
φ − p4/M2

1 + p6/M4
2

, (2.4)

from which we see that propagators in the N = 3 theory will have three poles,

corresponding to three physical resonances. Note the alternating signs of the p2n

terms in Eq. (2.4). In the p2 → +∞ limit, the propagator scales as ≈ +ip−6, opposite

in sign to the behavior of the minimal LW case discussed earlier. As we will see, this

overall sign signifies the existence of a positive-norm state dominating UV behavior.

We desire an AF transformation that will change Eq. (2.3) into a more manageable

form,

LN=3
LW =

3∑
i=1

ci

[
−1

2
φ(i)(�+m2

i )φ
(i)

]
+ Lint({φ(i)}), (2.5)

where ci = ± 1 records the relative signs of contributions to the Lagrangian, and

the m2
i are taken to be positive.3 The task of the AF formalism is to determine the

constants ci, m
2
i as functions of M2

1 , M
2
2 , andm2

φ.

We pause here to define some new, helpful terminology. For a LW Lagrangian in

the form of Eq. (2.5), we refer to the summation variable i (appearing in φ(i)) as the

“Lee-Wick index.” It is helpful to assign some unambiguous notation to this effect,

so we choose nLW. Hence, a SM field possesses LW index nLW = 1, a negative-norm

LW field has nLW = 2, and a positive-norm LW field has nLW = 3.

2For brevity, we will use the d’Alembertian, �, in place of ∂2 in what follows.
3Generalizing to LW theories of arbitrary N , one could replace the 3 in Eq. (2.5) with N .
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Invoking auxiliary scalar fields χ, ψ, the AF Lagrangian is given by

LAF =
1

η1

[
− 1

2
φ̂(�+m2

1)φ̂− χ(�+m2
1)φ̂+ (m2

3 −m2
1)1/2(m2

2 −m2
1)1/2χψ

− 1

2
ψ�ψ − 1

2
(m2

2 +m2
3 −m2

1)ψ2

]
+ Lint(φ̂), (2.6)

with η1 ≡ (m2
1m

2
2 + m2

1m
2
3 + m2

2m
2
3)/(m2

2 − m2
1)(m2

3 − m2
1). Note that, unlike in

Eq. (1.63), one of the auxiliary fields in Eq. (2.6) (namely, ψ) is dynamical. The

need for invoking two auxiliary fields, rather than just one, is an expression of the

extra dynamical degrees of freedom encountered when moving from N = 2 to N = 3

theories. Upon varying Eq. (2.6) with respect to χ, one recovers the equation of

motion,

ψ =
1

(m2
2 −m2

1)1/2(m2
3 −m2

1)1/2
(�+m2

1)φ̂. (2.7)

Eq. (2.7) may be substituted back into Eq. (2.6), after which one obtains the HD

Lagrangian

LHD = − 1

2Λ4
φ̂(�+m2

1)(�+m2
2)(�+m2

3)φ̂, (2.8)

where we have definied

Λ4 ≡ m2
1m

2
2 +m2

1m
2
3 +m2

2m
2
3. (2.9)

Comparing this recasted HD Lagrangian with Eq. (2.8), we see that the mass terms

of Eq. (2.3) match up with those of Eq. (2.8) through the following identifications:

m2
φ =(m2

1m
2
2m

2
3)/Λ4, (2.10)

M2
1 =Λ4/(m2

1 +m2
2 +m2

3), (2.11)

M2
2 =Λ2. (2.12)

This result demonstrates that we are still in contact with the original theory, and also

that the original HD Lagrangian is factorizable.

39



One can also map Eq. (2.6) onto the general form of Eq. (2.5) through the defini-

tions

φ̂ =
√
η1φ

(1) −
√
−η2φ

(2) +
√
η3φ

(3), (2.13)

χ =
√
−η2φ

(2) −√η3φ
(3), (2.14)

ψ =
√
η3φ

(2) −
√
−η2φ

(3), (2.15)

where the ηi are defined by (note that the following definition of η1 matches the one

below Eq. (2.6), using Eq. (2.9))

η1 ≡
Λ4

(m2
2 −m2

1)(m2
3 −m2

1)
, (2.16)

η2 ≡
Λ4

(m2
1 −m2

2)(m2
3 −m2

2)
, (2.17)

η3 ≡
Λ4

(m2
1 −m2

3)(m2
2 −m2

3)
. (2.18)

Assuming, with no loss of generality,4 that m3 > m2 > m1, we see a pattern develop:

sign(ηi) = (−1)i+1. This pattern corresponds to that observed in the propagator

of Eq. (2.4). The simplification of the unwieldy AF Lagrangian in Eq. (2.6) to the

general form of Eq. (2.5) occurs as a result of the following sum rules:

3∑
i=1

m2n
i ηi = 0 (n = 0, 1), (2.19)

3∑
i=1

m2n
i ηi = Λ4 (n = 2), (2.20)

m2
1m

2
2η3 +m2

2m
2
3η1 +m2

1m
2
3η2 = Λ4. (2.21)

The ηi defined here are related to those defined by Pais and Uhlenbeck [52], who

were interested in quantum-mechanical theories with HD Lagrangians. The Pais-

Uhlenbeck parameters (called ηPU
i here) are related to the N = 3 LW parameters

4If one prefers m2 > m3 > m1 instead, this can be accommodated by swapping η2 ↔ η3, and the

argument still follows.
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by5

ηi =
m4
iΛ

2N−2

Πjm2
j

ηPU
i . (2.22)

Given the field decomposition of Eq. (2.13), the interaction terms of the La-

grangian become

Lint(φ̂) = Lint

(√
η1φ

(1) −
√
−η2φ

(2) +
√
η3φ

(3)
)
. (2.23)

It is important to see that the N = 3 theory does not introduce new divergences

in quantities expected to be finite in the N = 2 theory; this would hardly count

as an improvement. To illustrate this, consider the familiar interaction term Lint =

−λφ̂4/4!, which transforms under Eq. (2.13) as

Lint({φ(i)}) =
λ

4!

∑
ijkl

√
|ηiηjηkηl |φ(i)φ(j)φ(k)φ(l). (2.24)

We are interested only in the self-energy function for φ(1), as the other LW partners are

expected to decay, and we already know the consequences of their putative stability

to be disastrous. The correction at one loop is then given by

Π(p2) = λη1

∫
d4p

(2π)4

∑
k

[
(−1)k+1i

p2 −m2
k

]
|ηk |, (2.25)

where, for the sake of illustration, we have computed only the most divergent diagram

possible. We now make use of the fact that (−1)k+1 | ηk |= ηk, and expand the

integrand of Eq. (2.25) in powers of p2/m2
k, the high-p2 limit being the one of interest

for probing the UV behavior of the theory. We then have

Π(p2) = iλη1

∫
d4p

(2π)4

∑
k

(
ηk
p2

+
ηkm

2
k

p4
+
ηkm

4
k

p6

)
. (2.26)

It appears at a glance that we have a badly divergent self-energy: the first two terms

exhibit quadratic and logarithmic divergences, respectively. However, we have not yet

5The Πj symbol denotes multiplication of the m2
j , and not a canonical momentum operator with

respect to a field indexed by j.
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invoked the sum rules of Eqs. (2.19) and (2.20). The quadratic divergence vanishes

under the n = 0 case of Eq. (2.19), and the logarithmic divergence vanishes under

the n = 1 case of the same. The O(p−6) term yields a finite contribution, which

can be recast by the rule of Eq. (2.20). The N = 3 theory, though exhibiting more

complicated interactions than its N = 2 counterpart, has built-in sum rules that still

serve to cancel the leading divergences.

While it is necessary to develop auxiliary field Lagrangians for the fermion, Yang-

Mills, and Higgs fields for the N = 3 theory, their implementation is quite lengthy.

The HD Lagrangians for these fields, as well as their AF transformations into recog-

nizable LW theories, may be found in Appendix A.

2.2 Methods of Collider Phenomenology

We now have the tools necessary to study the experimental consequences of the

N = 3 LWSM. A scattering event particularly sensitive to the presence of LW partners

is the process pp→ W+
i → l+ + νl +X, first studied in [53] for the N = 2 case. The

N = 3 analog of this process, studied in [1], forms the basis of this chapter. Here,

W+
i refers to either a LW gauge boson, l+νl is a lepton-neutrino pair of a given

flavor, and X labels the hadronic products. A characteristic LW mass of 1.5 TeV

was assumed. However, subsequent analyses of oblique corrections and electroweak

precision observables [54, 55, 56, 57] have demonstrated significant tension between

the N = 2 LWSM and experimental evidence, thereby requiring a LW W mass

to be & 3 TeV to remain consistent with available data. This turns out to be an

optimistic estimate of the LW W mass, as it requires the masses of LW fermions to

be substantially higher, as large as 10 TeV in some of the above references. More

model-independent scenarios, in which there is a common LW mass for all particles

involved, retain consistency at the price of a mass scale∼ 7 TeV. In either case, these

42



high masses put the LW W well out of range of what can be expected from the LHC

(though there exist many studies on LW phenomenology at the LHC; see [58, 59, 60,

61]. Masses of several TeV also raise the troubling complication of a little hierarchy

problem: even if these LW particles solve the “big” hierarchy problem associated with

the sensitivity of the electroweak physics to the GUT scale, there still exists a smaller

fine-tuning problem of one part in (at least) 101 or 102.

This is certainly a step backwards with respect to the overall spirit of Lee-Wick

theories. Now that we have the tools of the N = 3 LWSM at our disposal, however,

we can see if the existence of heavy positive-norm states can ameliorate the tension

between theory and experiment as well as produce a distinct signal for LW particles

at colliders.

We focus on the semileptonic process pp → l+ + νl + X, where the lepton pair

l+νl is produced by an intermediate W+
i (i = 1, 2 3 covers SM or negative-norm LW,

or positive-norm LW, W bosons), and X is an inclusive hadronic state. To leading

order in the weak interactions, the partonic-level differential scattering cross-section

is

d3σ

dτ dy dz
= K

G2
FM

4
W

48π

∑
q,q′

|Vqq′ |
2 [SG+

qq′(1 + z2) + 2AG−qq′z], (2.27)

where we have introduced the variables

S ≡
∑
ij

Pij(CiCj)
l(CiCj)

q(1 + hihj)
2, (2.28)

A ≡
∑
ij

Pij(CiCj)
l(CiCj)

q(hi + hj)
2, (2.29)

Pij ≡ ŝ
(ŝ−M2

i )(ŝ−M2
j ) + ΓiΓjMiMj

[(ŝ−M2
i )2 + Γ2

iM
2
i ][i→ j]

. (2.30)

K is a numerical factor ' 1.3 arising from next-to-leading order and next-to-next-

to-leading order (commonly NLO and NNLO in the relevant literature) QCD correc-

tions [62]. A parton q and charged lepton l are scattered into an angle z ≡ cos θ∗
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in the center-of-mass (CM) frame. The Pij represent interference terms between the

three types of W bosons allowed as intermediate states (see § 2.3.3 for details on the

calculation of Γ). The S and A terms are combinations of helicities hi and cou-

plings C l,q
i which are, respectively, symmetric and asymmetric with respect to z. The

quantities G±qq′ are combinations of parton distribution functions (PDFs) [63]:

G±qq′ = q(xa,M
2)q̄′(xb,M

2)± q(xb,M2)q̄′(xa,M
2), (2.31)

where q (q′) are the PDFs associated with an up (down)-type quark, the lepton in-

variant mass is M2 ≡ ŝ, and xa,b =
√
τe±y are the parton longitudinal momentum

fractions; τ ≡ ŝ/s, and y is the virtual gauge boson rapidity. This work extends

that of Ref. [53] by introducing an additional state of positive norm; this manifests

itself in Eq. (2.27) through the positive sign in the propagator (that is, the Pij term),

and therefore Γ3 > 0. The differential cross section of Eq. (2.27) can be recast as a

distribution in the transverse mass MT , obtained from z = (1−M2
T/M

2)1/2:

dσ

dMT

=

∫ 1

M2
T /s

dτ

∫ Y

−Y
J(z →MT )

d3σ

dτ dy dz
. (2.32)

The Jacobian factor J(z → MT ) =| dz/dMT |= (MT/M
2) | 1 − M2

T/M
2 |−1/2 is

responsible for the peak structures observed in the plots of § 2.4. The new positive-

norm states produce a signal near the region MT ∼M3, with a signature sharp edge

produced by the interference terms in the off-diagonal entries of Pij.

Are the predictions of the N = 3 LWSM distinct from those of other BSM the-

ories featuring a W ′ boson? The W ′ bosons of the LWSM, characterized by their

alternating norm, comprise just one example among many contenders, which could

(in principle) have arbitrary helicities and couplings to SM fields. Among the pos-

sibilities are the Sequential Standard Model [64] (the SM with extra gauge bosons

carrying the same couplings), left-right symmetric models where the W ′ generates
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an SU(2)R symmetry (as in Pati-Salam theories [65]), and Kaluza-Klein excitations

of the W on a compactified S1/Z2 dimension (see [66] and the references contained

therein). It was already demonstrated in Ref. [53] that the first two scenarios are

distinct from the N = 2 LWSM, and so we do not consider them further. However,

the Kaluza-Klein modes present an added complication, and must be dealt with more

carefully.

The most straightforward extra-dimensional models are characterized by a single

dimensionful parameter: R, the length scale of the compactified dimension. Analysis

by LEP-1 and LEP-2 groups already requires R−1 to exceed several TeV [67], but

more exotic extra-dimensional models allow R−1 to be brought down to energy scales

which might be probed at the LHC.6 One such situation runs as follows. Take an

extra-dimension scenario in which gauge and Higgs bosons propagate in the bulk of

the compactified S1/Z2 dimension y ∈ [0, πR]. The fermions of this theory do not

propagate in the bulk, but are instead localized at the endpoints: the leptons are

localized at y = 0 and the quarks at y = πR [68]. This alternative mechanism can

lower the compactification scale; as such, we follow the convention of Ref. [53] and take

R−1 ∼ 1.5 TeV. The nth Kaluza-Klein excitation of the W has a 5D wavefunction

of the form cos (ny/R); putting this together with the couplings from Eq. (3) of

Ref. [69], we see that the localization of the quarks at y = πR forces their couplings

to the nthW excitation to take the form Cq
n = (−1)n in the 4D effective theory.

This overall sign difference, when inserted into Eq. (2.27), can faithfully mimic the

effects associated with the negative sign of the LW propagator. The only formal

difference between the Kaluza-Klein and LW cases is the explicit appearance of the

decay width in Eq. (2.30), which is still positive for all Kaluza-Klein modes. However,

6Kaluza-Klein excitations with masses beyond several TeV are directly observable at the LHC

only with a much greater integrated luminosity than is presently available.
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as is usually the case in the Breit-Wigner approximation, the LW resonance is taken

to be a narrow one; this assumption is developed and verified in § 2.3.3. Therefore,

one could always contrive a Kaluza-Klein model that would be indistinguishable from

its LW counterpart.

This ambiguity could not be resolved in the N = 2 LWSM, but we find that this

is emphatically not the case for the N = 3 theory. Consider the mass term of the

Kaluza-Klein excitations, with a bulk Higgs field ϕb and a VEV of |ϕb | [69], coupled

in the 5D theory by a constant g:

Lmass =
1

2

(
n2

R2
+ 2g2 |ϕb |2

)
V (n)
µ V (n)µ. (2.33)

From Eq. (2.33), we see that the Kaluza-Klein excitations obey an explicit n2 hier-

archy. This uniquely determines the masses of all subsequent excitations at the tree

level. If one were to conspiratorially choose the mass of the first excitation to be

equal to that of the N = 2 LW W boson, then the mass of the second excitation

is known, whereas the mass of the N = 3 LW W boson can in principle attain any

positive value. In the limiting case where R−1 � g |ϕb |, the Kaluza-Klein excitations

are very nearly evenly spaced:

mKK ≈
n

R
. (2.34)

We then have two possible means by which confusion may still arise between the

aforementioned Kaluza-Klein modes and the N = 3 LW theory. Either the experi-

mental sensitivities are such that only one excitation (in the general sense) can be

detected from either theory, in which event we simply have the situation Ref. [53]; or,

by unlucky coincidence, the masses of the LW partners to the W happen to match

the spectrum of Eq. (2.33) to within experimental accuracy. Should the latter case

prevail, the natural next step would be to examine the decay chains of LW part-

ners to SM fields other than the W±
µ . In general, however, we find that the N = 3
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LWSM makes predictions regarding the mass and coupling spectra which cannot be

accurately mimicked by other extensions of the Standard Model.

2.3 Mass Diagonalization & Calculation of Decay Widths

2.3.1 Gauge Boson Mass Diagonalization

In a LW theory with spontaneous symmetry breaking, one generically encounters

mass mixing terms between the SM and LW gauge bosons. It is necessary to diagonal-

ize this sector in order to construct gauge boson mass eigenstates for the calculation

of decay widths. Beginning with the Higgs kinetic energy Lagrangian,

LHiggs,kin = ηij(D̂µHi)
†(D̂µHj), (2.35)

where the metric ηij = diag{1,−1, 1} encodes the opposite signs of the LW states,

the Higgs fields, Hi, are given (as in Eq. (A.43)) by

H1 =

 0

1√
2
(v + h1)

 , H2 =

 h+
2

1√
2
(H2 + iP2)

 , H3 =

 h+
3

1√
2
(h3 + iP3)

 . (2.36)

Note that only the SM Higgs field, H1, carries a nonzero VEV. The hat on D̂ in

Eq. (2.35) indicates action on superfields containing both the SM field and its LW

partners. Upon expanding the gauge field Â into its LW components and diagonalizing

the mass matrix, we arrive at

Âµ = Aµ1 −
M3√

M2
3 −M2

2

Aµ2 +
M2√

M2
3 −M2

2

Aµ3 ≡ θ̂pA
µ
p = θ̂pVpqA

µ
q,0, (2.37)

where we have defined the vector

θ̂p ≡
{

1, − M3√
M2

3 −M2
2

,
M2√

M2
3 −M2

2

}
, (2.38)

and the mass-eigenstate gauge fields are denoted with a subscript Aq,0; the indices

p, q ∈ {1, 2, 3} run over the LW index. In the absence of spontaneous symmetry
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breaking, the fields Aµ,ap are the eigenstates with masses given by Mp. However,

when the Higgs attains a nonzero VEV, it connects all terms quadratic in the SU(2)L

fields W µ,a
p equally, and as such, more effort is required to obtain the mass eigen-

states. Keeping only the terms quadratic in W±, the Higgs VEV gives an additional

contribution

∆Lmass =
(gv

2

)2

θ̂rθ̂sW
+
rµW

−µ
s . (2.39)

Now, the problem of obtaining mass eigenstates reduces to numerically solving the

matrix equation W+
p = V +

pqW
+
0,q for the matrix V , giving us eigenstates W+

0,q.

2.3.2 Quark Mass Diagonalization

The top- and bottom-type quark sector is enumerated by purely left-handed su-

permultiplets7 T TL (superscript T denoting transposition) =
(
tL,1, tL,2, t

′
L,2, tL,3, t

′
L,3

)
and BT

L =
(
bL,1, bL,2, b

′
L,2, bL,3, b

′
L,3

)
, with right-handed supermultiplets defined analo-

gously. This discussion may just as well be carried over to the lighter quark flavors;

however, since they have a numerically small effect on physics at the electroweak

scale, we suggestively label the supermultiplets with T and B.

The unprimed fields in T, B contain the same quantum numbers as does the SM

field, whereas the primed fields possess the same quantum numbers as the unprimed

fields of the opposite chirality.

