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ABSTRACT

A community in a social network can be viewed as a structure formed by individu-

als who share similar interests. Not all communities are explicit; some may be hidden

in a large network. Therefore, discovering these hidden communities becomes an in-

teresting problem. Researchers from a number of fields have developed algorithms to

tackle this problem.

Besides the common feature above, communities within a social network have two

unique characteristics: communities are mostly small and overlapping. Unfortunately,

many traditional algorithms have difficulty recognizing these small communities (often

called the resolution limit problem) as well as overlapping communities.

In this work, two enhanced community detection techniques are proposed for re-

working existing community detection algorithms to find small communities in social

networks. One method is to modify the modularity measure within the framework

of the traditional Newman-Girvan algorithm so that more small communities can be

detected. The second method is to incorporate a preprocessing step into existing al-

gorithms by changing edge weights inside communities. Both methods help improve

community detection performance while maintaining or improving computational ef-

ficiency.
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Chapter 1

INTRODUCTION

1.1 Social Networks and Communities

Everyone has their own social network consisting of their friends, family and col-

leagues. A social network is a network that consists of people and their interpersonal

relationships, such as kinship, friendship, classmates, colleagues, etc.. People also

gain new friends from time to time, social networks are not static. Connections are

generally built one at a time. Online social networks record pre-existing interpersonal

relationships and are updated to show new relationships. The explosion of online so-

cial networks, such as Facebook, LinkedIn, Flickr show the importance of keeping

track of social relationships in our daily life.

A simple abstraction or visualization for a social network is the graph structure.

By viewing each person as a node and their interpersonal relationship (friends) as

links, we can visualize social networks as graphs. Different from other network types,

social networks are nearly always sparse. Another differentiating factor is that the

node degrees in social networks are power-law distributed. Moreover, different from

random networks with the same degree distribution, social networks have a distinct

and important structure – communities.

Communities are very important in social networks. In addition to links, com-

munities may be held together by common interests, common goals or geographical

location. This means that links alone do not define community membership, other

factors, like common interests defines community membership, though members of

the same community are more likely to be friends.
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Reseachers have used many different ways of defining communities. In this work,

I adopt the following definition based on modularity:

Definition 1 (Community) Let G = (V,E) be a graph and |E| = m. Let C =

{C1, C2, ..., CN} is a cover of V . A community C ∈ C is defined as a set of nodes

such that the modularity Q is maximum, where Q is defined as:

Q =
1

N

∑
i

∑
u,v∈Ci

[Auv −
kukv
2m

]

where A = (Auv) is the adjacency matrix and kv is node v’s degree.

A thorough explanation of modularity is given in Section 3.1.

In the context of a social network, a real-world community is a group of nodes that

share the same interest, property, or location. For example, the communities within

the Amazon Co-purchasing Network are the connected components of the ‘people

who buy this also buy’ feature, while the communities within the Youtube Network

are just user-defined groups. We then can evaluate the quality of communities from

Definition 1 against these real-world communities.

1.2 Detecting Small Communities

Communities are not always explicit in a social network. Thus, how to detect

implicit communities has been an important problem for us to better understand

social networks. For this task, we assume that no information is provided except the

nodes and the links. Adding more features from a social network will generate better

results, but adds complexity and is not discussed here.

Many algorithms have been proposed recently, including many not specifically

designed for social networks. These methods have been successful in fields not limited

to discovering communities in social networks. See Chapter 2 for details.
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However, in social networks, communities show different characteristics from those

of other subjects, such as biology and physics. For example, in some subjects, com-

munity sizes are more likely to be evenly distributed. That is, they are all roughly

the same size in a network. Within a social network, not all of these groups are the

same size. A small group may consist of only a few several people while a large group

consists of dozens of thousands of people. Agarwal et al. (2007) was among the first

to explore this relationship. Tang and Liu (2010) later provided further supporting

evidence. We also confirm this analysis in Figure 1.1. The power-law distribution of

real community sizes reveals the fact that most of the communities in a social network

are small.

This presents a challenge: although detecting these groups while they are large

in size is a well-studied problem as we discuss in Chapter 2, detecting small com-

munities is not well-studied. Some evidence is shown in Figure 1.2. The algorithms

of Infomap and FastModu both detect a number of large communities. However, in

this dissertation, we aim to search for small communities. That is, we want to detect

more small communities that consist of 5 or more nodes.

1.3 Basic Notation and Problem Formulation

We discuss undirected social networks in this dissertation, since the symmetric

adjacency matrix can be easily handled as shown in Section 3.3.1. Notice that a

real social network can be asymmetric (Twitter, Weibo, etc.). That is, when one is

following the other, it is not necessarily true that the other person also follows back.

We symmetrize a directed network simply by making the directed links undirected,

though we may change the network by making followers as followees.

Some basic notation is as follows. Let G = (V,E) be the graph associated with

the network, with the node set V and the edge set E. G is a sparse matrix since it

3



(a) Youtube (b) Amazon Co-purchasing network

(c) LiveJournal (d) Orkut

Figure 1.1: x-axis: natural log of community size. y-axis: natural log of occurrence

of community size. Data is from snap.stanford.com (Yang and Leskovec (2012))

represents a real-world social network. n and m are the numbers of nodes and edges

in G, respectively. A is represented as the adjacency matrix of G, where A = (Aij):

Aij =

 1 if ij ∈ E

0 if ij 6∈ E

Let N(v) denote the neighborhood of a vertex v ∈ V , which is the set of vertices

adjacent to v. Let kv denote the degree of the vertex v, where kv = |N(v)|. A

cover of a set S is a collection of subsets P = {P1, P2, · · · , Pn} so that
⋃
i Pi = S.

A partition of a set S is a collection of disjoint subsets P = {P1, P2, · · · , Pn} such

4



Figure 1.2: The Distribution of Community Sizes of the Ground-Truth v.s. the

Results of Some Existing Algorithms

that
⋃
i Pi = S. A community assignment is a vertex cover for the network. Here

the condition
⋃
i Pi = S is required as each vertex should belong to at least one

community, which is viewed as a convention in the subject of community detection.

The base community detection problem is therefore to partition the vertices of

the graph G into a set of communities C = {C1, ...., Ck} such that the partitioning is

representational of the hidden community assignments that underly the network. In

our unique variant of community detection, we seek to emphasize the small commu-

nities. Thus, we want to minimize |Ci| for each community Ci while maintaining the

quality of detected communities. One additional requirement is that |Ci| ≥ 5. Our

objective is enable the finding of small communities with varied sizes.

Two methods are proposed for solving the problem. One method is to intro-

duce a modified measure of modularity, discussed in Chapter 3. The other is to

use a reweighting method as a preprocessing step for existing community detection

algorithms, discussed in Chapter 4. Both methods are successful in finding small

communities while maintaining the quality of detected communities.
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Chapter 2

RELATED WORK

2.1 Introduction to Community Detection Algorithms

Multiple overlapping community detection algorithms have been developed in the

recent years. A survey (Xie et al. (2013)) was written recently, with almost all the

proposed overlapping community detection algorithms before 2011 involved. Here,

we mainly focus on some important and useful algorithms that can be helpful or

have potential to generate small communities. Besides, we do not limit our sight in

overlapping detection methods, but also non-overlapping methods.

2.1.1 Fuzzy Detection (Probabilistic Model)

Fuzzy detection is one kind of community detection algorithms that we do not

decide if one node belongs to one specific community. Instead, we use a vector of

numbers to represent the probability for each single node. We call the vector as

belonging vector. More specifically, we can write a N×C matrix A where
∑C

j=1Aij =

1 for all j ∈ {1, 2, · · · , N}. One obvious problem for such algorithms is that the

community number C is hard to determine.

A lot of algorithms have been proposed using this basic idea. As one of the

earliest examples, fuzzy c-means (Pedrycz (1990)) modifies the method of original

K-means by adding a probability to show that one node can probably belong to

multi communities. But it also inherits the problem from the original K-means that

determining C is hard.

As a model-based community detection algorithm, MOSES (McDaid and Hurley

6



(2010)) shows that probability can play an important role in community detection.

The probabilistic model assumes that when two nodes are connected by one link, there

is a greater chance that these two nodes belong to the same communities. Therefore,

we have a latent factor of probability for the links which determines the community

structure. Then we want to maximize this probability by Bayes theory. The solution

for this model is to add/delete edges between network to maximize the likelihood

function value. EM algorithm will give an approximate optimization. The author

also claimed that the approximate solution can be trapped at a local minimum which

can be far away from the global maximum. However, no solution has been given in

the work.

Yang and Leskovec (2012) better describes the theoretical basis for the probability

model. It uses 6 real-world networks to show that there are more edges for the over-

lapping part of communities. From this fact, the idea of the algorithm is very similar

to MOSES, except that it introduces affiliation graph instead of community-node

vector. And the affiliation graph is updated from Metropolis-Hastings algorithm by

randomly deleting/adding/switching one edge. The same author introduces another

improved method (Yang and Leskovec (2013)) based on this paper. They consider

affiliation network as a latent factor that can generate the edges of the original graph.

2.1.2 Label Propagation

Compared to the other kinds of community detection algorithms, label propa-

gation algorithm has a natural advantage that by its quasi-linear time complexity.

Thus, the algorithm is able to complete the task in more complex networks. Thus,

even if the method didn’t have a very good performance at first, it still attracted vast

attention of researchers.

COPRA (Gregory (2010)) can be considered as one of the earliest such algorithms.

7



From the view of belonging vector, each node updates its belonging coefficients by

averaging the coefficient from all its neighbors at each step symmetrically. It limits

its maximum number of communities v to save time and space.

DEMON (Coscia et al. (2012)) is another such algorithm. In the algorithm, the

author uses Ego network, which is a vertex’s neighborhood along with the node itself.

