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ABSTRACT  

   

Tracking targets in the presence of clutter is inevitable, and presents many 

challenges. Additionally, rapid, drastic changes in clutter density between different 

environments or scenarios can make it even more difficult for tracking algorithms to 

adapt. A novel approach to target tracking in such dynamic clutter environments is 

proposed using a particle filter (PF) integrated with Interacting Multiple Models 

(IMMs) to compensate and adapt to the transition between different clutter 

densities. This model was implemented for the case of a monostatic sensor tracking 

a single target moving with constant velocity along a two-dimensional trajectory, 

which crossed between regions of drastically different clutter densities. Multiple 

combinations of clutter density transitions were considered, using up to three 

different clutter densities. It was shown that the integrated IMM PF algorithm 

outperforms traditional approaches such as the PF in terms of tracking results and 

performance. The minimal additional computational expense of including the IMM 

more than warrants the benefits of having it supplement and amplify the 

advantages of the PF. 
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Chapter 1 

 

INTRODUCTION 

 

1.1  Motivation  and  Background 

 

A common and inevitable obstacle in most realistic target tracking scenarios 

is the presence of clutter, or unwanted signal reflections. The term clutter is a 

general reference to anything other than the target of interest. One could imagine 

tracking an aircraft, and in this instance some examples of clutter could be weather, 

trees, other aircraft, birds, rain, mountains, towers, and countless other possibilities. 

Perhaps less commonly, in more unique and less conventional tracking mediums, 

clutter could even be rocks, debris, fish (echolocation for subaquatic targets and 

tracking), buildings (tracking low flying or ground restricted targets in urban 

environments), waves or water (a land-based sensor tracking ships at sea), and soil 

discontinuities (for ground penetrating radar or GPR) (Guo, 2008; Sira, 2006; El-

Shenawee, 2002; Takahashi, 2011). 

Clutter is problematic and challenging because pulse reflections that bounce 

off objects other than the target can be misinterpreted as having been reflected from 

the target (or targets) of interest. Thus, the theoretically ideal case would be a 

complete lack of clutter, such that the target is the only non–negligible object in the 

tracking environment, and therefore all reflections of the transmitted signal could be 

guaranteed returns from the target. This, of course, is rarely the case in any 
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practical setting. Moreover, as the number of nearby clutters increases, so too does 

the probability that a received signal echo is not from the desired target. 

Furthermore, drastic, sudden changes in clutter density can make tracking 

even more difficult. Exploring the solution to this problem is the essence of this 

thesis. To this end, in this thesis, we consider neighboring environments, each with 

vastly different clutter densities, and attempt to track a target passing through said 

environments. 

Considering this latter problem, one can imagine that there may be many 

possible target tracking applications where different models are needed at different 

time steps. Perhaps the most standard example is that of a target moving with 

constant velocity which then turns, signifying a transition between a state of 

constant velocity to a state of changing velocity and constant acceleration (Boers, 

2003). Other diverse examples exist, many of which involve different clutter 

frequencies, densities, or types (Mazor, 1998).  

 One particular such example is found within the scope of Ground Penetrating 

Radar (GPR) research and applications, in which soil heterogeneity varies across a 

continuum (Takahashi, 2011). Different degrees of soil heterogeneity produce 

varying amounts of unwanted reflections from clutter, and transitions across 

different regions or soil layers in which soil density changes can make the effects 

from this type of clutter even more pronounced. 

One approach to handle and accurately model such systems, where clutter 

density variation is inevitable, is to employ different models at different times, using 

a hybrid state estimation scheme. The term for such an approach is an “Interacting 

Multiple Model” (IMM). Using IMMs entails mode switching, where an algorithm 
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switches or selects one of multiple models or “modes” based on certain conditions, 

parameters, or thresholds. One of the major challenges in this arena is for the 

researcher to consider all of the intricacies in the problem and choose the most 

balanced sensitivity such that the right model(s) work in the right case(s). 

Additionally, an IMM can function as a “self–adjusting variable bandwidth 

filter,” which lends itself well to tracking moving targets (Mazor, 1998). Moreover, 

IMMs have been shown to be extremely cost–effective, flexible estimators that can 

offer high performance for low computational demands (Mazor, 1998). As such, 

IMMs have been applied to a wide assortment of tracking problems. Some 

prominent and diverse application areas where multiple models have been used 

include financial engineering, motion analysis in computer vision, and home 

insurance fraud detection (Vladimir, 2000). In spite of this, no work has been seen 

on using an IMM in the context of clutter variation. 

We propose a novel approach to target tracking in dynamic clutter 

environments using a particle filter with an integrated IMM to account for the 

transition between different clutter densities. It accounts for clutter variation with 

the ability to dynamically switch between different models in response to 

environmental changes. The IMM PF will work by initializing particles mostly into 

one mode, then switching modes based on changes in clutter (according to 

predetermined sensitivity settings based on the application). This will be explained 

in further detail later. 
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1.2  Organization 

This thesis is organized as follows: in Chapter 2, we provide a brief overview 

of the state space representation for nonlinear target tracking using particle filters, 

we explore the difficulties of compensating for clutter, and the potential for using 

multiple models to improve tracking performance in the wake of variable clutter 

densities. In Chapter 3, we outline the problem of environments that have non-static 

clutter densities, and propose how to use IMMs to improve tracking performance 

under such dynamically changing environmental conditions. Chapter 4 provides the 

simulation results of all these efforts, and Chapter 5 concludes the thesis with a 

summary of our findings and the directions for future work. 
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Chapter 2 

 

TARGET TRACKING FORMULATION  

AND  

BAYESIAN ESTIMATION 

 

2.1  State Space Representation for Target Tracking 

 

 The scenario considered and explored in this thesis is that of a single sensor 

tracking a single target moving with constant velocity along a two-dimensional (2-D) 

trajectory. 

 The coordinates for the position of the target in a 2–D plane at time step k 

are given by ( ,  )k kx y , and ( ,  )k kx y are the coordinates for the velocity components of 

the target at the same time step. Thus, the state of the target at a given time step k 

can be represented by the 4  1  state vector 

, 

where T  denotes the vector transpose, and kx represents the state of the entire 

system at time step k. Since we are assuming the target moves with constant 

velocity, we can invoke a linear, discrete–time model, and the state space 

representation of the system is then given by the following state equation: 
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The constant matrix F in this equation is given by: 

1 0 0

0 1 0 0
F = .

0 0 1

0 0 0 1

t

t





 
 
 
 
 
 

 

where t  is the time duration between state transitions. 

The vector kw  is the error model random process that is usually assumed to 

be a zero–mean uncorrelated Gaussian noise vector, whose process noise covariance 

matrix Q is given by 

 

where q is a noise scaling constant. 

