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ABSTRACT

The explosive growth of data generated from different services has opened a new vein

of research commonly called “big data.” The sheer volume of the information in

this data has yielded new applications in a wide range of fields, but the difficulties

inherent in processing the enormous amount of data, as well as the rate at which it is

generated, also give rise to significant challenges. In particular, processing, modeling,

and understanding the structure of online social networks is computationally difficult

due to these challenges. The goal of this study is twofold: first to present a new

networked data processing framework to model this social structure, and second to

highlight the wireless networking gains possible by using this social structure.

The first part of the dissertation considers a new method for modeling social

networks via probabilistic graphical models. Specifically, this new method employs

the t-cherry junction tree, a recent advancement in probabilistic graphical models, to

develop a compact representation and good approximation of an otherwise intractable

probabilistic model. There are a number of advantages in this approach: 1) the best

approximation possible via junction trees belongs to the class of t-cherry junction

trees; 2) constructing a t-cherry junction tree can be largely parallelized; and 3)

inference can be performed using distributed computation. To improve the quality of

approximation, an algorithm to build a higher order tree gracefully from an existing

one, without constructing it from scratch, is developed. this approach is applied

to Twitter data containing 100,000 nodes to study the problem of recommending

connections to new users.

Next, the t-cherry junction tree framework is extended by considering the impact

of estimating the distributions involved from a training data set. Understanding this

impact is vital to real-world applications as distributions are not known perfectly,

but rather generated from training data. First, the fidelity of the t-cherry junction
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tree approximation due to this estimation is quantified. Then the scaling behav-

ior, in terms of the size of the t-cherry junction tree, is approximated to show that

higher-order t-cherry junction trees, which with perfect information are higher fidelity

approximations, may actually result in decreased fidelity due to the difficulties in ac-

curately estimating higher-dimensional distributions. Finally, this part concludes by

demonstrating these findings by considering a distributed detection situation in which

the sensors’ measurements are correlated.

Having developed a framework to model social structure in online social networks,

the study then highlights two approaches for utilizing this social network data in

existing wireless communication networks. The first approach is a novel application:

using social networks to enhance device-to-device wireless communication. It is well

known that wireless communication can be significantly improved by utilizing relays

to aid in transmission. Rather than deploying dedicated relays, a system is designed

in which users can relay traffic for other users if there is a shared social trust between

them, e.g., they are “friends” on Facebook, and for users that do not share social trust,

implements a coalitional game framework to motivate users to relay traffic for each

other. This framework guarantees that all users improve their throughput via relaying

while ensuring that each user will function as a relay only if there is a social trust

relationship or, if there is no social trust, a cycle of reciprocity is established in which

a set of users will agree to relay for each other. This new system shows significant

throughput gain in simulated networks that utilize real-world social network traces.

The second application of social structure to wireless communication is an ap-

proach to reduce the congestion in cellular networks during peak times. This is

achieved by two means: preloading and offloading. Preloading refers to the process of

using social network data to predict user demand and serve some users early, before

the cellular network traffic peaks. Offloading allows users that have already obtained
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a copy of the content to opportunistically serve other users using device-to-device

communication, thus eliminating the need for some cellular traffic. These two meth-

ods work especially well in tandem, as preloading creates a base of users that can

serve later users via offloading. These two processes can greatly reduce the peak

cellular traffic under ideal conditions, and in a more realistic situation, the impact

of uncertainty in human mobility and the social network structure is analyzed. Even

with the randomness inherent in these processes, both preloading and offloading offer

substantial improvement. Finally, potential difficulties in preloading multiple pieces

of content simultaneously are highlighted, and a heuristic method to solve these chal-

lenges is developed.
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Chapter 1

INTRODUCTION

1.1 Overview

In the past decade, the explosive growth of online social networks has transformed

interactions between people. Remaining in touch with distant family, or even brief

acquaintances, is easier than ever, especially with the rise of smartphones. These

allow people to be connected to online social networks at essentially all times of day.

Understanding the social structure in online social networks can create new avenues

of research that develop applications to leverage this information. However, the scale

of social networks is enormous, which poses many challenging technical problems.

Storing and processing the massive amount of data needed to analyze social networks

requires new techniques that consider the scale of the problem first.

In a broader sense, modeling the social tie structure in online social networks is a

part of the research field called ”big data.” This field studies problems in processing

and understanding very large data sets, typically specified by the ”3 Vs”: volume:

the size of the data set, velocity: the rate at which the data is generated, and variety:

the wide range of data types. The field of big data can be coarsely divided into two

parts, namely developing techniques to process the data and new applications that

leverage this processing. The challenges of processing the data seen in typical big

data applications are numerous, and new approaches and computing platforms have

been devised to solve some of these issues. After these are used to process the data

into a useable form, new applications can be developed that utilize this incredible

amount of information contained in the data set.
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Specifically, this dissertation focuses on both of these fundamental problems. The

first problem considered in this dissertation is a new technique for processing online

social network data in order to model the social network structure. However, as social

networks are of massive size, the largest being on the scale of the population of Earth,

an approach that can work at this scale is needed. One fundamental model of this

problem is developed in [1], where different graph-theoretic tools were used. Also, fac-

tor graph models [2] and feature-based approaches [3] have been proposed. However,

these approaches do not perform well for large-scale networks, especially if feature

data is used, as the amount of feature data for each node and link is prohibitive. How-

ever, probabilistic graphical models is a set of tools specifically developed to model

probability distributions at these massive scales [4]. In particular, the t-cherry junc-

tion tree [5] can handle large data sets and has a quantitative performance metric,

unlike other probabilistic graphical models such as the Bayesian network [6]. The

t-cherry junction tree operates by considering small subsets of random variables con-

nected together in a tree structure to create an approximation to the high-dimensional

joint distribution.

Another important aspect is the performance of the t-cherry junction tree when

distributions are estimated from data, rather than being perfectly known. This models

the real-world utilization of this tool, as most problems consider a set of training data

to build the model. The fidelity of the approximation depends upon the ability to

accurately estimate the marginal distributions. The scaling behavior, both in terms

of the size of the training data set and the order of the t-cherry junction tree, is

approximated to highlight the fact that capturing higher-order dependence structures

(which with perfect information results in a higher fidelity) can result in a loss of

fidelity if there is inadequate training data for estimating the distributions. This

tradeoff is quantified so that the proper order of the junction tree can be determined.
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The second problem studied in this dissertation is how to utilize the social struc-

ture that is modeled in the first part to improve different aspects of wireless com-

munication. Relaying, in which one wireless user helps another by rebroadcasting

their information, is known to greatly increase throughput [7]. However, as relaying

for another user consumes resources, users are generally not willing to relay traffic

without incentive. Previous studies on incentivizing relaying have focused on pay-

ment methods [8] or reputation systems [9], in which all users’ histories of relaying

is tracked. A new approach to stimulate relaying is to consider using existing social

ties between users to allow them to relay for those people they know and are willing

to help for no reward. In addition to this insight, users may still be incentivized to

relay for other users without existing social ties if a cycle of reciprocity is developed.

That is, a user may relay for another user if that user relays for them, or a larger

cycle of reciprocity may be constructed. This process allows the throughput gains of

relaying to be realized without the assumption that every node acts purely altruisti-

cally. Again, this highlights the strength of leveraging existing social network data in

traditional communication problems.

Another application of the modeled social network data is to alleviate cellular

traffic overloading. Popular online content can become viral, that is, the number of

people who want to consume the content grows very quickly, and serving this viral

demand over a cellular network is difficult as cellular data networks are becoming

increasingly overloaded. Moving this traffic earlier in time, preloading, has been

proposed as this flattens the demand curve. However, the specifics of which user to

move to which time and the exact nature of the future cellular traffic are ongoing

challenges. Previous solutions considered a priori knowledge of future cellular traffic

or simple Markov chain monte carlo approaches for predicting the future traffic [10].

Another approach uses the Bass diffusion model to approximate the demand curve
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and preload users accordingly [11]. The advent of online social networks allows a

cellular provider to leverage this information about the social structure to predict the

future cellular traffic when viral content is spread over these social networks. This

key insight allows the cellular network to better predict, and thus better distribute,

the traffic load over time to ensure that timely service of the content is achieved.

1.2 Summary of Main Contributions

This dissertation focuses on the problems associated with modeling social ties at

scale in Chapter 2 and the performance of this model using a data driven approach

in Chapter 3. Next, the potential gains available when using existing social network

structure in wireless networks in Chapters 5 and 4 are investigated.

1.3 Modeling Social Network Relationships

In Chapter 2, the problems inherent in modeling social network relationships are

considered. The enormous scale of social networks makes data mining and model-

ing techniques difficult. Algorithms constructed to model different aspects of social

networks must either have limited complexity or must be offloaded to cloud comput-

ing or similar services to ensure that a reasonable run time is achieved. In order to

trade off between modeling accuracy and run time, we incorporate a framework from

probabilistic graphical models: the t-cherry junction tree.

The core modeling problem that is addressed in Chapter 2 is approximating multi-

variate joint probability distributions that have a large number of random variables.

The number of entries required to store these distributions grows exponentially in

the number of random variables involved. Thus approximating using a number of

low-order marginal distributions can greatly reduce the storage size of the joint dis-

tribution. Using t-cherry junction trees, approximations to the true joint distribution
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can be constructed from small marginal distributions while being able to explicitly

calculate the Kullback-Leibler divergence between the approximation and the true

joint distribution, as opposed to heuristic methods. Additionally, t-cherry junction

trees can used to perform exact polynomial time inference.

We present a greedy algorithm to construct a t-cherry junction tree of a given

order, meaning a fixed number of random variables in each marginal distribution, in

order to approximate a joint distribution. Constructing the t-cherry junction tree

representing the best approximation, the lowest Kullback-Leibler divergence between

the approximation and the true distribution, is an NP-hard problem, so the greedy

algorithm does not guarantee the best approximation. However, even this greedy

algorithm requires a long time to run. Another strength of the t-cherry junction tree

is that if a better approximation is desired, the order of the tree can be increased. We

present a method to increase the order of a given tree without constructing a t-cherry

junction tree from scratch, which reduces the time necessary by orders of magnitude,

though there is no performance guarantee involved in this method.

At the end of this chapter is an example application of this new approach. A

Twitter data set containing 100,000 users is considered as training data to recom-

mend existing users that a user new to Twitter might be interested in following.

This problem is formulated as a joint distribution containing 100,000 binary random

variables that is then approximated using a 4-order t-cherry junction tree. After

partitioning and rejoining the junction tree, an approximate joint distribution is gen-

erated that requires only 2,399,920 data entries, as opposed to 2100,000 for the true

distribution, and the Kullback-Leibler divergence between this approximation and

the true distribution can be exactly calculated as 13,511.
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1.4 Impact of the Data Driven Approach

In many real-world applications, probability distributions are estimated using a

training data set. As the training data set is a fixed size, the estimated distributions

are not exactly equal to the true distributions. In Chapter 3, the impact of using

estimated distributions is explicitly, quantitatively stated in terms of the Kullback-

Leibler divergence. The divergence retains the same decomposition as the case when

the distributions are known exactly, with an additional term for each cluster and

separator in the tree.

This divergence result allows for many conclusions about the change in behavior

to the t-cherry junction tree in this case. The first is that these additional terms are

non-negative, meaning that using estimated distributions always results in a worse

approximation to the true high-dimensional distribution. The exact behavior of these

new terms depends on the exact form of the training data set, but the scaling behavior

of the expected value is determined. The scaling behavior behaves as the reciprocal

of the number of samples in the training data set, i.e., more training data results in

improved performance. Also, as the order of the junction tree, the number of random

variables in each cluster, is increased, the loss in fidelity scales exponentially in the

order. These two observations imply that for a range of amounts of training data,

the best overall fidelity is achieved not at the highest order, as when the distributions

are exactly known, but instead at an order that trades off more complex dependency

structures against the decreased accuracy in estimating higher order distributions.

These concepts are demonstrated with a sample application at the end of this

chapter. The problem of distributed detection is considered, in which many sensors

take measurements and individually decide whether a target is present or absent.

However, these sensor measurements have a certain correlation structure, and thus
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their decisions are correlated. These correlated decisions are aggregated at a data

fusion center, which performs a likelihood ratio test and arrives at a global decision.

This test can be approximated using t-cherry junction trees to account for some

correlation structure while not requiring massive storage and estimation penalties.

Low-order trees are shown to retain most of the theoretical performance, even when

they are estimated from training data.

1.5 Enabling Cooperative Relaying Via Social Tie Structure

We present an application of social networks in Chapter 4. In this chapter, the

challenge of ensuring fair cooperative communication is addressed. The key insight

is that mobile devices are carried by humans who have relationships with each other.

The interplay of the physical and social graphs of these users is explored to improve

the throughput of device-to-device communication.

This is essentially a relay selection problem, but without any dedicated relays.

Each user can calculate the increased throughput when using any other user as a

relay, and each user wants to select the user that offers the highest throughput. If

there is social trust between these users (they are connected in the online social

network) then it is assumed that these users will offer to relay for each other without

any personal benefit. However, if there is no social relationship with the desired relay,

a relaying agreement can be reached, but only if each participant receives a benefit.

That is, no user will relay an unknown user unless there is a cycle of reciprocity

created which allows each user to select a favorable relay while agreeing to relay for

another user. For example, user A will relay for user B who will relay for user C, who

in turn relays for user A. This creates a relaying cycle A-B-C-A.

This problem is formulated as a coalitional game. We demonstrate that this game

has the top coalition property, which ensures that the game has a core solution. A
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centralized algorithm is developed to return this core solution that is immune to

group deviations, individually rational, truthful, and computationally efficient. The

performance of this algorithm is analyzed by simulating a two-dimensional arrange-

ment of users and assigning those users identities in a social network. We use both

Erdos-Renyi random graphs and real social network data sets to show that the overall

throughput of the system can be improved by over 100%.

1.6 Reducing Peak Cellular Traffic

In Chapter 5, we present a method to reduce the peak traffic of cellular base

stations by utilizing online social networks. As a whole, the cellular network in the

United States is operating near capacity during busy periods. This is a growing

concern as the amount of cellular data traffic has risen at an exponential rate over

the past several years. During the busiest parts of the day, it is difficult for cellular

base stations to serve all of their users in a timely manner.

We focus on cellular traffic that is generated by interest diffusion in online social

networks. This focus is due to the fact that some content on a social network can

become viral, meaning that many users in a social network will download that content

in a short period of time, which implies that this traffic can be predicted beforehand.

We propose a method to reduce these large spikes in traffic based upon viral content.

This method is comprised of two parts, preloading and offloading. Preloading

content is serving users before they become interested in the content and request it.

For instance, if it can be predicted that a user will become interested in the content

later, that user can be served before the large spike in traffic, when the base station

is less congested. Offloading is based on the notion that cellular users are generally

mobile, and thus device-to-device (D2D) communication can be used. If a user is

interested in a piece of content, it is possible to deliver the content from another user
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that has already downloaded the content using D2D communication. In this way, the

cellular base station is not required to serve the user.

In order to quantify the performance of these two approaches, we focus on the

impact of uncertainty in the interest diffusion and content delivery processes. The

interest diffusion process, in which users become interested in the content via sharing

over the OSN is random as the exact structure and sharing behavior of the social

network is not known a priori. The second process is the content delivery process,

by which users are served by either the cellular network or D2D communication. The

uncertainty in this process is due to human mobility: it is inherently random whether

a user will come into the physical proximity of another user that already has a copy

of the content.

We develop a greedy algorithm that obtains minimal value of the maximum cel-

lular load when both of these processes are known a priori. From this, it is shown

that both preloading and offloading offer vastly improved performance. The random

nature of human mobility is also shown to have only a small effect on the reduction in

peak traffic, while the random structure of the social network can cause a significant

decline in the ability to decrease cellular peak load. Lastly, we extend this frame-

work to multiple pieces of content to highlight the additionaly difficulties present and

propose a heuristic solution.

1.7 Related Work

Many studies have examined similar problems with different focuses. Modeling

social tie structure has been studied using a wide variety of techniques. Originally,

the problem was approached by utilizing different graph theory metrics that only

rely on the structure of the network [1]. However, this requires a full model of the

social network, which is impractical in modern social networks. Other probabilistic
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graphical model tools have been used, namely factor graphs [2], but this tool has

no qualitative performance metric, and in fact, may not converge at all [12]. Using

outside information, such as location data, has been studied to further increase the

accuracy of the prediction [3]. But again, this approach does not scale to the massive

amount of data contained in real-world social networks.

In Chapter 3, a data-driven approach is developed that utilizes only training data

to approximate the dependence structure. Other works have studied directly learning

the underlying Markov random field [13]. However, this only attempts to learn the

underlying dependence structure, not approximate it, so the resulting complexity will

not be reduced. Additionally, the primary focus was an upper bound on the number

of samples required for accurate estimation of the Markov random field. Alternatively,

a similar method was applied to the related problem of classification [14], but only

presented numerical results.

Incentivizing relaying has been well studied. A popular method is to use a payment

scheme to reward users for relaying others’ traffic [8]. In these schemes, a virtual

currency is distributed among the users, and users charge others to relay for them.

Another approach is reputation-based [9]. These schemes have either a centralized

or distributed mechanism to track the reputation of each user, that is, how much

relaying each user has done for others. A key part of these systems is ensuring

their truthfulness. However, as D2D communications are typically between humans,

utilizing social ties can allow for users to relay for other users they know.

Reducing cellular peak traffic caused by viral content is a rich field. Other works

have considered knowing the resulting traffic pattern non-causally or using a Markov

chain Monte Carlo approach [10] to predict the future traffic. Another method is to

approximate the demand using the Bass diffusion model [11], which allows for a high-

level proactive seeding design. However, online social networks drive viral content,
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and exploiting the known social ties can allow for a much better prediction of the

future cellular traffic. Also, neither work has presented a method to identify exactly

which user wants the content at what time, rather the number of users is the focus.

11



Chapter 2

MODELING SOCIAL TIE STRUCTURE VIA T-CHERRY JUNCTION TREES

2.1 Introduction

Over the past decade, online social networks have exploded in popularity. For

instance, Facebook has grown to 1.11 billion users since its inception in 2004 [15].

People with smartphones are seemingly constantly connected to multiple online social

networks, such as Twitter, Facebook, or Tumblr. Even the largest social networks

continue to grow at a rapid pace. For example, in May of 2013, it was measured that

approximately 135,000 new users signed up for Twitter every day [16].

The enormous scale of social networks highlights the need for a systematic quan-

tification of social relationships of users that can be updated efficiently. Clearly, an

exact characterization of the joint distribution of all possible social relationships in

a social network is impossible in practice, and performing perfect inference would

be computationally infeasible. To address these challenges, we propose a framework

building on a recently developed tool in probabilistic graphical models to approximate

this joint distribution: the t-cherry junction tree, first proposed in [17]. A t-cherry

junction tree is a structure that has theoretical guarantees on accuracy of approxi-

mation, as well as allowing for efficient, exact inference once it is constructed. Other

graphical models are often used, such as factor graphs [2], but these offer no guaran-

tees on their approximation and may not convergence when performing inference [12].

