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ABSTRACT

Corrective transmission topology control schemes are an essential part of grid opera-

tions and are used to improve the reliability of the grid as well as the operational efficiency.

However, topology control schemes are frequently established based on the operator’s past

knowledge of the system as well as other ad-hoc methods. Thisresearch presents robust

corrective topology control, which is a transmission switching methodology used for sys-

tem reliability as well as to facilitate renewable integration.

This research presents three topology control (correctivetransmission switching) method-

ologies along with the detailed formulation of robust corrective switching. The robust

model can be solved off-line to suggest switching actions that can be used in a dynamic

security assessment tool in real-time. The proposed robusttopology control algorithm can

also generate multiple corrective switching actions for a particular contingency. The solu-

tion obtained from the robust topology control algorithm isguaranteed to be feasible for

the entire uncertainty set, i.e., a range of system operating states.

Furthermore, this research extends the benefits of robust corrective topology control to

renewable resource integration. In recent years, the penetration of renewable resources in

electrical power systems has increased. These renewable resources add more complexities

to power system operations, due to their intermittent nature. This research presents ro-

bust corrective topology control as a congestion management tool to manage power flows

and the associated renewable uncertainty. The proposed day-ahead method determines the

maximum uncertainty in renewable resources in terms of do-not-exceed limits combined

with corrective topology control. The results obtained from the topology control algorithm

are tested for system stability and AC feasibility.

The scalability of do-not-exceed limits problem, from a smaller test case to a realistic

test case, is also addressed in this research. The do-not-exceed limit problem is simplified

by proposing a zonal do-not-exceed limit formulation over adetailed nodal do-not-exceed

i



limit formulation. The simulation results show that the zonal approach is capable of ad-

dressing scalability of the do-not-exceed limit problem for a realistic test case.
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Chapter 1

INTRODUCTION

1.1 Motivation

Robust optimization has existing in literature since the 1950s; however, it has not been

studied in connection with electrical power systems until recently. The key feature of robust

optimization, to utilize uncertainty sets to capture uncertain system parameters, is useful

to analyze many power systems operational related studies.The increasing level of in-

termittent renewable resources in electrical power systems is adding more complexities to

power system operations. The standard power system operational tools, present today, are

not capable of analyzing these uncertainties to its full extent. As a result, existing power

systems optimization packages are either inefficient by overcommitting generation in an

ad-hoc fashion in order to handle the uncertainties or the solutions may jeopardize relia-

bility by not accounting for such uncertainties. This research focuses on developing robust

optimization based tools and algorithms, which can be used to analyze system uncertainties

in power system operations.

High-voltage electric power grids include thousands of miles of transmission lines with

hundreds to thousands of large generators that frequently span multiple countries. Oper-

ational models of the bulk power grid include complex constraints: branch (transmission

line) flows, stability limits, voltage restrictions at buses (nodes), security constraints, inte-

ger restrictions on the generation, and the fact that electricity is instantaneously generated,

transported, and then consumed. These characteristics makes electrical power systems one

of the most complex network flow models that exist today. Thisis further complicated

by the fact that there is minimal control over the path that the current takes. The electric
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grid is built to be a redundant network in order to ensure mandatory reliability standards.

The current travels over many branches and can potentially travel over all paths to reach

its final destination. The flow of current is governed by Kirchhoff’s laws and is subject

to the impedance of the transmission lines as well as other factors. With the advent of

high levels of intermittent resources (wind and solar), it is becoming even more difficult to

ensure safe, reliable, and cost effective delivery of electric power. A variety of solutions

exist to deal with this issue. While it is also possible to invest in additional transmission

capability by building additional transmission lines, theprimary barriers to such a solution

include expensive capital costs to invest in such infrastructure followed by the frequent

societal objection of having to acquire additional land (rights of way) to build new lines.

There are also frequent fights over who should pay for such an infrastructure. This research

investigates an alternative solution: robust corrective topology control.

The proposed robust corrective topology control methodology utilizes existing assets,

circuit breakers or electrical switches, to temporarily take high-voltage transmission lines

out of service. Typically, taking an available transmission path out of service reduces the

transfer capability of electric power across the grid and may degrade system reliability.

However, it is also possible that temporarily removing a line can improve the transfer ca-

pability and reliability of the system. Since the flow of electric power on one particular

transmission path is dependent on the impedances of alternative paths, it is possible to

increase the transfer capability on other paths that are left in service by taking out other

transmission lines. If the path that has its transfer capability increased is a critical path,

e.g., there is excess wind in that region, then taking the line out of service may improve

operations and reliability.

In most of the system studies today, the modeling of the transmission network is sim-

plified and limited attention is given to the flexibility in the network topology. To overcome

this issue, there is a national push to model the grid by a moresophisticated, smarter way
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as well as to introduce advanced technologies and control mechanisms into grid operation.

One aspect of smart grid aims at making better use of the current infrastructure as well as

additions to the grid that will enable more sophisticated use of the network. This research

examines smart grid applications of harnessing the full control of transmission assets by

incorporating their discrete state into the network optimization problem and it analyzes the

benefits of this concept for system reliability and renewable resources integration.

1.2 Topology Control: As a Concept

The following 3-node network flow model in Fig. 1.1 illustrates the concept of topology

control. All of the generators in this example have different operating costs and have no

limit on their capacity. The objective is to determine the optimal economic dispatch to meet

the demand at node C. All of the transmission lines are assumed to have equal impedances.

However, the thermal capacities of the lines are assumed to be different.

B
C

A

100MW

300MW50MW

$150/MWh $500/MWh

350MW

$50/MWh

Z

Z Z

Figure 1.1: Topology Control Example.

Fig. 1.2 represents the different feasible sets of solutions for two different network

topology configurations. When all lines are in service, the solution space, for generator
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A’s and generator B’s production, is defined by the vertices{0, 1, 2, 3}. However, when

line A-B is opened (taken out of service), the solution spacechanges and it is defined by

the vertices{0, 4, 6, 8}. Therefore, when topology control is simultaneously considered

while solving for the optimal economic dispatch, the union of these two solutions spaces

define the set of feasible solutions, which is{0, 1, 5, 6, 8}. Thus, it is obvious that the

flexibility gained by topology control creates a superset offeasible solutions, meaning that

the resulting solution will never be worse than if topology control is not considered. Fur-

thermore, the optimal dispatch with all lines in service would be defined byGa=200 MW,

Gb=50 MW andGc=100 MW at a cost of$67, 500; with transmission topology control, the

optimal dispatch solution isGa=300 MW,Gb=50 MW andGc= 0 MW at a cost of$22, 500.

Feasible Region
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{0,1,2,3}

Feasible set with line AB open
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{0,1,5,6,8}

Figure 1.2: Feasible Region for the Topology Control Example.
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1.3 Example: Topology Control in Real Life Application

Past research to identify and show the benefits of topology control for power system

operation is presented in Section 2.3. In this section, a real life example of topology control

action to mitigate post-contingency situation is presented; in this example, the topology

control action is used to overcome the overvoltage situation caused by post-contingency

flows.

Fig. 1.3 shows the voltage contour plots for the pre-contingency, contingency, and

post-contingency states for a subsection of the Tennessee Valley Authority (TVA) system.

In pre-contingency state, all bus voltages are within the acceptable operating range, i.e.,

between0.9-1.1 pu; however, in the post-contingency state, a subsection oftransmission

network experiences the overvoltage situation. To overcome this overvoltage situation, a

topology control action is proposed, which alters the post-contingency flows and helps to

reduce voltages on buses experiencing overvoltage. This particular pre-contingency state

corresponds to a lightly loaded period, in which most of the high voltage transmission

lines in presented area are lightly loaded compared with itspeak-load condition. In the

contingency state, the reactive power available within theaffected area is more than the

requirement, which results in overvoltage in this area. Implementation of topology control

inherently reduces the excessive flow of reactive power intothe affected area and helps to

reduce the bus voltages to safe operating limits.
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Figure 1.3: Example for Corrective Topology Control.

Note that in this example, the generator dispatch in pre-contingency and the post-

contingency is same and no re-dispatch request is sent to generators. Furthermore, Fig.

1.3 represents the part of network above500kV.

1.4 Summary of Chapters

Chapter 2 gives a literature review, which provides the basic understanding of trans-

mission switching proposed in literature for various reasons, such as corrective switch-

ing, congestion management, and the various techniques adopted are listed. It also covers

present industrial practices involving topology control as a corrective mechanism to over-

come power systems operational issues.

Chapter 3 presents an overview of electric energy dispatch problems. In particular, it

discusses the formulation for the alternating current optimal power flow (ACOPF) problem

as well as a common approximation of the ACOPF and the direct current optimal power

flow (DCOPF) problem. Finally, a discussion of the unit commitment problem, used in this

research, as well as its formulations is presented.

Chapter 4 provides background information regarding robust optimization. The deriva-

tion for the robust topology control algorithm is presented, which converts a complex three
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stage optimization problem into a two stage problem. The comparison of robust optimiza-

tion and stochastic optimization is also given.

Chapter 5 provides a brief introduction to stability studies and information about the

dynamic models used in this thesis. The short description ofdifferent types of stability

studies are also presented.

Chapter 6 presents the effect of demand uncertainties on system reliability. In this chap-

ter, three topology control (corrective transmission switching) methodologies are presented

along with the detailed formulation of robust corrective switching algorithm. The results

for N-1 reliability analysis with robust corrective switching algorithm are also presented.

These studies were conducted on the IEEE 118-bus test case.

Chapter 7 presents the effect of renewable uncertainties onrenewable resources in-

tegration and system reliability. In this chapter, a robustmethodology to determine the

do-not-exceed limits for renewable resources is presented, along with a detailed analysis

of the robust corrective switching algorithm under renewable uncertainties. The simulation

results for do-not exceed limits with robust corrective switching algorithm are also pre-

sented. These studies were conducted on the IEEE 118-bus test case and a realistic test

system of Tennessee Valley Authority (TVA).

Chapter 8 presents the zonal DNE limit methodology to address the scalability of the

DNE limit problem. The proposed zonal DNE limit method is tested on the IEEE 118-bus

test case and a realistic test system of TVA.

Chapter 9 addresses the practical limitations of the topology control algorithm. The

issues associated with the scalability and large computational time of topology control

algorithm are discussed in this chapter.

Chapter 10 concludes this dissertation and discusses potential future research that is

connected with the main theme of this dissertation, developing a more flexible electric

grid.
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1.5 List of Abbreviations

The list of abbreviations used in this thesis are listed below.

ACOPF Alternating Current Optimal Power Flow

DCOPF Direct Current Optimal Power Flow

DDP Desired Dispatch Point

FACTS Flexible Alternating Current Transmission Systems

FERC Federal Energy Regulatory Commission

LP Linear Programming

LMP Locational Marginal Price

MIP Mixed Integer Programming

NERC North American Electric Reliability Corporation

OMC Out-of-market Correction

OPF Optimal Power Flow

PF Power Flow

PTDF Power Transfer Distribution Factor

RTC Robust Corrective Topology Control

SCUC Security Constraint Unit Committment

SCED Security Constraint Economic Dispatch

TC Topology Control

UC Unit Committment
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

The objective of this research is to study the impact of topology control on system

reliability and renewable integration. Past research has identified topology control as a

valuable asset that can be used to mitigate various power system operational concerns.

This chapter presents a thorough literature review on the motivation for this research, past

related research on topology control, and an overview of present industrial operational

procedures where transmission control is employed.

2.2 National Directives

The demand of electrical power has increased considerably during the past few years.

This increase in system demand causes a great amount of stress on transmission infras-

tructure; to overcome this issue, there is a national push tocreate a smarter, more flexible,

electrical grid. A smarter grid not only improves the efficiency of the electric transmission

systems, but it also ensures secure and reliable power system operations. This research is

in line with several national directives addressing this need for a smarter and more flexible

power grid.

The United States Energy Policy ACT (EPACT) of 2005 calls foradvanced transmission

technologies, which includes a directive for federal agencies to “encourage... deployment

of advanced transmission technologies,” including “optimized transmission line configura-

tion.” This research also follows the Federal Energy Regulatory Commission (FERC) order
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890, which encourages the improvements in economic operations of transmission grid. It

also addresses the Energy Independence and Security Act of 2007: (1) “increased use

of...controls technology to improve reliability, stability, and efficiency of the grid” and (2)

“dynamic optimization of grid operations and resources.” The intention of this research is to

harness the control of transmission assets by the dynamic optimization of the transmission

grid, and the co-optimization of transmission with generation, using robust optimization

techniques, thereby encouraging a smarter, flexible, and more efficient electric network.

2.3 Literature Review: Topology Control

Topology control has been in literature since 1980s and, till today, it has been used to

overcome power systems related operational issues, such asvoltage violations, line over-

loads [2, 3, 4, 5], line losses and cost reduction [6, 7, 8], system security [9], or a combina-

tion of these [10, 11]. In this section, the brief overview ofpast research related to topology

control are presented.

2.3.1 Topology Control as a Congestion Management Tool

Topology control actions are used to manage congestion within the electrical network;

[2] proposes topology control actions as a tool to manage congestion in the electrical grid.

It discuss ways to solve this problem by genetic algorithms along with deterministic ap-

proaches. This approach attempt to minimize the amount of overloads in the network since

they are not co-optimizing the generation with the topology. Thus, this is a disconnected

approach where generation is first dispatched optimally andthen this method is employed

to reduce network congestion. Once again, the optimal transmission switching concept

goes further than this concept since it co-optimizes the generation with the network topol-

ogy in order to maximize the market surplus. In [12], the topology control actions are

proposed to mitigate transmission network congestion due to high renewable penetration.
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In general, it has been assumed that taking transmission elements/lines out of service

increases the congestion in the system. This misconceptionhas been proven wrong in [13].

Network topology optimization allows for a system re-dispatch, which makes it impossible

to state the impact on congestion.

2.3.2 Topology Control as a Corrective Mechanism

Past research has shown topology control as a control methodfor a variety of power

system operational problems. The primary focus of past research has been on propos-

ing transmission switching as a corrective mechanism when there are voltage violations,

line overloads [2, 3, 4, 5], line losses and cost reduction [6, 7, 8], system security [9],

or a combination of these [10, 11]. While this past research acknowledges certain bene-

fits of harnessing the control of transmission network for short term benefits, they do not

use the flexibility of the transmission grid to co-optimize the generation along with the

network topology during steady-state operations. In [14],the unit commitment problem

with topology control actions are co-optimized, withN-1 reliability, which has shown that

co-optimization of topology control actions with unit commitment can provide substantial

economic savings, even while maintainingN-1 reliability standards. Furthermore, the use

of transmission switching as a corrective mechanism to respond to a contingency has been

acknowledged in some past research to have an impact on the cost of generation reschedul-

ing due to the contingency. However, it has not been acknowledged that such flexibility

should be accounted for while solving for the steady-state optimal dispatch, probably due

to computational difficulties and extended solution time.

In [15], topology control is used as a corrective mechanism in response to a contin-

gency. It also presents the formulation of such a problem andprovides an overview of

search techniques to solve the problem. This idea is furtherextended to alleviate line over-

loading due to a contingency by [3] using topology control heuristics. The limitation of
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this method is that it is based on topology control heuristics, which does not consider all

corrective topology control actions and does not co-optimize topology control with the

generation. In [16], topology control actions are used as a corrective mechanism, with lin-

earized approximate optimal power flow formulation and solved using branch and bound

method. The corrective topology control using AC power flow is studied in [10]; however,

in this study, it is assumed that the generator dispatch is fixed thereby not acknowledging

the benefit of co-optimizing the network topology with generation.

The corrective topology control actions provide optimal results when topology control

actions are co-optimized with generation. In [9, 8], a corrective topology control is used

to mitigate contingencies, where, a corrective switching algorithm is used to mitigate con-

tingencies, while considering the ability to re-dispatch generation. However, due to the

computational complexity of this problem, this method doesnot search for the actual op-

timal topology but rather considers limited switching actions. The review of past research

on topology control is provided in [17]. In [11, 4] the topology control actions are used to

relieve line overloads and voltage violations.

The optimal transmission switching for contingencies using DC optimal power flow is

presented in [18], which shows that in power system operations, using topology control ac-

tions, considerable cost benefits can be achieved. Furthermore, reference [18] also shows

that co-optimizing topology control with generation can give operational flexibility to sys-

tem operators’ to respond to emergency situations. Furthermore, in [19] this idea is further

extended to determine topology control actions for contingency mitigation in real-time. In

this study, the fast DCOPF based heuristic is used to determine candidate topology control

actions.
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2.3.3 Optimal Topology Control

The bulk electric transmission network is built with redundant paths to ensure manda-

tory reliability standards, such as NERC requirements forN-1 and these standards require

protection against possible worst-case scenarios. However, it is well known that the re-

dundancies in these networks can cause dispatch inefficiency, due to line congestion, or

voltage violations. Furthermore, a network branch that is required to be built in order to

meet reliability standards during specific operational periods may not be required to be in

service during other periods. Consequently, due to the interdependencies between network

branches (transmission lines and transformers), it is possible to temporarily take a branch

out of service during certain operating conditions and improve the efficiency of the network

while maintaining reliability standards. This correctiveswitching action is the basis for the

optimal topology control.

Optimal transmission switching includes the control of transmission assets into the op-

timal power flow (OPF) formulation in order to co-optimize the network topology simul-

taneously with the generation. This added level of control to the traditional OPF problem

creates a superior optimization problem compared with the traditional OPF formulation.

Furthermore, by harnessing the control of transmission andco-optimizing the electrical

grid topology with the generation, the optimal transmission switching problem guarantees

a solution that is as good as the one obtained by the traditional dispatch formulation.

The concept of a dispatchable network was first introduced in[20], which led to the

research work related to optimal transmission switching in[21, 18, 14, 22, 23, 24, 13, 19].

This past research has also shown that substantial economicsavings can be obtained even

for models that explicitly incorporateN-1. For example, in [18, 14] it is observed that

savings on the order of4 − 15% can be achieved even while maintainingN-1. Note that,

this past research has been based on the DCOPF formulation, alinear approximation to the
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ACOPF problem, which is a lossless model and reactive power flow are ignored.

2.3.4 Topology Control and Minimize Losses

In [6], the topology control actions are used to minimize system losses, which shows

that, contrary to general belief, it is possible to reduce electrical losses in the network by

opening a transmission line for a short timeframe. Furthermore, in [7], the author proposed

a mixed integer linear programming approach to determine the optimal transmission topol-

ogy, with the objective to minimize electrical transmission losses. Unlike past research, this

model searches for an optimal topology, but does not consider the generator re-dispatch.

The ideal way to use topology control for loss minimization is to consider the topology

control along with generator re-dispatch, which will determine the optimal transmission

topology and generator dispatch.

2.3.5 Topology Control for Maintenance Scheduling

Past research focused on the effect of topology control on system reliability. However,

topology control actions not only affect the system reliability, but also help to reduce the

operational cost of the electric grid. Nowadays, system operators consider topology con-

trol as a controlling tool in maintenance scheduling of electrical bulk power system. For

example, in 2008, the Independent System Operator of New England (ISONE) saved more

than$50 million by considering the impact of transmission line maintenance scheduling on

the overall operational costs [25]. However, the study doneby ISONE is based on estimat-

ing cost instead of employing mathematical optimization tools, which determine the total

system cost considering transmission network reliability. Furthermore, the benefit of this

research is that it underlines the need of developing more practical mathematical models to

solve the maintenance scheduling problem.

14



2.3.6 Topology Control for Transmission Expansion Planning

The bulk power transmission network is built with redundancies to improve system

reliability and/or to improve operational efficiency. Therefore, it is often assumed that

topology control actions will reduce operating costs only for poorly planned transmission

networks. However, this assumption is not true. Optimal transmission switching and trans-

mission planning are two different optimization problems with different objectives: trans-

mission planning is a long-term problem, which determines the line(s) to build over a long

time horizon; on the other hand, optimal transmission switching is a short-term problem,

which determines the optimal network for short term benefits, such as reduction in operat-

ing cost. The ideal method to obtain better benefits over a long timescale is to consider the

optimal transmission expansion plan. Note that, the optimal plan does not guarantee ben-

efits to the system during each individual operating period.As a result, a network can be

perfectly planned, but still benefit from short-term network reconfiguration, using optimal

topology control actions.

Transmission expansion planning is a complicated multi-period optimization problem.

In traditional literature, topology control actions are not considered in the planning pro-

cess. However, in [26], the methodology for transmission expansion studies with topology

control action are presented. The DCOPF based formulation is used in this analysis, con-

sidering higher wind penetration. A more detailed analysisfor transmission planning with

topology control is presented in [27].

2.3.7 Topology Control for System Reliability

The electrical transmission network is designed to handle various contingencies and de-

mand levels. However, such deviations do not exist at the same time with the same intensity.

Therefore, a particular line that is required to be in service to meet reliability standards for a
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specific operating point may not be required to be in service for other operating conditions.

Hence, corrective topology control can be used to meetN-1 standards. The NERC policy

dictates that after the occurrence of a contingency, the system must be reconfigured and

re-dispatched to handle another contingency within 30 minutes. However, in real-time the

analysis ofN-1 reliability is a complex problem. The real-time dynamic assessment tools

used today in power system operation monitor some of these critical contingencies, as it is

not possible to monitor all theN-1 contingencies in real-time.

Furthermore, it is possible to improve system reliability by temporarily taking a line out

of service. System reliability not only depends on the network topology, it also depends on

the generation dispatch solution, e.g., available generation capacity and ramping capabil-

ities of the generators. Since modifying the topology changes the feasible set of dispatch

solutions, it is possible to obtain a different generation dispatch solution that was infeasible

with the original topology, but is feasible with the modifiedtopology. Even though there

may be a line(s) temporarily out of service, this new generation dispatch solution may make

the system more reliable if it has more available capacity with faster generators. In [19],

N-1 andN-2 contingency analysis for IEEE test cases is presented, which shows that, with

topology control actions,12− 63% more load can be served duringN-1 contingencies and

5− 50% more load can be served with N-2 contingencies.

2.3.8 Special Protection Schemes (SPSs)

Corrective switching is one example of topology control that is implemented today

[28]. These methods are based on operators’ prior knowledge, as specified in [28] on page

107; such actions may also be based on historical information. Ideally, corrective switch-

ing algorithms should be solved in real-time. Once the disturbance occurs, the switching

algorithm is executed to suggest switching actions to alleviate any constraint violations.

This approach is beneficial since the current operating status is known, which ensures the

16



accuracy of the solution. However, the challenge with real-time mechanisms is that they

must be extremely fast while also ensuring AC feasibility, voltage stability, and transient

stability. Topology control models could be solved offline by estimating the operating state

of the system. However, deterministic offline mechanisms also have limitations since the

operating state must be predicted prior to the disturbance.Thus, the proposed offline cor-

rective action is, susceptible to problematic reliance on perfect foresight.

Special protection schemes (SPSs), also known as remedial action schemes (RASs) or

system integrity protection schemes (SIPSs), are an important part of grid operations. SPSs

are used to improve the reliability of the grid and improve the operational efficiency. SPSs

are primarily identified and developed based on ad-hoc procedures. The development of

such corrective mechanisms like SPSs reflects a change, a push, by the industry to switch

from preventive approaches, to the use of corrective approaches. The use of transmission

switching as a corrective mechanism can be a powerful tool. For instance, PJM has a

number of SPSs that involve post-contingency transmissionswitching actions [29]. For

example, the following action is listed in [29] on page 221: “The 138 kV tieline L28201

from Zion to Lakeview (WEC) can be opened to relieve contingency overloads for the loss

of either of the following two lines: Zion Station 22 to Pleasant Prairie (WEC) 345 kV Red

(L2221), Zion Station 22 to Arcadian (WEC) 345 kV Blue (L2222).”

In practice, topology control actions are employed during blackouts caused by rare

weather conditions [30]. In 2012, due to Superstorm Sandy, PJM lost about 82 bulk electric

facilities, which caused extremely high voltages on the system during low load levels. To

overcome this high voltage situation, a corrective switching plan was employed, several

500kV lines were switched out to mitigate over voltage concerns during these low load

level periods. Note that, the corrective switching methodology employed in this particular

case is unknown.

Such operational protocols, like SPSs, are often viewed as anecessary protocols to
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maintain system reliability. While these transmission switching SPSs do help maintain

system reliability, there are alternatives that the operator can employ instead. Possible al-

ternatives may include: re-dispatching the system after the contingency occurs; choosing

a different steady-state (no-contingency) dispatch priorto the contingency occurring to en-

sure there is no overloading; or upgrading the equipment so that it is able to handle these

contingency flows. Re-dispatching the system is likely to increase the operating costs.

Choosing a different dispatch solution for steady-state operations would increase the oper-

ating cost, otherwise, that dispatch solution would have been initially chosen. Investing in

new equipment increases the capital cost of the system.

2.3.9 Seasonal Transmission Switching

Topology control actions are used for short term benefits as well as seasonal benefits.

For instance, in the state of California, the load requirements are lower in the winter and the

probability of an outage is higher due to winter storms. The summer is the exact opposite;

during the summer, the load is the highest in the year, but theprobability of outages is lower

since there are fewer and less severe storms. As a result, some utilities have determined that

it is beneficial to leave certain transmission lines in service during the winter when there is

a greater chance of winter storms for reliability purposes,but yet these lines are taken out

of service during summer periods since the threat of an outage is lower.

These lines are primarily redundant transmission lines in the lower voltage network.

Such redundancies are less important during summer periodswhen the probability of an

outage is lower. Furthermore, these redundant lines can cause overloading concerns during

summer periods since the load conditions during the summer are higher. For instance, there

can be two parallel lines with different thermal capacity ratings. The lower capacity line,

generally a part of the lower voltage network, may reach its capacity first and, therefore,

inhibit the higher voltage network from transferring as much power as desired. Due to the
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higher loading conditions, it is, therefore, preferred to take the redundant, lower capacity

line out of service, as long as the line is not necessary to maintain system reliability. Since

the outage rates are lower during the summer periods, the operators are able to take the

line out of service without jeopardizing system reliability. In contrast, having these redun-

dancies in service during the winter is integral to maintaining system reliability since the

probability of an outage is greater. In addition, the redundancies do not cause overloading

concerns during the winter since the winter loading levels are lower.

While this operation is acknowledged by utilities today, the tradeoff between protecting

against potential contingencies versus the potential for overloads is not well understood.

Seasonal transmission switching models that are capable ofanswering these questions do

not exist today, thereby emphasizing the need for further research and development in the

area of seasonal transmission switching.

2.4 Conclusion

Topology control actions have been suggested to mitigate many power systems related

problems. However, most of those studies are either based onDCOPF or assumes fixed

generator dispatch, which has limited the spread of topology control in power system op-

erations. Even though, today, system operators do change system topologies for short

term application, these topology control actions are basedon operators’ prior knowledge

or some add-hoc methods. To overcome this issue research presented in this report in-

troduces a robust optimization based topology control methodology, which suggests the

topology control actions, that are valid for a range of operating states, are guaranteed DC

feasible for the entire uncertainty set.
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Chapter 3

REVIEW OF OPTIMAL POWER FLOW AND UNIT COMMITMENT

3.1 Introduction

The electric industry is comprised of four major components: generation, transmission,

distribution, and the load. The traditional operation of the electrical bulk power system is

that the operator will dispatch the generation at minimum generation cost to meet the load

(while maintaining reliability), while keeping the remaining assets fixed, for example, sys-

tem topology. National directives and modern technologiesare aimed to create flexibility

in all components of the grid, resulting in a smarter and moreefficient electric network.

Modeling of deferrable load, would create a more flexible andsmarter grid. Harnessing the

flexibility in the network topology, i.e., flexible alternating current transmission systems

(FACTS) devices and topology control, would further add an additional layer of control on

the transmission side.

The remaining chapter is structured as follows: Section 3.2describes the basic eco-

nomical dispatch problem. Section 3.3 gives a brief description of AC optimal power flow.

The detail formulation of DC optimal power flow is presented in Section 3.4. The security

constraint unit commitment formulation, to generate starting point for all numerical results

presented in this thesis, is presented in Section 3.5. The day-ahead unit commitment proce-

dure used in Mid-continental Independent System Operator (MISO) is presented in Section

3.6.
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3.2 Economic Dispatch

Economic dispatch is an optimization problem that finds the minimum operation cost

for generation dispatch in order to meet the load on the system while adhering to the min-

imum and maximum generator capacity constraints. In the US Energy Policy Act of 2005

[31], the term is defined as “the operation of generation facilities to produce energy at the

lowest cost to reliably serve consumers, recognising any operational limits of generation

and transmission facilities.” In general, for the economicdispatch problem, the network

flow constraints are not considered; therefore, sometimes it is called an unconstrained eco-

nomic dispatch problem. Hence, the economic dispatch problem provides a lower bound

on the optimal power flow problem. Economic dispatch is a sub-problem of the unit com-

mitment (UC) problem. Unit commitment determines a generator’s ON or OFF status, its

associated dispatch considering its minimum and maximum capacity, ramp rates, up and

down time constraints, no load and start-up costs, as well asits available reserve. The

generic economical dispatch problem is presented in (3.1)-(3.5), which consists of gener-

ator capacity constraint (3.2), generator ramping constraints (3.3) and (3.4), and energy

balance constraint (3.5). The objective of the economical dispatch problem is presented in

(3.1). The objective of the economical dispatch problem is to simultaneously minimize the

total generation cost and to meet the load demand of a power system over some appropri-

ate period while satisfying various constraints represented by (3.2)-(3.5). In some cases,

instead of using a linearized cost function more complex quadratic cost function is used

as shown in [32]. Note that in traditional economic dispatchproblem generator ramping

constraints are not considered; they are included in the formulation only when the temporal

behaviour of the system is considered.
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min
∀g

cgPg (3.1)

s.t. 0 ≤ Pg ≤ Pmax
g , ∀g (3.2)

Pg ≥ Pg − R−

g , ∀g (3.3)

Pg ≤ Pg +R+
g , ∀g (3.4)

∑

∀n

Pg =
∑

∀n

dn (3.5)

3.3 AC Optimal Power Flow

The majority of the electric grid operates based on an alternating current (AC) setting;

however, there are a few high voltage direct current (DC) lines in the electric grid. The

flow of electric energy follows Kirchhoff’s laws. The ACOPF problem is the optimization

problem that models how electric power transfers across theAC electric grid and it is used

to dispatch power optimally. In 1962, J. Carpentier first introduced the concept of ACOPF

[33] and proved that it is a very difficult problem to solve. The ACOPF optimization

problem is a non-convex optimization problem, which contains trigonometric functions in

some of the constraints as shown in (3.6) and (3.7), which aresimilar to those given in [34].

