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ABSTRACT

Corrective transmission topology control schemes are sengial part of grid opera-
tions and are used to improve the reliability of the grid al agthe operational efficiency.
However, topology control schemes are frequently estagti®ased on the operator’s past
knowledge of the system as well as other ad-hoc methods. résearch presents robust
corrective topology control, which is a transmission shiitgg methodology used for sys-
tem reliability as well as to facilitate renewable integrat

This research presents three topology control (correttiwvesmission switching) method-
ologies along with the detailed formulation of robust cotree switching. The robust
model can be solved off-line to suggest switching actios$ tdan be used in a dynamic
security assessment tool in real-time. The proposed rabpstogy control algorithm can
also generate multiple corrective switching actions foagipular contingency. The solu-
tion obtained from the robust topology control algorithngisaranteed to be feasible for
the entire uncertainty set, i.e., a range of system opeyatates.

Furthermore, this research extends the benefits of robustative topology control to
renewable resource integration. In recent years, the fiwet of renewable resources in
electrical power systems has increased. These renewablgrces add more complexities
to power system operations, due to their intermittent maturhis research presents ro-
bust corrective topology control as a congestion managetaehto manage power flows
and the associated renewable uncertainty. The proposedds®d method determines the
maximum uncertainty in renewable resources in terms of@eerceed limits combined
with corrective topology control. The results obtainedtrthe topology control algorithm
are tested for system stability and AC feasibility.

The scalability of do-not-exceed limits problem, from a #eraest case to a realistic
test case, is also addressed in this research. The do-ceeekmit problem is simplified

by proposing a zonal do-not-exceed limit formulation ovelesailed nodal do-not-exceed



limit formulation. The simulation results show that the abapproach is capable of ad-

dressing scalability of the do-not-exceed limit problemdaealistic test case.
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Chapter 1

INTRODUCTION

1.1 Motivation

Robust optimization has existing in literature since thBa9 however, it has not been
studied in connection with electrical power systems ustibntly. The key feature of robust
optimization, to utilize uncertainty sets to capture uteiarsystem parameters, is useful
to analyze many power systems operational related studibs. increasing level of in-
termittent renewable resources in electrical power systsradding more complexities to
power system operations. The standard power system opeabtools, present today, are
not capable of analyzing these uncertainties to its fulkeikt As a result, existing power
systems optimization packages are either inefficient bycmremitting generation in an
ad-hoc fashion in order to handle the uncertainties or theisas may jeopardize relia-
bility by not accounting for such uncertainties. This reshdocuses on developing robust
optimization based tools and algorithms, which can be usadalyze system uncertainties
in power system operations.

High-voltage electric power grids include thousands oesof transmission lines with
hundreds to thousands of large generators that frequepdly swultiple countries. Oper-
ational models of the bulk power grid include complex caaistis: branch (transmission
line) flows, stability limits, voltage restrictions at bss@odes), security constraints, inte-
ger restrictions on the generation, and the fact that ébégtrs instantaneously generated,
transported, and then consumed. These characteristiessredctrical power systems one
of the most complex network flow models that exist today. Tiwifurther complicated

by the fact that there is minimal control over the path thatdhrrent takes. The electric



grid is built to be a redundant network in order to ensure ratorg reliability standards.

The current travels over many branches and can potentraligltover all paths to reach
its final destination. The flow of current is governed by Khoff's laws and is subject

to the impedance of the transmission lines as well as otltora  With the advent of

high levels of intermittent resources (wind and solar) ibécoming even more difficult to
ensure safe, reliable, and cost effective delivery of alegiower. A variety of solutions

exist to deal with this issue. While it is also possible toesivin additional transmission
capability by building additional transmission lines, firénary barriers to such a solution
include expensive capital costs to invest in such infrastme followed by the frequent
societal objection of having to acquire additional langlts of way) to build new lines.

There are also frequent fights over who should pay for suchfeastructure. This research
investigates an alternative solution: robust correcipotogy control.

The proposed robust corrective topology control methoglpldtilizes existing assets,
circuit breakers or electrical switches, to temporariket&igh-voltage transmission lines
out of service. Typically, taking an available transmisspath out of service reduces the
transfer capability of electric power across the grid and mi@grade system reliability.
However, it is also possible that temporarily removing & lgan improve the transfer ca-
pability and reliability of the system. Since the flow of eléx power on one particular
transmission path is dependent on the impedances of diterrgaths, it is possible to
increase the transfer capability on other paths that atenefervice by taking out other
transmission lines. If the path that has its transfer cdpgalmcreased is a critical path,
e.g., there is excess wind in that region, then taking the duat of service may improve
operations and reliability.

In most of the system studies today, the modeling of the tngs®on network is sim-
plified and limited attention is given to the flexibility inémetwork topology. To overcome

this issue, there is a national push to model the grid by a rempéisticated, smarter way



as well as to introduce advanced technologies and contrcthamesms into grid operation.
One aspect of smart grid aims at making better use of therdunastructure as well as
additions to the grid that will enable more sophisticateel aisthe network. This research
examines smart grid applications of harnessing the fultrabof transmission assets by
incorporating their discrete state into the network optetion problem and it analyzes the

benefits of this concept for system reliability and renewabkources integration.
1.2 Topology Control: Asa Concept

The following 3-node network flow model in Fig. 1.1 illusteatthe concept of topology
control. All of the generators in this example have différeperating costs and have no
limit on their capacity. The objective is to determine théim@al economic dispatch to meet
the demand at node C. All of the transmission lines are asstorteave equal impedances.

However, the thermal capacities of the lines are assumee tliffierent.

$150/MWh $500/MWh

$50/MWh

Figure 1.1: Topology Control Example.

Fig. 1.2 represents the different feasible sets of solstion two different network

topology configurations. When all lines are in service, thkitson space, for generator



As and generator B’s production, is defined by the vertifesl, 2, 3}. However, when
line A-B is opened (taken out of service), the solution spawnges and it is defined by
the vertices{0, 4,6,8}. Therefore, when topology control is simultaneously cdesed
while solving for the optimal economic dispatch, the unidriheese two solutions spaces
define the set of feasible solutions, which{i& 1,5,6,8}. Thus, it is obvious that the
flexibility gained by topology control creates a supersdeasible solutions, meaning that
the resulting solution will never be worse than if topologyntrol is not considered. Fur-
thermore, the optimal dispatch with all lines in service Vddoe defined by,=200 MW,
G,=50 MW andG.=100 MW at a cost 0f$67, 500; with transmission topology control, the
optimal dispatch solution i§,=300 MW, G,=50 MW andG.= 0 MW at a cost of$22, 500.

Feasible Region

15l T T T T
1 Original feasible set Feasible set with line AB open
{0,1,2,3} {0,4,6,8}
Feasible set with switching
{0,1,5,6,8}
10 B
g
£
)
c
[
(O]
50 B
0 50 100 150 200 250 300
Gen A, (MW)

Figure 1.2: Feasible Region for the Topology Control Exampl



1.3 Example: Topology Control in Real Life Application

Past research to identify and show the benefits of topologyrabfor power system
operation is presented in Section 2.3. In this section,ldife@xample of topology control
action to mitigate post-contingency situation is presgnte this example, the topology
control action is used to overcome the overvoltage sitnatemused by post-contingency
flows.

Fig. 1.3 shows the voltage contour plots for the pre-cominay, contingency, and
post-contingency states for a subsection of the Tennesabsy/ Authority (TVA) system.
In pre-contingency state, all bus voltages are within theeptable operating range, i.e.,
between).9-1.1 pu; however, in the post-contingency state, a subsectidrangmission
network experiences the overvoltage situation. To oveectins overvoltage situation, a
topology control action is proposed, which alters the masttingency flows and helps to
reduce voltages on buses experiencing overvoltage. Thieylar pre-contingency state
corresponds to a lightly loaded period, in which most of tighhvoltage transmission
lines in presented area are lightly loaded compared witpetk-load condition. In the
contingency state, the reactive power available withinafiected area is more than the
requirement, which results in overvoltage in this area.lémgntation of topology control
inherently reduces the excessive flow of reactive powertimaaffected area and helps to

reduce the bus voltages to safe operating limits.



Topology
control
solution

Contingency

Over-
voltage
eliminated

Over-
voltage

Contingency

@) (b) ©
Figure 1.3: Example for Corrective Topology Control.

Note that in this example, the generator dispatch in preéhtgency and the post-
contingency is same and no re-dispatch request is sent wragers. Furthermore, Fig.

1.3 represents the part of network ab&0ekV.
1.4 Summary of Chapters

Chapter 2 gives a literature review, which provides the dasderstanding of trans-
mission switching proposed in literature for various remscsuch as corrective switch-
ing, congestion management, and the various techniqugseatiare listed. It also covers
present industrial practices involving topology contreleacorrective mechanism to over-
come power systems operational issues.

Chapter 3 presents an overview of electric energy dispatahblgms. In particular, it
discusses the formulation for the alternating currentrogatipower flow (ACOPF) problem
as well as a common approximation of the ACOPF and the dirgrcent optimal power
flow (DCOPF) problem. Finally, a discussion of the unit com@nt problem, used in this
research, as well as its formulations is presented.

Chapter 4 provides background information regarding robpsmization. The deriva-

tion for the robust topology control algorithm is presentetich converts a complex three



stage optimization problem into a two stage problem. Thepaomon of robust optimiza-
tion and stochastic optimization is also given.

Chapter 5 provides a brief introduction to stability stwdad information about the
dynamic models used in this thesis. The short descriptiodiftérent types of stability
studies are also presented.

Chapter 6 presents the effect of demand uncertainties eersysliability. In this chap-
ter, three topology control (corrective transmission shiiig) methodologies are presented
along with the detailed formulation of robust correctiveitshing algorithm. The results
for V-1 reliability analysis with robust corrective switching atithm are also presented.
These studies were conducted on the IEEE 118-bus test case.

Chapter 7 presents the effect of renewable uncertaintie®mewable resources in-
tegration and system reliability. In this chapter, a robusthodology to determine the
do-not-exceed limits for renewable resources is presealedg with a detailed analysis
of the robust corrective switching algorithm under reneéeaincertainties. The simulation
results for do-not exceed limits with robust corrective tshing algorithm are also pre-
sented. These studies were conducted on the IEEE 118-hHusatesand a realistic test
system of Tennessee Valley Authority (TVA).

Chapter 8 presents the zonal DNE limit methodology to addites scalability of the
DNE limit problem. The proposed zonal DNE limit method istéekson the IEEE 118-bus
test case and a realistic test system of TVA.

Chapter 9 addresses the practical limitations of the tgpotmntrol algorithm. The
issues associated with the scalability and large commmalitime of topology control
algorithm are discussed in this chapter.

Chapter 10 concludes this dissertation and discussest@btirtiure research that is
connected with the main theme of this dissertation, dewetpp more flexible electric

grid.



1.5 List of Abbreviations

The list of abbreviations used in this thesis are listedwelo

ACOPF
DCOPF
DDP
FACTS
FERC
LP
LMP
MIP
NERC
oMmC
OPF
PF
PTDF
RTC
scuc
SCED
TC

uc

Alternating Current Optimal Power Flow
Direct Current Optimal Power Flow

Desired Dispatch Point

Flexible Alternating Current Transmission Systems
Federal Energy Regulatory Commission
Linear Programming

Locational Marginal Price

Mixed Integer Programming

North American Electric Reliability Corporation
Out-of-market Correction

Optimal Power Flow

Power Flow

Power Transfer Distribution Factor

Robust Corrective Topology Control

Security Constraint Unit Committment
Security Constraint Economic Dispatch
Topology Control

Unit Committment



Chapter 2

LITERATURE REVIEW

2.1 Introduction

The objective of this research is to study the impact of togglcontrol on system
reliability and renewable integration. Past research Hestified topology control as a
valuable asset that can be used to mitigate various powégrsysperational concerns.
This chapter presents a thorough literature review on th@vatmn for this research, past
related research on topology control, and an overview o$gntindustrial operational

procedures where transmission control is employed.
2.2 National Directives

The demand of electrical power has increased considerainiggithe past few years.
This increase in system demand causes a great amount of strasansmission infras-
tructure; to overcome this issue, there is a national pushetate a smarter, more flexible,
electrical grid. A smarter grid not only improves the effiag of the electric transmission
systems, but it also ensures secure and reliable powemnsygterations. This research is
in line with several national directives addressing thisthir a smarter and more flexible
power grid.