The statement above merits some clarification; as an example, consider the left-

handed SM top quark, which transforms under SU(2)L × U(1)Y as (2,+1/6). This

means that tL,1, tL,2, and tL,3 all transform as (2,+1/6). On the other hand, the right-

handed top transforms under SU(2)L×U(1)Y as (1,+2/3). Therefore, the LW fields

7The use of the term “supermultiplet” here has nothing to do with supersymmetry; however, as

in supersymmetry, it is a useful term to collectively refer to several quantum fields which transform

in a similar way. In this case, the supermultiplet collects all LW fields of a given flavor and helicity.
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t′L,2 and t′L,3 transform as (1,+2/3). The same reasoning allows one to determine the

SU(2)L×U(1)Y quantum numbers of the right-handed supermultiplet, TR. Using the

supermultiplet notation, let us examine the fermionic mass terms in the Lagrangian:

− Lmass = T̄LρM†
tTR + B̄LρM†

bBR + h.c., (2.40)

with the metric

ρ ≡ diag{1, −1, −1, 1, 1} (2.41)

conveniently encoding the alternating norms of LW states. There are only two classes

of mass terms contained in this Lagrangian:

1. Yukawa-type mass terms of the formmtt̄LtR+h.c., which connect chiral fermions

of different SU(2)L × U(1)Y quantum numbers, and

2. Dirac-type mass terms of the form Mt,it̄L,it
′
R,i + h.c. (i > 1), which connect

chiral fermions of the same SU(2)L × U(1)Y quantum numbers.

Since each individual term is gauge-invariant under GSM, any linear combination

of them arising through matrix diagonalization will also be gauge-invariant. This

property becomes important when spontaneous symmetry breaking is triggered, which

generates mass terms not only for the SM quarks, but also mass-mixing terms between

different LW states.

In order to diagonalize the mass matrix, one must solve a system somewhat

more complicated than the classic eigenvalue problem. The unconventional metric

of Eq. (2.41) must be preserved, and we must therefore introduce symplectic matrices

SL,R for each supermultiplet Ψ satisfying

S†LρSL = ρ, S†RρSR = ρ, Mρ = S†RM0ρSL, (2.42)
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where the initial mass matrix M gets diagonalized to M0. The supermultiplets

transform under the SL,R as

Ψi,0
L,R = SijL,RΨj

L,R. (2.43)

We now have mass-diagonal quark states, meaning that we can (among other things)

unambiguously calculate quark loops in Feynman with unmixed propagators.

The diagonalization procedure will affect the kinetic terms, which are of the form

Q̄Li /DρQL + Q̄Ri /DρQR, (2.44)

where QL,R collects both TL,R and BL,R into doublets of SU(2)L. We know from the

discussion above Eq. (2.40) that not all fields within TL and BL will be doublets of

SU(2)L, and not all fields within TR and BR will be SU(2)L singlets. We therefore

introduce projection operators ΞL,R to project out only the doublet fields within the

left- and right-handed supermultiplets, allowing us to use the more compact notation

of QL,R. This is especially useful for the present calculation, where the decay W+ → tb̄

depends on the matrix element between t and b quarks. Anticipating the fact that the

TL,R and BL,R supermultiplets will have different symplectic diagonalization matrices,

we define the mass-diagonal supermultiplets to be

T iL,R = τ ijL,RT
j,0
L,R, (2.45)

where τ 1
L,R ≡ S−1

L,R for the top sector. An analogous relationship exists for the bottom

sector, with τL,R replaced by βL,R.

We now have all the necessary tools to compute the W+ → tb matrix element.

From the covariant derivative, we have

Lint = Q̄Li /DQL

⊃ T̄ †L,0τ
†
L

(
g√
2
θ̂p V

+
pqγµW

+,µ
0,q

)
ΞLρβLBL,0 + h.c. (2.46)
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CKM matrix elements appear in Eq. (2.46) when multiple quark generations are taken

into account.

As mentioned above, the projection matrix ΞL is a collection of ones and zeros

tasked with ensuring that only SU(2)L doublets of TL and BL appear in Eq. (2.46).

Another Lint can be formed by considering the right-handed mass eigenstates which

transform as doublets under SU(2)L. This is done by beginning with Q̄Ri /DQR,

defining an appropriate ΞR, and continuing until an expression similar to Eq. (2.46)

is obtained. Since this emerging pattern results in a somewhat repetitive exercise in

linear algebra, the above notation is condensed using

ΛL,R ≡ τ †L,RΞL,RρβL,R. (2.47)

The function of Λ is to combine all numerical information concerning diagonalization,

alternating norm, and chirality projection into a single operator. Once calculated, it

allows us to transition in one step from the mass-mixed fields of Eq. (2.40) to mass-

diagonal fields ready for calculation. This notation allows the matrix element to be

written compactly as

Lint =
g√
2
T̄0 θ̂pV

+
pqγµW

+,µ
0,q

(
ΛLPL + ΛRPR

)
B0 + h.c., (2.48)

using the familar projection operators PL,R = 1
2
(1∓ γ5) to write, e.g., T0 = TL,0PL +

TR,0PR.

2.3.3 W Boson Width Calculation

In the special case of W+ → tb̄ decay, the associated Feynman vertex rule reads

i
g√
2
γµθ̂pV

+
pq (Λ

ij
LPL + Λij

RPR), (2.49)

which leads to the invariant matrix element

iM = iεµ
g√
2
t̄i0γ

µθ̂pV
+
pq (Λ

ij
LPL + Λij

RPR)bj0. (2.50)
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From this, we obtain the squared, spin-averaged matrix element

|M|2 =
g2

3
| θ̂pV +

pq |2
{[
M2

W,q −
1

2
(m2

t,i +m2
b,j)−

1

2M2
W,q

(m2
t,i −m2

b,j)
2
]

×(Λij
LΛ†jiL + Λij

RΛ†jiR ) + 3mt,imb,j(Λ
ij
LΛ†jiR + Λij

RΛ†jiL )
}
. (2.51)

No Einstein summation is assumed on the indices q, i, j, so that Eq. (2.51) specifies

the squared amplitude for the qth weak gauge boson, the ith top quark state, and the

jth bottom quark state (all mass eigenstates). In the SM case, | θ̂pV +
pq |2= 1, ΛL = Vtb,

and ΛR = 0.

We now integrate over phase space to obtain the decay width Γ. Using the well-

known formula

Γ =
1

2MW,q

∫
dΠ2 |M|2, (2.52)

we find the total contribution to the width of the qth gauge boson to be

Γ =
|M|2

8πM2
W,q

√(
M2

W,q +m2
t,i −m2

b,j

2MW,q

)2

−m2
t,i. (2.53)

In the well-motivated limit that MW,LW � mt,SM , mb,SM , the decay rate contribution

for each W+
q → fif̄j is

δΓ = g2
| θ̂pV +

pq |2

48π
(Λij

LΛ†jiL + Λij
RΛ†jiR )MW,q. (2.54)

For the case M3 � M2, one anticipates from Eq. (2.38) that | θpV +
p2 |�| θ̂pV +

p3 |,

which suppresses the decay rate contribution for W+
3 → f1f̄2 compared to that for

W+
2 . This effect is mitigated by the possible presence of massive final-state particles

kinematically forbidden in W+
2 decays but allowed in W+

3 decays.

2.4 Results

We begin with the LHC inputs
√
s = 7 TeV, and 10 fb−1 of integrated luminosity.

Taking for example the masses m ≈ mW,SM = 80.4 GeV, M2 = 1 TeV, and M3 = 2
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TeV, we can begin to compute the transverse mass distributions using § 2.2. We

plot our results in Fig. 2.1. The most exciting feature is the statistically robust

Jacobian peak near MT ≈ M3 at 10 fb−1, which is not only revealed as dozens

of events that would not appear in the N = 2 LWSM, but also features a profile

distinct from that offered by Kaluza-Klein models. This result indicates that, for a

sufficiently light W±
3 boson, the N = 3 LWSM makes unambiguous predictions that

can be tested at the LHC, given a very reasonable demand on integrated luminosity.

It is also important to realize that nothing is special about the choice of M3 = 2

TeV; the positive-norm W partner could be significantly heavier, still playing a role

in solving the hierarchy problem (although likely creating tension with electroweak

precision tests), but standing outside the realm of feasible detection with current LHC

operating parameters. A sufficiently heavy W±
3 combined with a lighter W±

2 could

still satisfy the electroweak precision tests while evading detection. Fig. 2.2 addresses

just such a possibility.

2.5 Discussion and Conclusions

We have seen that the presence of a heavy, positive-norm state has observable

consequences for the LHC, and its interplay with the lighter, negative-norm state can

free up parameter space for LW phenomenology (as might be expected). The aug-

mented theory makes predictions above and beyond that of the conventional N = 2

LWSM, and is clearly distinguishable from other theories featuring a heavy counter-

part to the familiar W± of the Standard Model. However, since little information yet

exists to constrain the value of M3, this work should be understood to be a proof of

principle that the N = 3 theory makes robust predictions for a range of masses.
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Figure 2.1: Transverse mass distributions for the process pp→ W+
i +X → l+ +νl+X

in the N = 3 LWSM (blue) and the predicted SM-only background (red). Both

plots contain the same data; the log scale in the bottom plot better demonstrates

the Jacobian peak structure near MT ≈ M3. We employ a rapidity cut of |ηl| on

the outgoing leptons, and smear the distribution by δMT/MT to simulate the finite

resolution of the ATLAS detector. (Reprinted from Ref. [1])
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Figure 2.2: Transverse mass distributions for the same decay channel, but with masses

M2 = 1 TeV and M3 = 5 TeV. Even with an integrated luminosity of 10 fb−1, the

second Jacobian peak is too weak to be discernable. The plots are truncated when

the number of (simulated) events per bin drops below 0.5 (Reprinted from Ref. [1])
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Chapter 3

PRECISION ELECTROWEAK CONSTRAINTS ON THE N = 3 LEE-WICK

STANDARD MODEL

In this chapter, we examine the oblique corrections to the N = 3 Lee-Wick Standard

Model (LWSM), as considered in Ref [70]. The presence of LW fields has observable

consequences on SM processes, even if the characteristic energy scales of the latter

are far below the threshold at which LW particles can be produced on-shell. The

extraction of these observables from presently available collider data is made possible

through the technology of electroweak precision tests (EWPT), which determine the

corrections to gauge boson correlation functions from new particles at or above the

electroweak scale. In the sections to come, the formalism of oblique corrections will

be introduced, and its implications for the concordance of LW fields with existing SM

data will be calculated and discussed.

3.1 Bounds on Oblique Parameters

3.1.1 Formalism and Tree-Level Contributions

There are two major classes of bounds on physics beyond the Standard Model

(BSM). They are either

• Oblique: flavor-universal, arising from gauge boson vacuum polarization loops,

or

• Direct: flavor-specific, arising from, e.g., vertex and box corrections. [71].
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Perhaps the best-known among the oblique constraints are the Peskin-Takeuchi pa-

rameters [72] S, T, andU , which form a complete set of all finite, one-loop corrections

to differences between (i.e., first derivatives of) the SU(2)L×U(1)Y gauge boson cor-

relation functions. As better data became available in the mid-1990s (in particular,

from LEP2), it became possible to probe the electroweak corrections to higher deriva-

tive order. Barbieri et al. then developed a new set of parameters to test electroweak

corrections to still higher sensitivities [67], calling them Ŝ, T̂ , Û , V, W, X, Y, andZ1.

It has been argued [67, 72] that the parameters U, V, X, andZ are numerically small,

and hence can be ignored in the study of EWPT; we follow this convention, and fo-

cus on Ŝ, T̂ , W, andY . This set of parameters is essential for the investigation of

so-called “universal” models, in which the only deviation from the SM arises in con-

tributions to gauge boson self-energy functions. The N = 2 LWSM was argued to be

a BSM theory of this type [56].

To isolate beyond-SM effects, one must first identify the SM electroweak param-

eters, which are given by [67]

1

g′2
≡ Π′

B̂B̂
(0),

1

g2
≡ Π′

Ŵ+Ŵ−
(0), (3.1)

1√
2GF

= −4ΠŴ+Ŵ−(0) = v2, (3.2)

where a prime on the self-energy Π(q2) indicates differentiation2 with respect to q2.

The above relations serve as definitions for the electroweak parameters g, g′, and v2

at tree level; they hold in the LWSM as well. The peculiar normalization (due to

Ref. [67]) is one in which the gauge fields in Eq. (1.1) are replaced via A→ g−1A. In

fact, we can read off the self-energy contributions from Eq. (A.1) as an expansion in

1The hatted parameters contain the same physical information as do the original Peskin-Takeuchi

parameters; they merely carry a different normalization.
2Ref. [72] defined the Π′ by Π(q2) ≡ Π(0) + q2Π′(q2). Therefore, Π′ = dΠ/dq2 only in the q2 → 0

limit. But this is precisely the case of interest to us, so we will treat Π′ as a derivative throughout.
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q2/M2
LW (for an arbitrary LW mass scale MLW):

ΠŴ+Ŵ−(q2) = ΠŴ 3Ŵ 3(q
2)

=
q2

g2
− (q2)2

g2

[(
1

M
(2)
2

)2

+

(
1

M
(3)
2

)2 ]
− v2

4
,

ΠŴ 3B̂(q2) =
v2

4
,

ΠB̂B̂(q2) =
q2

g′2
− (q2)2

g′2

[(
1

M
(2)
1

)2

+

(
1

M
(3)
1

)2 ]
− v2

4
. (3.3)

Here, M
(i)
2 is the mass of the ith LW state for the SU(2)L gauge bosons, and M

(i)
1

serves an analogous purpose for the U(1)Y bosons.3 We can use the above relations

to construct tree-level electroweak parameters for the N = 3 theory:

Ŝ ≡ g2Π′
Ŵ 3B̂

(0) = 0, (3.4)

T̂ ≡ g2

m2
W

(ΠŴ 3Ŵ 3(0)− ΠŴ+Ŵ−(0)) = 0, (3.5)

W ≡ 1

2
g2m2

WΠ′′
Ŵ 3Ŵ 3(0) = −m2

W

( 1

M
(1)
2

)2

+

(
1

M
(2)
2

)2
 , (3.6)

Y ≡ 1

2
g′2m2

WΠ′′
B̂B̂

= W ≡ 1

2
g2m2

WΠ′′
Ŵ 3Ŵ 3(0) = −m2

W

( 1

M
(1)
1

)2

+

(
1

M
(2)
1

)2
 ,

(3.7)

where the first equality on each line serves to define the corresponding post-LEP

parameter [67]. The absence of a tree-level contribution to Ŝ, T̂ was first noted in

Ref. [57] for the N = 2 case, which also holds for N = 3. Furthermore, it was found

in Ref. [57] that fermionic one-loop contributions to W and Y are numerically small

compared to the tree-level values. This means that the most significant new fermionic

contributions will arise from one-loop contributions to Ŝ and T̂ . Because W and Y

3NB: i ∈ {1, 2, 3}, meaning that i = 1 refers to the SM state, i = 2 refers to the negative-norm

LW state, and i = 3 refers to the positive-norm LW state.
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Πf

Ŵ+Ŵ−
(q2) =

∑
ij �q →

ti
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Figure 3.1: Fermion vacuum polarization Feynman diagrams that provide the domi-

nant contributions to the electroweak precision observables Ŝ and T̂ .

at tree level tunred out to be of the same order of magnitude as Ŝ and T̂ at one loop,

we do not pursue loop corrections to W and Y here.

3.1.2 Fermion Loop Contributions

Once the tree-level effects have been taken into account, the one-loop fermion

diagrams provide the most important contribution to the oblique parameters (see

Fig. 3.1).

We consider the general self-energy diagram connecting gauge bosons Âµ and B̂ν

(not to be confused with the hypercharge boson of the Standard Model), which is
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calculated by way of the Lagrangian4

L = Ψ̄0
i γ

µ[Âµ(AL,Ψij PL + AR,Ψij PR) + B̂µ(BL,Ψ
ij PL +BR,Ψ

ij PR)]Ψ0
j , (3.8)

where the helicity-projected couplings Aij connect fermions of type i and j. We have

i, j ∈ {1, 2, . . . , 5}, as in § 2.3.2. The coupling matrices are the result of rotating the

“bare” fields into the mass-eigenstate basis, to wit,

A
L(R),Ψ
ij = SΨ†

L(R)Q
Ψ
A,L(R)ρS

Ψ
L(R). (3.9)

QΨ
A is the matrix of fermion charges under the gauge group A, and the superscript

Ψ may refer to either a single fermion flavor (as would be the case in the vacuum

polarization of a Z0 or γ), or a weak-isospin pair (such as the t, b pair in the vacuum

polarization of a W±).

When applied to the LW case, the self-energy functions of Eqs. (3.1), (3.2) become

ΠAB(q2) =
C

8π2

∑
Ψ=T,B

∑
i,j

ρiiρjj

×
[
(AL,Ψij BL,Ψ

ji + AR,Ψij BR,Ψ
ji )I1(q2) + (AL,Ψij BR,Ψ

ji + AR,Ψij BL,Ψ
ji )I2(q2)mimj

]
, (3.10)

where C is a color factor (= Nc for quarks coupling to colorless gauge bosons). We

define the dimensional regularization mass term ∆ ≡ −q2x(1−x)+m2
ix+m2

j(1−x) for

the diagram containing fermions labeled i and j. We use primes to denote derivatives

with respect to q2 (as above), and the subscript 0 to indicate that the function is

evaluated at q2 = 0. This gives

∆0 =m2
i +m2

j(1− x), (3.11)

∆′0 = − x(1− x), (3.12)

∆′′ = 0. (3.13)

4We use the notation A
L(R),Ψ
ij , rather than the Λ

L(R)
ij of § 2.3.2. Though the symbols are derived

in a similar manner, the AΨ matrices are a general case, and are not specific to the W+ → tb̄ case

in which the Λ matrices were computed.
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The necessary integrals are defined as follows:

I1(q2) ≡
∫ 1

0

dx (2∆−∆0)ln (∆/µ2
UV), (3.14)

I2(q2) ≡ −
∫ 1

0

dx ln (∆/µ2
UV). (3.15)

We then obtain the moments of integrals relevant to the oblique parameters:

I10 =

∫ 1

0

dx ∆0 ln (∆0/µ
2
UV) , (3.16)

I20 = −
∫ 1

0

dx ln (∆0/µ
2
UV) , (3.17)

I ′10 =

∫ 1

0

dx ∆′0[1 + 2 ln(∆0/M
2)] , (3.18)

I ′20 = −
∫ 1

0

dx ∆′0/∆0 , (3.19)

I ′′10 = 3

∫ 1

0

dx (∆′0)2/∆0 , (3.20)

I ′′20 =

∫ 1

0

dx (∆′0/∆0)2 . (3.21)

The constant µ2
UV contains the scale associated with logarithmic divergences in di-

mensional regularization. Since we are interested in differences and derivatives of

these integrals, the formal infinities drop out of all subsequent calculations, and µ2
UV

serves as merely a bookkeeping device. The individual integrals are straightforward
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to compute, and for completeness, we list them here:

I10 = −1

4
(m2

i +m2
j) +

1

2

m4
i ln(m2

i /M
2)−m4

j ln(m2
j/M

2)

m2
i −m2

j

,

→ m2
i ln

m2
i

M2
, mj → mi ; (3.22)

I20 = 1−
m2
i ln(m2

i /M
2)−m2

j ln(m2
j/M

2)

m2
i −m2

j

,

→ − ln
m2
i

M2
, mj → mi ; (3.23)

I ′10 = −1

3

{
m4
i (m

2
i − 3m2

j)

(m2
i −m2

j)
3

ln

(
m2
i

M2

)
−
m4
j(m

2
j − 3m2

i )

(m2
i −m2

j)
3

ln

(
m2
j

M2

)
+
m4
i − 8m2

im
2
j +m4

j

3(m2
i −m2

j)
2

}
,

→ −1

6

[
1 + 2 ln

(
m2
i

M2

)]
, mj → mi ; (3.24)

I ′20 = − (mimj)
2

(m2
i −m2

j)
3

ln

(
m2
i

m2
j

)
+

m2
i +m2

j

2(m2
i −m2

j)
2
,

→ 1

6m2
i

, mj → mi ; (3.25)

I ′′10 =
3(mimj)

4

(m2
i −m2

j)
5

ln

(
m2
i

m2
j

)
+

(m2
i +m2

j)(m
2
j − 8m2

im
2
j +m4

i )

4(m2
i −m2

j)
4

,

→ 1

10m2
i

, mj → mi ; (3.26)

I ′′20 = −
2(mimj)

2(m2
i +m2

j)

(m2
i −m2

j)
5

ln

(
m2
i

m2
j

)
+
m4
i + 10m2

im
2
j +m4

j

3(m2
i −m2

j)
4

,

→ 1

30m4
i

, mj → mi . (3.27)

These equations may be substituted into Eq. (3.10) to produce the full results for

fermionic one-loop contributions. The symplectic SL,R matrices, and hence the AΨ

from which they are derived, may be computed as per § 2.3.2.