Notably, when using a junction tree, any dependence loops among random variables,

which often occur in social relationships, can be easily handled by incorporating those

random variables into a single cluster. Further, the t-cherry junction tree is a data-
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driven approach, which does not require a specific model of user relationships. In a

nutshell, this approach is tailored to offer a rigorous characterization of social ties,

as opposed to approaches based on heuristics. We also demonstrate the flexibility

of the t-cherry junction tree by developing methods to build a higher order t-cherry

junction tree approximation without constructing it from scratch.

Given the massive scale, accurate mining and approximation of large social net-

works cannot be computed quickly on a single machine. The amount of data to be

processed calls for parallel (cloud) computing. A vital strength of the junction tree

structure is the ease in which building and utilizing this structure can be parallelized,

which is another subject of this study.

To demonstrate the utility of this new approach for characterizing users’ rela-

tionships, we investigate a specific application, namely recommending connections to

new users of a social network. This is an important problem as online social networks

remain committed to attracting and keeping new users. Once a new user has created

an account, ensuring that this new user is actively connected to the online community

is an important method to retain new users. A user with many connections in the

social network receives more updates more frequently than one with only a handful of

connections. Therefore, it is important to recommend potential connections in which

a new user may be interested. As a new user begins to form online relationships, the

probabilities of forming relationships to different users are likely to change due to the

new information gained.

For this application, we seek to predict whether a user new to the online social

network will form a relationship to others in the social network. For ease of reference,

we call this problem the new user recommendation problem, which is related to the

traditional “link prediction problem” [1]. In traditional link prediction, the set of users

in the network remains fixed while links are added between them over a period of time.
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Thus there are no new users to consider, and the timescale of interest is typically long

as links may form slowly over time. Rather than having a fixed node set, the problem

we study is to model the links that a new user, not a node previously in the network,

will add to users currently in the network. In general, new users add connections

in a social network much faster than long-time users. Thus, in the timescale under

consideration, connections between users already in the network remain relatively

static, whereas the new user will potentially make many new connections.

We investigate this problem from a purely topological viewpoint: we assume that

the connections between users are the only data available. We do not incorporate

attribute data of the users, as other works have [2] [3]. Once a new user begins to

make connections to other users in the network, the probability that this user will

connect with different users in the network must be updated so that the most likely

social connections are recommended.

We summarize below the main contributions in modeling social relationships using

a t-cherry junction tree.

• We develop a framework based on the t-cherry junction tree to approximate the

underlying social relationships in a large-scale social network. Building on the

greedy algorithm in [5], we construct a t-cherry junction tree by parallelizing

most of the computations. Further, we present an exact method to test if each

possible entry is valid by formalizing the characteristics of a t-cherry junction

tree.

• We devise a scheme involving two algorithms to construct a higher order t-cherry

junction tree in order to improve the approximation. This process is orders of

magnitude faster than computing a higher-order tree from scratch, and indeed

simulations indicate that the resulting higher order approximation reduces the

14



KL-divergence by 150% compared to the original one. The two main steps in

this scheme are: I) the order update step, in which each cluster adds a random

variable from one of its neighboring clusters, and hence changes a k-order t-

cherry junction tree to a (k+1)-order junction tree (not necessarily a t-cherry

junction tree); II) the t-cherry conversion process, which takes the resulting

junction tree and refines each connection between clusters to reestablish the t-

cherry property, while simultaneously greedily minimizing the Kullback-Leibler

divergence between the approximation and the true distribution.

• This new framework is applied to the specific problem of recommending the

most likely social connections to a new user by using a 100,000 user Twitter

dataset. First, an existing tool, METIS [18], is used to partition the social

graph into 1,560 disjoint subgraphs. For each of these subgraphs, a 4-order

t-cherry junction tree is constructed, and then these individual trees are joined

together using a slight variant of the t-cherry conversion process. The resulting

KL-divergence between the t-cherry junction tree and the joint distribution is

calculated explicitly, which is novel as the size of the joint distribution prevents

a direct computation. Additionally, we leverage this structure to perform infer-

ence to update the probability of social relationships as new relationships form.

Updating these probabilities is performed in a few minutes, despite involving

100,000 random variables.

The organization of the rest of the chapter is as follows. We begin with an in-

troduction to the t-cherry junction tree in Section 2.2 and present a method for

constructing it in Section 2.3. In Section 2.4, a process to gracefully improve the ap-

proximation given by a t-cherry junction tree is developed. The application of these
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tools to the new user recommendation problem is then presented in Section 2.5. The

chapter concludes in Section 2.6.

2.2 T-Cherry Junction Trees

Denote the underlying joint distribution, containing N random variables, as

p(X1, . . . , XN). When N is large, computing this joint distribution directly is gener-

ally too costly. Instead, a junction tree is created to approximate this distribution by

using only “marginal” distributions corresponding to a small subset of random vari-

ables. Every junction tree has an underlying Markov random field that corresponds

to the dependence structure inherent in the junction tree.

Definition 2.2.1. A junction tree is a tree structure over a variable set X1, . . . , XN

with the following properties:

1. Each node of the junction tree is a subset of random variables, denoted XC, and

is called a cluster. Associated with each cluster is the distribution p(XC). These

clusters represent the maximal cliques of the associated Markov random field.

2. Every edge connecting two clusters in the junction tree contains a separator. A

separator is a subset of random variables containing the intersection of the two

clusters being linked: XS = XC1 ∩XC2. As with clusters, each separator has the

distribution p(XS) associated with it.

3. If a random variable is contained in two different clusters, it is also contained

in every cluster on the path between those two. This is called the running inter-

section property.

4. The union of all clusters is the entire set of random variables X1, . . . , XN .

16



Additionally, the treewidth of a junction tree is defined as the number of variables

within the largest cluster. A slightly less restrictive concept than the junction tree is

the clique tree. The difference is that a clique tree does not necessarily satisfy the

running intersection property.

In order to characterize the quality of the junction tree approximation, we denote

the entropy of a random variable X as H(X) and the entropy of a random vector X

as H(X). Also, define the information content of a random vector X = [X1, . . . , Xk]

as

I(X) =
∑
X

p(X) log

(
p(X)

p(X1) . . . p(Xk)

)
. (2.1)

Using these definitions, the quality of the approximation is given by the following

result [5].

Lemma 2.2.1. The Kullback-Leibler divergence between a junction tree approxima-

tion and the actual distribution is:

DKL(p(X)||pJT (X)) =−H(X)−
∑
XC∈C

I(XC) +
∑
XS∈S

I(XS) +
N∑
i=1

H(Xi). (2.2)

Noting that the first and last terms of the expression do not depend on the junction

tree, the closest approximation for a fixed treewidth is formed by constructing the

set of clusters and separators to maximize the weight of the junction tree, defined as

w ,
∑
XC∈C

I(XC)−
∑
XS∈S

I(XS). (2.3)

However, finding the tree that maximizes the weight is an NP-hard problem [5].

Despite this challenge, there is a subclass of junction trees that is guaranteed to

contain the maximum weight junction tree: t-cherry junction trees.

The t-cherry junction tree was originally derived from the t-cherry tree [19] and the

simplex m-multitree [20]. We define the t-cherry junction tree in a slightly different,

though equivalent, manner than it was originally presented in [17].
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Definition 2.2.2. The k-order t-cherry junction tree is a junction tree with the

following properties:

1. Each cluster contains k random variables.

2. Every separator contains k-1 random variables.

Thus two connected clusters, denoted C1 and C2, each contain a single random

variable not contained in the other cluster. That is, |C1 \C2| = 1, and |C2 \C1| = 1.

We emphasize that the class of k-order t-cherry junction trees is important because

the junction tree with the largest weight and hence the closest approximation to the

actual distribution, is a member of this class [5].

Lemma 2.2.2. In the class of all k-width junction trees, the k-order t-cherry junction

tree having the greatest weight is the best approximation to the actual distribution.

2.3 Data-Driven Construction of a t-Cherry Junction Tree

As the class of t-cherry junction trees is guaranteed to contain the best possible

approximation among all k-order junction trees, we next investigate how to build

a t-cherry junction tree. To this end, we develop an algorithm and show that the

running time of this algorithm can be drastically reduced via parallel computation.

As mentioned above, constructing an optimal k-order t-cherry junction tree is an

NP-hard problem. Based on [21], we design a greedy algorithm to construct a k-order

t-cherry junction tree. It is worth noting that there are two key issues we resolve

here. First, the process of checking if a cluster-separator pair is a valid addition is

now explicitly formulated, and efficiently implemented by two checks. Our second

contribution is to parallelize the process of listing all possible cluster-separator pairs,

which allows the tree to be constructed significantly faster.
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The basic idea of this algorithm is as follows. It begins by listing all possible

clusters-separator pairs, and then orders them by weight. It selects the heaviest

cluster-separator pair and adds it to the junction tree if the resulting clique tree is

a valid t-cherry junction tree. If that cluster-separator pair is not a valid addition,

it is discarded and the next heaviest pair is evaluated. This algorithm is motivated

by the Chow-Liu algorithm for constructing a second order approximation [22], and

indeed this algorithm is exactly the Chow-Liu algorithm when k is set to two. The

output of this algorithm is a t-cherry junction tree, represented by a set of clusters C

and set of separators S, and a listing of the parent for each cluster. As clusters are

added to the t-cherry junction tree, these sets are updated.

As presented in Algorithm 1, the construction has two phases: the first phase is

table construction, and the second is cluster addition. It begins with the table

construction phase. First, a table T listing all of the k
(
N
k

)
possible cluster-separator

pairs is constructed. That is, a list is made of all of the
(
N
k

)
subsets of size k as clusters,

and for each cluster, all of the k possible choices for the separator are listed. Denote

each cluster-separator pair entry, with the cluster labeled as C ′ and the separator as

S ′, in table T as follows: set T (i, 1) = C ′ \ S ′ and T (i, 2) = S ′. The single variable

C ′ \ S ′ is called the dominating vertex of the cluster [20]. For each of the k
(
N
k

)
entries in table T , calculate the weight of the entry as w = I(XC′)− I(XS′) and set

T (i, 3) = w. Next, this table is sorted by heaviest weight, and the sorted table is

labeled T ?.

After the table T ? is constructed, the cluster addition phase takes place. Starting

with an “empty” junction tree, determine whether the heaviest remaining entry can

be added to the junction tree. Each cluster, aside from the first cluster entered,

will have a parent associated with it. To facilitate checking if the cluster-separator

addition is valid, maintain a binary vector of all nodes currently represented in the
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junction tree. This vector is denoted V , where V (v) = 1 represents that variable v is

contained in at least one cluster in the junction tree.

Next, we examine the condition under which a cluster-separator pair can be added

and maintain a valid t-cherry junction tree. The variables in S ′ must be contained

within another cluster to have a valid parent. If the dominating vertex of C ′ is already

in a cluster of the network, then this cluster-separator pair is not a valid addition

because there are only two possible manners in which this occurs, neither of which

results in a valid t-cherry junction tree. The first possibility is that the dominating

vertex is also contained within the parent cluster. This results in the two clusters

being identical, which is not valid as the separator would contain k variables. The

other possibility is that the dominating vertex is contained within a cluster in the

tree that is not the parent cluster. As the dominating vertex is not in S ′, the running

intersection property would be invalidated.

Though this approach is heuristic and cannot guarantee that the t-cherry junc-

tion tree created has the global maximum weight, it has the benefit of being largely

parallelizable to decrease the overall running time. Other methods for constructing

a junction tree have been proposed, but these methods operate by selecting links

in the underlying Markov random field individually in a step-by-step manner [23]

[24]. However, these methods cannot be parallelized and are applicable to only small

datasets.

It can be shown that the overall time to construct a junction tree is dominated by

the table construction phase on average, and therefore decreasing the time needed to

construct the table will greatly decrease the time needed to build a t-cherry junction

tree. To get a more concrete sense, we run the greedy algorithm using a Twitter data

set [25], using 15 binary random variables and vary the width of the tree generated

from 2 to 14. From this Twitter data set, we select the 500 nodes with the most
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Algorithm 1 Greedy Algorithm for Constructing a k-Order t-Cherry Junction Tree

C = T ?(1, 1) ∪ T ?(1, 2)
S = ∅
V (T ?(1, 1) ∪ T ?(1, 2)) = 1
i = 2
while ∃v such that V (v) = 0 do
d′ = T ?(i, 1)
S ′ = T ?(i, 2)
C ′ = d′ ∪ S ′
if V (d′) = 0 then

for j = 1 : |C| do
C = C(j)
if S ′ ⊂ C then

parent(C ′) = C
C = C ∪ C ′
S = S ∪ S ′
V (d′) = 1
break loop

end if
end for

end if
i = i+ 1

end while

connections and randomly select 15 nodes for each iteration. The results for each

treewidth were averaged over 200 runs. The average times needed to generate the

table for different treewidths and the average time to construct the junction tree are

shown in Figure 2.1. Clearly, the time to generate the table is several orders of mag-

nitude larger than the time needed to construct the junction tree for all treewidths.

As the performance bottleneck of this approach is the table construction phase,

we use parallel computing to decrease the runtime. This parallel computation can be

exported via cloud computing [26] in order to drastically reduce the time needed to

construct a t-cherry junction tree. Each entry of the table can be computed separately

from every other entry and then these individual entries can be sorted by weight to

form the complete table.
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Figure 2.1: Time of each phase of building a t-cherry junction tree

2.4 A Closer Approximation: from k-Order to (k+1)-Order

While low order t-cherry junction trees can be constructed quickly, constructing

high order ones from scratch would be formidable. In order to improve the approxima-

tion generated by a low order t-cherry junction tree, we propose an iterative method

to update a k-order t-cherry junction tree to (k+1)-order gracefully, which refers to

using an incremental process based on the previously constructed k-order tree. There

are two steps to this process. The first step is the order update process, by which

each cluster is expanded from k variables to k+1 variables. This step maintains the

junction tree structure, but cannot guarantee that the t-cherry property is retained.

Reestablishing the t-cherry property is the second step, namely via t-cherry con-

version.
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2.4.1 The Order Update Process

Clearly, the first step of updating from a given k-order t-cherry junction tree to

a (k+1)-order junction tree is to add a “good” variable to each cluster. We develop

an algorithm to add a variable to each cluster by including a variable contained

in a neighboring cluster. The variable added to a cluster must be from one of its

neighboring clusters in order to satisfy the running intersection property, or else the

result would be a clique tree, not a junction tree.

The algorithm we design to perform this process is called the Order Update

Algorithm, and it operates by implementing a series of update steps, each of which

is the process of adding a variable to a cluster, until each cluster in the junction tree

is of size k+1. Each update step consists of adding an additional variable to an

eligible cluster, a cluster which has not yet added a variable. Each cluster can only

add a single variable as the treewidth of the updated junction tree is k+1. Once an

eligible cluster has added a variable, it becomes an ineligible cluster.

To determine which variable is the “best” variable for a cluster to add, each

potential update step has a weight assigned to it. This weight represents the increase

in the weight of the junction tree after the update step takes place. To calculate

this weight, note that the update step process is equivalent to adding a new edge in

the underlying Markov random field. This insight allows the weight to be calculated

efficiently using a result from [23]. To formulate this result, and for ease of exposition,

for the rest of this section we denote the active cluster, the cluster adding the

variable, as CA and the donating cluster, the neighboring cluster that contains

the additional variable, CD. The separator of these clusters is S and the additional

variable is v. After the update step is performed, we denote the resulting cluster as

C ′A , CA ∪ v. The edge to be added in the Markov random field is between the
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additional variable v and the single node d , CA \CD. Utilizing Corollary 4.1 in [23],

the weight increase of the junction tree due to an update step is:

∆W (d, v) = H(S ∪ d) +H(S ∪ v)−H(S ∪ d ∪ v)−H(S). (2.4)

There are three steps that need to be performed for each update step. The first

is to simply include the additional variable in the active cluster, and mark the active

cluster as ineligible. Now that the active cluster contains a new variable, each neighbor

of the active cluster has a new potential update step as the current additional variable

v could be added to each neighbor, which was not possible before. Note that the

donating cluster does not have a new potential update step because it already contains

the current additional variable. So the second step is to find all new potential update

steps for the neighbors of the active cluster.

The third step is more involved than the previous two. As two connected clusters

differ by only a single variable, some update steps will result in the donating cluster

becoming a subset of the active cluster. When this occurs, the donating cluster must

be removed from the junction tree, and its neighbors must be connected to the active

cluster instead. After these connections are migrated to the active cluster, some

potential update steps of each neighbor of the donating cluster must be changed to

reflect that any potential update step that used CD as the donating cluster must now

use C ′A as the donating cluster. Also, each of these new neighbors of C ′A has a new

potential update step in which the additional variable would be d.

We now present the Order Update Algorithm as Algorithm 2. At the beginning,

a list of all potential update steps is constructed, denoted T , where each entry is of

the form {w, v, CA, CD}, which represents cluster CA adding variable v from cluster

CD with the resulting weight increase of the junction tree being w. This list is sorted

by weight. Next, update steps are executed in a greedy manner by performing the
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update step with the greatest w, but only if the active cluster is eligible. If not,

this entry is simply discarded. After each update step, the three necessary steps

previously outlined are carried out. The algorithm continues until all clusters are

marked ineligible. To track the eligibility of clusters, there is a binary vector over the

set of clusters denoted E, where E(i) = 1 represents that cluster Ci is eligible. The

entire set of clusters in the junction tree is labeled C and the set of all neighbors of a

cluster Ci is denoted N (Ci).

An example demonstrating a single update step to move from a 4-order to a 5-

order junction tree is presented in Figure 2.2 for a small junction tree. After one

update step, the cluster {X1, X2, X3, X4} , C1 adds variable X6 from its neighboring

cluster {X1, X3, X4, X6} , C2 to become cluster {X1, X2, X3, X4, X6} , C ′1. Because

C2 ⊂ C ′1, C2 is removed and all connections from C2 to any clusters aside from C ′1

are then connected to C ′1. Note that the separators from all neighbors of C1 and C2

remain unchanged after the update process. There are three updates that are made

to the list of possible update steps. The first is that cluster {X1, X2, X3, X5} can

now add variable X6 from cluster C ′1, so this entry is added to the list. The second

addition is that cluster {X1, X4, X6, X7} can now add variable X2 from cluster C ′1.

The third is that cluster {X1, X4, X6, X7} can still add variable X5, but the entry in

T needs to be changed so that the cluster from which it adds this variable is set to

C ′1, not C2 as it was previously set. In total, there are two additions to the list of

possibilities, and one change.

It is important to note that after each update step, the resulting clique tree is still

a junction tree.
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Theorem 2.4.1. Each update step preserves the junction tree structure, i.e., it does

not reduce a junction tree to merely a clique tree.

The proof of this theorem is found in Section 2.7.