At each time step k, the transmitted signal reflected off the moving target is 

received with a time delay k  and a Doppler shift k . This information is used to 

infer the target’s range and range rate (Richards, 2010). The time it takes the signal 

to bounce off the target and return to the transmitter, k , is proportional to its 

range, which is thus given by 2k kr c . Equivalently, its range rate is determined 

from the echoed Doppler shift according to 2k k cc fr  , where cf  is the carrier 
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frequency and c is the speed of light in vacuum, which for our radar application we 

assume is the velocity of the transmitted signal’s propagation (Richards, 2010). 

We consider the most general, arbitrary representation and then modify it for 

our specific case. In general, the measurement is represented as  z x , vk k k kh . 

Assuming perfect detection, the measurement originated from the target can be 

given by  z x vk k k kh  . The random process kv  is the measurement noise vector; it 

is assumed to be a zero–mean additive Gaussian random noise vector with 

covariance matrix R. We make the assumption that the measurement noise 

represented by kv  is uncorrelated with the process noise kw . 

If our relationship were linear, this would become 

z Hx vk k k  , 

and the matrix H would simply be the identity matrix. However, in our case, the 

relationship is non–linear, and  z x , vk k k kh reflects that the function 

  4 3x , v :  k kh   represents the nonlinear relationship between position and 

velocity, and range and range rate: 

 x , v :   + v         + v

k

k

k

k k k k k

k

k

k

x
r

y
h r

x

y


 
  
   
  
    

 

. 

This function maps from Cartesian coordinates to range, range rate, and bearing 

angle, and it does so via the following relationships (van Trees, 1992; Bourgeois, 

2007): 
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     . 

Here, 
( ) ( )( ,  )s sx y  is the 2-D position of each of the s possible radar sensors in a 

surveillance region. For our application, we assume a monostatic radar located in 

the 2-D plane, and, for simplicity, we assume the radar’s position coordinates to be 

at the origin. Applying these simplifications, the equation pair above reduces to: 

 

2 2

/

k k k

k k k k k k

r x y

r x x y y r

 

   

Putting this all together, our entire system is represented by: 

3 2

3 2

2

2

1 3 2

1 3 2

1 2

1 2

1 0 0 0 0

0 1 0 0 0 0
     

0 0 1 0 0

0 0 0 1 0 0

t t
k k

t t
k k

t
k k

t
k k

x xt

y y
q

x t x t

y y t

 

 







 











     
     
      
     
     
       

 

And the generalized Markov process state representation: 

 
     

1 1x , w

z x , v

k k k k

s s

k k k k

x f

h

 


 

becomes the more simplified system as: 

 
1x Fx w

z x v

k k k

k k kh

 

 
. 
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2.2  Particle Filter 

 

A particle filter (PF) works by generating hundreds or thousands of 

hypotheses (as to the target’s state coordinates), evaluating each one, then repeating 

and refining the process. 

It is important to clarify the term “particle.” By particle we are simply 

referring to one of many unique hypotheses generated. Because so many hypotheses 

are in play at once – usually thousands – it is generally easier to conceptualize and 

visualize each of these unique hypotheses as a point in the state space. 

 Implementing a PF for the purpose of tracking generally requires the 

researcher to do so along four major steps. First, an initial assumption is made on 

the probability density function (PDF) of the state at time step k = 0 and samples or 

particles are drawn from the PDF; the PDF is usually assumed to be uniform over 

the expected values for range and range rate. Next, the likelihood of each particle is 

evaluated with respect to the previous measurement of the target. Then, numerical 

weights are assigned according to how likely each particle is relative to, and based 

upon, the current measurement of the target’s state. Particles that seem unlikely 

(i.e., too far away from the last measurement, or with a velocity that is too high) are 

labeled with a small weight value, and likewise, more probable particles are given 

higher values. These procedures occur at each time step, and are repeated at each 

time step thereafter. 

The fourth and final step is a very critical one, and is known as resampling. 

The resampling sub–algorithm sifts through all of the current particles, and 

evaluates each one based upon its weight assigned in the previous time step. 
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Particles with lower weights are discarded, while those with higher weights are kept 

for posterity, before a new batch of particles (hypotheses) are generated. However, 

this time the generation step is not done randomly throughout the entire space, as in 

the first step. Rather, the next batch of sN  particles is generated based upon the 

remaining particles and their (higher) weights. In short, this resampling step 

effectively discards all of the insignificant particles, and substitutes them with 

clones of the “good” particles. The details of how to effectively implement the 

resampling step are provided in the Algorithm 1 pseudocode. 

 Once the particles are regenerated and a full new set of sN  hypotheses are in 

effect, the weights are reset so the reevaluation process can be repeated. 

Hence it is necessary for resampling to occur at every time step, along with all of the 

other calculations outlined above. For this reason, this type of Particle Filter is 

known as a Sequential Importance Resampling Filter (SIR–PF). 
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In this way, particles that are likely “survive” and are propagated forward in 

the state space, according to the same dynamics that govern the behavior and 

motion of the target. Thus the state estimation process is continually refined at each 

time step, and the PF can quickly and accurately converge onto estimates that are 

near the true state (please see Figures 1–4 in Chapter 4, for immediate 

evidence/examples of this). 

To summarize, the four main steps in the particle filter algorithm are: 

1. Generate and distribute particles 

2. Calculate likelihood values 

3. Assign weights 

4. Resample 
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Algorithm 2 provides the pseudocode on the computational implementation of these 

steps in much more detail. 

 

 

 

The revelation of resampling was a very important step in the history and 

development of the PF. Implementing this SIR–PF algorithm at each time step k is 

now possible with modern computing advances, and it is nearly always the ideal 

choice for target tracking. Thus we will select the SIR–PF as our algorithm of choice 

for our application: the two–dimensional tracking of a single target over a region of 

rapidly or immediately changing clutter density.  
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2.3  Evaluating Clutter 

 

 In Chapter 1 we introduced clutter conceptually; we will now quantify clutter 

mathematically and symbolically. 

 Recall that clutter increases the probability that a received echo is a false 

positive (and thereby decreases the probability that a signal return is actually from 

the target). Moreover, spikes in clutter frequency ramp up the probability that a 

received signal echo is not from the desired target. 

In this paper we consider the two–dimensional tracking of a single target 

over a region of rapidly or immediately changing clutter density, and the 

possibilities for dealing with such scenarios, and their associated clutter, will be 

explored. We consider the problem in the most general sense, before reducing it to 

our specific case of interest. 