3.2 Constraints from the ZbLb̄L Coupling

The ZbLb̄L coupling is one example of an electroweak observable that exhibits

significant tension between theory and experiment, and is therefore a very interesting

subject to the BSM phenomenologist. It has been known for some time [73] that
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δgbb̄L ∼
∑
ijk�p→ ti

h+
k

t̄j

φ0

bL

b̄L

(3.28)

Figure 3.2: Dominant diagram contributing to the decay Z0 → bLb̄L in the gaugeless

limit. The contribution to the effective coupling is denoted by δgbb̄L , which is defined

in the p → 0 limit. The indices i, j, k enumerate the Lee-Wick indices of the fields

involved.

its leading contribution in the gaugeless limit (i.e., ignoring effects suppressed by

(mZ0/mt)
2) is most easily obtained by computing the triangle diagram of Fig. 3.2, in

which a Goldstone boson, φ0 (the one eaten by the Z0 through spontaneous symmetry

breaking) of momentum p splits into a virtual t̄t pair, subsequently decaying to a b̄b

pair through the exchange of a charged Higgs (which is eaten by the W±). The

invariant amplitude may be written as

iM = −2

v
(δgbb̄L )/pPL. (3.29)

The coupling gbb̄L is derived from a combination of the Z0 → bb̄ branching ratio,

Rb, and its forward-backward asymmetry, Ab. Ref. [74] gives some insight as to the

sensitivity of gbb̄L to small changes in both parameters:

δgbb̄L ≡ gbb̄,exp
L − gbb̄,SM

L ≡ −1.731δRb − 0.1502δAb, (3.30)

where we have adjusted the normalization (i.e., removing a factor of e/sin θW cos θW )

in order to match the notation used elsewhere in this section. As of this writing, its

most recent experimental value gbb̄,exp
L has not changed since the combined LEP/SLD
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2005 analysis [75]. The SM prediction of gbb̄,SM
L = −0.42114+45

−24 from Ref. [75] gives

δgbb̄L = 2.94(157)×10−3, which means that the SM value is approximately 2σ less than

the experimental value. This strongly disfavors any new physics predicting δgbb̄L < 0.

However, the current Particle Data Group values for RSM
b and ASMb [76] lead to a

somewhat relaxed bound of

δgbb̄L = 2.69(157)× 10−3, (3.31)

which we will use in our analysis.

The effect of negative-norm states on this observable has been considered twice

before in the literature [59, 57]. Ref. [59] found that contemporary precision bounds

allow LW Higgs partners to have significantly lower masses than other those of other

LW particles. Therefore, Ref. [59] computes the diagram of Fig. 3.2 by including only

LW Higgs partners in the loop, giving (in our normalization)

δgbb̄L = − m2
t

16π2v2

[ R

R− 1
− R lnR

(R− 1)2

]
, (3.32)

where R ≡ (mt/mh2)
2, so that δgbb̄L < 0. The value of δgbb̄R in the LWSM is driven

by mb, and is therefore much smaller. Since δgbb̄L and Rb are anti-correlated, as per

Eq. (3.30), and since δRb is positive [75, 76], it follows that the LW Higgs contribution

works in the direction of resolving the discrepancy. However, there is cause for caution:

Eq. (3.30) also depends upon δAb (though not quite as strongly as δRb), and the

combined effect is a difficulty in accommodating a new physics scenario that features

δgbb̄L < 0. We take this effect into consideration in our analysis.

The other effort to constrain the ZbLb̄L coupling [57] in the N = 2 LWSM uses

the full bound from Refs. [75, 76], using only LW partners to the top quark. This

gives the result

δgbb̄L = − m4
t

32π2v2M2
q

[
5 ln

M2
q

m2
t

− 49

6

]
, (3.33)
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at leading order in m2
t/M

2
q , with Mq being the mass of the LW top-quark partner.

This expression is manifestly negative for most LW masses in the phenomenologically

interesting range of what we could expect to see in the LHC. It is the most strin-

gent bound on LW masses, and gives a lower bound at the 95% confidence level of

Mq ≥ 4 TeV. However, Eq. (3.33) is a very shallow function of Mq (see Fig. 8 of

Ref. [57]), and the small change in the SM value of gbb̄L given in Eq. (3.31) is enough to

reduce the bound to Mq ≥ 1.2 TeV. A full analysis necessarily includes contributions

from the Higgs partners as well as the top. Since the LW Higgs contribution is also

negative - and also turns out to be comparable to that of the LW top - all of the mass

bounds are consequently higher. This fact motivates the calculation of the ZbLb̄L

coupling in the full N = 3 LWSM, the hope being that the improved UV behavior

and delicate cancellations of the N = 3 theory (as well as the roomier parameter

space) will lighten the tension with experimental data.

We now begin the N = 3 LWSM calculation. Since this shares the same subject

matter of Ref. [57], for ease of comparison, we adopt the notation used therein. The

Yukawa Lagrangian,

LYuk = −iyt
∑
i,j

{
1√
2
φ̂0
[
αij t̄iPRtj − αjit̄iPLtj

]
+βij

[
φ̂−b̄iPRtj − φ̂+t̄jPLbi

]}
, (3.34)

has couplings α and β closely related to the AΨ parameters of Eq. (3.9), viz.:

α ≡ (StL)†α0S
t
R ,

β ≡ (SbL)†β0S
t
R . (3.35)
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In the N = 3 case,

αN=3
0 = βN=3

0 ≡



1 − coshφq 0 sinhφq 0

− coshφt coshφq coshφt 0 − sinhφq coshφt 0

0 0 0 0 0

sinhφt − coshφq sinhφt 0 sinhφq sinhφt 0

0 0 0 0 0


, (3.36)

with angles φt, φb parameterizing the independent symplectic diagonalizations. Note

especially the rows and columns of all zeros corresponding to the SU(2)L-singlet

states. The structure of these matrices allows the sum of Eq. (3.37) to formally run

over all LW t-partners while implicitly skipping terms that are disallowed by gauge

invariance.

The salient distinction between the present work and that of Ref. [57] is actually

not the presence of the N = 3 fermion partners, as might have been expected; rather,

it is the presence of HD5 scalar fields φ̂0, φ̂±, whose SM content is the set of Goldstone

bosons, and which enter with the relative weights of Eq. (2.13). The LW partners to

these states are physical, massive states which must be included in the full analysis,

but which were excluded in Ref. [57].

The result of the δgbb̄L calculation in Ref. [57] is that the LW t-partners tend

to exacerbate the extant tension with experiment, thus forcing even more stringent

bounds on LW partner masses than that obtained by T̂ . This pattern is not commonly

shared by all LW partners, however. As was shown in Ref. [59], the charged Higgs

partners, h±2 , can be much lighter (& 500 GeV) while still satisfying all precision

constraints. We note from Eq. (A.44) that charged scalar masses do not mix upon

spontaneous symmetry breaking; this, combined with the presence of the virtual

charged scalar in Fig. 3.2, allows the opposing signs of h±2,3 to reduce the overall

5That is, not re-fashioned into the canonical LW form by way of an auxiliary field transformation.
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amplitude with respect to the N = 2 case. The full expression reads

δgbb̄L =
1

16π2
· y

3
t v

2
√

2

{∑
i

ηkβ
2
0iαii

mti

m2
ti −m2

hk

[
1−

m2
hk

m2
ti −m2

hk

ln

(
m2
ti

m2
hk

)]
+
∑
i 6=j;k

(−1)i+jηkβ0iβ0jαjimtj

[
− 1

m2
ti −m2

tj

· 1

2

(
m2
ti

m2
ti −m2

hk

)
+

m2
ti

2(m2
ti −m2

tj)
2

(
2m2

ti
−m2

tj

m2
ti −m2

hk

+
m2
tj

m2
tj −m2

hk

)
× ln

(
m2
ti

m2
tj

)

−
m2
hk

2(m2
ti −m2

hk
)(m2

tj −m2
hk

)

[
2m2

ti
−m2

hk

m2
ti −m2

hk

ln

(
m2
tj

m2
hk

)
−

m2
hk

m2
tj −m2

hk

ln

(
m2
ti

m2
hk

)]

−
m2
hk

2(m2
ti −m2

tj)
ln

(
m2
ti

m2
tj

)(
m2
ti

(m2
ti −m2

hk
)2
−

m2
tj

(m2
tj −m2

hk
)2

)]}
. (3.37)

The summation indices satisfy i, j ∈ {1, 2, . . . , 5} and k ∈ {1, 2, 3}, as they respec-

tively enumerate the LW top and Higgs partners. The ηk parameters are those of

Eq. (2.13). In the limit mh1 → 0, mh2,3 → ∞, Eq. (3.37) reduces to Eq. (A6) of

Ref. [57]. This expression in turn reduces to Eq. (3.33) for mt ≡ mtt � mt2,3 . Al-

ternately, Eq. (3.37) reduces to Eq. (3.32) in the limit mt2,3 ,mh,3 → ∞, which is

effectively the case in Ref. [59].

3.3 Analysis

We use the definition of the post-LEP oblique parameters given in Eqs. (3.4)-(3.7).

As discussed above, the tree-level LW contributions to W and Y are sufficient at this

order of precision (and provide the best bounds on LW gauge boson masses), whereas

the biggest contributions to Ŝ and T̂ are given by fermion loops (since they vanish

at tree level). Since the sums in Eq. (3.10) also include SM fermions, we define the

parameters

Ŝnew ≡ Ŝ − ŜSM, T̂new ≡ T̂ − T̂SM, (3.38)

to indicate deviations from a purely-SM prediction. Any appearance of Ŝ, T̂ is to be

understood as Ŝnew, T̂new in the following discussion.
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As a benchmark for the magnitude of new physics effects, we list here for conve-

nience the predictions

ŜSM = −1.98× 10−3, T̂SM = +9.25× 10−3. (3.39)

Ref. [67] shows the measured values of Ŝ, T̂ , W, and Y to all be O(10−3), and they

are correlated. However, for simplicity, we use the values given in Table 4 of Ref. [67],

along with their 2σ uncertainties6

103Ŝ = 0.0± 2.6, (3.40)

103T̂ = 0.1± 1.8, (3.41)

103W = −0.4± 1.6, (3.42)

103Y = 0.1± 2.4. (3.43)

We add the bound on δgbb̄L from Eq. (3.31) to this list, thereby constraining LW

fermion masses and scalar masses as well.

The nLW = 2 and nLW = 3 gauge bosons contribute additively in Eqs. (3.6)

and (3.7). Therefore, the introduction of new LW states in the N = 3 theory can

only serve to tighten the bounds. In Fig. 3.3, we see that taking M
(2)
2 = 2 TeV requires

M
(3)
2 & 4 TeV, which is likely to be outside the discovery potential of the current LHC.

The discovery scenario described in Ref. [1] of M
(2)
2 = 2.0 TeV, M

(3)
2 = 2.5 TeV is

unlikely unless the bounds on W are not as stringent as those given in Eq. (3.42).

Likewise, for Y, Fig. 3.3 suggests that M
(2)
1 = 1.8 TeV is possible for M

(3)
1 & 3.5 TeV.

If instead the nLW = 2 and nLW = 3 masses are taken to be (nearly) equal, a universal

mass & 2.5 TeV remains possible.

The constraints from Ŝ are far less restrictive, owing to the fact that the LWSM

adds in fermions with vectorlike masses, rather than chiral fermions. The only contri-

6We emphasize that the the quantities in Eqs. (3.40)-(3.43) are bounds on the deviation of oblique

corrections from their SM predictions.
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bution to Ŝ from the LWSM arises through diagonalization effects (i.e., sensitivity to

mt). Assuming for simplicity the degenerate case Mq2 = Mt2 = Mb2 taken in Ref. [57],

and taking its logical extension Mq3 = Mt3 = Mb3, no meaningful constraint exists

on the fermion mass parameters Mq2 or Mq3. The bounds from T̂ are much more in-

teresting. Ref. [57] required Mq2 ≥ 1.5 TeV in order for T̂ to meet the 2σ bound (see

Fig. 3.4, left inset), providing one of the strongest constraints on LW quark masses.

The present work commenced under the hypothesis that the opposing signs of the

nLW = 2 and nLW = 3 quark propagators would allow for a near-complete cancellation

of their loop contributions to the vacuum polarization diagrams. However, the full

result requires much greater care in the analysis: while the nLW = 2 and nLW = 3

loops do indeed cancel to a large extent, the propagating fermions in the loops are

mass eigenstates. The diagonalization procedure used in obtaining these eigenstates

not only shifts the mass eigenvalues of the heavy states away from Mq2 and Mq3, but

it significantly increases the contribution of the nLW = 1 (SM) quarks to T̂ . The

effect is highly pronounced due to the numerically large top-Yukawa coupling, yt. It

serves to push the full value of T̂ slightly further from its measured central value, thus

setting the bar for an allowable Mq2 to be slightly larger than before the inclusion

of the nLW = 3 states. The effect, though counter-productive to the original goal, is

not extreme; from Fig. 3.4, we see that Mq2 = 1.5 TeV remains viable for Mq3 & 9

TeV; increasing Mq2 only slightly to 1.8 TeV allows Mq3 to come down to ∼ 2.8 TeV.

This transition between very strong and very weak bounds on Mq3 occurs over a very

narrow range of Mq2 values.

Finally, we analyze the constraints arising from δgbb̄L , which in Ref. [57] provides

the most stringent bounds on the quark partner masses, Mq2 & 4 TeV. Since the

2σ bound is a very shallow function of Mq2 (see Fig. 3.5), it is possible for the full

N = 3 LWSM to afford a looser bound with its increased parameter space and delicate
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W and Y . The shaded area is experimentally allowed at 2σ.
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cancellations. The N = 3 theory is used in the second inset of Fig. 3.5, and we see a

substantial relaxation of the bounds on quark parameters; raising Mq2 only slightly to

1.4 TeV allows Mq3 & 2.3 TeV. The N = 3 theory also has interesting implications for

the Higgs sector. If the LW quark masses are assumed large enough to decouple, δgbb̄L

provides a lower bound on the nLW = 2 scalar of mh2 & 640 GeV (see Fig. 3.6). Since

mass diagonalization does not mix the charged-scalar mass parameters, including the

nLW = 3 state leads to a dramatic cancellation. The second inset of Fig. 3.6 shows

a scenario where mh2 = 400 GeV and mh3 . 850 GeV, while still satisfying the

δgbb̄L constraint. When both LW quark and charged-scalar partners are included, the

bounds again become more constrained, but there are still many interesting scenarios

possible; the combined set Mq2 = 2.5 TeV, Mq3 = 4 TeV, mh2 = 400 GeV, and

mh3 = 600 GeV satisfies constraints on δgbb̄L [59].

3.4 Discussion and Conclusions

Through the examination of both oblique and direct corrections to Standard Model

observables, we have seen that the N = 3 Lee-Wick Standard Model offers a broad

parameter space that retains consistency with experimental data while still providing

a credible solution to the Standard Model hierarchy problem.

We see that the post-LEP oblique parameters W and Y require the nLW = 2

partners of the W and B bosons to be & 2.0 and 1.8 TeV, respectively, and that the

nLW = 3 partners must be substantially heavier; an alternate scenario has the two

mass scales quasi-degenerate at a common scale of ∼ 2.5 TeV.

The LW quark masses are constrained most heavily by custodial isospin (T̂ ) and

the Zbb̄ coupling gbb̄L to be at least 1.5 TeV. One of the most interesting conclusions

of the present work is that the nLW = 3 fermion loops do cancel some of the effects

of the nLW = 2 fermion loops, but that the resultant mass diagonalization procedure
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Figure 3.6: Bounds on δgbb̄L with one (first inset, N = 2) and two (second inset, N = 3)

charged scalar LW partners, with masses mh2,3 . The shaded area is experimentally

allowed at 2σ.
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amplifies the SM contribution, providing extra tension. Even so, nLW = 2 quark

masses around Mq2 & 1.8 TeV remain viable if the nLW = 3 quarks are somewhat

heavier (& 2.8 TeV).

There is significantly less constraint on the masses of the charged Higgs partners

from these observables; in the limit of decoupled LW t-partners, these can be as

low as several hundred GeV, and sit well within the discovery potential of the LHC.

However, a more complete analysis ought to be conducted, incorporating the possible

tension in LW predictions for b→ sγ and BB̄ mixing.
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Chapter 4

THE LEE-WICK STANDARD MODEL AT FINITE TEMPERATURE

In this chapter, we pursue the thermal properties of Lee-Wick (LW) fields. These

properties are of primary concern to the study of early-universe cosmology, where

high-energy particles exert a powerful influence on the phase transitions thought to

be responsible for the presence of the matter we observe today. The thermal bath

allows very high-energy states to be sampled, and many of the most interesting en-

ergy régimes lie beyond the current reach of collider experiments. The cosmological

approach offers a second line of attack for the theorist looking for an observable fin-

gerprint of any particular theory beyond the Standard Model (BSM). Even if collider

experiments fail to access very high energy particles, one may still study relics of a

hot, dense Universe defined by a homogenous and isotropic thermal bath at Planck-

scale temperatures. These high-energy particles inaccessible to terrestrial experiments

could still have cosmological implications.

One well-studied topic is the electroweak phase transition (EWPhT), which could

be responsible for the dominance of matter over antimatter: this phenomenon is

termed baryogenesis [77, 78, 79, 80]. However, the Standard Model (SM) by itself has

long been known to be insufficient for producing a net baryon number, as the EWPhT

with only SM fields is not strongly first-order [81].1 An opportunity arises for BSM

theories to extend the SM so as to allow baryogenesis, which is done by ensuring

two criteria: first, that the shape of the Higgs potential at the phase transition

erects a sufficiently high barrier between broken and unbroken symmetry phases,

1For a pedagogical introduction to thermal field theory and its application to phase transitions,

see [82].
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and second, that sphalerons and other topological processes are turned off once the

requisite baryon density has been produced.

We now turn to the thermal formulation of the LWSM, ultimately with an eye

towards calculating the EWPhT. Others have considered the LWSM at finite tem-

perature [83, 84, 85], and much is known of the cosmological effects of LW fields

[86, 87, 88, 89]. In this chapter, we adopt a different approach to the quantization

of LW fields, based on Ref. [2]. We use this new quantization scheme to allay extant

doubts as to the validity of using LW fields in a thermal bath where negative-norm

states can be accessed, and endeavor to show that the Hamiltonian of the theory is

well-behaved and bounded from below (see Appendix B for a self-contained deriva-

tion).

However, we also wish to change course with respect to the development of the

dissertation up to this point. Whereas we have previously been concerned with N =

3 LW theories, where the SM Lagrangian is augmented by five- and six-derivative

operators (for fermions and bosons, respectively) and there exist three physical poles

in the complex p0 plane for each propagator, we consider the N = 2 theory in this

thermodynamic calculation. This choice is motivated by pragmatic concerns, rather

than by a fundamental reversal in judgment as to what sort of LW theory we expect

to be manifested in Nature. Since no prior calculation of the EWPhT in the LWSM

exists, we attempt to do so now in the N = 2 theory as a proof of principle. If a

strongly first-order phase transition is not to be found within the allowed parameter

space of the N = 2 LWSM, then it would be a fool’s errand to attempt an even harder

calculation in the N = 3 LWSM with still more parameters to constrain. If an N = 2

result appears promising, however, one could then move on with the N = 3 theory.

Let us now turn to calculating the thermal properties of an ensemble of LW fields.
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4.1 Thermodynamics of Lee-Wick Theories

In this section, we discuss the foundational question of precisely how a sensible LW

theory is to be described at finite temperature, and how its thermodynamic properties

should be calculated. The most pressing concern can be stated succinctly:

Are Lee-Wick particles accessible to the thermal bath of an equilibrium

thermodynamic system?

Put another way, one might well ask: Are LW particles real? When working at

zero temperature, we are by this point comfortable in establishing future boundary

conditions and employing the CLOP [46] prescription for removing exponentially-

growing modes. However, it is not immediately clear if this program is extensible to

the case of nonzero temperature. Thus, two possibilities emerge: either

1. the thermal system can access states containing explicit LW particles, or

2. the thermal system can only explore states from which explicit LW particles are

absent.