The United States Energy Policy ACT (EPACT) of 2005 callsfdvanced transmission
technologies, which includes a directive for federal agesto “encourage. deployment
of advanced transmission technologies,” including “ojd transmission line configura-

tion.” This research also follows the Federal Energy ReguyagCommission (FERC) order



890, which encourages the improvements in economic opesatf transmission grid. It
also addresses the Energy Independence and Security A&OGt 41) “increased use
of...controls technology to improve reliability, stability, defficiency of the grid” and (2)

“dynamic optimization of grid operations and resource$&intention of this research is to
harness the control of transmission assets by the dynarimiaption of the transmission
grid, and the co-optimization of transmission with geniergtusing robust optimization

techniques, thereby encouraging a smarter, flexible, and efticient electric network.

2.3 Literature Review: Topology Control

Topology control has been in literature since 1980s andptlay, it has been used to
overcome power systems related operational issues, suaitage violations, line over-
loads [2, 3, 4, 5], line losses and cost reduction [6, 7, &teay security [9], or a combina-
tion of these [10, 11]. In this section, the brief overviewpakt research related to topology

control are presented.

2.3.1 Topology Control as a Congestion Management Tool

Topology control actions are used to manage congestionnititle electrical network;
[2] proposes topology control actions as a tool to managgestion in the electrical grid.
It discuss ways to solve this problem by genetic algorithfoa@with deterministic ap-
proaches. This approach attempt to minimize the amounterd@ads in the network since
they are not co-optimizing the generation with the topologlius, this is a disconnected
approach where generation is first dispatched optimallytaed this method is employed
to reduce network congestion. Once again, the optimal iim&asson switching concept
goes further than this concept since it co-optimizes thegdion with the network topol-
ogy in order to maximize the market surplus. In [12], the logg control actions are

proposed to mitigate transmission network congestion dinggh renewable penetration.
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In general, it has been assumed that taking transmissiameeks/lines out of service
increases the congestion in the system. This misconcepai®been proven wrong in [13].
Network topology optimization allows for a system re-digpa which makes it impossible

to state the impact on congestion.
2.3.2 Topology Control as a Corrective Mechanism

Past research has shown topology control as a control mébh@dvariety of power
system operational problems. The primary focus of pastarebehas been on propos-
ing transmission switching as a corrective mechanism wheretare voltage violations,
line overloads [2, 3, 4, 5], line losses and cost reductign7[68], system security [9],
or a combination of these [10, 11]. While this past reseackmawledges certain bene-
fits of harnessing the control of transmission network farskerm benefits, they do not
use the flexibility of the transmission grid to co-optimite tgeneration along with the
network topology during steady-state operations. In [14&, unit commitment problem
with topology control actions are co-optimized, with 1 reliability, which has shown that
co-optimization of topology control actions with unit contment can provide substantial
economic savings, even while maintainiigl reliability standards. Furthermore, the use
of transmission switching as a corrective mechanism tocomgpo a contingency has been
acknowledged in some past research to have an impact onghef@eneration reschedul-
ing due to the contingency. However, it has not been ackrayeeé that such flexibility
should be accounted for while solving for the steady-stateral dispatch, probably due
to computational difficulties and extended solution time.

In [15], topology control is used as a corrective mechanismesponse to a contin-
gency. It also presents the formulation of such a problemmngides an overview of
search techniques to solve the problem. This idea is fuekiended to alleviate line over-

loading due to a contingency by [3] using topology contralifigics. The limitation of
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this method is that it is based on topology control heustichich does not consider all
corrective topology control actions and does not co-om@ntbpology control with the
generation. In [16], topology control actions are used asreective mechanism, with lin-
earized approximate optimal power flow formulation and edlusing branch and bound
method. The corrective topology control using AC power flewtudied in [10]; however,
in this study, it is assumed that the generator dispatchesl filkereby not acknowledging
the benefit of co-optimizing the network topology with geaten.

The corrective topology control actions provide optimaluiés when topology control
actions are co-optimized with generation. In [9, 8], a cctive topology control is used
to mitigate contingencies, where, a corrective switchilggathm is used to mitigate con-
tingencies, while considering the ability to re-dispat@negration. However, due to the
computational complexity of this problem, this method dnessearch for the actual op-
timal topology but rather considers limited switching aos. The review of past research
on topology control is provided in [17]. In [11, 4] the topgkpcontrol actions are used to
relieve line overloads and voltage violations.

The optimal transmission switching for contingencies g€ optimal power flow is
presented in [18], which shows that in power system oparatiosing topology control ac-
tions, considerable cost benefits can be achieved. Furthermeference [18] also shows
that co-optimizing topology control with generation camegoperational flexibility to sys-
tem operators’ to respond to emergency situations. Furtbie, in [19] this idea is further
extended to determine topology control actions for cor@ngy mitigation in real-time. In
this study, the fast DCOPF based heuristic is used to deteroandidate topology control

actions.
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2.3.3 Optimal Topology Control

The bulk electric transmission network is built with redantipaths to ensure manda-
tory reliability standards, such as NERC requirements¥er and these standards require
protection against possible worst-case scenarios. Hawigvs well known that the re-
dundancies in these networks can cause dispatch inefficidnoe to line congestion, or
voltage violations. Furthermore, a network branch thaeduired to be built in order to
meet reliability standards during specific operationalqos may not be required to be in
service during other periods. Consequently, due to thedapendencies between network
branches (transmission lines and transformers), it isiplest temporarily take a branch
out of service during certain operating conditions and muprthe efficiency of the network
while maintaining reliability standards. This correctaxitching action is the basis for the
optimal topology control.

Optimal transmission switching includes the control ohsnaission assets into the op-
timal power flow (OPF) formulation in order to co-optimizesthetwork topology simul-
taneously with the generation. This added level of contrdhe traditional OPF problem
creates a superior optimization problem compared with thdittonal OPF formulation.
Furthermore, by harnessing the control of transmission@ndptimizing the electrical
grid topology with the generation, the optimal transmissswitching problem guarantees
a solution that is as good as the one obtained by the tradltthgpatch formulation.

The concept of a dispatchable network was first introducg@0h, which led to the
research work related to optimal transmission switchin@in 18, 14, 22, 23, 24, 13, 19].
This past research has also shown that substantial ecoisamis can be obtained even
for models that explicitly incorporat&/-1. For example, in [18, 14] it is observed that
savings on the order af — 15% can be achieved even while maintainiigl. Note that,

this past research has been based on the DCOPF formulatineanapproximation to the
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ACOPF problem, which is a lossless model and reactive powaerdte ignored.
2.3.4 Topology Control and Minimize Losses

In [6], the topology control actions are used to minimizetegslosses, which shows
that, contrary to general belief, it is possible to redueetical losses in the network by
opening a transmission line for a short timeframe. Furtlogenin [7], the author proposed
a mixed integer linear programming approach to determia®fhimal transmission topol-
ogy, with the objective to minimize electrical transmissiosses. Unlike past research, this
model searches for an optimal topology, but does not considegenerator re-dispatch.
The ideal way to use topology control for loss minimizatisrtd consider the topology
control along with generator re-dispatch, which will detere the optimal transmission

topology and generator dispatch.
2.3.5 Topology Control for Maintenance Scheduling

Past research focused on the effect of topology control etesyreliability. However,
topology control actions not only affect the system relighibut also help to reduce the
operational cost of the electric grid. Nowadays, systenraipes consider topology con-
trol as a controlling tool in maintenance scheduling of &leal bulk power system. For
example, in 2008, the Independent System Operator of NewaBd@lSONE) saved more
than$50 million by considering the impact of transmission line ntaimance scheduling on
the overall operational costs [25]. However, the study donESONE is based on estimat-
ing cost instead of employing mathematical optimizatiosigpwhich determine the total
system cost considering transmission network reliabilyrthermore, the benefit of this
research is that it underlines the need of developing maetipal mathematical models to

solve the maintenance scheduling problem.
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2.3.6 Topology Control for Transmission Expansion Planning

The bulk power transmission network is built with redundasado improve system
reliability and/or to improve operational efficiency. Théore, it is often assumed that
topology control actions will reduce operating costs omlygoorly planned transmission
networks. However, this assumption is not true. Optimailgnaission switching and trans-
mission planning are two different optimization problems#wdifferent objectives: trans-
mission planning is a long-term problem, which determimesline(s) to build over a long
time horizon; on the other hand, optimal transmission wiitg is a short-term problem,
which determines the optimal network for short term benediish as reduction in operat-
ing cost. The ideal method to obtain better benefits over g fiomescale is to consider the
optimal transmission expansion plan. Note that, the optpiaa does not guarantee ben-
efits to the system during each individual operating peridsia result, a network can be
perfectly planned, but still benefit from short-term netkogconfiguration, using optimal
topology control actions.

Transmission expansion planning is a complicated multiepleoptimization problem.
In traditional literature, topology control actions aret wonsidered in the planning pro-
cess. However, in [26], the methodology for transmissigre&sion studies with topology
control action are presented. The DCOPF based formulatiosed in this analysis, con-
sidering higher wind penetration. A more detailed analf@igransmission planning with

topology control is presented in [27].

2.3.7 Topology Control for System Reliability

The electrical transmission network is designed to harali®us contingencies and de-
mand levels. However, such deviations do not exist at thesane with the same intensity.

Therefore, a particular line that is required to be in serticmeet reliability standards for a
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specific operating point may not be required to be in senacether operating conditions.
Hence, corrective topology control can be used to médtstandards. The NERC policy
dictates that after the occurrence of a contingency, theesysust be reconfigured and
re-dispatched to handle another contingency within 30 tesuHowever, in real-time the
analysis ofN-1 reliability is a complex problem. The real-time dynamicessnent tools
used today in power system operation monitor some of théseatcontingencies, as it is
not possible to monitor all th&’-1 contingencies in real-time.

Furthermore, itis possible to improve system reliabilggtémporarily taking a line out
of service. System reliability not only depends on the nekwopology, it also depends on
the generation dispatch solution, e.g., available geloeraapacity and ramping capabil-
ities of the generators. Since modifying the topology cleasniipe feasible set of dispatch
solutions, it is possible to obtain a different generatimpdtch solution that was infeasible
with the original topology, but is feasible with the modifiexpology. Even though there
may be a line(s) temporarily out of service, this new gemnenatispatch solution may make
the system more reliable if it has more available capacity faster generators. In [19],
N-1 andN-2 contingency analysis for IEEE test cases is presented jvghiows that, with
topology control actions,2 — 63% more load can be served during1 contingencies and

5 — 50% more load can be served with N-2 contingencies.
2.3.8 Special Protection Schemes (SPs)

Corrective switching is one example of topology controlttisaimplemented today
[28]. These methods are based on operators’ prior know|edgspecified in [28] on page
107; such actions may also be based on historical informatateally, corrective switch-
ing algorithms should be solved in real-time. Once the digtnce occurs, the switching
algorithm is executed to suggest switching actions to @ltevany constraint violations.