Algorithm 2 Order Update Algorithm

1: E(Ci) = 1 ∀ Ci ∈ C
2: while ∃i such that E(i) = 1 do
3: CA = T (1, 3)
4: if E(CA) = 1 then
5: v = T (1, 2)
6: CD = T (1, 4)
7: d = CA \ CD
8: CA = CA ∪ v
9: E(CA) = 0

10: for all Ci ∈ (N (CA) \ CD) and E(Ci) = 1 do
11: v′ = Ci \ CA
12: w = ∆W (v′, v)
13: Add entry {w, v′, Ci, CA} to table T
14: end for
15: if CD ⊂ CA then
16: for all Ci ∈ (N (CD) \ CA) do
17: Connect Ci to CA
18: v′ = Ci \ CA
19: w = ∆W (d, v′)
20: Add entry {w, d, Ci, CA} to table T
21: end for
22: for all Ti ∈ T do
23: if Ti(4) = CD then
24: Ti(4) = CA
25: end if
26: end for
27: Remove cluster CD from the junction tree
28: end if
29: end if
30: Delete the first entry in T
31: Sort T by w
32: end while

2.4.2 The t-Cherry Conversion Process

Though the previous algorithm returns a (k+1)-order junction tree, it does not

necessarily return a (k+1)-order t-cherry junction tree. The reason for this is that
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the k-order t-cherry junction tree has separators that contain k-1 variables, so a

(k+1)-order junction tree must have separators that contain k variables. However,

the separators in the junction tree returned from the algorithm may have separators

of size k-1. This occurs when two connected clusters, C1 and C2, have added variables

from other clusters, i.e., C1 added a variable from a cluster other than C2, and vice-

versa. This implies that the separator S = C1 ∩C2 is unchanged from its original k-1

nodes, as the intersection of the two clusters remains the same.

We next present an algorithm that converts the (k+1)-order junction tree re-

turned from Algorithm 2 into a (k+1)-order t-cherry junction tree. We note that this

algorithm can be extended in a straightforward manner to convert any (k+1)-order

junction tree, not only those returned by Algorithm 2, into a (k+1)-order t-cherry

junction tree. The reason for the difference is that a general (k+1)-order junction

tree may have clusters of any size between 1 and k, as the treewidth is the size of only

the largest cluster in the entire junction tree, whereas in the (k+1)-order junction

tree returned by Algorithm 2, all clusters are of size k + 1.

An earlier algorithm [5], developed to convert a junction tree to a t-cherry junction

tree, requires that a root node be selected, and the resulting tree is heavily dependent

upon the choice of root node. Our approach does not require a root node to be

selected, and it greedily maximizes the weight of the junction tree as it operates.

Also, the underlying process, maintaining separators of size k, is clearly articulated

in our algorithm.

The t-cherry conversion process is completed when each separator has been trans-

formed to include k variables. Thus we design an algorithm to ensure that each

separator contains k variables, and we call this the t-Cherry Bud Conversion

Algorithm, presented as Algorithm 3. A bud of the t-cherry junction tree is a

cluster-separator-cluster triplet, and thus the number of buds is the number of sepa-
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rators in the junction tree. For each separator in the junction tree, the bud can be

replaced by a set of clusters and separators that have the t-cherry property and still

remain a junction tree. This process transforms each bud in turn, until the entire

junction tree has been converted to a (k+1)-order t-cherry junction tree. In other

words, the t-cherry conversion process operates by transforming all buds into t-cherry

compliant buds by transforming each using Algorithm 3.

Algorithm 3 operates over two clusters and their separator. Denote one cluster

as C1, the other C2, and S as their separator. The underlying concept is to “pull

forward” variables from C1 to create more clusters in order to ensure that adjacent

clusters are separated by k variables (as the treewidth is k+1) and that the running

intersection property is maintained. In total, the two original clusters are replaced

by |C2| − |S|+ 1 clusters, as each variable contained in C2 \ S must be a dominating

vertex of its own cluster. Denote the set of dominating vertices not yet assigned to

clusters as D, and the set of dominating vertices already placed in clusters as E . At

the beginning of the algorithm, D = C2 \ S and E = ∅. A key component of this

algorithm is the set of “free” variables; that is, the set of variables that can be pulled

forward from the previous cluster to a new cluster to ensure the separator is of size k.

We denote this set of free variable as F . The first iteration is slightly different from

the next |C2| − |S| iterations so it is outside of the main loop. The sets of the new

clusters and separators returned are denoted C ′ and S ′ respectively. These two sets

replace C1, S, and C2 in the junction tree. For each iteration, the choice of F and

d are made to maximize the weight of the resulting cluster-separator pair, as seen in

lines 4 and 11.

An example of this process is shown in Figure 2.3. Figure 2.3(a) shows a 5-order

junction tree, after the order update process that began in Figure 2.2 has completed

all of its steps. Notice that the right branch already satisfies the t-cherry property,
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Figure 2.2: An example of one update step
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(b) After t-cherry conversion

Figure 2.3: An example of t-cherry conversion

so it does not need to be converted. However, the left branch, the cluster-separator-

cluster connection {X1, X2, X3, X4, X6} {X1, X2, X3} {X1, X2, X3, X5, X8}, does not

satisfy the t-cherry property as the separator has only 3 variables, not 4. The result

after running Algorithm 3, shown in Figure 2.3(b), has an additional cluster inserted

between the two original clusters to make a t-cherry junction tree.

In order to convert all buds into t-cherry buds, Algorithm 3 is run twice on each

bud. For the second application of this algorithm, the choice of C1 and C2 is reversed.

After both cluster and separator sets are calculated, the choice that results in the

heaviest weight is used to replace the bud in the junction tree.
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Algorithm 3 t-Cherry Bud Conversion Algorithm

Require: C1, C2, S = C1 ∩ C2

1: D = C2 \ C1

2: C ′1 = C1

3: F = {F : F ⊂ C1, |F | = k − |S|}
4: F ?, d? = arg max

F∈F ,d∈D
I(d ∪ S ∪ F )− I(S ∪ F )

5: C ′2 = d? ∪ S ∪ F ?

6: S ′1 = S ∪ F ?

7: D = D \ d?
8: E = d?

9: for i = 2 : (|C2| − |S|) do
10: F = {F : F ⊂

(
S ′i−1 \ (E ∪ S)

)
, |F | = k − |E| − |S|}

11: F ?, d? = arg max
F∈F ,d∈D

I(d ∪ E ∪ S ∪ F )− I(E ∪ S ∪ F )

12: C ′i+1 = d? ∪ E ∪ F ? ∪ S
13: S ′i = E ∪ F ? ∪ S
14: D = D \ d?
15: E = E ∪ d?
16: end for
17: return C ′,S ′

As with Algorithm 2, it is vital to show that this approach returns not only

a junction tree structure, not merely a clique tree, but also specifically a t-cherry

junction tree.

Theorem 2.4.2. The clique tree, constructed via performing Algorithm 3 twice on

each bud, is a t-cherry junction tree.

The proof of this result can be found in Section 2.8.

To demonstrate the improvement from updating a k-order t-cherry junction tree

to a (k+1)-order t-cherry junction tree, we apply this approach to each of the 1,560

individual t-cherry junction trees constructed in Section 2.5. The average increase in

the weight of the junction tree after the order update step is 19%, and the average

weight increased another 110% on top of the order update weight after performing

the t-cherry conversion process. Thus after both steps, on average the weight of the

t-cherry junction tree increased 150%. Both the order update and t-cherry conversion
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processes combined required five seconds on average to run for each individual tree, a

significantly shorter amount of time compared to building a 5-order t-cherry junction

tree from scratch, which takes roughly one and a half hours. This approach is a very

fast method to significantly improve the approximation of a t-cherry junction tree.

2.5 An Example Application: New User Recommendation in a Twitter Network

Next we apply the tools developed in the previous sections to the new user rec-

ommendation problem. A t-cherry junction tree is constructed to approximate the

joint distribution of social connections in the social network, and then this junction

tree is used to perform inference to update the probabilities of social links forming.

Our experimental setup is to approximate the probability of following users in a set

of 100,000 Twitter users using the dataset [25]. We first preprocess the data and ex-

tract the 100,000 most connected users. The random variables in this application are

whether a new user will follow a certain user. The joint distribution p(X1, . . . , XN)

is a collection of N = 100, 000 binary random variables, where Xi = 1 represents

the outcome that a new user to Twitter will follow user i. To construct a t-cherry

junction tree, the “marginal” distributions containing k and k − 1 variables must be

computed. Rather than attempting to model human social behavior directly, we use

a data driven approach instead. Each of these distributions is computed using the

empirical data by counting the number of the 100,000 users that follow each user.

As constructing a t-cherry junction tree requires constructing a table with k
(
N
k

)
entries, a small treewidth, k = 4, is chosen, as is typical for constructing junction

trees. Due to the fact that directly constructing a 100,000 variable t-cherry junction

tree is computationally infeasible, the social graph is partitioned using METIS [18],

specifically the implementation [27], into 1,560 disjoint subgraphs, with each sub-

graph containing 64 or 65 users. We call the t-cherry junction tree constructed for
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each subgraph an individual tree. Each individual t-cherry junction tree can be

computed in a reasonable amount of time, roughly five minutes, using Algorithm 1.

It is necessary to partition the graph into disjoint subgraphs in order to ensure that

when the individual t-cherry junction trees are joined together, the running inter-

section property is not violated. The METIS software partitions by attempting to

minimize the number of edges cut to form the partitions. Retaining the maximum

number of edges in the partitions is ideal as attempting to keep densely connected

social communities together is important. In order to build these individual trees, 7

computers were used operating in parallel.

Next, we examine the process of connecting the individual t-cherry junction trees

together in order to form one connected t-cherry junction tree. Two individual t-

cherry junction trees can be joined together by connecting two clusters, one from each

tree, using Algorithm 3 to ensure that the resulting combination is still a t-cherry

junction tree. It is important that only two clusters are joined together; otherwise

loops will be present, and thus it will not be a junction tree. There are two sub-

problems in this process. The first is that each individual tree can be joined with any

other tree, and the second is that after choosing which two individual trees to join

together, each cluster within each tree is a potential choice to use in connecting these

two trees.

To attempt to maintain the original social structure of the full social graph, the

number of edges cut in the partitioning process is the metric used to decide which

individual trees to be joined. The process begins by computing the number of edges

cut between all partitions, and then combining the two individual trees that have the

maximum number of edges cut between them. This process continues in a greedy

manner by selecting the individual tree that has the most edges cut to any of the
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already joined individual trees. This continues until all of the individual t-cherry

junction trees have been joined together.

Having selected which individual t-cherry junction trees to join, the other sub-

problem is to decide which two clusters should be connected to actually join the

junction trees together. To join these individual junction trees together, the social

structure of the original graph was considered. For each two individual trees being

joined together, the number of edges cut between the users in each cluster in both

trees was counted. Then the two clusters which had the most edges cut between them

were selected to be connected in order to join the two individual trees. After selecting

these two clusters, they are linked together using Algorithm 3, which ensures that the

t-cherry property is preserved. After all individual trees were joined together in this

manner, the result was a single t-cherry junction tree containing 100,000 variables.

This t-cherry junction tree captures the joint probability distribution of a new user

following any of the existing 100,000 users.

The entire tree building process, from initial partitioning through the combina-

tion of the individual trees took slightly over 19 hours, the vast majority of which

was spent constructing the individual junction trees. To calculate the KL-divergence

between this approximation and the joint distribution, we calculate the overall weight

of this combined junction tree as 926. The estimated joint entropy is 11.5 and the

sum of the individual entropies is 12,596. Using Equation (2.2), the KL-divergence

of this approximation is 13,511. While this represents a large difference between the

approximation and the joint distribution, this KL-divergence is still calculable, which

is novel, and this approximation uses only 99,997 distributions containing 4 variables,

and 99,996 distributions containing 3 variables, resulting in a total of 2,399,920 data

entries to store these distributions, to model a distribution containing 100,000 vari-
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ables. Compared to storing the full distribution, which requires 2100,000 entries, this

is a very small number of entries.

With the complete t-cherry junction tree constructed, the final piece of the solution

to the new user recommendation problem can be developed. This last piece is the

inference process. Once a new user has begun to select other users to follow, the

values of the random variables representing these relationships are known, and the

probability of the unknown relationships can then be updated.

Computing this new distribution, performing inference, for a junction tree can be

evaluated in a computationally efficient manner by using message passing to update

all clusters to their new distributions [28]. This process is quick and there are other

works to parallelize this process [29], and the software suite GraphLab can be used as

an off-the-shelf implementation [30]. For the full junction tree containing all 100,000

users, inference takes less than two minutes. We test our approach by calculating the

area under the ROC curve (AUC) by testing 1,000 random users contained in the

Twitter dataset, but not in the 100,000 users used to build the junction tree. The

resulting AUC is 0.5519, which is impressive considering the massive scale of this

social network and the low order of the t-cherry junction tree.

2.6 Conclusion

In this chapter, we developed a framework based on the t-cherry junction tree to

characterize users’ relationships in online social networks. To this end, we devised an

algorithm to construct a k-order t-cherry junction tree where most of the computa-

tions are parallelized. In order to improve the approximation further, we proposed

a scheme consisting of the order update and t-cherry conversion steps to construct a

higher order t-cherry junction tree. The proposed scheme is significantly faster than

building a higher order t-cherry junction tree from scratch and greatly decreases the
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KL-divergence between the approximation and the joint distribution compared to

the original one. This new framework was applied to the new user recommendation

problem by creating a probabilistic model of 100,000 user relationships in a Twit-

ter dataset by building 1,560 individual t-cherry junction trees and connecting them

together.

To the best of our knowledge, this work is the first using a t-cherry junction tree

approach to study social networks. In general, the junction tree has many strengths

that allow for a compact and rigorous characterization of the underlying structure of

social networks.

2.7 Proof of Theorem 2.4.1

It suffices to check all conditions in Definition 2.2.1. Denote the active cluster as

C1 and the neighboring cluster containing the additional variable v as C2, with the

separator S. Additionally, denote the new cluster of size k+1 as C ′1, and the set of all

clusters connected to C1, excluding C2, as N1, where these neighboring clusters are

labeled N1i ∈ N1, and likewise for nodes connected to C2, excluding C1, as N2i ∈ N2.

The first condition of the definition is trivially satisfied. To check the second con-

dition, we show that the separator S is correctly constructed, and all other separators

remain unchanged. If C2 6⊂ C ′1, then S ′ , C ′1 ∩ C2 = S ∪ v. Next, we demonstrate

that each N1i is connected to C ′1 with the same separator it originally had, which we

denote S1i = C1∩N1i . First, no variables need to be removed from S1i as all variables

in C1 are in C ′1. Secondly, no variables need to be added to S1i due to the fact that

the running intersection property of the original tree guarantees that v 6∈ N1i . Thus

S1i remains unchanged for every i. If C2 is removed from the junction tree, we show

that each S2i , C2 ∩ N2i remains the same despite connecting to C ′1 instead of C2.

As C2 ⊂ C ′1, no variables need to be removed from this separator. No variables need
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to be added as the running intersection property of the original tree ensures that C ′1

and S2i do not share any variables that were not in C2.

The third condition, the running intersection property, clearly still holds if C2 6⊂

C ′1. If C2 ⊂ C ′1, each N2i now connected to C ′1 still satisfies the running intersection

property because every variable in C2 is contained in C ′1. So any path between clusters

with a shared variable that originally traversed C2 now traverses C ′1 with that same

variable. And clearly the fourth condition is satisfied as no variables were removed

from the junction tree.

2.8 Proof of Theorem 2.4.2

We begin with proving that this approach preserves the junction tree struc-

ture by checking the conditions of Definition 2.2.1. Denote the original clusters C1

and C2 and their separator as S. The resulting replacement clusters are labeled

Cr1 , . . . , Cr|C2|−|S|+1
.

The first and second conditions of the definition are clearly satisfied. In order to

prove the running intersection property, note that Cr1 = C1, and likewise Cr|C2|−|S|+1
=

C2. Any path originally terminating on C1 or C2 still has the running intersection

property. Therefore, once it is proved that Cr1 , . . . , Cr|C2|−|S|+1
satisfy the running

intersection property internally, the overall running intersection property holds. This

property is violated if and only if Cri contains a variable present in Crj \ Cri−1
∀j <

i − 1. The dominating vertex of Cri , d
?
i is not contained in any previous vertex due

to the fact that is was selected from E . So only the remaining k nodes of Cri could

possibly be contained within Crj . The original separator S is contained within every

cluster, thus only the remaining k − |S| variables of Cri could possibly be contained

within Crj \ Cri−1
. The dominating vertex of Cri−1

, d?i−1, is contained within E when

Cri is constructed and is not contained in any cluster Crj j < i−1 by the construction
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of E . Additionally, any previous dominating vertex is contained within E for the next

iteration and is thus is all future clusters. Therefore only k − |S| − |E| variables

remain as candidates for variables contained in (Cri ∪ Crj) \ Cri−1
. These remaining

variables are precisely the variables chosen from the “free variable” set F . However,

by the definition of F , all possible F ∈ F are a subset of Cri−1
. Thus there are no

variables that could be present in Ci\Ci1 that are present in Crj ∀j < i−1. Therefore

the running intersection property is satisfied. The fourth condition of the definition

holds as no variables are removed.

As each call of Algorithm 3 preserves the junction tree structure, the entire process

also preserves the junction tree structure.

To prove that a t-cherry junction tree structure is returned, note that if each call

of Algorithm 3 returns a t-cherry junction tree, then the resulting junction tree from

transforming each bud is a t-cherry junction tree. A (k+1)-order junction tree is a

(k+1)-order t-cherry junction tree if and only if each separator S = C1 ∩C2 contains

k nodes, i.e., C1 and C2 each contain only a single node that is not contained within

the other cluster. This is clear to see as:

Cri+1
\ Cri = (d?i+1 ∪ Ei+1 ∪ F ?

i+1 ∪ S) \ (d?i ∪ Ei ∪ F ?
i ∪ S)

= d?i+1 ∪ (Ei+1 \ (d?i ∪ Ei)) ∪ (F ?
i+1 \ F ?

i ) (2.5)

= d?i+1. (2.6)

Similarly,

Cri \ Cri+1
= (d?i ∪ Ei ∪ F ?

i ∪ S) \ (d?i+1 ∪ Ei+1 ∪ F ?
i+1 ∪ S)

= ((d?i ∪ Ei) \ Ei+1) ∪ (F ?
i \ F ?

i+1) (2.7)

= F ?
i \ F ?

i+1. (2.8)
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Note that |F ?
i \ F ?

i+1| = 1 as

|F ?
i \ F ?

i+1| = k − |Ei| − |S| − (k − |Ei+1| − |S|) (2.9)

= |Ei+1| − |Ei| = 1. (2.10)

Therefore each pair of connected clusters differs by only a single node in each.
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Chapter 3

A DATA DRIVEN APPROACH FOR MODELING DEPENDENCE STRUCTURE

3.1 Introduction

In traditional distributed detection problems, a collection of M > 2 distributed

agents collect data and formulate decisions regarding a binary hypothesis test between

common hypotheses H0 and H1. The decisions of the individual agents, represented

as binary variates U , {U1, . . . , UM}, are aggregated at a fusion center, which forms

a global decision regarding the two hypotheses on the basis of this data.