For each step, we propagate the label for this Ego network and view this set as a

community. When we cannot update any of these communities, we stop and delete

the communities of extreme high overlap. Since we do propagate the label from each

vertex, we can reach a set of different overlapping communities finally.

Similar to DEMON, SLPA (Xie et al. (2011)) artificially provides the overlapping

communities results. I leave the detail of the algorithm to Section 4.3.

2.1.3 Information Theory

As a recent popular method, Infomap has proven its success on the community

detection problems (Fortunato (2010)). Again, I leave the detail of the algorithm to

Section 4.3.

2.1.4 Modularity-based algorithm

Modularity (Newman and Girvan (2004)) was originally developed as a measure

to determine the quality of a graph partition. In this work, we definition community

with modularity. A thorough introduction and an improvement of the measure is

written in Chapter 3 .

2.1.5 Local-based expansion

The idea of local-based expansion is that, by fixing a seed node and adding it

into an empty set A, we expand the set from some specific measure. We continue

8



when the measure is going to optimal, otherwise we will stop. The advantage is that

by exploring the local structure, the algorithm will always be computationally cheap

and thus scalable to a large network. Also, there are several disadvantages: (1) The

seeds are always hard to find. Therefore, people proposed the seeding strategy to

solve the problem. (2) Quite opposite to the global strategy, the local method can

always trap communities to extreme small sizes. Therefore, each local method need

to add different strategies to avoid the problem.

Here we list some of the local methods. Notice that for all the local methods, we

can naturally assume it generates a set of overlapping communities, since start from

two different seeds from the same communities can generate two communities which

are different with each other.

Andersen et al. (2006) proposed a PageRank based method. There is a random

walker starting from a seed vertex. At each time it moves towards its neighbors by

probability α or restart from the starting seed by (1−α). Then the author concludes

that they can find a nice community by its Pagerank vector. This idea is further

adapted by several papers such as Gleich and Seshadhri (2012), Whang et al. (2013).

Gleich and Seshadhri (2012) analyzes the quality of Ego networks. They prove

that there is at least one high-quality community in a social network. Also, they

suggest the nodes of low conductance are the seeds that can be expanded into some

high quality communities.

Whang et al. (2013) is a recent work that implements the paper (Andersen et al.

(2006)). As a complete community detection algorithm, it consists of four phases:

filtering, seeding, expansion and propagation. And for seed expansion, the algorithm

implements the above PageRank based method. For filtering phase, the algorithm

deletes the ‘tail’ part to find the biconnected component. For propagation phases,

the existing communities grow the whole communities by recovering the whole com-
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munities from the biconnected core. The algorithm improves the work in (Gleich and

Seshadhri (2012)) by classifying more nodes into communities.

Another idea is to generate communities from seed communities. In this way

problem (2) is likely to be avoided. However, finding seed communities always involve

seeking for small density cores, which is considered as an expensive preprocessing step.

EAGLE (Shen et al. (2009)) is a such agglomerative method. First, all maximal

cliques are found to be the initial communities. Then, the communities with highest

similarity merge with each other. The algorithm stops when the modified modularity

with overlap reaches the maximum.

Similar to EAGLE, GCE (Lee et al. (2010)) identifies the maximum cliques as the

seed communities. Then it expands these seeds by greedily optimizing a local fitness

function. GCE also deletes the communities that are highly similar to each other

afterwards.

2.1.6 Other Algorithms

The clique percolation method (CPM) (Palla et al. (2005)) is based on the as-

sumption that a community consists of a set of adjacent cliques. The method starts

from identifying all the cliques size k (typically 3 to 6). Then the algorithm treats all

the clique as nodes. Two nodes are connected to each other when the cliques share

k − 1 nodes. After this construction, all the connected components are recognized

as the communities. Since one node can be in multiple cliques which do not neces-

sarily connect to each other, the algorithm can find overlapping communities. The

algorithm works pretty well with a high density core. But it cannot terminate for a

real social network with large size. It is suspicious that the algorithm will provide

satisfying results for the social network because the social network is sparse as well as

scale-free. CPM can be viewed as an expansion of seed communities with high time
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complexity.

Girvan-Newman Algorithm (Newman and Girvan (2004)) is another algorithm

that have been widely applied. I leave the detail to Section 3.2.2, as techniques in

Chapter4 are mostly based on this algorithm.

Gregory (2007) developed an algorithm CONGO that can detect overlapping com-

munities from Girvan-Newman algorithm. The idea is to split vertices with high be-

tweenness. The algorithm still derives the complexity of the original Girvan-Newman

algorithm. Furthermore, (Gregory (2008)) developed another improved algorithm

by using local information only. More specifically, he calculated the betweenness

measure only through the paths ≤ t where t is a constant. Although this is only

an approximation, he shows from experiments that this method can provide good

results.

Link partition method (Ahn et al. (2010)) is explored as another version of Girvan-

Newman algorithm. The difference is that instead of considering the original graph,

we look at its line graph, that is, view the edges as the vertices. In this way, we allow

one link in one community, but also one node can be in multiple communities. At last

we build a link dendrogram to find communities. The algorithm stops when we reach

the maximum modularity. The algorithm detects overlapping communities, as two

different links incident to the same edge can belong to different detected communities

and thus the node incident to the link can belong to different communities.

Spectral method (Shi and Malik (2000)) is another very large class in community

detection area. A representative spectral method is METIS (Karypis and Kumar

(1995)). The philosophy of the method is that we can subdivide a cluster to smaller

clusters by the technique of eigenvectors. Then we can incorporate different modules

to some bigger clusters to reach optimum. However, it seems hard to generalize spec-

tral methods to overlapping community detection. Only a few algorithms implement
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the idea. Zhang et al. (2007) proposed an algorithm. Given the community number

k, the top k − 1 eigenvectors are calculated. Then the graph nodes are projected

to a vector space of d ≤ k − 1 dimension. Then we use fuzzy c-means to obtain a

soft assignment. The accuracy is heavily dependent on the value k, which we cannot

pre-determine.

Assortativity is the property of social network that high degree edges are more

likely to be connected to each other. The paper (Ciglan et al. (2013)) discusses

the problem of how assortativity can affect the precision of community detection

methods. The conclusion is that community detection methods can better partition

a graph with higher assortativity. And if we reweight the graph by its assortativity

measure for these graphs, it will further increase the precision of these algorithms.

2.2 Scalability

There is no paper aiming at the scalability analysis in particular. Therefore, we

search all the papers for each algorithm’s complexity. Our propose is to distinguish

the scalable algorithms from those of high complexity, since the scalable algorithms

are more applicable to large networks. We summarize the complexity of the above

algorithms as follows:
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Algorithm From Complexity

CFinder (CPM) Palla et al. (2005) Polynomial

Infomap Rosvall and Bergstrom (2008) O(tm log n)

SLPA Xie et al. (2011) Õ(tm)

Link Ahn et al. (2010) O(nk2max)

Spetral Shi and Malik (2000) O(kn2)

METIS Karypis and Kumar (1995) O(n2 log n)

GCE Lee et al. (2010) O(mh)

CIS Kelley (2009) O(n2)

CONGO Gregory (2007) O(m2n)

CONGA Gregory (2008) O(m2 log(n))

PageRank Andersen et al. (2006) Õ(mn)

CNM Clauset et al. (2004) O(dm log(n)

Louvain Blondel et al. (2008) O(m log(n)) *

GN Newman and Girvan (2004) O(m2n)

DEMON Coscia et al. (2012) nK

MOSES McDaid and Hurley (2010) *

Seed Expansion (SE) Whang et al. (2013) O(km)

The notation is as follows: m is the number of edges. n is the number of nodes. k

is pre-determined number of communities. K is the number of seeds. d is the depth

of dendrogram. t is the number of iterations. kmax is the maximum degree.

(*) means the original paper does not imply anything about the complexity. For

Louvain algorithm, only an approximate complexity is given since the authors claimed

that it is hard to evaluate its real complexity. Fortunately the two algorithms marked

as (*), Louvain and MOSES, can run a network at least as large as Amazon Co-
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purchasing network (Yang and Leskovec (2012)) within a reasonable time.

From the table, we can see that not many algorithms are scalable. Infomap,

SLPA, GCE, Louvain, CNM, DEMON and SE are of linear complexity. Only GCE,

SLPA, DEMON and SE are generating overlapping communities. These are all local

methods.

Among all these scalable algorithms, SLPA is not so efficient with its time and

space complexity. It cannot perform on LiveJournal dataset from SNAP networks

(Yang and Leskovec (2012)), which is of about 4 million nodes and 34 million edges.

According to the personal communication, the author claimed that the implemen-

tation is not efficient enough. Also from the above, we can see that the dynamic

algorithms (label propagation, random walk, seed expansion) have its advantage over

the others since it can usually discover overlapping communities in linear time.

2.3 Evaluation Measures

For detecting small and overlap communities, one measure seems not to be enough

to reveal if one algorithm is good or not based on our current experiments. What

is more difficult is for small communities, we cannot find any evaluation measure

that can specially apply to small communities. A combination of different measures

from below may be a good choice for our purpose. Here we collect a set of popular

measures with different characteristics:

2.3.1 Normalized mutual information

NMI is a standard measure that is used to compare the similarity of two partitions

of a network. Lancichinetti et al. (2009) proposed a generalized NMI in their work so

that it can compare different overlapping communities partitions. Suppose we have

two different partitions X = {X1, X2, · · ·XN} and Y = {Y1, Y2, · · ·YM}. Then NMI
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is defined as:

NMI(X|Y) = 1− (H(X|Y)norm +H(Y|X)norm)/2.

H(X|Y)norm =
1

N

∑
k

minlH(Xk|Yl)
H(Xk)

.

H(Y|X)norm =
1

M

∑
k

minlH(Yk|Xl)

H(Yk)
.

where H(X|Y ) and H(Y |X) are conditional entropy.