Equation (3.6) represents the real power flowPk, across the linek, from busm to busn,

and equation (3.7) represents the reactive power flowQk, across the linek, from busm to

busn.

Pk = V 2
mGk − VmVn(Gk cos(θm − θn) +Bk sin(θm − θn)), ∀k (3.6)

Qk = −V 2
mBk − VmVn(Gk sin(θm − θn)− Bk cos(θm − θn)), ∀k (3.7)

The term,Vm, Vn represents the bus voltages andθm, θn represents the bus voltage an-

gles. Additional constraints that are required for the ACOPF problem include the constrains

on the magnitude of the voltage variables, constraints on the angle difference between
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two connected buses, operational constraints on the generators, capacity constraints on the

transmission lines, and node balance constraints. The voltage and trigonometric functions

add non-convexities in (3.6) and (3.7); these non-convex transmission constraints add com-

putational complexities to the ACOPF problem. To deal with these computational issues,

different solution methods are proposed to solve ACOPF problem. For instance, in [33]

Karush-Kuhn-Tucker (KKT) conditions are used to solve ACOPF problem. A detail re-

view of ACOPF until 1991 is presented in [35], where more than300 articles are reviewed;

the authors concludes that the ACOPF problem is a computationally challenging problem

and that it can be difficult to solve due to ill-conditioning and convergence issues.

To overcome the computational difficulties of ACOPF problem, it is common, both

in academic literature and in the industry, to use a linear approximation of the ACOPF

problem. The first assumption is made with regards to the voltage variables,Vn andVm. In

a per unit based power flow calculation, the bus voltage levels are close to unity; therefore,

it assumed that all voltage variables are equal to one. The assumption removes some of the

nonlinearities within (3.6) and (3.7).

The next assumption comes from the fact that the bus angle difference between two

connected buses is generally very small. This simplification allows the approximation of

the trigonometric functions in (3.6) and (3.7); the Sine of asmall angle difference is ap-

proximated by the angle difference itself, and the Cosine ofa small angle difference is

approximately one. Using these voltage and angle difference assumptions, theGk terms in

(3.6) are removed and, similarly in (3.7),Bk terms are removed.

Another simplification made to the ACOPF formulation is withregards to the reac-

tive powerQk within the system. For computational simplicity in ACOPF approximation

reactive power terms are ignored. To simplify the ACOPF problem further, resistance of

transmission lines are assumed to be zero, which makes the susceptance equal to the inverse

of the reactance. The resultant OPF model is known as the DCOPF model. In general, the
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traditional DCOPF formulation is a lossless model; however, there are ways to modify the

traditional DCOPF formulation to account for losses [36]. Throughout this dissertation, the

DCOPF problem is assumed to be a lossless model. The more recent work on ACOPF for-

mulation and associated linearization, to overcome the computational issues, are presented

in [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

Note that, a DCOPF is an approximation to a ACOPF problem; therefore, the accuracy

of DCOPF solutions varies over different networks, transmission elements, and loading

levels [48]. However, the DCOPF simplifies the OPF problem toa great extent and makes

the OPF problem computationally tractable. Therefore, in industry, the DCOPF formula-

tion is used for many applications [49] such as unit commitment, planning studies, system

operations, etc..

3.4 DC Optimal Power Flow

In the previous section, the description and complexities associated with ACOPF are

presented. To overcome these computational difficulties, it is common, both in academic

literature and in the industry, to use the linearized version of the ACOPF problem. This

linearized ACOPF formulation is known as the DCOPF problem.With a linear cost func-

tion, the DCOPF problem is a linear program (LP); thus, it is much easier to solve than

the non-convex nonlinear ACOPF problem. The simple DCOPF problem can be described

as shown in (3.8)-(3.12). Constraint (3.8) represents the generator’s minimum and maxi-

mum real power generation capacity, constraint (3.9) represents the DC approximation of

AC power flow across the transmission line, constraint (3.10) represents the minimum and

maximum power flow across the transmission line, the energy balance equation at each bus

is presented by constraint (3.12).
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min
∀g

cgPg (3.8)

s.t. 0 ≤ Pg ≤ Pmax
g , ∀g (3.9)

Pk = Bk(θn − θm), ∀k (3.10)

Pmin
k ≤ Pk ≤ Pmax

k , ∀k (3.11)
∑

k∈δ+(n)

Pk −
∑

k∈δ−(n)

Pk +
∑

∀g(n)

Pg = dn, ∀n (3.12)

Constraint (3.9) represents the operational constraints for generatorg; for the basic

DCOPF formulation, as shown in (3.9), it is assumed that the generator’s minimum oper-

ating level is zero. However, in reality, most of the generators do not have zero minimum

operating levels. In may cases, generators have minimum operating levels as well as min-

imum economical levels, which dictates the minimum operating level for most of the gen-

erators. Therefore, to enforce the true minimum operating levels of generators, i.e., if their

minimum operating level is not zero, requires the use of a binary unit commitment variable

thereby changing the linear program into a mixed integer linear program. In section 3.5,

the unit commitment problem is presented.

Constraint (3.10) represents the DC approximation of AC power flow across the trans-

mission likek. The DC line flow,Pk, is equals to the susceptance times the angle difference.

Note that, a limit on the angle difference is equivalent to a limit on Pk; therefore, by lin-

earizing (3.6), there is no longer a need to include the angledifference constraints. Instead,

the lower and upper bounds on real power flow across the line isrepresented by constraint

(3.11) and can be adjusted to reflect whatever constraint produces a tighter bound onPk:

the thermal capacity of the line or the limit on the voltage angle difference across the two

connected buses. In many cases, the capacity constraint on transmission linek is treated as

a symmetric constraint, allowing it to be modeled asPmax
k = −Pmin

k .

Constraint (3.12) is the node balance constraint, which states that the power flow into
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a bus must equal the power flow out of a bus. Generator suppliesat a bus and power

coming into a bus, through transmission network, are treated as injections while the load

at a bus and power going out of the bus, though transmission network, is considered as a

withdrawal.

Note that, the DCOPF problem is an approximation to the ACOPFand, hence, does not

represent the actual electric system. Several parameters,like reactive power and losses, are

neglected in the DC model and remedies, such as proxy limits,have been proposed in the

literature to deal with these shortcomings of DCOPF.

The network constraints in DCOPF can also be formulated using power transfer distri-

bution factors (PTDFs). The basic formulation of PTDF’s arepresented in [32]. The benefit

of PTDF based DCOPF formulation is that it simplifies the DCOPF problem; for a fixed

topology, the flow on any transmission line can be determinedusing PTDFs and net bus

injections. Another benefit of PTDF structure it that it allows to consider only the critical

transmission lines in DCOPF problem. For computational simplicity, in industry, a simpli-

fied DCOPF problem is solve, where instead of solving detail DCOPF model a simplified

DCOPF model with less number of network constraints is solved. In this reduced model

can be obtained with PTDF based DCOPF formulation. In [50], detail procedure to deter-

mine subset of the network DC constraints that are active in order to reduce the DCOPF

problem size is presented; in [50], these constraints are called asumbrella constraints. In

general, in industry, the subset of transmission lines for DCOPF problem are determined

based on historical data or operators’ past knowledge.

The limitation of PTDF based formulation is that the PTDFs are determined consid-

ering a fixed topology; any change in system topology needs recalculation of PTDFs for

accurate DC solutions. Therefore, in this research, PTDF based DCOPF formulation is not

used; instead, theB − θ formulation, as shown in (3.10), is used. There has been recent

development of a different transmission switching formulation, [51], which builds on the
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work of a generalized line outage distribution factors, [52]. With the use of flow canceling

transactions, [51] develops a framework that is able to capture the changes in the topology

and compares it to theB − θ formulation used in many preceding transmission switching

papers, as well as in this research. This formulation is likely to outperform theB−θ formu-

lation when the number of monitored lines is relatively small, something that is common

practice within optimal power flow problems today.

3.5 Unit Commitment

Over the past two decades there has been a great deal of research in power generation

operations and planning. Generation unit commitment is a well-known, difficult, multi-

period mixed integer programming problem to solve within the electric industry. The unit

commitment problem is a day-ahead scheduling problem wherethe operator forecasts sys-

tem demand and the state of the network for the following day and solves for the optimal

commitment schedule for generators. The main objective of unit commitment problem is

to obtain a generator schedule with lowest possible operating cost. In reality, most gen-

erators have non-zero minimum operating levels, which is a characteristic that requires a

binary variable to model the state of the generator. This binary variable is referred to as the

unit commitment binary variable,ugt; it takes on a value of one when the unit is on and

zero when the unit is off. Generators also have minimum up andminimum down time con-

straints. The minimum up (or down) time constraint states that once a generator is turned

on (or off), it must remain on (or off) for a certain number of time periods. This operational

restriction for generators also requires the inclusion of abinary variable to model the state

of the generator. It is possible to formulate the minimum up and down time constraints

with just the use of the unit commitment binary variables [14].

There are four main costs that are frequently associated with a generator: operating
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cost, start-up cost, shut down cost, and no load cost. The operating cost represents the fuel

cost of the generator and it is proportional to the amount of energy produced. Generators

can also have start-up and shut down costs. They can be modeled without start-up and shut

down binary variables; as a result, some unit commitment formulations do not include start-

up or shut down binary variables. However, in [14], it is shown that the inclusion of these

binary variables is beneficial in solving the unit commitment formulation. Consequently,

start-up binary variables,vgt, and shut down binary variables,wgt, are included. The start-

up binary variable takes on a value of one when the unit is turned on in periodt and it takes

on a value of zero otherwise. Similarly, the shut down binaryvariable takes on a value of

one when the unit is turned off in periodt and it takes on a value of zero otherwise. No

load costs represent the cost to keep the generator on duringa particular period. This cost

is not a variable operating cost; rather, the no load cost is afixed cost that is incurred during

every period that the unit is operating (online).

Unit commitment problem is a classical problem in electrical engineering. In the

literature, there are many proposed methods to solve generation unit commitment prob-

lems; the detailed literature review on unit commitment solution methods are presented in

[53, 54, 55]. In this research, the unit commitment problem with mixed integer program-

ming (MIP) formulation is used; the basic unit commitment formulation, used in [14], is

modified for this research. In the past years, many independent system operators (ISOs) in

the United States have adopted MIP approach for their generation unit commitment soft-

ware [49, 56, 57].

The unit commitment model used in this research is presentedin (3.13)-(3.31), where

constraint (3.13) represents an objective, constraint (3.14) represents a node balance condi-

tion of OPF, line capacity constraint is represented by (3.15), generator capacity constraint

is represented by (3.16), constraints (3.17)-(3.19) represent minimum up and down limita-

tions of generator, generator ramping constraints are modeled by constraints (3.20)-(3.21),
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system reserve requirements are modeled as shown in (3.22)-(3.27).

In the unit commitment model, the generators’ minimum up anddown time require-

ments are difficult to model; the detailed analysis of generators’ minimum up and down

time constraints are explained in [58]. The ramping constraints used in this research, shown

in (3.17)-(3.19), are the same as used in [14].

min
∑

∀t

∑

∀g

(cgPgt + cSUg vgt + cSDg wgt + cNL
g ugt) (3.13)

s.t.
∑

∀k∈δ+n

Bk(θnt − θmt)−
∑

∀k∈δ−n

Bk(θnt − θmt) +
∑

∀g(n)

Pgt = dnt, ∀n, t (3.14)

Pmin
k ≤ Bk(θnt − θmt) ≤ Pmax

k , ∀k, t (3.15)

Pmin
g ugt ≤ Pgt ≤ Pmax

k ugt, ∀g, t (3.16)

vgt − wgt = ugt − ugt−1, ∀g, t (3.17)

t
∑

q=t−UTg+1

vgq ≤ ugt, ∀g, t ∈ {UTg, .., T} (3.18)

t
∑

q=t−DTg+1

wgq ≤ 1− ugt, ∀g, t ∈ {DTg, .., T} (3.19)

Pgt − Pgt−1 ≤ R+
g ugt−1 +RSU

g vgt, ∀g, t (3.20)

Pgt−1 − Pgt ≤ R−

g ugt−1 +RSD
g wgt, ∀g, t (3.21)

rspgt ≤ Pmax
g ugt − Pgt, ∀g, t (3.22)

rspgt ≤ Rsp
g ugt, ∀g, t (3.23)

∑

g

rspgt ≥ SPt, ∀t (3.24)

∑

g

rspgt ≥ Pgt, ∀g, t (3.25)

rnspgt ≤ Rnsp
g (1− ugt), ∀g ∈ {Fast}, t (3.26)

∑

g

rnspgt ≥ NSPt, ∀t (3.27)
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∑

g

rnspgt ≥ Pgt, ∀g, t (3.28)

0 ≤ vgt ≤ 1, ∀g, t (3.29)

0 ≤ wgt ≤ 1, ∀g, t (3.30)

ugt ∈ {0, 1}, ∀g, t (3.31)

Constraints (3.20)-(3.21) represent the ramping capability of generators, which consid-

ers the generator’s capability to change its output in a specific time step. In general, in the

day-ahead unit commitment problem, as well as in this formulation, the time step of one

hour is considered; therefore, in constraints (3.20)-(3.21) one hour ramping capability of

generators are presented.

Constraints (3.22)-(3.27) represents the spinning and non-spinning requirements, which

are needed to overcome any contingencies within the system.Therefore, in practice, there

are ancillary services to protect against contingencies, such as a fault on a line or a loss

of a generator, as well as unexpected load fluctuations. In general, there are four types

of ancillary services: regulation reserve, spinning reserve, non-spinning reserve, and re-

placement reserve. Regulation reserve is used to follow thechanges in load, to account

for the changes in the load and minor fluctuations caused by different types of loads and

load cycles. In some markets regulation reserves are specified as a regulation up and reg-

ulation down, which are deployed based on automatic generation control (AGC) and it is

replaced by spinning reserve after a short time interval, which is also know as making the

area control error (ACE) to zero. Though spinning reserve can be used to replace regulation

reserve, its primary purpose is to be available to mitigate contingencies within a specified

amount of time. Spinning reserves are called upon to help prevent a blackout when there

is a contingency; in many cases, spinning reserves are supplied by committed generators

with high ramping capability. Similar to spinning reserve,the primary purpose of non-

spinning reserve is to be available, within a specified amount of time, generally within 10
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minutes, if called upon to help prevent a blackout when thereis a contingency. The pri-

mary difference between spinning and non-spinning reserveis that non-spinning reserve is

not required to be online. Non-spinning reserves are supplied by fast start units, such as

fast gas turbine generators, which ramp to their set operating point within a few minutes

when they are called to respond. The purpose of replacement reserve is to replace spinning

and non-spinning reserve when they are exhausted to mitigate contingency, within thirty

minutes after a contingency occurs, to help the system to achieve its required reliable op-

erating state, i.e.,N-1 state. In the unit commitment problem, presented in (3.13)-(3.31),

only spinning and non-spinning reserve requirements are considered. The reserve require-

ments for the unit commitment problem is the sum of5% of demand supplied by hydro

generators, and7% of demand supplied by non-hydro units or the single largest contin-

gency, whichever is greater. It is assumed that at least50% of total required reserves will

be supplied by spinning reserves, and the rest will be supplied by non-spinning reserves.

This assumption is in line with California independent system operator’s guidelines for

spinning reserve and non-spinning reserve [59].

3.6 Day-ahead Unit Commitment Procedure in Realistic Setting

The SCUC problem presented in Section 3.5 is a complex problem and can be solved (in

its original form without any special solution method) onlywith smaller test systems. How-

ever, in real-life, the system size may have thousands of buses and many more branches.

To solve the SCUC problem, for these large systems, a more complex solution method is

needed. In [60], the day-ahead unit commitment procedure used at Mid-continental In-

dependent System Operator (MISO) is presented. The resultant day-ahead procedure is

reproduced in Fig. 3.1. At MISO, the day-ahead scheduling procedure is divided into four

stages: pre-processing, unit commitment, deliverabilitytest and operator review.
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Figure 3.1: Day-Ahead Unit Commitment Procedure at MISO.

In the pre-processing stage, information collected from market participants are ana-

lyzed, along with the network topology, and passed on to the unit commitment stage. In

the unit commitment stage, a SCUC problem is solved; this SCUC formulation is simple

and primarily determines the generator schedule. The network information in the SCUC

formulation is limited and mainly considers critical transmission elements. The solution of

the unit commitment stage is passed on to the deliverabilitytest stage. The deliverability

test stage is SCED problem, which determines the feasibility of the generator schedule cho-

sen in the unit commitment stage. The SCED model contains more network information

determines energy schedule, LMPs and base case power flow. The deliverability test stage

also performs the contingency analysis on the base case power flow and determines the

solution solution quality in terms ofN-1 requirements. Note that, in this case, system wide

N-1 contingency analysis is not performed; only the critical contingencies are considered

in the deliverability test. The solution obtained from the deliverability test stage is given

it to operator review stage; in this stage, the solution obtained from the deliverability test

stage is reviewed by the operator and necessary changes are made based on the solution

quality and constraint violations. If the solution obtained, from the SCUC and the SCED

problem, is not acceptable, the SCUC and the SCED problems issolved again. In many

32



cases this procedure is continued for 4-5 iteration and the resultant day-ahead solution is

passed on the day-ahead approval. The input data and the output data, obtained from the

MISO’s day-ahead market tool, is presented in Table 3.1. This information is obtained from

[60].

Table 3.1: Input Data and Output Solution from MISO’s Day-Ahead Market Tool.

- Input Data Output Solution

- Generator offers 3 Part - Day-ahead LMPs/ hour

- Load Bids fixed, price-sensitive - Cleared energy

- Virtual bids/offers (schedules/ participant/ location/ hour)

- External transactions - Physical and virtual bidders

- Transmission network - External transactions

- Scheduled outages - Unit commit schedules

- HVDC schedule

- Unit initial conditions

- Unit physical characteristics

- Loop flow assumptions

- Interface limits

- Constraints: flowgates, contingencies,

phase shifter, facility ratings

3.7 Conclusion

The AC optimal power flow problem is a nonlinear non-convex problem, which is,

in general, a complex problem to solve. To overcome this computational limitation, a

linearized AC optimal power flow problem, known as the DC optimal power flow problem

is used in many power system related studies. The benefit of using the DCOPF formulation
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over the ACOPF formulation is that it is computationally light, computationally trackable,

and can be scaled to larger size test cases with adding additional complexities. However,

the DCOPF solution may not be accurate; in literature, it is shown that the gap between

the DCOPF solution and ACOPF solution may be large and decisions based on a DCOPF

solution may not be accurate and may be infeasible.

The unit commitment problem is a classical power system scheduling problem. To

computationally track the unit commitment problem a linearized AC optimal power flow

based formulation is used in the electrical industry. The solution of the unit commitment

problem, presented in Section (3.5), is used as a input parameter for all the simulation

studies presented in this thesis.
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Chapter 4

ROBUST OPTIMIZATION

4.1 Introduction

The origin of robust optimization goes back to the early daysof modern decision the-

ories in the 1950’s [61], where it was used to analyse the worst-case scenario of several

uncertainties. In the 1970’s, Soyster [62] proposed a worst-case model for linear opti-

mization problem such that constraints are satisfied under all possible perturbations of the

model parameters. Over the years, robust optimization techniques have been used in many

areas, such as operations research [63, 64], control theory[65], logistics [66], finance [67],

medicine [68], and chemical engineering [69].

In recent years, robust optimization has gained a great dealof attention in the electrical

power system sector; for example, in [70] and [71], two-stage robust optimization tech-

niques are used for unit commitment, which deal with the datauncertainty and attempt to

find an optimal solution considering the worst-case uncertainty realization. The solution

of the robust optimization problem is guaranteed to be feasible and optimal for a defined

uncertainty set [72, 73]. Since the optimal solution is a hedge against the worst-case re-

alization, the solution is often conservative. Robust optimization may not be preferred

for many applications due to its conservative nature; however, it is in accordance with the

power industry in regards to maintaining reliability.

4.1.1 The Need of Robust Optimization

LP is a type of optimization problem with a polynomial algorithm and generally it is in

form of (4.1), where,x is a vector of decision variables such thatx ∈ R
n, cost is represented
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by c such thatc ∈ R
n, A is anm × n constraint matrix, andb ∈ R

m is the right hand side

vector of constraint matrix.

min
x

{cTx : Ax ≤ b} (4.1)

The structure of the problem, given in (4.1), is such that there arem number of con-

straints andn number of variables. The data of the problem are the collection (c, A, b)

and are collected in data matrix,D, as shown in (4.2). The dimension of this matrix is

(m+ 1) × (n+ 1).

D =







cT 0

A b






(4.2)

Note that, inD, all the parameters are fixed and known prior to solving the LPproblem.

In most of the real world LP problem all this data is not known;the uncertainty in data is

presented due to many reasons, some of them are listed below [74],

1. Prediction error- In many real-life mathematical problems, some of the data en-

tries are unknown at the time problem formulation. Therefore, when the problem

is solved, those data entries are estimated by their respective data forecasts. These

data forecasts are not exact (by the definition of forecast),which introduces the pre-

diction error. For instance, in case of day-ahead unit commitment problem, the sys-

tem demand for the next day is unknown; therefore, it is forecasted using system

demand forecasting methodologies [75]. It is well understood in the power industry

that day-ahead system demand forecast is not accurate; hence, system operators con-

sider operational reserves in day-ahead unit commitment problem to overcome this

inaccuracy and the unpredicted nature of system demand in real-time implementa-

tion.
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2. Measurement error- In some LP problems, the few parameters in the data matrix,

D, are determined based on actual data measurement. Often these measurements

are done off-line and may not be measured accurately. This introduces measurement

errors in parameter calculations and may introduce considerable uncertainty into the

LP problem solution. For instance, the susceptance of transmission lines in power

transmission network are determined based on field measurements. In many cases,

these measurements are not accurate or do not reflect the truevalue, as susceptance

of transmission line depends on weather condition and changes over time due to

operational wear and tear. Therefore, optimal power flow problems solved based on

these susceptance values may results in sub-optimal or eveninfeasible solutions.

3. Implementation error- Sometimes the decision variablesdetermined in a mathemat-

ical problem cannot be implemented exactly as they are computed. This practical

implementation issue introduces implementation errors insolution. For example,

in power system operations, the generators are scheduled and dispatched based on

day-ahead unit commitment solution. However, sometimes, due to practical issues,

generators deviate from the required set dispatch point; for instance, old generators

may not ramp up and ramp down as expected or gas turbine generators fail to produce

required power due to higher temperatures in the turbine. Inthese cases, system op-

erators needs to update the generator dispatch based on present operating conditions.

Traditionally, LP problems are solved by ignoring the data uncertainty. The results

obtained from the LP models are implemented or analyzed withsmall perturbations via

sensitivity analysis. It has been shown that even with smallperturbation of the data, the

solutions from the deterministic LP models can be suboptimal and even infeasible in many

real situations [73]. Therefore, consideration of uncertainties is critical in many practical

applications.
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4.2 Robust Optimization

In recent years, robust optimization has gained lot of attention. Robust optimization

guarantees a feasibility, as well as optimality, of a solution for any possible realization

in the modeled uncertainty set. This approach considers theworst-case realization of un-

certainty within the pre-determined uncertainty set. The benefit of robust optimization is

that it requires less probability information about uncertainty compared with the stochastic

programming approach; however, the solution obtained fromrobust optimization is gener-

ally more conservative than the solution obtained from stochastic programming approach.

Due to the conservativeness of robust optimization over stochastic programming, robust

optimization has recently become more attractive as a mechanism to model uncertainty

[76, 74, 77] in applications with high reliability requirements.

In addition, ensuring reliability and obtaining economically robust solutions are the

primary concerns in the power systems sector. Little work has been done to examine the

benefits of robust optimization in the electric power industry. Recently, more attention

has been given to the application of robust optimization in the power systems sector by

[71, 70, 78].

The generic form of deterministic MIP problem is presented in (4.3)-(4.8), where,x

is a set of integer variables andy is a set of continuous variables. Other parameters, such

asA, a, B, b, c, E, e, F, f,H, h, are data or parameters. The solution obtained from this

MIP formulation is optimal/feasible only for the fixed values associated with parameters

A, a, B, b, c, E, e, F, f,H, h. The basic topology control model, used in research, is a MIP

problem. This can be represented in generic form as shown in (4.3)-(4.8), where, variable

x represents the status of transmission line, i.e., line in service or line out of service, and

variabley represents the set of other continuous variables, such as generator dispatch, line

flows, and bus angles.
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min
x,y

cTx+ bTy (4.3)

s.t. Fx ≤ f (4.4)

Hy ≤ h (4.5)

Ax+By ≤ a (4.6)

Ey = e (4.7)

x ∈ {0, 1} (4.8)

The objective of robust optimization problem is to determine the optimal solution con-

sidering the worst-case outcome under the assumed uncertainty set. The generic form of

robust optimization problem is given in (4.9)-(4.14), which is a two-stage optimization

problem. The first stage of the problem is to determine the solution associated with integer

variables which are typically referred as design decisions; the second stage is to find the

worst-case cost or worst-case realization of the continuous variable,y, associated with the

integer solution obtained in the previous stage. Traditionally, two-stage robust optimization

is actually modeled as a three-stage problem with a middle stage of uncertainty scenario

selection, as shown in (4.9)-(4.14). The formulation is attempting to determine an optimal

solution of the design and operational cost against the worst-case uncertainty realization.

The solution of the robust optimization problem is guaranteed optimal for a pre-defined

uncertainty set [71, 70].

In (4.9), the termy(d) is used to emphasize the dependency of continuous variabley

on the uncertainty,d. The first minimization part of (4.9) minimizes the cost associated

with the integer solution. The later part of (4.9), the max-min formulation, known as the

evaluation part of robust structure, determines the worst-case cost of decision taken in first

part of minimization problem. The evaluation part of the robust formulation is divided into

two parts, which makes the entire robust optimization problem as a three-stage optimization
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problem as shown in (4.9)-(4.14). In (4.9), the evaluation part of the robust formulation,

i.e., max-min part of (4.9), is known as a robust counterpartof the robust optimization

problem.

min
x∈X

(

cTx+max
d∈D

min
y

bTy(d)

)

(4.9)

s.t. Fx ≤ f (4.10)

Hy(d) ≤ h (4.11)

Ax+By(d) ≤ a (4.12)

Ey(d) = e (4.13)

x ∈ {0, 1} (4.14)

Traditionally, for robust optimization problems, the following assumptions are made

prior to solving the problem, which are cited in [74].

1. All the entries in the first-stage decision variables are “here and now” decisions,

which should get specific numerical values as a result of solving the problem, and

before the actual data “reveals itself”. The second-stage variables are “wait and see”

decisions, which will be determined when the data realization is revealed. This as-

sumption indicates that the first-stage solution of the robust optimization problem

should be a fixed number/vector, which will be optimal and feasible to the entire

uncertainty set with the adaptive second-stage solutions.

2. The decision maker is fully responsible for consequencesof the decisions to be made

when, and only when, the actual data is within the unspecifieduncertainty set. This

assumption indicates that the solution is guaranteed to be “robust” only to the uncer-

tainties modeled within the uncertainty set.
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3. The constraints in robust formulation are “hard”- we cannot tolerate violations of

constraints, even small ones, when the data is within the uncertainty set. This as-

sumption ensures the robustness property of robust optimization problem by enforc-

ing all the constraints and not allowing any relaxations on aconstraint level.

4.2.1 Uncertainty Modeling

Uncertainty modeling is a key part of robust optimization. In [70], polyhedral uncer-

tainty sets are used to define demand uncertainties. System demand uncertainty, in [70], is

modeled assuming that the system load has an upper, as well asa lower bound, and that the

system-wide aggregate load has an upper bound, as shown in (4.15). Similar uncertainty

set definition is used [71].

D = {d ∈ R
Nd :

∑

i∈Nd

|di − dfixi |

d̂i
≤ ∆, di ∈ [di − d̂i, di + d̂i], ∀i ∈ Nd} (4.15)

In (4.15), the set of nodes with uncertain demand is represented byNd, d
fix
i represents

the estimated or expected demand,di represents the realization in demand, the maximum

deviation in demand at nodei is represented by parameterd̂i The total deviation in demand

is also bounded by parameter∆.

In Chapter 6-7 , a simplified uncertainty model is used to represent demand uncertainty.

The polyhedral uncertainty set is presented in (6.1); if desired, a more complex polyhedral

uncertainty sets can be used instead, as in [71].