This approach is beneficial since the current operatingsiatknown, which ensures the
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accuracy of the solution. However, the challenge with teaé mechanisms is that they
must be extremely fast while also ensuring AC feasibilityitage stability, and transient
stability. Topology control models could be solved offlinedstimating the operating state
of the system. However, deterministic offline mechanismse akve limitations since the
operating state must be predicted prior to the disturbahbes, the proposed offline cor-
rective action is, susceptible to problematic reliance erfiget foresight.

Special protection schemes (SPSs), also known as remeti@h achemes (RASS) or
system integrity protection schemes (SIPSs), are an impipart of grid operations. SPSs
are used to improve the reliability of the grid and improve tiperational efficiency. SPSs
are primarily identified and developed based on ad-hoc proges. The development of
such corrective mechanisms like SPSs reflects a changehalputhe industry to switch
from preventive approaches, to the use of corrective appesa The use of transmission
switching as a corrective mechanism can be a powerful took ifstance, PJM has a
number of SPSs that involve post-contingency transmissvaiching actions [29]. For
example, the following action is listed in [29] on page 22Thé 138 kV tieline L28201
from Zion to Lakeview (WEC) can be opened to relieve contirgyeoverloads for the loss
of either of the following two lines: Zion Station 22 to Pleas Prairie (WEC) 345 kV Red
(L2221), Zion Station 22 to Arcadian (WEC) 345 kV Blue (L2322

In practice, topology control actions are employed duriteckouts caused by rare
weather conditions [30]. In 2012, due to Superstorm Sandly IBst about 82 bulk electric
facilities, which caused extremely high voltages on théesysduring low load levels. To
overcome this high voltage situation, a corrective switghplan was employed, several
500KV lines were switched out to mitigate over voltage consaluring these low load
level periods. Note that, the corrective switching metHogp employed in this particular
case is unknown.

Such operational protocols, like SPSs, are often viewed @scassary protocols to
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maintain system reliability. While these transmissiontshing SPSs do help maintain
system reliability, there are alternatives that the operean employ instead. Possible al-
ternatives may include: re-dispatching the system afterctmtingency occurs; choosing
a different steady-state (no-contingency) dispatch padhe contingency occurring to en-
sure there is no overloading; or upgrading the equipmentaitis able to handle these
contingency flows. Re-dispatching the system is likely torélase the operating costs.
Choosing a different dispatch solution for steady-statraions would increase the oper-
ating cost, otherwise, that dispatch solution would hawvenbaitially chosen. Investing in

new equipment increases the capital cost of the system.
2.3.9 Seasonal Transmission Switching

Topology control actions are used for short term benefitselsag seasonal benefits.
For instance, in the state of California, the load requinetsiare lower in the winter and the
probability of an outage is higher due to winter storms. Tin@er is the exact opposite;
during the summer, the load is the highest in the year, byirtbieability of outages is lower
since there are fewer and less severe storms. As a result,igdities have determined that
it is beneficial to leave certain transmission lines in serduring the winter when there is
a greater chance of winter storms for reliability purposes,yet these lines are taken out
of service during summer periods since the threat of an eutalgpwer.

These lines are primarily redundant transmission lineshiélower voltage network.
Such redundancies are less important during summer penibda the probability of an
outage is lower. Furthermore, these redundant lines caseaaterloading concerns during
summer periods since the load conditions during the sumradrigher. For instance, there
can be two parallel lines with different thermal capacityings. The lower capacity line,
generally a part of the lower voltage network, may reachaisacity first and, therefore,

inhibit the higher voltage network from transferring as impower as desired. Due to the
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higher loading conditions, it is, therefore, preferredaket the redundant, lower capacity
line out of service, as long as the line is not necessary tataiai system reliability. Since
the outage rates are lower during the summer periods, thatope are able to take the
line out of service without jeopardizing system relialyiliiln contrast, having these redun-
dancies in service during the winter is integral to mairitegrsystem reliability since the
probability of an outage is greater. In addition, the redunales do not cause overloading
concerns during the winter since the winter loading levedd@awer.

While this operation is acknowledged by utilities today tradeoff between protecting
against potential contingencies versus the potential ¥erloads is not well understood.
Seasonal transmission switching models that are capalalesvfering these questions do
not exist today, thereby emphasizing the need for furthregarch and development in the

area of seasonal transmission switching.

2.4 Conclusion

Topology control actions have been suggested to mitigate/mpawer systems related
problems. However, most of those studies are either bas&®IC&PF or assumes fixed
generator dispatch, which has limited the spread of topgotmptrol in power system op-
erations. Even though, today, system operators do chargjensytopologies for short
term application, these topology control actions are basedperators’ prior knowledge
or some add-hoc methods. To overcome this issue researsénped in this report in-
troduces a robust optimization based topology control palogy, which suggests the
topology control actions, that are valid for a range of opegpstates, are guaranteed DC

feasible for the entire uncertainty set.
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Chapter 3

REVIEW OF OPTIMAL POWER FLOW AND UNIT COMMITMENT

3.1 Introduction

The electric industry is comprised of four major componegéneration, transmission,
distribution, and the load. The traditional operation ad #lectrical bulk power system is
that the operator will dispatch the generation at minimumegation cost to meet the load
(while maintaining reliability), while keeping the remaig assets fixed, for example, sys-
tem topology. National directives and modern technologresaimed to create flexibility
in all components of the grid, resulting in a smarter and nedfieient electric network.
Modeling of deferrable load, would create a more flexible smérter grid. Harnessing the
flexibility in the network topology, i.e., flexible alternagy current transmission systems
(FACTS) devices and topology control, would further add dditional layer of control on
the transmission side.

The remaining chapter is structured as follows: Sectiondg@gcribes the basic eco-
nomical dispatch problem. Section 3.3 gives a brief desonf AC optimal power flow.
The detail formulation of DC optimal power flow is presentacSection 3.4. The security
constraint unit commitment formulation, to generate stgrpoint for all numerical results
presented in this thesis, is presented in Section 3.5. Thakl@ad unit commitment proce-
dure used in Mid-continental Independent System OperBtt80Q) is presented in Section

3.6.
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3.2 Economic Dispatch

Economic dispatch is an optimization problem that finds theimmum operation cost
for generation dispatch in order to meet the load on the systhile adhering to the min-
imum and maximum generator capacity constraints. In the b&dy Policy Act of 2005
[31], the term is defined as “the operation of generatiorlifaas to produce energy at the
lowest cost to reliably serve consumers, recognising amyatnal limits of generation
and transmission facilities.” In general, for the econontigpatch problem, the network
flow constraints are not considered; therefore, sometimgsalled an unconstrained eco-
nomic dispatch problem. Hence, the economic dispatch enolgrovides a lower bound
on the optimal power flow problem. Economic dispatch is agudiblem of the unit com-
mitment (UC) problem. Unit commitment determines a gemelaON or OFF status, its
associated dispatch considering its minimum and maximysadaty, ramp rates, up and
down time constraints, no load and start-up costs, as wetsa@vailable reserve. The
generic economical dispatch problem is presented in (3.5); which consists of gener-
ator capacity constraint (3.2), generator ramping comigd3.3) and (3.4), and energy
balance constraint (3.5). The objective of the economitsgdatch problem is presented in
(3.1). The objective of the economical dispatch probleno situltaneously minimize the
total generation cost and to meet the load demand of a powe&grayover some appropri-
ate period while satisfying various constraints represgiiy (3.2)-(3.5). In some cases,
instead of using a linearized cost function more complexdeatéc cost function is used
as shown in [32]. Note that in traditional economic dispgtobblem generator ramping
constraints are not considered; they are included in thed@ation only when the temporal

behaviour of the system is considered.
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min ¢, P, (3.1)

Vg

st.0< P, <P Vg (3.2)
P,>P,— R, Vg (3.3)
Py < P, + RfVyg (3.4)

> p=> d, (3.5)
Vn Vn

3.3 AC Optimal Power Flow

The majority of the electric grid operates based on an alterg current (AC) setting;
however, there are a few high voltage direct current (DGdim the electric grid. The
flow of electric energy follows Kirchhoff’s laws. The ACOPIgblem is the optimization
problem that models how electric power transfers acrosé@electric grid and it is used
to dispatch power optimally. In 1962, J. Carpentier firstadticed the concept of ACOPF
[33] and proved that it is a very difficult problem to solve. eETACOPF optimization
problem is a non-convex optimization problem, which camt@rigonometric functions in
some of the constraints as shown in (3.6) and (3.7), whickiariar to those given in [34].
Equation (3.6) represents the real power flByy across the liné, from busm to busn,
and equation (3.7) represents the reactive power flpnacross the liné, from busm to

busn.
P, = V,,%Gk — Vi V(G cos(0,, — 0,,) + By sin(0,, — 0,,)), Vk (3.6)
Qv = V2B, —V,V,(Gysin(0,, — 0,) — By cos(0,, — 0,,)),Vk (3.7)

The term,V,,,, V,, represents the bus voltages d@hd 6,, represents the bus voltage an-
gles. Additional constraints that are required for the AEQ@Roblem include the constrains

on the magnitude of the voltage variables, constraints enatigle difference between
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two connected buses, operational constraints on the gengreapacity constraints on the
transmission lines, and node balance constraints. Thageknd trigonometric functions
add non-convexities in (3.6) and (3.7); these non-conamsimission constraints add com-
putational complexities to the ACOPF problem. To deal witesie computational issues,
different solution methods are proposed to solve ACOPFIpmb For instance, in [33]
Karush-Kuhn-Tucker (KKT) conditions are used to solve AGQ#oblem. A detail re-
view of ACOPF until 1991 is presented in [35], where more tB@A articles are reviewed,;
the authors concludes that the ACOPF problem is a compuogdlyochallenging problem
and that it can be difficult to solve due to ill-conditioningdaconvergence issues.

To overcome the computational difficulties of ACOPF probletris common, both
in academic literature and in the industry, to use a linegr@pmation of the ACOPF
problem. The first assumption is made with regards to thegelvariablesy,, andV,,. In
a per unit based power flow calculation, the bus voltage $eaed close to unity; therefore,
it assumed that all voltage variables are equal to one. Thengstion removes some of the
nonlinearities within (3.6) and (3.7).

The next assumption comes from the fact that the bus andleretice between two
connected buses is generally very small. This simplificasitbows the approximation of
the trigonometric functions in (3.6) and (3.7); the Sine aaall angle difference is ap-
proximated by the angle difference itself, and the Cosina sfnall angle difference is
approximately one. Using these voltage and angle differ@ssumptions, th@, terms in
(3.6) are removed and, similarly in (3.7}, terms are removed.

Another simplification made to the ACOPF formulation is wrggards to the reac-
tive power(),. within the system. For computational simplicity in ACOPFpagximation
reactive power terms are ignored. To simplify the ACOPF fabfurther, resistance of
transmission lines are assumed to be zero, which makessbemance equal to the inverse

of the reactance. The resultant OPF model is known as the BG@ilel. In general, the
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traditional DCOPF formulation is a lossless model; howgtheare are ways to modify the
traditional DCOPF formulation to account for losses [3@jrdughout this dissertation, the
DCOPF problem is assumed to be a lossless model. The mord veakk on ACOPF for-
mulation and associated linearization, to overcome thepeational issues, are presented
in [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

Note that, a DCOPF is an approximation to a ACOPF problemmetbee, the accuracy
of DCOPF solutions varies over different networks, trarssioin elements, and loading
levels [48]. However, the DCOPF simplifies the OPF problera gyeat extent and makes
the OPF problem computationally tractable. Thereforendustry, the DCOPF formula-
tion is used for many applications [49] such as unit committnglanning studies, system

operations, etc..