These options were explored in Refs. [83] and [85], respectively. Though they obtained

similar expressions for the free energy of a gas of LW particles, we argue that the two

pictures are not equivalent. We show in § 4.1.1 that no self-consistent calculation

using an ideal gas of LW particles seems to reproduce the results of Refs. [83, 85].

This dissertation advances the second hypothesis: that the more sensible physical

picture is one in which the scattering of positive-norm particles is affected by LW

resonances, but the system may not reach a state in which real LW particles exist

in the ensemble. Expressed in thermodynamic language, this means that we do not

calculate a partition function for a system containing LW particles; the partition

function for positive-norm particles is affected through the modifications of couplings
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and reaction rates engendered by the presence of LW resonances, the latter being

viewed strictly as a scattering phenomenon.

4.1.1 Ideal Gas of Lee-Wick Particles

We consider option (1) above for a case of SM and LW particles. In the limit of

weak coupling, the partition functions are separable; we define the partition function

Z by requiring that the density matrix,

ρ̂ =
1

Z
exp(−βĤ), (4.1)

is properly normalized2. In the absence of interactions, the spectrum of the Hamil-

tonian, Ĥ, is simply that of multi-particle momentum eigenstates: the vacuum
∣∣0〉,

single-particle states
∣∣p〉, or multi-particle states of the form

∣∣p1p2 . . .pN
〉
, with the

appropriate (anti-)symmetrization to account for the spin-statistics of the particles

involved. We can separate the multi-particle states as

∣∣p1 p2

〉
=

1√
2

(∣∣p1

〉
⊗
∣∣p2

〉
+ ηS

∣∣p2

〉
⊗
∣∣p1

〉)
, (4.2)

where ηS = −1 (fermions) or +1 (bosons). The single-particle states are defined to be

eigenstates of the Hamiltonian, i.e. Ĥ
∣∣p〉 = Ep

∣∣p〉, where Ep =
√

p2 +m2. These

expressions implicitly use the quantization convention ηC = +1, where ηC is defined

in Eq. (B.4).

We will invoke the notation and results of Appendix B once again with the norm

of the states under consideration, ηN (defined below Eq. (B.11)). The norms of the

2We provide a definition for “proper” normalization below.
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first few momentum eigenstates are given by

〈
0
∣∣0〉 = 1 ,〈

p
∣∣q〉 = ηN(2π)3 2Ep δ(p− q) ,〈

p1 p2

∣∣q1 q2

〉
= (2π)6 2Ep12Ep2 [δ(p1 − q1) δ(p2 − q2) + ηS δ(p1 − q2) δ(p2 − q1)] ,

(4.3)

with the pattern continuing for states with still-higher particle number. Note that

states with even particle number always possess positive norm. We also see that the

eigenvalues and expectation values associated with negative-norm states can differ by

a sign: ∫
d3q

(2π)3

1

2Eq

〈
p
∣∣Ĥ∣∣q〉 = ηNEp, (4.4)

whereas Ĥ
∣∣p〉 = Ep

∣∣p〉, as above. This distinction is pertinent to the calculation

of the partition function, by way of the density matrix. If we normalize the density

matrix by requiring

Trρ̂ = 1, (4.5)

then we can compute Z in a straightforward manner by summing over all states

present in Eq. (4.5):

Z =
〈
0
∣∣e−βĤ∣∣0〉+

∫
d3p

(2π)3

1

2Ep

〈
p
∣∣e−βĤ∣∣p〉

+

∫
d3p

(2π)3

1

2Ep

∫
d3q

(2π)3

1

2Eq

〈
p,q

∣∣e−βĤ∣∣p,q〉+ . . . . (4.6)

These terms will alternate in sign for the case of ηN = −1. A new complication

arises: since the eigenvalues of ρ̂ (which are effectively eigenvalues of Ĥ) are not

strictly positive, it could be the case that the sum of the eigenvalues of ρ̂ exceeds

unity, while condition (4.5) still holds. It is not immediately clear how to interpret

such a density matrix. We therefore propose an alternative condition for normalizing
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the density matrix, where we require

Tr′ρ̂ ≡
∑
eigs

ρ̂ = 1 . (4.7)

The primed trace is obtained by summing over the eigenvalue spectrum of the op-

erator. The norm of the states involved are irrelevant to the final result, and the

outcome is the standard partition function for an ideal gas. It is not immediately

clear whether or not the sum in Eq. (4.7) is finite; such a claim amounts to asserting

that the conditionally convergent sum in Eq. (4.5) converges absolutely. We choose to

go forward with the calculation of the thermal properties of the LW ideal gas, rather

than ruminate over which definition of the density matrix is the “true” one; forthcom-

ing results will firmly answer this question without the need for further speculation.

We now proceed with the calculation for both pictures, in order to demonstrate the

ramifications of treating LW particles as thermally accessible.

First, we calculate the partition function using the normalization condition (4.5).

It is convenient to perform a few standard transformations (viz. Ref. [90]) and work

in a different basis, discretizing the momentum by imposing periodic boundary con-

ditions. We write the resultant Hamiltonian, Ĥ =
∑
p

ĥp, as a sum of single-particle

Hamiltonians ĥp = EpN̂p. The number operator, N̂p, has the spectrum

N̂p

∣∣nq

〉
= npδp,q

∣∣np

〉
. (4.8)

The state
∣∣np

〉
contains n particles, each of momentum p. We can use this new basis

to rewrite the partition function (recalling Eq. (4.5)) as

Z = Tr e−βĤ = Tr
∏
p

e−βEpN̂p =
∏
p

nmax∑
np=0

〈
np

∣∣e−βEpN̂p
∣∣np

〉
, (4.9)

where nmax =∞ for bosons, or = 1 for fermions. Recalling that the norms of number-
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operator eigenstates are
〈
np

∣∣np

〉
= (ηN)np , we obtain

Z =
∏
p

nmax∑
np=0

(
ηNe

−βEp
)np

. (4.10)

From the partition function, we may calculate the free energy F in the usual way.

We take the logarithm of Z, and allow the ensuing sum to become an integral in the

continuum limit:

F = −(βV )−1 lnZ = −β−1

∫
d3p

(2π)3
ln

nmax∑
np=0

(
ηNe

−βEp
)np

 . (4.11)

. We may evaluate the sum separately for bosons and fermions, which gives

F =


β−1

∫
d3p

(2π)3
ln
(
1− ηN e−βEp

)
bosons ,

−β−1
∫

d3p
(2π)3

ln
(
1 + ηN e

−βEp
)

fermions ;

(4.12)

these expressions may be combined into

F = ηSβ
−1

∫
d3p

(2π)3
ln
(
1− ηSηNe−βEp

)
, (4.13)

where once again ηS = +1(−1) for bosons (fermions). Had we instead worked with

the alternative normalization of Eq. (4.7), we would have obtained

F ′ = ηSβ
−1

∫
d3p

(2π)3
ln
(
1− ηSe−βEp

)
. (4.14)

Note the absence of any ηN factors in Eq. (4.14). This is the standard expression for

the free energy of an ideal gas.

We summarize these results in Table 4.1, also recording the scaled versions of

the entropy density s = −∂F/∂T and energy density3 ρ = F + Ts. We express

these quantities in the high-temperature limit, β2m2 � 1, where the leading terms

3We will only ever use ρ̂ to refer to the density matrix and ρ to refer to energy density, so no

confusion need arise.
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ηS ηN β4F β3s β4ρ

SM Boson +1 +1 +c0b + c1bε −4c0b − 2c1bε −3c0b − c1bε

LW Boson (Tr′ρ̂ = 1) +1 −1 +c0b + c1bε −4c0b − 2c1bε −3c0b − c1bε

LW Boson (Trρ̂ = 1) +1 −1 −c0f − c1fε +4c0f + 2c1fε +3c0f + c1fε

SM Fermion −1 +1 +c0f + c1fε −4c0f − 2c1fε −3c0f − c1fε

LW Fermion (Tr′ρ̂ = 1) −1 −1 +c0f + c1fε −4c0f − 2c1fε −3c0f − c1fε

LW Fermion (Trρ̂ = 1) −1 −1 −c0b − c1bε +4c0b + 2c1bε +3c0b + c1bε

Table 4.1: The thermodynamic properties of an ideal gas of SM or LW bosons

or fermions in the high-temperature limit β2m2 ≡ ε � 1. For the LW particles,

the density matrix is normalized using either (4.5) or (4.7), as indicated. Higher-

order terms in ε are dropped. The coefficients are c0b ≡ −Li4(+1)/π2 = −π2/90,

c1b ≡ Li2(+1)/4π2 ≡ 1/24, c0f ≡ Li4(−1)/π2 = −7π2/720 = (7/8)c0b, and c1f ≡

−Li2(−1)/4π2 = 1/48 = (1/2)c1b.

may be easily extracted and compared. Some of these results merit elaboration. For

instance, when convention (4.7) is used, the gas of LW particles has thermodynamic

functions equivalent to those of a SM-only gas. This is not surprising; after all, Eq.

(4.14) contains no ηN factors to herald the presence of negative-norm states. Another

interesting result is the swap between bosonic and fermionic results for the LW gas

when calculated with the convention of Eq. (4.5); an ideal gas of LW bosons has the

free energy associated with an ideal gas of SM fermions, but with the overall sign

changed.

The overall sign change found in the entropy and energy of the Trρ̂ = 1 states

certainly constitutes a counter-intuitive result. We summarize the salient findings as
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follows:

Tr′ ρ̂ = 1 : F [LW boson / fermion of mass m ] = +F [SM boson / fermion of mass m ],

(4.15)

Tr ρ̂ = 1 : F [LW boson / fermion of mass m ] = −F [SM fermion / boson of mass m ] .

(4.16)

Both of these results differ from a prior calculation in Ref. [85], which claims that the

free energy, entropy, etc. of a LW gas is precisely opposite in sign to that of a SM

gas of the same spin; in the language used above,

F [LW boson / fermion of mass m ] = −F [SM boson / fermion of mass m ] . (4.17)

The authors of REf. [85] obtain the above equivalence by treating positive-energy,

negative-norm LW particles as though they were negative-energy, positive-norm par-

ticles. However, if these are taken to be real states prima facie, it is not clear how

to treat a system whose energy spectrum is unbounded both from above (due to

positive-energy states) and below (due to their negative-energy counterparts). This

inherent ambiguity results in a sick theory, and we do not see how one can justifiably

make the analytic continuation necessary to define the partition function.

The equivalent LW ideal gas composed of positive-energy, negative-norm states

must also lead to instabilities; they arise through states of opposing norm combining

to form zero-norm states, which necessarily lead to runaway modes [35, 42]. We there-

fore arrive at the conclusion that a consistent formulation of LW theories, in which

there exist no exponentially-growing or -decaying modes and the S-matrix is unitary,

disallows the presence of a LW ideal gas. A unitary theory with a bounded Hamilto-

nian demands that LW particles enter the picture only as scattering resonances.
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4.1.2 Lee-Wick Particles as Resonances

We now narrow the focus of the discussion to option (2), wherein LW particles

only arise through scattering resonances. In order to build this requirement into the

language of the theory, we shall define the expectation value of some operator,

〈
Ô
〉

= Tr(Ôρ̂), (4.18)

such that the only states to be summed over are those which are in the subset of the

Hilbert space that contain no LW particles. These states are identical to those which

are taken to zero by the LW annihilation operators, ap. The LW particles make their

presence known by interacting with SM particles, thereby influencing the spectrum

of SM multi-particle states. Working in the limit of weak coupling, we can treat the

interactions perturbatively and express the free energy of the full theory as

F [LW theory] = F [SM ideal gas] + ∆F , (4.19)

where the first term is the conventional calculation featuring a LW-only gas, and the

second term collects the perturbations. These contain Yukawa and gauge couplings

between SM and LW particles, and correspond numerically to the “two-loop” correc-

tions in thermal field theory. Ordinarily, these would be dropped; however, when the

SM particles scatter through LW resonances, the corrections become significant and

must be re-summed.

We briefly review the work of Fornal, Grinstein, and Wise (FGW) [83] in their

calculation of the free energy of a scalar LW toy model. This work relies on the

formalism of calculating partition functions through S-matrix elements, developed

by Dashen, Ma, and Bernstein (DMB) [91]. They derived the relationship

∆F = −(βV )−1

∫
dE e−βE

1

4πi

[
TrAS−1(E)

←→
∂

∂E
S(E)

]
c

, (4.20)
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where S(E) is the matrix element connecting two multi-particle states of energy E, c

specifies that only connected diagrams are to be included, and the TrA trace operator

does the job of symmetrization (anti-symmetrization) for bosons (fermions). In order

to start calculating S-matrix elements, FGW supply the HD Lagrangian4,

LN=2
HD =

1

2
(∂µφ̂)2 − 1

2M2
(∂2φ̂)2 − 1

2
m2φ̂2 − g

3!
φ̂3. (4.21)

This interaction term gives rise to the characteristic negative decay width,

Γ =
−g2

32πM

√
1− 4m2

M2
, (4.22)

as was seen in Eq. (1.75). The interaction term of Eq. (4.21) also allows 2 → 2

scattering through a single LW resonance, with the attending matrix element

M =
1

2
· −g2

E2 −P2 −M2 + iMΓ
, (4.23)

where S(E) = 1− iT (E), and

〈
p1 p2

∣∣T (E)
∣∣q1 q2

〉
= (2π)δ(E − E1 − E2)(2π)3

× δ(p1 + p2 − q1 − q2)M(E). (4.24)

From this stage, we can make the narrow-width approximation and evaluate the

delta-function within Eq. (4.20) to find

∆F = −β−1

∫
d3p

(2π)3
ln
(

1− e−β
√

p2+M2
)
. (4.25)

This is precisely the form of F for an ideal gas of bosons, but with an overall minus

sign. One interesting feature of the above derivation is the fact that it resembles an

ideal gas at all. Indeed, the narrow-width approximation only works when resonances

4Of course, this Lagrangian requires an added φ̂4 term in order for the potential to be bounded

from below. In any case, the φ̂3 calculation is easier, and the boundedness of V (φ̂) will not come

into play.
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are long-lived, and SM particles will access them through their mutual scattering.

The LW states then appear as stable with respect to the characteristic time scale

of scattering events, and contribute to the free energy as though they were stable

[91, 92].

The appearance of the overall minus sign, however, is surprising. We have already

shown that calculating the free energy of a LW ideal gas takes one of two forms,

depending on one’s choice of trace normalization (see Table 4.1). However, none of

the possibilities given for F results in Eq. (4.25). There is a further complication with

the analytic structure of Eq. (4.23). The overall minus sign is due to the fact that

Γ < 0, and that Γ → 0− differs from the Γ → 0+ limit by an overall sign. The lack

of continuity here means that the free energy is nonanalytic at Γ ∝ g2 = 0. FGW

then generalize from the toy theory to the fermionic case, again as resonances in the

scattering amplitude. We shall not present a parallel calculation again, but this too

results in a sign flip with respect to its SM counterpart. We summarize their results

as

∆F [LW boson/fermion narrow resonance of mass M]

= σF [SM boson/fermion ideal gas of mass M]
∣∣
σ=−1

, (4.26)

where we have established a sign placeholder, σ = −1. We refer to this observed

relationship as the “LW sign flip.”

There is cause for concern that the S-matrix formulation may not even be ap-

propriate to the study of LW thermodynamics. The negative-norm states were not

subtracted in the derivation of the results of FGW or DMB, although this is does not

seem to be the result of any error after careful inspection. It was pointed out by Es-

pinosa and Grinstein [93] that the result Eq. (??) leads to an unexpected breakdown

in the well-known connection between symmetry restoration (in the thermal field the-
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ory) and improved UV behavior. This connection arises from the fact that the same

diagrams which give O(T 2) contributions to the effective potential also contribute

to the quadratic divergences of the SM at T = 0 [94]. For example, a bosonic field

receiving the self-energy correction ∆m2 = κΛ2/16π2 will also receive the thermal

effective-mass term ∆m2 = kT 2/12. It follows that BSM theories purporting to solve

the hierarchy problem ought to cancel out both of these contributions as well. But

this is not the case if the σ = −1 sign flip is correct; see § 4.1.3. We therefore require

the correct version of the theory to cancel off terms that are quadratic in both T and

Λ, which amounts to the σ = +1 case:

∆F [LW boson/fermion narrow resonance of mass M]

= σF [SM boson/fermion ideal gas of mass M]
∣∣
σ=+1

. (4.27)

Furthermore, models that solve the hierarchy problem tend to feature a slower onset

of symmetry restoration from high-T terms.

After pursuing several methods of calculating F and investigating the implications

of a LW ideal gas, we now have a clearer picture of what the correct answer must

resemble: we require a formulation of the LWSM in which the boundary conditions are

respected, and the LW particles only contribute through resonance effects. However,

since some ambiguity remains as to the sign difference in Eqs. (??) and (4.27), we

keep the factor σ = ±1 in the calculations to follow.

4.1.3 Thermal Effective Potential of a Lee-Wick Toy Model

We now present a calculation of the thermal effective potential, covering both

bosons and fermions. Though the tools of thermal field theory are equal parts fasci-

nating and useful, their pedagogical treatment is quite lengthy, and outside the scope

of this dissertation. We encourage the interested reader to consult Refs. [82, 90] for
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a formal introduction.

Summing the complete set of vacuum-to-vacuum diagrams to one-loop order, we

obtain the effective potential

V
(1L)

eff (φc) = U(φc) + ∆V
(1L)

0 (φc) + ∆V
(1L)
T (φc, T ) , (4.28)

where φc is the running value of the scalar condensate and T is the temperature. These

terms are, respectively, the classical potential energy U(φc), the T = 0 contribution

∆V
(1L)

0 (φc) = δVc.t.(φc) +


1
2

∑
b

∫
d4pE
(2π)4

ln [p2
E +m2

b(φc)] bosons ,

−
∑

f

∫
d4pE
(2π)4

ln
[
p2
E +m2

f (φc)
]

fermions ,

(4.29)

and the thermal correction

∆V
(1L)
T (φc, T ) =


∑

b T
∫

d3p
(2π)3

ln
(

1− e−β
√

p2+m2
b(φc)

)
bosons ,

−
∑

f T
∫

d3p
(2π)3

ln
(

1 + e−β
√

p2+m2
f (φc)

)
fermions .

(4.30)

The counterterms δVc.t.(φc) cancel off the temperature-independent divergences from

standard perturbation theory, and we have Euclideanized the momentum to ensure

convergence. The notation m2
b,f (φc) reflects the fact that the particle masses are

now functions of the background field. Note also the similarity between the thermal

corrections and free energy calculated from the ideal gas viewpoint. We now present

an explicit calculation within an HD theory in order to demonstrate the technology

of thermal field theory.

Scalars

We begin with the HD Lagrangian

L = − 1

2Λ2
LW

(∂2φ̂)2 +
1

2
(∂µφ̂)2 − U(φ̂) ,

U(φ̂) = Ω +
1

2
µ2φ̂2 +

λ

4
φ̂4. (4.31)
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Let φc = 〈φ̂〉 be the condensate of the HD scalar, and expand about the minimum as

φ̂(x) = φc + ϕ̂(x). In order to obtain the effective mass, we expand the Lagrangian

to quadratic order and obtain

L ⊃ −1

2
ϕ̂

(
∂4

Λ2
LW

+ ∂2 +m2
ϕ̂(φc)

)
ϕ̂ , (4.32)

where

m2
φ(φc) ≡ U ′′(φc) = µ2 + 3λφ2

c . (4.33)

We know that the HD theory contains two degrees of freedom; hence, we ought to

expect two poles in its propagator:

Dϕ̂(p) = i

(
− p4

Λ2
LW

+ p2 −m2
ϕ(φc)

)−1

=
Λ2

LW

m2
ϕ̃ −m2

ϕ

(
i

p2 −m2
ϕ

− i

p2 −m2
ϕ̃

)
, (4.34)

where we identify

Positive-Norm Pole: m2
ϕ(φc) ≡

Λ2
LW

2

(
1−

√
1− 4m2

ϕ̂(φc)

Λ2
LW

)
,

Negative-Norm Pole: m2
ϕ̃(φc) ≡

Λ2
LW

2

(
1 +

√
1− 4m2

ϕ̂(φc)

Λ2
LW

)
.