D = {d ∈ R
n : dfixn D−

n ≤ dn ≤ dfixn D+
n , ∀n} (4.16)

In this uncertainty set, the system demand is bounded by its pre-determined lower and

upper limits. The uncertainty description used in (4.16) ismore conservative than the
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uncertainty sets used in [70] and [71]. The size of the uncertainty set is defined by the pa-

rametersD+
n andD−

n . WhenD+
n andD−

n = 1, the uncertainty is zero andD is a singleton,

i.e.,dn = dfixn . WhenD−
n ≤ 1 andD+

n ≥ 1, the uncertainty set is a polyhedron and its size

is defined by the values ofD+
n andD−

n .

Similarly, wind uncertainty is modeled as shown in (4.17). Renewable resources (in

this case, wind generation),Pw, are assumed to vary within these pre-determined lower

and upper limits, and the size of uncertainty set depends on the parametersD−
w andD+

w .

W = {P ∈ R
w : P fix

w D−
w ≤ Pw ≤ P fix

w D+
w , ∀w} (4.17)

4.3 Comparison Between Robust Optimization and Stochastic Optimization

Uncertainty is an important factor to be considered in the decision making processes.

In traditional applications, the uncertainties were ignored or simplified due to computa-

tional difficulties. With the advance of the computational power, there are different ways

to incorporate uncertainties in decision processes.

Stochastic programming has been one common approach to facilitate the decision pro-

cesses with uncertainties. It typically assumes probability distributions for uncertain pa-

rameters, or incorporates a large number of scenarios, which leads to computationally

challenging large scale optimization problems. In stochastic programming formulations,

the objective is typically optimizing over the expectationover the uncertain parameters.

The feasibility of the solutions is modeled either to be feasible to all scenarios or with

probability guarantees. While it is generally difficult to know the exact distribution of the

random parameters, sample based methods are popular in the stochastic programming lit-

erature. To achieve high probability guarantees, the sample size is typically large and leads

to computational challenges of the stochastic programmingapproaches.

In (4.18), a generic form of stochastic optimization problem with probability constraints
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is presented, where the uncertainty in optimization framework follows the probability dis-

tribution, whenǫ ≪ 1, the distribution of data(c, A, b) is represented byP . In simple

cases, these uncertainties are modeled with known probability distribution functions; how-

ever, in more realistic cases, the probability distribution function is partially know. This

may cause a problem in (4.18) such that the partial distribution of P is known andP be-

longs to a given familyP of probability distributions on the space of the data(c, A, b). In

this situations, the accuracy of stochastic optimization problem depends on the availabil-

ity of possible scenarios and modeling details. If all the possible scenarios are modeled

in stochastic framework, the optimization problem become cumbersome and may not be

solvable. Therefore, there is a tradeoff between the numberof scenarios modeled and the

computational time/trackability. Another tradeoff is between the quality of stochastic so-

lution and number of scenarios under consideration. The solution quality of stochastic

optimization problem is directly related to number of scenarios under consideration. The

primary barrier to stochastic programming is the tradeoff between the computational chal-

lenge and the quality of the solution; to get a more accurate solution, it would be preferable

to represent additional uncertainties, but then this increases the model complexity, which

makes it more difficult to obtain a quality solution.

min
x,t

{t : Prob(c,A,b)∼P{c
Tx ≤ t & Ax ≤ b} ≥ 1− ǫ, ∀P ∈ P} (4.18)

The robust optimization has gained substantial attention in recent years [71, 70, 78].

This approach is attractive in many aspects over stochasticoptimization approach for the

problems with high reliability requirements. The main benefit of robust optimization is

that it requires moderate information about underlying uncertainties, such as range of un-

certainty, type of uncertainty. The robust framework is flexible enough to model each type

and size of uncertainty independently, as well as simultaneously. Robust optimization does
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not requires probabilistic information about the uncertainty; the solution obtained from ro-

bust formulation is guaranteed to be optimal for the entire uncertainty set. Therefore, robust

optimization modeling approach is favorable for the electric power sector where ensuring

reliability is crucial. Furthermore, robust optimizationrequires less knowledge concerning

the probability distribution as compared to stochastic programming and the computational

complexity for robust optimization is typically smaller. In robust optimization, instead of

assuming explicitly a probability distribution of uncertainty parameters, an uncertainty set

is predetermined to cover the possible realizations. A solution model is robust if it is fea-

sible for all the possible scenarios in the uncertainty set and is robust if it is close to the

optimal solution for all the scenarios in the uncertainty set.

Smaller uncertainties can be analyzed by performing a sensitivity analysis [76]. The

sensitivity analysis is a tool to analyze the stability properties of an already found solution;

there are many application, in literature, which are based on sensitivity analysis to deter-

mine the solution quality/robustness. This approach has been used in many system control

related problems; however, sensitivity analysis solutiondoes not give guarantees associated

with quality of solution and its effectiveness; plus, sensitivity analysis does not hold, if the

expected uncertainty is relatively large. Therefore, implementation of solution sensitivity

based methods are limited.

4.4 Conclusion

Uncertainty analysis plays an important role in decision making processes. By ignoring

the uncertainty, a decision can be sub-optimal, or even infeasible. Stochastic optimization

has been one common approach to incorporate uncertainties in decision making process.

This research focuses on robust optimization to understandand model the uncertainties

in the decision making process. The solution obtained from robust optimization problem

is guaranteed optimal/feasible for the entire uncertaintyset. However, robust optimization
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problems are computationally complex and require special solution techniques to solve the

problem.

In recent years, robust optimization has gained attention in the electrical power system

community. Robust optimization, would be suitable for power system related problems,

as ensuring reliability and obtaining robust solutions areprimary concerns in the power

systems sector. However, little work has been done to examine the benefits of robust opti-

mization in the electric power industry.
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Chapter 5

OVERVIEW OF SYSTEM STABILITY STUDIES

5.1 Introduction

Power system stability is considered one of the important problems in power system

operations. Power system stability has been studied since the 1920’s, [79]. In the past,

many blackouts has been caused by power system instability,underlining the importance

of power system stability studies. In literature, transient instability has been considered

a dominant stability problem. However, with increased number of generators and inter-

connected system, other stability studies, such as frequency stability, voltage stability, etc.,

have also gained attention in recent years.

5.1.1 Need of Stability Studies with Topology Control

In [1], the power system stability is defined as “power systemstability is the ability

of an electric power system, for a given initial operating condition, to regain a state of

operating equilibrium after being subjected to a physical disturbance, with most system

variables bounded so that practically the entire system remains intact”. This definition

of power system stability motivates the need to check the system stability with topology

control.

Topology control algorithms, presented in literature, areeither based on ACOPF or

DCOPF [21, 18, 14, 23, 80, 81, 51, 82]. However, in an optimization framework, there

is no systematic way to insure system stability with topology control. In prior literature,

topology control actions combined with stability constraints are proposed [83, 84], but

these methodologies were never tested on realistic test cases. Therefore, solution obtained
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from topology control algorithms must be tested to insure that the topology control action

will not cause cascading events, or even a blackout.

5.2 Overview of Stability Studies

Power system stability may be broadly defined as the propertyof a power system that

enables it to remain in a state of operating equilibrium under normal operating conditions

and to regain an acceptable state of equilibrium after beingsubjected to a disturbance [85].

Under steady state conditions, there is equilibrium between input mechanical torque and

output electrical torque of each machine, and the speed remains constant. If the system is

perturbed, this equilibrium is upset, resulting in acceleration or deceleration of the rotors

of the machines [86].

In an interconnected power system, the rotor angle stability of each synchronous ma-

chine defines its ability to restore equilibrium. Renewableresources, such as wind and so-

lar, are inherently asynchronous in nature, as they do not have any rotating mass or inertia;

they change the system dynamics with respect to the interaction of synchronous machine

rotors among themselves. The mechanism associated with generation of electricity from

wind and solar resources, together with their interface with the bulk power, contributes to

change in system dynamics. At the same time, implementationof topology control for

power system operation makes the power system stability studies critical. In [1], different

stability studies are recommended for power system operation; they are classified based on

nature, type of disturbance, as well as time span under consideration. Typically, stability

studies are classified into three different categories: rotor angle stability, frequency stabil-

ity, and voltage stability, as shown in Fig. 5.1. In this thesis, all three stability studies are

considered to study the effect of topology control action onsystem stability/reliability.
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Figure 5.1: Classification of Power System Stability [1].

The mechanism by which interconnected synchronous machines maintain synchronism

with one another is through restoring forces, which act whenever there are forces tending to

accelerate or decelerate one or more machines with respect to other machines. The change

in electrical torque of a synchronous machine following a perturbation can be resolved into

two components [85]: (a) synchronizing torque component, which is in phase with the rotor

angle perturbation, (b) damping torque component, which isin phase with the rotor speed

deviation.

System stability depends on the existence of both components of torque for each of

the synchronous machines. Lack of sufficient synchronizingtorque results in instability

through an aperiodic drift in rotor angle, while lack of sufficient damping torque results in

oscillatory torque. For convenience in analysis and for gaining useful insight into the nature

of stability problems, rotor angle stability is further categorized into transient stability and

small signal stability.
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5.2.1 Transient Stability

Transient stability is the ability of a power system to maintain synchronism when sub-

jected to a severe disturbance such as a fault on transmission facilities, loss of generation,

or loss of a large load. The system response to such disturbances involves large excursions

of generator rotor angles, power flows, bus voltages and other system variables. The re-

sulting system response is influenced by the nonlinear characteristics of the power system.

If the resulting angular sepa-ration between the machines in the system remains within

certain bounds, the system maintains synchronism. Transient stability depends on both the

initial operating state of the system and the severity of thedisturbance. Instability is usually

caused due to insufficient synchronizing torque and resultsin aperiodic angular separation.

The time frame of interest in transient stability studies isusually3 to 5 seconds of the initial

disturbance [85]. In a synchronous machine, if the rotor speed increases due to a distur-

bance, it causes a corresponding increase in rotor angle also. This increase in rotor angle

results in an increase in electrical load on the generator. This load increase provides a syn-

chronizing torque to the rotor and helps to bring the rotor back to synchronism. In the case

of asynchronously connected wind generators, such synchronizing torque is not available to

the rotor after a disturbance. Therefore, the transient stability of a system with appreciable

wind resources is markedly different from a system with negligible wind resources.

5.2.2 Small Signal Stability

Small signal stability is the ability of the power system to maintain synchronism under

small disturbances, which occur continually on the system because of small variations in

loads and generations. The disturbances are considered sufficiently small for linearization

of system equations to be permissible for purposes of analysis. Instability that may result

can be of two forms: (i) steady increase in rotor angle due to lack of sufficient synchro-
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nizing torque, or (ii) rotor oscillations of increasing amplitude due to lack of sufficient

damping torque. The nature of system response to small disturbances depends on a number

of factors including the initial operating conditions, thetransmission system strength, and

the type of generator excitation controls used [85].

In large power systems, the small-signal stability problemcan be either local or global

in nature. Local plant mode oscillations are associated with rotor angle oscillations of a

single generator or a single plant against the rest of the system. Local problems may also

be associated with oscillations between the rotors of a few generators close to each other.

These oscillations have frequencies in the range of0.7 to 2.0Hz [85]. On the other hand,

global small-signal stability problems are caused by interactions among large groups of

generators and have widespread effects. They involve oscillations of a group of genera-

tors in one area swinging against a group of generators in another area. Such inter-area

oscillations have frequencies in the range of0.1 to 0.7Hz [85].

5.2.3 Frequency Stability

Frequency stability is the ability of a power system to maintain steady frequency under a

severe system upset resulting in a significant imbalance between generation and load caused

by sudden loss of generation, contingency, implementationof topology control action, etc.

The frequency stability of the system depends on the abilityto maintain/restore equilibrium

between system generation and load, with minimum unintentional loss of load. Instabil-

ity that may result occurs in the form of sustained frequencyswings leading to tripping of

generating units and/or loads. Generally, frequency stability problems are associated with

inadequacies in equipment responses, poor coordination ofcontrol and protection equip-

ment, or insufficient generation reserve [85]. The timescale for frequency stability varies

from fraction of seconds to several minutes.
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5.2.4 Voltage Stability

Voltage stability refers to the ability of a power system to maintain steady voltages at

all buses in the system after being subjected to a disturbance from a given initial operat-

ing condition [85]. It depends on the ability to maintain/restore equilibrium between load

demand and load supply from the power system. Instability that may result occurs in the

form of a progressive fall or rise of voltages of some buses. Apossible outcome of voltage

instability is loss of load in an area, or tripping of transmission lines and other elements by

their protective systems leading to cascading outages [85].

5.3 Generator Modeling

5.3.1 Traditional Generators

In this research, stability studies are performed on IEEE-118 bus test case is given in

[87]; however, the generation information for this test system is not available. Therefore,

the generator mix of reliability test system1996 (RTS) is used to create generator informa-

tion for the IEEE-118 bus test case [87]. There are a total71 conventional generators, and

9 wind injection locations.

The dynamic data for the IEEE-118 bus test case is not available; therefore, generator

information from generators in the eastern interconnection, provided by Tennessee Valley

Authority (TVA), are used to generate dynamic data. In this thesis, the detail listing of

generator type and associated dynamic models, are presented in Table 5.1. The detail

information about these dynamic models are given in PSLF manual [88].
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Table 5.1: Traditional Generator Dynamic Model Information.

Generator TVA Generator Excitor Governor

Type Reference Model Model Model

U12 343003-5 GENROU SEXS IEEEG1

U20 343003-7 GENROU SEXS IEEEG1

U50 505476-1 GENSAL IEEET1 HYGOV

U76 349108-1 GENROU ESDC1A IEEEG1

U100 251939-1 GENROU ESST4B TGOV1

U155 383644-4 GENROU IEEET1 IEEEG1

U197 315037-1 GENROU ESST4B GGOV1

U350 304869-1S GENROU IEEET1 IEEEG1

U400 256339-2 GENROU EXST1 –

5.3.2 Full Converter Wind Turbine Generator (Type 4)

The IEEE-118 bus test case, used in this thesis, consists of9 wind injection locations.

It is assumed that all the wind generators are Type-4 wind generators.

The Type-4 design of wind turbine generator uses a conventional synchronous generator

with a DC field or a permanent magnet to provide excitation. The advantage of this category

of wind machine is the gearless design, since the generator is directly connected to the

turbine and rotates at the same speed as that of turbine [89].The generator is connected to

the network through a back-to-back frequency converter, which completely decouples the

generator from the network. Through this converter, the electrical output of the generator

can be converted to system frequency over a wide range of electrical frequencies of the

generator, enabling machine operation over a wide range of speeds. The schematic of the

converter driven synchronous generator based wind turbineis as shown in Fig. 5.2
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Figure 5.2: Full Converter Wind Turbine Generator (Type-4)

The dynamic data, for1.5MW individual wind generator, given in [90], are used to

model wind injection in this thesis.

5.4 Conclusion

System stability studies are critical for insuring power system reliability. The brief

overview of stability studies are presented in this chapter. Power system stability is similar

to the stability of any dynamic system, and has fundamental mathematical underpinnings.

Precise definitions of stability can be found in the literature dealing with the rigorous math-

ematical theory of stability of dynamic systems.
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Chapter 6

ROBUST CORRECTIVE TOPOLOGY CONTROL FOR SYSTEM RELIABILITY

6.1 Introduction

Even though the bulk power grid is one of the most complex systems to date, in prac-

tice, the modeling of the transmission network is simplifiedand limited attention is given

to the flexibility in the network topology. Traditionally, transmission lines are treated as

static assets, which are fixed within the network, except during times of forced outages

or maintenance. This view does not describe transmission lines as assets that operators

have the ability to control. Transmission switching has been studied since the 1980s and it

was used as a tool to overcome various situations such as voltage violations, line overloads

[2, 3, 4, 5], line losses and cost reduction [6, 7, 8], system security [9], or a combination of

these [10, 11].

Recent work has demonstrated that TC can have significant operational as well as eco-

nomic impacts on the way electrical power systems are operated today [14, 23, 91, 24]. The

concept of a dispatchable network is presented in [20]. Additionally, optimal transmission

switching using a direct current optimal power flow (DCOPF) formulation is presented in

[91] and [21]; however, these models did not implicitly enforceN-1 reliability constraints.

In [18], optimal transmission switching with anN-1 DCOPF formulation was tested on

the IEEE 118-bus test case and on the RTS 96 test case. Reference [18] also indicates that

substantial savings can be obtained by optimal transmission switching while satisfyingN-1

reliability constraints.

There has been recent development of a different transmission switching formulation,

[51], which builds on the work of on generalized line outage distribution factors, [52]. With
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the use of flow canceling transactions, [51] develops a framework that is able to capture the

changes in the topology and compares it to theB − θ formulation used in many preceding

transmission switching papers as well as in this research. This formulation is likely to

outperform theB − θ formulation when the number of monitored lines is relatively small,

something that is common practice within optimal power flow problems today.

Past literature has shown that TC can be used to improve system operations and reliabil-

ity. Such previous work has led system operators to adopt TC as a mechanism to improve

voltage profiles, transfer capacity, and even improve system reliability [28, 92, 93]. How-

ever, the adoption of TC is still limited as there is a lack of systematic TC tools. Currently,

the industry adoption and implementation of TC is based on ad-hoc methods or the opera-

tor’s past knowledge. Alternatively, transmission switching decisions can be suggested by

a mathematical decision support tool. Many factors have prevented TC from becoming a

more widespread corrective action within system operations. For instance, there have been

misconceptions that more transmission is always better than less, concerns over the switch-

ing actions’ effect on stability, impacts on circuit breakers, computational complexities of

TC algorithms, as well as additional concerns.

Corrective switching is one example of TC, which is implemented today [28]. These

methods are based on operators’ prior knowledge, as specified in [28] on page 107; such

actions may also be based on historical information. Ideally, corrective switching algo-

rithms should be solved in real-time. Once the disturbance occurs, the switching algorithm

is executed to suggest switching actions to alleviate any constraint violations. This ap-

proach is beneficial since the current operating status is known, which ensures the accuracy

of the solution. However, the challenge of real-time mechanisms is that they must be ex-

tremely fast while also ensuring AC feasibility, voltage stability, and transient stability. TC

models could be solved offline by estimating the operating state of the system. However,

deterministic offline mechanisms also have limitations since the operating state must be
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predicted prior to the disturbance. The proposed offline corrective action is, thus, suscep-

tible to its problematic reliance on perfect foresight. This rearch introduces the concept of

robust corrective TC, which presents a solution to these current challenges.

Robust optimization has gained a great deal of attention in recent years; for example

in [70], a two-stage robust optimization technique is used for unit commitment. It deals

with data uncertainty and attempts to find an optimal solution considering the worst-case

uncertainty realization. The solution of the robust optimization problem is guaranteed opti-

mal for a defined uncertainty set [72, 73]. Since the optimal solution is a hedge against the

worst-case realization, the solution is often conservative. Robust optimization may not be

preferred for many applications due to its conservative nature; however, it is in accordance

with the power industry in regards to maintaining reliability.

This research proposes the new concept of robust correctiveTC. The main idea is to use

transmission switching as a control tool to mitigate constraint violations with guaranteed

solution feasibility for a defined uncertainty set. The switching solution obtained from

the robust corrective TC formulation will work for all system states within the defined

uncertainty set. The proposed robust corrective TC tool is tested as a part of contingency

analysis, which is conducted after solving a day-ahead unitcommitment problem; however,

note that the concept of robust corrective TC is not restricted to such applications. The main

concepts discussed in this chapter are summarized below.

1. Three corrective switching methodologies are identified: real-time corrective switch-

ing, deterministic planning based corrective switching, and robust corrective switch-

ing. Real-time corrective switching is the preferred process for corrective switching,

but it requires extremely fast solution times. Thus, with existing technology, the im-

plementation of real-time corrective switching is limited. With existing technology,

deterministic planning based corrective switching can be implemented but it requires

perfect foresight regarding future operating states. Therefore, implementation of de-

56



terministic planning based corrective switching is limited. To fill the technology gap

between real-time corrective switching and deterministicplanning based corrective

switching, a robust corrective switching methodology is proposed.

2. A robust corrective TC formulation: the robust corrective switching model is a three-

stage robust optimization problem. With a pre-determined uncertainty set regarding

the nodal injections (or nodal withdrawals), the robust corrective switching model

will determine the corrective switching action that will befeasible for the entire

uncertainty set. The robust optimization model consists ofa master problem and

two subproblems. The master problem will determine the corrective switching ac-

tion and the subproblems will determine the worst-case realization of demand within

the uncertainty set (for the associated corrective switching action). The nodal in-

jection uncertainty can be due to generation uncertainty (wind/renewables), demand

uncertainty, area interchange uncertainty, as well as other causes of uncertainty. The

robust corrective switching framework will work for all these different types of un-

certainties. The detailed vision of the robust corrective switching framework as an

end-to-end process is also presented.

3. A solution technique for solving the robust corrective switching model is presented:

specifically, an iterative procedure is developed to solve the master problem and the

subproblems. The master problem is a mixed integer programming (MIP) problem

and the subproblems are reformulated into a single subproblem, which is a nonlinear

problem. This new subproblem is converted from a nonlinear problem into a MIP

problem. The proposed solution technique is tested on the IEEE 118-bus test case.

The chapter is structured as follows: a detailed framework of real-time corrective

switching, deterministic planning based corrective switching, and robust corrective switch-

ing are presented in Section 6.2. The uncertainty modeling used in this chapter is described
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in Section 6.3. The generic deterministic corrective switching formulation is given in Sec-

tion 6.4. The detailed mathematical model for robust corrective switching is given in Sec-

tion 6.5. The solution method for the corresponding problemis discussed in Section 6.6.

The IEEE 118-bus test case is used for the robust corrective switching analysis and the

results are presented in Section 6.7.

6.2 Corrective Switching Methodologies

Corrective transmission switching can be used as a control action to respond to an

event. This research proposes a robust corrective switching methodology to respond to

N-1 contingencies. This section analyzes two existing methodsto determine potential cor-

rective switching actions and compares them to the proposedrobust corrective switching

framework. Note that corrective transmission switching actions may or may not be com-

bined with generation re-dispatch. For the proposed robustcorrective switching procedure,

generation re-dispatch is taken into consideration.

6.2.1 Real-time Topology Control

The real-time TC model determines the corrective action(s)to take as a response to an

event, e.g., a contingency. The skeleton of the real-time TCscheme is shown in Fig. 6.1.

When a particular contingency occurs, the corrective switching algorithm will determine

the switching action in real-time based on the current system state. The resultant switch-

ing scheme will be tested to determine if the proposed topology is AC feasible and if the

switching action causes instability. If the solution is feasible, it is implemented.
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Figure 6.1: Real Time Topology Control Scheme.

Ideally, it is preferred to solve for the optimal switching action in real-time because

more information is known about the operating state of the grid. However, during an emer-

gency, it is paramount that a corrective action be taken as soon as possible in order to avoid

a potential blackout. Real-time corrective switching is a non-convex, nonlinear, MIP prob-

lem. Such a problem cannot be solved in real-time with available tools today. Therefore,

heuristics are necessary to generate potential solutions.There are many heuristics for trans-

mission switching that have been previously proposed in literature [80, 82, 94, 95]. These

heuristics can be used to find decent solutions faster than solving a MIP. However, there

is still the overarching concern that they may not be fast enough for practical large-scale

applications due to the extreme importance of implementinga solution as fast as possible

during an emergency. DCOPF based heuristics would still need to be checked to see if they

are AC feasible and any proposed action would need to be confirmed to not cause a stability

concern. Therefore, it is difficult to establish the successrate of such heuristics due to the

time sensitive nature of real-time corrective actions during emergency conditions. It is also

difficult to predict the solution quality of switching actions proposed by heuristics. In [11],

a real-time application of TC is proposed for an AC formulation and they have shown that

this can be solved quickly but there is still the issue of transient stability of the switching

action and the approach does not take into consideration generation re-dispatch.

Another drawback of such real-time corrective switching heuristics is that they assume
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the operating state will not change. State estimation wouldbe used to estimate the system

state when the algorithm is executed. However, the actual system state when the action

is implemented may be different than the assumed system state due to the time it takes to

run the algorithm and check for AC feasibility and system stability. While such procedures

can be adjusted to reflect multiple operational states, doing so adds additional complexity

to the algorithm, which further exposes the approach to the risk that it may not solve fast

enough. Overall, real-time TC mechanisms that rely on heuristics may be fast but there

are still practical issues that they do not take into consideration. Thus, there is a need for

TC actions that are robust against operating states in orderto increase the likelihood of

obtaining a feasible solution when implemented.

6.2.2 Deterministic Planning Based Topology Control

Today, there are special protection schemes involving corrective switching that are de-

termined based on offline analysis, [28]. The main idea of deterministic planning based

corrective switching is to determine the corrective switching action offline, e.g., in a day-

ahead or a week-ahead timeframe, and then feed this information into a real-time dynamic

security assessment tool that can determine if the switching action is feasible. For deter-

ministic planning based corrective switching, an assumption regarding the system state is

made and switching actions will be proposed in response to selected contingencies. Then,

the switching schemes will be tested for AC feasibility and system stability based on the

estimated, assumed system state(s). The benefit of such a procedure is that all of the heavy

computational work is done offline. The resultant switchingschemes are then fed into a

real-time security assessment tool that functions like a lookup table. When the particular

contingency occurs, a solution from the lookup table will beselected and tested for sys-

tem feasibility based on the real-time system states. If a feasible solution is found, it is

implemented; if a solution is not found, the operator can resort to traditional corrective
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means, such as generation re-dispatch. The schematic of thedeterministic planning based

TC scheme is shown in Fig. 6.2.
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Figure 6.2: Deterministic Planning Based Topology ControlScheme.

The benefit of a planning based corrective switching approach is that the real-time pro-

cedures are minimal, resulting in a fast implementation of the action. However, the draw-

back is that a deterministic planning based corrective switching procedure requires perfect

foresight of the system states. With a small deviation from the estimated operating state,

the switching action may cause a blackout instead of preventing a blackout. However, most

corrective switching schemes implemented in practice are developed offline [28, 92, 93].

For instance, on Page 8 of [92] it states, “Open or close circuits ... when previously doc-

umented studies have demonstrated that such circuit openings reliably relieve the specific

condition.” As a result, corrective switching is primarilylimited to unique situations where

the proper corrective action is obvious or it is already a well-known action due to the oper-

ator’s prior knowledge and experience. In the literature, there are few mathematical models

available that can be used to determine corrective switching schemes with guaranteed so-
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lution feasibility for a range of operating states. In orderto respond to this problem, robust

corrective switching is proposed.

6.2.3 Robust Corrective Topology Control

This research proposes the robust corrective switching framework as a response to the

limitations of real-time and deterministic planning basedcorrective switching. The pro-

posed robust corrective switching methodology shown in Fig. 6.3 is a combination of real-

time and planning based corrective switching methodologies. Due to robust optimization,

the proposed robust corrective switching methodology is superior to deterministic policies

with respect to solution reliability. The technology gap between real-time and deterministic

planning based corrective switching scheme is reduced by doing most of the heavy compu-

tational work offline and the guarantee of solution feasibility for a range of operating states

is achieved by developing an uncertainty set over estimatedsystem states. The uncertainty

set can be viewed as lower and upper bounds over the system parameters or a range of oper-

ating states. The TC algorithm will find the candidate switching actions based on modeled

system states (with uncertainty) and a simulated contingency. The switching solutions gen-

erated by the TC algorithm will then be tested for AC feasibility and system stability. The

resultant switching solutions will be considered as candidate switching solutions for the

corresponding contingencies and will be used in connectionwith a real-time corrective

switching algorithm. When a particular contingency occurs, the on-line dynamic security

assessment tool will test the proposed robust switching actions to determine the appropri-

ate switching action to take. This process can also be combined with previously proposed

real-time corrective switching heuristics since combining these procedures together will

increase the likelihood of finding a feasible corrective action fast enough.

The primary feature of robust corrective switching is that the solution is guaranteed

to be feasible over a wide range of operating states. The uncertainty set may consist of
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variable resources, such as generation uncertainty, wind/renewable generation uncertainty,

demand uncertainty, and area interchange uncertainty. Furthermore, the TC algorithm can

be used to generate multiple switching solutions for a particular contingency. Note that the

presented solution method is designed to determine one TC solution at a time. However,

by updating the solution method termination condition, thepresented framework can be

used to determine multiple TC solutions. Providing multiple potential corrective switching

solutions to the operator provides added flexibility. This characteristic of robust corrective

switching is critical as not all of the solutions generated by the TC algorithm may be AC

feasible or pass the stability check. But due to multiple potential switching actions gener-

ated by the TC algorithm, it is more likely that at least one ofthem will produce a feasible

operating solution.
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Figure 6.3: Robust Corrective Topology Control Scheme.

The timeline of the robust corrective switching scheme works as follows: after solving

the day-ahead unit commitment problem, the robust corrective switching algorithm will

determine the corrective switching schemes for possible contingencies. This can be seen

as a form of contingency analysis, which has been modified to include robust corrective
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switching and it checks for a robustN-1 solution. These switching actions will be tested

for AC feasibility and system stability. All of these calculations will be done offline. Once a

particular contingency occurs, the real-time dynamic security assessment tool will evaluate

the switching solution (if any) based on the real-time system states. If any feasible solution

is obtained, it will pass the possible switching actions to the operator. Next, the operator

will decide whether to implement the switching solution. The benefit of the proposed

procedure is that the robust corrective switching scheme obtained from this method does

not rely on ad-hoc methods, which enables corrective switching to be more widespread in

order to improve operations and reliability.

The robust corrective switching scheme in this research is based on a DCOPF frame-

work and it guarantees the switching solution will be feasible for any operating state mod-

eled by the uncertainty set. Since the optimal power flow (OPF) formulation is not an AC

optimal power flow (ACOPF), the proposed solution must also pass an AC feasibility test.