3.4 DC Optimal Power Flow

In the previous section, the description and complexitesoaiated with ACOPF are
presented. To overcome these computational difficulttas,dommon, both in academic
literature and in the industry, to use the linearized versibthe ACOPF problem. This
linearized ACOPF formulation is known as the DCOPF probl&vith a linear cost func-
tion, the DCOPF problem is a linear program (LP); thus, it iscmeasier to solve than
the non-convex nonlinear ACOPF problem. The simple DCORBIpm can be described
as shown in (3.8)-(3.12). Constraint (3.8) represents #meator's minimum and maxi-
mum real power generation capacity, constraint (3.9) sepres the DC approximation of
AC power flow across the transmission line, constraint (Brépresents the minimum and
maximum power flow across the transmission line, the eneatpnise equation at each bus

is presented by constraint (3.12).
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r%in cg Py (3.8)

g

s.t. 0 < P, < PM Vg (3.9)
P, = Bi(6, — 0,), Vk (3.10)
P < Py < P (3.11)

Y Pi— ) P+ Py=dyn (3.12)
kest(n) kes—(n) Yg(n)

Constraint (3.9) represents the operational constraortgéneratory; for the basic
DCOPF formulation, as shown in (3.9), it is assumed that #reecator's minimum oper-
ating level is zero. However, in reality, most of the genarstdo not have zero minimum
operating levels. In may cases, generators have minimumnatpg levels as well as min-
imum economical levels, which dictates the minimum oparakevel for most of the gen-
erators. Therefore, to enforce the true minimum operagnglé of generators, i.e., if their
minimum operating level is not zero, requires the use of afyinnit commitment variable
thereby changing the linear program into a mixed integezdirprogram. In section 3.5,
the unit commitment problem is presented.

Constraint (3.10) represents the DC approximation of ACgqrdow across the trans-
mission likek. The DC line flow,P,, is equals to the susceptance times the angle difference.
Note that, a limit on the angle difference is equivalent tavatlon P; therefore, by lin-
earizing (3.6), there is no longer a need to include the adifference constraints. Instead,
the lower and upper bounds on real power flow across the lirepigsented by constraint
(3.11) and can be adjusted to reflect whatever constrainiuges a tighter bound oR,:
the thermal capacity of the line or the limit on the voltagglardifference across the two
connected buses. In many cases, the capacity constrairgremtission ling: is treated as
a symmetric constraint, allowing it to be modeledrg&™> = — P,

Constraint (3.12) is the node balance constraint, whictestdat the power flow into
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a bus must equal the power flow out of a bus. Generator supgiiasbus and power
coming into a bus, through transmission network, are tckaseinjections while the load
at a bus and power going out of the bus, though transmissitworle is considered as a
withdrawal.

Note that, the DCOPF problem is an approximation to the AC@mF, hence, does not
represent the actual electric system. Several parambkersgactive power and losses, are
neglected in the DC model and remedies, such as proxy limige been proposed in the
literature to deal with these shortcomings of DCOPF.

The network constraints in DCOPF can also be formulatedyysawer transfer distri-
bution factors (PTDFs). The basic formulation of PTDF'sesented in [32]. The benefit
of PTDF based DCOPF formulation is that it simplifies the DE&Q#Poblem; for a fixed
topology, the flow on any transmission line can be determusadg PTDFs and net bus
injections. Another benefit of PTDF structure it that it aloto consider only the critical
transmission lines in DCOPF problem. For computationap$inity, in industry, a simpli-
fied DCOPF problem is solve, where instead of solving det@OPF model a simplified
DCOPF model with less number of network constraints is sblva this reduced model
can be obtained with PTDF based DCOPF formulation. In [58faill procedure to deter-
mine subset of the network DC constraints that are activederaio reduce the DCOPF
problem size is presented; in [50], these constraints diedcasumbrella constraints. In
general, in industry, the subset of transmission lines fGOPF problem are determined
based on historical data or operators’ past knowledge.

The limitation of PTDF based formulation is that the PTDFs determined consid-
ering a fixed topology; any change in system topology neeciaelation of PTDFs for
accurate DC solutions. Therefore, in this research, PTBEb®COPF formulation is not
used; instead, th& — 6 formulation, as shown in (3.10), is used. There has beemtece

development of a different transmission switching forntiola, [51], which builds on the
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work of a generalized line outage distribution factors,|[3&ith the use of flow canceling
transactions, [51] develops a framework that is able touraghe changes in the topology
and compares it to th8 — ¢ formulation used in many preceding transmission switching
papers, as well as in this research. This formulation isyliteoutperform the3 — 6 formu-
lation when the number of monitored lines is relatively dp@dmething that is common

practice within optimal power flow problems today.

3.5 Unit Commitment

Over the past two decades there has been a great deal ofctegeaower generation
operations and planning. Generation unit commitment is bkmewn, difficult, multi-
period mixed integer programming problem to solve withie #hectric industry. The unit
commitment problem is a day-ahead scheduling problem wthereperator forecasts sys-
tem demand and the state of the network for the following ded/solves for the optimal
commitment schedule for generators. The main objectivendgfaommitment problem is
to obtain a generator schedule with lowest possible opeyatbst. In reality, most gen-
erators have non-zero minimum operating levels, which isaaacteristic that requires a
binary variable to model the state of the generator. Thiattyimariable is referred to as the
unit commitment binary variable,; it takes on a value of one when the unit is on and
zero when the unit is off. Generators also have minimum umaindnum down time con-
straints. The minimum up (or down) time constraint states tince a generator is turned
on (or off), it must remain on (or off) for a certain numberiofié¢ periods. This operational
restriction for generators also requires the inclusion binary variable to model the state
of the generator. It is possible to formulate the minimum ogd down time constraints
with just the use of the unit commitment binary variableg[14

There are four main costs that are frequently associated avgenerator: operating
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cost, start-up cost, shut down cost, and no load cost. Thetipg cost represents the fuel
cost of the generator and it is proportional to the amouniefgy produced. Generators
can also have start-up and shut down costs. They can be rdogigh®ut start-up and shut
down binary variables; as a result, some unit commitmemntiations do not include start-
up or shut down binary variables. However, in [14], it is sinaat the inclusion of these
binary variables is beneficial in solving the unit commitrinfmmulation. Consequently,
start-up binary variables,,, and shut down binary variables,,, are included. The start-
up binary variable takes on a value of one when the unit issaion in period and it takes
on a value of zero otherwise. Similarly, the shut down binamable takes on a value of
one when the unit is turned off in perigdand it takes on a value of zero otherwise. No
load costs represent the cost to keep the generator on dupagdicular period. This cost
is not a variable operating cost; rather, the no load costixed cost that is incurred during
every period that the unit is operating (online).

Unit commitment problem is a classical problem in electrigagineering. In the
literature, there are many proposed methods to solve gémenmanit commitment prob-
lems; the detailed literature review on unit commitmentusoh methods are presented in
[53, 54, 55]. In this research, the unit commitment probleitin\ymixed integer program-
ming (MIP) formulation is used; the basic unit commitmentfalation, used in [14], is
modified for this research. In the past years, many indepgrsystem operators (ISOSs) in
the United States have adopted MIP approach for their ggaeranit commitment soft-
ware [49, 56, 57].

The unit commitment model used in this research is presentg13)-(3.31), where
constraint (3.13) represents an objective, constraité{3epresents a node balance condi-
tion of OPF, line capacity constraint is represented byq3.denerator capacity constraint
is represented by (3.16), constraints (3.17)-(3.19) sspreminimum up and down limita-

tions of generator, generator ramping constraints are faddy constraints (3.20)-(3.21),
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system reserve requirements are modeled as shown in (322))-

In the unit commitment model, the generators’ minimum up dadn time require-
ments are difficult to model; the detailed analysis of getoesaminimum up and down
time constraints are explained in [58]. The ramping comsisaised in this research, shown

in (3.17)-(3.19), are the same as used in [14].

min Z Z(chgt + c*gnggt + c*gnggt + c;VLugt) (3.13)
Yt Vg
St Y BilOw — Omi) = > Bil(f — + Y Py =dy,n,t (3.14)
Vkes;t vkes, Vg(n)
P < B0y — Opy) < P Yk, t (3.15)
Pty < Py < PP ug, Vg, t (3.16)
Vgt — Wyt = Ugt — Ugt—1, v.gat (317)
t
> gy Sug, Vgt € {UT,, .. T} (3.18)
q=t—UTy+1
t
> wey < 1—uy, Vgt €{DT,, ... T} (3.19)
q=t—DTy+1
Py — Pyy < Rfuge—y + RV vy, Vg, t (3.20)
Py-1 — Py < Ryug—1 + RSP wg, Vg, t (3.21)
T;f S P;naxugt - Pgtvv.gvt (322)
T;f < R;pugh v.g7t (323)
Zr > SP,, Vit (3.24)
erp > Py, Vg, t (3.25)
Tor’ < RyP(1 —ug), Vg € {Fast}, t (3.26)
> vt > NSP, vt (3.27)

g
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> rit > Py V.t (3.28)
g

0<wvy, <1,Vg,t (3.29)
0 <wy <1,Vg,t (3.30)
ug € {0,1},Vg,t (3.31)

Constraints (3.20)-(3.21) represent the ramping capwplofigenerators, which consid-
ers the generator’s capability to change its output in aifipéiecne step. In general, in the
day-ahead unit commitment problem, as well as in this foatiom, the time step of one
hour is considered; therefore, in constraints (3.20)4(Bdhe hour ramping capability of
generators are presented.

Constraints (3.22)-(3.27) represents the spinning anespaming requirements, which
are needed to overcome any contingencies within the sysStaerefore, in practice, there
are ancillary services to protect against contingenciesh s a fault on a line or a loss
of a generator, as well as unexpected load fluctuations. hergé there are four types
of ancillary services: regulation reserve, spinning resenon-spinning reserve, and re-
placement reserve. Regulation reserve is used to follovchiamges in load, to account
for the changes in the load and minor fluctuations caused figreint types of loads and
load cycles. In some markets regulation reserves are sgbaid a regulation up and reg-
ulation down, which are deployed based on automatic ganaravntrol (AGC) and it is
replaced by spinning reserve after a short time intervaiclis also know as making the
area control error (ACE) to zero. Though spinning reservebeaused to replace regulation
reserve, its primary purpose is to be available to mitigatgingencies within a specified
amount of time. Spinning reserves are called upon to helgeptea blackout when there
is a contingency; in many cases, spinning reserves areisdgpl committed generators
with high ramping capability. Similar to spinning resentiee primary purpose of non-

spinning reserve is to be available, within a specified arhotitime, generally within 10
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minutes, if called upon to help prevent a blackout when tli®ge contingency. The pri-
mary difference between spinning and non-spinning ressrtreat non-spinning reserve is
not required to be online. Non-spinning reserves are segly fast start units, such as
fast gas turbine generators, which ramp to their set opgyatdint within a few minutes
when they are called to respond. The purpose of replaceresenve is to replace spinning
and non-spinning reserve when they are exhausted to natggaitingency, within thirty
minutes after a contingency occurs, to help the system t@waelits required reliable op-
erating state, i.eV-1 state. In the unit commitment problem, presented in (3(331),
only spinning and non-spinning reserve requirements amsidered. The reserve require-
ments for the unit commitment problem is the sunb@f of demand supplied by hydro
generators, an@% of demand supplied by non-hydro units or the single largestin-
gency, whichever is greater. It is assumed that at lg@&stof total required reserves will
be supplied by spinning reserves, and the rest will be seply non-spinning reserves.
This assumption is in line with California independent systoperator’s guidelines for

spinning reserve and non-spinning reserve [59].

3.6 Day-ahead Unit Commitment Procedure in Realistic Setting

The SCUC problem presented in Section 3.5 is a complex proafel can be solved (in
its original form without any special solution method) onligh smaller test systems. How-
ever, in real-life, the system size may have thousands adsbasd many more branches.
To solve the SCUC problem, for these large systems, a morglearsolution method is
needed. In [60], the day-ahead unit commitment procedued as Mid-continental In-
dependent System Operator (MISO) is presented. The rasulég-ahead procedure is
reproduced in Fig. 3.1. At MISO, the day-ahead schedulingguiure is divided into four

stages: pre-processing, unit commitment, deliveraltéisy and operator review.
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Figure 3.1: Day-Ahead Unit Commitment Procedure at MISO.