(4.35)

Crucial to this analysis is a choice of phase for the Wick rotation, itself requiring a

consistent pole prescription for picking up poles in the complex−p0 plane. See § B.3

for a thorough calculation of these important properties. We are now at liberty to

recapitulate our computation for the effective potential:

V
(1L)

eff (φc, T ) = U(φc)

+

[
δVc.t.(φc) +

1

2

∫
d4pE
(2π)4

(
ln[p2

E +m2
ϕ(φc)] + ln[p2

E +m2
ϕ̃(φc)]

)]
+
T 4

2π2

[
JB(m2

ϕ/T
2) + σJB(m2

ϕ̃/T
2)
]
, (4.36)

where we have defined the bosonic thermal function as

JB(y) ≡
∫ ∞

0

dx x2 ln
(

1− e−
√
x2+y

)
, (4.37)
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and kept the index σ = ±1 attending the thermal correction due to the LW pole.

The set of counterterms,

δVc.t.(φc) = δΩ +
1

2
δµ2φ2

c +
δλ

4
φ4
c , (4.38)

will be suitably constrained by whatever renormalization conditions are imposed in

the T = 0 theory.

Fermions

Another important LW contribution arises from the HD fermionic Lagrangian

L =
¯̂
ψ

(
i
/∂

3

Λ2
LW

+ i/∂ − λφ̂

)
ψ̂ + Lφ̂ , (4.39)

wherein we have explictly included a Yukawa interaction term, giving mass to the

fermion once φ̂ has attained its condensate value. We readily obtain the propagator

Dψ̂(p) = i

(
− /p3

Λ2
LW

+ /p−mψ̂(φc)

)−1

= +
Λ2

LW

(mψ̃1
−mψ)(mψ −mψ̃2

)
· i

/p−mψ

− Λ2
LW

(mψ̃1
−mψ)(mψ̃1

−mψ̃2
)
· i

/p−mψ̃1

− Λ2
LW

(mψ −mψ̃2
)(mψ̃1

−mψ̃2
)
· i

/p−mψ̃2

, (4.40)

where we obtain for the one positive and two negative norm poles5:

Positive-Norm Pole: mψ(φc) ≡ Λ2
LW

√
2
3

(
1− cos θ

3

)
,

Negative-Norm Pole: mψ̃1
(φc) ≡ Λ2

LW

√
2
3

(
1 + cos θ+π

3

)
,

Negative Norm Pole: mψ̃2
(φc) ≡ −Λ2

LW

√
2
3

(
1 + cos θ−π

3

)
,

(4.41)

5Recall from § A.2 that each HD fermion degree of freedom requires the introduction of two LW

particles.
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and

θ ≡ arctan
2
√
α(1−α)

1−2α
, 0 ≤ θ < π ,

α ≡ 27
4

m2
ψ̂

Λ2
LW
,

mψ̂ ≡ λφc .

(4.42)

We now construct the thermal effective potential to one-loop order:

V
(1L)

eff (φc, T ) = U(φc) + δVc.t.(φc)

−
∫

d4pE
(2π)4

(
ln[p2

E +m2
ψ(φc)] + ln[p2

E +m2
ψ̃1

(φc)] + ln[p2
E +m2

ψ̃2
(φc)]

)
− T 4

2π2

[
JF (m2

ψ/T
2) + σJF (m2

ψ̃1
/T 2) + σJF (m2

ψ̃2
/T 2)

]
, (4.43)

where we have defined the fermionic thermal function

JF (y) ≡
∫ ∞

0

dx x2 ln
(

1 + e−
√
x2+y

)
. (4.44)

As before, the set of counterterms set is absorbed by the usual T = 0 renormalization

conditions.

Comparison of Bosonic vs. Fermionic Cases

The thermal effective potentials of Eqs. (4.36) and (4.43). As a consequence of the

diagonalization procedure, the scalar masses are only real for the régime φ2
c < (Λ2

LW−

4µ2)/12λ, while the fermion masses require φc to satisfy φ2
c < 4Λ2

LW/27λ2. Large

values of φc therefore invalidate the theory from the start, as mass eigenstates elude

definition. However, if symmetry restoration is indeed the high-T fate of the theory,

then the condensate relaxes to φc → 0. We do not consider further the case of

such troublesome extremes for the value of φc; the case φc � Λ2
LW being the more
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interesting one, we expand the masses in this limit as follows:

m2
ϕ(φc) ≈ m2

ϕ̂ +
m4
ϕ̂

Λ2
LW

+O(m6
ϕ̂/Λ

4
LW) , (4.45a)

m2
ϕ̃(φc) ≈ Λ2

LW −m2
ϕ̂ −

m4
ϕ̂

Λ2
LW

+O(m6
ϕ̂/Λ

4
LW) , (4.45b)

m2
ψ(φc) ≈ m2

ψ̂
+ 2

m4
ψ̂

Λ2
LW

+O(m6
ψ̂
/Λ4

LW) , (4.45c)

m2
ψ̃1,2

(φc) ≈ Λ2
LW ∓mψ̂Λ2

LW −
1

2
m2
ψ̂
∓ 5

8

m3
ψ̂

ΛLW

−
m4
ψ̂

Λ2
LW

+O(m6
ψ̂
/Λ4

LW) . (4.45d)

The φc-dependent contributions give only a small correction to the LW masses in

Eqs. (4.45b) and (4.45d). This means that, when the scalar condensate takes on

values near mϕ, the LW mass will provide a φc-independent contribution of ≈ Λ2
LW.

Even though the exact value of the condensate varies as the shape of the thermal

effective potential changes with temperature, it never causes a significant departure

of the LW masses from their T = 0 values. The LW fields do not decouple from the

theory entirely, however; it is merely the case that they acquire most of their mass

from means other than spontaneous symmetry breaking. The case is similar to that

of heavy squarks in supersymmetric theories, which often get a thermal treatment.

Owing to their large mass, we expect the LW fields to contribute very little to the

T = 0 term in the effective potential of Eq. (4.36). Also, when T 2 � Λ2
LW, a similar

effect occurs: the LW mass scale is effectively inaccessible to the thermal bath, and

LW fields provide comparatively small corrections to the T 6= 0 term of Eq. (4.36) of

O(T 2/Λ2
LW). This result corresponds to Boltzmann suppression, in the language of

the thermal functions of Eqs. (4.37) and (4.44). We also expect the LW fields to have

a small impact on the phenomenon of symmetry restoration, whose onset we know to

be retarded by hierarchy-eliminating theories, unless the phase transition temperature

Tc is commensurate with ΛLW. But we can eliminate this latter possibility from the

outset, as the case Tc ∼ ΛLW would give a large thermal mass to the scalar ϕ, thus
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leading to the breakdown of the LW stability condition of Λ2
LW > 4m2

ϕ. We therefore

reach the conclusion that, for generic scenarios6 in the LWSM, the LW fields do not

have a significant effect on the phase transition.

However, in the high-temperature régime T 2 & Λ2
LW, the thermal contributions

of LW fields can indeed become significant. We can then expand the bosonic and

fermionic thermal functions in the y � 1 scenario, which gives [90]

JB(y)
y�1−−→ −π

4

45
+
π2

12
y − π

6
y3/2 − 1

32
y2 ln

y

ab
+O(y3) , (4.46)

JF (y)
y�1−−→ +

7π4

360
− π2

24
y − 1

32
y2 ln

y

af
+O(y3) , (4.47)

where the numerical constants are given by ab = 16af = 16π2exp(3/2 − γE). Now,

working in the high temperature limit, and utilizing Eq. (4.46), we find

T 4

2π2

[
JB

(
m2
ϕ(φc)

T 2

)
+ σJB

(
m2
ϕ̃(φc)

T 2

)]
T 2�Λ2

LW�m
2
ϕ̂−−−−−−−−→

− π2

90
(1 + σ)T 4 +

Λ2
LWT

2

24
σ + (1− σ)

m2
ϕ̂T

2

24

− σΛ3
LWT

12π
+ σ

Λ2
LWTm

2
ϕ̂

8π
− T

12π
(m2

ϕ̂)3/2 + . . . . (4.48)

Let us examine a few of the terms for the sake of physical intuition. The T 4 term is

the free energy associated with a relativistic gas of (1+σ) degrees of freedom. Taking

σ = −1 (corresponding to the FGW derivation) causes this term to vanish, which

can be seen as a cancellation between the two leading degrees of freedom. The large

−Λ2
LWT

2 term is the culprit behind retarded symmetry restoration, as was pointed

out earlier; we now see how this effect arises from the effective potential calculation,

confirming the results of Ref. [93]. The third term works against this, and is ultimately

responsible for symmetry restoration. However, for the case σ = +1, this third term

vanishes; since m2
ϕ ∼ φ2

c , this term can be viewed as the effective thermal mass for

6Meaning, without a conspiratorial arrangement of parameters, which is just the sort of situation

which the Lee-Wick Standard Model was designed to preclude.
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the φc-dependent field, and its cancellation is the thermal analog of the cancellation

of UV divergences in the electroweak theory.

For the fermions, we find

− T 4

2π2

[
JF

(
m2
ψ(φc)

T 2

)
+ σJF

(
m2
ψ̃1

(φc)

T 2

)
+ σJF

(
m2
ψ̃2

(φc)

T 2

)]
T 2�Λ2

LW�m
2
ψ̂−−−−−−−−→− 7π2

720
(1 + 2σ)T 4 + 2σ

Λ2
LWT

2

48
+ (1− σ)

m2
ψ̂
T 2

48
+ (1− σ)

m4
ψ̂
T 2

24Λ2
LW

+
m4
ψ̂

64π2

(
ln

m2
ψ̂

afT 2
− σ ln

Λ2
LW

afT 2

)
+ 2σ

Λ4
LW

64π2
ln

Λ2
LW

afT 2
+ . . . . (4.49)

In this case, the leading-order term flips sign for the case σ = −1. For σ = +1,

the thermal contributions to the masses at O(T 2) drop out once more. The terms

which could have restored symmetry in the fermionic sector vanish, and the overall

restoration must therefore be accomplished by the bosonic sector.

4.2 The Lee-Wick Standard Model at Finite Temperature

4.2.1 The Lee-Wick Standard Model Thermal Effective Potential

We now have all the tools necessary to calculate the full thermal effective potential

for the N = 2 LWSM, as well as the physical intuition to interpret the results. Since

we are interested primarily with the EWPhT, which involves the Higgs mechanism

at finite temperature, we need only concern ourselves with the fields that couple

most strongly to the Higgs. Therefore, we limit our purview to the top quark, the

weak gauge bosons, and the Higgs itself, as well as the LW partners to each of these

fields. We approximate the number of degrees of freedom in the problem to very high

accuracy by assuming that the remaining fields are massless, and hence yield a T 4

contribution to Veff(φc, T ). The LW degrees of freedom corresponding to these (e.g.,

the LW partner to the electron, the bottom quark, etc.) are taken to have mass Λ2
LW.

95



We parameterize the Higgs condensate7 as 〈Ĥ〉 = (0, φc/
√

2)T , and calculate the

field-dependent masses as per Appendix C. We classify each field type by its spin s,

number of dynamical degrees of freedom g (including, e.g., Nc factors from QCD),

and the field dependent mass-squared m2(φc). The results are collected in Table 4.2.

We continue to keep the σ factor in tow, allowing for comparison with other authors

at each step of the calculation. The one-loop effective potential for the LWSM reads8

V
(1L)

eff (φc, T ) = U(φc) + ∆V
(1L)

0 (φc) + ∆V
(1L)
T (φc, T ) ,

U(φc) =
λ

4

(
φ2
c − v2

)2
,

∆V
(1L)

0 (φc) = δVc.t. +
∑
i

(−1)2sigi
[m2

i (φc)]
2

64π2

[
lnm2

i (φc)− Cuv −
3

2

]
,

δVc.t. = δΩ +
δm2

2
φ2
c +

δλ

4
φ4
c ,

∆V
(1L)
T (φc, T ) =

T 4

2π2

∑
i

σigi


JB

(
mi(φc)
T 2

)
, si = 0, 1 ,

−JF
(
m2
i (φc)

T 2

)
, si = 1

2
,

(4.50)

with the sum running over all fields in Table 4.2. The subtraction constant Cuv =

ε−1−γE+ln 4π is just the signature of divergence we already recognize from T = 0 field

theory. Since the decoupling of heavy fields is not manifest in the MS renormalization

scheme, we determine counterterms by requiring that the tree-level relations between

Higgs parameters be maintained by the one-loop expansion. Setting the subtraction

point at φc = v, we demand

0 = ∆V
(1L)

0

∣∣∣
φc=v

=
d∆V

(1L)
0

dφc

∣∣∣
φc=v

=
d2∆V

(1L)
0

dφ2c

∣∣∣
φc=v

, (4.51)

7The terminology is carefully selected here. The Higgs vacuum expectation value is v ≈ 246 GeV,

and is temperature independent; in contrast, the Higgs condensate φc may take on a range of values

as the temperature fluctuates.
8We have neglected higher-order corrections, such as the “daisy” resummation (see Refs. [82, 95]

for background). This would be essential to an exhaustive calculation, but as the EWPhT is not

strongly first-order, it does not influence the calculation or its results substantially.
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allowing us to solve for the counterterms δΩ, δm2, and δλ. The remaining free param-

eters are the four SM couplings λ, g, g′, ht and the five LW mass scales ΛH ,ΛW ,Λt,

ΛEW, and Λ2
LW. These SM couplings are renormalized to satisfy the tree-level mass

relationships√
m2
h(v) = MH = 125 GeV ,

√
m2
W±(v) = MW = 80.4 GeV ,√

m2
Z(v) = MZ = 91.2 GeV ,

√
m2
t (v) = Mt = 172.6 GeV .

(4.52)

From this point on, we assume a common LW mass parameter for all fields; that is,

ΛH = ΛW = Λt = ΛEW = Λ2
LW, leaving Λ2

LW as the only free parameter of the theory.

This model-independent approach ensures that we do not fool ourselves into thinking

that a small niche of parameter space implies general results.

As a final word on parameters, there is no upper bound on ΛLW; in the case

ΛLW � v, we simply regain the SM, and the LW fields have marginal effect on all

aspects of the theory. The limit ΛLW → ∞ is therefore harmless. We will discuss

interesting phenomenological lower bounds on ΛLW in the next section, with some

variation between different LW partners in the mass bounds allowed.

4.2.2 Finite-Temperature Behavior

The LWSM effective potential of Eq. (4.50) is given in Fig. 4.1 for a broad range

of temperatures and values of ΛLW. We do not continue the curves for the ΛLW =

350 GeV case past φc ≥
√

4/27Λt/ht ≈ 255 GeV, as this régime violates the LW

stability condition. The salient feature of these graphs is the absence of a barrier near

φc ∼ 0, meaning that the phase transition is not strongly first-order. This conclusion

is further emphasized by Fig. 4.2, where we plot the the order parameter v(T ). This

parameter is the vacuum expectation value as computed at the temperature T , and

only converges to 246 GeV in the T = 0 limit. We define the phase transition to

occur at the temperature Tc such that v(T ≥ Tc) = 0. The absence of a discontinuity
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Figure 4.1: Variation with respect to temperature T and LW scale ΛLW of the LWSM

thermal effective potential Veff(φc). T increases from 0 GeV (blue, lowest curves) to

300 GeV (red, highest curves) in increments of ∆T = 50 GeV. (Reprinted from Ref.

[2])

in the order parameter at T = Tc is a robust signal that the phase transition is not

first-order, but is instead a cross-over transition (equivalently known as second-order).

We therefore conclude that the EWPhT under the aegis of LW fields is similar to that

of the SM case, and it cannot be a reasonable explanation for the baryon asymmetry

of the Universe9. This stands as the central finding of this chapter.

We see from Fig. 4.2 that the ΛLW � v limit restores the symmetry restoration

point to T ≈ 150 GeV, which agrees with the SM result to one loop [77]. Hence,

the decoupling of super-heavy LW fields from the theory bears out. Furthermore,

the critical temperature in the σ = +1(−1) case is generally larger(smaller). This is

well understood as the result of cancellation effects in the thermal effective potential,

9See Ref. [96] for further discussion of the baryon asymmetry and its relationship to electroweak

baryogenesis.
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Figure 4.2: The electroweak symmetry-breaking order parameter v(T ) for the case

of σ = +1 (dashed) and σ = −1 (solid). Note that the pairs of lines for a given Λ2
LW

move inward monotonically with increasing Λ2
LW. The phase transition temperature

is generally higher in the former case due to the cancellation of the leading O(T 2)

temperature dependence discussed in the text. (Reprinted from Ref. [2].)

as discussed in § 4.1.3. Let us take an explicit example to see how this cancellation

arises. In the limit φc � ΛLW � T , the one-loop thermal contribution reads

∆V
(1L)
T (φc, T ) ≈− π2

90
g∗(σ)T 4

+ T 2 ×


+13

6
Λ2

LW σ = +1 ,

−13
6

Λ2
LW +

(
3g2+g′ 2

16
+

m2
t

2v2
+ λ

2

)
φ2
c +O(φ4

c/Λ
2
LW) σ = −1 ,

+ T ×


+
(

9g2+3g′ 2+3λ
32π2

)
φ2
cΛ

2
LW +O(φ3

c/Λ
2
LW) σ = +1 ,

−
(

9g2+3g′ 2+3λ
32π2

)
φ2
cΛ

2
LW +O(φ3

c/Λ
2
LW) σ = −1 ,

(4.53)

where the scheme-dependent g∗(σ) = 106.75+197.5σ counts the number of degrees of

freedom in the theory. Owing to the explicit σ factor, we immediately recognize Eq.

(4.53) as possessing 106.75 SM and 197.5 LW degrees of freedom. For the case σ = −1,

we see that g∗ is negative, and therefore the overall thermal contribution to the
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free energy density is positive. This therefore implies (via the usual thermodynamic

relations) that the pressure, energy density, and entropy density of LW fields are

negative. This was obtained previously in [83, 85], and its puzzling implications have

been teased out in the context of early-universe cosmology [88, 89].

As a final word on Fig. 4.2, we point out that the SM possesses a term ∆V
(1L)
T 3

T 2 TrM2 ∼ T 2φ2
c which gives rise to symmetry restoration. This term is absent in

the σ = +1 LW case due to cancellation between positive- and negative-norm fields.

Symmetry restoration can then only come about with the subdominant O(TΛLWφ
2
c)

term, which necessarily implies the restoration of symmetry at a higher temperature

than would otherwise be expected. This term only comes about through the non-

analytic (m2
ϕ)3/2 term in the bosonic thermal function; the fermionic thermal function

possesses no such term, and hence is irrelevant to the task of symmetry restoration.

It has been recently emphasized [97] that one must take a few extra precautions

in the extraction of gauge-invariant observables from Veff(φc, T ), which itself is man-

ifestly gauge-dependent [98]. We have thus far proceeded by obtaining v(T ) from a

minimization condition on Veff(φc, T ), and so the order parameter inherits the gauge

dependence of its predecessor. This gauge dependence can lead to anomalous re-

sults for real observables, such as the baryon number preservation criterion (after the

baryons have been generated) and the gravity wave spectrum [97, 99, 100]. Thank-

fully, there is some numerical control over the relative influence of these anomalies: it

has been pointed out [101] that the gauge dependence is small in the régime for which

the perturbative expansion is valid. In our case, with a second-order phase transition,

the only gauge-dependent parameter is Tc. We apply also the techniques of Ref. [97]

as a double-check, and find qualitative agreement with the results plotted in Fig. 4.2;

to wit, that Tc decreases as ΛLW increases, and that Tc is generically higher for the

σ = +1 case (as explained above). The gauge-invariant calculation results in a Tc
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which ≈ 20% − 35% smaller, with the discrepancy most exaggerated for low values

of ΛLW.

A few comments regarding the allowable range of ΛLW are now in order. While

we have worked under the assumption ΛLW & 350 GeV up to this point, a better-

motivated parameter set is motivated by the studies of previous Chapters (and rel-

evant works cited therein); although they have been mentioned elsewhere in this

dissertation, we recapitulate here for the convenience of the reader. The oblique

parameter T , which measures custodial isospin violation, is sensitive to the LW top

mass; experimental constraints place a bound10 of Λt > 1.5 TeV at the 95% C.L. [57].