As a result, the guarantee that the solution is robust only holds for a DCOPF problem and

is not guaranteed for the ACOPF problem. However, by developing a robust corrective

switching formulation, we are able to improve the chances that the proposed switching

action will, indeed, be feasible as compared to deterministic corrective switching DCOPF

schemes. Typically, generation re-dispatch is required toobtain an AC feasible solution,

which is one of the primary reasons why corrective switchingschemes may be feasible for

the DCOPF but are not AC feasible. However, the proposed robust corrective switching

scheme is guaranteed to be feasible (for the DCOPF) for a widerange of operating condi-

tions; this substantially increases the chances that the chosen topology solution will have an

AC feasible solution since there are many DC solutions to start with. The proposed robust

corrective switching procedure can be seen as a mathematical program that is equivalent

to the practice used today by operators to identify candidate switching actions based on

historical studies showing the action has worked under a variety of operating conditions.
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Note that the procedure presented in Fig. 6.3 is used to determine corrective TC actions for

a single contingency. ForN different contingencies, the procedure described in Fig. 6.3

would be repeatedN times.

In robust corrective TC methodology, it is assumed that withexisting technology, the

real-time dynamic assessment tool is fast enough to evaluate the TC action such that the

TC solution can be implemented in realistic timescale. However, with larger test systems,

it is possible that the computational time required for TC solution evaluation, for real-time

application, may not be fast enough. To overcome this computational limitation modifi-

cation to robust corrective TC methodology, presented in Fig. 6.4, is proposed. In this

proposed TC solution evaluation process, after solving theoff-line process, the candidate

TC solutions are made available to real-time applications.In real-time, the real-time dy-

namic assessment tool will assess the feasibility of TC action by continuously simulating

the contingency and its associated corrective TC action with real-time system states. When

particular contingency occurs, the TC solution, evaluatedin real-time dynamic assessment

tool, is made available to operator for implementation. Thebenefit of this method is that the

time required to implement corrective TC solution is minimal. However, evaluating all pos-

sibleN-1 contingencies with associated TC solution, with real-timesystem states, might

be computationally challenging; therefore, to minimize computational burden, only critical

contingencies requiring TC action might be evaluated with real-time system states. This

proposed method is similar to the contingency analysis tool, used today in industry, which

monitors the critical contingencies, in continuous bases,with real-time system states, to

insureN-1 contingency compliance. However, it should be noted that such an approach

would limit the capability of corrective TC to mitigate contingencies, as not all the possible

N-1 contingencies are considered for real-time TC solution evaluation. Another approach,

to overcome computational limitation of real-time evaluation process, is to remove the TC

solution evaluation process with real-time system states.In this approach, the TC solution
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will be determined and tested with off-line process and implemented, in real-time, without

any evaluations. The success of such a approach heavily depends on accuracy of off-line

studies, which can be limit the implementation of corrective TC in power systems opera-

tion. Furthermore, in industry, today, most of the TC actions are determined and tested in

off-line process [96].
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Figure 6.4: Modification to Real-Time Dynamic Assessment Tool

6.3 Modeling of Demand Uncertainty

Uncertainty modeling is a key part of robust optimization. In [70] and [71], polyhedral

uncertainty sets are used to define demand uncertainties; they assume that each load has

an upper and lower bound and that the system-wide aggregate load has an upper bound.

In this research, a simplified uncertainty model is used to represent demand uncertainty.

The polyhedral uncertainty set used in this chapter is presented in (6.1); if desired, more

complex polyhedral uncertainty sets can be used instead, asin [71].

D = {d ∈ R
n : dfixn D−

n ≤ dn ≤ dfixn D+
n , ∀n} (6.1)

In this uncertainty set, the system demand is bounded by its pre-determined lower and

upper limits. The uncertainty description used in (6.1) is more conservative than the uncer-

tainty sets used in [70] and [71]. The size of the uncertaintyset is defined by the parameters
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D+
n andD−

n . WhenD+
n andD−

n = 1, the uncertainty is zero andD is a singleton, i.e.,

dn = dfixn . WhenD−
n ≤ 1 andD+

n ≥ 1, the uncertainty set is a polyhedron and its size is

defined by the values ofD+
n andD−

n .

6.4 Deterministic Topology Control

Equations (6.2)-(6.7) represent the generic form of deterministic TC, which includes

a DCOPF corrective switching formulation. In this formulation, vectorc andb are cost

vectors. The parametersA, B, E, F, , f, H, h andg represent the system data. The

system demand in this case is the forecasted demand and it is denoted by vector̄d; each

entry in d̄ represents the forecasted demand at each bus,dfixn . Deterministic corrective

switching is a MIP problem. The variablex represents the binary variable associated with

the switching action, wherex = 1 if the line is closed/in service orx = 0 if the line

is open/out of service. The continuous variabley represents all of the OPF continuous

variables, such as line currents, bus angles, and generatordispatch.

min
x,y

cTx+ bTy (6.2)

s.t. Fx ≤ f, (6.3)

Hy ≤ h, (6.4)

Ax+By ≤ g, (6.5)

Ey = d̄, (6.6)

x ∈ {0, 1} (6.7)

6.5 Robust Corrective Topology Control Formulation

In the deterministic corrective transmission switching problem, the switching action is

based on a single system state. However, in the robust TC problem, the switching action is

determined based on a range of operating states. The objective of robust TC is to find a ro-
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bust switching solution in response to a contingency while not allowing any load shedding

for any realizable load within the uncertainty set. It should be noted that demand response

can also be used as a control mechanism in response to a contingency; however, this option

is not included in this research. Furthermore, in this chapter the TC problem is modeled as

a feasibility problem; hence, vectorsc andb in (6.2) are equal to zero.

The generic form of robust TC formulation is given in (6.8)-(6.13), which is a two part

optimization problem. The first part of the problem is to find atransmission switching so-

lution and the second part is to find the worst-case cost or worst-case realization of demand

associated with the switching solution obtained in the previous stage. Robust optimiza-

tion is seen as being more conservative than stochastic optimization since it minimizes the

worst-case approach. While this is often seen as a drawback of robust optimization, this is

exactly the motivation: to create a robust, reliable corrective switching methodology.

min
x∈X

(

cTx+max
d∈D

bT y(d)

)

(6.8)

s.t. Fx ≤ f (6.9)

Hy(d) ≤ h, (6.10)

Ax+By(d) ≤ g, (6.11)

Ey(d) = d, (6.12)

x ∈ {0, 1} (6.13)

When the system demand uncertainty is zero, the TC model presented in (6.2)-(6.7) is

the same as the model given in (6.8)-(6.13). In (6.12), the term y(d) is used to emphasize

the dependency of continuous variabley on the demand uncertainty,d. The second part

of the robust formulation is further divided into two parts and results into a three-stage

optimization problem as shown in (6.14). The objective of a three stage robust problem is

to find a feasible topology under the worst-case demand. The first stage will determine the
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topology or switching action, whereas stages two and three will determine the feasibility

of the switching action for the entire uncertainty set.

min
x∈X

(

cTx+max
d∈D

min
y∈Ω(x,d)

bTy

)

(6.14)

s.t. Fx ≤ f, x ∈ {0, 1} (6.15)

The setΩ(x, d) is a set of feasible solutions for a fixed topology and demandd, which

is represented byΩ(x, d) = {y : Hy ≤ h, Ax + By ≤ g, Ey = d}. In (6.14), the

max
d∈D

min
y∈Ω(x,d)

bTy part of the problem determines the worst-case cost or demandassociated

with the switching solution (determined in the first stage) and can be combined together

into one problem by taking the dual ofmin
y∈Ω(x,d)

bTy. The resultant problem is shown in

(6.16)-(6.18).

max
d,ϕ,λ,η

λT (Ax− g)− ϕTh + ηTd (6.16)

s.t. − λTB − ϕTH + ηTE = bT , (6.17)

d ∈ D, λ ≥ 0, ϕ ≥ 0, η free (6.18)

ϕ, λ andη are dual variables of constraints (6.4), (6.5), and (6.6) respectively. In (6.16),

the termηTd is nonlinear. In [70], an outer approximation technique is used to solve this

bilinear problem. In [70], the bilinear term,ηTd, is linearized using a first order Taylor se-

ries approximation as shown in (6.19), whereL(d, η) is a linearized approximation that is

linearized acrossdj andηj . Furthermore, the resultant LP problem is solved by employing

an iterative process between the outer approximation and the rest of the evaluation prob-

lem. The benefit of this method is that it is simple and the resultant optimization problem is

a simplified LP. However, this method does not guarantee global optimality; therefore, the

solution obtained from this outer approximation method only guarantees local optimality.
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Furthermore, this approach assumes that the problem is feasible, the corrective TC problem

is a feasibility problem and, thus, it requires a global solution. Therefore, the outer approx-

imation technique is not suitable for the robust correctiveswitching problem. Hence, in

this chapter, instead of using an outer approximation method, the bilinear term is defined

by describing the extreme point of the uncertainty set.

L(d, η) = ηTj dj + (η − ηj)
Tdj + (d− dj)

Tηj (6.19)

Since the DCOPF problem is a convex problem, the new subproblem formulation pre-

sented by (6.16)-(6.18) can be reformulated into a MIP problem. By classifying all extreme

points of the polyhedron representing the uncertainty set,we can guarantee a robust solu-

tion due to the convexity of the DCOPF problem, i.e., we can guarantee that all interior

points are feasible if the robust solution is feasible for all extreme points of the polyhedron.

This reformulation allows us to solve the nonlinear problem(6.16)-(6.18) by mixed integer

programming while still being able to guarantee a global optimal solution. This reformula-

tion procedure is also used in [71]. The MIP reformulation for the polyhedron representing

the demand uncertainty is shown by (6.43)-(6.46).

The master problem is a MIP problem and represented by (6.20)-(6.21) and the sub-

problem is represented by (6.16)-(6.18).

min
x∈X

cTx (6.20)

s.t. Fx ≤ f, x ∈ {0, 1} (6.21)

The robust corrective switching formulation used in this chapter is presented in (6.23)-

(6.35), with an objective presented by (6.22). The formulation includes generator limit con-

straints (6.23)-(6.24), generator contingency ramp up andramp down constraints (6.25)-

(6.26), line limit constraints (6.27)-(6.28), transmission switching constraints (6.29)-(6.30),
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the node balance constraint (6.31), and demand uncertainty(6.32)-(6.33). The maximum

number of line switchings per solution are limited by parameter M in (6.34). In this re-

search, only one corrective line switching solution is considered to be implemented in the

post-contingency state.

min
ZK∈X

(

0 + max
d∈D

min
Pg,Pk,θn∈Ω(Zk ,d)

0

)

(6.22)

s.t.− Pg ≥ −Pmax
g ug, ∀g (6.23)

Pg ≥ Pmin
g ug, ∀g (6.24)

− Pg ≥ (−R+c
g − P uc

g ), ∀g (6.25)

Pg ≥ (−R−c
g + P uc

g ), ∀g (6.26)

− Pk ≥ −Pmax
k ZkN1k, ∀k (6.27)

Pk ≥ −Pmax
k ZkN1k, ∀k (6.28)

Pk −Bk(θn − θm) + (1− ZkN1k)Mk ≥ 0, ∀k (6.29)

Pk −Bk(θn − θm)− (1− ZkN1k)Mk ≤ 0, ∀k (6.30)
∑

δ(n)+

Pk −
∑

δ(n)−

Pk +
∑

∀g(n)

Pg = dn, ∀n (6.31)

dn ≤ dfixn D+
n , ∀n (6.32)

dn ≥ dfixn D−

n , ∀n (6.33)
∑

∀k

(1− Zk) ≤ M (6.34)

Zk ∈ {0, 1}, Pg, Pk, θn free (6.35)

The complete robust corrective switching problem is split into two parts: a master prob-

lem, and a subproblem. The master problem ismin
ZK∈X

0 with constraints represented by

(6.34)-(6.35), which determine the topology. The subproblem is a two part optimization

problem, which determines the worst-case demand for a particular topology. The first part
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of the subproblem is represented by an objectivemax
d∈D

with constraints (6.32)-(6.33), which

determines the worst-case system demand within the uncertainty set. The second part of the

subproblem is represented by the objective min
Pg,Pk,θn∈Ω(Zk ,d)

0 with constraints (6.23)-(6.31).

This second part of the subproblem is a DCOPF formulation that evaluates the feasibility

of the system demand, which is selected in the first part of thesubproblem.

The objective of the third stage’s dual is given in (6.36), whereα+
g , α

−
g ,Ω

+
g ,Ω

−
g , F

+
k , F−

k ,

S+
k , S

−

k , Ln are dual variables associated with constraints (6.23)-(6.31) respectively. When

the second stage and the third stage of the subproblem are combined together, the term

dnLn in (6.36) makes the objective nonlinear. The nonlinearity of the dual objective is

removed by restructuring the nonlinear problem into a MIP problem. The resultant sub-

problem is given in (6.37)-(6.46), where the dual formulation of the third stage subproblem

is combined with the demand uncertainty.

max −
∑

∀g

Pmax
g ugα

+
g +

∑

∀g

Pmin
g ugα

−

g (6.36)

+
∑

∀g

(−R+c
g − P uc

g )Ω+
g +

∑

∀g

(−R−c
g + P uc

g )Ω−

g

−
∑

∀k

Pmax
k ZkN1k(F

+
k + F−

k ) +
∑

∀n

dnLn

−
∑

∀k

(1− ZkN1k)Mk(S
+
k + S−

k )

A big-M formulation is used to represent the extreme points of the polyhedron rep-

resenting the uncertainty set. The drawback of such an approach is that it causes a poor

relaxation. To overcome this problem, CPLEX’s indicator constraint modeling approach is

used to model (6.43)-(6.47).
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max −
∑

∀g

Pmax
g ugα

+
g +

∑

∀g

Pmin
g ugα

−

g (6.37)

+
∑

∀g

(−R+c
g − P uc

g )Ω+
g +

∑

∀g

(−R−c
g + P uc

g )Ω−

g

−
∑

∀k

Pmax
k ZkN1k(F

+
k + F−

k ) +
∑

∀n

ηn

−
∑

∀k

(1− ZkN1k)Mk(S
+
k + S−

k )

s.t. − α+
g + α−

g − Ω+
g + Ω−

g + Ln = 0, ∀g (6.38)

− F+
k + F−

k + S+
k − S−

k + Ln − Lm = 0, ∀k (6.39)

−
∑

δ(n)+

BkS
+
k +

∑

δ(n)−

BkS
+
k +

∑

δ(n)+

BkS
−

k −
∑

δ(n)−

BkS
−

k = 0, ∀n (6.40)

α+
g , α

−

g ,Ω
+
g ,Ω

−

g ≥ 0, ∀g (6.41)

F+
k , F−

k , S+
k , S

−

k ≥ 0, ∀k (6.42)

ηn − Lnd
fix
n D+

n + (1−Dn)Mn ≥ 0, ∀n (6.43)

ηn − Lnd
fix
n D+

n − (1−Dn)Mn ≤ 0, ∀n (6.44)

ηn − Lnd
fix
n D−

n +DnMn ≥ 0, ∀n (6.45)

ηn − Lnd
fix
n D−

n −DnMn ≤ 0, ∀n (6.46)

Dn ∈ {0, 1} (6.47)

6.6 Solution Method for Robust Corrective Topology Control

The robust TC problem is a three-stage problem with a master problem and two sub-

problems. However, it is reformulated into a two-stage problem with a master problem

and a subproblem. The solution method proposed in this research is an iterative process

between the master problem and the subproblem. The master problem is a MIP, which de-

termines the system topology. The subproblem is a nonlinearproblem, which is converted
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into a MIP and it searches for the worst-case demand for the particular topology. For the

proposed solution method, it is assumed that the unit commitment problem is solved prior

to solving the robust corrective switching problem.

6.6.1 Initialization

The unit commitment problem is first solved with the fixed, initial topology. The solu-

tion of this unit commitment problem, the unit commitment status, the generators’ sched-

uled dispatch, and the acquired reserves, are fed into the robust TC framework. The first

step of solution method is to solve the dual problem given by (6.48), whereZk represents

the initial topology. The model presented in (6.48) is the dual of the DCOPF problem. The

dual variables of constraints (6.38)-(6.40) arePg, Pk, θn respectively. If the problem is in-

feasible, then the proposed unit commitment solution is notN-1 reliable and a cut must be

added to the master problem in the form of (6.50). The proposed approach will then search

for a robust corrective switching action that enables the solution to beN-1 compliant, if

such a solution exists.

max −
∑

∀g

Pmax
g ugα

+
g +

∑

∀g

Pmin
g ugα

−

g (6.48)

+
∑

∀g

(−R+c
g − P uc

g )Ω+
g +

∑

∀g

(−R−c
g + P uc

g )Ω−

g

−
∑

∀k

Pmax
k ZkN1k(F

+
k + F−

k ) +
∑

∀n

dnLn

−
∑

∀k

(1− ZkN1k)Mk(S
+
k + S−

k )

s.t.(6.38)− (6.42)
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6.6.2 Master Problem: Topology Selection

The master problem is a MIP problem and its objective is to determine the system

topology. The master problem contains a topology selectionformulation and combinatorial

cuts. The master problem is represented by (6.49)-(6.52). For iterationj ≥ 1,

min 0 (6.49)

s.t.1 ≤
∑

Zk,l=0

Zk +
∑

Zk,l=1

(1− Zk), ∀l ≤ j (6.50)

∑

∀k

(1− Zk) ≤ M (6.51)

Zk ∈ {0, 1} (6.52)

At each iteration, the master problem finds a feasible solution and then passesZk to the

subproblem as an input parameter. The solutionZk will be evaluated for the worst-case

scenario in the subproblem. If the master problem is infeasible, this states that all of the

possible topologies are infeasible and there is no feasibleswitching action for the defined

uncertainty set, as shown in stage 1 of Fig 6.5.

Initilization,

j=1

Master

Problem
Feasible solution?

SubproblemObjective=0?

Stop

Stop

 Add cut, j=j+1 

Yes

No

Stage 1

Stage 2

No

Yes

Figure 6.5: Flowchart for Robust Corrective Topology Control.
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6.6.3 Subproblem: Worst-case Evaluation

The objective of the subproblem is to determine the worst-case demand associated with

the topology (determined in the master problem). The subproblem is a MIP and presented

in (6.37)-(6.47). If the subproblem is feasible and the objective is equal to zero, then it

proves that, for a given topology, there is no system demand within the uncertainty set that

will produce an infeasible OPF solution. In other words, thecorresponding topology is fea-

sible for the entire uncertainty set; hence, a robust solution is obtained. On the other hand,

if the subproblem’s objective is non-zero, then the corresponding topology is infeasible

for a particular demand within the uncertainty set. Hence, that topology is discarded and

a feasibility and/or combinatorial cut is applied to the master problem in form of (6.50).

Equation (6.50) is known as a combinatorial cut, which prevents the master problem from

choosing any prior binaryZk solution that is known to be infeasible. The master problem

is solved again and the process continues till the robust solution is found or all possible

topologies are confirmed to be infeasible. The solution method for the robust TC problem

is summarized in Fig. 6.5.

6.7 Numerical Results: Demand Uncertainty

The computational study for robust corrective switching isperformed on the IEEE 118-

bus test case. The test case consists of54 generators,118 buses, and186 transmission lines.

The IEEE 118-bus test case given in [87] does not have generator information. Therefore,

generator information from the Reliability Test System-1996 [87] is used. The fuel costs

given in [23] are used to calculate generator operating costs. The basic unit commitment

model presented in [14] is adopted. A24-hour unit commitment problem is solved. The

reserve requirement for the unit commitment problem is the sum of5% of demand supplied

by hydro generators and7% of demand supplied by non-hydro units or the single largest
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contingency, whichever is greater. It is assumed that at least50% of total required reserves

will be supplied by spinning reserves and the rest will be supplied by non-spinning reserves.

This assumption is in line with CAISO’s guidelines for spinning reserve and non-spinning

reserve [59]. The hour16 solution of the unit commitment problem is used for deterministic

as well as robust corrective switching analysis. The IEEE 118-bus test case in [87] does not

have emergency transmission rating. Therefore, it is assumed that the emergency thermal

rating for the transmission elements is125% of the steady state operating limits.

6.7.1 Deterministic Corrective Switching

In the deterministic corrective switching analysis, the demand uncertainty is assumed

to be zero. The switching action is determined with the static demand levels used in the

unit commitment problem. It is observed that10 transmission contingencies (out of186)

can only be alleviated if transmission switching is combined with generation re-dispatch,

i.e., generation re-dispatch on its own cannot satisfy these 10 transmission contingencies.

The generation re-dispatch allows each unit to change within 10 minutes of its ramping

capability. This result is important because, traditionally, such contingencies are mitigated

by expensive generation re-dispatch. Moreover, these10 transmission contingencies have

multiple corrective switching actions. The ability of the corrective switching algorithm to

generate multiple solutions for a single contingency is critical from a system operations

point of view. The corrective switching formulation is based on a DC framework. There-

fore, the solution needs to be tested for AC feasibility and system stability requirements.

Hence, the probability of having at least one AC feasible andstable corrective switching

solution is higher if the corrective switching algorithm generates multiple corrective solu-

tions.

It is also observed that the solution for corrective transmission switching will not always

be ‘to open the congested line’, but frequently it will be ‘toopen a lightly loaded line’. This
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demonstrates that the commonly held assumption that congested lines are the top candidate

lines for switching is not always correct. Furthermore, such examples demonstrate the need

for systematic tools for TC.

6.7.2 Robust Corrective Switching Analysis

For robust corrective switching analysis,±14.3%, i.e., ±324.5MW , demand uncer-

tainty is assumed. For computational simplicity, the demand uncertainty is assumed only

on 50% of the system MW demand involving roughly half of the load buses. It is also

assumed that all of the system reserves are available within10 minutes and the genera-

tors are allowed to change their outputs within each generators’ 10 minutes ramp rate. Of

the 186 transmission contingencies,159 can be alleviated by dispatching reserves alone.

While corrective switching is not required for these159 contingencies, TC can still be use-

ful in response to these contingencies because it can reducethe need for a costly system

re-dispatch; furthermore, the TC algorithm provides multiple feasible switching solutions

for these159 transmission contingencies. The7 transmission contingencies listed in Table

6.1 require corrective transmission switching actions in order to avoid load shedding, i.e.,

generation re-dispatch alone was not sufficient to respond to the contingencies. Note that

these robust corrective switching solutions involve both corrective switching and genera-

tion re-dispatch.

The first column of Table 6.1 represents the transmission contingency and the second

column represents the corresponding corrective switchingactions. All7 of these transmis-

sion switching contingencies can only be alleviated if corrective transmission switching is

employed. For instance, a contingency on line111 can only be mitigated by switching line

108 or 109 combined with generation re-dispatch. No feasible solution is available with

generation re-dispatch alone due to network congestion. The switching solutions for the

other6 transmission contingencies are documented in Table 6.1.
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Table 6.1: Robust Corrective Switching Solution with Demand Uncertainty.

Number of

Line Deterministic

Contingency Switching Solution(s) Solutions

63 64 3

111 108, 109 163

115
33, 34, 35, 38, 51, 78,

165
86, 112, 121, 132, 141

116 141 151

120 132 162

148

137, 138, 139, 140, 141, 143, 153,

163157, 158, 159, 160, 161, 162, 163,

165, 166, 167, 168, 169, 173

154
139, 140, 153, 155, 157, 158, 159,

166
160, 161, 163,165, 167, 169, 173

The contingencies of line111, 115, 148, and 154 have multiple robust corrective

switching actions. Table 6.1 shows that there can be multiple switching solutions for a

single contingency. Similarly, one switching action may alleviate multiple contingencies.

For instance, the robust switching solution to open line141mitigated3 transmission contin-

gencies. This result shows the potential of robust corrective switching to generate multiple

candidate switching solutions for a real-time dynamic security assessment tool to evaluate

switching actions for real-time operations.

In the last column of Table 6.1, the number of deterministic corrective switching so-

lutions, for a particular contingency, is presented. It shows that the number of possible

deterministic corrective switching solutions is much moreas compared to the number of

robust solutions. However, the robust solutions guaranteesolution feasibility over a wide

range of operating states whereas the deterministic solutions do not guarantee solution fea-
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sibility if there is any change in the operating state. Therefore, the possibility of having a

successful corrective action with the deterministic corrective switching solutions is far less

than the potential success rates for the robust corrective switching solutions.

For a contingency on line63, with the initial topology no feasible solution is obtained

with a fixed demand. Hence, the unit commitment solution is not N-1 compliant. How-

ever, with the robust corrective switching framework, anN-1 feasible solution exists; fur-

thermore, the robust corrective switching framework is able to produce anN-1 feasible

solution that is robust against the demand uncertainty. This result is extremely important

and powerful as we have proven that TC can take a solution thatis N-1 infeasible for a

deterministic fixed demand and make itN-1 feasible even with a high level of demand

uncertainty. Indeed, the assumption that transmission switching must degrade system re-

liability is false. Furthermore, in prior research, TC has shown considerable operational

benefits and cost savings [14]. The detail analysis for cost savings, obtained from robust

corrective TC methodology, is presented in Chapter 7.

The computational time for±14.3% uncertainty set is about10 minutes per contin-

gency with a2.93 GHz, Intel i-7 processor with8 GB RAM. It is also observed that the

computational time increases with small increases in the uncertainty set. For instance, a

1% decrease in uncertainty causes a13% drop in computational time.

6.8 Numerical Results: Wind Uncertainty

In this section, robustN-1 system reliability studies with wind uncertainty are pre-

sented. For these studies the robust corrective topology control methodology, presented in

Section 6.6, are modified to account for the wind uncertainty. In this section, the wind un-

certainty is modeled as shown in (6.53). Polyhedral uncertainty sets are used to capture the

intermittency of renewable resources, as shown in (6.53); the renewable resources (in this

case, wind generation) are assumed to vary within these pre-determined lower and upper
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limits and the size of uncertainty set depends on the parametersD−
w andD+

w . Furthermore,

D−
w ≤ 1 andD+

w ≥ 1. In this analysis, the wind uncertainty is assumed to be±20%;

thereforeD−
w=0.8 andD+

w=1.2.

W = {P ∈ R
w : P fix

w D−

w ≤ Pw ≤ P fix
w D+

w , ∀w} (6.53)

In order to address the wind uncertainty, the robust corrective topology control formula-

tion is updated; the master problem is same as shown in (6.49)-(6.52) and the subproblem is

as shown in (6.54)-(6.59). In the subproblem, the wind generation is modeled as a negative

load, which is a standard practice in industry to model renewable generation. The solution

method to solve the robust corrective topology control problem, presented in Section 6.6,

is used to solve this problem.
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max −
∑

∀g

Pmax
g ugα

+
g +

∑

∀g

Pmin
g ugα

−

g (6.54)

+
∑

∀g

(−R+c
g − P uc

g )Ω+
g +

∑

∀g

(−R−c
g + P uc

g )Ω−

g

−
∑

∀k

Pmax
k ZkN1k(F

+
k + F−

k ) +
∑

∀n

ηn

−
∑

∀k

(1− ZkN1k)Mk(S
+
k + S−

k )

s.t.ηn − Ln(dn −
∑

∀w(n)

P fix
w D+

w ) + (1−Dn)Mn ≥ 0, ∀n (6.55)

ηn − Ln(dn −
∑

∀w(n)

P fix
w D+

w )− (1−Dn)Mn ≤ 0, ∀n (6.56)

ηn − Ln(dn −
∑

∀w(n)

P fix
w D−

w ) +DnMn ≥ 0, ∀n (6.57)

ηn − Ln(dn −
∑

∀w(n)

P fix
w D−

w )−DnMn ≤ 0, ∀n (6.58)

Dn ∈ {0, 1} (6.59)

(6.38)− (6.42)

In general, TC algorithms are either based on the ACOPF or theDCOPF [97, 11, 91,

98]. However, in an optimization framework, there is no systematic and highly accurate

method to insure system stability with TC. In prior literature, TC actions combined with

stability constraints are proposed [83, 84]. Furthermore,in a robust corrective TC problem,

as shown in [97], there is no simple method to insure AC feasibility of TC actions. The

robust corrective TC methodology, which is used in this chapter, is based on the DCOPF.

Therefore, the TC solution obtained from the robust corrective TC algorithm is tested for

the AC feasibility and the system stability, to ensure that the TC action will provide AC fea-

sible and stable operating point. Therefore, in this Section TC solutions, obtained from the

robust corrective TC algorithm, are tested for AC feasibility. In Section 6.9, TC solutions,
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obtained from the robust corrective TC algorithm, are considered for stability studies.

The robust corrective TC methodology for system reliability is presented in [97]. The

security constraint unit commitment solution is used as an initial operating condition for all

the studies presented in this chapter. The branch data for the IEEE-118 bus test case is given

[87]; however, the generation information for this test system is not available. Therefore,

the generator mix of reliability test system1996 is used to create generator information for

the IEEE-118 bus test case [87]. There are total71 conventional generators and9 wind

injection locations, with peak demand of4004 MW. The load profile and wind forecast is

obtained from the California Independent System Operator (CAISO) duck chart [99].

A 24 hour security constrained unit commitment (SCUC) is solvedand the SCUC so-

lution is used as a starting point for all the simulations presented in this chapter. The basic

SCUC model and the fuel costs, given in [14], are used to calculate generator operating

costs. The reserve requirements for the SCUC are modeled as sum of 5% of demand sup-

plied by conventional generators and10% of demand supplied by wind units or the single

largest contingency, whichever is greater. On top of that, at least50% of total required re-

serves will be supplied by spinning reserves and the rest will be supplied by non-spinning

reserves. A similar assumption is cited in CAISO’s guidelines for spinning reserve and

non-spinning reserve [59]. Note that the corrective TC actions may or may not be com-

bined with generator re-dispatch. However, for the robust corrective TC procedure gener-

ator re-dispatch is taken into consideration. Furthermore, in thisN-1 analysis, only one

simultaneous TC actions considered.