In the pre-processing stage, information collected frommketaparticipants are ana-
lyzed, along with the network topology, and passed on to tlieaommitment stage. In
the unit commitment stage, a SCUC problem is solved; this S@&wmulation is simple
and primarily determines the generator schedule. The mktiméormation in the SCUC
formulation is limited and mainly considers critical tramssion elements. The solution of
the unit commitment stage is passed on to the deliverabdgy stage. The deliverability
test stage is SCED problem, which determines the feagibilithe generator schedule cho-
sen in the unit commitment stage. The SCED model containg metwork information
determines energy schedule, LMPs and base case power flewd€elirerability test stage
also performs the contingency analysis on the base caser flloweand determines the
solution solution quality in terms a¥-1 requirements. Note that, in this case, system wide
N-1 contingency analysis is not performed; only the criticattoogencies are considered
in the deliverability test. The solution obtained from thediderability test stage is given
it to operator review stage; in this stage, the solutioniolethfrom the deliverability test
stage is reviewed by the operator and necessary changesadeebrased on the solution
quality and constraint violations. If the solution obtain&om the SCUC and the SCED

problem, is not acceptable, the SCUC and the SCED probleswdvsd again. In many
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cases this procedure is continued for 4-5 iteration anddbeltant day-ahead solution is
passed on the day-ahead approval. The input data and thet olatja, obtained from the
MISO’s day-ahead market tool, is presented in Table 3.1s iftiormation is obtained from

[60].

Table 3.1: Input Data and Output Solution from MISO’s Dayeald Market Tool.

- Input Data Output Solution

- Generator offers 3 Part - Day-ahead LMPs/ hour

- Load Bids fixed, price-sensitive - Cleared energy

- Virtual bids/offers (schedules/ participant/ location/ hour)
- External transactions - Physical and virtual bidders

- Transmission network - External transactions

- Scheduled outages - Unit commit schedules

- HVDC schedule

- Unit initial conditions

- Unit physical characteristics
- Loop flow assumptions

- Interface limits

- Constraints: flowgates, contingencies,

phase shifter, facility ratings

3.7 Conclusion

The AC optimal power flow problem is a nonlinear non-convealgbem, which is,
in general, a complex problem to solve. To overcome this edatnal limitation, a
linearized AC optimal power flow problem, known as the DC wati power flow problem

is used in many power system related studies. The benefitrgg titee DCOPF formulation
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over the ACOPF formulation is that it is computationallyhiigcomputationally trackable,
and can be scaled to larger size test cases with adding @ualitomplexities. However,
the DCOPF solution may not be accurate; in literature, ithiewan that the gap between
the DCOPF solution and ACOPF solution may be large and adesdiased on a DCOPF
solution may not be accurate and may be infeasible.

The unit commitment problem is a classical power systemddirey problem. To
computationally track the unit commitment problem a lineead AC optimal power flow
based formulation is used in the electrical industry. THetsmn of the unit commitment
problem, presented in Section (3.5), is used as a input mdearfor all the simulation

studies presented in this thesis.
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Chapter 4

ROBUST OPTIMIZATION

4.1 Introduction

The origin of robust optimization goes back to the early dafysiodern decision the-
ories in the 1950’s [61], where it was used to analyse the tagase scenario of several
uncertainties. In the 1970’s, Soyster [62] proposed a wease model for linear opti-
mization problem such that constraints are satisfied uritipossible perturbations of the
model parameters. Over the years, robust optimizatiomtgalks have been used in many
areas, such as operations research [63, 64], control tgdfyogistics [66], finance [67],
medicine [68], and chemical engineering [69].

In recent years, robust optimization has gained a greatdediention in the electrical
power system sector; for example, in [70] and [71], two-stagpust optimization tech-
niques are used for unit commitment, which deal with the datzertainty and attempt to
find an optimal solution considering the worst-case unagdstaealization. The solution
of the robust optimization problem is guaranteed to be Béasind optimal for a defined
uncertainty set [72, 73]. Since the optimal solution is ageedgainst the worst-case re-
alization, the solution is often conservative. Robust mation may not be preferred
for many applications due to its conservative nature; h@wnavis in accordance with the

power industry in regards to maintaining reliability.

4.1.1 The Need of Robust Optimization

LP is a type of optimization problem with a polynomial algbm and generally it is in

form of (4.1), wherey is a vector of decision variables such that R", cost is represented

35



by ¢ such that € R”, A isanm x n constraint matrix, anél € R™ is the right hand side

vector of constraint matrix.

min{c’z : Az < b} (4.1)

The structure of the problem, given in (4.1), is such thateltegem number of con-
straints andh number of variables. The data of the problem are the cotledti, A, b)
and are collected in data matrix), as shown in (4.2). The dimension of this matrix is

(m+1) x (n+1).

(4.2)

Note that, inD, all the parameters are fixed and known prior to solving th@itdblem.
In most of the real world LP problem all this data is not knowre uncertainty in data is

presented due to many reasons, some of them are listed b&ipw [

1. Prediction error- In many real-life mathematical prob$e some of the data en-
tries are unknown at the time problem formulation. Therefavhen the problem
is solved, those data entries are estimated by their ragpealdta forecasts. These
data forecasts are not exact (by the definition of forecastich introduces the pre-
diction error. For instance, in case of day-ahead unit camemt problem, the sys-
tem demand for the next day is unknown; therefore, it is fasésd using system
demand forecasting methodologies [75]. It is well undexdtim the power industry
that day-ahead system demand forecast is not accurates,Isytstem operators con-
sider operational reserves in day-ahead unit commitmetti@m to overcome this
inaccuracy and the unpredicted nature of system demandhitiimee implementa-

tion.
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2. Measurement error- In some LP problems, the few paramétaghe data matrix,
D, are determined based on actual data measurement. Oftan rieasurements
are done off-line and may not be measured accurately. Ttigdinces measurement
errors in parameter calculations and may introduce coreddie uncertainty into the
LP problem solution. For instance, the susceptance of iresson lines in power
transmission network are determined based on field measatemin many cases,
these measurements are not accurate or do not reflect theatues as susceptance
of transmission line depends on weather condition and asger time due to
operational wear and tear. Therefore, optimal power flovblgms solved based on

these susceptance values may results in sub-optimal onirdfeasible solutions.

3. Implementation error- Sometimes the decision variatdgsrmined in a mathemat-
ical problem cannot be implemented exactly as they are ctedpurhis practical
implementation issue introduces implementation errorsalution. For example,
in power system operations, the generators are schedutedigpatched based on
day-ahead unit commitment solution. However, sometimes,td practical issues,
generators deviate from the required set dispatch poininftance, old generators
may not ramp up and ramp down as expected or gas turbine gersdieal to produce
required power due to higher temperatures in the turbinéhdse cases, system op-

erators needs to update the generator dispatch based entfopsrating conditions.

Traditionally, LP problems are solved by ignoring the dateartainty. The results
obtained from the LP models are implemented or analyzed svithll perturbations via
sensitivity analysis. It has been shown that even with spetiurbation of the data, the
solutions from the deterministic LP models can be suboptamd even infeasible in many
real situations [73]. Therefore, consideration of undetias is critical in many practical

applications.
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4.2 Robust Optimization

In recent years, robust optimization has gained lot of &tian Robust optimization
guarantees a feasibility, as well as optimality, of a solutior any possible realization
in the modeled uncertainty set. This approach considera/tist-case realization of un-
certainty within the pre-determined uncertainty set. Thedjit of robust optimization is
that it requires less probability information about unairty compared with the stochastic
programming approach; however, the solution obtained fi@ast optimization is gener-
ally more conservative than the solution obtained fromfsdstic programming approach.
Due to the conservativeness of robust optimization oveshststic programming, robust
optimization has recently become more attractive as a nméminato model uncertainty
[76, 74, 77] in applications with high reliability requiremts.

In addition, ensuring reliability and obtaining econontiigaobust solutions are the
primary concerns in the power systems sector. Little work l@en done to examine the
benefits of robust optimization in the electric power indystRecently, more attention
has been given to the application of robust optimizatiorhie power systems sector by
[71, 70, 78].

The generic form of deterministic MIP problem is presented4.3)-(4.8), whereg
is a set of integer variables apds a set of continuous variables. Other parameters, such
asA,a,B,b,c,E, e, F,f,H,h, are data or parameters. The solution obtained from this
MIP formulation is optimal/feasible only for the fixed vakiassociated with parameters
A a,B,b,c, E, e, F, f, H, h. The basic topology control model, used in research, is a MIP
problem. This can be represented in generic form as showh3)(4.8), where, variable
x represents the status of transmission line, i.e., line imice or line out of service, and
variabley represents the set of other continuous variables, suchrasager dispatch, line

flows, and bus angles.
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min ¢’z + by (4.3)

x?y

st.Fe<f (4.4)
Hy <h (4.5)
Ar+By<a (4.6)
Ey=c 4.7)
r € {0,1} (4.8)

The objective of robust optimization problem is to deterenine optimal solution con-
sidering the worst-case outcome under the assumed umtgrsat. The generic form of
robust optimization problem is given in (4.9)-(4.14), whiis a two-stage optimization
problem. The first stage of the problem is to determine thetswol associated with integer
variables which are typically referred as design decisidihg second stage is to find the
worst-case cost or worst-case realization of the contiswatiabley, associated with the
integer solution obtained in the previous stage. Traditilgntwo-stage robust optimization
is actually modeled as a three-stage problem with a middigesdf uncertainty scenario
selection, as shown in (4.9)-(4.14). The formulation ism@pting to determine an optimal
solution of the design and operational cost against thetvoaise uncertainty realization.
The solution of the robust optimization problem is guaradteptimal for a pre-defined
uncertainty set [71, 70].

In (4.9), the termy(d) is used to emphasize the dependency of continuous varable
on the uncertaintyd. The first minimization part of (4.9) minimizes the cost asated
with the integer solution. The later part of (4.9), the max+fiormulation, known as the
evaluation part of robust structure, determines the weaise cost of decision taken in first
part of minimization problem. The evaluation part of theustformulation is divided into

two parts, which makes the entire robust optimization probhs a three-stage optimization
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problem as shown in (4.9)-(4.14). In (4.9), the evaluatiart pf the robust formulation,
i.e., max-min part of (4.9), is known as a robust counterpéthe robust optimization

problem.

min (ch + max myin bTy(d)) (4.9)
st Fo<f (4.10)
Hy(d) <h (4.11)

Az + By(d) < a (4.12)
BEy(d)=e (4.13)

x € {0,1} (4.14)

Traditionally, for robust optimization problems, the fmling assumptions are made

prior to solving the problem, which are cited in [74].

1. All the entries in the first-stage decision variables dreré& and now” decisions,
which should get specific numerical values as a result ofisglthe problem, and
before the actual data “reveals itself”. The second-stagebles are “wait and see”
decisions, which will be determined when the data reabrais revealed. This as-
sumption indicates that the first-stage solution of the solmptimization problem
should be a fixed number/vector, which will be optimal andsiiele to the entire

uncertainty set with the adaptive second-stage solutions.

2. The decision maker is fully responsible for consequentdse decisions to be made
when, and only when, the actual data is within the unspecifrexrtainty set. This
assumption indicates that the solution is guaranteed todiiSt” only to the uncer-

tainties modeled within the uncertainty set.
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3. The constraints in robust formulation are “hard’- we aaniolerate violations of
constraints, even small ones, when the data is within thertaiaty set. This as-
sumption ensures the robustness property of robust ogtimizproblem by enforc-

ing all the constraints and not allowing any relaxations a@omstraint level.
4.2.1 Uncertainty Modeling

Uncertainty modeling is a key part of robust optimization.[T0O], polyhedral uncer-
tainty sets are used to define demand uncertainties. Syssrardi uncertainty, in [70], is
modeled assuming that the system load has an upper, as wdthasr bound, and that the
system-wide aggregate load has an upper bound, as showri&).(&imilar uncertainty

set definition is used [71].