A prevalent assumption in addressing this problem is that the random variables

Ui are conditionally independent under each hypothesis [31, 32]. This assumption is

justified in many settings, and it yields a number of appealing outcomes; e.g., if the

binary data are conditionally independent and identically distributed, the optimal

decision rule at the fusion center is a simple voting scheme. And it is generally a

weighted vote even when the data values are not conditionally identically distributed

provided the probabilities of detection and false alarm for the local detectors are

known [33].

Despite providing highly tractable fusion rules, the performance of the global

detector that assumes independence may be poor if the sensors’ measurements are

correlated. In this scenario, exploiting the full joint conditional distributions of U at

the fusion center yields optimal detection performance but introduces several draw-

backs. One key impediment to working with full joint conditional densities of the

binary data is that they are burdensome to represent and store. For M indepen-

dent and identically distributed binary random variables and two hypotheses, the
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joint conditional densities are summarized by two parameters, which increases to 2M

parameters if the assumption of identically distributed is removed. In the general

case, 2M+1 parameters are required to catalogue a pair of joint conditional densities;

with 50 sensors, this would be larger than 1015. Another complication is the need to

estimate the densities from data samples.

These two issues, namely the number of model parameters to store and the amount

of training data necessary to accurately estimate them, point directly to the relative

strengths and weaknesses of the two approaches. The first approach, considering all

Ui as conditionally independent, involves storing only 2M parameters that can be

accurately estimated using a small amount of training data. However, this may rep-

resent a very coarse approximation to the actual joint distribution of U. The second

approach is to consider the full joint distribution of the Ui, which is more accurate

provided there is ample training data available to estimate the 2M+1 parameters, as

well as storage space for these parameters.

In light of the limitations of these two approaches, we present a method that

enables a controllable tradeoff between these two approaches. By constructing a t-

cherry junction tree [5] for each hypothesis, approximations to the distribution of the

Ui can be constructed of any order, rather than only the conditionally independent

(first order) case, or the case with the full joint distribution (M th-order). This ap-

proach offers flexibility and sheds light on the impact of the choice of the order on

the approximation of the full joint distribution estimated from training data.

The outline of this chapter is as follows. The impact of using estimated distri-

butions is quantified in Section 3.2. Simulations are used to demonstrate the perfor-

mance of this approach in Section 3.3, and the paper concludes in Section 3.4.
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3.2 Data-Driven Distribution Approximation

While the divergence between a t-cherry junction tree approximation and the ac-

tual distribution is understood when all distributions are known perfectly, we quantify

the divergence between the full and junction tree distributions when the junction tree

is constructed using distributions estimated from training data. The true distribu-

tion P (U) remains the same, but now the t-cherry junction tree is constructed by

first estimating all the necessary marginal distributions. Thus cluster and separator

distributions are represented as p̂(UC) and p̂(US), resulting in a joint distribution

over all M random variables denoted P̂JT (U). In this section, we calculate the scal-

ing behavior of the increased KL divergence resulting from estimated distributions

as a function of both the order of the t-cherry junction tree and the number of data

samples.

To begin, we calculate the impact of using estimated distributions on the KL di-

vergence between the true full distribution P (U) and the junction tree approximation

using estimated distributions P̂JT (U).

Theorem 3.2.1. The KL divergence between the true distribution P (U) and the

junction tree constructed using distributions estimated from training data P̂JT (U) is

DKL(P (U)||P̂JT (U)) = −H(U) +
M∑
i=1

H(Ui)−
∑
C∈C

I(UC) +
∑
S∈S

I(US)

+
∑
C∈C

DKL(p(UC)||p̂(UC))−
∑
S∈S

DKL(p(US)||p̂(US)). (3.1)

Proof. We start with considering the definition of KL divergence between two abso-

lutely continuous discrete distributions, which can be thought of as vectors of proba-

bilities of length |P (U)|. Note that each cluster consists of k random variables and is
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written UC = {UC1 , . . . , UCk} and likewise for separators. The KL divergence is then

DKL(P (U)||P̂JT (U)) =
∑
U

P (U) log

(
P (U)

P̂JT (U)

)
. (3.2)

This divergence can be related to the divergence between the true distribution and

the distribution from the junction tree created with the true, not estimated, marginal

distributions, denoted PJT (U). This can be done by multiplying and dividing to yield

DKL(P (U)||P̂JT (U)) = DKL(P (U)||PJT (U)) +
∑
U

P (U) log

(
PJT (U)

P̂JT (U)

)
. (3.3)

Observe that DKL(P (U)||PJT (U)) follows directly from Equation (2.2); so the

term
∑
U

P (U) log
(
PJT (U)

P̂JT (U)

)
remains to be quantified. Using the definition of the

probability density function of a junction tree, this can be rewritten as

∑
U

P (U) log

(
PJT (U)

P̂JT (U)

)
=
∑
U

P (U) log


∏
C∈C

p(UC)∏
S∈S

p(US)


−
∑
U

P (U) log


∏
C∈C

p̂(UC)∏
S∈S

p̂(US)

 . (3.4)

Consider the part of this expression with the estimated terms:

−
∑
U

P (U) log


∏
C∈C

p̂(UC)∏
S∈S

p̂(US)

 . (3.5)

As each random variable appears within a cluster exactly one more time than it

appears in a separator [5], adding and subtracting the term∑
U

log

(∏
C∈C

p̂(UC1) · · · p̂(UCk)
)

yields that

−
∑
U

P (U) log


∏
C∈C

p̂(UC)∏
S∈S

p̂(US)

 =
∑
U

P (U)

[
− log


∏
C∈C

p̂(UC)∏
C∈C

p̂(UC1) · · · p̂(UCk)


+ log


∏
S∈S

p̂(US)∏
S∈S

p̂(US1) · · · p̂(USk−1
)

− log

(
M∏
i=1

p̂(Ui)

)]
(3.6)
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To simplify notation, for a set of random variables X , {X1, . . . , Xk}, define

Ip (p̂(X)) ,
∑
X

p(X) log
p̂(X)

p̂(X1) · · · p̂(Xk)
. (3.7)

Returning to Equation (3.4), it can be rewritten as∑
C∈C

[
I(p(UC))− Ip(p̂(UC))

]
−
∑
S∈S

[
I(p(US))− Ip(p̂(US))

]
−

M∑
i=1

H(p(Ui)) +
∑
U

p(U) log

(
M∏
i=1

p̂(Ui)

)
. (3.8)

Note that for every cluster

I(p(UC))− Ip(p̂(UC)) =

DKL (p(UC)||p̂(UC)) +
k∑
i=1

DKL(p(UCi)||p̂(UCi)), (3.9)

and similarly for separators. Plugging this into Equation (3.8) results in∑
C∈C

DKL(p(UC)||p̂(UC))−
∑
S∈S

DKL(p(US)||p̂(US))−
∑
C∈C

k∑
i=1

DKL(p(UCi)||p̂(UCi))

+
∑
S∈S

k−1∑
i=1

DKL(p(USi)||p̂(USi))−
M∑
i=1

H(Ui) +
∑
U

p(U) log

(
M∏
i=1

p̂(Ui)

)
. (3.10)

Using Lemma 1 from [5] and the fact that∑
U

p(U) log

(
M∏
i=1

p̂(Ui)

)
=

M∑
i=1

H(Ui) +DKL(p(Ui)||p̂(Ui)), (3.11)

Equation (3.10) becomes∑
C∈C

DKL(p(UC)||p̂(UC))−
∑
S∈S

DKL(p(US)||p̂(US)). (3.12)

Plugging this into Equation (3.3) completes the proof.

The weight of the estimation terms is defined as wE and is

wE ,
∑
C∈C

DKL(p(UC)||p̂(UC))−
∑
S∈S

DKL(p(US)||p̂(US)). (3.13)

An important property of wE is that wE ≥ 0; that is, using estimated instead of true

distributions increases the KL divergence, or at least does not decrease it.
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Lemma 3.2.1. Using distributions estimated from data, as opposed to the true dis-

tributions, results in an increase (or at least not a decrease) in KL divergence between

the true distribution and the junction tree distribution, i.e.,∑
C∈C

DKL(p(UC)||p̂(UC))−
∑
S∈S

DKL(p(US)||p̂(US)) ≥ 0. (3.14)

Proof. Without loss of generality, assume that for any connected cluster and separator

pair, the separator is comprised of S = {UC1 , . . . , UCk−1
} , UC\k. Then utilizing the

chain rule of conditional divergence [34],

DKL(p(UC)||p̂(UC)) = DKL

(
p(UCk |UC\k)||p̂(UCk |UC\k)

)
+DKL(p(US)||p̂(US)).

(3.15)

Assume, again without loss of generality, that C and S are ordered such that separator

S1 is on the edge between clusters C1 and C2, S2 = C2 ∩ C3, and so forth. Then, as

there are M − k cluster-separator pairs and one remaining cluster,∑
C∈C

DKL(p(UC)||p̂(UC))−
∑
S∈S

DKL(p(US)||p̂(US)) =

∑
C∈{C1,...,CM−k}

DKL

(
p(UCk |UC\k)||p̂(UCk |UC\k)

)
+DKL(p(UCM−k+1

)||p̂(UCM−k+1
)) ≥ 0. (3.16)

The behavior of the estimation weight wE is essential to quantify the tradeoff be-

tween allowing more complicated correlation structures (thus a more accurate approx-

imation to the true distribution) and the difficulty inherent in estimating distributions

that contain more random variables. As the number of entries to be estimated in a

distribution scales exponentially with the number of random variables in the joint dis-

tribution, an exponential increase in wE is expected, and Theorem 3.2.2 demonstrates

that this is the case.
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Theorem 3.2.2. A) An approximation to the expectation of the KL divergence be-

tween a discrete distribution and its estimate, using N samples, is

E [DKL(p(X)||p̂(X))] ∼ 1

2

|p|∑
i=1

1− pi
N

. (3.17)

B) An approximation to expected value of the estimation error weight for the binary

variable case is

E[wE] ≈ M − k + 1

N

(
2k−1 − 2−k

)
− M − k

N

(
2k−2 − 2−(k−1)

)
. (3.18)

Proof. A local approximation of the KL divergence between two distributions p and q,

DKL(p||q), can be constructed by considering q as a perturbed form of p. Specifically,

let q = p(1 + v), where v is a vector that redistributes probability mass of p. In

order to ensure that
∑
p(1 + v) = 1, it is necessary that

|p|∑
i=1

pivi = 0. This yields the

approximation [35]

DKL(p||p(1 + v)) ∼ 1

2

|p|∑
i=1

piv
2
i . (3.19)

For this proof, consider the divergence of a distribution p over a set of random

variables X , {X1, . . . , XM}: DKL(p(X)||p̂(X)). With enough samples N , this diver-

gence should be small, and Equation (3.19) will represent a good approximation to

the true divergence. To understand how the divergence between the true distribution

and estimated distribution scales as a function of the number of random variables

contained in each distribution (the order of the junction tree), consider an entry in

the estimated distribution, p̂i. Every p̂i is considered to be independent of every other

p̂j. Each p̂i is modeled as a binomial random variable with probability of success pi

and N trials. A good approximation when N is large is to consider each p̂i as as a

normal random variable centered at the true value pi. That is, p̂i ∼ N (pi,
pi(1−pi)

N
).
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Let Yi , vi
√
pi, then Yi ∼ N (0, 1−pi

N
). This implies that N

1−piY
2
i ∼ χ2

1 and E[Y 2] =

1−pi
N

. Plugging this into the expression for the divergence yields

E [DKL(p(X)||p̂(X))] ∼ E

1

2

|p|∑
i=1

piv
2
i

 = E

1

2

|p|∑
i=1

Y 2
i

 =
1

2

|p|∑
i=1

1− pi
N

, (3.20)

which proves the first part of the theorem.

For the second part of the theorem, a more specific approach is taken, though

it should be noted this approach is easily generalized to any collection of discrete

random variables. Specifically, consider all random variables Xj, j = 1, . . . ,M , to be

binary random variables. In order to provide an upper bound on the approximation

to the divergence, consider each Xj to be uniformly distributed and assume that

this uniformity holds as the number of random variables in the distribution, denoted

k, increases. For example, when k = 1, p(X) = [0.5, 0.5] and for k = 2, p(X) =

[0.25, 0.25, 0.25, 0.25], and so forth. Note that here these entries in p(X) are in

lexicographical order. These assumptions results in the upper bound

E [DKL(p(X)||p̂(X))] ≈ 1

N

(
2k−1 − 2−k

)
. (3.21)

Using Equation (3.21) and noting that there are M − k + 1 clusters and M − k

separators completes the proof.

To demonstrate these concepts, the behavior of the junction tree constructed for

hypothesis H0 as explained in Section 3.3 is presented in Figure 3.1. Note that the

approximation from Equation (3.21) captures the scaling behavior of wE. Addition-

ally, the true junction tree does not exactly model the joint distribution until the

order is eight, and thus combined with the increasing wE, the third order junction

tree represents a local minimum of the divergence. Also interesting in this figure is

the lack of entries for wE after the seventh order tree. In this case, there were distri-

butions in the junction tree that were estimated from the training data that resulted
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Figure 3.1: Divergence using estimated distributions

in at least one p̂i = 0 where the corresponding pi 6= 0. This represents essentially

an absolute continuity error that causes the KL divergence to be ∞. This occurred

in an eighth order tree despite having 105 samples, which would initially seem ade-

quate to estimate distributions containing eight binary random variables, and thus

256 parameters.

3.3 Numerical Examples

In order to evaluate the approach developed above, utilizing junction trees, as

well as examine the impact of constructing a junction tree from training data, we

present a simulation study. Consider a sensor deployment of M = 10 sensors. The

measurement data taken by these sensors is correlated, and the structure of the

correlation is captured by a Markov random field. The specific structure of this

Markov random field is seen in Figure 3.2. Note that the maximum clique size is
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three, so an optimal t-cherry junction tree of order three will be exactly equal to the

true distribution.

For each hypothesis, H0 and H1, there are N = 105 training samples of the

true distribution p(U). Using this training data, two t-cherry junction trees are

constructed, one for each hypothesis. This process is averaged over 1,000 different

realizations of the sample data.

The Receiver Operating Characteristic (ROC) curves of the detector are pre-

sented in Figure 3.3 for the cases in which considering the sensors as conditionally

independent, second through ninth order t-cherry junction trees, and using the full

distribution. Notice that when the sensors are considered conditionally independent,

the performance is the worst. Even using a second order junction tree results in a

significant improvement. Also, the third through sixth order junction trees all result

in essentially identical performance. These ROC curves are not the same as the true
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distribution curve because the t-cherry junction trees constructed were not optimal.

From the seventh order onward, the junction trees have managed to exactly replicate

the true distribution. In conclusion, using a second and third order t-cherry junction

tree offered significant gains over the conditionally independent case, and higher order

t-cherry junction trees resulted in diminishing returns.

The area under the ROC curve (AUC) is another metric used to evaluate the

performance of a detector. Figure 3.4 plots the performance of t-cherry junction trees

when using the true distributions and distributions estimated from training data.

Notice that the performances are similar until the ninth order t-cherry junction tree.

In this case, the estimated distributions are too inaccurate due to an insufficiency

of training data, and the performance is greatly degraded. This emphasizes the

importance of correctly trading off the gain resulting from using a (more accurate)
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higher order t-cherry junction tree against the increased “noise” that results from

imprecise estimation of the “larger” distributions involved.

3.4 Conclusion

In this paper, we presented a novel approach to improve the performance of a

distributed detection system: the t-cherry junction tree. This tool allows for a smooth

tradeoff between treating each sensor as conditionally independent and utilizing the

full joint distribution of the individual sensor decisions. Using the t-cherry junction

tree allows for some correlation structure in the sensors’ decisions to be preserved

while simultaneously requiring dramatically fewer parameters to store than storing

the full joint distribution.

Additionally, the closed form KL divergence of a junction tree approximation

from the true distribution when distributions estimated from data was calculated.

This degradation in the ability to closely approximate is exponential in increasing
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junction tree order, which implies that in many circumstances, there is a maximum

order beyond which the error from estimating distributions containing more random

variables outpaces any potential gain from allowing more complicated correlation

structures.
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Chapter 4

SOCIAL TRUST AND SOCIAL RECIPROCITY BASED COOPERATIVE D2D

COMMUNICATIONS

4.1 Introduction

Mobile data traffic is predicted to grow further by over 100 times in the next

ten years [36], which poses a significant challenge for future cellular networks. One

promising approach to increase network capacity is to promote direct communications

between hand-held devices. Such device-to-device (D2D) communications can offer

a variety of advantages over traditional cellular communications, such as higher user

throughput, improved spectral efficiency, and extended network coverage [37]. For

example, a device can share the video content with neighboring devices who have the

similar watching interest, which can help to reduce the traffic rate demand from the

network operator.

Cooperative communication is an efficient D2D communication paradigm where

devices can serve as relays for each other 1 . As illustrated in Figure 4.1, cooperative

D2D communication can help to 1) improve the quality of D2D communication for

direct data offer-loading between devices and 2) enhance the performance of cellular

communications between the base station and the devices as well. Hence cooperative

D2D communication can be a critical building block for efficient cooperative network-

ing for future wireless networks, wherein individual users cooperate to substantially

boost the network capacity and cost-effectively provide rich multimedia services and

applications, such as video conferencing and interactive media, anytime, anywhere.

1There are many approaches for cooperative communications, and for ease of exposition this
study assumes cooperative relaying.
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Figure 4.1: An illustration of cooperative D2D communication for cooperative net-

working. In sub-figure (a), device R serves as the relay for the D2D communication

between devices S and D. In sub-figure (b), device R serves as the relay for the cel-

lular communication between device S and the base station. In both cases, the D2D

communication between devices S and R is part of cooperative networking.

Nevertheless, a key challenge here is how to stimulate effective cooperation among de-

vices for cooperative D2D communications. As different devices are usually owned by

different individuals and they may pursue different interests, there is no good reason

to assume that all devices would cooperate with each other.

Since the hand-held devices are carried by human beings, a natural question to

ask is that “is it possible to leverage human social relationship to enhance D2D

communications for cooperative networking?”. Indeed, with the explosive growth

of online social networks such as Facebook and Twitter, more and more people are

actively involved in online social interactions, and social relationships among people

are hence extensively broadened and significantly enhanced [38]. This has opened up

a new avenue for cooperative D2D communication system design – we believe that it

has potential to propel significant advances in mobile social networking.
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One primary goal of this study is to establish a new D2D cooperation paradigm by

leveraging two key social phenomena: social trust and social reciprocity. Social trust

can be built up among humans such as kinship, friendship, colleague relationship, and

altruistic behaviors are observed in many human activities [39]. For example, when

a device user is at home or work, typically family members, neighbors, colleagues,

or friends are nearby. The device user can then exploit the social trust from these

neighboring users to improve the quality of D2D communication, e.g., by asking

the best trustworthy device to serve as the relay. Another key social phenomenon,

social reciprocity, is also widely observed in human society [40]. Social reciprocity

is a powerful social paradigm to promote cooperation so that a group of individuals

without social trust can exchange mutually beneficial actions, making all of them

better off. For example, when a device user does not have any trusted friends in

the vicinity, he (she) may cooperate with the nearby strangers by providing relay

assistance for each other to improve the quality of D2D communications.