6.8.1 Robust N-1 Analysis

To see the effect of higher penetration of renewable resources on the system reliability,

theN-1 contingency analysis with the robust corrective TC is presented in this chapter.

The basic model and solution method is the same as [97]. For analysis purposes, the wind
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uncertainty is assumed to be20%.

The comprehensiveN-1 reliability study with the robust corrective TC for the IEEE-

118 bus test system is presented in Fig. 6.6. In this analysis5492 contingencies (generator

and transmission combined) over24 hours are considered. From this analysis, it is ob-

served that∼72.7% contingencies does not requires TC to mitigate contingencies with a

base case wind forecast and with a wind uncertainty. Initialtopology along with generation

re-dispatch is sufficient to mitigate these contingencies.With a base case wind forecast,

∼25% contingencies can be mitigated with initial topology and generation re-dispatch;

however, with a wind uncertainty, initial topology and generation re-dispatch alone is in-

sufficient to mitigate these contingencies. To mitigate these∼25% contingencies, TC along

with generation re-dispatch is required. Furthermore, for∼1.5% contingencies, with a base

case wind forecast, initial topology and generation re-dispatch is sufficient to mitigate con-

tingencies. However, in presence of wind uncertainty, these∼1.5% contingencies cannot

be mitigated with a single TC action along with generation re-dispatch. In this case, a sin-

gle TC action has shown no benefit for contingency mitigation. For∼0.8% contingencies,

with the initial topology no feasible solution is obtained with a base case wind forecast.

Hence, the unit commitment solution is notN-1 compliant. However, with a corrective TC

action along with generation re-dispatch, anN-1 feasible solution exists; furthermore, the

robust corrective TC is able to produce anN-1 feasible solution that is robust against the

wind uncertainty. This result is extremely important and powerful as we have proven that

TC can take a solution that isN-1 infeasible for a deterministic fixed wind forecast and

make itN-1 feasible even with a high level of wind uncertainty. Indeed,the assumption

that TC must degrade system reliability is false.
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72.7%
Robust solution w/ initial topology
- No need of TC action
- Generation re-dispatch 

alone is sufficient 

25%
Contingencies need RTC
- No need of TC w/ base case wind forecast
- Need TC action under uncertainty

1.5%
Contingencies does not 
have RTC solution
- Feasible solution without

TC w/ base case wind forecast
- No possible TC action

under given uncertainty

0.8%
Contingencies need TC w/ base case wind 
forecast and w/ uncertainty
- Infeasible contingencies w/ initial topology 
- TC provides feasible solution w/ base case 

wind forecast and w/ uncertainty

Figure 6.6: ComprehensiveN-1 Analysis with Robust Corrective Topology Control on the

IEEE-118 Bus Test Case.

TheN-1 analysis of the IEEE-118 bus test system with CAISO’s duck chart demand

and wind forecast is presented in Fig. 6.7. In this analysis,contingencies, which can be

mitigated by10 minute generator re-dispatch alone, are not considered andare considered

as trivial cases; these are cases that do not require corrective TC actions. Contingencies

that require a corrective TC action, along with10 minute generator re-dispatch, are con-

sidered nontrivial cases and are presented in Fig. 6.7; the bar chart in Fig. 6.7 shows the

number of nontrivial contingencies for a24 hours period. During high wind generation and

low demand periods, such as hours1-2, 13-15, and23-24, the numbers of contingencies

requiring corrective TC forN-1 reliability are much higher. In these hours, the system

cannot avoid load shedding for most of theN-1 contingencies with generator re-dispatch

alone, if the forecasted renewable output deviates by20% from its base value. Furthermore,

during these hours of operations, the system has sufficient amount of reserves to overcome
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the single largest contingency; however, due to network congestion, these reserves cannot

be delivered with the initial topology. The corrective TC actions essentially redirects the

power flow within the network so that the system reserves can be delivered to mitigate

contingencies. In this analysis, only one corrective TC action per contingency is consid-

ered. Similar conclusions are drawn with the IEEE-118 bus test system with a traditional

demand/wind profile.

The computational time for these simulations on a2.93 GHz, Intel i-7 processor with8

GB RAM computer is about5 seconds per iteration.
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Figure 6.7:N-1 Analysis with Robust Corrective Topology Control on the IEEE-118 Bus

Test Case.

6.8.2 AC Feasibility of Topology Control Solution

The robust corrective TC formulation used in [97] is based ona DC approximation.

Therefore, a corrective TC solution obtained from this algorithm must be tested for AC

feasibility. The basic AC optimal power flow (ACOPF) formulation presented in [13] is

used to check AC feasibility of the TC solutions obtained from the robust TC algorithm.
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The commercially available nonlinear solver KNITRO [100] is used to solve the AC fea-

sibility problem. The DC solution obtained from a TC algorithm, such as a generator’s

real power output, line flows, etc., are used as a starting point for the AC feasibility test.

Fig. 6.8 shows the base case bus voltages and the bus voltageswith TC action for an hour

of peak demand (i.e., hour18) with contingency of “loss of line#119”. Fig. 6.8 shows

that bus voltages do not change much with the corrective TC action; in fact, with TC, bus

voltages are closer to unity (the ideal voltage scenario) compared with its pre-contingency

state. The bus angle differences for the same base case condition and post-contingency

simulation are presented in Fig. 6.9, which shows that bus angle differences do not change

much with the proposed corrective TC action. The maximum busangle difference for this

test case is about±15 degrees, which is less than its approximate stability limitof ±30

degrees.

To check for the overall AC feasibility of the corrective TC solutions, for the IEEE-

118 bus test case with the CAISO duck chart, more than3000 TC solutions are tested.

Out of those3000 DC robust solutions,∼90% of the TC solutions, obtained from a robust

corrective switching algorithm, produce AC feasible solutions. This result is very critical

from system operations point of view, as this result fills thegap between the disconnected

DC formulation and an AC operation. Similarly, with the IEEE-118 bus test system using

traditional demand/wind profile,∼85% of robust DC TC solutions provides an AC feasible

corrective TC solution for the base case operating point. The computational time for an

AC feasibility test on a2.93 GHz, Intel i-7 processor with8 GB RAM computer is about4

seconds per contingency.
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Figure 6.9: Bus Angle Difference (in Degree) for All the Transmission Elements With and

Without Topology Control Action.
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6.9 Stability Study with Robust Corrective Topology Control Actions

In this section, different stability studies are conductedto analyze the TC solutions for

the IEEE-118 bus test system presented in Section 6.8. For discussion purposes, results

associated with the peak load hour (hour18) with base case wind forecast are presented

in this chapter. The dynamic data for the IEEE-118 bus test case is not available; there-

fore, generator information from generators in the easterninterconnection of the United

States are used to generate dynamic data. The dynamic data, for 1.5 MW individual wind

generator, given in [90], are used to model wind injection inthis analysis.

Small signal eigenvalue studies are carried out on this testcase, with SCUC dispatch

solution, for hour 18. The real part of the smallest eigenvalue obtained from this study

is ∼−112 and the real part of largest eigenvalue is∼−0.01. This study shows that all

eigenvalues are negative and lie on the left hand side of the s-plane indicating that the given

system is stable. This result shows that the given system is small signal stable and will

remain stable for small perturbations in the operating state. This analysis is carried out

using SSAT [101].

6.9.1 Generator Contingency

To demonstrate the effect of TC, on system reliability underloss of generation condi-

tion, the scenario described in Table 6.2 is simulated. The loss of wind represented by this

scenario is equivalent to loss of∼2% of total generation. Note that, in the western intercon-

nection, for many stability related studies, the worst-case scenario is the loss of two Palo

Verde nuclear units [102], which is about2% of total online generation.

The effect of TC action on system frequency is presented in Fig. 6.10. Due to the

sudden drop of wind generation, the system frequency drops below 59.8 Hz and recovers

to ∼59.88 Hz using system inertia. After implementing the line switching action, the sys-
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tem frequency improves and reaches to∼59.89 Hz. This small improvement in frequency

happens because TC action decrease the losses in the system,which can be viewed as in-

creased in generation. Att=160 sec., the generators are re-dispatched to overcome the loss

of renewable generation. After generation re-dispatch, atlast, the frequency improves and

settle downs to∼59.97 Hz. In this analysis,10 minutes ramping capability of generators

are considered and it is assumed that after each60 sec. the real power supplied by gener-

ators is available online. This additional generation is obtained from generators providing

spinning reserves.

The effect of the TC on bus voltage stability is also studied.In the above scenario,

the loss of wind on bus voltages are not significant; however,the TC alters the voltages

on buses close to line switching action. The magnitude of change in voltage is highest on

buses that are connected to the switched line.
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Figure 6.10: Effect of TC on System Frequency Under Generator Contingency.
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Table 6.2: Scenario to Study the Effect of TC on System Reliability Under Generator

Contingency

Time Event

10-12 sec. Loss of wind generation (20%)

130 sec. Topology control solution implemented (open line between Bus#65-Bus#68)

160-760 sec. Generators are dispatched based on ramping capability

Furthermore, the small signal analysis after TC and generation re-dispatch indicates that

the change in dominant poles of the system are<2%, as compared with the pre-contingency

steady state condition. This study shows that a single TC action does not affect small signal

stability of the system.

6.9.2 Transmission Contingency

In bulk power system, occurrence of transmission contingencies are relatively more

than generator contingencies. In this chapter, the effectsof TC under transmission con-

tingencies are also studied. Furthermore, the robust corrective TC algorithm can produce

multiple switching solutions for a single contingency [97]; at the same time, single TC

action can mitigate multiple contingencies. To demonstrate this feature of corrective TC,

in this chapter, the same TC action is used to mitigate generation as well as transmis-

sion contingencies. To demonstrate the effect of TC, on system reliability when there is a

transmission contingency, the scenario described in Table6.3 is simulated. Note that the

generator dispatch is kept constant and not allowed to deviate from its desired dispatch

point.
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Table 6.3: Scenario to Study the Effect of TC on System Reliability Under Transmission

Contingency

Time Event

10 sec. Transmission contingency (Loss of line between Bus#69-Bus#77)

70 sec. Topology control solution implemented (open line between Bus#65-Bus#68)

The effect of transmission contingency and its associated corrective TC action on sys-

tem frequency is shown in Fig. 6.11. Due to the transmission contingency, the system

frequency deviates and settles down after a transient decay; the maximum deviation in the

frequency due to the contingency is∼60.03 Hz. After implementation of TC action and

the transients, the system frequency settles down to60 Hz.

Fig. 6.12 shows the voltage contour plots for the pre-contingency, contingency, and

post-contingency states for a subsection of the IEEE-118 bus test system. The pre-contingency

state voltages, around the contingency affected area, are presented in Fig. 6.12-(a). In the

pre-contingency state, all the voltages are within0.95-1.05 pu and there is no congestion

within the network around the contingency affected area. However, in the contingency

state, as shown in Fig. 6.12-(b), the network flow change. This change in power flow

results in congestion of network, which affects the deliverability of resources and causes

under-voltage situation in some areas. In the post-contingency state, implementation of TC

inherently removes the congestion and improves deliverability of resources in the affected

area, as shown in Fig. 6.12-(c). Note that, in Fig. 6.12, for simplicity, only a subsection of

the IEEE-118 bus test system is shown.
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The small signal analysis after TC indicates that the changein dominant poles of the

system are<1.5%, as compared with the pre-contingency steady state condition. This

study shows that a single TC action does not affect small signal stability of the system.

Furthermore, for IEEE-118 bus test case,∼65% transmission and generation contingen-

cies with corrective TC have passed stability check and produced stable operating point. In

this analysis,∼200 transmission and generation contingencies are simulated.

6.10 Conclusion

In this chapter, three different corrective switching methodologies are presented: real-

time, deterministic planning based, and robust correctiveswitching. Real-time corrective

switching is very difficult to implement with existing technology due to a lack of computa-

tional power and the practical barriers of needing to ensureAC feasibility, voltage stability,

and transient stability. Deterministic planning based corrective switching can be solved

offline, but such an approach relies on predicting the operating state. Furthermore, the de-

terministic planning based methods cannot guarantee solution feasibility over a wide range

of system states. The proposed method of robust corrective switching fills the technol-

ogy gap between the real-time and the deterministic planning based corrective switching

methodologies. The offline mechanism of robust corrective switching generates multiple

solutions and can be implemented in real-time with the help of a real-time dynamic secu-

rity assessment tool. As a result, the proposed robust corrective switching model provides

a mathematical decision support tool that integrates TC into every day operations by being

able to guarantee robust solutions.

While deterministic corrective switching frameworks may suggest many potential switch-

ing solutions, the empirical results presented in this research show that many of these so-

lutions will be infeasible for minor changes in the operating state. In contrast, the robust

corrective switching scheme presented in this chapter guarantees solution feasibility for a
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wide range of system states, given a DCOPF formulation. In addition, the robust corrective

switching formulation demonstrates the ability of generating multiple corrective switch-

ing actions for a particular contingency. Moreover, a single resulting corrective switching

solution is capable of mitigating multiple contingencies.

Day-ahead unit commitment problems with proxy reserve requirements do not guaran-

teeN-1 feasibility. Contingency analysis is used to determine whether there are contin-

gencies that cannot be satisfied by the unit commitment solution. When this happens, unit

commitment must be resolved or the operator will employ out-of-market corrections to ob-

tain a feasibleN-1 solution. The results have shown that robust corrective TC can be used

to reduce the occurrence of contingencies that are not satisfied by the re-dispatch capabil-

ities of the unit commitment solution alone. Furthermore, the numerical results prove that

TC does not necessarily degrade system reliability; on the contrary, it can help the system

to achieveN-1 feasibility even with uncertainty.

While transmission switching exists today, it is used to a limited extent; historical in-

formation or the operators’ prior knowledge are the primarymechanisms to establish and

implement corrective switching as opposed to using a mathematical framework to identify

corrective switching actions. The electric grid is one of the most complex engineered sys-

tems to date. Relying on only prior observations to determine potential corrective switching

actions limits our capability to harness the existing flexibility in the transmission network.

Systematic procedures that are capable of capturing such complexities should be preferred

over such limited methods. Furthermore, the hardware requirements to implement TC

(circuit breakers) already exist, leaving only the need to develop the appropriate decision

support tools, which are low in cost, to obtain such benefits.
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Chapter 7

ENHANCEMENT OF DO-NOT-EXCEED LIMITS WITH ROBUST

CORRECTIVE TOPOLOGY CONTROL

In recent years, the penetration of renewable resources in electrical power systems has

increased. These renewable resources add more complexities to power system operations,

due to their intermittent nature. As a result, operators must acquire additional reserves in

order to maintain reliability. However, one persistent challenge is to determine the optimal

location of reserves and this challenge is exacerbated by the inability to predict key trans-

mission bottlenecks due to this added uncertainty. This chapter presents robust corrective

topology control as a congestion management tool to manage power flows and the asso-

ciated renewable uncertainty. The proposed day-ahead method determines the maximum

uncertainty in renewable resources in terms of do-not-exceed limits combined with correc-

tive topology control. The day-ahead topology control formulation is based on the direct

current optimal power flow; therefore, topology control solutions obtained from these al-

gorithms are tested for AC feasibility and system stability. The numerical results provided

are based on the IEEE-118 bus test case and the Tennessee Valley Authority (TVA) test

system.

7.1 Introduction

The penetration of stochastic resources (e.g., variable wind and solar power) has in-

creased in past years. These intermittent semi-dispatchable, or sometimes non-dispatchable,

resources add more complexity to power system operations. In general, in most optimal

dispatch models, conventional fossil-fuel power plants are dispatched to a fixed operating

point, known as a desired dispatch point (DDP). Furthermore, it is assumed that each con-
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ventional fossil-fuel generator will stay at its instructed fixed operating point over a speci-

fied time period. However, it is problematic to make this assumption for semi-dispatchable

renewable resources due to their inherent intermittent andunpredictable nature. Therefore,

system operators may instruct renewable power producers tostay within a desired dispatch

range as opposed assuming, within their optimization problems, that these uncertain re-

sources will operate at a fixed operating point. Within the Independent System Operator of

New England (ISONE), this dispatch range is known as a do-not-exceed (DNE) limit for in-

termittent renewable power producers. The DNE limit definesa continuous set of potential

dispatch solutions for the renewable resource and the bounds of the DNE limit are meant

to be set such that if the renewable resource stays within thespecified DNE limits (i.e., the

upper and lower bounds), then the system will remain in a secure and reliable operating

state. Such DNE limits are determined by constructing a robust optimization problem; the

DNE limits are represented by an uncertainty set, which states that the uncertain resource

can operate at any value within this continuous feasible set. Furthermore, the operator

could also determine the maximum bounds for this uncertainty set by which the system can

still absorb the variable production of the renewable resource without sacrificing system

reliability.

Robust optimization has shown promising results in recent years to address issues as-

sociated with modeling uncertainty and decision making under uncertainty. In [70], a two-

stage robust optimization technique is used to solve the unit commitment problem. Robust

optimization deals with the data uncertainty and tries to find an optimal solution consider-

ing the worst-case uncertainty realization, within the defined uncertainty set. The solution

of the robust optimization problem is guaranteed to be feasible for a pre-defined uncertainty

set [97, 72, 73]. Another way to treat uncertainty is to use stochastic programming tech-

niques; however, stochastic programming approach only provides probabilistic robustness

and a solution is robust only to the scenarios that are modeled in the stochastic framework.
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Therefore, in this paper, robust optimization techniques are used over the stochastic pro-

gramming approach, to determine DNE limits since robust optimization provides a robust

guarantee against the entire uncertainty set.

In this chapter, corrective topology control (TC) is used todetermine DNE limits for re-

newable resources. Traditionally, TC is considered as a corrective mechanism, to overcome

many power systems operational issues. In [97, 24], a detailed review of current industrial

practices for TC are presented. In [96], a comprehensive list of corrective TC actions used

at PJM are listed. In prior literature, TC has also been proposed to mitigate many power

system related issues. In [2, 3, 4, 5, 11], TC is used to overcome voltage violations and line

overloads. TC has shown benefits, to reduce line losses [6, 7,8], to improve system secu-

rity [9], and/or a combination of these [10]. TC has also shown significant improvement

in operational flexibility [97] and cost saving [14, 23, 91, 24, 20, 21]. In general, TC is a

congestion management tool; the implementation of corrective TC action alters the trans-

mission network, which changes the line flows across the branches and reduces violations

caused due to network congestion. In recent years, a number of heuristics to determine TC

actions are investigated; in [82, 51, 81], different TC heuristics are discussed in order to

improve the TC solution quality and the computational time.

TC algorithms are either based on the AC optimal power flow (ACOPF) or the DC op-

timal power flow (DCOPF) [97, 11, 91]. However, in an optimization framework, there is

no systematic and highly accurate method to insure system stability with TC. In prior liter-

ature, TC actions combined with stability constraints are proposed [83, 84]; however, these

methodologies were never tested on realistic test cases. Therefore, solutions obtained from

TC algorithms must be tested to insure that the TC action willnot cause a blackout. In [1],

different stability studies are recommended for power system operation; they are classified

based on the nature and the type of the disturbance as well as the time span under consid-

eration. Typically, stability studies are classified into three different categories: rotor angle
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stability, frequency stability, and voltage stability. Inthis chapter, all three stability studies

are considered to study the effect of corrective TC actions on system stability/reliability.

The main contributions of this chapter are listed below.

1. TC is applied to facilitate the integration of renewable resources by enhancing DNE

limits. A multistage (day-ahead and real-time) framework is proposed. In the day-

ahead operational planning stage, DNE limits are determined for the system with and

without TC. The DNE limits with TC provide the system operator more flexibility

to manage the uncertain renewable resources and the DNE limits without TC can

be used to define the trigger as to when it is necessary to implement the corrective

TC action in order to maintain system reliability. The multistage framework manages

some of the computational complexities by moving part of thecomputational process

to the day-ahead time stage and then to reconfirm the accuracyof the day-ahead

time stage solution with the real-time operating state. Theday-ahead and the real-

time based robust topology control (RTC) DNE limit procedure is novel and flexible

enough to consider different types of uncertainties, such as uncertainty in generation,

uncertainty in renewable resource, and demand uncertainty, simultaneously.

2. The RTC DNE limit problem is formulated, which is a three stage robust optimization

problem with a structured uncertainty set definition. The robust DNE limit problem

is not a standard robust optimization problem; for a standard robust optimization

problem, the uncertainty set, i.e., the DNE limit, is known prior to solving the robust

optimization problem. However, the DNE limit problem can betransformed into a

standard robust optimization problem. The DNE limit problem is then combined with

transmission topology control, which increases the the computational complexity.

3. A multistage solution method is developed to solve the RTCDNE limit problem. The

RTC DNE limit problem is transformed into a two stage problem. The uncertainty
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set, i.e., the DNE limit, for the RTC DNE limit problem is determined by an iterative

procedure. The proposed solution method for the RTC DNE limit problem requires

fewer iterations to find the solution as compared with the solution method used in

[97].

4. The RTC DNE limit problem and its associated solution method is validated on a

smaller test system, the IEEE-118 bus test case and a realistic test system, the Ten-

nessee Valley Authority (TVA) test system. The realistic results demonstrate the

benefits of the RTC on renewable integration and system operations. Limited prior

work on TC has been done for realistic systems.

5. The majority of prior work on TC does not confirm that the switching solutions are

AC feasible or does not cause instability. In this chapter a more thorough assessment

of the potential for TC by confirming whether the solutions are AC feasible and

stable. Different stability studies are carried out and theeffects of the TC actions on

system stability are presented.

The rest of the chapter is structured as follows: the robust corrective TC methodology

to determine DNE limits is described in Section 7.2. The RTC DNE limit formulation is

presented in Section 7.3. The solution method for the RTC DNElimit algorithm is pre-

sented in Section 7.4. The associated simulation results for the RTC DNE limit algorithm,

on the IEEE-118 bus test system and the TVA test system, are presented in Section 7.5.

In Section 7.6, results related to different stability studies associated with TC actions are

presented. Section 7.7 provides the conclusions and discusses potential future work.
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7.2 Do-Not-Exceed Limits: Robust Corrective Topology Control Methodology

This chapter proposes a two stage approach to determine the DNE limits, with and

without TC. The proposed methodology, shown in Fig. 7.1, is divided into two parts: a

day-ahead process and a real-time process. In the day-aheadprocess, after solving the

day-ahead security constrained unit commitment (SCUC) problem, the solution will be

used to determine DNE limits, which includes information about generator status, gen-

erator dispatch, and operational reserve. The standard SCUC procedure at Midcontinent

Independent System Operator (MISO) is presented in [60]. InFig. 7.1, after solving the

day-ahead SCUC problem, the resultant solution will be passed to the RTC DNE limit al-

gorithm. The RTC DNE limit algorithm determines the DNE limits (with and without TC).

The TC solution and associated DNE limits, obtained from theRTC DNE limit algorithm,

will be tested for AC feasibility and stability. The resultant TC solutions will be stored for

real-time use if needed. In real-time, TC actions are implemented if the renewable genera-

tion goes outside of the DNE limit without TC actions, i.e., the boundary of the DNE limits

without TC actions, define the necessary trigger as to when toimplement the TC actions.

In real-time, the DNE limits (with and without TC) will be continuously re-evaluated based

on the real-time system states and the updated renewable forecasts. If the real-time energy

management system (EMS) determines the need to implement the corrective TC action,

then a resulting signal will be passed to the operator.
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Figure 7.1: Day-ahead to real-time process for DNE limits with RTC.

The RTC DNE limit algorithm determines the DNE limits with and without corrective

TC for the specified SCUC solution. The difference in these DNE limits is caused by net-

work congestion that inhibits deliverability of reserves.The differences in the DNE limits

also identify the necessary triggers as to when to implementthe corrective TC action. If

the DNE limits, with and without TC, are smaller than the anticipated range of potential

renewable production, then the operator can rerun the SCUC to commit additional units

in order to hedge against the higher resource uncertainty. Note that, the robust DNE limit

algorithm relies on a DC approximate power flow and, thus, it does not guarantee a robust

AC power flow solution but it substantially improves the reliability of the day-ahead sched-

ule by accounting for renewable uncertainty. The resultantDNE limits and its associated

TC actions will be sent to the EMS to be used in real-time.

In real-time, the day-ahead DNE limits with and without TC are continuously evalu-

ated with real-time system states and updated renewable forecasts. Furthermore, the AC

feasibility and stability checks are also performed. If thereal-time renewable generation

crosses the DNE limits specified without TC, determined by the real-time evaluation pro-

cess, the TC solution will be passed on to the real-time EMS, for implementation. Note
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that this process is described as a two-stage (day-ahead andreal-time) process; however,

the DNE limits and RTC solutions can be updated more frequently, e.g., hour-ahead, to

create a multistage process.

One benefit of the proposed robust DNE limit process is that, in the day-ahead time-

frame, the system operator will have an estimate of the DNE limits, with and without TC. If

the day-head DNE limits are less than the expected uncertainty in the renewable generation,

the operator can update the SCUC solution at the day-ahead time stage. Currently, there

are no such systematic procedures available for day-ahead operations, which determines

the effect of renewable generation on SCUC solution [60]. Furthermore, the TC solutions

are determined in the day-ahead framework, which can be useful to improve reliability

coordination of neighboring entities. The benefit of real-time process is that the real-time

DNE limit evaluation process is computationally light, as most of the complex part of deter-

mining DNE limits with TC are performed within the day-aheadprocess. Therefore, with

the existing computational capabilities, the RTC DNE limitprocedure can be implemented.

In this chapter, the detailed formulation and associated solution method of the RTC

DNE limit algorithm are presented. Furthermore, the entireday-ahead procedure is simu-

lated and tested on two different test cases.

7.3 DNE Limits Model

In [103], a procedure to determine the DNE limits for a real-time application is pre-

sented. This procedure determines the DNE limits, without TC, based on available capacity

of conventional generators with automatic generation control (AGC) and10 minutes ahead

wind forecast. In [103], the DNE limits problem is solved after determining the real-time

economical dispatch, which includes the DDP for conventional generators. To improve

the computational time, it assumed that only conventional generators, with AGC, would

respond to the change in the wind generation, while other conventional generators would

103



maintain DDP. For real-time applications, to have a fast solution time, considering only

AGC generators to respond to wind deviations is justifiable.However, at other scheduling

time stages, assuming that most of the conventional generators will not move and cannot

move away from their DDP is not a valid assumption as there aremany changes that can

occur between look-ahead time stages and real-time (e.g., forecasts will be updated, gener-

ator availability and system topology may change). Hence, in a day-ahead or an hour-ahead

time stage, assuming only the generators with AGC over the short term ramping capabil-

ities of all the conventional generators may result in a poorsolution quality as it will not

accurately capture the quantity and locational aspect of resources. Furthermore, in [103],

a shift factor based network model is used to model line flows,which allows to monitor

subset of transmission lines while determining the DNE limits. In [103], only a handful

of critical transmission paths are monitored for the line flow violations, which simplifies

the DNE limit problem and reduces the computational time. However, this simplification

may result in inaccurate solution as change in wind and corresponding AGC injection may

cause line flow violations on unmonitored transmission lines. Therefore, to obtain a quality

solution at the day-ahead timeframe, a more complex mathematical model is proposed in

this chapter, which models renewable generation uncertainties along with a nodal optimal

power flow (OPF) structure within a robust optimization framework.

The uncertainty in renewable generation is captured by constructing a polyhedral un-

certainty set around the wind generation, as shown in (7.1) and (7.2). The size of the

uncertainty set depends onϕ−
w andϕ+

w , as shown in (7.1); by simplifying (7.1),ϕ−
w is al-

ways less than or equal to1 andϕ+
w is always greater than or equal to1. The uncertainty set

definition, used in this chapter, is defined in (7.2), where the uncertainty set,U , is defined

by variablesϕ−
w andϕ+

w . In (7.2), renewable resources (in this case, wind generation) are

assumed to vary between the lower limit,ϕ−
w , and the upper limit,ϕ+

w . A similar uncer-

tainty set definition is used in [97], which is a more conservative uncertainty set definition
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as compared with the uncertainty set definitions used in [70,72, 73, 104].

O :={ϕ−

w , ϕ
+
w ∈ R

2w : Pmin
w ≤ P fix

w ϕ−

w ≤ P fix
w , ∀w (7.1)

P fix
w ≤ P fix

w ϕ+
w ≤ Pmax

w , ∀w}

U :={Pw ∈ R
w : P fix

w ϕ−

w ≤ Pw ≤ P fix
w ϕ+

w , ∀w} (7.2)

Note that, in the RTC DNE limits problem,ϕ−
w andϕ+

w are not constant; in fact, it is

the solution of the problem, i.e., the DNE limits. Therefore, the RTC DNE limit problem is

more difficult to solve as compared with standard robust optimization problems discussed

in [97, 70, 72, 73, 104]. In [97, 70, 72, 73, 104], a robust optimization problem is solved

considering the predetermined uncertainty set; the solution obtained from these standard

optimization problems are robust against the predetermined uncertainty set. For the RTC

DNE limit problem, uncertainty sets are not constant. In fact, the objective is to determine

the uncertainty set and associated TC action that will be robust (i.e., feasible) for the entire

uncertainty. This feature makes the RTC DNE limit problem difficult to solve and demands

a complex solution methodology to solve the problem within tractable time span.