The amount of clutter in an environment is assumed to be distributed 

uniformly throughout, so clutter density can be interpreted as an average number of 

clutter objects per unit volume. During any discrete time step k, it is possible for a 

given sensor s to detect 
 s

km  clutter objects, and with this the likelihood function is 

given by (Bar-Shalom, 1975):
 
 

 ,

( 1)

,

( | ) (1 )Pr

Pr( 1)
                                     ( | )

k

k

k k

m

k k D k k k

m

D k k k

k k

zk

p P m V

P m V
p z x

m



 



 


 

Z

Z x
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Here DP  is the probability of detection, such that , ,D k sP  is the probability of detection 

per sensor s at time step k. The quantity   Pr
s

km  is the probability that 
 s

km  

measurements are from clutter, and is modeled using a Poisson random process, as 

per usual for probabilistic date association (Bar–Shalom, 2009): 

    
  

 
 1

Pr
!

s
sk

k

m
s s V

k ks

k

m V
m

e  
  

The value  can be thought of as the clutter density, or the average number of 

clutter objects per unit volume. Throughout this paper, we will use  to indicate 

clutter density, and n  will indicate the clutter density within region n. The 

quantity kV  above is the validation gate volume, which is computed according to 

(Musicki, 2004): 

 

In words, this implies that kV  is proportional to the product of the eigenvalues of 

summing the Cramer–Rao Lower Bound (CRLB) and the measurement covariance. 

Here, the validation gate volume is a 2–D ellipsoid that encompasses the true 

measurement and all nearby clutters.  
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The scaling factor and standard deviation multiplier  is typically assigned a 

value of 4 or 5, which is suitable for 99% of all cases (Fortmann, 1985). Throughout 

all calculations and simulations, we will use 5  . Note that in addition to , kV  

also scales proportional to the clutter density  . 

As uncertainty increases, the validation gate volume must expand in order to 

sufficiently compensate for and adequately secure the possibility of encompassing 

the true target with high probability. Likewise, as measurements become more 

confident, the validation gate volume will contract, as less volume is needed to 

surround the true measurement with high certainty, and thus the number of clutter 

objects it encompasses will decrease. In this sense, the number of clutters or clutter 

density does not change at each time step; rather, the validation gate volume simply 

expands or contracts to include more or less clutter, respectively. An important, 

practical note is that larger validation gate volumes correspond to exponentially 

increasing computation costs. 

 As one can see, increases in clutter frequency make the tracking scenario 

more challenging. We also mentioned previously that additionally, sudden changes 

in the amount of nearby clutter – i.e., clutter density – can make it even more 

difficult for tracking algorithms to adapt. If such changes occur, all of the equations 

in this section must be completely recalculated with a different value of  . And, this 

must be done immediately, at each time step, or else the estimates could be 

inaccurate or even meaningless. Exploring a potential solution to this problem is an 

objective of this thesis (now that we have laid out the theoretical framework). 
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Chapter 3 

IMM  AND  CLUTTER 

 

3.1  The Varying Clutter Problem 

  

 In Section 1.1 the concept of clutter was introduced. Section 2.3 outlined the 

mathematical framework for handling clutter and minimizing the number of False 

Alarms (FA). As we saw, mitigating the influence of clutter can be difficult. 

Throughout all of these descriptions, we only considered cases of static clutter 

density  . Unfortunately, this does not realistically reflect the environment of many 

applications. Ample settings present the problem of clutter levels   that change 

over time. 

 For instance, some examples might include an aircraft traveling in calm 

weather that abruptly enters a harsh storm, suddenly passes over (or through – 

consider a helicopter) a forest or city, or a boat or submarine that moves from calm 

waters to turbulent currents. Many of the examples of clutter given in Section 1.1 

also present the problem of clutter variation, or could in certain situations.  

An additional layer of complexity is added when either the current tracking 

environment changes, or when the target changes environments. So consider, to this 

end, two neighboring environments, each with different clutter densities, 1 and 2 , 

such that 2 1  . This would prove quite difficult for the standard particle filter or 

other tracking algorithm to adapt to. However, an IMM PF could offer a potential 

solution by having two or more predetermined models – one (or more) for each of the 
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different clutter environments – and switching between them at the appropriate 

time, as the conditions change. Given that the difference between clutter densities

1 , 2 is large (which it would be for most applications of this sort; otherwise the 

clutter change would not be so detrimental to the tracking), this disparity should be 

more than sufficient to provide a transition threshold strong enough to trigger the 

IMM into switching models. 

We have shown that there is strong potential to support the utilization of an 

IMM with a PF. The adaptability of having multiple selectable models allows for 

much more versatility, and the ability to handle greater amounts of clutter overall. 

It also increases options for many possibilities and applications. These research 

results and observations are demonstrated in the next chapter, which summarizes 

our simulations and findings through representative example plots.  
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3.2  Integrating IMMs with the Particle Filter 

 

In order to combine the PF with an IMM, several modifications were made to 

the existing, classic PF algorithm. We covered the mechanics of how this algorithm 

works in Section 2.2, as well as the state space representation in Section 2.1. To 

include IMMs, this state space representation is modified as described below. 

Previously, the state space representation was held within a vector 

containing the positions and velocities of each particle at each time step. From 

hereon, each particle will now have an additional property associated with it: a 

designation of which mode it is in; i.e., which clutter density it is utilizing at that 

time step. For each environment considered, each particle – or state space 

hypothesis of the target’s true state, taken from a distribution – will exist in one of 

these associated clutter modes or states. Thus, through each trial of the Monte Carlo 

simulation, for each particle, there is an associated mode state attached/assigned to 

it. The particle’s state must exist in one of these modes, and the clutter density 

associated with it. 

 With these mode associations in place, the PF algorithm was modified in 

three major ways to accommodate the addition of IMMs. First, mode transition 

calculations were added at the beginning of the algorithm. Second, parts of the 

likelihood calculations were built upon to accommodate more than one clutter 

density in the computations. Finally, the PF’s resampling sub-algorithm is extended 

so that mode states are resampled along with particle positions and velocities, such 

that only the particles with the most likely estimates in both regards are given 

greater weights and passed on. These changes are outlined in more detail below. 
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Without loss of generality, for discussion purposes, we will assume a tracking 

scenario and simulation with only two regions and two different clutter densities; 

but the changes described were also implemented for three regions and more. 

Considering the first modification, mode change transitions, prior to the first 

time step of each simulation, particles are initialized into one of the available modes, 

based on a prior (but variable) probability. Then for each time step thereafter, 

through each trial of a Monte Carlo simulation, each particle transitions modes 

according to a two state Markov chain model that has prior probabilities assigned 

(see state diagram in Figure 3.1 below). For the majority of the simulations that 

were run, the random probability of switching modes was set to 5% (and thus the 

standalone probability of remaining in the same mode as the previous time step was 

95%). Given these probabilities, the mode state may change at this point in the 

simulation during each time step; that is, mode assignments are not completely 

fixed, and there are fluctuations which make transitions possible. Other 

probabilities could be used, and were, such as a switching rate of 10%. A balance 

must be struck between having flexible switching potential and having a system 

that is too unstable due to transitions that occur too freely. For instance, setting 

both the probability of switching and that of remaining in the previous state to 50% 

would not allow the algorithm to work by any means; particles would switch 

randomly at each time step. For this reason, more conservative switching 

probabilities were used, such as 5% and 10%. An example case of the state space 

representation is given in Figure 3.2, for when the transition probability is set to 5%. 
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In both Figures 3.1 and 3.2, kc is the clutter mode state of that particle at that time 

step, the ab  values are mode transition probabilities (i.e., the probability of 

transitioning from state a to b), and   is the transition probability matrix. 