As illustrated in Figure 4.2, cooperative D2D communications based on social

trust and social reciprocity can be projected onto two domains: the physical domain

and the social domain. In the physical domain, different devices have different feasible

relay selection relationships subject to the physical constraints. In the social domain,

different devices have different assistance relationships based on social trust among

the devices. In this case, each device has two options for relay selection: 1) either

seek relay assistance from another feasible device that has social trust towards him

(her); 2) or participate in a group formed based on social reciprocity by exchanging

mutually beneficial relay assistance. The main thrust of this study is devoted to

tackling two key challenges for the social trust and social reciprocity based approach.

The first is which option a device should adopt for relay selection: social trust or

social reciprocity. The second is how to efficiently form groups among the devices
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Figure 4.2: An illustration of the social trust model for cooperative D2D communi-

cations. In the physical domain, different devices have different feasible cooperation

relationships subject to physical constraints. In the social domain, different devices

have different assistance relationships based on social trust among the devices.

that adopt the social reciprocity based relay selection. We will develop a coalitional

game theoretic framework to address these challenges.

4.1.1 Summary of Main Contributions

The main contributions of this work are as follows:

• Social trust and social reciprocity based cooperative D2D communications : We

propose a novel social trust and social reciprocity based framework to promote

efficient cooperation among devices for cooperative D2D communications. By

projecting D2D communications in a mobile social network onto both physi-

cal and social domains, we introduce the physical-social graphs to model the

interplay therein while capturing the physical constraints for feasible D2D co-

operation and the social relationships among devices for effective cooperation.

• Coalitional game solutions : We formulate the relay selection problem for so-

cial trust and social reciprocity based cooperative D2D communications as a
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coalitional game. We show that the coalitional game admits the top-coalition

property based on which we devise a core relay selection algorithm for comput-

ing the core solution to the game.

• Network assisted relay selection mechanism: We develop a network assisted

mechanism to implement the coalitional game based solution. We show that

the mechanism is immune to group deviations, individually rational, truthful,

and computationally efficient. We further evaluate the performance of the mech-

anism by the real social data trace. Numerical results show that the proposed

mechanism can achieve up-to 122% performance gain over the case without D2D

cooperation.

A primary goal of this study is to build a theoretically sound and practically

relevant framework to understand social trust and social reciprocity based coopera-

tive D2D communications. This framework highlights the interplay between poten-

tial physical network performance gain through efficient D2D cooperation and the

exploitation of social relationships among device users to stimulate effective cooper-

ation. Besides the cooperative D2D communication scenario where devices serve as

relays for each other, the proposed social trust and social reciprocity based framework

can also be applied to many other D2D cooperation scenarios, such as cooperative

MIMO communications and mobile cloud computing. We believe that these initial

steps presented here open a new avenue for mobile social networking and have great

potential to enhance network capacity in future wireless networks.

4.1.2 Related Work

Much effort has been made in the literature to stimulate, via incentive mechanisms,

cooperation in wireless networks. Payment-based mechanisms have been widely con-
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sidered to incentivize cooperation for wireless ad hoc networks [8]. Another widely

adopted approach for cooperation stimulation is reputation-based mechanisms, where

a centralized authority or the whole user population collectively keeps records of the

cooperative behaviors and punishes non-cooperating users [9]. However, incentive

mechanisms typically assume that all users are fully rational and they act in the

selfish manner. Such an assumption are not appropriate for D2D communications as

hand-held devices are carried by human beings and people typically act with bounded

rationality and involve social interactions [39].

The social aspect is now becoming an important dimension for communication

system design. Social structures, such as social community which are derived from

the user contact patterns, have been exploited to design efficient data forwarding and

routing algorithms in delay tolerant networks [41]. The social influence phenomenon

has also been utilized to devise effective data dissemination mechanisms for mobile

networks [42]. The common assumption among these works, however, is that all users

are always willing to help others, e.g., for data forwarding and relaying. In this work

we propose a novel framework to stimulate cooperation among device users while also

taking the social aspect into account.

The rest of this chapter is organized as follows. We first introduce the system

model in Section 4.2. We then study cooperative D2D communications based on

social trust and social reciprocity and develop the network assisted relay selection

mechanism in Sections 4.3 and 4.4, respectively. We evaluate the performance of the

proposed mechanism by simulations in Section 4.5, and finally conclude in Section

4.6.
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4.2 System Model

In this section we present the system model of cooperative D2D communications

based on social trust and social reciprocity – a new mobile social networking paradigm.

As illustrated in Figure 4.2, cooperative D2D communications can be projected onto

two domains: the physical domain and the social domain. In the physical domain,

different devices have different feasible cooperation relationships for cooperative D2D

communications subject to the physical constraints. In the social domain, different

devices have different assistance relationships based on social relationships among the

devices. We next discuss both physical and social domains in detail.

4.2.1 Physical (Communication) Graph Model

We consider a set of nodes N = {1, 2, ..., N} where N is the total number of nodes.

Each node n ∈ N is a wireless device that would like to conduct D2D communication

to transmit data packets to its corresponding destination dn. Notice that a destination

dn may also be a transmit node in the setN of another D2D communication link or the

base station. The D2D communication is underlaid beneath a cellular infrastructure

wherein there exists a base station controlling the up-link/down-link communications

of the cellular devices. To avoid generating severe interference to the incumbent

cellular devices, each node n ∈ N will first send a D2D communication establishment

request message to the base station. The base station then computes the allowable

transmission power level pn for the D2D communication of node n based on the

system parameters such as geolocation of the node n and the protection requirement

of the neighboring cellular devices. For example, the proper transmission power pn of

the D2D communication can be computed according to the power control algorithm

proposed in [43].
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We consider a time division multiple access (TDMA) mechanism in which the

transmission time is slotted and one node n ∈ N is scheduled to carry out its D2D

communication in a time slot 2 . At the allotted time slot, node n can choose either

to transmit to the destination node dn directly or to use cooperative communication

by asking another node m in its vicinity to serve as a relay.

Due to the physical constraints such as signal attenuation, only a subset of nodes

that are close enough can be feasible relay candidates for the node n. To take such

physical constraints into account, we introduce the physical graph 3 GP , {N , EP}

where the set of nodes N is the vertex set and EP , {(n,m) : ePnm = 1,∀n,m ∈ N}

is the edge set where ePnm = 1 if and only if node m is a feasible relay for node n.

An illustration of the physical graph is given in Figure 4.2. We also denote the set

of nodes that can serve as a feasible relay of node n as N P
n , {m ∈ N : ePnm = 1}.

A recent work in [44] shows that it is sufficient for a source node to choose the best

relay node among multiple candidates to achieve full diversity. For ease of exposition,

we hence assume that each node n selects at most one neighboring node m ∈ N P
n as

the relay.

For ease of exposition, we consider the full duplex decode-and-forward (DF) re-

laying scheme [7] for the cooperative D2D communication. Let rn ∈ N P
n denote the

relay node chosen by node n ∈ N for cooperative communication. The data rate

achieved by node n is then given as [7]

ZDF
n,rn =

W

N
min{log(1 + µnrn), log(1 + µndn + µrndn)},

where W denotes the channel bandwidth and µij denotes the signal-to-noise ratio

(SNR) at device j when device i transmits a signal to device j. As an alternative, the

2Our methods are also applicable to other multiple access schemes.

3The graphs (e.g., physical graph and social graph) in this paper can be directed.
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node n can also choose to transmit directly without any relay assistance and achieve

a data rate of ZDir
n = W

N
log(1 + µndn).

For simplicity, we define the data rate function of node n as Rn : N P
n ∪{n} → R+,

which is given by

Rn(rn) =


ZDF
n,rn , if rn 6= n,

ZDir
n , if rn = n.

(4.1)

We will use the terminology that node n chooses itself as the relay for the situation

in which node n transmits directly to its destination dn.

4.2.2 Social Graph Model

We next introduce the social trust model for cooperative D2D communications.

The underlying rationale of using social trust is that the hand-held devices are carried

by human beings and the knowledge of human social ties can be utilized to achieve

effective and trustworthy relay assistance for cooperative D2D communications.

More specifically, we introduce the social graph GS = {N , ES} to model the social

trust among the nodes. Here the vertex set is the same as the node set N and the

edge set is given as ES = {(n,m) : eSnm = 1, ∀n,m ∈ N}, where eSnm = 1 if and only if

nodes n and m have social trust towards each other, which can be kinship, friendship,

or colleague relationship between two nodes. We denote the set of nodes that have

social trust towards node n as N S
n = {m : eSnm = 1,∀m ∈ N}, and we assume that the

nodes in N S
n are willing to serve as the relay of node n for cooperative communication.

Based on the physical graph GP and social graph GS above, each node n ∈ N can

classify the set of feasible relay nodes in N P
n into two types: nodes with social trust

and nodes without social trust. A node n then has two options for relay selection.

On the one hand, the node n can choose to seek relay assistance from another feasible

device that has social trust towards him (her). On the other hand, the node n can
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Figure 4.3: The physical-social graph based on the physical graph and social graph in

Figure 4.2. For example, there exists an edge between nodes 1 and 3 in the physical-

social graph since they can serve as the feasible relay for each other and also have

social trust towards each other.

choose to participate in a group formed based on social reciprocity by exchanging

mutually beneficial relay assistance. In the following, we will study 1) how to choose

between social trust and social reciprocity based relay selections for each node; and

2) how to efficiently form reciprocal groups among the nodes without social trust.

4.3 Social Trust and Social Reciprocity Based Cooperative D2D Communications

In this section, we study the cooperative D2D communications based on social

trust and social reciprocity. As mentioned, each node n ∈ N has two options for

relay selection: social trust based versus social reciprocity. We next address the

issues of choosing between social trust and social reciprocity based relay selections

for each node and the reciprocal group forming among the nodes without social trust.

4.3.1 Social Trust Based Relay Selection

We first consider social trust based relay selection for D2D cooperation. The key

motivation for using social trust is to utilize the knowledge of human social ties to

achieve effective and trustworthy relay assistance among the devices for cooperative
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D2D communications. For example, when a device user is at home or working place,

he (she) typically has family members, neighbors, colleagues, or friends in the vicinity.

The device user can then exploit the social trust from neighboring users to improve

the quality of D2D communication by asking the best trustworthy device to serve as

the relay.

To take both the physical and social constraints into account, we define the

physical-social graph GPS , {N , EPS} where the vertex set is the node set N and the

edge set EPS = {(n,m) : ePSnm , ePnm · eSnm = 1,∀n,m ∈ N}, where ePSnm = 1 if and

only if node m is a feasible relay (i.e., ePnm = 1) and has social trust towards node n

(i.e., eSnm = 1). An illustration of the physical-social graph is depicted in Figure 4.3.

We also denote the set of nodes that have social trust towards node n and are also

feasible relay candidates for node n as N PS
n = {m : ePSnm = 1,∀m ∈ N}.

For cooperative D2D communications based on social trust, each node n ∈ N can

choose the best relay to maximize its data rate subject to both physical and social

constraints, i.e., rSn = arg maxrn∈NPSn ∪{n}Rn(rn).

4.3.2 Social Reciprocity Based Relay Selection

Next, we study the social reciprocity based relay selection. Different from D2D

cooperation based on social trust which requires strong social ties among device users,

social reciprocity is a powerful mechanism for promoting mutual beneficial coopera-

tion among the nodes in the absence of social trust. For example, when a device user

does not have any friends in the vicinity, he (she) may cooperate with the nearby

strangers by providing relay assistance for each other to improve the quality of D2D

communications. In general, there are two types of social reciprocity: direct reci-

procity and indirect reciprocity 4 (see Figure 4.4 for an illustration). Direct reci-

4Reciprocity in this study refers to social reciprocity.
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Figure 4.4: An illustration of direct and indirect reciprocity
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Figure 4.5: The physical-coalitional graph based on the physical graph and social

graph in Figure 4.6. For example, there exists an edge between nodes 1 and 2 in the

physical-coalitional graph since they can serve as the feasible relay for each other and

have no social trust towards each other.

procity is captured in the principle of “you help me, and I will help you”. That is,

two individuals exchange altruistic actions so that both obtain a net benefit. Indirect

reciprocity is essentially the concept of “I help you, and someone else will help me”.

That is, a group of individuals exchange altruistic actions so that all of them can be

better off.
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To better describe the possible cooperation relationships among the the set of

nodes without social trust, we introduce the physical-coalitional graph

GPC = {N , EPC}. Here the vertex set is the node set N and the edge set EPC =

{(n,m) : ePCnm , ePnm · (1 − eSnm) = 1,∀n,m ∈ N}, where ePCnm = 1 if and only if

node m is a feasible relay (i.e., ePnm = 1) and has no social trust towards node n

(i.e., eSnm = 0). An illustration of physical-coalitional graph is depicted in Figure 4.5.

We also denote the set of nodes that have no social trust towards user n but are

feasible relay candidates of node n as N PC
n , {m : ePCnm = 1,∀m ∈ N}. For social

reciprocity based relay selection, a key challenge is how to efficiently divide the nodes

into multiple groups such that the nodes can significantly improve their data rates

by the reciprocal cooperation within the groups. We next develop a coalitional game

framework to address this challenge.

Introduction to the Coalitional Game

For the sake of completeness, we first give a brief introduction to the coalitional game

[45]. Formally, a coalitional game consists of a tuple Ω = {N ,XN , V, (�n)n∈N}, where

• N is a finite set of players.

• XN is the space of feasible cooperation strategies of all players.

• V is a characteristic function that maps from every nonempty subset of players

S ⊆ N (a coalition) to a subset of feasible cooperation strategies V (S) ⊆ XN .

This represents the possible cooperation strategies among the players in the

coalition S, given that other players out of the coalition S do not participate in

any cooperation.
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• �n is a strict preference order (reflexive, complete, and transitive binary rela-

tion) on XN for each player n ∈ N . This captures the idea that different players

may have different preferences over different cooperation strategies.

In the same spirit as Nash equilibrium in a non-cooperative game, the “core” plays

a critical role in the coalitional game.

Definition 4.3.1. The core is the set of x ∈ V (N ) for which there does not exist a

coalition S and y ∈ V (S) such that y �n x for all n ∈ S.

Intuitively, the core is a set of cooperation strategies such that no coalition can

deviate and improve for all its members by cooperation within the coalition [45].

Coalitional Game Formulation

We then cast the social reciprocity based relay selection problem as a coalitional game

Ω = {N ,XN , V, (�n)n∈N} as follows:

• the set of players N is the set of nodes.

• the set of cooperation strategies XN = {(rn)n∈N : rn ∈ N PC
n ∪ {n},∀n ∈ N},

which describes the set of possible relay selections for all nodes based on the

physical-coalitional graph GPC .

• the characteristic function

V (S) = {(rn)n∈N ∈ XN : {rn}n∈S = {k}k∈S and rm = m,∀m ∈ N\S} for each

coalition S ⊆ N . Here the condition “{rn}n∈S = {k}k∈S” represents the possible

relay assistance exchange among the nodes in the coalition S. The condition

“rm = m,∀m ∈ N\S” states that the nodes out of the coalition S would not

participate in any cooperation and choose to transmit directly. For example,

in Figure 4.4, the coalition S = {1, 2} in the direct reciprocity case adopts the
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cooperation strategy r1 = 2 and r2 = 1 and the coalition S = {1, 2, 3} in the

indirect reciprocity case adopts the cooperation strategy r1 = 3, r2 = 1 and

r3 = 2.

• the preference order �n is defined as (rm)m∈N �n (r
′
m)m∈N if and only if rn �n

r
′
n. That is, node n prefers the relay selection (rm)m∈N to another selection

(r
′
m)m∈N if and only if its assigned relay rn in the former selection (rm)m∈N

is better than the assigned relay r
′
n in the latter selection (r

′
m)m∈N . In the

following, we define that rn �n r
′
n when Rn(rn) > Rn(r

′
n), and if Rn(rn) =

Rn(r
′
n) then ties are broken arbitrarily.

The core of this coalitional game is a set of (r∗n)n∈N ∈ V (N ) for which there does

not exist a coalition S and (rn)n∈N ∈ V (S) such that (rn)n∈N �n (r∗n)n∈N for all

n ∈ S. In other words, no coalition of nodes can deviate and improve their relay

selection by cooperation in the coalition. We will refer the solution (r∗n)n∈N as the

core relay selection in the sequel.

Core Relay Selection

We now study the existence of the core relay selection. To proceed, we first introduce

the following key concepts of coalitional game.

Definition 4.3.2. Given a coalitional game Ω = {N ,XN , V, (�n)n∈N}, we call a

coalitional game Φ = {M,XM, V, (�m)m∈M} a coalitional sub-game of the game Ω if

and only if M⊆ N and M 6= ∅.

In other words, a coalitional sub-game Φ is a coalitional game defined on a subset

of the players of the original coalitional game Ω.

Definition 4.3.3. Given a coalitional sub-game Φ = {M,XM, V, (�m)m∈M}, a non-

empty subset S ⊆ M is a top-coalition of the game Φ if and only if there exists a
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cooperation strategy (rm)m∈M ∈ V (S) such that for any K ⊆M and any cooperation

strategy (r
′
m)m∈M ∈ V (K) satisfying rm 6= r

′
m for any m ∈ S, we have rm �m r

′
m for

any m ∈ S.

That is, by adopting the cooperation strategy (rm)m∈S , the coalition S is a group

that is mutually the best for all its members [46].

Definition 4.3.4. A coalitional game Ω = {N ,XN , V, (�n)n∈N} satisfies the top-

coalition property if and only if there exists a top-coalition for any its coalitional

sub-game Φ.

We then show that the proposed coalitional game for social reciprocity based

relay selection satisfies the top-coalition property. For simplicity, we first denote

Ñ PC
n , N PC

n ∪ {n}. For a coalitional sub-game Φ = {M,XM, V, (�m)m∈M}, we

denote the mapping γ(n,M) as the most preferable relay of node n ∈ M in the set

of nodes M∩Ñ PC
n , i.e., γ(n,M) �n i for any i 6= γ(n,M) and i ∈ M∩Ñ P

n . Based

on the mapping γ, we can define the concept of reciprocal relay selection cycle as

follows.

Definition 4.3.5. Given a coalitional sub-game Φ = {M,XM, V, (�m)m∈M}, a node

sequence (n1, ..., nL) is called a reciprocal relay selection cycle of length L if and only

if γ(nl,M) = nl+1 for l = 1, ..., L− 1 and γ(nL,M) = n1.