When we experiment on real world datasets, we found the fact that for networks

with highly overlap and small communities, NMI may not be a good measure . CNM

(Clauset et al. (2004)) has a very high NMI measure by detecting the right large

communities. However, as the large communities takes a really small portion of the

overall network with also many small communities contained inside and we do not

care about huge communities so much, this may be biased. Except this, NMI is a

highly reliable measure.

2.3.2 Omega Index

Omega index (Gregory (2011)) calculates the agreement of two covers on the

same pairs. The agreement is defined as the same number of occurrences on the pairs

for both sets. Thus, omega index determines how many pairs are clustered right

for all occurrences in communities. And we only care about the pairs, but not the

communities itself. Here is the definition:

Let K1 and K2 be the number of the communities in covers C1 and C2. Then the

omega index is defined as

w(C1, C2) =
wu(C1, C2)− we(C1 − C2)

1− we(C1, C2)

where

wu(C1, C2) =
1

M

max(K1,K2)∑
j=0

|tj(C1) ∩ tj(C2)|
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we(C1, C2) =
1

M2

max(K1,K2)∑
j=0

|tj(C1)| · |tj(C2)|

where M = n(n− 1)/2 and tj(C) is the number of node pairs that appear exactly j

times in cover C.

2.3.3 F-measure

F-measure accounts for the balance between the quantity and quality for the

overlapping nodes for detected communities. More specifically, it is defined as:

F =
2 · precision · recall
precision+ recall

where recall is the number of correctly detected overlapping nodes divided by the

true number of overlapping nodes, and precision is the number of correctly detecting

overlapping nodes divided by the total number of the detected overlapping nodes.

The measure reaches its best and worst value at 1 and 0, respectively.

F-score is a good measure when we consider if a single node is successfully marked

as the overlapping nodes or not by community detection algorithm. For its deficiency,

it considers only for the single node, not the whole community.

2.3.4 Jaccard Index

Jaccard Index (Ball et al. (2011)) is defined as

S(eik, ejk) =
|S ∩ V |
|S ∪ V |

where S is the set of vertices in the true overlap and V is the set of vertices the

algorithm identifies as being in the overlap. Thus the range of Jaccard Index is [0,1].

And when the index is 1, all the overlapping nodes are identified. When the index is

0, none of the overlapping nodes are identified. The measure is simple, and it only

measures if the overlapping nodes are detected or not.
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2.3.5 Comsim

Comsim (Ciglan et al. (2013)) is a generalization of Jaccard Index. A simple ex-

planation is that for partition P = {P1, ..., Pk} and Q = {Q1, Q2, ..., Ql}, we calculate

for each part the most similar one using the Jaccard Index and then integrate all this

information together. It seems that there are similar properties between Comsim and

NMI. However, the paper (Ciglan et al. (2013)) show their difference with respect to

the empirical results. The formal definition is as follows:

cossim(P ,Q) =

∑
Pi∈P sim(Pi,Q)

|P|

where

o(T,Q) = {P : P ∈ P ∧ ∀Pi ∈ P|Pi ∩ T | ≤ |P ∩ T |}

b(T,Q) = {P : P ∈ o(T,Q) ∧ ∀P ∈ o(T,Q)|Pi| ≥ |P |}

sim(P,Q) = J(P,Q) : Q ∈ b(Pi,Q)

Comsim is a better measure than the Jaccard Index itself since it incorporates com-

munity information. The measure is not widely used yet.

2.3.6 Overlap Rate

This is introduced in the same paper of link partition (Ahn et al. (2010)). The pa-

per introduces 4 measures for evaluating the quality of the overlapping communities.

(1) Overlap coverage: how much overlap was discovered. (2) Community coverage:

how much of the network was classified by each algorithm. (3) Overlap quality and

(4) community quality: similarity of the nodes they contain. By adding these four

measures, we can get a total score that reflects the result well. The measure is adopted

by Ahn et al. (2010), Yang and Leskovec (2013), Yang and Leskovec (2012).
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2.4 Reweighting Methods

In this part, I list the literature on the reweighting techinque, which I explore in

Chapter 4. In social media mining, people are usually researching the reweighting

methods for two main purposes: assortativity mixing and to avoid the modularity

resolution limit.

Assortativity mixing (Newman (2002)) is a preference for the network’s nodes to

attach to others that are similar in some way. In social networks, highly connected

nodes tend to be connected with other highly connected nodes. For the relationship

between the concept of our work, Ciglan et al. (2013) has shown that degree assor-

tativity reflects, to some extent, the precision of community detection algorithms. If

the graph is more assortative, the detected communities show higher precision if we

replace the adjacency matrix with assortativity.

People also have been trying some reweighting methods to solve the resolution

limit problem. Berry et al. (2011) developed a reweighting measure by applying the

node’s neighbor information. Khadivi et al. (2011) implemented a weighting scheme

for intra-cluster and inter-cluster weight by multiplying with edge betweenness. Lai

et al. (2010) proposed another preprocessing step using random walks. Their idea is

to calculate similarity between nodes based on random walk pattern similarity.
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Chapter 3

MODULARITY AND COMMUNITY DETECTION

3.1 Modularity

In this section, I write a thorough explanation of modularity, which is used for

defining community. Modularity was proposed in Newman and Girvan (2004) and,

as Chapter 2 already showed, went on to be used by many algorithms.

One of the ways to formally define modularity is as follows:

Q =
∑
ij∈E

[
Aij
2m
− kikj

(2m)2
]δ(ci, cj) (3.1)

where the δ function is defined as:

δ (ci, cj) =

 1 ci = cj

0 ci 6= cj

(3.2)

Modularity is the fraction of the edges that fall within the given groups minus

the expected such fraction if edges were distributed at random. The value of the

modularity lies in the range [-1/2,1). It is positive if the number of edges within

groups exceeds the number expected on the basis of chance. For a given division

of the network’s vertices into some community assignment, modularity reflects the

concentration of edges within communities compared with the random distribution

of links between all nodes.
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3.1.1 Resolution Problem

As mentioned previously, modularity has an inherent limit to the size of com-

munities it is capable of distinguishing. This limit indicates that modularity may

not be a good evaluation measure for detecting small communities in the large social

networks. An example is that with the presence of huge well-defined communities

(cliques), small communities (also cliques) can be misclassified and thus very few

impacts to the modularity will be made. The proof of this resolution limit is given

in Fortunato and Barthelemy (2007).

The crux of the proof is that for a network of sufficiently large size and given two

communities, C1 and C2, and a community assignment on the rest of the network U ,

there exists a set of conditions for which modularity is reduced by merging C1 and

C2. Generally speaking, the first of these conditions is that the size of the network

must be very large compared to the size of C1 and C2. In addition, the density of

connections, represented by the clustering coefficient, in the network is important in

determining the modularity limit. If the network is sparse, as social networks tend to

be, optimizing for modularity may incorrectly determine that the edges between C1

and C2 are internal edges and thus merge the two communities together. This results

in a better total modularity value, since the edge probabilities (represented by the

kikj
(2m)2

term) are so low.

This problem of the resolution limit becomes especially clear when the distribution

of community sizes of social networks is examined. Figure 1.1 makes this particularly

obvious. In the social networks of YouTube 1 , LiveJournal 2 , Orkut 3 , and the

1www.youtube.com

2www.livejournal.com

3www.orkut.com
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network formed by Amazon 4 customers’ purchasing patterns 5 , community sizes

follow a power-law relationship expected from analysis of related work.

3.1.2 Modularity Biases to Smaller Communities

Because of the resolution limit problem, we may discard better community assign-

ment. As a consequence, it will decrease the quality of the detected communities. An

improvement is to introduce a new modularity metric, which we define as:

Q =
1

N

∑
i

∑
u,v∈Ci

1

|Mi|α
[Auv −

kukv
2m

] (3.3)

This formulation is more able to detect small communities because of 1
|Mi|α . In-

tuitively, this term penalizes the communities that grow large. Therefore we can

keep more small communities than usual. Figure 3.1 shows a result of comparing the

original modularity scores with the modification.

3.2 Introduction to Girvan-Newman Algorithm

In Section 3.1, we have already proposed an improved measure of modularity to

evaluate the quality of existing community assignments. In this section, we intro-

duce several algorithms that make such a community assignment. We start from the

original classical Girvan-Newman algorithm and increase the efficiency by modifying

it.

3.2.1 Betweenness Measure

Communities in graphs, even small communities, are marked by the density of

their connections. Areas of high density indicate the presence of communities. This

4www.amazon.com

5Links between nodes represent items purchased together.
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Figure 3.1: Comparison of Community Sizes between Original Modularity and Mod-

ified Modularity in Synthetic Dataset

feature has a synergy with one of the common measures of network centrality, be-

tweenness. Betweenness measures how central a node or edge is to the network by

analyzing the paths incident to that node. Intuitively, it would seem that areas of the

network where communities exist would have low betweenness since the density of

edges is higher. This feature implies that communities can be detected by computing

betweenness and looking for areas of low betweenness.

Freeman (1977) proposed a classical type of betweenness, which is defined as the

number of shortest paths from all vertices that pass through that node. Newman and

Girvan (2004) proposed the edge betweenness by substituting ‘node’ with ‘edge’. From

this definition, it is not that efficient to calculate the exact edge betweenness. The

complexity is O(n2m) and later improved to O(nm) by Brandes (2001). The speed

of calculating this betweenness measure for a social network with millions nodes is
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thus slow and unacceptable.