 

 

Generalized State Representation of Mode Transitions 

 

Figure 3.1 Generalized state diagram illustrating mode transition probabilities for a two environment 
scenario, with two arbitrary, non-equal clutter densities and arbitrary probabilities of randomly 

switching. Here kc is the clutter mode state of at that time step, the ab  values are mode transition 

probabilities (i.e., transitioning from state a to b), and   is the transition probability matrix. 
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Example Instance of State Representation of Mode Transitions 
 

 

Figure 3.2 An example state diagram illustrating mode switching probabilities for a particular two 

environment scenario, with two different clutter densities, and with probability of randomly switching 

set to 5%. Here kc is the clutter mode state of at that time step, the ab  values are mode transition 

probabilities (i.e., transitioning from state a to b), and   is the transition probability matrix. 

 

No additional changes were made to the PF algorithm until the point where 

the likelihood values are calculated, where another major addition/step takes place. 

The likelihood sum itself stays the same, and does not change. Thus, in the following 

likelihood function calculation (Bar-Shalom, 1975): 
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The sum on the far right side of the equation is calculated as normal, but the 

coefficient and added terms change now with the IMM and new densities from 



  22 

different clutter. So the full likelihood, and the probability that km measurements 

originate from clutter, is now dependent on the mode state (and thus the clutter 

density). Thus, each mode each particle is assigned to changes the values of  Pr km  

and  Pr 1km  . For instance, the  Pr km term becomes “ km given  ,” such that we 

now have  Pr |k tm  , for a given clutter state or mode. This state is assigned and 

these probabilities are calculated based on which   is chosen to be most ideal. 

 Thus, during each iteration, the algorithm first determines which mode state 

that particle is currently associated with. Then, depending which mode state it is in, 

will calculate the FA probabilities accordingly. Hence the original FA probability 

splits into multiple models, as conceptually illustrated by the mathematical 

visualization in Figure 3.3, for a generalized number of clutter densities

1 2 3,  ,  ,  ... n    . 

 

Figure 3.3 A technically incorrect but visually representative depiction of the original probability 

FA/clutter detection expression splitting into multiple models, based on different clutter densities. 
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More compactly, and mathematically, we have: 
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where n is the total number of different clutter densities and associated 

environments. One of these multiple selectable models is chosen for that particle, 

based on which of the available clutter densities is being utilized at that time step. 

Using the calculated probability based on the mode state, the likelihood calculation 

proceeds as normal, as indicated in the equation above, for that particular clutter 

density. 

Finally, the third modification addresses how the algorithm selects which 

clutter density (and thus which state) to use. The same inquiry could be posed of the 

original PF, concerning how it selects which state estimates are close to the target, 

and which are far away. In both cases, the answer is the resampling step. The new 

IMM PF algorithm determines which clutter mode to use during the resampling sub-

routine. In the same way particles are resampled and reweighted based on accuracy, 

so too are the mode states. The state/clutter density value which is weighted most 

heavily based on the previous measurement is kept for posterity, and those which 

are least likely are thrown out; at the end of the resampling step most particles will 

be initialized into the state that is most likely. In this way, the PF weights are the 

fundamental moving gears for the PF (and the IMM PF), and resampling utilizes the 

PF weights to reassign the clutter states/modes. 
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In short, there are only a few places where additional IMM components are 

inserted into the original, standard PF algorithm (corresponding to a minimal 

increase in computational expense, yet a substantial gain in tracking versatility). 

These add-ons are implemented alongside the standard PF algorithm steps; 

specifically in the likelihood calculations, and during resampling. Additionally, there 

is an entirely new added step: the calculation of mode state transitions that follow a 

Markov chain model with prior probabilities assigned. These are the three major 

additions to the PF algorithm which make the IMM PF work. 
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Chapter 4 

SIMULATIONS 

 

To explore the PF and its potential use with IMM, a general PF algorithm 

was implemented using Matlab code to track synthetically generated target 

trajectory data, for a target moving in a 2-D plane. As such, four independent target 

parameters were tracked in each scenario: position and velocity in both x and y 

dimensions. 

Performance/measurement errors were calculated by taking the difference of 

the measured values from that of the true state, at each time step, and then taking 

the square root of the absolute value of this devation. A sample plot of such errors 

calculated at each time step k is provided in Figure 4.1. 

In addition to measuring performance, RMSE plots were used to determine 

the optimal number of particles to use in subsequent simulations, and to prove that 

this particle number was sufficient to validate future results (Figure 2). Multiple 

test simulations were run to show this using different amounts of particles; one such 

instance is provided below. In this case the particle number was varied from 

between 50 to 2,000 particles. 

Figure 1 plots the RMSE vs. time, Figure 2 shows RMSE vs. time for 

different particle numbers, and Figures 3, 4 plot the actual, physical tracking error 

and deviations from the true state. 
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Figure 4.1 Sample of an RMSE plot, averaged over 20 simulations. These errors are on the high end, 
but are representative of the error threshold seen throughout the simulations. 
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Figure 4.2 Various RMSE results as a function of particle number. Figure shows that while there are 
significant decreases in error as particle number increases, the differences are likely negligible beyond 
500, and definitely beyond 1000, and do not justify the additional computational costs. Therefore using 
1000 particles is sufficient. 
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Figure 4.3 Various RMSE results as a function of particle number. Figure shows that while there are 
significant decreases in error as particle number increases, the differences are likely negligible beyond 
500, and definitely beyond 1000, and do not justify the additional computational costs. Therefore using 
1000 particles is sufficient. 
 

  

Multiple test simulations were run using different amounts of particles; one 

such instance is provided. In this case the particle number was varied from between 

50 to 2,000 particles. Figure 4.3 shows that performance improved significantly as 

the particle number is increased from 50 to 500. But a point of dimishing returns is 

reached between 500–1000 particles. Note that the error is (relatively) quite high in 

both range and velocity tracking with 50 particles, and in position tracking error it 
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is still high even at 200 particles. Beyond this, however, differences in 

performance/error appear negligible. In order to err on the conservative side, 1000 

particles were used in all subsequent simulations and results throughout this paper, 

and in continuded research endeavors, unless specified otherwise. 