Notice that when L = 1 (i.e., γ(n,M) = n), the most preferable choice of node n is

to choose to transmit directly; when L = 2, this corresponds to the direct reciprocity

case; when L ≥ 3, this corresponds to the indirect reciprocity case. Since the number

of nodes (i.e., |M|) is finite, there hence must exist at least one reciprocal relay

selection cycle for the coalitional sub-game Φ. This leads to the following result.
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Lemma 4.3.1. Given a coalitional sub-game Φ, there exists at least one reciprocal

relay selection cycle. Any reciprocal relay selection cycle is a top-coalition of the

coalitional sub-game Φ.

According to Lemma 4.3.1, we have the following result.

Lemma 4.3.2. The coalitional game Ω for cooperative D2D communications satisfies

the top-coalition property.

Based on the top-coalition property, we can construct the core relay selection in

an iterative manner. Let Mt denote the set of nodes of the coalitional sub-game

Φt = {Mt,XMt , V, (�m)m∈Mt} in the t-th iteration. Based on the mapping γ and

the given set of nodes Mt, we can then find all the reciprocal relay selection cycles

as Ct1, ..., CtZt where each cycle Ctz = (nt1, ..., n
t
|Ctz |

) is a node sequence and Zt denotes

the number of cycles at the t-th iteration. Abusing notation, we will also use Ctz to

denote the set of nodes in the cycle Ctz. We can then construct the core relay selection

as follows. For the first iteration t = 1, we setM1 = N and find the reciprocal relay

selection cycles as C11 , ..., C1Z1
based on the set of nodes M1. For the second iteration

t = 2, we can then set thatM2 =M1\∪Z1
i=1 C1i (i.e., remove the nodes in the cycles in

the previous iteration) and find the new reciprocal relay selection cycles as C21 , ..., C2Z2

based on the set of nodesM2. This procedure repeats until the set of nodesMt = ∅

(i.e., no operation can be further carried out). We summarize the above procedure

for constructing the core relay selection in Algorithm 4.

Suppose that the algorithm takes T iterations to converge. We can obtain the set

of reciprocal relay selection cycles in all T iterations as {Cti : ∀i = 1, ..., Zt and t =

1, ..., T}. Since the mapping γ(n,Mt) is unique for each node n ∈Mt, we must have

that ∪t=1,...,T
i=1,...,Zt

Cti = N (i.e., all the nodes are in the cycles) and Cti ∩ Ct
′
j = ∅ for any

i 6= j and t, t′ = 1, ..., T (i.e., there do not exist any intersecting cycles). For each
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cycle Cti = (nt1, ..., n
t
|Cti |

), we can then define the relay selection as r∗
ntl

= ntl+1 for any

l = 1, 2..., |Cti | − 1 and r∗
nt
|Ct
i
|

= nt1. We show that (r∗n)n∈N is a core relay selection of

the coalitional game Ω for the social reciprocity based relay selection.

Theorem 4.3.1. The relay selection (r∗n)n∈N is a core solution to the coalitional game

Ω for the social reciprocity based relay selection.

Proof. We prove the result by contradiction. We assume that there exists a nonempty

coalition S ⊆ N with another relay selection (rm)m∈N ∈ V (S) satisfying (rm)m∈N �n

(r∗m)m∈N for any n ∈ S. Let Ct = ∪Zti=1Cti be the set of nodes in the reciprocal

relay selection cycles obtained in the t-th iteration. According to Lemma 4.3.1, we

know that each cycle C1i is a top-coalition given the set of nodes M1 = N . By the

definition of top-coalition, we must have that S ∩ C1 = ∅. In this case, we have that

S ⊆M2 ,M1\C1. Similarly, each cycle C2i is a top-coalition given the set of nodes

M2. We thus also have that S ∩ C2 = ∅. Repeating this argument, we can find that

S ∩ Ct = ∅ for any t = 1, ..., T . Since N = ∪Tt=1Ct, we must have that S ∩ N = ∅,

which contradicts with the hypothesis that S ⊆ N and S 6= ∅. This completes the

proof.

Algorithm 4 Core Relay Selection Algorithm

1: initialization:
2: set initial set of nodes M1 = N .
3: set iteration index t = 1.
4: end initialization

5: whileMt 6= ∅ do
6: find all the reciprocal relay selection cycles Ct1, ..., CtZt .
7: remove these nodes from the current set of nodesMt, i.e.,Mt+1 =Mt\∪Zti=1Cti .

8: set t = t+ 1.
9: end while
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4.3.3 Social Trust and Social Reciprocity Based Relay Selection

According to the principles of social trust and social reciprocity above, each node

n ∈M has two options for relay selection. The first option is that node n can choose

the best relay rSn = arg maxrn∈NPSn ∪{n}Rn(rn) from the set of nodes with social trust

N PS
n . Alternatively, node n can choose a relay rn ∈ N PC

n from the set of nodes

without social trust by participating in a directly or indirectly reciprocal cooperation

group.

We next address the issue of choosing between social trust and social reciprocity

based relay selections for each node, by generalizing the core relay selection (r∗n)n∈N

in Section 4.3.2. The key idea is to adopt the social trust based relay selection rSn as

the benchmark for participating in the social reciprocity based relay selection. That

is, a node n prefers social reciprocity based relay selection to social trust based relay

selection if the social reciprocity based relay selection offers better performance. More

specifically, we define that rn �n n if and only if rn �n rSn and the selection “rn = n”

represents that node n will select the relay rSn based on social trust. Based on this,

we can then compute the core relay selection (r∗n)n∈N according to Algorithm 4. In

this case, if we have r∗m = m in the core relay selection (r∗n)n∈N , then node m will

select the relay rSn based on social trust. If we have r∗m 6= m in the core relay selection

(r∗n)n∈N , then node m will select the relay based on social reciprocity.

4.4 Network Assisted Relay Selection Mechanism

In this section, we turn our attention to the implementation of the core relay selec-

tion for social trust and social reciprocity based cooperative D2D communications. A

key issue here is how to find the reciprocal relay selection cycles in the proposed core

relay selection algorithm (see Algorithm 4). In the following, we will first propose an

70



algorithm for finding the reciprocal relay selection cycles, and then develop a network

assisted mechanism to implement the core relay selection solution in practical D2D

communication systems.

4.4.1 Reciprocal Relay Selection Cycle

We first consider the issue of finding the reciprocal relay selection cycles in the core

relay selection algorithm. We introduce a graphical approach to address this issue.

More specifically, given the set of nodes Mt and the mapping γ, we can construct

a graph GMt = {Mt, EMt}. Here the set of vertices is Mt and the set of edges

EMt = {(nm) : eMt
nm = 1,∀n,m ∈ Mt} where there is an edge directed from node n

to m (i.e., eMt
nm = 1) if and only if γ(n,Mt) = m.

We next introduce the concept of path in graph theory. A path of length I on

a graph is a sequence of nodes (n1, n2, ..., nI) where there is an edge directed from

node ni to ni+1 on the graph for any i = 1, ..., I − 1. A cycle of the graph is a

path in which the first and last nodes are identical. A reciprocal relay selection

cycle of the coalitional game then corresponds to a cycle of the graph GMt . When

γ(n,Mt) = n, the cycle degenerates to a self-loop of node n. In the following, we say

a path (n1, n2, ..., nI) induces a cycle if there exists a path beginning from node nI

that is a cycle. If two cycles are a cyclic permutation of each other, we will regard

them as one cycle.

Lemma 4.4.1. Any sufficiently long path beginning from any node on the graph GMt

induces one and only one cycle.

Based on Lemma 4.4.1, we propose an algorithm to find the reciprocal relay se-

lection cycles in Algorithm 5. The key idea of the algorithm is to explore the paths

beginning from each node. More specifically, if a path beginning from a node induces
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an unfound cycle, then we find a new cycle. We will set the nodes in both the path

and cycle as visited nodes since any path beginning from these nodes would induce

the same cycle. If a path beginning from a node leads to a visited node, the path

would induce a cycle which has already been found if we continue to construct the

path on the visited nodes. We will also set the nodes in the path as visited nodes.

Since each node will be visited once in the algorithm, the computational complexity

of the reciprocal relay selection cycles finding algorithm is O(|Mt|).

Algorithm 5 Algorithm For Finding Reciprocal Relay Selection Cycles

1: initialization:
2: construct the graph GMt based on the set of nodes Mt and the mappings
{γ(n,Mt)}n∈Mt .

3: set the set of visited nodes V = ∅ and the set of unvisited nodes U =Mt\V .
4: set the set of identified cycles 4 = ∅.
5: end initialization

6: while U 6= ∅ do
7: select one node na ∈ U randomly.
8: set the set of visited nodes in the current path H = {na}.
9: set the flag F = 0.

10: while F 6= 1: do
11: generate the next node nb = γ(na,Mt).
12: if nb ∈ V then
13: set V = V ∪ H and U =Mt\V .
14: set F = 1.
15: else if nb ∈ H then
16: set the identified cycle as C = (n1 = nb, ..., ni = γ(ni−1,Mt), ..., nI = na).
17: set the set of identified cycles 4 = 4∪ {C}.
18: set V = V ∪ H and U =Mt\V .
19: set F = 1.
20: else
21: set H = H ∪ {nb}.
22: set na = nb.
23: end if
24: end while
25: end while
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4.4.2 NARS mechanism

We now propose a network assisted relay selection (NARS) mechanism to imple-

ment the core relay selection, which works as follows.

• Each node n ∈ N first determines its preference list LPn for the set of feasible

relay selections Ñ P
n , N P

n ∪ {n} based on the physical graph GP . Here Ln =

(r1n, ..., r
|ÑPn |
n ) is a permutation of all the feasible relays in Ñ P

n satisfying that

rin �n ri+1
n for any i = 1, ..., |Ñ P

n |−1. This step can be done through the channel

probing procedure to measure the achieved data rate resulting from choosing

with different relays.

• Each node n ∈ N then computes the best social trust based relay selection

rSn = arg maxrn∈NPSn ∪{n}Rn(rn) based on the physical-social graph GPS and the

preference list LPn .

• Each node n ∈ N next determines its preference list LPCn for the set of relay

selections N PC
n ∪ {n} based on the physical-coalitional graph GPC . Notice that

we have that rn �n n in the preference list LPCn if and only if rn �n rSn in the

preference list LPn .

• Each node n ∈ N then reports its preference list LPCn to the base-station.

• Based on the preference lists LPCn of all nodes, the base-station computes the

core relay selection (r∗n)n∈N according to Algorithms 4 and 5 and broadcasts

the relay selection (r∗n)n∈N to all nodes.

As mentioned in Section 4.3.3, if r∗m = m in the core relay selection (r∗n)n∈N , then

node m will select the relay rSn based on social trust. If r∗m 6= m in the core relay

selection (r∗n)n∈N , then node m will select the relay based on social reciprocity.
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Node n Preference List LPn Relay rSn Preference List LPCn

1 (1,2,3,4) 1 (1,2)

2 (1,3,2,4,5) 2 (1,3,2,4)

3 (2,3,4,1) 3 (2,3,4)

4 (2,1,4,3,5,6) 1 (2,4,3,5,6)

5 (4,6,7,5,2) 5 (4,6,7,5)

6 (7,5,4,6) 6 (7,5,4,6)

7 (5,6,7) 7 (5,6,7)

Table 4.1: The preference lists of N = 7 nodes based on the physical graph GP and

social graph GS in Figure 4.2.

We now use an example to illustrate how the NARS mechanism works. We con-

sider the network of N = 7 nodes based on the physical graph GP and the social

graph GS in Figure 4.2. According to NARS mechanism, each node n first determines

its preference list Ln for the set of feasible relay selections N P
n ∪{n}. We will use the

preference lists LPn in Table 4.1. For example, in the table the feasible relays for node

7 on the physical graph GP are {5, 6, 7}. The preference list (5, 6, 7) represents that

5 �7 6 �7� 7, i.e., node 7 prefers choosing node 5 as the relay to choosing node 6 and

transmitting directly offers the worst performance. Then based on the physical-social

graph GPS in Figure 4.3 and the preference list LPn , each node n computes the best

social trust based relay selection rSn . For example, node 4’s best social trust based

relay selection rSn = 1 (i.e., node 1). Each node n next determines the preference list

LPCn based on the physical-social graph GPS in Figure 4.5.

All the nodes then report the preference lists LPCn to the base-station. Based on

the preference lists, the base-station will compute the core relay selection (r∗n)n∈N

according to the core relay selection algorithm in Algorithm 4. We illustrate the
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iterative procedure of the core relay selection algorithm in Figure 4.6 by adopting

the graphical representation GMt introduced in Section 4.4.1. Recall that there is an

edge directed from node n to node m on graph GMt if node m is the most preferable

relay of node n given the set of nodes Mt. At iteration t = 1, given that M1 = N ,

the base-station identifies one cycle, i.e., a self-loop formed by node 1. At iteration

t = 2, given thatM2 =M1\{1}, the base-station then identifies one cycle formed by

nodes 2 and 3. Notice that graph GM2 can be derived from graph GM1 by removing

node 1 and any edges directed to node 1. For each node (e.g., node 2) from which

there is a removed edge directed to node 1, we add a new edge directed from the

node to its most preferable node among the set of nodes M2 (e.g., the edge 2→ 3).

We continue in this manner until all the nodes have been removed from the graph.

Figure 4.7 shows all the reciprocal relay selection cycles identified by the core relay

selection algorithm in Figure 4.6. In this case, the core relay selection is: (a) since

rS1 = 1, node 1 transmits directly; (b) nodes 2 and 3 serves as the relay of each other

(i.e., direct reciprocity based relay selection); (c) since rS4 = 1, node 4 seeks relay

assistance from node 1 (i.e., social trust based relay selection); (d) node 5 serves as

the relay of node 7, which in turn serves as the relay of node 6 and node 6 in turn is

the relay of node 5 (i.e., indirect reciprocity based relay selection).

4.4.3 Properties of NARS mechanism

We next study the properties of the proposed NARS mechanism. First of all, the

following lemma follows from definition of the core solution of a coalitional game.

Lemma 4.4.2. The core relay selection (r∗n)n∈N by NARS mechanism is immune

to group deviations, i.e., no group of nodes can deviate and improve by cooperation

within the group.
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Figure 4.6: An illustration of the resulting graphs GMt at each iteration t of the core

relay selection algorithm.
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Figure 4.7: The reciprocal relay selection cycles identified by the core relay selection

algorithm in Figure 4.6

We can then show that the mechanism guarantees individual rationality, which

means that each participating node will not achieve a lower data rate than that when

the node does not participate (i.e., in this case the node will transmit directly).

Lemma 4.4.3. The core relay selection (r∗n)n∈N by NARS mechanism is individually

rational, i.e., each node n ∈ N will be assigned a relay r∗n which satisfies either

r∗n �n n or r∗n = n.

Proof. If the assigned relay r∗n ≺n n for some node n ∈ N , then the node n can

deviate from the current coalition and improve its data rate by transmitting directly

(i.e., r∗n = n). This contradicts with the fact that (r∗n)n∈N is a core relay selection.
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We next explore the truthfulness of NARS mechanism. A mechanism is truthful

if no node can improve by reporting a preference list different from its true preference

list, given that other nodes report truthfully.

Lemma 4.4.4. NARS mechanism is truthful.

Proof. Let Ct be the set of nodes in the reciprocal relay selection cycles obtained in

the t-th iteration of core relay selection algorithm. Suppose that the node m reports

another preference list that is different from its true preference list. Let τ be the index

such that m ∈ Cτ . Given that the nodes in the set ∪τ−1t=1 Ct truthfully report, they will

be assigned the relays in the core relay selection regardless of what the nodes out of

the set ∪τ−1t=1 Ct report. In this case, given the set of remaining nodesMτ = N\∪τ−1t=1 Ct,

the most preferable relay of node m is the relay r∗m in the core relay selection. This

is exactly what the node m achieves by reporting truthfully. Thus, the node m can

not improve by reporting another preference list.

We finally consider the computational complexity of NARS mechanism. We say

the mechanism is computationally efficient if the solution can be computed in poly-

nomial time.

Lemma 4.4.5. The NARS mechanism is computationally efficient.

Proof. Recall that the reciprocal relay selection cycle finding algorithm in Algorithm

5 has a complexity of O(|Mt|). Since the reciprocal relay selection cycle finding

algorithm is the dominating step in each iteration, the core relay selection algorithm

hence has a complexity of O(
∑T

t=1 |Mt|). As
∑T

t=1 |Mt| = N +
∑T

t=2(N −
∑t−1

τ=1 |Cτ |)

and
∑T

t=1 |Cτ | = N , by setting |Cτ | = 1 for τ = 1, ..., T , we have the worst case that∑T
t=1 |Mt| =

∑N
i=1 i = N(N+1)

2
. Thus, the mechanism has a complexity of at most

O(N2).
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The above four lemmas together prove the following theorem.

Theorem 4.4.1. The NARS mechanism is immune to group deviations, individually

rational, truthful, and computationally efficient.

4.5 Simulations

In this section we evaluate the performance of the proposed social trust and so-

cial reciprocity based relay selection for cooperative D2D communications through

simulations.

We consider that multiple nodes are randomly scattered across a square area with

a side length of 1000 m. Two nodes are randomly matched into a source-destination

D2D communication link. We compute the SNR value µij according to the physical

interference model, i.e., µij = pi
ω0·||i,j||α with the transmission power pi = 1 Watt, the

background noise ω0 = 10−10 Watts, and the path loss factor α = 4. Based on the

SNR µij, we set the bandwidth W = 10 Mhz and then compute the data rate achieved

by using different relays according to Equation (4.1). We construct the physical graph

GP by setting ePnm = 1 (i.e., node m is a feasible relay of node n) if and only if the

distance between nodes n and m is not greater than a threshold δ = 500 m (i.e.,

||n,m|| ≤ δ). For the social trust model, we will consider two types of social graphs:

Erdos-Renyi social graph and real data trace based social graph.

4.5.1 Erdos-Renyi Social Graph

We first consider N = 100 nodes with the social graph GS represented by the

Erdos-Renyi (ER) graph model [47] where a social link exists between any two nodes

with a probability of PL. To evaluate the impact of social link density of the social

graph, we implement the simulations with different social link probabilities PL =

0, 0.05, 0.1, ..., 1.0, respectively. For each given PL, we average over 1000 runs. As
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(a) System throughput with the number of nodes N = 100 and different social network

density.
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(b) Average size of the reciprocal relay selection cycles in the social trust and social reci-

procity based relay selection with N = 100 and different social network density.

Figure 4.8: Simulation results using an Erdos-Renyi random graph
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(a) The number of social links of the social graphs based on real trace Brightkite.

250 500 750 1000 1250 1500

0

5

10

15

20

Number of Nodes

A
ve

ra
ge

 S
ys

te
m

 T
hr

ou
gh

pu
t 

(M
bp

s)

 

 

Direct Communication
Social Trust and Social Reciprocity Based Relay Selection
Social Trust Based Relay Selection
Throughput Upper Bound
Social Reciprocity Based Relay Selection

(b) Average system throughput with different number of nodes.

250 500 750 1000 1250 1500
0

5000

10000

15000

Number of Nodes

A
ve

ra
ge

 I
te

ra
ti

on
s

 

 

(c) Average number of iterations of the NARS mechanism.