Another possible way to calculate betweenness on the edge of a network is called

Current-Flow Betweenness. In this betweenness formulation, the network is re-

imagined from a social network to a network of resistors linking nodes in an electrical

circuit. This allows the network to be solved for betweenness like a system of linear

equations, since Kirchhoff’s laws allow for solving such a network as a system of linear

equations. The formula can be written as follows:

Lv(st) = bst (3.4)

Where L is the impedance network formed by the edges of the network, bst is the

objective current flow vector, and v(st) is the applied voltage vector. Kirchhoff’s laws

presuppose the existence of two special nodes in the network, a voltage source and a

voltage sink, represented by the applied voltage vector. Since Kirchhoff’s laws were

intended for resistor networks, they assume that the network has an attached power

source. This assumption is a problem for social network analysis, as no native source

or sink nodes exist. To remedy this issue, Current Flow Betweenness assumes that

all combinations of two nodes are taken as source/sink pairs. Integrating all of these

instances together gives the following final formula for Current Flow Betweenness:

ci,j =
2

(n)(n− 1)

∑
s 6=t,s,t∈V (G)

|v(st)i − v(st)j | (3.5)

In Section 3.3, we will show that we can compute current-flow betweenness effi-

ciently.

3.2.2 Girvan-Newman Algorithm

In Newman and Girvan (2004), an algorithm is proposed that allows community

detection on any network using any measure of betweenness. The outline is as follows:
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1. Compute betweenness for the entire network.

2. Find the edge with the greatest betweenness score.

3. Calculate Modularity for the entire network, assuming that the connected com-

ponents represent the communities.

4. Repeat from 1 if the Modularity increases.

Along with its high accuracy for discovering the communities, the Girvan-Newman

Algorithm is, unfortunately, not scalable to large social networks. Many measures of

edge betweenness require a significant investment of computation time. Naive edge

betweenness takes O(n2m) time to compute for a network and with the expansion in

computation time required by the Girvan-Newman algorithm’s iterative process this

makes naive edge betweenness, and many other methods for calculating betweenness,

unsuitable for community detection in large-scale networks like social networks.

3.3 Approximation Algorithm for Girvan-Newman

Though the computational complexity of the Girvan-Newman algorithm is far

too large to analyze a large network, there exists the possibility of an approximation

algorithm that receives the same quality of results as the original algorithm but is

not subject to the same computational complexity problems.

To create an approximation algorithm, we can first break down the problem into

two sections. First, we must find a method for computing betweenness that works

much more quickly than the naive betweenness discussed previously. To that end,

we look back to the Current-Flow betweenness discussed in Section 3.2.1. In this

discussion, we mentioned that Kirkhoff’s laws can be reduced to a system of linear

equations.
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3.3.1 Koutis Theorem

A system of linear equations is a common representation for a large variety of

problems. Thus, there exists a substantial literature on solving systems of linear

equations. One such piece of work is the following theorem:

Theorem 1 (Koutis et al. (2010)) The linear system Ax = b can be solved with

computational complexity Õ(m log n), where A is a symmetric, sparse, semi-definite

matrix.

Since A is the adjacency matrix of our network, applying this to our Current-

Flow Betweenness problem allows us to compute the betweenness metric much more

quickly. This addresses one part of the complexity problem with the Girvan-Newman

algorithm, but it leaves the problem of edge removal iterations.

3.3.2 Hoeffding’s Inequality

The original Girvan-Newman algorithm calls for the computation of betweenness,

which, despite the speed-up afforded by Theorem 1, would take far too long to com-

pute the complete Current-Flow Betweenness since this method requires computing

the result of Kirkhoff’s Laws using every pair of nodes as a source and sink. Normally,

this would make the computation of Current Flow Betweenness infeasible due to the

time required for large networks.

In order to address this, we refer to the literature to reduce the computation time

for betweenness. Here, we apply Hoeffding’s Inequality from Hoeffding (1963):

Theorem 2 (Hoeffding (1963)) If x1, x2, · · · , xk are independent random variables,

ai ≤ xi ≤ bi, and µ = E(
∑
xi/k) is the expected mean, then for any ε > 0,

Pr{|
∑
xi
k
− µ| ≥ ε} ≤ 2e−2k

2ε2/
∑k
i=1(bi−ai)2 .
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This inequality allows for a significant reduction in the amount of computation

required to obtain an approximation for current flow betweenness. Given an ε, this

inequality can be used to determine how many random trials (in this case, pairs of

source/sink nodes) are required to approximate the value of current flow betweenness.

3.3.3 Sampling Theorem

Using the results of the Koutis Theorem and Hoeffding’s Inequality, we propose

the following, which we call the Sampling Theorem:

Theorem 3 (Sampling Theorem) We can approximate the value of current-flow

betweenness in the entire network within an absolute error of ε with a high probability

p = 1− 2√
n

using k = blog n
ε2
c samples.

This theorem is an intuitive consequence of the previous two. However, we give a

proof as follows:

Proof: From Section 3.2.1, we know that the Current Flow Betweenness for some

u is c(u) :=
∑
|v(u)i − v

(u)
j |/(n(n − 1)) = E[

∑
x(u)/k] Let x(u) = |v(u)i − v

(u)
j |. Then,

x(u) is independent for different u. In addition, 0 ≤ x(u) ≤ 2, since we use a voltage of

1 for the source node and -1 for the sink node. Thus, Hoeffding’s Inequality applies,

and we can conclude that when k ≥ log n/ε2:

Pr(|
∑
x(u)

k
− c| ≥ ε) ≤ 2e−2k

2ε2/(4k) = 2e−kε
2/2 ≤ 2/

√
n (3.6)

Given this result, we can estimate the number of samples required to reach a given

p with a given ε. For example, selecting p = 0.9 and ε = 0.1 results in the requirement

to have a sample size (k) of only 600 source/sink pairs.
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3.3.4 Efficient Current-Flow Betweenness Algorithm

Using these results, we can reduce the complexity of the basic Girvan-Newman

Algorithm with some modifications. The algorithm is given in Algorithm 1.

Input: Adjacency Matrix A

Output: Community Assignment Matrix C

Define modified modularity Qm = 0 and Q′m = 0

while Q′m ≥ Qm do

Qm ← Q′m

Define d as the degree vector for all nodes

Set the Laplacian L to be A− diag(d).

Randomly select a set of pairs of nodes T of size k

foreach s ∈ T do

Solve for v in Lv = ds per the Koutis Theorem

Update the Current Flow Betweenness for all edges.

end

Delete the edge with maximum betweenness

if a new component is formed by edge deletion then

Recompute Q′m.

end

end

Algorithm 1: Algorithm for Efficient Current-Flow Betweenness

Using this algorithm as a replacement for the standard Girvan-Newman algo-

rithm provides a substantial speed-up. This reduces the computational complexity

of a Girvan-Newman-style algorithm from O(m3n2) to O(m2 log n), a substantial

improvement. However, even this improvement is not enough to allow community

detection in a reasonable time frame.
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3.3.5 Approximate Current-Flow Betweenness

Though the improvement made by utilizing the Sampling Theorem is substantial,

it does not go far enough to ensure that communities can be detected from networks

of any size. Thus, we must further reduce the runtime of the algorithm, and we do

so by modifying the edge deletion method. Instead of deleting only one edge per

repetition, we use Algorithm 2 to delete multiple edges.

Input: Current-Flow Betweenness for a graph G = 〈V,E〉

Output: An edge set E0 to be deleted.

Sort Current Flow Betweenness descending by magnitude, call this array C.

Compute 1.5IQR; i = 1

Unlabel all vertices

while C(i) > t do

if Both endpoints of ECi are unlabeled then

Label the endpoints.

E0 ← E0 ∪ {e}

i← i+ 1

end

end

Algorithm 2: Algorithm for Removing Multiples Edges per Iteration

In the above algorithm, interquartile range (IQR) is defined as the 3rd quartile

subtracts the 1st quartile. Though this method does not reduce the theoretical com-

putational complexity of the Efficient Current Flow Betweenness (ECFB) method

described in Algorithm 1, it does reduce the empirical runtime, as demonstrated in

Figure 3.2.

From the figure, we can see that, empirically, the runtime scales linearly with

the size of the network with the multiple edge deletion modification. Algorithm 2 is
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Figure 3.2: Network Size vs. Runtime of Efficient Current Flow Betweenness Algo-

rithm with (Red) and without (Blue) Multiple Edge Deletion.

somewhat more complex than necessary to simply remove multiple edges.

3.4 Results

Using our novel algorithm with its optimizations, we seek to demonstrate that our

method can outperform other methods when detecting communities. In addition, we

wish to show that our modification to modularity allows the metric to detect small

communities better than the original metric.

3.4.1 Evaluation Metrics

As a convention, we adopt NMI (Section 2.3.1) as the metric for comparison. We

compute NMI between detected communities and real-world communities.

3.4.2 Tuning

First, our modification to modularity introduces a new parameter, α. In order

to find the value for α that maximizes the detection of small communities without
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(a) (b) (c)

Figure 3.3: α Balues vs. (a) Number of Detected Communities, (b) Original Modu-

larity Score for Partitions, and (c) NMI Score in Networks of 1000 (Red) and 5000

(Blue) Nodes.

over-penalizing the large communities that are still significant, we perform a series of

experiments varying the α parameter. The results of these experiments can be found

in Figure 3.3. These experiments show that there is a ”sweet spot” for the value of

α in the upper range between 0 and 1.

To confirm this sweet spot, we perform a similar experiment but use real-world

networks. Figure 3.4 shows the results of testing modularity on these real networks.

Since ground truth is available for these networks as it was for the synthetic networks

of Figure 3.3, we can perform a similar analysis.

This second test confirms the ”sweet spot” for Modified Modularity between ≈ 0.6

and ≈ 0.9, since the ACF network evidences a sharp rise after ≈ 0.6 and the NMI of

the synthetic communities drops off sharply after 0.9. In order to capitalize on this

”sweet spot” as much as possible, we use α = 0.75.