With the proper number of particles in place, as confirmed above, the most 

accurate and ideal tracking simulations could be run. Some representative results of 

such simulations are provided in Figures 3 and 4. These plot the measurement 

estimates (green line) atop the true state (black triangles), for each of the four 

components in the state space. Note that the error was consistently off by only about 

1 m in position, in both x and y, and approximately 0.1 m/s for both velocity 

components, across nearly all simulations. This level of error is more than 

acceptable for target tracking applications. 
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Figure 4.4 Plots of the measurement estimates atop the true state, for each of the four components in 
the state space; the result of one MC simulation. A relative lack of clutter allows for exceptionally 
accurate tracking in some instances. 
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Figure 4.5 Plots of the measurement estimates atop the true state, for each of the four components in 

the state space, the results of one MC simulation. The position tracking is solid (compare above Figure 
3), but deviations in the velocity estimates begin to appear due to heavier clutter. 
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 Figure 4.1 plotted the RMSE vs. time, and Figures 4, 5 plotted the actual, 

physical tracking error and deviationts from the true state. The next figure type, 

which will be presented frequently throughout the remainder of this chapter, 

combines both of the aforementioned figure types, and illustrates the target’s entire 

trajectory in state space through concentrations of clutter. 

 For instance, consider Figure 4.6. This diagram simultaneously presents 

several apsects of a tracking scenario. First, we see, within a 2-D plane, the target’s 

true trajectory, and the estimates of its trajectory, at each time step. These combine 

to plot the full trajectory of the estimated and true states in the state space. In 

another layer, the plot also shows the relative amount of clutter through which the 

target passes. This particular figure shows two different clutter regions, one much 

more dense than the first. (In general, the amount of clutter plotted is not literal, 

but a scaled version of the relative clutter disparity between the regions.) In this 

case we also see that the drastic change in clutter – coupled with the high degree of 

clutter in the second region – only causes the tracking algorithm to deviate slightly 

from the target’s true state, near the end of the simulation. 
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Figure 4.6 A target’s trajectory, with the calcuated state estimates, crossing through two regions of 
varying clutter. 

 

Figure 4.6 could be used to represent a tracking scenario either with the PF or the 

IMM; the true state, estimated state, and clutter densities are independent of the 

tracking algorithm used. However, the next figure type (which correlates with Fig. 

6), is exclusive to the IMM, and is only generated when this algorithm is 

implemented. 

 The first of many of these is Figure 4.7, which pairs with Figure 4.6. This 

indicates that the IMM algorithm does well – meaning on average particles 

transition to the correct model during the right time epoch – when the clutter 

densities of the different regions are sufficiently different. This is also demonstrated 

in the first five mode probabililty plots, Figures 4.7 – 4.11. They outline the 
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transition that occurs from when the densities differ significantly, to when they are 

equal. 

Staring in Figure 4.7, we see that there is a sharp and instantaneous 

transition. This indicates that the algorithm is adapting perfectly, switching on cue 

and selecting the correct model at the correct time based on the clutter variations it 

encounters. The model can easily adapt to the drastic change in  , making a sharp 

and unanimous model transition almost instantaneously. 

 

 

Figure 4.7 Plot of mode transition probabilities over time, for vastly different clutter densities, for 1 
Monte Carlo Simulation. The model can easily adapt to the drastic change in  , making a sharp and 

unanimous model transition almost instantaneously. 
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Figure 4.6, 4.7 A Combining Figures 6 and 7 to show the correlation between clutter variaion 
and mode transition. The color variation indicates that the model switches modes precisely 
when transitioning clutter regions. 
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Figure 4.8 illustrates the behavior of the IMM PF for clutter densities that 

differ by a small amount. In such cases, the IMM is still able to transition models, 

though the correct model is not weighted as heavily, given the ambiguity that 

follows from a non-drastic clutter differential. If we continue this trend, and bring 

the clutter density values closer together, then make them equal (as in Figures. 4.8 

– 4.10), the model eventually, invetably, does not switch at all; the model transition 

rate approaches an ambiguous 50% as 1 2  . 

The inherrent symmetry in the graphs affirm that all probabilities sum to 

unity at all times, as expected/required. 

 

 
Figure 4.8 Plot of mode transition probabilities over time, for clutter densities that differ by a small 
amount, 1 MC Simulation. The IMM is still able to transition models.  
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If we hold both  values constant across several randomized Monte Carlo 

runs, we see that these fluctauations tend to smooth over repeated runs, and that, 

on average, the IMM tends toward assigning appropriate weights to the most 

suitable model.  In these following (three) figures, we have ommitted plots of range 

tracking, as these do not provide any noteworthy or additional information, since the 

equal or nearly equal values of   imply a near uniform clutter dispersement 

throughout the state space. 

 

Figure 4.9 Plot of mode transition probabilities over time, for equal clutter densities, for 1 Monte 
Carlo Simulation. The values oscillate around a 50% transition probability, as expected. The 
probabilities approach this ratio as rho’s approach equality. 
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Figure 4.10 Plot of mode transition probabilities over time, for equal clutter densities for 20 Monte 
Carlo Simulations. The values oscillate around a 50% transition probability, as expected. 
 

 
 

Figure 4.11 Plot of mode transition probabilities over time, for equal clutter densities, after 200 Monte 
Carlo Simulations. The values oscillate around a 50% transition probability, as expected. Compare with 
the lone MC simulation of Fig. 4.9 
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Note that these cases do not imply that the IMM PF performs poorly; rather, 

it tracks accurately in all of these instances. This only means that clutter densities 

are so close it simply does not matter which model the IMM selects – the 

perforamnce will be approximately the same either way given the similarity of the 

clutter frequencies. 

 Note, also, that regardless of the number of Monte Carlo simulations 

performed, or the amount of the “smoothless” (or lack thereof), the mode probablities 

always sum to unity, at each time step, in all figures – as required. 

 Our tour through the aforementioned figures has explored and verified that 

the IMM PF functions correctly in the more “trivial” cases where clutter variation is 

negligible or nonexistent. We now proceed to the cases of greater complexity, as one 

of the major research goals was to show that the IMM PF could perform well in more 

complicated scenarios of dynamically changing clutter. This is first done by 

introducing the addition of a third, and followed by a fourth region, into the tracking 

environment, each with it’s own clutter density (which may or may not be equal to 

that of the others). Figures 4.12 – 4.19 take us on a tour through various tracking 

scenarios of increased complexity, and further applicability. See the titles of each 

page or plot pair for a detailed description. Note that in cases where the target is 

initialized amidst heavy clutter, tracking performance decreases, causing deviations, 

and introducing errors. The IMM algorithm still performs well in spite of this. And 

the following plots show that with the IMM, tracking and mode transitions occur 

accurately and timely throughout a gauntlet of diverse test trials.  
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Transition Through 3 Different Clutter Regions 

 

 
Figure 4.12 State space plot (top) showing a target passing through a total of three regions, each with 

a very different amount of clutter, with the IMM switching models in sync (bottom). The exact 
numberical difference in clutter density can be seen in this bottom Mode-Switching Probabilities figure. 
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Transition Through 3 Different Clutter Regions 

 
Figure 4.12 State space plot (top) showing a target passing through three regions of exponentially 
ascending clutter density, with the IMM switching models in sync (bottom). 
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Switching In and Out of a Cluttered Region 

(Two Environments) 

 

 

 
Figure 4.13 State space plot (top) showing a target passing in and out of a high clutter area, with the 
IMM switching models in sync (bottom). 