The post-LEP oblique parameters W and Y are sensitive to the LW gauge bosons,

and establish bounds of ΛW = ΛB > 2.3 TeV at 95% C.L. [57] The remaining strong

constraint is placed by the correction to the Zbb̄ vertex, which imposes ΛH > 640 GeV

at 95% C.L. [1] (see also [59]). If we now set each of these parameters to its lower

bound, we can calculate v(T ) in the most optimistic scenario. We find this case to

be indistinguishable from the solid red curve of Fig. 4.2. Even for the most optimal

choice of LW masses, the thermal contribution fails to differ appreciably from the

one-loop SM result.

4.3 Discussion and Conclusions

This chapter has two goals: explore the thermodynamic properties of LW theories

in general, and apply those lessons to early-universe cosmology. This latter question

is pursued in the hope of solving the baryon asymmetry. The negative-norm degrees

of freedom are forbidden by the LW/CLOP prescriptions that remove states that

10These bounds are derived by assuming MH = 115 GeV; this was the LEP bound at the time at

which these constraints were calculated. This ∼ 10% shift in MH translates into a commensurate

shift in the bounds, but is irrelevant to the precision of our current considerations.
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would otherwise violate unitarity. Though this method is broadly accepted and used

by all LWSM theorists, it is not immediately clear how this prescription generalizes to

nonzero temperatures. For instance, if one pays no special attention to the negative-

norm states in the theory, one may move forward with an archetypal calculation of the

thermal properties of a LW ideal gas. However, this picture seems incompatible with

the LW/CLOP prescription outlined above. Alternatively, one could explicitly forbid

the treatment of LW particles as external states, and treat the LW fields as having a

solely resonant effect through the scattering of positive-norm particles. When treated

as narrow resonances, the LW internal lines appear to be long-lived with respect to the

characteristic time scales of thermal scattering, and they yield a contribution to the

free energy which is precisely opposite to that which one expects for a conventional

ideal gas.

When turning our attention to the electroweak phase transition in the early uni-

verse, we find that the LWSM has negligible effect beyond that of the SM alone, and

that the phase transition is a cross-over, rather than being strongly first-order. The

lack of a discontinuity in the order parameter v(Tc) means that the LWSM cannot be

responsible for electroweak baryogenesis, a paradigm widely thought to be a candi-

date for solving the baryon asymmetry problem. We also find that the way in which

one quantizes the LW theory, as well as to what extent LW states are accessible to

the thermal bath, make profoundly distinct predictions for the onset of symmetry

restoration in the T � ΛLW limit.

A possible extension of this work is the calculation of Veff(φc, T ) for the N = 3

LWSM, which has heretofore been the primary focus of this dissertation. Since the

mass bounds can be significantly smaller for partners in the N = 3 theory, the LW

fields could potentially be active in the electroweak phase transition for a broader

range of temperatures, ensuring a discontinuity in the order parameter. More degrees
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of freedom results in a larger g∗, which manifests itself in the high-temperature limit

of the theory. However, there is a point of caution to be made: if the narrow-

resonance approximation is not valid for Lee-Wick theories of any N , then a more

careful approach is demanded.
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Field s g σ m2
i (φc)

SM-like Higgs 0 1 1 m2
h = 1

2
Λ2
H

(
1−

√
1− 4m2

ĥ

Λ2
H

)
m2
ĥ

= λ(3φ2
c − v2)

LW-like Higgs 0 1 σ m2
h̃

= 1
2
Λ2
H

(
1 +

√
1− 4m2

ĥ

Λ2
H

)

SM-like pseudoscalar 0 1 1 m2
P = 1

2
Λ2
H

(
1−

√
1− 4m2

P̂

Λ2
H

)
m2
P̂

= λ(φ2
c − v2)

LW-like pseudoscalar 0 1 σ m2
P̃

= 1
2
Λ2
H

(
1 +

√
1− 4m2

P̂

Λ2
H

)

SM-like charged scalar 0 2 1 m2
h± = 1

2
Λ2
H

(
1−

√
1− 4m2

ĥ±
Λ2
H

)
m2
ĥ±

= λ(φ2
c − v2)

LW-like charged scalar 0 2 σ m2
h̃±

= 1
2
Λ2
H

(
1 +

√
1− 4m2

ĥ±
Λ2
H

)
SM gauge ghosts 0 −3 1 0

SM-like W 1 6 1 m2
W̃±

= 1
2
Λ2
W

(
1−

√
1− 4m2

Ŵ

Λ2
W

)
m2
Ŵ±

= g2φ2c
4

LW-like W 1 6 σ m2
W̃±

= 1
2
Λ2
W

(
1 +

√
1− 4m2

Ŵ

Λ2
W

)
SM-like A 1 2 1 m2

A = 0

LW-like A 1 3 σ m2
Ã

= Λ2
EW

SM-like Z 1 3 1 m2
Z = 1

2
Λ2

EW

(
1−

√
1− 4m2

Ẑ

Λ2
EW

)
m2
Ẑ

= (g2+g′ 2)φ2c
4

LW-like Z 1 3 σ m2
Z̃

= 1
2
Λ2

EW

(
1 +

√
1− 4m2

Ẑ

Λ2
EW

)
SM-like top 1

2
12 1 m2

t =
2Λ2

t

3

(
1− cos θt

3

)
θt = arctan

2
√
α(1−α)

1−2α

LW-like top (1) 1
2

12 σ m2
t̃1

=
2Λ2

t

3

(
1 + cos θt+π

3

)
α = 27

4

m2
t̂

Λ2
t

LW-like top (2) 1
2

12 σ m2
t̃2

=
2Λ2

t

3

(
1 + cos θt−π

3

)
m2
t̂

= h2
tφ

2
c

SM-like gluons 1 16 1 0

LW-like gluons 1 24 σ Λ2
LW

Other SM-like fermions 1
2

78 1 0

Other LW-like fermions 1
2

156 σ Λ2
LW

Table 4.2: Tree-level, field-dependent pole masses used to construct the LWSM

effective potential. s, g, and σ indicate the spin, effective number of degrees of

freedom, and LW character of the fields; the fifth column gives the mass eigenvalues

in terms of the field-dependent Lagrangian mass parameters appearing in the last

column.
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4.4 Discussion

The discovery of the Higgs boson marks a pivotal moment in the history of particle

physics. However, this experimental triumph comes not without a host of outstanding

problems and theoretical loose ends. The Standard Model offers no explanation for

the miniscule neutrino masses, the nature of dark matter, or the threefold replication

of family structure, to name a few. This dissertation has sought to answer a different

type of question: rather than account for things undiscovered, how can we under-

stand that which we have discovered? The Higgs boson mass, mh ≈ 125 GeV, sits

very near the electroweak scale, v ≈ 246 GeV. But, when calculating the most basic

renormalization self-energy corrections at one-loop order, the Higgs receives correc-

tions that diverge as d→ 2 in dimensional regularization. If one treats the Standard

Model as an effective field theory, valid up to some cutoff scale ΛUV, we ought to

observe a Higgs mass much closer to this scale. It is the positive discovery of an

electroweak-scale Higgs (rather than GUT- or Planck-scale) which vexes theoretical

physics. Without some added physics, the Standard Model seems to require an ex-

traordinary amount of fine-tuning in order to keep the Higgs comparatively light. If

no new physics is found between the electroweak scale and, e.g., the unification scale

of ΛGUT ≈ 1016 GeV, one must tune the parameters of the theory to better than one

part in Λ2
GUT/v

2 ≈ 1028 to cancel off these extreme corrections. This puzzle is known

as the hierarchy problem.

Many candidate theories have arisen over the past few decades in order to amelio-

rate the Standard Model fine-tuning problem. Some of the more popular candidates

were outlined in Ch. 1. In this dissertation, we have explored a less-known, though

equally viable and testable, approach to solving the hierarchy problem: the Lee-Wick

Standard Model. This theory posits a higher-derivative operator for each Standard
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Model degree of freedom, e.g., L ⊃ −φ�2φ/2M2. These higher-derivative operators

correspond to propagators that decay as p−4 (rather than p−2) at high energies, and

contain two poles in the complex-p0 plane. The improved ultraviolet behavior of the

theory results in Feynman diagrams free of the quadratic divergences as described

above. We have discussed some of the thornier issues idiosyncratic to Lee-Wick theo-

ries, such as acausality and unitarity violation; the effects of the former are thought to

be visible at very high energies, and the Lee-Wick prescription for removing negative-

norm states averts the disasters associated with a non-unitary S-matrix. It must

be noted that no consistent path integral formulation of Lee-Wick theories has been

found to date, although no direct violation of unitarity can be found in the theory

either. The matter of unitarity therefore remains not completely settled, though we

may proceed with care to calculate the experimental implications of the Lee-Wick

Standard Model.

The precise subject matter of this dissertation has been the so-called N = 3

Lee-Wick Standard Model. The theory is so named because of the addition of a

yet-higher order derivative operator (of the form −φ�3φ/2M4) in the theory, which

leads to propagators containing three physical poles. The propagator of this theory

falls of as p−6 at high energies, and so the higher-N theory has even better ultraviolet

behavior. The minimal Lee-Wick Standard Model is therefore an N = 2 theory in

this parlance. Performing an auxiliary field transformation on the Lagrangian of this

theory results in a set of states with alternating positive, negative, and positive norm

coming from the same higher-derivative field.

Though the formal field theory of higher-derivative quantum fields is a fascinat-

ing subject in its own right, we have here sought to extract some phenomenological

implications from the N = 3 Lee-Wick Standard Model.

We have seen that Lee-Wick partners to the Standard Model W± boson have
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distinct collider signatures, and could easily be identified at a high-luminosity collider

for a broad range of mass values.

We have seen that the most exacting electroweak precision tests allow for rela-

tively light Lee-Wick partners to the Higgs boson, with masses as low as ∼ 650 GeV

for the charged scalars. The alternating norm of Lee-Wick states allows for signifi-

cant cancellations in the calculation of electroweak precision parameters, such as the

anomalous Zbb̄ coupling, meaning that some of the states can have lower masses than

would be the case in a strictly N = 2 theory.

We have also investigated the quantization of Lee-Wick theories at finite temper-

ature, clearing up much confusion in the process. Namely, we have shown that the

most consistent formulation of the theory is one in which Lee-Wick states are only

accessible through the scattering of positive-norm states, rather than one in which

Lee-Wick states really are accessible to the thermal bath. Our results effectively show

that treating Lee-Wick fields as “real”—that is, freely created and destroyed by an

external thermal heat bath—leads either to a completely unbounded Hamiltonian

spectrum, or depends on an ambiguous derivation from an S-matrix properties not

guaranteed a priori. We used this new quantization technology to calculate the elec-

troweak phaser transition in the early Universe, the goal being to see if Lee-Wick

fields could have some part to play in triggering electroweak baryogenesis. However,

due to the bounds placed on their masses by electroweak precision tests (see above),

Lee-Wick fields are simply too massive to have had a substantial effect on the elec-

troweak phase transition, and the latter remains second-order in character (whereas

a strongly first-order transition is required to produce net baryon number).
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APPENDIX A

AUXILIARY FIELD FORMALISM FOR N = 3 LEE-WICK LAGRANGIANS

A.1 Pure Yang-Mills

We begin with the higher-derivative (HD) Lagrangian

LHD = −1

2
Tr F̂µνF̂

µν −
(

1

m2
2

+
1

m2
3

)
Tr F̂µνD̂

µD̂αF̂
αν

− 2

m2
2m

2
3

Tr F̂µνD̂
µD̂αD̂

[αD̂βF̂
βν], (A.1)

where brackets indicate antisymmetrization of the first and last indices only:

X [α1α2...αNαN−1] ≡ Xα1α2...αN−1αN −XαNα2...αN−1αN . (A.2)

Eq. (A.1) can be factorized into

LHD = Tr F̂µν

(
1

2
gµα +

D̂µD̂α

m2
2

)[(
1

2
gνβ +

D̂νD̂β

m2
3

)
gαλ − (α↔ ν)

]
. (A.3)

The stress-energy tensor (F̂ ) and the covariant derivative (D̂) acting upon fields
transforming adjointly under the relevant gauge group are defined with respect to the
HD non-Abelian gauge field Â in the usual way:

F̂ µν ≡ ∂µÂν − ∂νÂµ − ig[Âµ, Âν ], (A.4)

D̂X ≡ ∂µX − ig[Âµ, X]. (A.5)

We now invoke auxiliary gauge fields, χ, ω, which also transform adjointly under
the group generated by Â. The Lagrangian of Eq. (A.1) may be obtained from the
auxiliary field Lagrangian,

LYM = −1

2
Tr F̂µνF̂

µν − Tr (D̂µχν − D̂νχµ)− 1

2
Tr (D̂µων − D̂νωµ)2

−2m2m3 Trχµω
ν + (m2

2 +m2
3)Trωµω

µ. (A.6)

Upon integration by parts, a form of Eq. (A.1) may be obtained in which no derivatives
act on χ, which makes its role as an auxiliary field manifest. Note also that χ appears
linearly in the Lagrangian, thereby playing the role of a Lagrange multiplier. We can
now vary LYM with respect to χ to obtain the equation of motion,

D̂νF̂
νµ −m2m3ω

µ = 0. (A.7)

The linearity of χ ensures that this equation is exact at the quantum level - that is
to say, χ may be formally integrated out of the path integral.
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We now seek a Lagrangian of the Lee-Wick (LW) form, as was done in § 2.1. We

map the fields Â, χ, andω onto the three new fields A1,2,3:

Aµ1 ≡Âµ + χµ, (A.8)

Aµ2 ≡
√
−η2

η1

χµ −
√
η3

η1

ωµ, (A.9)

Aµ3 ≡
√
η3

η1

χµ −
√
−η2

η1

ωµ. (A.10)

Only A1 transforms as a gauge field under the gauge group; the others transform as
matter fields under the adjoint representation. Their status as matter fields can be
understood from the explicit Proca-style mass terms appearing in Eq. (A.6). For the
sake of completeness, we list the inverse transformations as well:

Âµ =Aµ1 −
√
−η2

η1

Aµ2 +

√
η3

η1

Aµ3 , (A.11)

χµ =

√
−η2

η1

Aµ2 −
√
η3

η1

Aµ3 , (A.12)

ωµ =

√
η3

η1

Aµ2 −
√
−η2

η1

Aµ3 . (A.13)

The sum rules of Eqs. (2.19), (2.20), and (2.21) may be used to re-express the η pa-
rameters in terms of the masses m2,3. Since A1 is the sole remaining gauge field, we
can “unhat” the operators of Eq. (A.1) and define them with espect to A1 instead.
We respectively define the pieces of L that are quadratic, cubic, and quartic in A1 as
L0, L1, andL2. What follows is the LW Lagrangian

L0 = −1

2
TrF µν

1 F1µν +
1

2
Tr (DµA2ν −DνA2µ)2 − 1

2
Tr (DµA3ν −DνA3µ)2

−m2
2TrAµ2A2µ +m2

3TrAµ3A3µ, (A.14)

which contains the kinetic and mass terms of the theory. We also note that only
the kinetic and mass terms corresponding to A2 possess the overall negative sign
associated with LW fields. The cubic piece is

L1 =
−ig

m2
3 −m2

2

Tr (F1µν [m3A
µ
2 −m2A

ν
3,m3A

ν
2 −m2A

ν
3])

+
ig

(m2
3 −m2

2)1/2

(
Tr (DµA2ν −DνA2µ)(2m3[Aµ2 , A

ν
3 −m2[Aµ2 , A

ν
3]−m2[Aµ3 , A

ν
2])

+Tr (DµA3ν −DνA3µ)(2m2[Aµ3 , A
ν
3]−m3[Aµ2 , A

ν
3]−m3[Aµ3 , A

ν
2])
)
, (A.15)
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and the quartic piece is

L2 =
g2

2(m2
3 −m2

2)2

×
(
m2

3(4m2
2 − 3m2

3)Tr [Aµ2 , A
ν
2]2 + 2m2

2m
2
3Tr [Aµ2 , A

ν
2][A3µ, A3ν ]

+m2
2(4m2

3 − 3m2
2)Tr [Aµ3 , A

ν
3]2

+2m2m3(m2
3 − 2m2

2)Tr [Aµ2 , A
ν
2]([A2µ, A3ν ] + [A3µ, A2ν ])

+2m2m3(m2
2 − 2m2

3)Tr [Aµ3 , A
ν
3]([A2µ, A3ν ] + [A3µ, A2ν ])

+(m4
2 −m2

2m
2
3 +m4

3)Tr ([Aµ2 , A
ν
3] + [Aµ3 , A

ν
2])([A2µ, A3ν ] + [A3µ, A2ν ])

)
(A.16)

Though cumbersome, these expressions are still simplified with respect to a completely
general N = 3 treatment, owing to the sum rules of § 2.1.

A.2 Fermions

The N = 3 Lagrangian for a HD chiral fermion φ̂L is

LHD,f =
1

m2
2m

2
3

¯̂
φL

[
(i /̂D)2 −m2

2

][
(i /̂D)2 −m2

3

]
i /̂Dφ̂L, (A.17)

where the covariant derivative D̂ runs over the gauge bosons and their LW partners, as
described in § A.1. We now invoke auxiliary fields χL,R, ψL,R, and write the auxiliary
field Lagrangian

LAF =
¯̂
φLi /̂Dφ̂L − χ̄Ri ˆslashedDχR + ψ̄Li /̂DψL + (

¯̂
φLi /̂DχL + h.c.) + (χ̄Ri /̂DψR + h.c.)

+
m2m3

m2 +m3

(χ̄R(χL + ψL) + h.c.)− (m2 +m3)(ψ̄LψR + h.c.)).

(A.18)

When considered as Weyl spinors1, the new fields we have introduced appear linearly
in Eq. (A.18). This means that they can be integrated out of the path integral, and
variation of Eq. (A.18) with respect to them produces equations of motion which
are exact at the quantum level. They can therefore be truly called auxiliary fields.
Varying LAF with respect to them yields

i /̂Dφ̂L +
m2m3

m2 +m3

χR = 0, (A.19)

i /̂Dχr − (m2 +m3)ψL = 0. (A.20)

These constraint equations may be substituted back into Eq. (A.18) to eliminate all
terms linear in χL and ψR. The remaining auxiliary fields, χR and ψL, may also be

1That is, considering different helicities as being independent degrees of freedom
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expressed in terms of φ̂L:

χR = −m2 +m3

m2m3

i /̂Dφ̂L, (A.21)

ψL =
i /̂D

m2 +m3

χR = − 1

m2m3

(i /̂D)2φ̂L. (A.22)

These identifications may be used to turn Eq. (A.18) back into Eq. (A.17).
We now turn to the task of obtaining a Lagrangian of the conventional LW form.

The left-chiral fields, φ̂L, χL, andψL, are mapped into the new SM- and LW-type

fields, φ
(1,2,3)
L , and the right-chiral fields, χR and ψR, are mapped into φ2,3

R :

φ
(1)
L ≡φ̂L + χL, (A.23)

φ
(2)
L ≡

√
−η2

η1

χL −
√
η3

η1

ψL, (A.24)

φ
(3)
L ≡

√
η3

η1

χL −
√
−η2

η1

ψL, (A.25)

and

φ
(2)
R ≡

√
−η2

η1

χR −
(√
−η2

η1

+

√
η3

η1

)
ψR, (A.26)

φ
(3)
R ≡

√
η3

η1

χR −
(√
−η2

η1

+

√
η3

η1

)
ψR. (A.27)

These are accompanied by the inverse transformations

φ̂L =φ
(1)
L −

√
−η2

η1

φ
(2)
L +

√
η3

η1

φ
(3)
L , (A.28)

χL =

√
−η2

η1

φ
(2)
L −

√
η3

η1

φ
(3)
L , (A.29)

ψL =

√
η3

η1

φ
(2)
L −

√
−η2

η1

φ
(3)
L , (A.30)

and for the right-chiral fields,

χR =

(√
−η2

η1

+

√
η3

η1

)(
φ

(2)
R − φ

(3)
R

)
, (A.31)

ψR =

√
η3

η1

φ
(2)
R −

√
−η2

η1

φ
(3)
R . (A.32)

Putting these together, we arrive at the fermionic N = 3 LW Lagrangian,

LLW,f = φ̄
(1)
L i /̂Dφ

(1)
L − φ̄

(2)(i /̂D −m2)φ(2) + φ̄(3)(i /̂D −m3)φ(3), (A.33)

where we combine the Weyl spinors as φ(i) ≡ φ
(i)
L + φ

(i)
R .
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A.3 Higgs Sector

Many of the methods and results from the toy scalar theory of § 2.1 can be
carried over directly to the analysis of complex scalar fields and spontaneous symmetry
breaking. We begin with a complex scalar field, Ĥ, which transforms fundamentally
under SU(2)L × U(1)Y . It carries hypercharge Y = 1/2, as in the SM case. The
Lagrangian for this field is

LN=3
HD = D̂µĤ

†D̂µĤ −m2
HĤ

†Ĥ − 1

M2
H

Ĥ†(D̂µD̂
µ)2Ĥ − 1

M4
H

Ĥ†(D̂µD̂
µ)3Ĥ + Lint(Ĥ).