D:{deRNd:Ziu’ i

1€Nyg ?

< A, d; € [d; — di, d; + d;], Vi € Ny} (4.15)

In (4.15), the set of nodes with uncertain demand is reptedesy Ny, /™ represents
the estimated or expected demaddrepresents the realization in demand, the maximum
deviation in demand at nodés represented by parametgrThe total deviation in demand
is also bounded by parametar

In Chapter 6-7 , a simplified uncertainty model is used togs@nt demand uncertainty.
The polyhedral uncertainty set is presented in (6.1); ifrédsa more complex polyhedral

uncertainty sets can be used instead, as in [71].

D={dcR":d/”D, <d, <d"D, vn} (4.16)

In this uncertainty set, the system demand is bounded byatsigtermined lower and

upper limits. The uncertainty description used in (4.16jniere conservative than the
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uncertainty sets used in [70] and [71]. The size of the uag##t set is defined by the pa-
rametersD" andD_ . WhenD; and D, = 1, the uncertainty is zero arfd is a singleton,
i.e.,d, = d/". WhenD, < 1andD; > 1, the uncertainty set is a polyhedron and its size
is defined by the values db;" and D, .

Similarly, wind uncertainty is modeled as shown in (4.17enBwable resources (in
this case, wind generation);,, are assumed to vary within these pre-determined lower

and upper limits, and the size of uncertainty set depende®padrameter®,, and D .

W ={PeR": Pl*D, <P, < P/*D vuw} (4.17)
4.3 Comparison Between Robust Optimization and Stochastic Optimization

Uncertainty is an important factor to be considered in thasien making processes.
In traditional applications, the uncertainties were igatbor simplified due to computa-
tional difficulties. With the advance of the computationalyer, there are different ways
to incorporate uncertainties in decision processes.

Stochastic programming has been one common approach litatedihe decision pro-
cesses with uncertainties. It typically assumes prolghiistributions for uncertain pa-
rameters, or incorporates a large number of scenarios,hwbaxs to computationally
challenging large scale optimization problems. In stottbgsogramming formulations,
the objective is typically optimizing over the expectatiover the uncertain parameters.
The feasibility of the solutions is modeled either to be iiglasto all scenarios or with
probability guarantees. While it is generally difficult tadw the exact distribution of the
random parameters, sample based methods are popular itothastic programming lit-
erature. To achieve high probability guarantees, the saBipé is typically large and leads
to computational challenges of the stochastic programmappyoaches.

In (4.18), a generic form of stochastic optimization probleith probability constraints
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is presented, where the uncertainty in optimization franr&follows the probability dis-
tribution, whene < 1, the distribution of datdc, A,b) is represented by’. In simple
cases, these uncertainties are modeled with known pratyabigtribution functions; how-
ever, in more realistic cases, the probability distribationction is partially know. This
may cause a problem in (4.18) such that the partial distdbuif P is known andP be-
longs to a given familyP of probability distributions on the space of the d&taA, b). In
this situations, the accuracy of stochastic optimizatiombfgm depends on the availabil-
ity of possible scenarios and modeling details. If all thegible scenarios are modeled
in stochastic framework, the optimization problem becommltersome and may not be
solvable. Therefore, there is a tradeoff between the numiscenarios modeled and the
computational time/trackability. Another tradeoff is Wween the quality of stochastic so-
lution and number of scenarios under consideration. Thetisal quality of stochastic
optimization problem is directly related to number of sa@smunder consideration. The
primary barrier to stochastic programming is the tradeeffieen the computational chal-
lenge and the quality of the solution; to get a more accuatgisn, it would be preferable
to represent additional uncertainties, but then this emes the model complexity, which

makes it more difficult to obtain a quality solution.
mitn{t : Prob ap~p{c’c <t& Az <b} >1—¢ VP € P} (4.18)

The robust optimization has gained substantial attentiorecent years [71, 70, 78].
This approach is attractive in many aspects over stochagtimization approach for the
problems with high reliability requirements. The main bienef robust optimization is
that it requires moderate information about underlyingautanties, such as range of un-
certainty, type of uncertainty. The robust framework isitdxenough to model each type

and size of uncertainty independently, as well as simuttasly. Robust optimization does
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not requires probabilistic information about the uncettgithe solution obtained from ro-
bust formulation is guaranteed to be optimal for the entireautainty set. Therefore, robust
optimization modeling approach is favorable for the eleqiower sector where ensuring
reliability is crucial. Furthermore, robust optimizatioequires less knowledge concerning
the probability distribution as compared to stochastigpoming and the computational
complexity for robust optimization is typically smallen tobust optimization, instead of
assuming explicitly a probability distribution of uncertey parameters, an uncertainty set
is predetermined to cover the possible realizations. Atsmiunodel is robust if it is fea-
sible for all the possible scenarios in the uncertainty seltia robust if it is close to the
optimal solution for all the scenarios in the uncertainty se

Smaller uncertainties can be analyzed by performing a thahsianalysis [76]. The
sensitivity analysis is a tool to analyze the stability pdjes of an already found solution;
there are many application, in literature, which are basedamsitivity analysis to deter-
mine the solution quality/robustness. This approach has bheed in many system control
related problems; however, sensitivity analysis solutioes not give guarantees associated
with quality of solution and its effectiveness; plus, sémgy analysis does not hold, if the
expected uncertainty is relatively large. Therefore, iEnpéntation of solution sensitivity

based methods are limited.

4.4 Conclusion

Uncertainty analysis plays an important role in decisiokimgprocesses. By ignoring
the uncertainty, a decision can be sub-optimal, or everagilide. Stochastic optimization
has been one common approach to incorporate uncertaintiieision making process.

This research focuses on robust optimization to understadanodel the uncertainties
in the decision making process. The solution obtained frobust optimization problem

is guaranteed optimal/feasible for the entire uncertasety However, robust optimization
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problems are computationally complex and require speolatisn techniques to solve the
problem.

In recent years, robust optimization has gained attentiadhe electrical power system
community. Robust optimization, would be suitable for powgstem related problems,
as ensuring reliability and obtaining robust solutions pienary concerns in the power
systems sector. However, little work has been done to exathmbenefits of robust opti-

mization in the electric power industry.
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Chapter 5

OVERVIEW OF SYSTEM STABILITY STUDIES

5.1 Introduction

Power system stability is considered one of the importaoblems in power system
operations. Power system stability has been studied shec@920's, [79]. In the past,
many blackouts has been caused by power system instabititherlining the importance
of power system stability studies. In literature, transi@stability has been considered
a dominant stability problem. However, with increased namdf generators and inter-
connected system, other stability studies, such as fregustability, voltage stability, etc.,

have also gained attention in recent years.
5.1.1 Need of Sability Studies with Topology Control

In [1], the power system stability is defined as “power systtability is the ability
of an electric power system, for a given initial operatingndition, to regain a state of
operating equilibrium after being subjected to a physigésiudbance, with most system
variables bounded so that practically the entire systemamesnintact”. This definition
of power system stability motivates the need to check theesystability with topology
control.

Topology control algorithms, presented in literature, eitber based on ACOPF or
DCOPF [21, 18, 14, 23, 80, 81, 51, 82]. However, in an optitwraframework, there
is no systematic way to insure system stability with topglogntrol. In prior literature,
topology control actions combined with stability congtitai are proposed [83, 84], but

these methodologies were never tested on realistic tess.caberefore, solution obtained
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from topology control algorithms must be tested to insued the topology control action

will not cause cascading events, or even a blackout.
5.2 Overview of Stability Studies

Power system stability may be broadly defined as the propérypower system that
enables it to remain in a state of operating equilibrium umidgmal operating conditions
and to regain an acceptable state of equilibrium after baulgected to a disturbance [85].
Under steady state conditions, there is equilibrium betwaput mechanical torque and
output electrical torque of each machine, and the speedimsrnanstant. If the system is
perturbed, this equilibrium is upset, resulting in accien or deceleration of the rotors
of the machines [86].

In an interconnected power system, the rotor angle stalofieach synchronous ma-
chine defines its ability to restore equilibrium. Renewabkources, such as wind and so-
lar, are inherently asynchronous in nature, as they do n@ &ay rotating mass or inertia;
they change the system dynamics with respect to the intenact synchronous machine
rotors among themselves. The mechanism associated widrajem of electricity from
wind and solar resources, together with their interfacé wie bulk power, contributes to
change in system dynamics. At the same time, implementafidapology control for
power system operation makes the power system stabilitiesticritical. In [1], different
stability studies are recommended for power system operdtiey are classified based on
nature, type of disturbance, as well as time span under @eration. Typically, stability
studies are classified into three different categoriesrrangle stability, frequency stabil-
ity, and voltage stability, as shown in Fig. 5.1. In this tiseall three stability studies are

considered to study the effect of topology control actiorsgstem stability/reliability.
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Figure 5.1: Classification of Power System Stability [1].

The mechanism by which interconnected synchronous mashiaétain synchronism
with one another is through restoring forces, which act vewenthere are forces tending to
accelerate or decelerate one or more machines with regpetttér machines. The change
in electrical torque of a synchronous machine following gyréation can be resolved into
two components [85]: (a) synchronizing torque componehicivis in phase with the rotor
angle perturbation, (b) damping torque component, which ghase with the rotor speed
deviation.

System stability depends on the existence of both compsradribrque for each of
the synchronous machines. Lack of sufficient synchronizimgue results in instability
through an aperiodic drift in rotor angle, while lack of sciint damping torque results in
oscillatory torque. For convenience in analysis and fonig@ useful insight into the nature
of stability problems, rotor angle stability is further egorized into transient stability and

small signal stability.
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521 Transient Sability

Transient stability is the ability of a power system to maintsynchronism when sub-
jected to a severe disturbance such as a fault on transmissiiities, loss of generation,
or loss of a large load. The system response to such disttebamvolves large excursions
of generator rotor angles, power flows, bus voltages and sfstem variables. The re-
sulting system response is influenced by the nonlinear ctaarstics of the power system.
If the resulting angular sepa-ration between the machingke system remains within
certain bounds, the system maintains synchronism. Tnainsti&bility depends on both the
initial operating state of the system and the severity offiseirbance. Instability is usually
caused due to insufficient synchronizing torque and reBuéiperiodic angular separation.
The time frame of interest in transient stability studiesgsally3 to 5 seconds of the initial
disturbance [85]. In a synchronous machine, if the rotoedpacreases due to a distur-
bance, it causes a corresponding increase in rotor angle Bl8s increase in rotor angle
results in an increase in electrical load on the generatus [dad increase provides a syn-
chronizing torque to the rotor and helps to bring the rotakida synchronism. In the case
of asynchronously connected wind generators, such synidimg torque is not available to
the rotor after a disturbance. Therefore, the transiebilgteof a system with appreciable

wind resources is markedly different from a system with iggiglle wind resources.

5.2.2 Small Sgnal Sability

Small signal stability is the ability of the power system taintain synchronism under
small disturbances, which occur continually on the systecabse of small variations in
loads and generations. The disturbances are consideffezieify small for linearization
of system equations to be permissible for purposes of aisalysstability that may result

can be of two forms: (i) steady increase in rotor angle duadtt bf sufficient synchro-
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nizing torque, or (ii) rotor oscillations of increasing alitygde due to lack of sufficient
damping torque. The nature of system response to smaltbligstaes depends on a number
of factors including the initial operating conditions, tin@ansmission system strength, and
the type of generator excitation controls used [85].