  43 

Switching In and Out of a Cluttered Region 

(Three Environments) 

 

 
Figure 4.14 State space plot (top) showing a target passing through a total of three regions, each with 
a very different amount of clutter. In the case the amount of clutter is not acsending, but peaks in the 
middle region. The IMM still switches models in sync (bottom). 
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As with the cases of two different regions having similar clutter concentrations, 

when the clutter densities 1 , 2 , 3  are close enough in value, model switches are 

inconsequential, and so the IMM converges to the steady state ratio of equal 

transition probabilities,  

The following figures illustrate this, for cases wherein two regions have 

similar amounts of clutter, while a third region has a clutter density difference that 

is sufficiently drastic to warrant a model transition. 

 

 

Figure 4.15 As 1 2 3,     , the IMM PF can easily distinguish the most optimal of the three 

models. Because 1  and 2  are equal, the algorithm oscillates around a 50% switching rate between 

the two. 

 

 

Figure 4.15 shows a scenario where the target spends most of its time in a region of 

heavy clutter, before entering one with significantly less for a brief period. Since
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1 2  , 3  the IMM PF can easily distinguish the most optimal of the three 

models. Likewise, the transition from this model is immediate despite how late it 

occurs in the tracking scenario, which is an indicator of excellent performance for 

this triple model IMM. Because 1 and 2 are equal, the IMM’s choice between the 

two associated models is arbitrary for the duration of the simulation. The inverse of 

this scenario is shown in the following figure.  

 

 

Figure 4.16 As 2 1 3,     , the IMM PF can easily distinguish the most optimal of the three 

models. Because 1  and 3  are equal, the algorithm oscillates around a 50% switching rate between 

the two. 
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Figure 4.17Additional examples of accurate, timely mode-switching in complicated tracking scenarios.
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4 Regions, 3 Transitions, 2 Repeated Clutter Densities 

 

 
Figure 4.19 State space plot (top) showing a target passing through a total of four regions of 
alternating clutter, with the IMM switching models in sync (bottom). Note that initializing the target 
amidst heavy clutter decreases tracking performance, causes deviations, and introduces errors. The 
IMM is still able to recover in spite of this. 
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At this point a fair question would be how the performance of the IMM 

compares to that of the standard PF, and whether the improvements are significant. 

This is indeed the case, and simulations were run to verify this. 

To prove that the IMM was indeed more efficient than the standard, classic 

PF, tests began with four basic PF test cases, to be referenced against two 

equivalent IMM test case settings. This was confined to a testing scenario with only 

two different clutter regions, as shown in Figures 4.6 and 4.7. Because there are two 

regions with different clutter densities – one high and one low – there are two 

distinct possible configuration arrangements. Namely, the target passes through a 

region of high clutter to low clutter, or vice versa. Within these two possibilities, are 

three further possibilities regarding the a priori  assumptions within the PF clutter 

algorithm: the algorithm assumes a clutter density that is lower, higher, or equal to 

that of the environment. Since there are only two clutter environments being 

considered, this amounts to a total of four distinct possibilities (the case of assumed 

and actual densities being equal counts twice, once for each region). Table 1 

summarizes these facts, and may be referenced for clarity. 

In cases where the assumed density is equal or equivalent to the actual (or 

“true”) clutter density, error will be low and the tracking will be accurate. 

Conversely, however, if the assumed clutter density does not match that of the 

environment, the error will be higher, and tracking accuracy will suffer. The worst 

cases are when the clutter is assumed to be much lower than it actually is; in these 

instances the error will be the highest, as the algorithm has grossly underestimated 

the amount of clutter and cannot compensate. If the PF does not have an assumed 

n  value that appropriately matches the current tracking environment and the 
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clutter density therein, the performance can be quite poor, and failure is likely. An 

instance of such a case is plotted below:  

 

Figure 4.20 State space plot of a tracking scenario within a region of uniform but high clutter density. 

With the IMM disabled, the PF’s estimate of the target’s true state is quickly deflected by the high 
concentration of clutter. 

 

 

In the cases where the clutter was assumed to be very high, but is in fact 

much lower, the standard PF algorithm does not perform as poorly, since it 

anticipated and overcompensated for a much higher amount of clutter than what 

was actually present. Within such a case tracking is still possible, and the error is 

less overall, which we have qualitatively entitled relatively “medium” error, as 

compared to the other two cases mentioned. 
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Finally, when adding the IMM into the mix, two additional possibilities are 

presented, each of equal error, and independent of the density chosen. This, because 

in this case there is no assumed environmental clutter density, since the IMM will 

adapt to whichever clutter density it encounters, and this illustrates the power of 

the added IMM algorithm. For this reason, the resultant error is qualitatively “low.” 

If we combine all of these facts we see there are a total of six possibilities (two 

of which are essentially identical in purpose). These observations are summarized in 

the following table, for two arbitrary clutter density values 1  and 2 , where

2 1  . 

 

Table 1 – Qualitative Performance Summary 

of PF vs. IMM PF for 2 Regions 
 

True Density Algorithm Assumed 

Density 

Relative RMSE 

 

1  

 

PF 
1  Low 

PF 
2  High 

IMM N/A  

 Adaptable 

Low 

 

2  

PF 
1  Medium 

PF 
2  Low 

IMM N/A   

Adaptable 

Low 
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Note that the above table and observations point out that the IMM does not 

always outperform the standard PF – and this is not the claim of this thesis. Indeed, 

there are many cases wherein the performance will be comparable. For instance, in 

the two–environment scenario given above, there are cases where the performance is 

equal at best. However, the IMM is shown to be more robust and reliable, making it 

the more dependable and adaptable choice in confronting a tracking objective. 

The table above reflects a summary of many simulations run to show that 

overall, on average the RMSE of the IMM was lower than or at least equal to that of 

the PF. One of many such simulation instances is provided below, which was 

implemented considering the six possibilities outlined in Table 1 above. 

Different simulation scenarios were compared using either the PF or the 

IMM PF, and for each scenario, the clutter density was fixed to one value 

throughout the track or it varies with time between two values during different 

time frames of the track. In particular, the different scenarios are: (a) PF with 

knowledge of true density, either 1  or 2 ; (b) PF using clutter density 1  when the 

true density was 2 ; (c) PF using clutter density 2  when the true density was 1 ; 

(d) IMM PF with only one clutter density, either 1  or 2 , over the track duration. 