3.4.3 Sample Sizing

In Section 3.3.3, we claimed that 600 samples were sufficient to yield a reason-

able approximation of Current Flow Betweenness for a network. Though this result

30



Figure 3.4: α values vs. NMI in Two Real-world Datasets.

is theoretically sound, we would like to verify this result. Figure 3.5 shows a com-

parison between the NMI of a detected community assignment and the number of

positive/negative pole pairs used to estimate Current Flow Betweenness.

(a) American College Football (b) Synthetic network n = 1000

Figure 3.5: Node Pair Sample Size vs. NMI in Two Network Datasets.

The results of this analysis demonstrate that our estimate is, in fact, conservative

for networks of these sizes. Clearly, there is significant benefit in increasing the sample

size above ≈ 10, but for the ACF network the results become stable after approxi-

mately 100 samples. The synthetic network shows similar results. The results on the

synthetic network continue to improve with the sample size, but these improvements

quickly become marginal. In fact, increasing from 150 to 1000 samples provides less
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total benefit than increasing from 50 to 150.

3.4.4 Baseline Comparisons

In order to verify that our novel algorithm, ECBA, provides value to community

detection as a field, we would like to verify that our method gives community detection

performance comparable to or exceeding the performance of algorithms with similar

scalability features. The two exemplar methods we chose to compare against were

the ones that provided the best performance in the existing literature. These two

algorithms are InfoMap (Rosvall and Bergstrom (2008)) and SLPA (Xie et al. (2011)).

More information on these two methods can be found in Chapter 2.

In addition, we would also like to compare the difference in performance between

ECBA with and without the multiple edge deletion variant to show that the multiple

edge deletion does not affect the performance of the algorithm. Figure 3.6 shows that

the performance for the multiple edge deletion variant (red) actually often outper-

forms the single edge deletion variant (blue).

This result is somewhat surprising. From simply the description of the algorithms,

it would be natural to expect that the multiple edge deletion variant of ECBA would

be less accurate. However, if we consider that both variants have approximation

as an incontrovertible part of the algorithm, it may be reasonable to conclude that

the multiple edge deletion variant provides better results because the single edge

deletion variant changes its approximation so quickly that the quality of the detected

communities is compromised.

With the confirmation that our ECBA with multiple edge deletion is a good candi-

date for comparison against similarly complex algorithms, we compare our algorithm

against the two previously mentioned baselines in Figure 3.7.

Figure 3.7 shows that the performance of our algorithm is comparable against the
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(a) (b)

Figure 3.6: Number of Overlapping Nodes per Community vs. NMI of Community

Assignment for ECBA with (Red) and without (Blue) Multiple Edge Deletion.

baseline algorithms, but both our algorithm and the baselines have drastic falloffs in

performance if the overlap of community memberships gets too high.

In Section 3.1 and Figure 1.1, we demonstrated that community sizes tend to follow

a power-law distribution and that modularity cannot detect these small communities

that make up the majority of the communities. We tested the size distribution of the

communities we detected with our modified modularity in order to verify that the

distribution matches the one we expect to see from real-world networks. Figure 3.8

shows this result, and shows that our method detects communities in the size distri-

bution we expect, while Infomap does not. SLPA was omitted from this comparison

since it did not detect communities with comparable accuracy to ECBA and Infomap.

Next, we compare a similar performance metric on a real-world data set that is

discussed in Section 4.4.1, the Amazon dataset. The Amazon dataset contains an

extremely large number of communities, approximating a real-world data set, but
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(a) (b)

Figure 3.7: LFR Network Graphs with 1000 nodes, of which 100 (Left) and 500

(Right) Nodes in Multiple Community Memberships.

retains ground-truth communities. Figure 3.9 shows that ECBA’s community size

distribution closely matches the size distribution of the ground truth.

Unlike InfoMap and SLPA, the ECBA’s detected community distribution closely

matches the community distribution of the ground truth. By comparing the vectors of

community sizes together, we can obtain an objective measurement of the similarity.

Using cosine distance, we can objectively measure how close the distributions actually

are. As we suspect, ECBA is the closest, with a cosine similarity of 0.45. In close

second is SCAN, scoring 0.42. Infomap and FastComm trail with scores of 0.21

and 0.29, respectively. Knowing that the community distributions match, we then

compare the NMI for community detection on our real-world data sets in Table 3.1.

Of particular note in Table 3.1 is our poor performance on the Karate Club data

set. The ECBA algorithm is optimized toward finding communities where the commu-

nities are very small compared to the size of the network. In the Karate Club dataset,
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Figure 3.8: Community Size Distribution in a Synthetic Network.

NMI Score ECBA Infomap SLPA SNAP

Karate Club 0.1595 0.4465 0.4465 0.2110

ACF 0.7513 0.8087 0.5182 0.7220

Amazon 0.1487 0.0207 – 0.1863

Table 3.1: NMI for Real-world Datasets.

the two communities split the network relatively evenly, which makes detecting these

communities a challenge for ECBA.

3.5 Summary

In this chapter, I have described and documented a novel algorithm, ECBA, for de-

tecting small communities in real-world networks that is scalable to arbitrary network

35



Figure 3.9: Community Size Distribution in the Amazon Co-Purchasing Network

sizes, shows comparable performance with competing methods, and outperforms com-

peting methods when small communities are the search object. This method, based

on the method proposed by Newman and Girvan (2004) remains highly scalable to

large network sizes thanks to work done by Koutis et al. (2010), Hoeffding (1963),

and our combination of the two in Section 3.3.3.

In addition to this, we are the first, to the best of our knowledge, to document

the power-law distribution of communities in social networks’ impact on methods

based on maximizing the Modularity (Newman and Girvan (2004)) metric. In order

to circumvent this metric’s resolution limit, we propose a Modified Modularity metric

in Section 3.1 that uses a penalty term scaling with the size of the partition to avoid

the pitfalls of combining small partitions described by Fortunato and Barthelemy

(2007). As we show in Section 3.1, the modified modularity metric can be used to

evaluate the community assignment that includes more small communities without

the aforementioned pitfall.

One possible concern with re-biasing community detection algorithms towards
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small communities is the risk that this will result in an overwhelming number of

small communities. Part of the idea of algorithmic community detection is that the

amount of data that human analysts are required to actually manually analyze is

significantly reduced. However, detecting an extremely large number of small com-

munities threatens to undermine that effort by presenting a number of communities

that is unreasonable for manual inspection. To remedy this issue, some future work

in the area of small communities is to leverage the significant work done with commu-

nity outlier detection and minimum description length to narrow down the number of

the small communities necessary for manual analysis. Intuitively, these methods can

find the ‘interesting’ communities from a large set of uninteresting communities by

finding those communities who structure is substantially different from the average.
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Chapter 4

REWEIGHTING PROCESS AND COMMUNITY DETECTION

4.1 Introduction to Edge Weighting in Community Detection

4.1.1 Intuition

In the social network of Facebook, there are huge university communities with over

ten thousand of people that each consists of a number of students and professors. It

also contains the small communities of swimming clubs and research interest groups

with only around ten people.

Besides, different communities that share the similar interest also have more con-

nection with each other. The members of two karate clubs that come from different

universities may become friends. Because of the tight connection between the two

communities, the number of inter community edges increases, and thus the algorithms

may detect one community instead of two.

From another angle, individual always belongs to more than one community, since

he/she has different family, work and entertainment circles. This results in commu-

nities of high overlap, which further make the community detection task much more

difficult.

Under the above circumstances, useful communities can be completely “hidden”

in the bigger communities, which makes the community detection task extremely dif-

ficult. Community detection algorithms tend to detect the super communities instead

of the small ones, since more links between communities increase the opportunity for

detecting large community. Several toy examples are introduced in Figure 4.1 In

these figures, popular algorithms (Infomap, SLPA) misclassify the communities by
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recognizing their supersets.

One can observe that a large class of existing algorithms exploit and depend on

edge information heavily: Infomap and Personalized PageRank algorithm rely on the

fact that the random walker stay inside the communities for a short period; SLPA

propagates label from one node to its adjacent neighbors by the same probability.

Therefore, the reweighting technique is purposed. Whenever there is a denser

structure, the links inside the structure should receive higher weights. In this way,

random walks and labels will not leave the denser communities easily. These weighted

links play an important role in the performance of the algorithm.

4.1.2 Introduction to Intimacy

To describe the idea clearly, let us consider an example of random walk in a

network. Figure 4.2 shows the choice of the choice of a random walker at one specific

node. It has 3 neighbors. The red edge is inter-community edge, while the blue

edges are intra-community edges. Originally, the network is unweighted. The walker

originally travels to its adjacent nodes with the same probability. Thus, in Figure 4.2,

the chance of the walk going outside the community is 1/3. However, after applying

intimacy network, this chance is reduced (1/4 for this specific example) since we have

a much higher chance that the intra-community intimacies are higher than the inter-

community ones. Thus the random walker will stay in the community much longer,

and the community is easier to recognize in this network. The label propagation

based method is similar.

As we claim above, a weighted network is beneficial to community detection al-

gorithms. Unfortunately, little work has been done in this field. We need to address

two problems in the following section: (1) How do we find a set of suspected inter-

community edges? (2) How do we assign the weight to make it more efficient? In
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Section 4.1.3, we introduce a new measure – intimacy to address these problems.

From above, our goal in this chapter to assign weights to the edges ij ∈ E(G),

such that the inter-community edges receive relatively higher weights, while the intra-

community edges receive lower weights. Furthermore, we expect that these weights

can be applied to improve the precision of current community detection algorithms

without affecting the original algorithm’s complexity.

4.1.3 Intimacy Formulation

In a network, intimacy is a weighting function w : E → R that indicates if two

individuals are likely to be in a same community or not.

Intimacy measure is a general measure that increases the weight of intra-community

edges while decreases the weight of inter-community edges. Different definitions can

make intimacy work. In the next section, two different candidate measures for inti-

macy are defined for improving community detection algorithms such that more small

communities can be detected.