(A.34)
An auxiliary field Lagrangian (similar to that of Eq. (2.6)) may be obtained, with
complex scalars χ and ψ also transforming in the fundamental representation:

LAF =
1

η1

{
D̂µĤ

†D̂µĤ −m2
1Ĥ
†Ĥ −

[
χ†(D̂µD̂

µ +m2
1)Ĥ + h.c.

]
+ (m2

2 −m2
1)1/2(m2

3 −m2
1)1/2(χ†ψ + ψ†χ) + D̂µψ

†D̂µψ

− (m2
2 +m2

3 −m2
1)ψ†ψ

}
+ Lint(Ĥ). (A.35)

Since χ appears without derivatives, it is a true auxiliary field. Varying Eq. (A.35)
with respect to χ returns equations of motion which may be used to regain Eq. (A.34).
We can obtain the LW form of the theory through the redefinitions Eqs. (2.13)-(2.15)

by relabeling φ̂→ Ĥ and φ(i) → H(i), resulting in

L =−H(1)†(D̂µD̂
µ +m2

1)H(1) +H(2)†(D̂µD̂
µ +m2

2)H(2)

−H(3)†(D̂µD̂
µ +m2

3)H(3) + Lint(Ĥ). (A.36)

As in Eq. (2.23), the interaction terms obey the decomposition

Lint(Ĥ) = Lint(
√
η1H

(1) −
√
−η2H

(2) +
√
η3H

(3)). (A.37)

Spontaneous symmetry breaking in the SM is ensured by the presence of a negative
mass term, to wit, m2

H < 0 in Eq. (A.34). Since the original mass term and the

interaction terms will become mixed by the VEV, it is convenient to move Lmass(Ĥ) =

−m2
HĤ

†Ĥ into Lint(Ĥ):

LHD = LHD(m2
H = 0) + L′int(Ĥ), (A.38)

where

L′int(Ĥ) ≡ −λ
4

(
Ĥ†Ĥ − v2

2

)2

(A.39)

and v is the Higgs VEV. Now that the HD mass term has been re-grouped as a piece
of the interaction Lagrangian, the LW mass scales M1, M2 follow from Eqs. (2.11)
and (2.12) by setting m1 = 0:

M2
1 =

m2
2m

2
3

m2
2 +m2

3

, M2
2 = m2m3. (A.40)
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The m2
H = 0 part of the Lagrangian is handled as in the toy theory case of § 2.1. Set-

ting m2
1 = 0 (hence, η1 = 1 in Eq. (2.6)), one then obtains the canonical, alternating-

sign Lee-Wick Lagrangian

L = D̂µH
(1)D̂µH(1) − D̂µH

(2)D̂µH(2) + D̂µH
(3)D̂µH(3) +m2

2H
(2)†H(2)

+m2
3H

(3)†H(3) + L′int

(
H(1) −

√
−η2H

(2) +
√
η3H

(3)
)
, (A.41)

where the interaction term may be unfolded into the expression

−Lint =
λ

4

(
H(1)†H(1) − v2

2

)2

+
λ

4

(
H(1)†H(1) − v2

2

)
×
{[
H(1)†(

√
−η2H

(2) +
√
η3H

(3)) + h.c.
]
+ |
√
−η2H

(2) +
√
η3H

(3) |2
}

+
λ

4

{[
H(1)†(

√
−η2H

(2) +
√
η3H

(3)) + h.c.
]
+ |
√
−η2H

(2) +
√
η3H

(3) |2
}2

. (A.42)

One may then work in unitarity gauge, in which all Goldstone bosons are removed as
physical degrees of freedom. This results in the explicit Higgs representations

H1 =

(
0

1√
2
(v + h1)

)
, H2 =

(
h+

2
1√
2
(H2 + iP2)

)
, H3 =

(
h+

3
1√
2
(h3 + iP3)

)
, (A.43)

where the hi are CP -even scalars, the Pi are CP -odd pseudoscalars, and the h+
i are

charged Higgses; v is the familiar Higgs VEV of the Standard Model. The mass terms
of Eq. (A.42) may be expanded in this basis as

−Lmass =
1

2
m2(h1 −

√
−η2h2 +

√
η3h3)2 − 1

2
m2

2(2h−2 h
+
2 + h2

2 + P 2
2 )

+
1

2
m2

3(2h−3 h
+
3 + h2

3 + P 2
3 ), (A.44)

with m2 = λv2/2 ≈ (125 GeV)2. Note that the charged and pseudoscalar mass terms
are canonical as written, but that the neutral scalar mass terms are not. These
terms need to be diagonalized in such a way that their corresponding kinetic terms
remain canonically normalized, all with respect to the LW basis {1, −1, 1}. These
diagonalization matrices can be easily found numerically [55], and this procedure
(albeit for fermions) is described in detail in § 2.3.2.

A.4 Yukawa Couplings

The HD Yukawa Lagrangian is given by

LYukawa = −λ
(

¯̂
φLĤψ̂R + h.c.

)
, (A.45)

which couples a complex scalar, Ĥ, to left- and right-handed fermions φ̂L and ψ̂R.
We anticipate an application to the Standard Model by assuming that φ̂L and Ĥ
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transform in the fundamental representation of some gauge group, while ψ̂R remains

a singlet. Let ηi (defined in § 2.1) refer to the LW mass spectrum of φ̂
(i)
L and η′i refer

to the LW mass spectrum of ψ̂
(i)
R . We can use Eqs. (A.28) and (A.45) to compute

the (potential) quadratic divergence in the scalar mass arising fermion loops, and it
is proportional to (

1 +
η2

η1

+
η3

η1

)
×
(

1 +
η′2
η′1

+
η′3
η′1

)
. (A.46)

The sum rule of Eq. (2.19) ensures that this contribution vanishes identically.
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APPENDIX B

QUANTIZATION CONVENTIONS

B.1 Classical to Quantum Theory

Whereas the other parts of this dissertation have dealt with Lee-Wick (LW) fields
from the perspective of Lagrangian field theory, we now seek a Hamiltonian formu-
lation. This is useful in the study of thermal field theories, as investigated in Ch. 4.
Although we have already seen detailed calculations of correlation functions of N = 2
and N = 3 LW theories earlier in this dissertation, these were done at zero tempera-
ture, and so we cannot expect these prior results to hold at finite temperature. This
Appendix presents a thorough calculation of the thermal properties of an N = 2 toy
theory. The results are of a general nature, and the methods herein may be applied
equally well to fermions and gauge fields1.

Let us begin with the free scalar-field Lagrangian,

L = ηH

(
1

2
∂µφ∂

µφ− 1

2
m2φ2

)
, (B.1)

where we have left an overall sign ηH = ±1 undetermined. We then solve for the
canonical momentum conjugate to φ, which we call πφ:

πφ =
∂L
∂φ̇

= ηH φ̇. (B.2)

This allows us to write the Hamiltonian density,

H = ηH

(
1

2
π2
φ +

1

2
(∇φ)2 1

2
m2φ2

)
. (B.3)

The ηH factor allows for the existence of a semipositive- (or seminegative-)definite
Hamiltonian. The presence of πφ allows us to write down the commutation relations
that define the quantum structure of the theory, as is the case with the expression
[x, p] = i~ in non-relativistic quantum mechanics. The commutation relations are
given by

[φ(x), πφ(y)] = iηCδ
(3)(x− y), (B.4)

where ηC = ±1 is another sign factor, to be fixed later on. In the conventional
treatment, one sets ηC = 1 from the start. The definition of the commutator in
Eq. (B.4) allows us to solve for the commutators between the field and conjugate

1The reader interested in a pedagogical approach to finite-temperature field theory is encouraged
to consult Ref.[82].

122



momentum operators and the Hamiltonian2

[φ,H] = ηH

[
φ(x),

1

2

∫
d3y π2

φ(y)

]
= iηHηCπφ = iηC φ̇, (B.5)

[πφ, H] = ηH

[
πφ(x),

1

2

∫
d3y

(
m2φ2(y) + (∇φ(y))2

)]
= − iηHηC(m2 +∇2)φ = iηC π̇φ, (B.6)

where the expression for π̇φ is obtained with the aid of the Euler-Lagrange equations
for φ. Eqs. (B.5) and (B.6) may be used to prove the generalized Heisenberg equation
of motion,

[O, H] = iηCȮ, (B.7)

for any function O(φ, πφ). The proof is straightforward. Both sides of Eq. (B.7) are
linear in O, and so one may take O to be a monomial function of φ and πφ without
loss of generality. Using the identity

[AB,H] = A[B,H] + [A,H]B, (B.8)

an operator of the form O = AB will yield AḂ+ȦB when commuted with H. This is
nothing more than d

dt
(AB). Therefore, the function AB also satisfies Eq. (B.7). Since

φ and πφ satisfy Eq. (B.7), the identity Eq. (B.8) can be used to show the Heisenberg
equations of motion for an arbitrarily complicated (algebraic) function of φ and π. If
O is a polynomial, it may be broken into individual monomials, and its behavior per
Eq. (B.7) may be shown piecewise as above. This completes the proof.

This result shows that, once the phase space of a system has been partitioned into
one set for which ηC = +1 and another for which ηC = −1, Heisenberg equations of
motion may be obtained for each. Note the absence of a functional dependence on
ηH . We exclude from consideration any operators which are functions of fields drawn
from both sides of the partition, as these do not give rise to a Hilbert space equipped
with a consistent quantum-mechanical norm.

We move now to the interpretation of operators obeying the “wrong-sign” equa-
tions of motion. Eq. (B.7) may be exponentiated to obtain

eiηCH(t−t0)O(t0)e−iηCH(t−t0) = O(t), (B.9)

indicating that operators evolve forward in time according to the unitary operator
U(t, t0) = exp[−iηCH(t−t0)]. Operators belonging to the ηC = −1 partition therefore
possess an opposite-sign phase with respect to the time evolution of conventional
(ηC = +1) operators. If this were the only difference, the choice of ηC could be
dismissed as a mere convention, serving at best a pedantic purpose in the construction
of time-dependent quantum mechanical operators. However, this is not the case, as
will be shown in subsequent sections. The choice of ηC has profound implications for
defining the propagator (and correlation functions in general), how the integration
contour may be deformed to pick up poles, and the thermal spectrum of the theory.

2NB: The Hamiltonian is given by the spatial integral of the Hamiltonian density, i.e., H =∫
d3xH(x).
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B.2 Mode Expansions and the Hamiltonian

We begin by writing down the mode expansions for a field of Lee-Wick type, φ(x),
and its canonically conjugate momentum, πφ(x):

φ(x) =

∫
d3p

(2π)3

1√
2ωp

(
ape

ip·x + a†pe
−ip·x

)
=

∫
d3p

(2π)3

1√
2ωp

(ap + a†−p)eip·x, (B.10)

πφ(x) = ηH

∫
d3p

(2π)3
(−i)

√
ωp
2

(
ape

ip·x + a†pe
−ip·x

)
= ηH

∫
d3p

(2π)3
(−i)

√
ωp
2

(ap − a
†
−p)eip·x, (B.11)

where ωp =
√

p2 +m2 is strictly positive, and ηH reflects the elementary result

πφ = ηH φ̇ from Eq. (B.2). The commutator is given by [ap, a
†
q] ≡ ηN(2π)3δ(3)(p−q),

where we have introduced a third and final sign factor, ηN , defining the norm of the
quantum state created by a†p. This overall factor may be constrained by beginning
with the commutator of φ and πφ:

[φ(x), πφ(y)] = − ηH
∫
d3pd3q

(2π)6

i

2

√
ωq

ωp

(
[a†−p, aq]− [ap, a

†
−q]
)
ei(p·x+q·y)

= ηH

∫
d3pd3q

(2π)6

i

2

√
ωq

ωp

× 2(2π)3 × ηNδ(3)(p + q)ei(p·x+q·y)

= iηHηNδ
(3)(x− y), (B.12)

from which we conclude ηC = ηHηN . The meaning of ηN becomes clear once we
calculate the spectrum of the theory. To do this, we expand the Hamiltonian in
terms of its modes:

H =

∫
d3x

[
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2

]
=

∫
d3x

∫
d3p d3q

(2π)6
ei(p+q)·x · 1

2

[
−
√
ωpωq

2
× (ap − a

†
−p)(aq − a

†
−q)

+
−p · q +m2

2
√
ωpωq

× (ap + a†−p)(aq − a
†
−q)

]
= ηH

∫
d3p

(2π)3
ωp

(
a†pap +

1

2
[ap, a

†
p]

)
. (B.13)
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From this expression follow the commutators

[H, ap] = ηH

∫
d3q

(2π)3
ωq[a†q, ap]aq = −ηHηNωpap

= − ηCωpap, (B.14)

[H, a†p] = ηH

∫
d3q

(2π)3
ωqa

†
q[aq, a

†
p] = +ηHηNωpa

†
p

= + ηCωpa
†
p. (B.15)

Comparing this with Eq. (B.7), we now have equations of motion for the creation and
annihilation operators. Rearranging Eq. (B.14) into the form Hap = ap(H − ηCωp),

we can act repeatedly on the left with H to obtain Hnap = ap(H − ηCωp)n. This
expression may be exponentiated to obtain

ap(t) =U †(t, 0)ap(t = 0)U †(t, 0) = e
iηCHtape

−iηCHt

= ape
−iωpt. (B.16)

The result a†p(t) = a†pexp(+iωpt) is readily obtained by Hermitian conjugation. This
much is identical to the conventional treatment. However, there remains a subtlety
to be addressed: which are the raising and which are the lowering operators? Given
some eigenstate |ψ〉 of the Hamiltonian satisfying H |ψ〉 = Eψ |ψ〉, we determine this
by computing

H(a†p |ψ〉) = ([H, a†p] + a†pH) |ψ〉 = (ηCωpa
†
p + a†pEψ) |ψ〉

= (ηCωp + Eψ)
(
a†p |ψ〉

)
. (B.17)

If ηC = +1, then a†p raises the energy of the state on which it operates, as expected.

If instead ηC = −1, then a†p lowers the energy of the state on which it acts, and it is

ap which actually serves the role of the raising operator. It is important to recall the
equality ηC = ηHηN , and so the “wrong-sign” choice of ηC = −1 could be achieved
by an unconventional sign choice for either ηH or ηN .

We must define a vacuum for the theory. This can be done in four distinct ways,
one for each choice of ηH and ηN . In the case of ηH = −1, corresponding to a LW
Hamiltonian, we may choose ηN = −1 as well, thereby fixing ηC = +1. We see
from Eqs. (B.14) and (B.15) that this corresponds to the ladder operators ap and a†p
still behaving as annihilation and creation operators, respectively. We are then at
liberty to define a lowest-energy state | 0〉 such that ap | 0〉 = 0, with single-particle

momentum eigenstates defined by | p〉 =
√

2ωpa
†
p | 0〉. The inner product between

two momentum eigenstates is given by

〈p |q〉 = 2
√
ωpωq〈0 |apa†q |0〉 = 2

√
ωpωq〈0 | [ap, a†q] |0〉

= 2ηNωpδ
(3)(p− q), (B.18)

from which we see that the choice ηN = −1 corresponds to defining a negative
quantum-mechanical norm on the Hilbert space. If instead we choose ηN = +1,
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this results in ηC = −1, and the roles of ap and a†p must be interchanged; the vacuum

is now defined by the state |0〉 such that a†p |0〉 = 0.
Now that the vacuum is defined in the general case, we can go on to calculate the

spectrum of the Hamiltonian built by the repeated action of creation operators on
the vacuum in question:

H |p〉 =

(
ηH

∫
d4q

(2π)3
ωqa

†
qaq

)
a†p

√
2ωp |0〉

= ηH

∫
d4q

(2π)3
ωqa

†
q[aq, a

†
p]
√

2ωp |0〉

= ηHηNωpa
†
p

√
2ωp |0〉 = ηHηNωp |p〉, (B.19)

from which we conclude

H |p〉 ≡ Ep |p〉 = ηHηNωp |p〉 = ηCωp |p〉. (B.20)

Our findings may now be summarized. If we choose ηC = ηH = ηN = +1, correspond-
ing to the typical Klein-Gordon theory, then there exists a positive-semidefinite energy
spectrum with a vacuum |0〉 annihilated by ap. If instead we choose ηH = ηN = −1,
we still have ηC = +1, and this corresponds to the Lee-Wick case pursued in this
dissertation. The Hamiltonian spectrum is still positive-semidefinite, although the
norms of single-particle states are negative. A third option, with ηH = −ηN (without
necessarily specifying the sign of either), results in a Hamiltonian spectrum which
is bounded from above. The roles of creation and annihilation operators are inter-
changed, and the vacuum |0〉 is defined by a†p |0〉 = 0.

B.3 Calculating the Propagator

Now that we have a quantized field theory with well-defined time evolution and
norm, we can turn to the task of constructing the propagator. The end goal is to
obtain a form for the propagator in which Wick rotation in the complex-p0 plane
can be easily implemented. Let us begin by writing the mode expansion for φ(x),
generalizing Eq. (B.10):

φ(x) =

∫
d3p

(2π)3

1√
2ωp

(
aηCpe

−ip·x + a†ηCpe
ip·x) ∣∣∣

ηC
, (B.21)

where the ηC is shorthand for evaluating p0 at p0 = ηCωp = ηHηNωp. We allow for
this ambiguity so as to include the possibility of defining φ on the positive or negative
mass-shell, i.e., p0 = ±

√
p2 +m2. Since we are now working with the Lorentz-

invariant p · x (rather than the non-covariant p · x), we maintain this invariance by
generalizing the ladder operators to create and destroy states of momentum ηCp.
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We can now calculate the two-point function:

〈0 |φ(x)φ(y) |0〉 =

∫
d3p d3q

(2π)6

1

2
√
ωpωq

〈0 |aηCpa
†
ηCq
|0〉e−i(p·x−q·y)

∣∣∣
ηC

=

∫
d3p d3q

(2π)6

ηN
2
√
ωpωq

δ(3)[ηC(p− q)]e−i(p·x−q·y)
∣∣∣
ηC

=

∫
d3p

(2π)3

ηN
2ωp

e−ip·(x−y)
∣∣∣
ηC
≡ Dη(x− y). (B.22)

The subscript η serves as an accounting device, keeping track of which quantization
scheme was used. We can now construct the time-ordered Feynman propagator,

Dη
F (x− y) ≡ θ(x0 − y0)Dη(x− y) + θ(y0 − x0)Dη(y − x)

=

∫
d3p

(2π)3

ηN
2ωp

[
θ(x0 − y0)e−ip·(x−y)

∣∣∣
p0=ηCωp

+ θ(y0 − x0)eip·(x−y)
∣∣∣
p0=ηCωp

]
=

∫
d3p

(2π)3

ηN
2ωp

[
θ(x0 − y0)e−ip·(x−y)

∣∣∣
p0=ηCωp

+ θ(y0 − x0)e−ip·(x−y)
∣∣∣
p0=−ηCωp

]
=

∫
d4p

(2π)3

ηN
2ωp

[
θ(x0 − y0)δ(p0 − ηCωp)

+ θ(y0 − x0)δ(p0 + ηCωp)
]
e−ip·(x−y). (B.23)

In order to continue, we invoke the Lee-Wick prescription: the theory must be free
of exponentially-growing modes. This demand results in a condition on how the
integration contour is to be pushed above and below the real p0 axis. We deform the
contour with Feynman iε as follows:

Dη
F (x− y) =

∫
d4p

(2π)3

ηN
2ωp

[
δ(p0 − ηCωp + iε) + δ(p0 + ηCωp − iε)

]
e−ip·(x−y)

=

∫
d4p

(2π)3

ηN
2ωp

( 1

−2πi
· 1

p0 − (ηC − iε)
+

1

2πi
· 1

p0 + (ηC − iε)

)
e−ip·(x−y)

=

∫
d4p

(2π)4

iηN
2ωp

(p0 + ηCωp − iε− p0 + ηCωp − iε
(p0)2 − (ηCωp − iε)

)
e−ip·(x−y)

=

∫
d4p

(2π)4

iηNηC
p2 −m2 + iηCε

e−ip·(x−y).