The two clutter densities were selected to be 1 =0.0001 and 2 =0.01. The 

performance comparison results are demonstrated in Figure 4.21. Each of the 

tracking scenario simulations below were the result of 20 Monte Carlo trials. 
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Figure 4.21 Performance comparison of PF vs. IMM PF, plotting RMSE values for each algorithm, 
from simulations with different assumed vs. actual clutter densities. Each of the tracking scenario 
simulations above are the result of 20 Monte Carlo trials.  

 

As before, the scenarios above are extended to three regions instead of just 

two. The results and underlying themes are parallel, though the details shed more 

insight on overall performance. These observations are summarized in the following 

table, for three arbitrary clutter density values 1 , 2 , and 3 , where 3 2 1    . 
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Table 2 – Qualitative Performance Summary 

of PF vs. IMM PF for 3 Regions 
 

True Density Algorithm Assumed Density Relative RMSE 

 

 

1  

PF 
1  Low 

PF 
2  High 

PF 
3  High 

IMM N/A – Adaptable Low 

 

 

2  

 

 

PF 
1  Medium 

PF 
2  Low 

PF 
3  High 

IMM N/A – Adaptable Low 

 

 

3  

 

 

PF 
1  Medium 

PF 
2  Medium 

PF 
3  Low 

IMM N/A – Adaptable Low 

 

As mentioned above, though the overarching patterns are parallel, this table 

illustrates a very important point: that the IMM becomes more stable, reliable, and 

accurate compared to the standard PF as the number of clutter density regions 

increases. We saw in the previous table, that there was only a 50% chance (which is 

still high) of assuming the “wrong” rho, and suffering increased error; and in one 

instance ( 2 ), the worst possibility (assuming 2  when 1  ) was only a “medium” 

error rate compared to the relatively “low” IMM error rate. However, with the 

addition of another region – equivalent to another dimension in the problem – this 
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quickly changes. For any given region, the lone PF, ill-equipped without the addition 

of the IMM algorithm, essentially only has a 33% chance of achieving the low error 

rate as the IMM PF (whereas before, with only two different clutter regions, the 

probability for equaling IMM performance was 50%). Moreover, the penalty and 

error disparity for a wrong choice is much worse: consider the case of 1 , where an 

incorrect assumption results in a 2/3 chance of “high” error compared to the low 

error of the IMM. The IMM’s results remain predictable and stable – at a minute 

additional computational cost – whereas the performance of the PF varies widely. 

And from the above two tables it is clear that this pattern only continues and 

amplifies; the PF will perform worse and the IMM PF will outperform as dimensions 

of different clutter are added to the tracking scenario. 

Finally, it is again necessary to emphasize that in the cases of “low” relative 

error, the results are not comparable in these instances because the IMM does 

worse, but because there is a negligible difference in clutter concentration, and thus 

model transitioning is inconsequential. In these cases the IMM PF essentially 

reduces to the standard PF, so there is really no basis for comparison or possibility 

for outperformance; both algorithms will perform the same in these scenarios. 
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Chapter 5 

CONCLUSIONS  AND  FUTURE  WORK 

 

 The simulation results in Chapter 4 strongly support the utilization of the 

new IMM PF. It has been shown to be both robust and rapid in the contexual 

applications we explored. The versality of having multiple selectable models allows 

for much more adaptibility, and the capacity to handle greater amounts of clutter 

overall. It also increases options for many possibilities and applications. 

 Future work in this area will include, first and foremost, the incorporation of 

acceleration into the model. This will allow us to explore target turning, and having 

the target maneuver in and out of various regions (transitions). Also, this would 

imply having additional IMM algorithms, simultanesouly utilizing mutliple IMMs 

(as the transition from constant velocity to turning requires an IMM algorithm). 

Additionally, another possibility is using more than three clutter regions and 

clutter densities. It is unclear whether four or more clutter concentrations could be 

assigned values that are far enough apart to allow the IMM PF to make the right 

transitions, but there would be no drawbacks to using this algorithm in these cases, 

and it would certainly be interesting to investigate. A corollary exploration would 

involve assessing the way the computational costs of the algorithm scale with 

increasing model number, which could prove interesting. 

Finally, we believe that the IMM PF can be optimized by exploring the 

precise transition probabilities between models within the algorithm. These 

parameter configurations were not configured extensively, but by doing so it is 

possible the algorithm could become more sensitive, and thus more able to 

outperform the non IMM PF in an even wider range of scenarios and applications, 

with the switching becoming even more rapid. 



  56 

REFERENCES 

Arulampalam, M., Maskell, S., Gordon, N. and Clapp, T. (2002). A tutorial on 

particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE 
Trans. Signal Process., 50(2), pp.174-188. 

Bar-Shalom, Y. (1990). Tracking and Data Association. J. Acoust. Soc. Am., 87(2), 

p.918. 

Bar-Shalom, Y. (2001). Kalman filtering techniques for radar tracking. Automatica, 

37(6), pp.957-958. 

Bar-Shalom, Y. and Tse, E. (1975). Tracking in a cluttered environment with 

probabilistic data association.Automatica, 11(5), pp.451-460. 

Bar-Shalom, Y., Daum, F. and Huang, J. (2009). The probabilistic data association 

filter. IEEE Control Systems Magazine, 29(6), pp.82-100. 

Bates, M., Simmons, J. and Zorikov, T. (2011). Bats Use Echo Harmonic Structure to 

Distinguish Their Targets from Background Clutter. Science, 333(6042), pp.627-

630. 

Blom, H. and Bar-Shalom, Y. (1988). The interacting multiple model algorithm for 

systems with Markovian switching coefficients. IEEE Transactions on 
Automatic Control, 33(8), pp.780-783. 

Boers, Y. and Driessen, H. (2002). Hybrid state estimation: a target tracking 

application. Automatica, 38(12), pp.2153-2158. 

Boers, Y. and Driessen, J. (2003). Interacting multiple model particle filter. IEE 
Proceedings - Radar, Sonar and Navigation, 150(5), p.344. 

Bojilov, L., Alexiev, K. and Konstantinova, P. (2002). An Accelerated IMM-JPDA 

Algorithm for Tracking Multiple Maneuvering Targets in Clutter. Information 
& Security: An International Journal, 9, pp.141-153. 

Bourgeois, B. (2007). Using Range and Range Rate for Relative Navigation. Ft. 

Belvoir: Defense Technical Information Center. 

Bourgeois, B. and McDowell, P. (2004). Intervessel navigation using range and range 

rate. J. Acoust. Soc. Am., 115(5), p.2616. 

Candy, J. (2007). Bootstrap Particle Filtering. IEEE Signal Process. Mag., 24(4), 

pp.73-85. 

Candy, J. (2009). Bayesian signal processing. Hoboken, N.J.: Wiley. 