In large power systems, the small-signal stability probtam be either local or global
in nature. Local plant mode oscillations are associatetl vator angle oscillations of a
single generator or a single plant against the rest of thiesysLocal problems may also
be associated with oscillations between the rotors of a femerators close to each other.
These oscillations have frequencies in the rangeédfo 2.0H = [85]. On the other hand,
global small-signal stability problems are caused by attBons among large groups of
generators and have widespread effects. They involvelaisails of a group of genera-
tors in one area swinging against a group of generators ithanarea. Such inter-area

oscillations have frequencies in the rangé®dfto 0.7H = [85].

5.2.3 Frequency Sability

Frequency stability is the ability of a power system to maimsteady frequency under a
severe system upset resulting in a significant imbalaneedsst generation and load caused
by sudden loss of generation, contingency, implementatiagopology control action, etc.
The frequency stability of the system depends on the abditgaintain/restore equilibrium
between system generation and load, with minimum unirdgaatiloss of load. Instabil-
ity that may result occurs in the form of sustained frequeswings leading to tripping of
generating units and/or loads. Generally, frequency ldtaproblems are associated with
inadequacies in equipment responses, poor coordinaticordfol and protection equip-
ment, or insufficient generation reserve [85]. The timesdat frequency stability varies

from fraction of seconds to several minutes.
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5.24 \oltage Sability

Voltage stability refers to the ability of a power system taintain steady voltages at
all buses in the system after being subjected to a distuebfxtom a given initial operat-
ing condition [85]. It depends on the ability to maintairsh@e equilibrium between load
demand and load supply from the power system. Instabilay thay result occurs in the
form of a progressive fall or rise of voltages of some buseposgsible outcome of voltage
instability is loss of load in an area, or tripping of transeion lines and other elements by

their protective systems leading to cascading outages [85]
5.3 Generator Modeling
5.3.1 Traditional Generators

In this research, stability studies are performed on IEEE-Hius test case is given in
[87]; however, the generation information for this testteysis not available. Therefore,
the generator mix of reliability test systeii96 (RTS) is used to create generator informa-
tion for the IEEE-118 bus test case [87]. There are a @talonventional generators, and
9 wind injection locations.

The dynamic data for the IEEE-118 bus test case is not al@jldierefore, generator
information from generators in the eastern interconnacfiwovided by Tennessee Valley
Authority (TVA), are used to generate dynamic data. In thissis, the detail listing of
generator type and associated dynamic models, are prdseni@ble 5.1. The detail

information about these dynamic models are given in PSLFualdB88].

51



Table 5.1: Traditional Generator Dynamic Model Informatio

Generator TVA Generator | Excitor | Governor
Type Reference M odel Model M odel
Uiz 343003-5| GENROU | SEXS IEEEG1
u20 343003-7 | GENROU | SEXS IEEEG1
U50 505476-1| GENSAL | IEEET1 | HYGOV
u76 349108-1 | GENROU | ESDC1A| IEEEG1
U100 251939-1 | GENROU | ESST4B| TGOV1
U155 383644-4 | GENROU | IEEET1 | IEEEG1
U197 315037-1 | GENROU | ESST4B| GGOV1
U350 304869-1S| GENROU | IEEET1 | IEEEG1
U400 256339-2 | GENROU | EXST1 -

5.3.2 Full Converter Wind Turbine Generator (Type 4)

The IEEE-118 bus test case, used in this thesis, consistsvofd injection locations.
It is assumed that all the wind generators are Type-4 winegeors.

The Type-4 design of wind turbine generator uses a convegiltsynchronous generator
with a DC field or a permanent magnet to provide excitatiore d¢vantage of this category
of wind machine is the gearless design, since the genemfdirectly connected to the
turbine and rotates at the same speed as that of turbineTB8]generator is connected to
the network through a back-to-back frequency converteighivbompletely decouples the
generator from the network. Through this converter, thetetmal output of the generator
can be converted to system frequency over a wide range dfieldrequencies of the
generator, enabling machine operation over a wide rangpesfds. The schematic of the

converter driven synchronous generator based wind turbiag shown in Fig. 5.2
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Figure 5.2: Full Converter Wind Turbine Generator (Type-4)

The dynamic data, fot.5M W individual wind generator, given in [90], are used to

model wind injection in this thesis.

5.4 Conclusion

System stability studies are critical for insuring powestsyn reliability. The brief
overview of stability studies are presented in this chafewer system stability is similar
to the stability of any dynamic system, and has fundamenghematical underpinnings.

Precise definitions of stability can be found in the literatdealing with the rigorous math-

ematical theory of stability of dynamic systems.
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Chapter 6

ROBUST CORRECTIVE TOPOLOGY CONTROL FOR SYSTEM RELIABILITY

6.1 Introduction

Even though the bulk power grid is one of the most complexesgstto date, in prac-
tice, the modeling of the transmission network is simplied limited attention is given
to the flexibility in the network topology. Traditionallytansmission lines are treated as
static assets, which are fixed within the network, excepindutimes of forced outages
or maintenance. This view does not describe transmissi&s las assets that operators
have the ability to control. Transmission switching hasrbstedied since the 1980s and it
was used as a tool to overcome various situations such agyeoliolations, line overloads
[2, 3, 4, 5], line losses and cost reduction [6, 7, 8], systeausty [9], or a combination of
these [10, 11].

Recent work has demonstrated that TC can have significanhtigeal as well as eco-
nomic impacts on the way electrical power systems are ogetatiay [14, 23, 91, 24]. The
concept of a dispatchable network is presented in [20]. #altklly, optimal transmission
switching using a direct current optimal power flow (DCOP&nfiulation is presented in
[91] and [21]; however, these models did not implicitly erci®/V-1 reliability constraints.

In [18], optimal transmission switching with aN-1 DCOPF formulation was tested on
the IEEE 118-bus test case and on the RTS 96 test case. Ref¢id) also indicates that
substantial savings can be obtained by optimal transmmissuitching while satisfyingv-1
reliability constraints.

There has been recent development of a different trangsnissvitching formulation,

[51], which builds on the work of on generalized line outagtribution factors, [52]. With
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the use of flow canceling transactions, [51] develops a freonlethat is able to capture the
changes in the topology and compares it tothe 0 formulation used in many preceding
transmission switching papers as well as in this researdiis formulation is likely to
outperform theB — 6 formulation when the number of monitored lines is relathahall,
something that is common practice within optimal power floofgems today.

Past literature has shown that TC can be used to improvesygterations and reliabil-
ity. Such previous work has led system operators to adoptsT&raechanism to improve
voltage profiles, transfer capacity, and even improve syseiability [28, 92, 93]. How-
ever, the adoption of TC is still limited as there is a lackydtematic TC tools. Currently,
the industry adoption and implementation of TC is based ehaxmethods or the opera-
tor's past knowledge. Alternatively, transmission swinghdecisions can be suggested by
a mathematical decision support tool. Many factors havegmed TC from becoming a
more widespread corrective action within system operatiéor instance, there have been
misconceptions that more transmission is always betterldss, concerns over the switch-
ing actions’ effect on stability, impacts on circuit breekecomputational complexities of
TC algorithms, as well as additional concerns.

Corrective switching is one example of TC, which is impleteeintoday [28]. These
methods are based on operators’ prior knowledge, as spktifi@8] on page 107; such
actions may also be based on historical information. Igleathrrective switching algo-
rithms should be solved in real-time. Once the disturbawcers, the switching algorithm
is executed to suggest switching actions to alleviate amgtcaint violations. This ap-
proach is beneficial since the current operating statusag/knwhich ensures the accuracy
of the solution. However, the challenge of real-time medmas is that they must be ex-
tremely fast while also ensuring AC feasibility, voltagalstity, and transient stability. TC
models could be solved offline by estimating the operatiatesdf the system. However,

deterministic offine mechanisms also have limitationssithe operating state must be
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predicted prior to the disturbance. The proposed offlinesmtive action is, thus, suscep-
tible to its problematic reliance on perfect foresight. Stearch introduces the concept of
robust corrective TC, which presents a solution to theseentichallenges.

Robust optimization has gained a great deal of attentioedent years; for example
in [70], a two-stage robust optimization technique is usaduinit commitment. It deals
with data uncertainty and attempts to find an optimal sofutionsidering the worst-case
uncertainty realization. The solution of the robust optiation problem is guaranteed opti-
mal for a defined uncertainty set [72, 73]. Since the optirohlt®n is a hedge against the
worst-case realization, the solution is often consereatiRobust optimization may not be
preferred for many applications due to its conservativenmgihowever, it is in accordance
with the power industry in regards to maintaining reliatlili

This research proposes the new concept of robust corrdaflv&he main idea is to use
transmission switching as a control tool to mitigate caaistrviolations with guaranteed
solution feasibility for a defined uncertainty set. The sWihg solution obtained from
the robust corrective TC formulation will work for all systestates within the defined
uncertainty set. The proposed robust corrective TC toasted as a part of contingency
analysis, which is conducted after solving a day-aheadconiimitment problem; however,
note that the concept of robust corrective TC is not regttlitd such applications. The main

concepts discussed in this chapter are summarized below.

1. Three corrective switching methodologies are identifiedl-time corrective switch-
ing, deterministic planning based corrective switchingl eobust corrective switch-
ing. Real-time corrective switching is the preferred psscfor corrective switching,
but it requires extremely fast solution times. Thus, witisgrg technology, the im-
plementation of real-time corrective switching is limitéd/ith existing technology,
deterministic planning based corrective switching camiyg@eémented but it requires

perfect foresight regarding future operating states. dfoee, implementation of de-
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terministic planning based corrective switching is lirditdo fill the technology gap
between real-time corrective switching and determiniglésining based corrective

switching, a robust corrective switching methodology isgmsed.

2. Arobust corrective TC formulation: the robust correetwitching model is a three-
stage robust optimization problem. With a pre-determinecedainty set regarding
the nodal injections (or nodal withdrawals), the robustective switching model
will determine the corrective switching action that will ieasible for the entire
uncertainty set. The robust optimization model consista afiaster problem and
two subproblems. The master problem will determine theembitre switching ac-
tion and the subproblems will determine the worst-casezaadn of demand within
the uncertainty set (for the associated corrective switglaiction). The nodal in-
jection uncertainty can be due to generation uncertainiydirenewables), demand
uncertainty, area interchange uncertainty, as well ag atngses of uncertainty. The
robust corrective switching framework will work for all tee different types of un-
certainties. The detailed vision of the robust correctw#ching framework as an

end-to-end process is also presented.

3. A solution technique for solving the robust correctivatshing model is presented:
specifically, an iterative procedure is developed to sdieenaster problem and the
subproblems. The master problem is a mixed integer progiag(MIP) problem
and the subproblems are reformulated into a single subgmglwhich is a nonlinear
problem. This new subproblem is converted from a nonlineablpm into a MIP

problem. The proposed solution technique is tested on tB& [EL8-bus test case.

The chapter is structured as follows: a detailed framewdrkeal-time corrective
switching, deterministic planning based corrective shitg, and robust corrective switch-

ing are presented in Section 6.2. The uncertainty modebeg in this chapter is described
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in Section 6.3. The generic deterministic corrective switg formulation is given in Sec-
tion 6.4. The detailed mathematical model for robust céiweswitching is given in Sec-
tion 6.5. The solution method for the corresponding probigiscussed in Section 6.6.
The IEEE 118-bus test case is used for the robust correatnitersng analysis and the

results are presented in Section 6.7.

6.2 Corrective Switching M ethodologies

Corrective transmission switching can be used as a contt@mato respond to an
event. This research proposes a robust corrective swgahniethodology to respond to
N-1 contingencies. This section analyzes two existing metbmdstermine potential cor-
rective switching actions and compares them to the propod®est corrective switching
framework. Note that corrective transmission switchinticers may or may not be com-
bined with generation re-dispatch. For the proposed ratarséctive switching procedure,

generation re-dispatch is taken into consideration.