4.2 Implementing Intimacy

In this section, we propose two ways of defining intimacy. One is related to the

betweenness. Another is about the number of triangles that the edge is in.

4.2.1 The Idea of Betweenness Intimacy

Definition 2 (Betweenness Intimacy) In a network, the intimacy measure for

each edge ij ∈ E(G) is defined as a real number Iij that is inversely proportional to

its betweenness measure cij:

Iij := max
i,j

cij + min
i,j

cij − cij
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To calculate intimacy, we need to first calculate the betweenness measure over

the network. Since betweenness is usually computationally expensive, we apply the

approximation from Section 3.3.1 and 3.3.3 to estimate it. From Theorem 1 and

Lemma 3, we can see the approximation is accurate and efficient. The same method

will be incorporated in the algorithm in below.

From the description above, Algorithm 3 formalizes the procedure for calculating

intimacy. We add ε for each edge e ∈ G to keep the final intimacy network still

connected.

Input: Original network adjacency matrix A

Output: Intimacy

Choose a set T of k samples of positive pole and negative poles

for each s ∈ T do

Solve v in the linear equation (D−A)v(st) = b(st).

Calculate the current-flow betweenness cij for all edges ij

end

Find cmin = min cij, cmax = max cij.

Calculate S = cmax + cmin.

for each edge ij ∈ E do

Compute Iij = S − cij

end

for each pair (i, j) such that Aij = 1 do

Iij = Iij + ε

end

Algorithm 3: Intimacy Calculation

Since intimacy is calculated from current-flow betweenness, it derives the following

properties from current-flow betweenness:
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1. Similar to random walks, betweenness is a global measure. Betweenness is

calculated for each pair of source and sink, while a random walk spreads to

adjacent nodes by same probability. Therefore betweenness is complementary

to random walk. It is therefore extremely suitable for the reweighting technique.

2. High betweenness edges result in low intimacy edges, while low betweenness

edges result in high intimacy edges with high probability. This fact is community-

based. The betweenness measure provides a group-based perspective to the

network. Therefore, higher intimacy means the two nodes at the endpoints of

the edge are more likely to be in the same community and vice versa. (This

is not an explicit result in Newman and Girvan (2004), we verify it in Section

4.2.2.)

Figure 4.3 is an example illustrating how intimacy works. We can see closeness in

the figure through color-coding. Bluer edges represent low intimacy between the two

connected nodes. Redder edges, therefore, represent high intimacy between the two

nodes. As we can see, from the right side, there is an obvious community consisting

of Node 5, 6, 7, 11, 17, where the edges are very red. In the lower left corner, there

are lots of triangles, which indicated intimacy also performs nicely. Nodes 1 and 33

are the two instructors from literature Fortunato (2010), and we can see any path

between them are blue/green, which indicates that they are not close to each other,

a reasonable conclusion for this dataset.

4.2.2 Statistical Soundness for Betweenness Intimacy

In this section, we show empirically that intimacy is a good measure for distin-

guishing inter-community edges from intra-community edges. More specifically, we

want to show that inter-community edges have larger intimacy values than intra-
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community edges with high probability.

To verify the claim above, we perform two experiments. (1) We perform the

Mann-Whitney-Wilcoxon (MWW) test (Mann et al. (1947)) to clarify the signifi-

cant distribution difference for inter-community edges’ and intra-community edges’

intimacies. (2) With the synthetic datasets with ground truth under different mix-

ing parameter, we list all pairs of intra-community edge and inter-community edges.

Then we verify that there is a great probability that inter-community intimacy is

greater than intra-community intimacy.

We use the LFR benchmark synthetic networks described in Section 4.4.1 with

ground truth non-overlapping communities (Set #5 and #6) as the datasets for

this test. The links are divided into two groups: inter-community edges and intra-

community edges.

Now we perform experiment (1). The Mann-Whitney-Wilcoxon test is a non-

parametric test of the null hypothesis that two populations are the same against an

alternative hypothesis, especially that a particular population tends to have larger

values than the other. Since we cannot have any parametric assumption for the

distribution of intimacy, this is the best statistical test we can find. In this test, we

have the null hypothesis:

H0: The distributions of inter-community intimacies and intra-community inti-

macies are equal.

H1: The distributions of inter-community intimacies and intra-community inti-

macies are not equal.

The result is that the maximum p-value for all realizations is 3.64 × 10−8, and

thus the MWW tests all reject the null hypothesis.

Since we have such a low significance level, it does not reveal a lot of information

for us. Here we do experiment (2) to further explore the intimacy’s properties: for all
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realizations, we estimate the probability P := Pr(Iintra > Iinter). Then we can plot

Figure 4.4. We can see that it shows the similar patterns for N = 1000 and N = 5000.

As µ increases P decreases, which also validates the conclusion from experiment (1).

However, even when µ = 0.8 we still have P ≈ 0.58 > 0.5 which means we still have

greater intimacy of intra-community edges than that of inter-community edges.

From experiments above, we conclude that the new measure intimacy does distin-

guish the inter-community edges from intra-community edges. This also answers our

question: the edges of low betweenness are more likely to be intra community edges.

4.2.3 The idea of Traid Intimacy

Triads in social networks are triangle in graphs. From the social science angle, a

triad is a person’s friend’s is also his friend. Triad plays an important role in social

theory. Research has showed that the transitive rule – if person A is the friend of

person B, who is the friend of person C, then person A is also the friend of person C

holds with a high probability.

Compared with links, which reveal the friendship, triad makes higher possibility

for us to believe these three people are from a same community. Then we should

assign these three links in the community with higher weight.

Using this idea, we introduce the following definition:

Definition 3 (Triad intimacy) Assign each edge e ∈ E with a weight we that is

defined as the number of triangles that is in. Then triad intimacy is defined as Ie =

we(we + 1)/2 + 1.

Here I apply a quadratic function to we since more triangles it is in, the much

higher chance this link is in at least one community. Also Ie ≥ 1 is guaranteed to

maintain the connectivity of the network.
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It is very possible that the measure defined above can be generalized to a measure

that involves short cycles not only triangles. However, experiments have been done

and no better result has been shown until now.

4.2.4 Algorithm

It is not trivial to develop an algorithm that can calculate the above measure

sufficiently. As social network is sparse, a trivial algorithm is as follows:

Input: Original network G

Output: Triad Intimacy network I

for each vertex v in G do

Record the neighbor list N(v)

end

for each edge e = xy in G do

w(e) = |N(x) ∩N(y)|

I(e) = w(e)(w(e) + 1)/2

end

Algorithm 4: Triad intimacy: Naive method

The algorithm takes O(m∆) where ∆ is the maximum degree within the graph.

As the social network is power-law distributed, the algorithm does not provide a sat-

isfying complexity with a high maximum degree. There is another algorithm modified

from Tsourakakis (2008). By listing the triangles, the algorithm gives the best possi-

ble complexity. Besides, the paper proves that Algorithm 4 can perform at the worst

complexity with a power-law graph.

The basic idea of the above algorithm is to limit the number of neighbors each

vertex will visit. The maximum neighbor one vertex can visit is O(
√
m) and thus the

algorithm only takes O(m3/2). It has a higher computational complexity. However,
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Input: Original network G

Output: Triad Intimacy network I

Sort the vertices by the degrees from largest to smallest, denote the order

function f

Let A be an array of n arrays initially empty.

for each vertex v taken in increasing f(v) do

for each u ∈ N(v) with f(u) > f(v) do

for each w ∈ A[u] ∩ A[v] do

w(uv) = w(uv) + 1

w(uw) = w(uw) + 1

w(vw) = w(vw) + 1

end

A[u] := A[u] + v

end

end

for each edge e in G do

I(e) = w(e)(w(e) + 1)/2

end

Algorithm 5: Triad intimacy: efficient method

with 100 thousand of nodes, the algorithm needs similar time empirically because it

has a lower constant for calculation. For incorporating the measure into the original

community detection algorithm, I refer to Section 4.3.

4.3 Incorporate intimacy into existing algorithms

Now we integrate the intimacy measure into a few popular community detection

algorithms. To get the best performance, we require the algorithm to be scalable
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and based on exploiting local information. We introduce some algorithms to discuss

which part of the algorithm can most benefit from intimacy information.

4.3.1 Existing algorithms

1. Infomap (Rosvall and Bergstrom (2008)). As a recent popular method, Infomap

has proven its success on community detection problems. As a tool to illustrate

the random walk property, by optimizing the map equation, community dis-

covery is converted to a minimum description length problem, which can be

solved theoretically. The algorithm generates a number of modules from its

random walks and stopping rules. The algorithm then optimizes communities

by combining and separating these modules to minimize the map equation.

This method outperforms most methods for non-overlapping communities. Al-

though its performance is reduced on a complicated network with large numbers

of overlapping communities, it still outperforms most overlapping community

detection algorithms according to NMI (Xie et al. (2013)).

2. Speaker-listener Label Propagation Algorithm (SLPA) (Xie et al. (2011)). As

a Label Propagation method, SLPA artificially provides an overlapping com-

munities result. At the very beginning, each node receives a distinct label. At

each step, a node receives all its neighbor’s labels asymmetrically. After one

step, the nodes are marked with several labels, each with different weights. The

algorithm then keeps any labels above some threshold. Thus, it can detect

overlapping communities by retaining multiple labels. It is, however, tricky to

reach a stable state for all labels and requires tuning many different parameters.

By propagating labels to reach the global optimum, the idea does not use any

global information immediately.
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3. Louvain’s algorithm (Blondel et al. (2008)). As a very popular modularity op-

timization method, the Louvain’s algorithm is an agglomerative heuristic algo-

rithm. Starting from a singleton, it basically incorporates and divides modules

to find the best partition by computing the modularity. Similar to Infomap,

this algorithm uses local information, in neighboring modules, and some global

information, the modularity.