The RTC DNE limit problem is a three stage optimization problem and it is represented

by (7.3)-(7.16); the first minimization part of the RTC DNE limit problem is a MIP prob-

lem, which determines the system topology and the uncertainty set. The second part of the

RTC DNE limit problem chooses the worst-case realization ofrenewable generation from

the uncertainty set, determined based on the solution from the first part of the problem.

The last part of the RTC DNE limit problem is a power flow (PF) problem, which deter-

mines the feasibility of the worst-case realization of renewable generation, determined in

second part of the RTC DNE limit problem, with the TC action, determined in the first

stage of the RTC DNE limit problem. Furthermore, the last minimization problem, i.e.,

the PF problem, is a feasibility problem. The max-min parts of the formulation form a
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robust counterpart of the RTC DNE limit problem; when combined, they determine the

feasibility of worst-case realization of renewable generation associated with the chosen TC

solution. In this formulation, generator capacity constraints are modeled as shown in (7.4)

and (7.5). To respond to the change in the renewable generation, conventional generators’

ramping capabilities are used and are modeled as shown in (7.6) and (7.7); in this chapter,

at the day-ahead time stage, generators’10 minutes ramp up and ramp down capabilities

are considered. Transmission line flows are modeled as shownin (7.8)-(7.11). The node

balance constraints are represented by (7.12). The number of simultaneous TC actions are

controlled by constraint (7.15); in (7.15), the user definedparameter,M , controls the num-

ber of simultaneous TC actions. Furthermore, in this chapter, only one simultaneous TC

action is considered (M=1).

min
Zk,ϕ

−

w ,

ϕ+
w

(

∑

∀w

(ϕ−

w − ϕ+
w) + max

Pw

min
Pg,Pk,θn

0

)

(7.3)

s.t.− Pg ≥ −Pmax
g ug, ∀g (7.4)

Pg ≥ Pmin
g ug, ∀g (7.5)

− Pg ≥ (−R+c
g − P uc

g ), ∀g (7.6)

Pg ≥ (−R−c
g + P uc

g ), ∀g (7.7)

− Pk ≥ −Pmax
k Zk, ∀k (7.8)

Pk ≥ −Pmax
k Zk, ∀k (7.9)

Pk − Bk(θn − θm) + (1− Zk)Mk ≥ 0, ∀k = (n,m) (7.10)

Pk − Bk(θn − θm)− (1− Zk)Mk ≤ 0, ∀k = (n,m) (7.11)
∑

δ(n)+

Pk −
∑

δ(n)−

Pk +
∑

∀g(n)

Pg +
∑

∀w(n)

Pw = dn, ∀n (7.12)

Pmin
w ≤ P fix

w ϕ−

w ≤ P fix
w ≤ P fix

w ϕ+
w ≤ Pmax

w , ∀w (7.13)
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P fix
w ϕ−

w ≤ Pw ≤ P fix
w ϕ+

w , ∀w (7.14)
∑

∀k

(1− Zk) ≤ M (7.15)

Zk ∈ {0, 1} (7.16)

The RTC DNE limit model presented in (7.3)-(7.16) can be represented by a generic

robust optimization formulation as shown in (7.17)-(7.24). In a generic representation,l

represents the binary decision variable, within setL, such as TC decision variableZk. In

(7.17)-(7.24),x represents the continuous decision variables, within setX , such as un-

certainty set defining variablesϕ−
w andϕ+

w . Similarly, in (7.17)-(7.24),y represents the

continuous decision variables, within setY , such as power flow decision variablesPg, Pk,

andθn. The worst-case realization of the renewable generation, within the uncertainty set

V, is represented by variableυ. Furthermore, the size of the uncertainty setV depends on

variablex. Similarly, the size of the uncertainty setY depends on variablesv andl. The

objective cost function for the OPF problem is represented by b. In RTC DNE limit formu-

lation, the OPF problem is a feasibility problem; therefore, in (7.17), the parameterb is set

to be zero. In matrix representation, the system parametersin matrix form are represented

by A, C, E, G, H, K, Q, R, T and the system parameters in vector form are represented by

c, d, e, j, r, s.
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min
x∈X
l∈L

(f(x) + max
υ∈V(x)

min
y∈Y (υ,l)

bT y) (7.17)

s.t.Ax ≤ c (7.18)

Cl ≤ d (7.19)

Ey ≤ e (7.20)

Tx+ Rv ≤ s (7.21)

Gl + Hy ≤ j (7.22)

Qυ + Ky = r (7.23)

l ∈ {0, 1} (7.24)

The robust counterpart of the RTC DNE limit formulation, is formed by the max-min

section of the formulation, which are LP problems that can becombined into a single op-

timization problem. In [97], a detail procedure to transform a three stage robust optimiza-

tion problem into a two stage optimization is presented. In this procedure, the third stage

of the minimization problem, i.e., the OPF problem, is transformed into the dual form LP

problem and combine with the second stage maximization problem. The dual form of the

OPF problem is merged with the second stage in order to properly preserve the worst-case

scenario setting of the robust optimization problem; additional information about trans-

forming a three stage robust optimization problem into a twostage optimization problem

is presented in [70, 104, 74, 97]. The resultant two stage problem, in a generic form, is

given in (7.25)-(7.27), whereµ, λ, η are the dual variables of the constraints represented

by (7.20), (7.22) and (7.23). For additional details about transforming a three stage robust

optimization problem into a two stage robust optimization problem, refer to the Appendix.
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min
x∈X
l∈L

f(x) + max
υ,µ,
λ,η

λT (Gl − j)− µT e+ ηT (r − Qυ) (7.25)

s.t. − µTE − λTH + ηTK = bT (7.26)

µ ≥ 0, λ ≥ 0, υ ∈ V (7.27)

(7.18), (7.19), (7.21), (7.24)

In (7.25), the minimization problem, the master problem, determines the TC action and

the uncertainty set; the maximization problem, the sub-problem, determines the robustness

properties of the chose TC solution in the master problem. The sub-problem is a nonlinear

problem, due to theηTQυ term in (7.25), and can be transformed into a MIP problem using

a big-M formulation [97].

7.4 Solution Method: RTC DNE Limit Algorithm

The reformulated RTC DNE limit problem is a two-stage optimization problem: a mas-

ter problem and a sub-problem, as shown in (7.25)-(7.27). In[97], the topology selection

problem, a master problem, is a MIP problem, which is computationally inefficient, for

larger test systems. In [19], a sensitivity based greedy algorithm is derived and used to

determine TC action for real-time emergency situations; the detail study of this greedy TC

heuristic method on a large scale Polish system is presentedin [98]. In this chapter, a sen-

sitivity based rank list approach, presented in [19], is proposed over the master problem

presented (7.17)-(7.19). The rank list suggestions are based on a sensitivity analysis of an

OPF problem, as shown in (7.28)-(7.36). The rank list formulation consists of generator ca-

pacity constraint (7.29), generator ramping constraints (7.30) and (7.31), transmission line

constraints (7.32)-(7.34), and node balance constraint (7.35). The objective of rank list for-

mulation, presented by (7.28), is to maximize the demand serve considering the expected
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extreme renewable generation, i.e.,P rl
w . To determine the lower bound of DNE limitsP rl

w

is set toP fix
w ϕ−

w and to determine the upper bound of DNE limitsP rl
w is set toP fix

w ϕ+
w .

max
∑

∀n

drln (7.28)

s.t.Pmin
g ≤ P rl

g ≤ Pmax
g , ∀g (7.29)

P rl
g ≤ R+c

g + P uc
g , ∀g (7.30)

P rl
g ≥ P uc

g −R−c
g , ∀g (7.31)

P rl
k ≤ Pmax

k Zk, ∀k (7.32)

P rl
k ≥ Pmin

k Zk, ∀k (7.33)

P rl
k −Bk(θ

rl
n − θrlm) = 0, ∀k = (n,m) (7.34)

∑

δ(n)+

P rl
k −

∑

δ(n)−

P rl
k +

∑

∀g(n)

P rl
g

+
∑

∀w(n)

P rl
w = drln , ∀n (τn) (7.35)

0 ≤ drln ≤ dn, ∀n (7.36)

The rank list problem is arranged such that for a fixed initialtopology, the dual variable

of (7.35), i.e.,τn, provides information about the marginal change in the objective with

respective marginal change in the state of the transmissionline. Note that the change in

transmission line state, i.e., in service or out of service,is binary; however, the information

obtained from the rank list formulation is based marginal change in the transmission line

state. Therefore, rank list approach provides only suggestions for possible TC action and

does not guarantee the solution feasibility. However, the rank list approach is still preferred

over the MIP formulation for TC selection; as solving MIP based formulation is computa-

tionally challenging as compared with the linear programming based rank list formulation.

The rank list is generated by estimating the benefit of TC action, using (7.37), and arranging
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the possible TC actions in descending order.

σk = P rl
k (τn − τm) (7.37)

In (7.37), the benefit of TC solution is represented byσk, the line flow across the branch

is represented byP rl
k . τn andτm represent the dual variables of the node balance constraints

for nodesn andm, where noden is the “to” bus and nodem is the “from” bus for linek.

Furthermore, with the IEEE-118 bus test case, it is observedthat, with the rank list based

master problem, the number of iterations required to determine DNE limits can be reduced

by ∼80% compared with the MIP based master problem.

Note that the solution method, presented in this section, isto determine the lower bound

of the DNE limits. The same solution method can be updated to determine the upper bound

of the DNE limits; the only change would be in the uncertaintyset update section of the

solution method.

Initialization: It is assumed that the SCUC problem is solved prior to solvingthe RTC DNE

limit algorithm. The solution of SCUC problem, such as generator status and associated

dispatch, renewable generation, system demand, is used as an input parameter to the RTC

DNE limit algorithm. The detail solution method is presented in Fig. 7.2. To initialize the

RTC DNE limit algorithm assumeϕ+
w to be1 andϕ−

w to be0; furthermore, for algorithm

termination condition assume,ǫ to be very small number,Lb to be 0, andUb to be 1.

The uncertainty set is updated outside of the robust framework, as shown in Fig. 7.2. For

simplicity, it is assumed that all the renewable injectionswill vary with the same percentage

across all the renewable injection nodes. Therefore, to determine the lower bound of DNE

limits ϕ+
w is set to1 for all w and to determine the upper bound of DNE limitsϕ−

w is set to

1 for all w.
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Figure 7.2: Solution method to determine DNE limits with robust corrective TC.

Stage-1: The stage-1 problem determines the system topology, which will be evaluated

for its robustness properties in the stage-2 of this solution method. The TC solutions are

generated in form of the rank list, using (7.37). If a feasible topology is obtained from

the rank list, the resultant topology will be passed to the stage-2 problem. If the rank list

is exhausted, which indicates that there is no feasible TC action available based on the

incumbent SCUC solution and the chosen uncertainty set; therefore, at the next iteration,

the uncertainty set will be reduced.

Stage-2: The sub-problem determines the feasibility of the worst-case renewable resource

realization, for a chosen TC action and generation dispatch. The generic form of the

sub-problem formulation is presented in (7.25)-(7.27). The actual formulation of the sub-

problem is given in (7.38)-(7.48), whereα+
g , α

−
g ,Ω

+
g ,Ω

−
g , F

+
k , F−

k , S+
k , S

−

k , Ln are the dual

variables of constraints (7.4)-(7.12), respectively. Theuncertainty set is defined using a

big-M formulation, as shown in (7.42)-(7.45). TheDn is a binary variable, which is used

to evaluate extreme points of a polyhedron uncertainty set.The sub-problem chooses the

variableDn, such that it will maximize the sub-problem objective function (7.38).
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max
∑

∀g

(ug(−Pmax
g α+

g + Pmin
g α−

g )− (R+c
g + P uc

g )Ω+
g

+ (−R−c
g + P uc

g )Ω−

g )−
∑

∀k

((Pmax
k Zk(F

+
k + F−

k )

+ (1− Zk)Mk(S
+
k + S−

k )) +
∑

∀n

(Lndn − ηn) (7.38)

s.t. − α+
g + α−

g − Ω+
g + Ω−

g + Ln = 0, ∀g (7.39)

− F+
k + F−

k + S+
k − S−

k + Ln − Lm = 0, ∀k (7.40)
∑

δ(n)+

Bk(S
−

k − S+
k ) +

∑

δ(n)−

Bk(S
+
k − S−

k ) = 0, ∀n (7.41)

ηn − Ln

∑

∀w(n)

P fix
w ϕ+

w + (1−Dn)Mn ≥ 0, ∀n (7.42)

ηn − Ln

∑

∀w(n)

P fix
w ϕ+

w − (1−Dn)Mn ≤ 0, ∀n (7.43)

ηn − Ln

∑

∀w(n)

P fix
w ϕ−

w +DnMn ≥ 0, ∀n (7.44)

ηn − Ln

∑

∀w(n)

P fix
w ϕ−

w −DnMn ≤ 0, ∀n (7.45)

α+
g , α

−

g ,Ω
+
g ,Ω

−

g ≥ 0, ∀g (7.46)

F+
k , F−

k , S+
k , S

−

k ≥ 0, ∀k (7.47)

Dn ∈ {0, 1} (7.48)

After solving the sub-problem, if a robust solution is obtained, i.e., the objective of the

sub-problem is equals to zero, which indicates that the chosen TC solution satisfies the

entire uncertainty set, and in the next iteration the uncertainty set will be increased. If the

sub-problem failed to obtain a robust solution, i.e., the objective of the sub-problem is not

equal to zero, the resultant TC action will be discarded and the next TC action listed in the

rank list will be tested.

113



The benefit of this solution method is that the stage-2 problem is independent of the

stage-1 problem. Stage-1 of the solution method determinesthe entire rank list, for a

given renewable generation, based on a LP based rank list formulation. After stage-1, each

suggested TC action in the rank list can be tested sequentially, as shown in Fig. 7.2, or

can be distributed to multiple computer/cores at the same time. Therefore, the sub-problem

can be parallelized for solution speedup, which will help with scalability. However, in

this chapter, the solution method is not parallelized and the numerical results, presented in

Section 7.5, are based on sequential implementation of algorithm.

Uncertainty set update: To simplify the RTC DNE limit problem, in this chapter, it is as-

sumed that all the renewable generation deviates uniformlyover all the renewable injection

nodes. We acknowledge that such an approximation is conservative; however, it simplifies

the problem significantly. The future work will involve eliminating this approximation and

developing a more accurate solution method.

If the uncertainty set is updated due to the exhaustion of therank list, this indicates

that there is no available TC action that could satisfy the given uncertainty set. Therefore,

in this case, the lower bound of the uncertainty set, i.e.,ϕ−
w , should be increased using

(7.49) and the upper of the uncertainty set, i.e.,ϕ+
w , remains the same. Furthermore, the

terminational conditions are also updated; the lower bound, Lb, is updated to newϕ−
w and

the upper bound,Ub, remains the same.

If the uncertainty set is updated due to the robust solution obtained from stage-2, which

indicates that there is a possible TC action that could satisfy the given uncertainty set.

Therefore, in this case, the lower bound of the uncertainty set, i.e.,ϕ−
w , should be reduced

using (7.50) and the upper of the uncertainty set, i.e.,ϕ+
w , remains the same. Furthermore,

the terminational conditions are also updated; the new upper bound,Ub, is equals toLb
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(previous iteration) and the new lower bound,Lb, is equals to newϕ−
w .

ϕ−

w = Lb + δ(Ub − Lb) (7.49)

ϕ−

w = Lb − δ(Ub − Lb) (7.50)

Note that optimal determination ofδ, in each iteration, is outside the scope of this research

and is an interesting future research direction. However, in this chapter, the parameterδ is

set to 0.5.

Algorithm termination: After updating the lower and the upper bound of termination con-

dition, i.e.,Lb andUb respectively, if the difference between theLb andUb is less than the

termination condition,ǫ, terminate the algorithm and the resultant robust uncertainty set

along with the associated TC action will be the solution for the RTC DNE limit problem.

Furthermore, after updating the lower and the upper bounds of the termination condition,

if the difference between theLb andUb is more than the termination condition,ǫ, continue

the solution method and solve the stage-1 problem with an updated uncertainty set.

Note that the TC actions are controlled by the stage-1 problem; to determine the DNE

limits without TC, the stage-1 problem should be eliminatedfrom the solution method. The

rank list approach should be removed and the initial topology should be passed on to the

stage-2 problem.

7.5 Numerical Results: Robust DNE Limits

In this section, the RTC DNE limit algorithm is tested on the IEEE-118 bus test case

and the TVA test system.

7.5.1 IEEE-118 Bus Test Case

The branch data for the IEEE-118 bus test case is given [87]; however, the generation

information for this test system is not available. Therefore, the generator mix of reliability
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test system1996 (RTS) is used to create generator information for the IEEE-118 bus test

case [87]. There are total71 conventional generators and9 wind injection locations, with

peak demand of4004MW . The load profile and wind forecast is obtained from California

Independent System Operator (CAISO) duck chart [99].

A 24 hour SCUC problem is solved and the SCUC solution is used as a starting point

for all the simulations presented in this chapter. The basicSCUC model and the fuel costs,

given in [14], are used to calculate generator operating costs. The reserve requirements

for the SCUC are modeled as sum of5% of demand supplied by conventional generators

and10% of demand supplied by wind units or the single largest contingency, whichever is

greater. On top of that, at least50% of total required reserves will be supplied by spinning

reserves and the rest will be supplied by non-spinning reserves. A similar assumption is

cited in CAISO’s guidelines for spinning reserve and non-spinning reserve [59].

The DNE limits for the IEEE-118 bus test case, with and without corrective TC actions,

are presented in Fig. 7.3. The total penetration wind resources, on MW generation, is about

22%. In this chapter, conventional generators’ 10 minutes ramping capabilities are used to

respond to intermittencies in renewable generation. In Fig. 7.3, the bar chart shows the

amount of available reserve generation that cannot be used to increase the DNE limits. Fig.

7.3 shows that, with corrective TC, during some of the low wind periods, such as hours

1,2, 7-10, 18 and19, the lower bound of DNE limit with TC can be increased by∼18%

as compared with DNE limits without corrective TC. In this case, due to higher congestion

in initial topology, the generators ramping capabilities are not utilized to its limit. With

TC, the congestion within the system is reduced, which results in an increase in transfer

capability across the network and subsequent DNE limits. Inhours,3-6, 11-17 and20-24,

the lower bound of DNE limit obtained with and without TC are same; for these hours, the

DNE limits are bounded by the availability of reserves. In this case, the initial topology is

sufficient to deploy reserves in event of drop of renewable generation. However, in these
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cases, robust DNE limits algorithm also suggests multiple TC solutions, which gives more

options to system operator to choose from in real-time implementation. Furthermore, dur-

ing hours1-6, 11-16 and20-24, the upper bound of DNE limit with TC can be increased by

∼74% as compared with DNE limits without corrective TC. Furthermore, for the entire24

hours, it is observed that the upper bound of DNE limits nevergoes beyond maximum real

power supplied by wind generators; it is due to the smaller size of test system. However,

on a realistic test case, the upper bound of DNE limit would beconstrained by the phys-

ical limitations of wind generators to produce real power. Furthermore, for the entire24

hours, the DNE limits with TC can be increased by∼22% from the DNE limits determined

without TC.

In the IEEE-118 bus test case, the peak demand occurs during hour 18 and hour19,

as shown in Fig. 7.3. In this case, from hour16 to hour18, the system demand increases

by 29% and wind generation decreases by22%. Therefore, to meet the system demand

in peak hours, the slow start units will be committed during hour 13-16, resulting in the

higher amount of available generation in these hours. However, due to the congestion

within the network, this additional available generation could not be utilized to increase the

upper bound of DNE limit. In these situations, the TC action shows great benefit to system

operation as it helps to reduce congestion within the network, which results in increase in

DNE limits. Furthermore, the computational time, requiredto determine DNE limit is∼3

seconds per iteration; the master problem requires∼1 sec. and the sub-problem requires

∼2 sec. Note that parallelization techniques can be used to improve the computational

performance; however, such testing is outside the scope of this chapter.
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Figure 7.3: DNE limits with the IEEE-118 bus test case and utilization of reserves.

In the past, with TC, significant savings were obtained for the IEEE 118-bus test case

[91]. While costs are not included in the proposed formulation, by improving this stage

of the multistage scheduling process, it is possible to reduce the overall cost to operate the

system reliably. Denote the DNE limit obtained when topology control is used as DNETC.

This DNE limit is a larger uncertainty set than the DNE limit determined when topology

control is not implemented. If the operator decides to protect the system against DNETC

without implementing topology control, then there will have to be either generation re-

dispatch or additional units committed because the original topology was only able to re-
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liably handle a smaller uncertainty set. Thus, if DNETC is forced to be achieved without

TC, the operational cost would be increased by at least6%; this is determined by solving a

robust unit commitment problem where both additional commitments and de-commitments

are allowed in reference to the original unit commitment schedule (the schedule that was

used within the original DNE limit problem). If only additional commitments are allowed,

then the cost increase is estimated to be∼14%. The solution method presented in [70] is

used to solve the robust unit commitment problem; however, instead of the outer approx-

imation method, suggested in [70], a big-M method is used to define the uncertainty set.

This result proves that TC not only helps to integrate renewable resources, by increasing

the DNE limits, but also provides substantial cost savings in system operations. Further-

more, the TC solutions, obtained from the RTC DNE limit algorithm, are tested for AC

feasibility on base case wind forecast. The ACOPF model presented in [13] is used to test

the AC feasibility of the TC solution. In this case∼90% of TC solutions have produced

AC feasible solution; for this analysis>1000 TC solutions are tested for AC feasibility.

7.5.2 TVA Test System

The TVA test system consists of1779 nodes,1708 transmission lines,321 traditional

generators,299 two-winding transformers,98 three-winding transformers, and178 switched

shunts. The TVA test system does not have wind generation; therefore, for analysis pur-

poses,10 different wind injection locations are considered. The wind forecast is obtained

from the NERL western wind resource database, profile case#12514 for 20th December

2005 [105]. A 24 hours SCUC model is solved using same reserve requirement rules, used

in the IEEE-118 bus test case, and used as a starting point to determine RTC DNE limits.

For entire24 hours, the total wind penetration on MW basis is∼26%. Fig. 7.4, shows the

DNE limits on the TVA test systems. In this case, for24 hours, the DNE limit obtained

with TC are∼19% more than the DNE limit obtained without TC.
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Figure 7.4: DNE limits with the TVA test system.

In the TVA test system, for all the24 hours, the lower bound of DNE limit obtained

with TC is more than the lower bound of DNE limit obtained without TC. For all24 hours,

the lower bound of DNE limit obtained with TC is∼66% more than the lower bound of

DNE limit obtained without TC, as shown in Fig. 7.4. This result highlights the benefit of

robust TC for renewable resource integration. In general, TC provides better control over

the available resources and utilizes the existing infrastructure, without adding additional

installation cost. Furthermore, for all24 hours, the upper bound of DNE limit is bounded

by maximum real power supplied by wind generators. This result proves the initial intu-

ition about the upper bound of DNE limit. For a realistic testcase, it may not be critical

to determine upper bound of DNE limit, with and without TC, asit is mainly bounded by

install capacity of the wind generation. An upper limit for renewable penetration reflects

a situation where renewable generation exceeds the forecasted level. For the upper limit

to be anything other than the capacity indicates the following possibilities: i) the limita-

tions of delivering the energy to the load locations, i.e., transmission congestion, ii) the

unavailability of enough ramping capability with conventional units, or iii) the minimum

physical operating levels with conventional generators are reached. If the renewable gen-
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eration is controllable and the renewable generation spillage is allowable then the upper

bound of DNE limits would always be the installed capacity asrenewable generation can

be reduced. Note that in this case also determining the upperbound of DNE limit with-

out such an assumption of spillage is critical as this would then define trigger to implement

spillage. Computational time required to determine DNE limits, on the TVA system, is∼36

seconds per iteration; the master problem requires∼10 sec. and the sub-problem requires

∼26 sec.

The TC solution obtained from the RTC DNE limit algorithm forTVA system, are

tested for the AC feasibility on base case wind forecast. Forthe TVA system,84% of TC

solution obtained from the RTC DNE limit algorithm have produced AC feasible solution;

for this analysis∼70 TC solutions are considered.

7.6 Stability Study with Robust Corrective Topology Control Actions

In this section, the RTC DNE limit solutions for IEEE-118 bustest system, presented

in Section 7.5, are tested for different stability studies.For discussion purposes, results

associated with the peak load hour (hour18) are presented in this chapter. The dynamic

data for the IEEE-118 bus test case is not available; therefore, generator information from

generators in the eastern interconnection are used to generate dynamic data. The dynamic

data, for1.5MW individual wind generator, given in [90], are used to model wind injection

in this analysis.

To demonstrate the effect of TC, on system reliability, scenario described in Table 7.1

are tested. The presented scenario represents the worst-case wind scenario for the given

operating condition; the loss of wind represented by this scenario is equivalent to loss of

∼2% of total generation. Note that, in the western interconnection, for many stability

related studies, the worst-case scenario is the loss of two Palo Verde nuclear units [102],

which is about2% of total online generation.
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Table 7.1: Scenario to Study the Effect of TC on System Reliability.

Time Event

10-12 sec. Loss of wind generation (∼17%)

120 sec. Topology control solution implemented (open line between Node#65-Node#68)

150-750 sec. Generators are dispatched based on ramping capability

The effect of TC action on system frequency is presented in Fig. 7.5. Due to the sud-

den drop of wind generation, the system frequency drops below 59.8Hz and recovers to

∼59.88Hz using system inertia. After implementing the line switching action, the sys-

tem frequency improves and reaches to∼59.89Hz. This small improvement in frequency

happens because TC action decrease the losses in the system,which can be viewed as in-

creased in generation. Att=150 sec., the generators are re-dispatched to overcome the loss

of renewable generation; in this analysis,10 minutes ramping capability of generators are

considered. After generation re-dispatch, at last, the frequency improves and settle downs

to∼59.97Hz.

Small signal (SS) eigenvalue studies are carried out on thistest case, with SCUC dis-

patch solution, for hour18. The SS eigenvalue studies are carried out at two instances:

before the loss of renewable generation, i.e., at time =0 sec. in Fig. 7.5, and at the end

of generation re-dispatch, i.e., at time =800 sec. in Fig. 7.5. Before the loss of wind

generation, the real part of the smallest eigenvalue, obtained from the small signal study,

is ∼−112 and the real part of largest eigenvalue is∼−0.01. This study shows that all the

eigenvalues are negative and lie on the left hand side of the s-plane indicating that the given

system is stable. The SS eigenvalue analysis, at the end of generation re-dispatch, shows

that the maximum change in dominant eigenvalues is∼2%. This result shows that with TC

action the given system is small signal stable and will remain stable for small perturbations
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in the operating state. This analysis is carried out using SSAT [101].
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Figure 7.5: Effect of TC on System Frequency.

The relative rotor angle of generators nearer to topology control action are presented

in Fig. 7.6. The effect of loss of wind generation on generator’s rotor angle is relatively

smaller than the implementation of topology control action, as the loss of wind generation

is not close of these buses. On other hand, the topology control action is close to these

buses; therefore, the effect of loss of wind generation, on generators relative rotor angle, is

smaller compared to topology control action. The real powersupplied by these generators

are also presented in Fig. 7.7.
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The effect of the TC on bus voltage stability is also studied.In the above scenario,

the loss of wind on bus voltages are not significant; however,the TC alters the voltages

on buses close to line switching action. The magnitude of change in voltage is highest on

buses that are connected to the switched line, as shown in Fig. 7.8.
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7.7 Conclusion

The penetration of renewable resources in electrical powersystems has increased in re-

cent years. This increase in intermittent renewable resources is forcing a change in regards

to the way bulk power systems are operated today. This chapter shows the usefulness of

TC for integration of renewable resources.

In case of renewable resource integration, the determination of DNE limits is critical; in

this chapter, a systematic procedure to determine DNE limitis presented. With corrective

TC, the DNE limits can be increased by22-26%, as compared with no topology control
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actions. At the same time, TC can lower the operational cost by at least6%. The RTC

DNE limit algorithm is based on a DCOPF; therefore, the TC solutions obtained from this

algorithm must be checked for AC feasibility; on the IEEE-118 bus test case,∼90% of TC

solutions obtained from the RTC DNE limit algorithm are AC feasible.

The stability studies, presented in this chapter, demonstrated that the TC solution ob-

tained from the RTC DNE limit algorithm can pass AC feasibility and stability tests. Fur-

thermore,∼66% of TC solutions obtained from the RTC DNE limit algorithm pass the

stability check. At the same time, these results show that TCdoes not deteriorate the sys-

tem stability; on the contrary, when TC is done properly, it can help to maintain stable

operations.

Future work will involve testing of the robust topology control algorithm on real-life

test cases along with investigation of the benefits of parallel computation of the robust

topology control algorithm.

7.8 Appendix

The presented model is a three-stage robust optimization problem that is reformulated

into a two-stage robust optimization problem as shown in Fig. 7.9. The proposed robust

optimization problem structure is similar to other robust optimization problems solved in

prior literature [70, 103, 104]. One key difference is that the final stage of the proposed

DNE limit problem is a linear feasibility problem as compared to a linear optimization

programming problem as is the case in [70, 103, 104]. Note that, while our final stage is

a linear feasibility problem, the solution approach is not distinct from other work that has

a linear optimization problem (a non-zero objective) in thefinal stage; all linear optimiza-

tion problems can be converted into a linear feasibility problem that will either produce the

global solution to the original problem or say that the original problem is infeasible. This is

possible by modeling the linear equality and inequality requirements of primal feasibility,
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dual feasibility, and strong duality as these three conditions are both necessary and suffi-

cient for optimality [106]. Thus, any such robust optimization problem that has its final

stage as a linear program, that linear program can be transformed into a linear feasibility

problem. While the proposed model has a fixed objective for the final stage, it can still

return two outcomes: i) either zero stating that there is a feasible solution or ii) infinity

stating the problem is infeasible. To adequately capture the appropriate characteristics of

the final two stages, which can be interpreted as an attacker-defender (max-min) problem,

even though the final stage is a feasibility problem, it stillrequires to take its dual (step1

in Fig. 7.9) so that final two stages can merge properly into the one problem (step4 in Fig.