Figure 4.9: Simulation results using the Brightkite social network
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the benchmark, we also implement the solution that each node transmits directly,

the solution that each node selects the relay based social trust only (i.e., rn = rSn),

and the solution that each node selects the relay based on social reciprocity only

by assuming that there is no social trust among the nodes. Furthermore, we also

compute the throughput upper bound by letting each node select the best relay r̄n =

arg maxrn∈NPn ∪{n}Rn(rn) among all its feasible relays. Notice that the throughput

upper bound can only be achieved when all the nodes are willing to help each other

(i.e., all the nodes are cooperative).

We show the average system throughput in Figure 4.8(a). We see that the perfor-

mance of the social trust and social reciprocity based relay selection dominates that of

social trust only based relay selection and social reciprocity only based relay selection.

When the social link probability PL is small, the social trust and social reciprocity

based relay selection achieves up to 64.5% performance gain over the social trust only

based relay selection. When the social link probability PL is large, the social trust

and social reciprocity based relay selection achieves up to 24% performance gain over

the social reciprocity only based relay selection. We also observe that the social trust

and social reciprocity based relay selection achieves up-to 100.4% performance gain

over the case that all the nodes transmit directly. Compared with the throughput up-

per bound, the performance loss of the social trust and social reciprocity based relay

selection is at most 24%. As the social link probability PL increases, the social trust

and social reciprocity based relay selection improves and approaches the throughput

upper bound. This is due to the fact that when the social link probability PL is large,

each node will have a high probability of having social trust from any other node

and hence each node is likely to have social trust from its best relay node. This can

be illustrated by Figure 4.8(b) that the average size of the reciprocal relay selection
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cycles in the social trust and social reciprocity based relay selection decreases as the

social link probability PL increases.

4.5.2 Real Trace Based Social Graph

We then evaluate the proposed social trust and social reciprocity based relay

selection with the social graphs generated according to the friendship network of the

real data trace Brightkite [48]. We implement simulations with the number of nodes

N = 250, 500, ..., 1500, respectively. The total number of social links among these

nodes of the social graphs is shown in Figure 4.9(a).

We show the average system throughput in Figure 4.9(b). We see that the system

throughput of the social trust and social reciprocity based relay selection increases as

the number of users N increases. This is because that more cooperation opportunities

among the nodes are present when the number of users N increases. Moreover, the so-

cial trust and social reciprocity based relay selection achieves up-to 122% performance

gain over the solution that all users transmit directly. Compared with the throughput

upper bound, the performance loss by the social trust and social reciprocity based

relay selection is at most 21%. We also show the computational complexity of the

NARS mechanism for computing the social trust and social reciprocity based relay

selection solution in Figure 4.9(c). We see that the average number of iterations of

the mechanism grows linearly as the number of nodes N increases. This demon-

strates that the proposed NARS mechanism is computationally efficient (i.e., has a

polynomial convergence time).

4.6 Conclusion

In this chapter we studied cooperative D2D communications based on social trust

and social reciprocity. We introduced the physical-social graphs to capture the physi-
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cal constraints for feasible D2D cooperation and the social relationships among devices

for effective cooperation. We proposed a coalitional game theoretic approach to find

the efficient D2D cooperation strategy and developed a network assisted relay selec-

tion mechanism for implementing the coalitional game solution. We showed that the

devised mechanism is immune to group deviations, individually rational, truthful, and

computationally efficient. We further evaluated the performance of the mechanism

based on Erdos-Renyi social graphs and real data trace based social graphs. Numer-

ical results show that the proposed mechanism can achieve up-to 122% performance

gain over the case without D2D cooperation.

83



Chapter 5

AMELIORATING CELLULAR TRAFFIC PEAKS THROUGH PRELOADING

AND P2P COMMUNICATIONS

5.1 Introduction

Cellular traffic has been growing exponentially the past several years, including a

230% increase in 2011 [36]. Average smartphone data usage tripled in 2011, and even

non-smartphone traffic more than doubled. These sharp increases in mobile traffic

are projected to continue over the next several years. In July 2011, Credit Suisse

reported that wireless base stations in the United States were operating at 80% of

their maximum capacity during busy periods [49]. This combination of exploding

demand and limited resources paints a bleak picture of the future for cellular services.

Compounding the issue of congested cellular networks is the impact of rapid in-

terest diffusion in social networks [11] [10]. Content can become viral, in the sense

that it has a rapid increase in popularity in a short time, also called a flash crowd

[50]. This increase is partly due to online social networks, where users can share their

interest in popular content with others. These social networks allow users to interact

constantly with each other, rapidly spreading interest in online content. The result-

ing traffic peaks can be very sharp, for instance in [11], this interest diffusion process

has an exponential increase. The traffic spike from a multitude of users becoming

interested in the content in a short amount of time is difficult for the cellular network

to serve[10].

We propose two key methods to address the problem of the cellular network be-

coming overloaded during peak times due to interest diffusion in social networks. The
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first method is via preloading, which enables the cellular network to predict users’

demand and preemptively serve some users before they request the content. This al-

lows the cellular network to mitigate spikes in traffic by serving users early, when the

network is less congested, without delaying users. The second method is to offload

some traffic to a different network, specifically through peer-to-peer (P2P) commu-

nications in this study. An alternative method for reducing cellular load spikes is

to control the interest diffusion process (cf. [51]) which has been applied to limiting

interest diffusion in a social network [52].

Preloading users has also been studied to improve offloading via P2P communica-

tions with the goal of minimizing the number of users served by the cellular network.

Using a priori mobility trace information to determine a set of users to preload in

order to maximize the number of users served via P2P communications is studied

in [53], and this approach is further expanded to include multiple pieces of content

in [54]. The impact of the duration of the meetings between users is quantified in

[55]. Rather than selecting the optimal set of preloaded users in advance, other works

focus on learning a set over time [56]. Community structure can affect P2P offloading

as well [57]. Common to all of these studies is the focus on reducing the number of

users served by the cellular network. Although the overall number of users served via

cellular is reduced, what remains unclear is when each user is served by the cellular

network, and thus cellular traffic peaks may still be high.

Perhaps the model most relevant to ours is [10], in which the authors propose an

algorithm that can preload users to minimize the maximum number of users served

in a time slot, without delaying any users. It is assumed in [10] that the interest

diffusion process is either known a priori or can be learned via Markov chain monte

carlo methods. In this chapter, we investigate a preloading algorithm that considers

both potentially offloaded users and a probabilistic interest diffusion process.
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The main thrust of this work is devoted to quantifying the impact of uncertainty

in both the inter-meeting process and the interest diffusion process on the peak load

of a cellular network. We consider “impatient” users and therefore impose a strict

delay constraint on the system: all users must be served before the end of the time

slot they become interested. All users are part of a single social network that is

modeled as a scale-free random graph. We consider centralized solutions in which a

cellular base station can act as the coordinator. We begin by demonstrating that a

probabilistic inter-meeting process, as opposed to a process known a priori, results

in an only marginally increased cellular traffic peak. The increase in the peak load is

small enough to be considered negligible, especially considering the significant com-

putational resources required for an algorithm to incorporate a probabilistic process.

Based on this insight, we assume a deterministic inter-meeting process for the re-

mainder of the work. Next, we present a greedy preloading algorithm that optimally

schedules users one by one and show that this results in the minimum possible cellular

traffic peak. This algorithm is optimal for the case when the interest diffusion process

is known beforehand and the number of users offloaded is a deterministic function of

the preloading schedule.

In contrast to the minimal impact of an uncertain inter-meeting process, we show

that the uncertainty in the interest diffusion process, i.e., the uncertainty in the

number of newly interested users in each time slot, could result in a significant increase

in the cellular traffic peak compared to the peak obtained by our preloading algorithm

using an interest diffusion process known a priori. The increased peak load is further

exacerbated under the condition that not only the number but also the identities of

the newly interested nodes are random. Nevertheless, even under these more realistic

conditions, utilizing both preloading and offloading offers a significant reduction in

the peak compared with doing neither.
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Finally, we consider preloading multiple pieces of content to demonstrate the

inherent additional difficulties. We illustrate that “naive extensions” from preloading

a single piece of content may in fact increase the cellular traffic peak compared to

that of not preloading at all. Having shown the importance for new approaches when

preloading multiple pieces of content, we develop a heuristic algorithm that offers

substantial peak reduction.

The rest of the chapter is organized as follows. We introduce in Section 5.2 the

system model and present the interest diffusion process and the content delivery

process. In Section 5.3, we study the impact of a random inter-meeting process,

and present an algorithm that minimizes the cellular traffic peak assuming perfect

information is known. Next, we the investigate the difficulty in selecting which users

to preload in Section 5.4. In Section 5.5, we present a new method for preloading

users that considers three pieces of content simultaneously, and the chapter concludes

in Section 5.6.

5.2 System Model and Problem Formulation

Consider a discrete time system in which each time slot has a fixed duration T . In

order to model both the spread of interest in content and the delivery of the content,

we investigate two processes. The first process is interest diffusion, by which nodes

become interested in a piece of content and seek a copy of it. We assume that the

social network is solely responsible for interest diffusion and further assume, for ease

of exposition, that there is only a single social network. In this social network, each

node represents a user of the cellular network that could become interested in the

content. The traffic within the social network is considered insignificant compared to

the size of the content and is thus ignored when computing the load of the cellular
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network. Also, all social network users are assumed to be online during the timescale

under consideration.

After becoming interested in a piece of content, a user must then retrieve a copy

of it. This retrieval is the second process, which we call content delivery. Content

delivery is therefore driven by the interest diffusion process. Each user has two op-

tions for obtaining the content, either by using the cellular network or by using P2P

communication. As cellular network resources are in high demand, P2P communi-

cation is the preferred method for content delivery. However, we assume that P2P

communication requires close physical proximity between two users. All users are

mobile, and a “meeting” refers to the moment when two users are in range to use

P2P communication. We define a user as “served” when that user has obtained a

copy of the content and “unserved” otherwise. Both P2P communication and cellular

communication are assumed to be instantaneous. Additionally, users are impatient,

in the sense that the content must be delivered soon after a user becomes interested

in it. Therefore, on the one hand it is beneficial to use P2P communication instead

of the cellular network, and on the other hand, users have strict delay constraints

that limit the amount of time for an unserved user to meet a served user to use P2P

communication.

5.2.1 Interest Diffusion

We begin by studying the interest diffusion of a single piece of content. Consider

a given social network consisting of N nodes, each of which corresponds to a user

in the cellular network. Interest in the content diffuses through the network as an

information cascade [58]: in the first time slot, a node, n0, is selected uniformly from

the social network and becomes interested in the content. At the beginning of the

next time slot, each of the neighbors of n0 becomes interested in the piece of content
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Figure 5.1: Effect of PI on the interest diffusion process for a 60 node network

with probability PI . The parameter PI corresponds to the intuition that not all users

are concerned about a given piece of content; rather, some users may find the content

worthwhile while others may not. This diffusion process continues until either all

nodes are interested or there are no newly interested nodes in a time slot.

The social network is modeled as a scale-free graph [59]. As is standard, we assume

that the node degree distribution follows a power law 1 of the form x−α, where

2 < α < 3 [58]. Different PI representing probabilities of interest can drastically

affect the interest diffusion process, which is illustrated in Figure. 5.1. When PI is

low, the overall number of users interested is very low, and there is little benefit to

preloading. In order to show the potential gains, we always set PI close to one in our

simulations.

5.2.2 Content Delivery

An interested user can obtain a piece of content using either the cellular network or

P2P communication. However, P2P communication can be used only when meeting

1For our simulations, the social network is generated by using the Barabasi-Albert algorithm [60]
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a user that already has a copy of the content. We assume that all users in the social

network access a single cell in the cellular network. If a newly interested node has not

met a served node by the end of the time slot, after T seconds, it must retrieve the

content using the cellular network. If there is a meeting with a served node, then the

content transmission using P2P communication is instantaneous. For tractability, if

a newly interested node is served by P2P communications before the end of the time

slot, it does not serve other newly interested nodes until the next time slot. Without

loss of generality, each user served by the cellular network represents a load of one

unit on the cellular network. For example, if five nodes are served by the cellular

network in a time slot, then the load of the cellular network is five units in that time

slot.

We assume that the inter-meeting process between users is statistically homo-

geneous and that the inter-meeting time between any two nodes is an exponential

random variable with rate λ. Since a newly interested node needs to meet only one

served node to obtain a copy of the content, the newly interested node can be served

by P2P communications only if the minimum inter-meeting time with a served node

is less than the duration of the time slot. Thus the first inter-meeting with a served

node is a minimum of exponential random variables, representing the inter-meeting

times with served nodes, which is again an exponential random variable.

5.3 Impact of Uncertainty in Inter-Meeting Time and Interest Diffusion

5.3.1 Random Inter-meeting Process

Having defined the interest diffusion and content delivery processes, we begin by

studying the problem of minimizing the maximum cellular traffic load in any time slot

under strong assumptions. These assumptions provide a baseline to compare against
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models to be developed later that have fewer assumptions on a priori knowledge. We

develop a greedy search algorithm and prove it generates a preloading schedule that

minimizes the cellular traffic load in any time slot. We will show that the impact of

a random inter-meeting process is minimal, and thus use the deterministic process in

later sections for ease of exposition.

Consider a known interest diffusion process D(k) for all time slots k = 1, . . . , K,

where D(k) represents the set of newly interested users in each time slot k. Note

that by knowing the identity of the interested nodes, D(k), the full interest diffusion

process is captured by only the number of newly interested users in each time slot,

D(k) , |D(k)|. After K time slots, there are no more newly interested users. We

impose a strict delay constraint: a user that becomes interested in time slot k can be

served in any earlier time slot i ≤ k, but no later than time slot k. In order to fully

study the impact of preloading, it is assumed that any preloaded user must be served

by the end of its preloaded slot. For example, if a node is originally interested in the

content in time slot three and is preloaded to be served in time slot two, it must be

served by the cellular network at the end of time slot two if it was not served using

P2P communication. Though the offloading process is beneficial, the cellular network

provider cannot control it. Therefore, preloading is the only controllable aspect to

minimize the maximum cellular traffic load in all time slots.

We first evaluate the performance gain through preloading assuming the inter-

meeting process is deterministic. Specifically, we assume that the cellular traffic load

in a time slot is the expectation of the number of newly interested nodes that do

not meet a served node. A new preloading schedule is created, which is denoted as

d(k). The cellular load is the number of newly interested nodes served by the cellular
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network in time slot k. This is a binomial random variable with mean

d(k) · exp

(
−λT

k−1∑
j=1

d(j)

)
. (5.1)

The optimal preloading schedule is the solution to the following optimization

problem:

minimize
d(k)

max
k

d(k)e
−λT

k−1∑
j=1

d(j)

subject to
k∑
j=1

d(j) ≥
k∑
j=1

D(j), k = 1, . . . , K.

(5.2)

Note that the constraint assures that all nodes that become interested during time

slot k are served in time slot k or earlier. The cost function is the largest expected

value of the cellular load in each time slot.

Based on [10], we next devise a greedy search algorithm to construct a preloading

schedule d(k) to solve this integer program. This new algorithm computes an optimal

schedule that minimizes the largest cellular traffic load in any time slot. The algorithm

places each newly interested user in each time slot one by one, and then schedules the

user in the time slot that results in the minimal cost function. To start, d(1) = D(1)

in order to satisfy the delay constraints. Next, the first node in D(2) is placed in

time slot one and the resulting cost is computed. It is then placed in time slot two,

again computing the resulting cost. The node is then scheduled in the time slot with

the smallest resulting cost. This process continues for each node in D(2) and then

likewise for the following time slots. Note that each node in D(j) can be placed in

any of the first j time slots.

Theorem 5.3.1. With a known interest diffusion process and when the number of

users offloaded is a deterministic function of the preloading schedule, the greedy search

algorithm presented in Algorithm 6 is optimal, in the sense that it generates a schedule

that minimizes the maximum cellular traffic load in any time slot.
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Algorithm 6 Greedy Search Algorithm

d(k)← ∅ ∀ k
d(1)← D(1)
for k = 2 : K do

for all u ∈ D(k) do

k? ← arg min
1≤j≤k

(d(j) + 1)e
−λT

j−1∑
i=1

d(i)

d(k?)← d(k?) ∪ u
end for

end for

Proof. Note that multiple solutions with minimum cost likely exist. We prove the

greedy search algorithm returns a schedule with minimum cost by induction. Denote

the cost of considering only the first k time slots as CG(k) for the greedy algorithm

and CO(k) for some unspecified algorithm that returns a schedule with the minimum

cost, i.e.,

CO(k) = min
d(j)

max
1≤j≤k

d(j)e
−λT

j−1∑
i=1

d(i)
. (5.3)

Further, as CG(k) is calculated using the d(k) schedule resulting from Algorithm 6,

after k slots,

CG(k) = max
1≤j≤k

d(j)e
−λT

j−1∑
i=1

d(i)
. (5.4)

Note that CG(1) = CO(1) because d(1) = D(1) due to the delay constraint. The time

slot that has the maximum cost is defined as km, thus

d(km)e
−λT

km−1∑
i=1

d(i)
≥ d(k)e

−λT
k−1∑
i=1

d(i)
∀ k. (5.5)

In the second time slot if there exists some optimal schedule that results in CG(2) >

CO(2), then at least one node can be moved that results in a lower cost in time slot

km. But if one node could be moved that would result in a lower cost, then Algorithm

6 would schedule that node in that time slot. Thus CG(2) = CO(2).
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Assume CG(k − 1) = CO(k − 1). We prove that our greedy search algorithm

results in CG(k) = CO(k). There are two possibilities for CG(k). The first is that

CG(k) = CG(k−1): the new nodes are scheduled in slots other than km. This implies

that CG(k) = CO(k) because it is impossible to reduce the maximum cost from earlier

time slots, i.e., CO(k) ≥ CO(k − 1).

The second possibility is that CG(k) > CG(k− 1). Within this case, there are two

possibilities. The first possibility is that all of the nodes in D(k) are assigned to the

last time slot, k. In this case, km = k. Note that here, CG(k) depends only on the

sum of the previous k − 1 slots. Therefore, the schedule for all time slots j < k is

immaterial. Thus CG(k) = CO(k). The other possibility is km < k. As shown earlier,

the greedy search algorithm will return an optimal solution in this case.

Next, we relax the assumption that the inter-meeting process is deterministic and

investigate the impact of uncertainty in this process on the cost. We compare the

optimal solution assuming the mean realization from Algorithm 6 with the optimal

schedule under the relaxed assumption using a stochastic program. The algorithm

for solving the stochastic program is derived from the greedy search algorithm, but

the cost is calculated using the entire distribution of the number of meetings between

newly interested nodes and served users, rather than calculating the cost by using

the expected value. To compare the results of these two approaches, the Value of the

Stochastic Solution (VSS) is computed via simulation in a 60 node network.