Chen, B. and Tugnait, J. (2001). Tracking of multiple maneuvering targets in clutter 

using IMM/JPDA filtering and fixed-lag smoothing. Automatica, 37(2), pp.239-

249. 

Cohen, L. (1995). Time frequency analysis. Englewood Cliffs, NJ: Prentice Hall. 



  57 

Dasgupta, A. and Raftery, A. (1998). Detecting Features in Spatial Point Processes 

with Clutter via Model-Based Clustering. Journal of the American Statistical 
Association, 93(441), pp.294-302. 

Doucet, A., De Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo methods 
in practice. New York: Springer. 

Edla, S., Kovvali, N. and Papandreou-Suppappola, A. (2014). Electrocardiogram 

Signal Modeling With Adaptive Parameter Estimation Using Sequential 

Bayesian Methods. IEEE Trans. Signal Process., 62(10), pp.2667-2680. 

El-Shenawee, M. and Rappaport, C. (2002). Monte Carlo simulations for clutter 

statistics in minefields: AP-mine-like-target buried near a dielectric object 

beneath 2-D random rough ground surfaces. IEEE Trans. Geosci. Remote 
Sensing, 40(6), pp.1416-1426. 

Fortmann, T., Bar-Shalom, Y., Scheffe, M. and Gelfand, S. (1985). Detection 

thresholds for tracking in clutter--A connection between estimation and signal 

processing. IEEE Transactions on Automatic Control, 30(3), pp.221-229. 

Guo, R., Qin, Z., Li, X. and Chen, J. (2008). Interacting Multiple Model Particle-type 

Filtering Approaches to Ground Target Tracking. JCP, 3(7). 

Gupta, I. and van der Merwe, A. (2000). A novel signal processing technique for 

clutter reduction in GPR measurements of small, shallow land mines. IEEE 
Trans. Geosci. Remote Sensing, 38(6), pp.2627-2637. 

Ho, K. and Gader, P. (2002). A linear prediction land mine detection algorithm for 

hand held ground penetrating radar. IEEE Trans. Geosci. Remote Sensing, 

40(6), pp.1374-1384. 

Kirubarajan, T. and Bar-Shalom, Y. (2004). Probabilistic Data Association 

Techniques for Target Tracking in Clutter. Proc. IEEE, 92(3), pp.536-557. 

Kirubarajan, T., Bar-Shalom, Y., Pattipati, K. and Kadar, I. (2000). Ground target 

tracking with variable structure IMM estimator. IEEE Trans. Aerosp. Electron. 
Syst., 36(1), pp.26-46. 

Kosuge, Y. and Matsuzaki, T. (2002). The gate size estimation method and the 

optimal gate shape for target tracking. Electronics and Communications in 
Japan (Part III: Fundamental Electronic Science), 85(5), pp.10-22. 

Kovalenko, V., Yarovoy, A. and Ligthart, L. (2007). A Novel Clutter Suppression 

Algorithm for Landmine Detection With GPR. IEEE Trans. Geosci. Remote 
Sensing, 45(11), pp.3740-3751. 

Mazor, E., Averbuch, A., Bar-Shalom, Y. and Dayan, J. (1998). Interacting multiple 

model methods in target tracking: a survey. IEEE Trans. Aerosp. Electron. 
Syst., 34(1), pp.103-123. 



  58 

Missaoui, O., Frigui, H. and Gader, P. (2011). Land-Mine Detection With Ground-

Penetrating Radar Using Multistream Discrete Hidden Markov Models. IEEE 
Trans. Geosci. Remote Sensing, 49(6), pp.2080-2099. 

Musicki, D. and Suvorova, S. (2008). Tracking in clutter using IMM-IPDA-based 

algorithms. IEEE Trans. Aerosp. Electron. Syst., 44(1), pp.111-126. 

Park, K., Park, S., Kim, K. and Ko, K. (2013). Multi-Feature Based Detection of 

Landmines Using Ground Penetrating Radar. PIER, 134, pp.455-474. 

Richards, M., Scheer, J. and Holm, W. (2010). Principles of modern radar. Raleigh, 

NC: SciTech Publishing. 

Ristic, B. and Arulampalam, S. (2004). Beyond the Kalman filter. Boston, MA: 

Artech House. 

Rong Li, X. and Jilkov, V. (2003). Survey of Maneuvering Target-Tracking . Part I: 

Dynamic Models. IEEE Trans. Aerosp. Electron. Syst., 39(4), pp.1333-1364. 

Rubinstein, R. (1981). Simulation and the monte carlo method. New York: Wiley. 

Ruixin Niu, Willett, P. and Bar-Shalom, Y. (2001). Matrix CRLB scaling due to 

measurements of uncertain origin. IEEE Trans. Signal Process., 49(7), pp.1325-

1335. 

Sangston, K. (1988). Coherent Detection of Radar Targets in K-Distributed, 
Correlated Clutter. Report 9130. Washington, D.C.: Naval Research Laboratory. 

Schneider, A. (1985). Observability of Relative Navigation Using Range-Only 

Measurements. IEEE Trans. Aerosp. Electron. Syst., AES-21(4), pp.569-581. 

Sigalov, D., Michaeli, T. and Oshman, Y. (2012). Tracking a Splitting Target in 

Clutter Using the IMM Methodology. In: IEEE 27-th Convention of Electrical 
and Electronics Engineers in Israel. Haifa, Israel: Technion - IIT. 

Stewart, J. (2003). Calculus. Belmont, CA: Thomson/Brooks/Cole. 

Takahashi, K., Igel, J. and Preetz, H. (2011). Clutter Modeling for Ground-

Penetrating Radar Measurements in Heterogeneous Soils. IEEE J. Sel. Top. 
Appl. Earth Observations Remote Sensing, 4(4), pp.739-747. 

Tugnait, J. (2004). Tracking of multiple maneuvering targets in clutter using 

multiple sensors, IMM, and JPDA coupled filtering. IEEE Trans. Aerosp. 
Electron. Syst., 40(1), pp.320-330. 

Van Trees, H. (2004). Detection, Estimation, and Modulation Theory, Part III, 
Radar-Sonar Signal Processing and Gaussian Signals in Noise. New York, NY: 

John Wiley & Sons. 

Vasuhi, S., Vaidehi, V. and P. R, M. (2009). Multiple Maneuvering Targets Tracking 

Using Kalman and Real-Time Particle Filter A Comparison. International 
Journal of Engineering and Technology, 1(3), pp.224-230. 



  59 

Xuan Feng, Sato, M., Yan Zhang, Cai Liu, Fusheng Shi, and Yonghui Zhao, (2009). 

CMP Antenna Array GPR and Signal-to-Clutter Ratio Improvement. IEEE 
Geosci. Remote Sensing Lett., 6(1), pp.23-27



 

 