7.9). This is the same approach as what is seen in [70, 103, 104] as it preserves the desired

attacker-defender structure. Simply changing the final stage problem from min0 to max

0 will not preserve the robust optimization structure; if such a trivial reformulation were

otherwise possible, it would also be possible in such work asin [70, 103, 104] as well since

all linear programs can be transformed into linear feasibility problems.
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Figure 7.9: Transformation of a three stage robust optimization problem into a two stage

robust optimization problem.
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The presented robust min-max-min structure, in this chapter, is the appropriate struc-

ture to solve the DNE limit problem. This min-max-min structure guarantees the solution

feasibility for the entire uncertainty set, i.e., the DNE limits.

128



Chapter 8

ZONAL DO-NOT-EXCEED LIMITS WITH ROBUST CORRECTIVE

TOPOLOGY CONTROL

The penetration of renewable resources in electrical powersystems has increased over

the years. This increased levels of intermittent resourcesadds complexities in power sys-

tem operations. At the Independent System Operator of New England (ISONE), in real-

time operation, the renewable resources are integrated into the system using do-not-exceed

(DNE) limits. The determination of DNE limits, in real-time, is challenging; to reduce

the computational time, approximations are made and mathematical models are simplified.

In this chapter, a zonal approach is proposed to determine DNE limits, which reduces the

network model into few interlinked zones. The approximations with the zonal approach do

not affect the quality of solution to a great extent. However, they reduce the computational

time so that the zonal DNE limits approach may be implementedin real-time. The DNE

limits determined with the zonal approach are compared withthe detail nodal DNE limits

on a smaller IEEE-118 bus test case and a realistic system provided by Tennessee Valley

Authority (TVA).

8.1 Introduction

As the penetration of stochastic resources (e.g., variablewind and solar power) in-

creases in power systems, the challenge to maintain a continuous supply of electrical en-

ergy, at minimal cost, has increased. Traditionally, economic dispatch models, used in

system operations, are deterministic and do not optimize system resources while explicitly

accounting for uncertain resources. In order to reduce operational costs, while maintaining

reliability, uncertainty modeling plays an important rolein the decision making process; by
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ignoring uncertainty, the operational decision can be suboptimal or even infeasible.

Today, in most optimal dispatch models, conventional fossil-fuel generators are dis-

patched to a fixed operating point known as desired dispatch point (DDP). In these models,

it is assumed that the conventional generators can operate at a fixed operating point for

the desired time period. However, this assumption cannot bemade for semi-dispatchable

or non-dispatchable renewable resources because of their inherent intermittent nature and

limited operational control. Therefore, in such cases, system operators instruct renewable

power producers to operate within the desired dispatch range, so that these uncertain re-

sources will be at a fixed operating point. At the IndependentSystem Operator of New

England (ISONE), this dispatch range is known as a do-not-exceed (DNE) limit for inter-

mittent wind power producers [103]. The DNE limit defines a continuous set of potential

dispatch solutions for the renewable resource; this continuous set of dispatch solutions that

can be viewed as an uncertainty set. The bounds of the DNE limit are meant to be set such

that if the renewable resource stays within the specified DNElimits (i.e., the upper and

lower bound), then the system will remain in a secure and reliable operating state [103].

In ISONE’s DNE limit formulation, only generators with active automatic generation

control (AGC) are considered to respond to intermittenciesin wind generation [103]. In

real-time application, such approximation is justified because expected uncertainty in re-

newable generation is relatively smaller in real-time operating state. However, tradition-

ally, AGC is used for load following and addressing small perturbations in system oper-

ation. If all available AGC is used to address renewable generation intermittency, addi-

tional resources may be required for load following and system perturbations. In [103],

details about these additional resource requirements are not presented but these additional

resources can be obtained with more frequent and more accurate dispatch instruction to

conventional generators or by committing additional generators [107]. Furthermore, in

[103], the DNE limits are determined close to real-time operation, where more accurate
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information about the quantity and location of AGC is available. However, in day-ahead or

hour-ahead timeframe, the AGC based approach restrict the capabilities of DNE limits, as

generator output or DDP changes over time due to change in system demand and renewable

generation. At the same time, in day-ahead timeframe, accurate determination of AGC, in

terms of location and quantity, is difficult and may result ininaccurate DNE limits.

Past research has shown benefits of topology control (TC) forsystem operation and reli-

ability. Today, most of the TC decisions are determined based on operators’ past knowledge

or other ad-hoc methods. The review of current TC related industrial practices are discussed

in [97] and [24]; furthermore, at PJM, TC actions are included in the transmission manual

as corrective solutions for reliable power system operations [96]. In literature, TC has been

proposed to mitigate many power system related issues. In [11, 2, 3, 4, 5], TC is used

to overcome voltage violations and line overloads; in [6, 7,91, 14], TC is used for line

losses and operational cost reduction. TC is also proposed to improve system security and

operational flexibility [97, 8, 19]. TC has shown significantimprovement in operational

flexibility [97] and cost saving [23, 21, 18, 14]. TC has also shown benefits in transmission

planning studies [27].

Robust optimization has shown promising results in recent years to address issues asso-

ciated with modeling uncertainty and decision making underuncertainty. In [70] and [104],

a two-stage robust optimization technique is used to solve the unit commitment problem.

Robust optimization deals with the data uncertainty and tries to find an optimal solution

considering the worst-case uncertainty realization. The solution of the robust optimization

problem is guaranteed to be optimal for a defined uncertaintyset [97], [70, 104, 72, 73].

Since the optimal solution is a hedge against the worst-caserealization, the solution is often

conservative and probably expensive. For the application of power system reliability, such

a robust policy is preferred due to the enormous costs of a potential blackout.

In general, TC algorithms are either based on the AC optimal power flow (ACOPF)
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or the DC optimal power flow (DCOPF) [97, 11, 91]. However, in arobust optimization

framework, there is no simple method to insure AC feasibility of TC actions. The zonal

DNE limit formulation, presented in this chapter, is based on DCOPF; therefore, the TC

solution, obtained from the zonal DNE limit problem, is tested for the AC feasibility to

ensure that the TC action will provide AC feasible operatingpoint.

The main contribution of this chapter is summarized below.

1. Identified the limitations of the DNE limits procedure used by ISONE. The AGC

based DNE limit procedure may not be sufficient to determine the DNE limits in

day-ahead timeframe. In this chapter, a more generic methodology to determine the

DNE limits is presented.

2. Addressed the scalability issue of the robust DNE limit problem. In this chapter, a

zonal DNE limit procedure is proposed, over the detailed nodal approach, to deter-

mine DNE limits.

3. Formulated the zonal DNE limit problem using robust optimization techniques. The

proposed solution method to determine the DNE limits is a twostage process and

capable of determining the DNE limits with and without TC.

4. The proposed solution method is tested on two different test systems: the IEEE-118

bus test system and the Tennessee Valley Authority (TVA) system.

5. The TC solution determined using the zonal approach is tested for the AC feasibility.

The zonal DNE limit is based on DCOPF formulation. Therefore, the TC solution

obtained from the DNE limit algorithm needed to be tested AC feasibility.

The chapter is structured as follows: the zonal DNE limits approach is described in

Section 8.2. The clustering method, used in this chapter, todetermine system zones is
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presented in Section 8.3. The mathematical model for the zonal DNE limit approach is

presented in Section 8.4. The solution method for the zonal DNE limit problem is pre-

sented in Section 8.5. The associated simulation results for the zonal DNE limit algorithm,

on IEEE-118 bus test system is presented in Section 8.6. In Section 8.7, simulation re-

sults related to TVA test system are presented. Section 8.8 provides the conclusions and

discusses potential future work.

8.2 Zonal DNE Limits

In [103], a procedure to determine real-time DNE limits without TC is presented. At

ISONE, the DNE limits are determined, for the real-time application, considering the real-

time (5 minutes ahead) dispatch instructions to conventional generators. The real-time

DNE limits demands fast solution time, which necessitates to simplify the DNE limit prob-

lem and restricts the problem modeling details. In [103], the DNE limit formulation, used

at ISONE, is presented, which consists of energy balance constraints, line flow constraints,

and generator capacity constraints. However, in actual implementation, to reduce the com-

putational time, only a handful of transmission lines and subsequent nodes are considered.

This reduction in the modeling detail reduces the solution time but degrades the solution

quality. Furthermore, the transmission lines considered under this formulation are deter-

mined based on operators’ past knowledge or historical data.

To address the issue of systematically scaling down the system model, from including

each node to only a critical node representation, the zonal approach is proposed in this

chapter. The benefit of the zonal model is that it helps to reduce the model to few number

of zones and associated branches. With this reduced system model, the DNE limits can be

determined quickly without degrading the solution quality. In this chapter, to determine the

zones, previously investigated clustering method is used [108].

In the zonal approach, the critical buses are represented with the associated zones; each
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zone may have multiple buses. After identifying all the zones and their respected nodes,

the aggregated level of conventional generation, renewable generation, and system demand

at each zone is determined. Only the transmission lines connecting different zones are used

in zonal analysis. Therefore, if the number of zones is equalto the number of buses, the

resultant zonal structure will be the same as the detailed nodal structure.

8.3 Zonal Approach: Clustering Methods

Traditionally, clustering methods are used to sort big data. In electrical power systems,

clustering methods are used to determine reserve zones [108], congestion zones [109], con-

sumer classifications [110], and for additional applications. In [110], different clustering

methods used in electrical power systems are studied and evaluated for electricity consumer

classifications.

In this chapter, the k-means clustering algorithm is used todetermine the zones. The k-

means method is a simple clustering method, which attempts to partitionsN observations

(i.e., buses in this case) intoZ clusters (i.e., zones in this case). In [108], power transfer

distribution factor (PTDF) differences are used to determine reserve clusters. In this pa-

per, also PTDF difference (PTDFD) is used to determine different zones from the nodal

information. The PTDF difference between busi and busj is represented by (8.1), where

K represents the number of transmission lines. ThePTDFD represents the difference

between the flow on branchk due to a MW injection at busi and the flow on branchk due

to a MW injection at busj. The PTDF difference provides a metric to group buses together

based on their impact on the overall system.

PTDFDi,j =

K
∑

k=1

|PTDFR
k,i − PTDFR

k,j|

K
(8.1)

Note that the objective of this chapter is to study the effectof the zonal approach over
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the nodal DNE limit approach; however, this chapter does notinvestigate the best cluster-

ing procedure to determine different zones. Future work mayinvolve investigating better

clustering method to determine zones; for instance, in [108], weighted PTDF difference

method is proposed over the PTDF difference method.

8.4 Zonal DNE Limits Model

The basic DNE limit problem is a three stage optimization problem, as shown in (8.2)-

(8.16). The objective function for the DNE limit problem is presented in (8.2). The first

minimization part of the DNE limit problem is a mixed integerprograming (MIP) prob-

lem, which determines the system topology and the uncertainty set. The second part of

the DNE limit problem choses the worst-case realization of renewable generation from the

uncertainty set, determined in the first part of the problem.The last part of the DNE limit

problem is an optimal power flow (OPF) problem, which determines the feasibility of the

worst-case realization of renewable generation, determined in the second part of the DNE

limit problem, with the TC action determined in the first partof the DNE limit problem.

The max-min part of formulation forms a robust counterpart (RC) of the DNE limit prob-

lem. The co-optimization of the first minimization part of the DNE problem along with

the RC determines the maximum range of renewable generation(i.e., the DNE limit), and

associated system topology, for a given security constraint unit commitment (SCUC) solu-

tion. The formulation for the DNE limit problem is as follows. The node balance constraint

is represented by (8.3), the line capacity constraints are represented by (8.4) and (8.5), the

TC actions for transmission elements are modeled as shown in(8.6) and (8.7), the gen-

erator ramp rate constraints are represented by (8.8) and (8.9), and the generator capacity

constraints are represented by constraints (8.10) and (8.11). The deviation in renewable

generation is determined using constraint (8.12). The uncertainty set,W , is defined by

(8.13). In this formulation, the node balance constraint and line capacity constraints are
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relaxed to achieve the feasibility of RC problem and the relaxation is penalized in the RC

objective using parameterδ. Furthermore, the objective of this research is not to determine

true value ofδ; for simplicity, in this research, value ofδ is set1. Determining the true

value ofδ can be included in potential future work.

min

(

(PLP
w − PUP

w ) + max
Pw∈W

min δ[
∑

∀n

(L+
n + L−

n ) +
∑

∀k

(γ+
k + γ−

k )]

)

(8.2)

s.t.
∑

k∈δ(n)+

Pk −
∑

k∈δ(n)−

Pk +
∑

∀g(n)

Pg +
∑

∀w(n)

Pw (8.3)

+ L+
n − L−

n = dn, ∀n

− γ+
k + Pk ≤ Pmax

k Zk, ∀k (8.4)

− γ−

k − Pk ≤ Pmax
k Zk, ∀k (8.5)

Pk −Bk(θn − θm) + (1− Zk)Mk ≥ 0, ∀k (8.6)

Pk −Bk(θn − θm)− (1− Zk)Mk ≤ 0, ∀k (8.7)

Pg ≤ R+c
g + P ∗

g , ∀g (8.8)

− Pg ≤ R−c
g − P ∗

g , ∀g (8.9)

Pg ≤ Pmax
g ug, ∀g (8.10)

− Pg ≤ −Pmin
g ug, ∀g (8.11)

Pmin
w ≤ PLB

w ≤ P ∗

w ≤ PUB
w ≤ Pmax

w , ∀w (8.12)

PLB
w ≤ Pw ≤ PUB

w , ∀w (8.13)

L+
n , L

−

n ≥ 0, ∀n (8.14)

γ+
k γ

−

k ≥ 0, ∀k (8.15)

Zk ∈ {0, 1} (8.16)
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The DNE limit problem, presented in (8.2)-(8.16), is for a zonal representation; how-

ever, the same formulation can be used for a nodal representation, considering each zone as

a single node. Furthermore, the formulation presented in (8.2)-(8.16) can be represented in

a generic form as shown in (8.17) and (8.18). In (8.17),c represents the cost associated with

the first stage decision variable andb represents the cost associated with the second stage

decision variable. System data is represented by parametersA,B,C,D,E, F,H, J, L, P .

min
x∈X

(

cTx+max
w∈W

min
y∈Y

bTy

)

(8.17)

s.t.Ax ≤ B,Cy ≤ D,Ex+ Fy ≤ H, Jy + Lw = P. (8.18)

A systematic procedure to transform a three stage robust optimization problem into a

two stage problem is presented in [97]. The RC part of the DNE limit formulation, i.e.,

max-min part of (8.17), consists of two linear programming (LP) problems. These two LP

problems can be transformed into an optimization single problem by formulating the dual

of OPF problem (i.e., minimization part of RC) and combiningwith the maximization part

of RC. The resultant two stage robust formulation, for the DNE limit problem, is presented

in (8.19) and (8.21), where minimization part of problem is known as a master problem

and the maximization part of problem is known as a sub-problem. The master problem

determines the range of renewable generation, i.e., the DNElimits, and associated TC

action. The sub-problem is a RC of DNE limit formulation, which determines the worst-

case violation associated with the renewable generation range and the TC action chosen in

master problem. By co-optimizing the master and the sub-problem together the robust DNE

limits can be found. The detail formulation of the master problem and the sub-problem is

presented in Section 8.5. Note that, in (8.19), the termζTLw makes the objective function

nonlinear; therefore, to overcome this nonlinearity, different methods have been proposed

in prior literature. In [70], the outer approximation basedapproach is used to overcome
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nonlinearity in the robust optimization problem; in [97], abig-M method is suggested to

overcome the nonlinearity. This thesis also, for a zonal DNElimit formulation, a big-M

method is used to overcome the nonlinearities in the sub-problem.

min
x∈X

cTx+ max
w,µ,λ,ζ

λT (Ex−H)− µTD + ζT (P − Lw) (8.19)

s.t.Ax ≤ B,−µTC − λTF + ζTJ = b (8.20)

µ ≥ 0, λ ≥ 0, w ∈ W. (8.21)

8.5 Zonal DNE Limits: Solution Method

In section 8.4, a generic robust optimization based DNE limit problem is presented,

where the master problem is a mixed integer programming (MIP) problem and the sub-

problem is a nonlinear problem. Furthermore, using a big-M formulation technique, the

nonlinearity in the sub-problem is removed by reformulating the sub-problem into a MIP

problem.

Initialization: It is assumed that the SCUC problem is solved prior to solvingthe DNE

limit problem. The solution of SCUC problem, such as generator status and associated

dispatch, is used as an input parameter to the DNE limit algorithm.

Stage-1 (master problem): The master problem is a MIP problem, which determines

the range of renewable generation (i.e., the DNE limits) andits associated system topol-

ogy (i.e., the TC action). The master problem, presented in (8.22)-(8.44), consists of four

sections. TheDNE section determines the deviation in renewable generation,theOlb sec-

tion considers the power flow under the lowest renewable generation realization, theOub

section considers the power flow under the highest renewablegeneration realization, and

the topology control actions are controlled by sectionTC. TheDNE section determines

the maximum range of renewable generation and is represented by (8.23). TheOlb section
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consists of generator ramping constraints (8.25) and (8.26), generator capacity constraints

(8.27) and (8.28), line flow constraints (8.29) and (8.30), line capacity constraints (8.31)

and (8.32), and node balance constraint (8.33). Similarly,theOub section consists of con-

straints (8.34)-(8.42). In sectionTC, in constraint (8.43), the number of simultaneous TC

actions are controlled by parameterM . In this chapter only one simultaneous TC action

is considered for the analysis; therefore,M is set to 1. Note that the master problem can

be formulated excluding theOlb andOub sections. However, in that case, the number of

iterations between the master problem and the sub-problem may increase. Furthermore,

the master problem is an optimality problem which determines the renege of renewable

generation and the associated TC action. The solution of master problem, i.e.,P lb
w , P ub

w and

Zk are passed on to the sub-problem.

min
P lb
w ,Pub

w ,φ,Zk

∑

∀w

(PLP
w − PUP

w ) + φ (8.22)

s.t.

DNE :Pmin
w ≤ P lb

w ≤ P ∗

w ≤ P ub
w ≤ Pmax

w , ∀w (8.23)

φ ≥
∑

∀k

ZkP
max
k (F+

k,l + F−

k,l) +
∑

∀k

(1− Zk)Mk(S
+
k,l + S−

k,l) (8.24)

+
∑

∀n

(dn −
∑

∀w(n)

(ζn,lP
uB
w + (1− ζn,l)P

lB
w ))λn,l +

∑

∀g

(P ∗

g +R+c
g )Ω+

g,l

+
∑

∀g

(R−c
g − P ∗

g )Ω
−

g,l +
∑

∀g

ug(P
max
g α+

g,l − Pmin
g α−

g,l), ∀l ∈ cut

φ ≥ 0

Olb :P lb
g ≤ R+c

g + P ∗

g , ∀g (8.25)

− P lb
g ≤ R−c

g − P ∗

g , ∀g (8.26)

P lb
g ≤ Pmax

g ug, ∀g (8.27)

− P lb
g ≤ −Pmin

g ug, ∀g (8.28)
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P lb
k − Bk(θ

lb
n − θlbm) + (1− Zk)Mk ≥ 0, ∀k (8.29)

P lb
k − Bk(θ

lb
n − θlbm)− (1− Zk)Mk ≤ 0, ∀k (8.30)

P lb
k ≤ Pmax

k Zk, ∀k (8.31)

− P lb
k ≤ −Pmax

k Zk, ∀k (8.32)
∑

k∈δ(n)+

P lb
k −

∑

k∈δ(n)−

P lb
k +

∑

∀g(n)

P lb
g (8.33)

+
∑

∀w(n)

P lb
w = dn, ∀n

Oub :P ub
g ≤ R+c

g + P ∗

g , ∀g (8.34)

− P ub
g ≤ R−c

g − P ∗

g , ∀g (8.35)

P ub
g ≤ Pmax

g ug, ∀g (8.36)

− P ub
g ≤ −Pmin

g ug, ∀g (8.37)

P ub
k − Bk(θ

ub
n − θubm ) + (1− Zk)Mk ≥ 0, ∀k (8.38)

P ub
k − Bk(θ

ub
n − θubm )− (1− Zk)Mk ≤ 0, ∀k (8.39)

P ub
k ≤ Pmax

k Zk, ∀k (8.40)

− P ub
k ≤ −Pmax

k Zk, ∀k (8.41)
∑

k∈δ(n)+

P ub
k −

∑

k∈δ(n)−

P ub
k +

∑

∀g(n)

P ub
g (8.42)

+
∑

∀w(n)

P ub
w = dn, ∀n

TC :
∑

∀k

(1− Zk) ≤ M (8.43)

Zk ∈ {0, 1} (8.44)

Stage-2 (sub-problem): The sub-problem is a RC of zonal DNE limit problem and it is

presented in (8.45)-(8.56), where,λn, F
+
k , F−

k , S+
k , S

−

k ,Ω
+
g , Ω

−
g , α

+
g , α

−
g are dual variables
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of (8.3)-(8.11). The sub-problem is a nonlinear optimization problem, with a nonlinear

(bilinear) term in the objective function, as shown in (8.19). This nonlinearity in the (8.19)

is removed, by using big-M formulation [97], as shown in (8.45), (8.49)-(8.52). Note

that the sub-problem is an optimality problem and the solution is always feasible due to

relaxation of the OPF problem.

max
∑

∀n

ηn +
∑

∀k

ZkP
max
k (F+

k + F−

k ) +
∑

∀g

(P ∗

g +R+c
g )Ω+

g (8.45)

+
∑

∀g

(R−c
g − P ∗

g )Ω
−

g +
∑

∀k

(1− Zk)Mk(S
+
k + S−

k )

+
∑

∀g

ug(P
max
g α+

g − Pmin
g α−

g )

s.t. − S+
k + S−

k + F+
k − F−

k + λn − λm = 0, ∀k (8.46)

Ω+
g − Ω−

g + λn + α+
g − α−

g = 0, ∀g (8.47)
∑

δ(n)+

Bk(S
+
k − S−

k ) +
∑

δ(n)−

Bk(S
−

k − S+
k ) = 0, ∀n (8.48)

ηn − (dn −
∑

∀w(n)

P ub
w )λn + (1− ζn)Mn ≥ 0 ∀n (8.49)

ηn − (dn −
∑

∀w(n)

P ub
w )λn − (1− ζn)Mn ≤ 0 ∀n (8.50)

ηn − (dn −
∑

∀w(n)

P lb
w )λn + ζnMn ≥ 0 ∀n (8.51)

ηn − (dn −
∑

∀w(n)

P lb
w )λn − ζnMn ≤ 0 ∀n (8.52)

λn ≤ δ, ∀n (8.53)

− λn ≤ δ, ∀n (8.54)

− F+
k ≤ δ, ∀k (8.55)

− F−

k ≤ δ, ∀k (8.56)
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F+
k , F−

k , S+
k , S

−

k ≤ 0, ∀k (8.57)

Ω+
g ,Ω

−

g , α
+
g , α

−

g ≤ 0, ∀g (8.58)

ζn ∈ {0, 1} (8.59)

A detailed solution method for the zonal DNE limits problem is presented in Fig. 8.1.

The threshold value for the termination condition is set to zero. The solution of the mas-

ter problem, determined based on the day-ahead SCUC solution, is passed on to the sub-

problem. The sub-problem determines the worst-case violation associated with the renew-

able generation range and the TC action, chosen in the masterproblem. If the worst-case

violation is within the threshold value, which indicates that there is no realization within

the renewable generation range with TC that will cause powerflow violations, the solu-

tion method will terminate as the robust DNE limits with TC have been obtained. If the

worst-case violation is more than the threshold value, an optimality cut in form of (8.24)

will be added into the master problem and resolved. This caseindicates that there is a

renewable generation realization, within the chosen renewable generation operating range

with TC, which will cause infeasibility in the OPF problem and may result in power flow

violations. Thus, the resultant DNE limits are not robust and the master problem is resolved

with the added optimality cut in form of (8.24). This two stage solution method is similar

to Benders’ decomposition algorithm.
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Figure 8.1: Algorithm to Solve the Zonal DNE Limit Problem.

The benefit of this solution method is that the master problemis simplified by using

Olb andOub structure, which results in less number of iterations and animproved solution

time.

8.6 Numerical Results: IEEE-118 Bus Test Case

The IEEE-118 bus test case, consists of186 branches,71 conventional generators, and

9 wind injection locations with a peak demand of4004MW. The branch data is given [87];

however, the conventional generation information for the IEEE-118 bus test system is not

available. Hence, the generator mix of reliability test system1996 is used to create conven-

tional generator data for the IEEE-118 bus test case [87]. The load profile and wind forecast

is obtained from California Independent System Operator (CAISO) duck chart [99].

The SCUC solution is used as a starting point for all the simulations presented in this

chapter. A24 hour SCUC problem is solved; the basic SCUC model and the fuelcosts,

given in [14], are used to calculate generator operating costs. The reserve requirements

for the SCUC are modeled as sum of5% of demand supplied by conventional generators

and10% of demand supplied by wind units or the single largest contingency, whichever is

greater. On top of that, at least50% of total required reserves will be supplied by spinning
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reserves and the rest will be supplied by non-spinning reserves. A similar assumption is

cited in CAISO’s guidelines for spinning reserve and non-spinning reserve [59].

To determine zones from the k-mean clustering method, for zonal DNE limits, different

clustering strategies are evaluated. On the IEEE-118 bus test case, zones are determined us-

ing different zoning strategies and evaluated, against thequality of the DNE limits obtained,

with respect to accurate nodal DNE limits. In this chapter, different zoning strategies such

as zones based on load centers, renewable injection locations, fossil-fuel based generation

injection location, and combinations of these are evaluated. It is observed that the zonal

DNE limits, based on renewable injection location along with fossil-fuel based injection

location providing spinning reserve produces better quality zonal DNE limits. This obser-

vation can be justified as the uncertainty in renewable generation is addressed by changing

DDPs of fossil-fuel based generators. Therefore, considering location of uncertainty and

location of responding uncertainty together may give better results than considering each

of them independently. Hence, in this chapter, all the zonalDNE limits are calculated

based on zones determined using renewable injection location along with fossil-fuel based

injection location.

Furthermore, the benefit of having maximum one wind injection location per zone,

due to adopted clustering strategy, simplifies the problem of the DNE limit sharing within

the zone. Multiple wind injection locations per zone imposes question of determining

true DNE limits of each wind injection location for the zonalDNE limit solution. By

allowing only one wind injection location per zone, this DNElimit sharing problem can be

eliminated.

8.6.1 DNE limits without TC

The DNE limits obtained without TC using the nodal and the zonal approach are pre-

sented in Fig. 8.2. The zonal DNE limits are determined with21 zones. In this case,

144



the upper bound of DNE limits obtained from the zonal approach is always greater than or

equal to the upper bound of DNE limits obtained from the nodalDNE limits approach. This

is an anticipated result as the zonal approach is an approximation of the nodal approach;

therefore, the solution obtained from the zonal approach will not be better off than the so-

lution obtained from the nodal approach. Furthermore, the lower bound obtained from the

zonal approach is close to the lower bound obtained from the nodal approach.
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Figure 8.2: Comparison of DNE Limits on IEEE-118 Bus Test Case Without Topology

Control.

Fig. 8.3 shows the average error, over24 hours, between solutions obtained from the

zonal approach and the nodal approach, for different numberof zones. With an increase

in number of zones the average error in the zonal DNE limit calculations (compared with

nodal DNE limit solution) decreases. However, the decreasein the average error in DNE

limit calculation is not monotonic in nature; for instance,the average error increases by

2% from DNE limits determined with18 zones over19 zones. Furthermore, the maximum

error in the zonal DNE limit calculation decreases with increase number of zones; the

maximum error in DNE limit calculation decreases from∼320 MW to ∼130 MW with
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increase in number of zones from10 to 21. This decrease in maximum error is due to the

increase in modeling details with higher number of zones. Furthermore, in this particular

test case, the maximum error occurs in hour8 of DNE limit calculation. Note that in this

analysis, the first9 zones are based on renewable injection locations; the consecutive zones

are determined considering the maximum spinning reserve supplied by the fossil-fueled

generators.
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Figure 8.3: Error in DNE Limits on IEEE-118 Bus Test Case Without Topology Control.

8.6.2 DNE limits with TC

The DNE limits obtained with TC using the nodal and the zonal approach is presented in

Fig. 8.4. The zonal DNE limits are determined with21 zones. For the zonal approach, the

DNE limits obtained with TC are greater or at least equals to the DNE limits determined

without TC action. Furthermore, due to limited modeling details, in hours1, 2, and12-

16, the upper bound of DNE limits determined with the zonal approach is lower than the

upper bound of DNE limits determined with the nodal approach. In the zonal approach,

only branches connecting different zones are considered; therefore, in the zonal DNE limit

approach, the possible TC actions are also limited, which subsequently restricts the DNE
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limits. Furthermore, the lower bound of DNE limits obtainedwith the zonal approach is

close to the lower bound of DNE limits obtained with the nodalapproach. Note that the

zonal DNE limits, presented in Fig. 8.4, are determined withthe same21 zones used to

determine the zonal DNE limits in Fig. 8.2.
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Figure 8.4: Comparison of DNE Limits on IEEE-118 Bus Test Case With Topology Con-

trol.