By utilizing local information, the methods listed above show success in detecting

both non-overlapping and overlapping communities. To incorporate our method into

these algorithms, we simply write down Algorithm 6. In Section 4.4, we show our

results for this modification.

Input: Original network N

Output: Detected communities

Apply Algorithm 1 to calculate intimacy for each edge in N

Write out intimacy as a matrix M .

Replace the original adjacency matrix A by M .

Perform an original community detection algorithm

Output the detected communities.
Algorithm 6: Hybrid community detection scheme

4.3.2 Exploring the Idea behind the Reweighting Technique

From Section 4.2.2, intimacy shows very good performance and distinguishes inter-

community edges from intra-community edges. Therefore, we can consider replacing

the old unweighted network with a new weighted one using intimacy to weight the

edges. Then, we can implement community detection algorithms on the new intimacy

networks. We expect there is a better performance.
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Due to the vague definition of community – a subset of nodes of graph that there

are more links between instead of going outside, it is hard to write down proofs by

formal mathematical language. It is difficult to even define ground-truth communities

in a graph. Therefore, it is almost impossible to provide a rigorous proof why the

reweighting method performs better. Here we just provide a case study to show

that the reweighting method can detect smaller community compared to the original

method.

Figure 4.5 is an induced subgraph of a large unweighted network. It consists of

12 nodes with links shown in the figure. The optimize partition is marked with two

different colors. When implement SLPA algorithm for the network, a possible order

is propagate nodes is (1, 2, · · · , 12). We may be in trouble with node 8, since it has

2 neighbors in the blue community and 2 neighbors in the red community. Thus, we

may label it in the wrong community for 50% chance. Then we will misclassify node

9 to the same community since it is a neighbor of node 8 and so on. Finally, we may

recognize the whole 12 nodes as one community.

However, when we apply the reweighting technique first by using intimacy, we can

find the close nodes first. It can be viewed in the picture that nodes 1-7, 8-9, 10-12

are actually much closer to each other. When we apply SLPA, it will be more stable

to classify node 8 to be a different member from nodes 1-7.

4.4 Experimental setup and Results

4.4.1 Dataset

In this section, we introduce the dataset we use to perform our experiments.

• LFR Benchmark network (Lancichinetti et al. (2008)). This benchmark gener-

ates random scale-free networks based on the planted l-partition model. It can
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control N – the size of the graph, d – the average degree of the nodes. u1, u2

– the degree and community size power-law distribution constants, overlapping

nodes On, overlapping nodes in Om communities, and µ – topological mixing

parameter. The default setting for this paper is u1 = u2 = 2, d = 25. Since it

can generate different networks by changing different parameters, it has been a

popular benchmark in recent years.

• Zachary’s Karate Club (Zachary (1977)). Zachary recorded the friendship be-

tween 34 members in a club at a university during three years. The ground truth

consists of two communities: One is around Node 34 (president), the other is

around Node 1 (instructor).

• American College Football (ACF) (Girvan and Newman (2002)). This network

contains the network of American football games between different divisions

during the regular season in Fall 2000. The ground truth is teams’ division.

• SNAP datasets. These datasets can be retrieved from snap.stanford.com. It

involves several datasets: Amazon, YouTube, and DBLP. The benefit of these

datasets is that ground truth is provided. Therefore, we can easily compare our

detected communities with the ground truth communities. For the ground-truth

communities of these networks, Amazon Co-purchasing network is based on the

‘Customers Who Bought This Item Also Bought’ feature of the Amazon website.

If a product i is frequently purchased with product j, the graph contains an

undirected edge between i and j. YouTube is based on user-defined groups.

The DBLP dataset, is based on authors who published in the same journal or

conference.

A summary of all datasets is listed in Table 4.1:
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Network Nodes Edges Communities

Karate club 34 78 2

ACF 115 613 12

Amazon 334,863 925,872 271,270

Youtube 1,134,890 2,987,624 8,385

DBLP 317,080 1,049,866 13,477

Table 4.1: Real-world Dataset Statistics

4.4.2 Setup and Results

In this section, we firstly give the results of incorporating the intimacy network

with popular community detection methods including Infomap, SLPA, and Louvain

on the synthetic networks. Then we apply our method to the various real-world

datasets. Comparative analysis is constructed by running the algorithms with 3 net-

work setup: (1) the original network (blue) (2) the betweenness intimacy network

(red) and (3) the triad intimacy network, (4) random weighted network (black). We

include (3) for strong evidence that our reweighting method is also better than ran-

domized reweighting. We use Normalized Mutual Information (NMI) (Section 2.3.1)

as our measure. However, standard NMI cannot be used for overlapping communi-

ties. Therefore, we use generalized NMI Lancichinetti et al. (2008) in this paper. The

implementation can be found 1 here.

To exclude possible random factors, each point is shown as an average NMI of 30

network realizations. We run three algorithms described in 4.3 in 6 generated sets

of LFR benchmarks to evaluate our results. The detailed parameters for the bench-

1https://sites.google.com/site/andrealancichinetti/mutual
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marks are as follows (this is a popular set-up used in Xie et al. (2013) and Khadivi

et al. (2011) for testing synthetic datasets except community size constant. Here, we

expect more small communities to increase authenticity): u1 = u2 = 2, d = 25 for all

benchmarks. Set #1: nodes N=1000, overlapping nodes On take up to 10% of the

overall network, µ = 0.3, each overlapping node is in 1 to 10 communities. Set #2:

nodes N=1000, overlapping nodes On take up to 50% of the overall network, µ = 0.1,

each overlapping node is in 1 to 10 communities. Set #3 and Set #4 are similar to

Set #1 and Set #2, except that N = 5000. Set #5: N =1000, no overlapping nodes,

µ is from 0.1 to 0.8. Set #6 is similar to Set #5 except that N = 5000.

Randomly weighted networks are constructed as follows: for each original network,

instead of using default weight, we randomly select the weight i.i.d from the uniform

distribution of [1, 5].

For the running parameters, we run Infomap for 10 times with best two-level

structure. We run SLPA by setting r = 0.45.

From Figures 4.6, 4.8, and 4.10 we can see the synthetic results. Red curves

show the results using intimacy networks, black curves show results from original

networks, and blue curves show results from random networks. Though we adjust the

parameters used to generate the random networks, we can observe that all results are

improved by using intimacy networks. Infomap shows the smallest improvement while

SLPA shows largest improvement. This can be explained by Infomap’s incorporation

and subdivision steps which utilize the global information between different modules

to some extent. However, SLPA only uses local information, so it is intuitive that

it improves the most. One strange pattern is that randomize weighted network also

shows improvement in SLPA and Louvain’s algorithm which surprises us. We have a

possible explanation raised up at the end of this section.

From another angle, we can see the community sizes dramatically decrease when
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we apply the reweighting technique for each of three cases. It can be observed that

while the original methods discover the larger communities, the smaller communities

are recognized by the reweighting method.

For more detailed analysis of synthetic dataset results, we observe that when

we increase the number of nodes in the network, we have a small performance im-

provement. This is because we don’t increase the average degree of the networks,

which make the graphs more sparser and thus easier for the original algorithms to

detect communities. In addition, we can see that there are huge NMI drops when

the number of overlapping nodes becomes very large, where our methods have larger

improvements. The third row of each figure, which demonstrates the condition where

no overlapping communities exist, our method’s performance improves greatly under

high mixing parameters.

The original SLPA does not provide good and stable results from Figure 4.8. The

reason is that the algorithm decides the label randomly when there is a tie Xie et al.

(2011). However, after reweighting, the probability of a tie dramatically decreases.

Thus, its performance increase to be comparable to Louvain and Infomap. We can

suggest our method as another solution the author searches for in Xie et al. (2013).

For the different form of intimacy. We can see when the network has lower over-

lapping parts, betweenness performs better than triad. Otherwise, triad intimacy is

more stable.

Now we evaluate our method’s performance on real-world datasets. Again, each

method is run on the original network (ori), the randomly weighted network (rwn),

and the intimacy network (in). We use Infomap (Im), SLPA, and Louvain (Lv).

In Table 4.2, we can see our reweighting method improves most when combining

with SLPA. For each different dataset, SLPA shows approximately 10% improvement

in the NMI score except on Youtube dataset. Among the large datasets, the Amazon
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Co-purchasing Network’s results show the most improvement, from 0.242 to 0.273.

Louvain’s algorithm also shows improvement for large dataset. Although it does

not have improvement on DBLP dataset, it shows the highest precision on Amazon

dataset.

However, for these large datasets, Infomap shows improvements only after fourth

decimal place. In addition, even if we replace the edge weight to a random weight,

Infomap still performs approximately the same. This result, coupled with the results

from synthetic datasets, show that Infomap is a stable method that can provide very

stable results even with a differently weighted graph.

The results from the Karate Club dataset are also very interesting. Surprisingly,

the randomized network shows the best performance. One possible explanation is as

follows. In a network, there are two kinds of edges – inter-community edges and intra-

community edges. While we randomize the weights of a network, we will make some

inter-community edges high weights and some with low weights. For those edges of low

weights, it will appear more like an inter-community edge. However, inter-community

edges appears much more likely an intra-community edges while they are assigned

high weight. Therefore, these algorithms will detect fewer communities by recog-

nizing bigger modules with high weight inter-community edges as intra-community

edges. Therefore, the algorithms detect fewer communities than intended. But, the

Karate Club dataset has only two communities in ground truth, which benefits the

randomized network the most. Better results for randomized synthetic dataset can

also be explained by a similar argument.