(B.24)

We recognize in Eq. (B.24) the momentum-space Feynman propagator,

D̃η
F (p) =

iηH
p2 −m2 + iηCε

. (B.25)

The implications of Eq. (B.25) for the analytic structure of the theory are clear.
The conventional Klein-Gordon case corresponds to ηC = ηH = ηN = +1, as before.
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Lee-Wick theories belonging to either quantization scheme possess the well-known
“wrong-sign” propagator, since ηH = ηNηC = −1. However, there exists a subtle
difference when ηC = −ηN = −1: the shifted poles lie in the first and third quadrants
of the complex p0 plane, rather than the second and fourth, as is usually the case.
This means that we obtain a different overall sign when deforming the contour to
pick up the poles. Therefore, when performing a Wick rotation in order to perform
an integral, we must define the Euclidean momentum as p0 = −ip0

E, corresponding
to counterclockwise rotation in the complex p0 plane.
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APPENDIX C

THE LEE-WICK STANDARD MODEL SPECTRUM:
CONDENSATE-DEPENDENT N = 2 THEORY

Though some of the results of Appendix A could be truncated and cosmetically
modified to obtain the input parameters for Ch. 4, this task can be non-trivial; we
therefore reproduce the necessary results below for the convenience of the reader.
For completeness, we present here the calculation of the field-dependent masses that
appear in Table 4.2. We use the metric convention gµν = diag(1,−1,−1,−1).

C.1 Higgs & Electroweak Gauge Sector

In the higher-derivative formalism, we denote the Higgs doublet as Ĥ, the SU
(
2
)
L

gauge field as Ŵ a
µ , and the U

(
1
)
Y

gauge field as B̂µ. We suppose that there is

a nonzero homogenous Higgs condensate 〈Ĥ〉 = (0 , φc/
√

2)T that breaks the elec-
troweak symmetry down to U

(
1
)

EM
. The Higgs field may be expanded about the

background as

Ĥ =

(
ĥ+

φc+ĥ+iP̂√
2

)
, (C.1)

where ĥ and P̂ are real scalar fields and ĥ+ is complex. After electroweak symmetry
breaking, we denote the photon, neutral weak boson, and charged weak boson fields
as Âµ, Ẑµ, and Ŵ±

µ respectively. These are related to the original electroweak gauge
fields by the standard transformations

Ẑµ = cos θW Ŵ 3
µ − sin θW B̂µ ,

Âµ = sin θW Ŵ 3
µ + cos θW B̂µ ,

Ŵ±
µ = 1√

2

(
Ŵ 1
µ ∓ iŴ 2

µ

)
,

(C.2)

where cos θW = g/
√
g2 + g′ 2 and sin θW = g′/

√
g2 + g′ 2. We work in the Rξ gauge

formalism for generality and restrict to the Landau gauge (ξ = 0) at the end. We
introduce eight anti-commuting, scalar ghost fields cA, cZ , cW+ , cW− , c̄A, c̄Z , c̄W+ ,
and c̄W− .
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The gauge-fixed LWSM electroweak sector is specified by the Lagrangian

L(EW)
hd = L(H)

hd + L(B)
hd + L(W)

hd + L(g.f.)
hd + L(gh.)

hd , (C.3)

L(H)
hd =

∣∣∣D̂µĤ
∣∣∣2 − 1

Λ2
H

∣∣∣D̂µD̂
µĤ
∣∣∣2 − Uhd(Ĥ) ,

L(B)
hd = −1

4
B̂µνB̂

µν + 1
2Λ2

B

(
∂µB̂µν

)2

,

L(W)
hd = −1

4
Ŵ a
µνŴ

aµν + 1
2Λ2

W

(
DµŴ a

µν

)2

,

L(g.f.)
hd = − 1

2ξA

(
∂µÂµ

)2

− 1
2ξZ

(
∂µẐµ − ξZ

√
g2+g′ 2

2
φcP̂

)2

− 1
ξW

∣∣∣∂µŴ+
µ − i ξW

g
2
φcĥ

+
∣∣∣2 ,

L(gh.)
hd = c̄A(−∂2)cA + c̄Z

(
−∂2 − ξZ g

2+g′ 2

4
φ2
c

)
cZ + c̄W+

(
−∂2 − ξW g2

4
φ2
c

)
cW+

+c̄W−
(
−∂2 − ξW g2

4
φ2
c

)
cW− + interactions ,

where

Uhd(Ĥ) = λ

(
Ĥ†Ĥ − v2

2

)2

, (C.4)

D̂µH =

(
∂µ − ig

σa

2
Ŵ a
µ − ig′

1

2
B̂µ

)
H , (C.5)

B̂µν = ∂µB̂ν − ∂νB̂µ , (C.6)

Ŵ a
µν = ∂µŴ

a
ν − ∂νŴ a

µ + gεabcŴ b
µŴ

c
ν , (C.7)

(DµŴµν)
a = ∂µŴ a

µν + gεabcŴ b µŴc µν . (C.8)

Since we are only interested in calculating the tree-level masses, we drop the interac-
tions (terms containing products of three or more fields). After expanding the Higgs
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field with (C.1) and performing the rotation (C.2), the Lagrangian becomes

Uhd =
λ

4
(φ2

c − v2)2 + λφc(φ
2
c − v2)ĥ+

1

2
λ(3φ2

c − v2)ĥ2 +
1

2
λ(φ2

c − v2)P̂ 2

+ λ(φ2
c − v2)ĥ+ĥ− , (C.9)

L(H)
hd + L(g.f.)

hd =
1

2

[(
∂µĥ
)2

− 1

Λ2
H

(∂2ĥ)2

]
+

1

2

[(
∂µP̂

)2

− 1

Λ2
H

(∂2P̂ )2

]
+

[∣∣∣∂µĥ+
∣∣∣2 − 1

Λ2
H

∣∣∣∂2ĥ+
∣∣∣2]

+
1

2

g2 + g′ 2

4
φ2
cẐµẐ

µ +
g2

4
φ2
c

∣∣∣Ŵ−
µ

∣∣∣2 − 1

2

g2 + g′ 2

4
ξZφ

2
cP̂

2 − ξW
g2

4
φ2
c

∣∣∣ĥ+
∣∣∣2

− 1

2ξA
(∂µÂ

µ)2 − 1

ξW

∣∣∣∂µŴ−µ
∣∣∣2 − 1

2ξZ
(∂µẐ

µ)2

+

√
g2 + g′ 2

2
φc∂µ

(
P̂ Ẑµ

)
+
g

2
φc∂µ

(
i ĥ+Ŵ−µ − i ĥ−Ŵ+µ

)
, (C.10)

L(B)
hd + L(W)

hd = − 1

4

(
∂µÂν − ∂νÂµ

)2

− 1

4

(
∂µẐν − ∂νẐµ

)2

− 1

2

∣∣∣∂µŴ−
ν − ∂νŴ−

µ

∣∣∣2
+

1

Λ2
W

∣∣∣∂2Ŵ−
µ − ∂µ∂νŴ−

ν

∣∣∣2 +
1

2Λ2
Z

(
∂2Ẑµ − ∂µ∂νẐν

)2

+
1

2Λ2
A

(
∂2Âµ − ∂µ∂νÂν

)2

− 1

2Λ2
AZ

(
∂2Âµ − ∂µ∂νÂν

)(
∂2Ẑµ− ∂µ∂αẐα

)
, (C.11)

where we have defined

ΛA ≡
(

cos2 θW
Λ2
B

+ sin2 θW
Λ2
W

)−1/2

,

ΛZ ≡
(

sin2 θW
Λ2
B

+ cos2 θW
Λ2
W

)−1/2

,

ΛAZ ≡
(

sin 2θW
Λ2
B
− sin 2θW

Λ2
W

)−1/2

.

(C.12)

The final two terms in (C.10) are total derivatives and can be dropped. After inte-
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grating by parts and dropping total derivative terms, one obtains

L(EW)
hd =− λ

4
(φ2

c − v2)2 − λφc(φ2
c − v2)ĥ (C.13)

+
1

2
ĥ

(
−∂2 − 1

Λ2
H

∂4 −m2
ĥ

)
ĥ+

1

2
P̂

(
−∂2 − 1

Λ2
H

∂4 −m2
P̂

)
P̂

+ ĥ+

(
−∂2 − 1

Λ2
H

∂4 −m2
ĥ±

)
ĥ−

+
1

2
Âµ
[
−gµν

(
−∂2 − ∂4

Λ2
A

−m2
Â

)
+

(
− ∂

2

Λ2
A

− 1 +
1

ξA

)
∂µ∂ν

]
Âν

+
1

2
Ẑµ

[
−gµν

(
−∂2 − ∂4

Λ2
Z

−m2
Ẑ

)
+

(
− ∂

2

Λ2
Z

− 1 +
1

ξZ

)
∂µ∂ν

]
Ẑν

+
1

2
Âµ
[
−
(
gµν∂

2 − ∂µ∂ν
) ∂2

Λ2
AZ

]
Ẑν (C.14)

+ Ŵ+µ

[
−gµν

(
−∂2 − ∂4

Λ2
W

−m2
Ŵ±

)
+

(
− ∂2

Λ2
W

− 1 +
1

ξW

)
∂µ∂ν

]
Ŵ− ν

+ c̄A(−∂2)cA + c̄Z
(
−∂2 − ξZm2

Ẑ

)
cZ + c̄W+

(
−∂2 − ξWm2

Ŵ±

)
cW+

+ c̄W−
(
−∂2 − ξWm2

Ŵ±

)
cW− , (C.15)

where

m2
ĥ
≡ λ(3φ2

c − v2) ,
m2
P̂
≡ λ(φ2

c − v2) + ξZm
2
Ẑ
,

m2
ĥ±
≡ λ(φ2

c − v2) + ξWm
2
Ẑ
,

m2
Ŵ±

≡ g2

4
φ2
c ,

m2
Ẑ

≡ g2+g′ 2

4
φ2
c ,

m2
Â

≡ 0 .

(C.16)

With the Lagrangian in this form, it is straightforward to read off the propagators.
For the scalars one finds

Dĥ(p) = i

(
p2 − p4

Λ2
H

−m2
ĥ

)−1

=
Λ2
H

m2
h̃
−m2

h

(
i

p2 −m2
h

− i

p2 −m2
h̃

)
,

DP̂ (p) = i

(
p2 − p4

Λ2
H

−m2
P̂

)−1

=
Λ2
H

m2
P̃
−m2

P

(
i

p2 −m2
P

− i

p2 −m2
P̃

)
,

Dĥ±(p) = i

(
p2 − p4

Λ2
H

−m2
ĥ±

)−1

=
Λ2
H

m2
h̃±
−m2

h±

(
i

p2 −m2
h±
− i

p2 −m2
h̃±

)
, (C.17)
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where

SM-like Pole

m2
h =

Λ2
H

2

(
1−

√
1− 4m2

ĥ

Λ2
H

)
,

m2
P =

Λ2
H

2

(
1−

√
1− 4m2

P̂

Λ2
H

)
,

m2
h± =

Λ2
H

2

(
1−

√
1− 4m2

ĥ±
Λ2
H

)
,

LW-like Pole

m2
h̃

=
Λ2
H

2

(
1 +

√
1− 4m2

ĥ

Λ2
H

)
,

m2
P̃

=
Λ2
H

2

(
1 +

√
1− 4m2

P̂

Λ2
H

)
,

m2
h̃±

=
Λ2
H

2

(
1 +

√
1− 4m2

ĥ±
Λ2
H

)
.

(C.18)

The poles are classified as “SM-like” or “LW-like”, depending on whether the residue
of the pole is positive or negative.

In the gauge sector, the ghost propagators are immediately seen to be

DcA(p) = i
p2
,

DcZ (p) = i
p2−ξZ m2

Ẑ

,

DcW+ (p) = i
p2−ξW m2

Ŵ±
,

DcW−
(p) = i

p2−ξW m2
Ŵ±

.

(C.19)

We define the transverse and longitudinal projection operators Πµν
T ≡ gµν − pµpν/p2

and Πµν
L ≡ pµpν/p2, and obtain

Dµν

Ŵ±
(p) =− iΠµν

T (p)

(
p2 − p4

Λ2
W

−m2
Ŵ±

)−1

− iΠµν
L (p)

(
p2

ξW
−m2

Ŵ±

)−1

=
Λ2
W

m2
W̃±
−m2

W±

(
−iΠµν

T (p)

p2 −m2
W±
− −iΠµν

T (p)

p2 −m2
W̃±

)
+
−i ξW Πµν

L (p)

p2 − ξWm2
Ŵ±

, (C.20)

where

SM-like Pole

m2
W± =

Λ2
W

2

(
1−

√
1− 4m2

Ŵ±
Λ2
W

)
,

LW-like Pole

m2
W̃±

=
Λ2
W

2

(
1 +

√
1− 4m2

Ŵ±
Λ2
W

)
.

(C.21)

We defer a discussion of the longitudinal polarization state until the end. The term
on line (C.14) corresponds to a mixing between transverse polarizations of Âµ and

Ẑµ, which gives rise to off-diagonal terms in the inverse propagator:

(D−1

ÂẐ
)µν(p) = iΠµν

T

(
p2 − p4

Λ2
A
−m2

Â

p4

2Λ2
AZ

p4

2Λ2
AZ

p2 − p4

Λ2
Z
−m2

Ẑ

)
+ iΠµν

L

(
p2

ξA
−m2

Â
0

0 p2

ξZ
−m2

Ẑ

)
.

(C.22)
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For simplicity, we assume just one common LW scale in the EW gauge sector. Then
one has ΛB = ΛW = ΛA = ΛZ ≡ ΛEW and also (ΛAZ)−2 = 0 using (C.12). The
mixing vanishes and the propagators become

Dµν

Â
(p) =

Λ2
EW

m2
Ã
−m2

A

(
−iΠµν

T (p)

p2 −m2
A

− −iΠµν
T (p)

p2 −m2
Ã

)
+
−i ξA Πµν

L (p)

p2 − ξAm2
Â

, (C.23)

Dµν

Ẑ
(p) =

Λ2
EW

m2
Z̃
−m2

Z

(
−iΠµν

T (p)

p2 −m2
Z

− −iΠµν
T (p)

p2 −m2
Z̃

)
+
−i ξZ Πµν

L (p)

p2 − ξZm2
Ẑ

, (C.24)

where

SM-like Pole

m2
A =

Λ2
EW

2

(
1−

√
1− 4m2

Â

Λ2
EW

)
= 0 ,

m2
Z =

Λ2
EW

2

(
1−

√
1− 4m2

Ẑ

Λ2
EW

)
,

LW-like Pole

m2
Ã

=
Λ2
EW

2

(
1 +

√
1− 4m2

Â

Λ2
EW

)
= Λ2

EW ,

m2
Z̃

=
Λ2
EW

2

(
1 +

√
1− 4m2

Ẑ

Λ2
EW

)
.

(C.25)

Note that the photon is massless, and that the mass of its LW partner is independent
of φc (see Eq. (C.15)).

Having calculated the spectrum, let us discuss the counting of degrees of freedom.
The scalar propagators (C.17) reveal that each of the fields ĥ, P̂ , ĥ+, and ĥ− carries
two degrees of freedom: a lighter SM-like resonance and a heavier LW-like resonance.
We might expect this doubling to carry over to the gauge fields as well, but an
inspection of their propagators reveals that this is not the case. In counting the
gauge boson degrees of freedom, note that Tr ΠT = ΠT, µνg

µν = 3 and Tr ΠL =

1. Examining the propagator (C.23), we see that the Â contains seven degrees of
freedom: three massless transverse polarizations (m2

A = 0), one massless longitudinal
polarization (m2

Â
= 0), and three massive transverse polarizations (m2

Ã
= Λ2

EW). The
four massless degrees of freedom constitute the SM photon, and after accounting for
the two “negative degrees of freedom” of the ghosts cA and c̄A, the count of “physical”
photon polarizations is reduced to two. Here, the LWSM does not double the number
of gauge degrees of freedom, but instead adds three, which is what one expects for an
additional massive resonance. For the Ẑ boson we count three degrees of freedom with
mass m2

Z , three degrees of freedom with mass m2
Z̃

, one degree of freedom with mass

ξZm
2
Ẑ

, and two negative degrees of freedom of mass ξZm
2
Ẑ

coming from the ghosts.
The ghost cancels the longitudinal polarization state, and one negative degree of
freedom remains. Once we restrict to the Landau gauge (ξA = ξZ = ξW = 0),
the ghosts and longitudinal polarizations become massless. Then these degrees of
freedom do not yield a field-dependent contribution to the effective potential, but
they do affect the number of relativistic species at finite temperature. Thus, we have
counted them as massless particles in Table 4.2, which also repreises Eqs. (C.18),
(C.21), and (C.25).
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C.2 Top Sector

Let the SU
(
2
)

doublet Q̂L = (ûL , d̂L)T be a left-handed Weyl spinor, and let
the singlet ûR be a right-handed Weyl spinor. Neglecting gauge interactions, the
Lagrangian for the top sector is written as

L(top)
hd = (Q̂L)†i /̄∂Q̂L +

1

Λ2
Q

(Q̂L)†i /̄∂ /∂ /̄∂Q̂L + (ûR)†i/∂ûR +
1

Λ2
u

(ûR)†i/∂ /̄∂ /∂ûR ,

− ht
(

(Q̂L)†εĤ∗ûR − (ûR)†ĤεQ̂L

)
, (C.26)

where /∂ = σµ∂µ and /̄∂ = σ̄µ∂µ. Contractions of the SU
(
2
)

doublets is accomplished
with the totally antisymmetric rank-2 tensor ε. After electroweak symmetry breaking,
one replaces Ĥ → (0 , φc/

√
2)T , and obtains

L(top)
hd = (ûL)†

(
i /̄∂ +

i /̄∂ /∂ /̄∂

Λ2
Q

)
ûL + (ûR)†

(
i/∂ +

i/∂ /̄∂ /∂

Λ2
u

)
ûR −

ht φc√
2

[
(ûL)†ûR + (ûR)†ûL

]
.

(C.27)

One can now collect the Weyl spinors into the Dirac spinor t̂ = ( ûL , ûR )T . Using
the standard definitions

γµ =

(
0 σµ

σ̄µ 0

)
, ¯̂t ≡ t̂†γ0 , /∂t̂ = γµ∂µt̂ , γ5 = iγ0γ1γ2γ3 , PL,R =

1∓ γ5

2
,

the Lagrangian can be written as

L(top)
hd = ¯̂t

(
i/∂ +

i/∂
3

Λ2
Q

PL +
i/∂

3

Λ2
u

PR

)
t̂− ¯̂tmt̂t̂ , (C.28)

where mt̂ ≡ htφc/
√

2. To simplify, we assume that ΛQ = Λu ≡ Λt. Then the
Lagrangian reduces to (4.39), and the propagator is

Dt̂(p) = i

(
− /
p3

Λ2
t

+ /p−mt̂(φc)

)−1

= +
Λ2
t

(mt̃1 −mt)(mt −mt̃2)

i

/p−mt

− Λ2
t

(mt̃1 −mt)(mt̃1 −mt̃2)

i

/p−mt̃1

− Λ2
t

(mt −mt̃2)(mt̃1 −mt̃2)

i

/p−mt̃2

, (C.29)

where

SM-like Pole: mt(φc) ≡ Λt

√
2
3

(
1− cos θt

3

)
,

LW-like Pole: mt̃1(φc) ≡ Λt

√
2
3

(
1 + cos θt+π

3

)
,

LW-like Pole: mt̃2(φc) ≡ −Λt

√
2
3

(
1 + cos θt−π

3

)
,

(C.30)
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where θt ≡ arctan
2
√
α(1−α)

1−2α
and α ≡ 27

4

m2
t̂

Λ2
t
. The angle 0 ≤ θt ≤ π is in the first or

second quadrant, and the LW stability condition imposes α < 1.
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