Fig. 8.5 shows the average error with TC, over24 hours, between solutions obtained

from the zonal approach and the nodal approach, for different number of zones. Over24

hours, with increase in number of zones, the average error inthe zonal DNE limit with

TC decreases from197MW per hour to112MW per hour. Furthermore, the average error

in the zonal DNE limits calculation with TC is lower than the average error in the zonal

DNE limits calculation without TC. With TC the average errorin zonal DNE limits is

between100-50 MW per hour; however, the average error in zonal DNE limits without TC

is between180-55 MW per hour.

The total difference between the DNE limits determined withthe zonal approach (21

zones) and the nodal approach is∼4-12%, as shown in Table 8.1. The computational time
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needed to solve the DNE limits problem, for entire24 hours, with the zonal approach is

∼75-93% lower than the computational time required for the nodal approach. With the

zonal approach, the equivalent system size can be reduced by∼65-82% as compared with

detailed nodal representation of the system.
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Figure 8.5: Error in DNE Limits on IEEE-118 Bus Test Case WithTopology Control.

Table 8.1: Comparison of DNE Limits Obtained with the Zonal and the Nodal Approaches

on the IEEE-118 Bus Test Case

Nodal Zonal Difference

DNE Limits DNE Limits

DNE Limits without TC (MW) 10674 11998 12.4%

DNE Limits with TC (MW) 13444 12883 4.17%

Computational time without TC (sec.) 33 8 75.75%

Computational time with TC (sec.) 200 13 93.5%

Number of buses 118 21 82.2%

Number of branches 186 64 65.6%
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The TC solutions, determined with the zonal approach, are tested for the AC feasibility

on the detail nodal model to observe the capability of the zonal approach to produce AC

feasible solution at base case. For the IEEE-118 bus test case, ∼80% zonal TC solution

have produced AC feasible solution. These results are critical from operational point of

view, as it fills the gap between DCOPF based optimization framework solutions to the

real AC operating state. For example, in practice solutionsobtained from optimization

algorithms based on DCOPF formulation, which could not produce AC feasible solutions

are discarded. However, the zonal DNE limit algorithm is capable of producing AC feasible

TC solutions.

8.7 Numerical Results: TVA Test System

The TVA test system consists of1779 buses,1708 transmission lines,321 traditional

generators,299 two-winding transformers,98 three-winding transformers, and178 switch-

able shunts. The TVA test system data does not have wind generation information; there-

fore, for analysis purposes,10 different wind injection locations are considered. The wind

forecast is obtained from the NERL western wind resource database, profile case#12514

for 20th December2005 [105]. A 24-hour SCUC model is solved to provide a starting

solution for the DNE limit problem. The SCUC model uses the same reserve rules as what

was used within the IEEE-118 bus test case. For the TVA test system, the DNE limits with

TC using the zonal approach (with72 zones) and the nodal approach are presented in Fig.

8.6. For this analysis the same zoning strategy, used for theIEEE-118 bus test system, is

utilized. Table 8.2 presents a comparison between the zonaland the nodal DNE limit ap-

proaches. The zonal-based DNE limits determined are approximately equals to the nodal-

based DNE limits; the difference between the zonal and the nodal DNE limits approaches

is ∼1.64%. The computational time for the zonal approach is significantly lower than the

computational time required for the nodal approach; the zonal method requires only0.81%
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of computational time compared with the nodal method. With the zonal approach, the

equivalent system can be reduced to∼5-10% of its original nodal representation.
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Figure 8.6: Comparison of DNE Limits on TVA Test System With Topology Control.

Table 8.2: Comparison of DNE Limits Obtained with the Zonal and the Nodal Approaches

on the TVA Test System

Nodal Zonal Difference

DNE Limits DNE Limits

DNE Limits without TC (MW) 90538 96892 7.02%

DNE Limits with TC (MW) 113742 111882 1.64%

Computational time without TC (sec.) 735 25 96.60%

Computational time with TC (sec.) 4685 38 99.19%

Number of buses 1779 72 95.95%

Number of branches 2301 210 90.87%

The average error with TC between solutions obtained from the zonal approach and

the nodal approach, with reference to different number of zones, for the TVA test system
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is shown in Fig. 8.7. From Fig. 8.7, over24 hours, with increase in number of zones,

the average error in the zonal DNE limit decreases from658MW per hour to202MW per

hour. Subsequently, the maximum error in the zonal DNE limitsolution and the nodal

DNE limit solution also decreases from2195MW to 907MW. Furthermore, the decrease in

the average error and the maximum error in the DNE limit calculation is not monotonic in

nature with the increase in number of zones as shown in Fig. 8.7. Similar average error

analysis without TC, between solutions obtained from the zonal approach and the nodal

approach, is performed on the TVA test system. Over24 hours, with increase in number

of zones, the average error in the zonal DNE limit without TC decreases from562MW

per hour to287MW per hour. Subsequently, the maximum error in the zonal DNElimit

solution without TC and the nodal DNE limit solution withoutTC also decreases from

3832MW to 1633MW. This analysis shows that TC helps to reduce the error in the zonal

DNE limits calculation.
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Figure 8.7: Error in DNE Limits on TVA Test System With Topology Control.

The TC solutions, determined with the zonal approach, are tested for the AC feasibility

on the detail nodal model to observe the capability of the zonal approach to produce AC
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feasible solution. For the TVA test system,∼85% zonal TC solution have produced AC

feasible solution. These results demonstrate the criticaloperational benefits of the zonal

DNE limits approach.

8.8 Conclusion

The increased levels of intermittent renewable resources adds complexities to power

system operations. Unlike fossil-fuel generators, renewable generators are not dispatchable

to DDPs; therefore, intermittent renewable generators aredispatched based on an operating

range, known as a DNE limit. Accurate DNE limits are criticalfor power system opera-

tions. The DNE limit procedure, proposed by ISONE, determines DNE limits for real-time

application using AGCs; however, same procedure may not be used to determine DNE

limits in day-ahead time frame. This chapter provides a systematic approach to determine

DNE limits in day-ahead time frame.

In this chapter, the zonal DNE limit methodology is presented, which systematically

reduces the system size and determines the DNE limits. The error in DNE limits obtained

from the zonal method and the nodal method is∼2-12%. Furthermore, the computational

time reduces by∼75-99% with the zonal DNE limit formulation. This chapter also ad-

dresses the scalability issue of the DNE limit problem, which is critical for real life ap-

plications and fast solution time. The DNE limit results, onTVA system, shows that with

5-10% of modeling information∼98% accurate solutions can obtained with less than1%

computation time. This result shows the benefit of the zonal formulation. The tread off

between the computational and the accuracy shows the potential of the zonal formulation

and application in determining DNE limits. Furthermore, the TC solution, obtained from

the zonal DNE limit algorithm, is capable of producing AC feasible operating state.∼80-

85% of TC solutions obtained from the zonal DNE limit algorithm can produce AC feasible

solution.
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The zonal methodology, presented in this chapter, is not limited only to the DNE limit

calculation. The zonal methodology can be used to address scalability of other power sys-

tem operational problems. For instance, potential future work may involve developing the

zonal methodology for planning studies and SCUC problem. The future work may also in-

volve investigating the locational aspect of the renewableinjection location and developing

a methodology to address the correlation between differentrenewable generation locations.
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Chapter 9

SCALABILITY OF TOPOLOGY CONTROL ALGORITHMS: HEURISTICS

APPROACH

9.1 Motivation

Robust topology control methodology, presented in Chapter4, is tested on an IEEE-118

bus test case, which consists of54 generators,118 buses, and186 transmission lines. This

test system is much smaller than any realistic test case, forexample, the PJM system is

consists of1375 generators,62, 556 miles long transmission network and peak demand of

183, 604megawatts [111]. Therefore, for any practical implementation, the robust topology

control methodology must scale from IEEE-118 bus test case to much larger test system.

The master problem, presented in Chapter 6, Section 6.5, is aMIP problem with a

combinatorial cut to determine the system topology. However, combinatorial cut is com-

putationally inefficient, may lead to many iterations between the master problem and the

sub-problem, which will increase the computational time and/or the master problem will

become so big that it will be even infeasible to solve. To overcome this issue, topology

control heuristic, presented in [19], is proposed to replace the master problem. The topol-

ogy control heuristics is based on a sensitivity analysis and provides the topology control

solutions in terms of a ranking list. This ranking list will be further used as a chosen topol-

ogy control action and will be evaluated for its robustness properties in a sub-problem. The

detail analysis of topology control heuristic is presentedin Section 9.2, where accuracy and

effectiveness of heuristic to identify correct topology control action is tested on2383 bus

Polish test system.
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9.2 Performance of AC and DC Based Topology Control Heuristics

Traditionally, the transmission network is considered as apassive system and genera-

tion was optimized assuming a fixed transmission topology. The concept of dispatchable

transmission was introduced in [20], which proposed a paradigm shift in the way the trans-

mission topology is viewed. As a result, optimal topology control (OTC) was developed

to harness the benefits of co-optimizing generation with transmission topology [91, 21].

Previous research shows that OTS would result in significantcost savings even under relia-

bility constraints [18, 14]. Transmission switching has other applications, such as reliability

improvement via corrective switching [97].

Binary variables representing the status of transmission lines make OTC a mixed-

integer program problem. Real world power systems have thousands of transmission lines

making the resulting OTC MIP a computationally expensive problem. Since the available

computational time is limited, an MIP based implementationof OTC in day-ahead and

real-time procedures is not practical. An alternative to solving the full MIP is the use of

switching heuristics to obtain a good, suboptimal solutionsignificantly faster. The MIP-

heuristic introduced in [23] allows only one switching at a time, reducing the number of

binary variables to one per iteration. This would significantly reduce the complexity of the

problem. However, the formulation still requires mixed integer programming, which may

still be too computationally challenging for certain applications that require fast solutions.

There are other heuristics proposed in the literature, which only need the results of the

original OPF. A DC-based heuristic is introduced in [81, 80], which ranks the lines based

on their economic value. The lines value, or the congestion rent of a single line, is the price

difference at the two ends of the line multiplied by the flow itcarries [112]. The calcula-

tions are based on the results of a DCOPF. This will be referred to as the ‘DC heuristic’.

A similar heuristic is derived based on an ACOPF [113], whichwill be referred to as the
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‘AC heuristic’. In addition to the real power value of the line, the AC heuristic takes into

account the reactive power and losses. The results obtainedfrom the heuristics in small

scale test cases show that they perform relatively well [112].

In this section, these heuristics are tested to see if they perform well for a large-scale test

case, the Polish system. The mathematical representationsof the heuristics are presented

briefly in the next section. The results suggest that the heuristics are not very different

and the inclusion of losses and reactive power does not have asignificant impact. This

finding is in line with the conclusions made in [113], statingthat the heuristics would be

significantly different if the system was voltage constrained. The results also show that the

best solutions are among the top twenty candidates identified by the heuristics. However,

the correlation between the estimated and actual benefits from switching is not very strong.

9.2.1 Methodology

In this section, MATPOWER, a MATLAB based open sources powersystem simula-

tion package, is used to solve the OPF problems [114, 115]. The detailed formulation and

solution method for ACOPF and DCOPF problem is provided in [115]. Here, brief de-

scriptions of AC as well as DCOPF formulations are presented. The ACOPF problem can

be represented as shown in (9.1)-(9.10), with an objective function presented in (9.1). The

upper bound on AC line flow equations are provided in (9.2), The real and reactive power

flow across the transmission linek is represented by (9.3) and (9.4) respectively, the node

balance constraints for real and reactive power are represented by (9.5) and (9.6). Note that

the dual variables for node balance constraints,λPn andλQn, represent the active and reac-

tive power locational marginal prices (LMP). Constraints (9.7)-(9.10) represent the lower

and upper bounds on variables.
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min
∑

∀g

cgPg (9.1)

s.t.P 2
k +Q2

k ≤ S2
k , ∀k (9.2)

Pk = V 2
mGk − VmVn(Gk cos(θm − θn) + Bk sin(θm − θn)), ∀k (9.3)

Qk = −V 2
mBk − VmVn(Gk sin(θm − θn)−Bk cos(θm − θn)), ∀k (9.4)

∑

∀k∈δ(n)+

Pk −
∑

∀k∈δ(n)−

Pk +
∑

∀g(n)

Pg = dn, ∀n (9.5)

∑

∀k∈δ(n)+

Pk −
∑

∀k∈δ(n)−

Pk +
∑

∀g(n)

Pg = dn, ∀n (9.6)

Pmin
g ≤ Pg ≤ Pmax

k , ∀g (9.7)

Qmin
g ≤ Qg ≤ Qmax

k , ∀g (9.8)

V min
n ≤ Vn ≤ V max

n , ∀g (9.9)

θmin ≤ θn − θm ≤ θmax, ∀k (9.10)

Using the ACOPF formulation presented, the sensitivity of the objective function to a

marginal change in the status of a transmission line is calculated in [113]. This metric is

used as a heuristic to estimate the benefits of switching the line. The heuristic is shown in

(9.11),

LVAC = PkmλPm − PknλPn +QkmλQm −QknλQn, ∀k (9.11)

In this research, we refer to the method that ranks lines based on (9.11) as the AC

Heuristic. The metric represents the economic value of the line, which equals the revenue

collected from the sale of power at the importing end minus the cost of buying power at the

exporting end, considering losses and reactive power. AC heuristic considers the negative

of the line value, suggesting that a line with a larger negative economic value is a potential
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switching candidate. It is not expected that the heuristic estimates match the actual benefits

accurately, because the change in the status of the line is not marginal.

With the well-known assumptions of DC power flow, the ACOPF formulated in (9.1)-

(9.10) can be simplified to a DCOPF, in which there is no reactive power or network losses.

Moreover, the power flow constraint can be approximated by a linear equation presented in

(9.12). Under this set of assumptions, and with linear cost functions, the DCOPF becomes

a linear program (LP). Because of the special properties of LP, LP-based DCOPF can be

solved much faster than the original ACOPF.

Pk = Bk(θn − θm), ∀k (9.12)

The same sensitivity is calculated with the DC set of assumptions in [81, 80]. The

metric estimating the DC benefits of the line is presented in (9.13). We refer to the method

ranking lines based on this metric as the DC heuristic. The DCestimation of the lines value

is the same as the AC estimation, ignoring the reactive powerand losses. It is concluded

in [113] that the two heuristics may produce significantly different results if the system is

voltage constrained.

LVDC = Pk(λPm − λPn), ∀k (9.13)

9.2.2 Simulation Studies

We test the two heuristics on the Polish test case provided byMATPOWER. The system

has2383 nodes,327 generators, and2896 transmission lines. We assume that all of the

generators are on. The cost functions included in the dataset are linear, which matches

the formulation presented in the previous section. In orderto study the performance of

the heuristics, we compare the actual benefit from the proposed switching action with the

estimated benefit calculated by the heuristics. The actual switching benefit is the total cost
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difference between the case in which the transmission line is in the system, and the case in

which it is taken out. We simulate the performance of the heuristics under three different

settings:

1. DC Heuristic with DCOPF: a DCOPF is performed and all the primal and dual vari-

ables are taken from the DCOPF solution. The actual benefits are calculated through

the total cost comparison of the two DCOPFs. The switching benefits are also es-

timated through the DC heuristic introduced in (9.13). A comparison between the

actual and estimated benefits provides information on the performance of the DC

heuristic with a DCOPF. Note that the solution to a DCOPF may or may not be AC

feasible.

2. DC Heuristic with ACOPF: the dual and primal variables as well as the actual benefits

are calculated through an ACOPF. The estimated switching benefits are obtained

from the DC heuristic, which does not include losses or reactive power. Note that

under this setting, despite using the DC heuristic, the power flow and active power

LMP come from an ACOPF. A comparison between the actual and estimated benefits

provides information on the performance of the DC heuristicwith an ACOPF.

3. AC Heuristic with ACOPF: the dual and primal variables arespecified through an

ACOPF algorithm. The actual switching benefits are also calculated by comparing

the total cost obtained from the two ACOPFs. Under this setting, the benefits are

estimated through the AC heuristic presented in (9.11). A comparison between the

actual and estimated benefits provides information on the performance of the AC

heuristic with an ACOPF.

Fig. 9.1 compares the benefits obtained by a single switchingaction with the estimated

benefits calculated by the DC heuristic under setting 1. Fig.9.2 shows the performance
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of an algorithm based on the DC heuristic using a DCOPF for thefirst twenty switching

candidates. The dashed line specifies the maximum possible benefit from the switching

identified by an ACOPF while the dotted line shows the maximumpossible benefits of

switching using a DCOPF. The results show that the algorithmis not able to find the best

switching action in the first twenty candidates it proposes.Five out of twenty proposed

candidates are beneficial actions when tested with a DCOPF. However, there exist only two

candidates that provide ACOPF beneficial switching actions. In electricity markets today,

all the procedures are based on DCOPF due to the computational complexity of ACOPF.

However, operators need to make sure that the solution is AC feasible. This is often done

via out of market correction (OMC) mechanisms [116]. Our results suggest that switching

candidates identified by the solution of a DCOPF may not be AC feasible or may not be

beneficial even though DCOPF identifies them to be beneficial.
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Figure 9.1: The Benefits Identified by DCOPF Versus the DC Heuristic Estimation of the

Benefits Using DCOPF.
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Figure 9.2: Performance of the DC Heuristic for the First Twenty Lines Identified by the

Heuristic Using DCOPF.

Fig. 9.3 and 9.4 show the same results under setting 2 where ACOPF is used instead of

DCOPF. The results suggest that the algorithm is able to identify the best switching action

among its first twenty proposed candidates. Six out of twentyproposed actions are benefi-

cial. Note that the only difference between settings 1 and 2 is the fact that ACOPF solution

is used under setting 2 for both actual and estimated benefit calculation. However, under

both settings the DC heuristic presented in (9.13) is employed. The difference between the

results comes from the fact that the dispatch and prices are different when AC power flow

constraints are taken into account in the optimal power flow problem.
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Figure 9.4: Performance of the DC Heuristic for the First Twenty Lines Identified by the

Heuristic Using ACOPF.
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Fig. 9.5 and 9.6 show the results under setting 3 where the AC heuristic is used with

ACOPF solution. The results are very similar to those of setting 2 with six beneficial

solutions among the first twenty proposed actions.
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Figure 9.5: The Actual Benefits Obtained by ACOPF Versus the AC Heuristic Estimation

of the Benefits Using ACOPF.
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Figure 9.6: Performance of the AC Heuristic for the First Twenty Lines Identified by the

Heuristic Using ACOPF.

The results obtained under settings 2 and 3 show that AC and DCheuristics produce

very similar results when the ACOPF solution is used. Under both settings, six out of

twenty proposed actions were beneficial and the algorithm was able to identify the best

switching action. The only difference was a slight change inthe candidates order. Such re-

sults were expected and are in line with the conclusions of [113], which suggests the results

to be similar when the system is not heavily voltage constrained. Nevertheless, the results

obtained under setting 1, where the DCOPF solution is used for heuristic calculations, are

substantially different from those of settings 2 or 3. The difference appears both in the

suggested switching candidates and the benefits.

As was stated before, in electricity markets today, ACOPF solutions are not generally

available similar to setting 1. Our results show that the studied heuristics do not provide

consistent results when they are based on the DCOPF solutioncompared to a more real-

164



istic ACOPF. The more realistic benefits, ACOPF based benefits, as well as the proposed

candidates are different than those based on a DCOPF.

9.2.3 Conclusion

Due to the computational complexity of the OTC problem, different heuristics are used

to obtain fast sub-optimal solutions. The heuristics are often tested on small scale systems

and the scalability of their application is not well understood. We studied the performance

of two such fast heuristics on the Polish system. The heuristics were studied under three

different settings: DC heuristic with DCOPF, DC heuristic with ACOPF, and AC heuris-

tic with ACOPF. Our results suggest that the AC and DC heuristics are not very different

when they are based on the solution to ACOPF. However, the heuristics do produce differ-

ent results if they are based on DCOPF solutions. Our resultssuggest that DCOPF based

solutions obtained for OTC may not perform well under realistic system conditions mod-

eled by an ACOPF. Since the market procedures are based on DCOPF, not ACOPF, and

AC feasibility is achieved via OMC routines, implementation of ACOPF based heuristics

would not be straightforward.
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Chapter 10

CONCLUSION

10.1 Conclusion

Topology control is an integral part of power system operations. Today, most of the

topology control actions are determined based on operators’ past knowledge about the sys-

tem or other ad-hoc methods. Relying on only prior observations to determine potential

corrective topology control action limits the capability to harness the existing flexibility

in the transmission network. Systematic procedures that are capable of capturing such

complexities should be preferred over these limited methods. Furthermore, the hardware

requirements to implement topology control (circuit breakers) already exist, leaving only

the need to develop the appropriate decision support tools,which are low in cost, to obtain

such benefits.

In this research, three different corrective topology control methodologies are pre-

sented: real-time, deterministic planning based, and robust corrective topology control.

Real-time corrective topology control is very difficult to implement with existing technolo-

gies due to a lack of computational power and the practical barriers of needing to ensure

AC feasibility, voltage stability, and transient stability. Deterministic planning based cor-

rective topology control can be solved offline, but such an approach relies on predicting the

operating state. Furthermore, the deterministic planningbased methods cannot guarantee

solution feasibility over a wide range of system states. Theproposed method of robust cor-

rective topology control fills the technology gap between the real-time and the deterministic

planning based corrective topology control methodologies. The offline mechanism of ro-

bust corrective topology control algorithm generates solutions, which can be implemented
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in real-time with the help of a real-time dynamic security assessment tool. As a result,

the proposed robust corrective topology control model provides a mathematical decision

support tool that integrates topology control into every day operations by being able to

guarantee the robustness of solutions.

While deterministic corrective topology control frameworks may suggest many poten-

tial switching solutions, the empirical results presentedin this research show that many of

these solutions will be infeasible for minor changes in the operating state. In contrast, the

robust corrective switching scheme guarantees solution feasibility for a wide range of sys-

tem states, given a DCOPF formulation. In addition, the robust corrective topology control

formulation demonstrates the ability of generating multiple corrective switching actions

for a particular contingency. Moreover, a single resultingcorrective switching solution is

capable of mitigating multiple contingencies.

Day-ahead unit commitment problems, with proxy reserve requirements, do not guar-

anteeN-1 feasibility. Contingency analysis is used to determine whether there are con-

tingencies that cannot be satisfied by the unit commitment solution. When this happens,

unit commitment must be resolved or the operator will employout-of-market corrections

to obtain a feasibleN-1 solution. The results have shown that robust corrective topology

control can be used to reduce the occurrence of contingencies that are not satisfied by the

re-dispatch capabilities of the unit commitment solution alone. Furthermore, the numerical

results proved that the topology control does not necessarily degrade system reliability; on

the contrary, it can help the system to achieveN-1 feasibility even with uncertainty.

The penetration of renewable resources in electric power systems has increased in re-

cent years. This increase in intermittent renewable resources forces changes in the oper-

ational paradigm of the bulk electric power systems. This research shows the usefulness

of topology control actions for integration of renewable resources, in terms of determining

DNE limits. For renewable resource integration, the determination of DNE limits is crit-
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ical; in this research, a systematic procedure to determineDNE limit is presented. With

corrective topology control actions, the DNE limits can be increased by30-100%, as com-

pared with no topology control actions. At the same time, topology control actions can

lower the operational cost by at least6%. The robust topology control algorithm is based

on a DCOPF; therefore, the topology control solutions obtained from the robust optimiza-

tion problem must be checked for AC feasibility. On the IEEE-118 bus test case,∼85-90%

of topology control solutions obtained from the robust topology control algorithm are AC

feasible.

The stability studies, presented in this research, demonstrated that the solution obtained

from the robust topology control algorithm can pass AC feasibility and stability tests. Fur-

thermore,30 topology control solutions, obtained from robust topologycontrol algorithm,

are tested for stability and∼66% of the topology control solutions pass the stability check.

This research also address the scalability of the DNE limit problem; for a realistic sys-

tem the DNE limit formulation, presented in Chapter 7, is cumbersome and may result in

longer computational time. Therefore, in this research, the zonal DNE limit methodology

is presented, which systematically reduces the system sizeand determines the DNE limits.

The error in DNE limits obtained from the zonal method and thenodal method is∼2-12%.

Furthermore, the computational time reduces by∼75-99%with the zonal DNE limit formu-

lation. This chapter also addresses the scalability issue of the DNE limit problem, which is

critical for real life applications and fast solution time.The DNE limit results, on the TVA

system, show that with5-10% of modeling information, the accuracy of the solutions is

∼98% while, at the same time, the computational time is∼1% of what it would otherwise

take to solve a nodal model for the DNE limit problem. This result shows the benefit of

the zonal DNE limit formulation. The tradeoff between the computational time and the

accuracy shows the potential of the zonal DNE limit formulation. Furthermore, numeri-

cal results demonstrated that a DC optimal power flow based zonal approach can produce
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topology control solutions, which can pass AC feasibility test. Based on the empirical

studies conducted,∼80% of TC solutions obtained from the zonal DNE limit algorithm

produced AC feasible solution.

10.2 Proposed Future Research

10.2.1 Probabilistic Do-not-exceed Limits

In Chapters 7 and 8, the DNE limits are determined without considering the locational

aspect of at each renewable injection location. In Chapter 7, it is assumed that all the

renewable generation deviates uniformly over all renewable injection nodes. This model-

ing approach is a conservative approach as it is assumes thatrenewable generation varies

uniformly, from its forecasted value, at the same time. The benefit of this method is that

it simplifies the uncertainty set definition and reduces the number of variables. However,

past research has shown that forecasting renewable generation and predicting the renew-

able uncertainty is difficult. From a DNE limit point of view,this approximation is most

conservative in nature and results in narrower DNE limits. In Chapter 8, it is assumed that

the renewable generation, at each node, is allowed to deviate independently with respect

to each other. This approach is more practical and close to realistic behavior of renewable

generating units, as the variability of one wind farm is not directly related output of other

wind farms. However, this modeling approach complicates the robust DNE limit formu-

lation with TC; in this approach, there are more variables and subsequently requires more

complex solution method. The future work may involve extending the concept of DNE

limit considering the locational aspect of renewable generation. In this modeling approach,

each renewable injection location can be weighted based on the expected probabilistic value

of deviation and the DNE limits can be determined based on a probabilistic function. In

this case, the weights for each renewable injection node would be determined based on his-
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torical data and improved scenario selection techniques. This approach can be combined

with a stochastic model that captures the correlation of thewind farms and quantifies the

spatial-temporal correlation in wind generation. This approach is complex and may prove

to be beneficial for future power system operations.

10.2.2 Non-uniqueness of Do-not-exceed Limits

In Chapter 8 and [117], for a fixed topology, it is observed that the lower limit of the

DNE limits are bounded by the amount of available spinning reserves in the system. How-

ever, in some cases, the DNE limits are not unique in nature; for instance, identical DNE

limits, in terms of total MW, can be obtained with different injections of renewable gener-

ation. This problem exists when the DNE limits are determined assuming the deviation in

renewable generation is independent of each other. In powersystem operations, locational

aspects of renewable injection is critical; future work mayinvolve understanding the non-

unique nature of the DNE limits and establishing the methodology to analyze this nature of

the DNE limit problem.

10.2.3 Co-optimization of Do-not-exceed Limits

In an ideal situation, the DNE limits should be determined within the SCUC problem.

Co-optimizing the DNE limit with the SCUC problem may provide better results in terms

of addressing uncertainty in renewable generation. In recent years, multiple research ini-

tiatives has investigated the benefits of robust optimization for solving unit commitment

problem and addressing uncertainties in renewable generation. The DNE limits can extend

this robust unit commitment problem to address uncertainties in renewable generation and

power system operations.
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10.2.4 Effect of Clustering Methods on Do-not-exceed Limits

In Chapter 7, PTDF difference with k-means clustering method is used to determine the

clusters for the zonal DNE limit problem. In this research, the effect of different clustering

method on the solution quality of this problem is not addressed. Future work may involve

understating effects of different clustering methods on the solution quality of the zonal

DNE limit problem and improving the zonal DNE limit formulation.

10.2.5 Co-optimization of Robust Corrective Topology Control for System Reliability

In this thesis, the robust corrective topology control methodologies are presented to

achieveN-1 reliability. However, these methodologies are outside theSCUC problem

formulation. Co-optimizing the SCUC with the robust corrective topology control method-

ologies can help in improving the system reliability. In this case, including allN-1 con-

tingencies in the robust corrective topology control formulation with the SCUC may lead

to an insolvable problem. However, only including criticalcontingencies, with the robust

corrective topology control methodologies in SCUC may leadto a more secured SCUC

solution and improved system reliability.

10.2.6 Robust Corrective Topology Control Heuristics

The future work may also involve investigating new methods of modeling TC problem

and developing better topology control heuristics. The TC problem is complex problem

and solving it in its genetic form is computationally cumbersome for large scale realistic

systems. TC heuristics may help to reduce the computationaltime but does not guarantees

AC feasibility and its effects on system stability. Understating these critical operational

issues and addressing them in a optimization framework is essential.
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10.2.7 AC feasibility and Stability of Robust Corrective Topology Control

From TC point of view, AC feasibility and system stability iscritical. At present, there

are not many reliable methods to address the AC feasibility and the system reliability of the

TC solution in a optimization framework, which can scale to realistic test systems. Future

work may involve investigating these issues.
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