We study λ in the range from 1
200

to 1
2
, representing a wide span of inter-meeting

probabilities, to explore the possible gain from using the stochastic program. With

λ = 1
2
, meetings are very likely, thus little preloading is necessary. However, when

λ = 1
200

, meetings between nodes are rare, and thus many nodes must be preloaded

to minimize the peak cellular load. The averaged VSS over all λ is 0.27 and has
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little deviation over the range of inter-meeting probabilities. Though the stochastic

program has better performance, the VSS is small enough to be negligible, indicating

that it is not worth the significant additional computation cost.

5.3.2 Random Interest Diffusion

The above study is carried out under the commonly used assumption that the

interest diffusion process is completely known a priori. Relaxing this strong assump-

tion, we now assume that only the distribution of the number of newly interested

users in each time slot is known. Based on the previous section, we assume the

inter-meeting process is deterministic because the VSS was small compared to the

computational effort required. Therefore, the cost in each time slot is assumed to

be the expectation of the number of users served by the cellular network. Since the

number of possible D realizations is combinatorial in nature, we rely on simulations to

study the impact of a random interest diffusion process. These simulations indicate

that a random interest diffusion process greatly degrades the ability to reduce the

peak of the cellular traffic load.

We begin by simulating a network containing 60 users. The greedy algorithm

presented in Algorithm 6 provides the optimal schedule, denoted ddet, by using the

mean D realization, which is obtained by averaging over many D realizations. We

calculate the average increase in the cost by comparing the cost of using ddet to the

cost using the optimal schedule assuming D is known using Algorithm 6, for each D

realization.

Results from simulations for different λ are presented in Figure 5.2. These are

generated by simulating each λ using 50,000 D realizations. The averaged D realiza-

tion is then used in Algorithm 6 to compute ddet. The cost of using ddet is compared

to the cost of creating a perfect schedule using each D realization and Algorithm 6.
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Figure 5.2: Average loss for different inter-meeting probabilities

The average increased cost is high for small λ because there are few inter-meetings,

and thus a suboptimal preloading schedule for a D realization incurs a large traffic

peak. As the probability of inter-meeting increases, the loss due to imperfect infor-

mation decreases as suboptimal preloading can be offset by serving a large portion of

the nodes via P2P communication.

5.4 Uniform User Selection for Preloading

Next, we consider a more natural model to address the uncertainty in the interest

diffusion process. Although in the previous section the number of newly interested

nodes in each time slot was random, the identity of these users was known. To high-

light this important difference more concretely, begin by denoting Ddet(k) as the set

containing the identities of the nodes in ddet that are scheduled in each time slot. For

example, let D = [2, 8, 2], with D(1) = {na, nb}, D(2) = {nc, nd, ne, nf , ng, nh, ni, nj},

and D(3) = {nk, nl}, and assume the optimal preloading schedule is ddet = [5, 5, 2].

We assumed that the natural scheduling for ddet is Ddet(1) = {na, nb, nc, nd, ne},

Ddet(2) = {nf , ng, nh, ni, nj}, and Ddet(3) = {nk, nl}. That is, after creating an opti-

mal ddet, the user identities were assigned in order from earliest interested to latest.

In this section, this strong assumption of knowing the order in which nodes become
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interested is relaxed, and we turn our attention to the problem of selecting which

users to preload.

The identities of the preloaded users are selected uniformly due to our assumption

that all nodes are homogeneous. Denote the set of users that are not yet interested

or preloaded as U . The greedy search algorithm in Algorithm 6 provides the optimal

size of the number of users to preload in each slot, denoted d?(k), for the original,

deterministic interest diffusion process. In time slot one, the original node interested

in the file is served by the cellular network, and d?(1)−1 additional users are preloaded.

These users are selected uniformly from U . In the next time slot, the interest diffusion

process continues using only the original node to spread interest, not any preloaded

nodes, as before. If the number of newly interested nodes in time slot two is greater

than or equal to d?(2), then all of these nodes are served. However, if the number of

newly interested users is less than d?(2), users are selected to be preloaded uniformly.

This process continues in the remaining time slots.

In Fig. 5.3, we plot the performance of the above approach for a social network

with 60 users for different values of λ against the average cost without preloading

(using only offloading) and the optimal cost assuming perfect knowledge of D(k),

by averaging over 50,000 different social network realizations. When inter-meetings

are rare, there is a large penalty for imperfect user information due to the fact that

almost all users are served by the cellular network. However, when nodes are more

likely to meet, the loss compared with perfect information is reduced as users are

much more likely to be served by P2P communications as opposed to the cellular

network. Intuitively, even when selecting users to preload that are not from adjacent

time slots, the large number of node inter-meetings mitigates the additional load on

the cellular network.
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Figure 5.3: Comparison of user selection methods

5.5 The Case with Multiple Pieces of Content

In Sections 5.3.2 and 5.4, we quantified the impact of preloading with limited a

priori information about the interest diffusion process of a single piece of content.

In this section, we study preloading users to deliver multiple pieces of content, as

practical cellular networks are expected to serve a multitude of different content to

users. In order to highlight the new challenges in preloading multiple pieces of content,

we avoid the difficulties that arose during determining which users to preload by

reverting to the assumption that the identities of the users are known, i.e., D(k) is

known beforehand for each piece of content. Specifically, we consider three pieces of

content, denoted c1, c2, c3, with corresponding interest diffusion processes D1,D2,D3.

These pieces of content do not begin the interest diffusion process at the same time.

Instead, each Di is a time shifted version of the average interest diffusion process in

a 60 node network. The interest diffusion process for content c1 begins in the first

time slot. Content c2 begins the interest diffusion process in time slot three, and c3

begins in time slot five.

We present three approaches to preload users to serve the content. The first

approach is to use Algorithm 6 on D1 and time shift the resulting d schedule for the
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other two pieces of content. We denote this method as “restricted preloading” as the

later pieces of content are not allowed to be preloaded before their first node becomes

interested. The second approach is “single preloading”, in which Algorithm 6 is

applied to each Di independently of the other content, and the resulting di schedules

are then combined. The later pieces of content, c2 and c3 are allowed to preload

as early as the first time slot, as opposed to restricted preloading. Neither of these

two methods considers the load placed on the cellular network by the other pieces of

content when preloading, so the ability to effectively reduce the cellular load peak is

reduced.

For the third approach, we present an extension to Algorithm 6 called “aggregate

preloading”. The same greedy search algorithm is performed for each content, but in

an ordered fashion. For each time slot k, a node from D1(k) is placed using greedy

search first, as D1 begins earliest. Then a node from D2(k) is placed using the same

greedy search and likewise a node from D3(k). Unlike the previous two approaches,

this greedy search includes the cost information of all nodes already placed for D1

as well as D2 and D3. If a piece of content has already scheduled all of its newly

interested nodes from time slot k, then it is skipped.

The averaged performance of these three approaches is compared to the average

cost of not preloading in Fig. 5.4. As expected, aggregate preloading outperforms all

other methods as it is the only approach that uses the cost information of the other

pieces of content to preload.

The performance of the restricted preloading approach highlights a potential prob-

lem for preloading. This method represents a naive approach that a practical cellular

base station might use for preloading. Each piece of content is treated separately, and

future demand for new pieces of content is not known until the first node becomes

interested in that content. From Fig. 5.4, this approach has a higher peak load than
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Figure 5.4: Performance of preloading multiple pieces of content

performing no preloading for some inter-meeting probabilities. Thus, careful consider-

ation of the scenarios of interest is needed when considering practical implementations

for preloading to avoid accidentally increasing the cellular traffic peak.

5.6 Conclusion

In this chapter, we investigated two methods for reducing the peak of cellular

traffic: preloading and offloading. Allowing a cellular network operator to serve users

early can mitigate the cellular traffic peak and can be used to create a large base of

served users to allow for opportunistically offloading traffic using P2P communication.

A greedy preloading algorithm was developed that optimally schedules users when the

interest diffusion process is known beforehand, and the impact of scheduling users on

P2P communications is a deterministic function. We demonstrated that uncertainty

in the inter-meeting process has a minimal impact on the overall peak reduction. In

contrast, the uncertainty in the interest diffusion process significantly impairs the

ability to minimize the cellular traffic peak. Simulations were used to model the

impact of selecting which users to preload on reducing the peak of the cellular load,
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which illustrated that the cellular traffic peak is still reduced by preloading even

under the worst case scenario of homogeneous user identities. Serving multiple pieces

of content simultaneously was also studied, and a heuristic algorithm was developed

that greatly reduces the cellular peak despite the additional challenges presented when

considering multiple pieces of content instead of a single piece.

As the demand for wireless resources continues to increase, solutions to these

issues will become increasingly important. More accurate predictions for the interest

diffusion process will allow for aggressive preloading that does not risk “mistakenly”

serving users that may never become interested in the content.
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Chapter 6

CONCLUSION AND FUTURE WORK

In the previous four chapters, a new method to model big data problems by approxi-

mating large multivariate distributions, specifically social network data sets, was pre-

sented. Then two applications of social network structure were developed: enhancing

D2D communications using relays and improving cellular traffic peak performance.

Next, these contributions in are summarized in detail.

6.1 Conclusion

We began by modeling social network structure in Chapter 2 by developing a

framework based on the t-cherry junction tree to characterize users’ relationships in

online social networks. To this end, we devised an algorithm to construct a k-order

t-cherry junction tree where most of the computations are parallelized. In order to

improve the approximation further, we proposed a scheme consisting of the order

update and t-cherry conversion steps to construct a higher order t-cherry junction

tree. This scheme is significantly faster than building a higher order t-cherry junction

tree from scratch and greatly decreases the KL-divergence between the approximation

and the joint distribution compared to the original one. This new framework was

applied to the new user recommendation problem by creating a probabilistic model

of 100,000 user relationships in a Twitter dataset.

This framework was extended in Chapter 3 to include the impact of estimating

distributions from a training data set. The loss of fidelity due to imperfect estimates

is exactly quantified. Also, the scaling behavior, as the order of the t-cherry junction

tree increases, is approximated. This showed an exponential increase in the lost
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accuracy, which in some circumstances will result in a lower-order tree having a closer

approximation to the true high-dimensional distribution. By quantifying the impact

of the number of training data samples and the order of the t-cherry junction tree, the

tradeoff in higher-order trees can be considered to choose the best possible order for

the approximation. These concepts were demonstrated by considering the problem of

distributed detection in which the correlation structure in the sensors’ measurements

is a Markov random field.

The second part of the dissertation focused on applications of this social structure

to wireless communication. In Chapter 4, we studied an application involving social

networks: cooperative D2D communications based on social trust and social reci-

procity. We introduced the physical-social graphs to capture the physical constraints

for feasible D2D cooperation and the social relationships among devices for effective

cooperation. We then proposed a coalitional game theoretic approach to find the

efficient D2D cooperation strategy and developed a network assisted relay selection

mechanism for implementing the coalitional game solution. This devised mechanism

is immune to group deviations, individually rational, truthful, and computationally

efficient. We further evaluated the performance of the mechanism based on Erdos-

Renyi social graphs and real data trace based social graphs. Numerical results show

that the proposed mechanism can achieve up-to 122% performance gain over the case

without D2D cooperation.

Next, we presented a new application leveraging social networks, namely reducing

the peak traffic of cellular networks in Chapter 5. Our approach consisted of two

methods: preloading and offloading. Allowing a cellular network operator to use pre-

dictions of users’ content demands to serve users early can mitigate the cellular traffic

peak. Additionally, this preloading dovetails with offloading by creating a large base

of served users that can opportunistically offload traffic using P2P communication. A
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greedy preloading algorithm was developed that optimally schedules users under the

condition that the interest diffusion process is known beforehand and the impact of

scheduling users on P2P communication is a deterministic function. It was demon-

strated that uncertainty in the inter-meeting process has a minimal impact on the

overall peak reduction. In contrast, uncertainty in the interest diffusion process sig-

nificantly impairs the ability to minimize the cellular traffic peak. Simulations were

used to model the impact of selecting which users to preload on reducing the peak

of the cellular load, which illustrated that the cellular traffic peak is still reduced by

preloading even under the worst case scenario of homogeneous user identities. Serving

multiple pieces of content simultaneously was also studied, and a heuristic algorithm

was developed that can reduce the cellular peak despite the additional challenges.

6.2 Future Work

In Chapter 3, it was shown that the KL divergence of the t-cherry junction tree,

Equation 3.1, decomposed into two parts: the behavior of the tree with perfect infor-

mation, wT , and the impact of using estimated distributions, wE. The impact of the

estimated distributions was quantified in Equation 3.18. However, the other half of

the picture, the behavior of the t-cherry junction tree with perfect distribution infor-

mation was not quantified. Understanding this term would deepen the understanding

of the behavior of the KL divergence.

To this end, we will assume that the distribution is a Gauss-Markov Random

Field (GMRF) of random variables, in which each random variable is distributed as

a Gaussian random variable, with conditional correlation structure as defined by a

Markov random field. It is also assumed that every random variable has a mean of

zero. This strict assumption is needed as the true t-cherry junction tree behavior is
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dependent upon the underlying distribution, and without any assumptions, only very

general results can be determined.

Specifically, this assumption is that

X ∼ N (0,Σ) (6.1)

where X , [X1, . . . , XM ] and 0 is the zero vector of size M .

Note that there is a direct connection between a (G)MRF and junction trees. Any

chordal MRF induces a junction tree, and a junction tree induces a chordal MRF.

This is shown in Figure 6.1. In Figure 6.1(a) is a chordal MRF, and the junction tree

it induces is shown in Figure 6.1(b). This junction tree perfectly recreates the dis-

tribution over the random variables in the MRF. In Figure 6.1(c), the corresponding

t-cherry junction tree is presented. This t-cherry junction tree has the same weight

at the junction tree, but retains the t-cherry property.

A known result is that the KL divergence between two multivariate Gaussian

distributions containing k random variables, here denoted N0 ∼ N (0,Σ0) and N1 ∼

N (0,Σ1) with the same mean is

DKL(N0||N1) =
1

2

(
tr(Σ−11 Σ0)− log

(
|Σ0|
|Σ1|

)
− k
)
, (6.2)

where | · | is the determinant of a matrix and tr(·) is the trace of a matrix. For

this work, we are concerned with the case where N0 represents the true distribution

and N1 represents the situation in which each random variable is considered to be

independent of all others. Specifically,

Σ0 =



σ2
1 σ2

1,2 · · · σ2
1,k

σ2
2,1 σ2

2 · · · σ2
2,k

...
...

...
...

σ2
k,1 σ2

k,2 · · · σ2
k


(6.3) Σ1 =



σ2
1 0 0 · · · 0

0 σ2
2 0 · · · 0

...
...

...
...

...

0 0 · · · 0 σ2
k


. (6.4)
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Figure 6.1: GMRF and associated junction trees

Then the KL divergence between the two distributions is

DKL(N0||N1) = −1

2
log

(
|Σ0|
|Σ1|

)
= −1

2
log

(
|Σ0|∏k
i=1 σ

2
i

)
. (6.5)

The weight of the t-cherry junction tree, wT , is

wT =
∑
C∈C

I(XC)−
∑
S∈S

I(XS) = −1

2

M−k+1∑
i=1

log

(
|ΣCi |∏k
j=1 σ

2
j

)
+

1

2

M−k∑
i=1

log

(
|ΣSi|∏k−1
j=1 σ

2
j

)
(6.6)

by using Equation 6.5. Note that
∏k

j=1 σ
2
j represents the product of the variances of

the random variables in the given cluster, and likewise for a separator.

Using the structure of the t-cherry junction tree,

wT = −1

2

M−k∑
i=1

log

(
|ΣCi |
|ΣSi |

)
− 1

2
log
(
|ΣCM−k+1

|
)

+
1

2
log

(
M∏
j=1

σ2
j

)
. (6.7)

106



�

�

� �

�

�

�

Figure 6.2: Example of a GMRF

The last term, the product of all of the variances, does not depend on the structure

of the junction tree.

The precision (information) matrix of a GMRF has a sparse structure based on

the conditional correlation graph. If the GMRF contains seven random variables with

the dependence structure shown in Figure 6.2, the precision matrix is

Σ−1 =



a b b 0 0 0 0

b a b 0 0 0 0

b b a b b 0 0

0 0 b a b 0 0

0 0 b b a b b

0 0 0 0 b a b

0 0 0 0 b b a



(6.8)

assuming that the conditional correlations and conditional variances are equal.

In Equation 6.7, the first term can be simplified using the Schur complement,

which states that

|ΣC | = |ΣS|(σ2
k − vTΣ−1S v), (6.9)
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Figure 6.3: Greedy algorithm performance for GRMFs

where v is a vector containing the correlations between the dominating vertex of the

cluster and the variables in the separator.

As the order of the junction tree increases, there are fewer clusters and separators,

however we expect the weight term wT to improve only marginally after the true order

(maximal clique size of the MRF) of the underlying distribution (which is three for

the GMRF in Figure 6.2).

As higher-order junction trees are considered, and wT saturates, most of this

saturation term comes from the middle term of Equation 6.7,

−1

2
log
(
|ΣCM−k+1

|
)
. (6.10)

Obviously, when the junction tree order is the same as M , there is only one cluster

and all of the weight of the three is contained in this term. With two clusters, i.e.,

k = M−1, most of the weight is contained in this term as opposed to the cancelation

of the other cluster and the one separator.

Despite the difficulties in analytically proving these points, we have a strong con-

jecture. This conjecture is that the weight of the t-cherry junction tree constructed
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using the greedy algorithm, Algorithm 1 in Chapter 2, saturates after the order of

the t-cherry junction tree exceeds the order of the underlying GMRF (here denoted

k∗.) To support this conjecture, simulation studies involving synthetic GMRFs were

performed, the results of which can be seen in Figure 6.3. In this figure, the x-axis

represents the order of the t-cherry junction minus the true order of the underlying

GMRF. For example, for the purple curve, k∗ = 7, the weight of the 3-order t-cherry

junction tree is plotted on the x-axis at -4, as 3− 7 = −4. The y-axis represents the

percent gain in the weight of the k-order t-cherry junction tree compared to the previ-

ous, (k-1)-order tree. Note that beyond k−k∗ = 1, the percent gains quickly converge

to zero. Note that were the optimal t-cherry junction trees constructed, these weights

would be zero beyond k = k∗. Using the connection between constructing a t-cherry

junction tree and inducing a MRF structure, the greedy algorithm fails to link certain

variables that are linked in the underlying distribution, but as the order increases,

these missing links are added.

In conclusion, this ongoing work has the potential to complete the storyline of the

t-cherry junction tree. In practice, the fundamental question for using this framework

is: what is the correct order of t-cherry junction tree to build? That is, how to trade-

off between the complexity in constructing one and the increased storage and training

data requirements against the increasing fidelity (weight) of the tree. The error due

to estimating distributions from data was shown to be exponential in order, and thus

beyond some order, this wE term will greatly increase the KL divergence. However,

the behavior of the weight of the true tree, wT , is conjectured to quickly saturate

past the clique size of the underlying distribution. Thus, there should be a point

at which the KL divergence of the approximation to the true high-dimensional joint

distribution begins to increase quickly, and this point represents a good heuristic for

choosing the best order for the t-cherry junction tree.
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