To validate our guess, we calculate the following statistics to show the average

community size difference for big network datasets in Table 4.3. It can be observed

that, except for Infomap, while there are not dramatically changing size from original

method to intimacy method, the random weight method does demonstrate a change.
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Community sizes are dramatically larger than before. It benefits more from the

aspect of NMI that allows finding supersets of overlapping ground truth communities

to count positively in the score. Thus, the result of synthetic datasets increases

continuously. This random reweighting, however, becomes actively harmful when we

want to find small communities in a network.

4.5 Summary

This chapter develops a new measure of network reweighting to improve the per-

formance of existing community detection methods without compromising the com-

putational complexity of original methods.

When combining the reweighting measure with exclusively local information-based

algorithms, the scheme will perform very well. An example illustrating this point is

SLPA.

As for the drawbacks, the algorithm can only apply to undirected networks. Cur-

rently, generalizing to directed networks requires an increase in complexity to sub-

quadratic. Besides, as a preconditioning method from numerical analysis, the algo-

rithm is also memory-intensive. At least, the method improves lesser when the size

of the network becomes larger.

As we mention that intimacy can be a measure that discovers whether two nodes

are ‘close’ or not, it provides a brand new prospective for discovering link information

while we are lack further details. Intimacy can be used to better describe a social

network from a community detection standpoint.

The last valuable point is that we are not able to establish a theoretical basis for

explaining the reason that intimacy network performs better. It is emergent for us to

systematically state the definition and theory on community structures for exploring

further on intimacy measure.
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(a) Toy example #1: SLPA (b) Toy example #1: SLPA +

reweight

(c) Toy example #2: Infomap (d) Toy example #2: Infomap

+ reweight

(e) Americian College Foot-

ball: SLPA

(f) Americian College Foot-

ball: SLPA + reweight

Figure 4.1: Examples for Showing the Original Method Recognizing Super-

communities while Reweight Method Shows Better Small Communities
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(a) Original Network (b) Intimacy Network

Figure 4.2: The Choice of a Random Walker at One Node: Red Lines are Inter-

community Edges. Blue Lines are Intra-community Edges.

Figure 4.3: Karate Club: An Example Showing the Intimacy Idea: The numbers of

links are calculated intimacies.
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Figure 4.4: Probability for Pair Comparisons

Figure 4.5: A Case Study for Exploring Reweighting Technique

58



Figure 4.6: Synthetic Results: Infomap NMI

59



Figure 4.7: Synthetic Results: Infomap Average Community Size
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Figure 4.8: Synthetic Results: SLPA NMI
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Figure 4.9: Synthetic Results: SLPA Average Community Size
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Figure 4.10: Synthetic Results: Louvain NMI
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Figure 4.11: Synthetic Results: Louvain Average Community Size
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Chapter 5

CONCLUSION

5.1 Summary of Contribution

In this thesis, I applied a tool from numerical analysis to solve sparse linear systems

in approximately linear time. By applying this tool, the betweenness measure can be

easily approximated in linear time, which is an improvement over the state-of-the-art.

In addition, it maintains the high accuracy.

Next, I introduced two techniques for community detection. The first technique

is related to modularity. Due to the well-known problem of the resolution limit

problem for modularity, it cannot detect all small real-world communities. In this

thesis, I proposed a way that smaller communities should can be weighted to affect

modularity with a higher proportional weight, while the large communities do the

opposite. In this way, we detect smaller communities. In addition, the resolution

problem is partially solved.

The second technique circumvents the resolution problem for modularity. Instead,

it suggests a new technique that can be applied to nearly every community detection

method. Using the reweighting technique that assigns intra-community edge higher

weight, we have successfully improved all tested methods’ precision. In addition, we

retain the complexity of original methods since the reweighting process takes sub-

quadratic time. The betweenness and triad measures show success in the reweighting

process.
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5.2 Further Work

Detecting small communities is a very important problem, since we have a special

interest with the possible small groups one person is in. By applying reweighting

techniques we are able to find more of these small communities. At the same time,

there are still several problems that need to be explored further:

• Since we have already found many small communities, how can we distinguish

those of high quality from those of low quality?

• Are there any recent developed techniques, other than betweenness and triad,

that can be applied to computing intimacy? Among these measures, which

measures are better? Is there a way that these measures can be combined

together to optimize performance?

• We used the NMI measure in the thesis to measure community quality. How-

ever, a deficiency for the measure is that it punish algorithms that detect small

communities embedded in larger communities. Can we develop a measure that

can help to detect both large and small communities at the same time?

The first and second are easier tasks: a plan may include involving F-measure and

conductance to find high quality communities among the results. We can rank the

communities by lowest conductance to the highest conductance and choose the top

ones.

For the third point, smaller communities, if correctly discovered, should be given

more credit than it is in NMI. It is reasonable since we focus more on smaller com-

munities. However, how to assign the new weights to make it suitable for social

networks? The field requires a more thorough knowledge of statistics.
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Palla, G., I. Derényi, I. Farkas and T. Vicsek, “Uncovering the overlapping community
structure of complex networks in nature and society”, Nature 435, 7043, 814–818
(2005).

Pedrycz, W., “Fuzzy sets in pattern recognition: methodology and methods”, Pattern
recognition 23, 1, 121–146 (1990).

Richardson, M. and P. Domingos, “Mining knowledge-sharing sites for viral mar-
keting”, in “Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining”, pp. 61–70 (ACM, 2002).

Rosvall, M. and C. T. Bergstrom, “Maps of random walks on complex networks reveal
community structure”, Proceedings of the National Academy of Sciences 105, 4,
1118–1123 (2008).

Shen, H., X. Cheng, K. Cai and M.-B. Hu, “Detect overlapping and hierarchical
community structure in networks”, Physica A: Statistical Mechanics and its Appli-
cations 388, 8, 1706–1712 (2009).

Shi, J. and J. Malik, “Normalized cuts and image segmentation”, Pattern Analysis
and Machine Intelligence, IEEE Transactions on 22, 8, 888–905 (2000).

Tang, L. and H. Liu, “Community detection and mining in social media”, Synthesis
Lectures on Data Mining and Knowledge Discovery 2, 1, 1–137 (2010).

Tsourakakis, C. E., “Fast counting of triangles in large real networks without count-
ing: Algorithms and laws”, in “Data Mining, 2008. ICDM’08. Eighth IEEE Inter-
national Conference on”, pp. 608–617 (IEEE, 2008).

Wang, C., W. Chen and Y. Wang, “Scalable influence maximization for indepen-
dent cascade model in large-scale social networks”, Data Mining and Knowledge
Discovery 25, 3, 545–576 (2012).

Whang, J. J., D. F. Gleich and I. S. Dhillon, “Overlapping community detection using
seed set expansion”, in “Proceedings of the 22nd ACM international conference
on Conference on information & knowledge management”, pp. 2099–2108 (ACM,
2013).

Xie, J., S. Kelley and B. K. Szymanski, “Overlapping community detection in net-
works: The state-of-the-art and comparative study”, ACM Computing Surveys
(CSUR) 45, 4, 43 (2013).

Xie, J., B. K. Szymanski and X. Liu, “Slpa: Uncovering overlapping communities
in social networks via a speaker-listener interaction dynamic process”, in “Data
Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on”, pp.
344–349 (IEEE, 2011).

72



Yang, J. and J. Leskovec, “Defining and evaluating network communities based on
ground-truth”, in “Proceedings of the ACM SIGKDD Workshop on Mining Data
Semantics”, p. 3 (ACM, 2012).

Yang, J. and J. Leskovec, “Overlapping community detection at scale: a nonnegative
matrix factorization approach”, in “Proceedings of the sixth ACM international
conference on Web search and data mining”, pp. 587–596 (ACM, 2013).

Zachary, W., “An information flow model for conflict and fission in small groups”,
Journal of anthropological research 33, 4, 452–473 (1977).

Zafarani, R., M. A. Abbasi and H. Liu, Social Media Mining: An Introduction (Cam-
bridge University Press, 2014).

Zhang, S., R.-S. Wang and X.-S. Zhang, “Identification of overlapping community
structure in complex networks using fuzzy c-means clustering”, Physica A: Statis-
tical Mechanics and its Applications 374, 1, 483–490 (2007).

73


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Social Networks and Communities
	Detecting Small Communities
	Basic Notation and Problem Formulation

	RELATED WORK
	Introduction to Community Detection Algorithms
	Fuzzy Detection (Probabilistic Model)
	Label Propagation
	Information Theory
	Modularity-based algorithm
	Local-based expansion
	Other Algorithms

	Scalability
	Evaluation Measures
	Normalized mutual information
	Omega Index
	F-measure
	Jaccard Index
	Comsim
	Overlap Rate

	Reweighting Methods

	MODULARITY AND COMMUNITY DETECTION
	Modularity
	Resolution Problem
	Modularity Biases to Smaller Communities

	Introduction to Girvan-Newman Algorithm
	Betweenness Measure
	Girvan-Newman Algorithm

	Approximation Algorithm for Girvan-Newman
	Koutis Theorem
	Hoeffding's Inequality
	Sampling Theorem
	Efficient Current-Flow Betweenness Algorithm
	Approximate Current-Flow Betweenness

	Results
	Evaluation Metrics
	Tuning
	Sample Sizing
	Baseline Comparisons

	Summary

	REWEIGHTING PROCESS AND COMMUNITY DETECTION
	Introduction to Edge Weighting in Community Detection
	Intuition
	Introduction to Intimacy
	Intimacy Formulation

	Implementing Intimacy
	The Idea of Betweenness Intimacy
	Statistical Soundness for Betweenness Intimacy
	The idea of Traid Intimacy
	Algorithm

	Incorporate intimacy into existing algorithms
	Existing algorithms
	Exploring the Idea behind the Reweighting Technique

	Experimental setup and Results
	Dataset
	Setup and Results

	Summary

	Conclusion
	Summary of Contribution
	Further Work


	REFERENCES