6.2.1 Real-time Topology Control

The real-time TC model determines the corrective acticim(8dke as a response to an
event, e.g., a contingency. The skeleton of the real-timesd@it&me is shown in Fig. 6.1.
When a particular contingency occurs, the corrective $witg algorithm will determine
the switching action in real-time based on the current systate. The resultant switch-
ing scheme will be tested to determine if the proposed tapois AC feasible and if the

switching action causes instability. If the solution isdigde, it is implemented.
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Figure 6.1: Real Time Topology Control Scheme.

Ideally, it is preferred to solve for the optimal switchingtian in real-time because
more information is known about the operating state of thé gtowever, during an emer-
gency, it is paramount that a corrective action be taken@s as possible in order to avoid
a potential blackout. Real-time corrective switching isoa{tonvex, nonlinear, MIP prob-
lem. Such a problem cannot be solved in real-time with alkgléools today. Therefore,
heuristics are necessary to generate potential solufidrese are many heuristics for trans-
mission switching that have been previously proposed énditire [80, 82, 94, 95]. These
heuristics can be used to find decent solutions faster thaimga MIP. However, there
is still the overarching concern that they may not be fasughdor practical large-scale
applications due to the extreme importance of implemerdisglution as fast as possible
during an emergency. DCOPF based heuristics would still i@be checked to see if they
are AC feasible and any proposed action would need to be owedito not cause a stability
concern. Therefore, it is difficult to establish the sucaes$s of such heuristics due to the
time sensitive nature of real-time corrective actionsmyiemergency conditions. It is also
difficult to predict the solution quality of switching actis proposed by heuristics. In [11],
a real-time application of TC is proposed for an AC formuwatand they have shown that
this can be solved quickly but there is still the issue of grant stability of the switching
action and the approach does not take into consideraticerggon re-dispatch.

Another drawback of such real-time corrective switchingristics is that they assume
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the operating state will not change. State estimation wbaldsed to estimate the system
state when the algorithm is executed. However, the actisiésy state when the action
is implemented may be different than the assumed systemaduatto the time it takes to
run the algorithm and check for AC feasibility and systenb#ity. While such procedures
can be adjusted to reflect multiple operational states,gdeinadds additional complexity
to the algorithm, which further exposes the approach toitkethat it may not solve fast
enough. Overall, real-time TC mechanisms that rely on k&asi may be fast but there
are still practical issues that they do not take into consitlen. Thus, there is a need for
TC actions that are robust against operating states in ¢odieicrease the likelihood of

obtaining a feasible solution when implemented.

6.2.2 Deterministic Planning Based Topology Control

Today, there are special protection schemes involvingective switching that are de-
termined based on offline analysis, [28]. The main idea ofmeiistic planning based
corrective switching is to determine the corrective switghaction offline, e.g., in a day-
ahead or a week-ahead timeframe, and then feed this inflarmiato a real-time dynamic
security assessment tool that can determine if the swigchation is feasible. For deter-
ministic planning based corrective switching, an assuomptegarding the system state is
made and switching actions will be proposed in responsel¢éateel contingencies. Then,
the switching schemes will be tested for AC feasibility agdtem stability based on the
estimated, assumed system state(s). The benefit of suckedpre is that all of the heavy
computational work is done offline. The resultant switchsapemes are then fed into a
real-time security assessment tool that functions likeokup table. When the particular
contingency occurs, a solution from the lookup table willdeéected and tested for sys-
tem feasibility based on the real-time system states. lfagilide solution is found, it is

implemented; if a solution is not found, the operator carone® traditional corrective
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means, such as generation re-dispatch. The schematic déteeninistic planning based

TC scheme is shown in Fig. 6.2.
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Figure 6.2: Deterministic Planning Based Topology Confichheme.

The benefit of a planning based corrective switching appraathat the real-time pro-
cedures are minimal, resulting in a fast implementatiorhefaction. However, the draw-
back is that a deterministic planning based correctivechwig procedure requires perfect
foresight of the system states. With a small deviation froméstimated operating state,
the switching action may cause a blackout instead of prevgatblackout. However, most
corrective switching schemes implemented in practice aweldped offline [28, 92, 93].
For instance, on Page 8 of [92] it states, “Open or close it&cu when previously doc-
umented studies have demonstrated that such circuit ogpenafiably relieve the specific
condition.” As a result, corrective switching is primariignited to unique situations where
the proper corrective action is obvious or it is already d+kebwn action due to the oper-
ator’s prior knowledge and experience. In the literaturere are few mathematical models

available that can be used to determine corrective swigchatemes with guaranteed so-
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lution feasibility for a range of operating states. In ortterespond to this problem, robust

corrective switching is proposed.

6.2.3 Robust Corrective Topology Control

This research proposes the robust corrective switchimgeveork as a response to the
limitations of real-time and deterministic planning basedrective switching. The pro-
posed robust corrective switching methodology shown in €&ig is a combination of real-
time and planning based corrective switching methodokdiie to robust optimization,
the proposed robust corrective switching methodology jesor to deterministic policies
with respect to solution reliability. The technology gafMeen real-time and deterministic
planning based corrective switching scheme is reduced ingaoost of the heavy compu-
tational work offline and the guarantee of solution feagipfbr a range of operating states
is achieved by developing an uncertainty set over estingatstgm states. The uncertainty
set can be viewed as lower and upper bounds over the systameiars or a range of oper-
ating states. The TC algorithm will find the candidate switghactions based on modeled
system states (with uncertainty) and a simulated contieygérhe switching solutions gen-
erated by the TC algorithm will then be tested for AC feagipénd system stability. The
resultant switching solutions will be considered as caaticdwitching solutions for the
corresponding contingencies and will be used in connectith a real-time corrective
switching algorithm. When a particular contingency ocg¢tig on-line dynamic security
assessment tool will test the proposed robust switchingrato determine the appropri-
ate switching action to take. This process can also be cadhirith previously proposed
real-time corrective switching heuristics since combgnthese procedures together will
increase the likelihood of finding a feasible correctiveactast enough.

The primary feature of robust corrective switching is tha solution is guaranteed

to be feasible over a wide range of operating states. Thertanty set may consist of
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variable resources, such as generation uncertainty, keinelvable generation uncertainty,
demand uncertainty, and area interchange uncertaintyhémmnore, the TC algorithm can
be used to generate multiple switching solutions for a paldr contingency. Note that the
presented solution method is designed to determine one l@moat a time. However,
by updating the solution method termination condition, pihesented framework can be
used to determine multiple TC solutions. Providing muéipbtential corrective switching
solutions to the operator provides added flexibility. THiamcteristic of robust corrective
switching is critical as not all of the solutions generatgdhe TC algorithm may be AC
feasible or pass the stability check. But due to multipleeptial switching actions gener-
ated by the TC algorithm, it is more likely that at least on¢haim will produce a feasible

operating solution.
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Figure 6.3: Robust Corrective Topology Control Scheme.

The timeline of the robust corrective switching scheme wa@& follows: after solving
the day-ahead unit commitment problem, the robust coweawitching algorithm will
determine the corrective switching schemes for possibhingencies. This can be seen

as a form of contingency analysis, which has been modifieddlude robust corrective
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switching and it checks for a robust-1 solution. These switching actions will be tested
for AC feasibility and system stability. All of these calatibns will be done offline. Once a
particular contingency occurs, the real-time dynamic sgcassessment tool will evaluate
the switching solution (if any) based on the real-time sys$tates. If any feasible solution
is obtained, it will pass the possible switching actionshi® operator. Next, the operator
will decide whether to implement the switching solution. eTbenefit of the proposed
procedure is that the robust corrective switching schentairdd from this method does
not rely on ad-hoc methods, which enables corrective swigcto be more widespread in
order to improve operations and reliability.

The robust corrective switching scheme in this researclased on a DCOPF frame-
work and it guarantees the switching solution will be fekesfbr any operating state mod-
eled by the uncertainty set. Since the optimal power flow (JBfnulation is not an AC
optimal power flow (ACOPF), the proposed solution must alssspan AC feasibility test.
As a result, the guarantee that the solution is robust onliyshior a DCOPF problem and
is not guaranteed for the ACOPF problem. However, by deweipp robust corrective
switching formulation, we are able to improve the chanced the proposed switching
action will, indeed, be feasible as compared to deterministrrective switching DCOPF
schemes. Typically, generation re-dispatch is requireabtain an AC feasible solution,
which is one of the primary reasons why corrective switclsogemes may be feasible for
the DCOPF but are not AC feasible. However, the proposedstatnrrective switching
scheme is guaranteed to be feasible (for the DCOPF) for a maitge of operating condi-
tions; this substantially increases the chances that th&echtopology solution will have an
AC feasible solution since there are many DC solutions td stigh. The proposed robust
corrective switching procedure can be seen as a mathemnatagram that is equivalent
to the practice used today by operators to identify candidatitching actions based on

historical studies showing the action has worked under etyaof operating conditions.
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Note that the procedure presented in Fig. 6.3 is used tordetercorrective TC actions for
a single contingency. FaW different contingencies, the procedure described in Fi§. 6
would be repeated’ times.

In robust corrective TC methodology, it is assumed that wiisting technology, the
real-time dynamic assessment tool is fast enough to ewathatTC action such that the
TC solution can be implemented in realistic timescale. Hmxewith larger test systems,
it is possible that the computational time required for T@Bon evaluation, for real-time
application, may not be fast enough. To overcome this coatipmal limitation modifi-
cation to robust corrective TC methodology, presented g .4, is proposed. In this
proposed TC solution evaluation process, after solvingftfiine process, the candidate
TC solutions are made available to real-time applicatidngeal-time, the real-time dy-
namic assessment tool will assess the feasibility of TGadily continuously simulating
the contingency and its associated corrective TC actiom redl-time system states. When
particular contingency occurs, the TC solution, evaluatgéal-time dynamic assessment
tool, is made available to operator for implementation. béeefit of this method is that the
time required to implement corrective TC solution is minintdowever, evaluating all pos-
sible N-1 contingencies with associated TC solution, with real-tsgstem states, might
be computationally challenging; therefore, to minimizenpuitational burden, only critical
contingencies requiring TC action might be evaluated wath-time system states. This
proposed method is similar to the contingency analysis te#d today in industry, which
monitors the critical contingencies, in continuous basgat) real-time system states, to
insure N-1 contingency compliance. However, it should be noted theh sn approach
would limit the capability of corrective TC to mitigate camencies, as not all the possible
N-1 contingencies are considered for real-time TC solutiohuateon. Another approach,
to overcome computational limitation of real-time evaloatprocess, is to remove the TC

solution evaluation process with real-time system stdtethis approach, the TC solution
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will be determined and tested with off-line process and enpénted, in real-time, without
any evaluations. The success of such a approach heavilndgjp® accuracy of off-line

studies, which can be limit the implementation of correxfiC in power systems opera-
tion. Furthermore, in industry, today, most of the TC actiane determined and tested in

off-line process [96].

Candidate
TC solution
. N  — |
Real-time L Check Check | Implement
system ® t AC system I switching
states T 1 | feasibility stability |
{Real-time Dynamic Assessment Tool_!

Contingency Contingency
simulated occurs

Figure 6.4: Modification to Real-Time Dynamic Assessmerdl To

6.3 Modeling of Demand Uncertainty

Uncertainty modeling is a key part of robust optimizatiam[710] and [71], polyhedral
uncertainty sets are used to define demand uncertaintieg;agsume that each load has
an upper and lower bound and that the system-wide aggreggdehlas an upper bound.
In this research, a simplified uncertainty model is used poegent demand uncertainty.
The polyhedral uncertainty set used in this chapter is ptegen (6.1); if desired, more

complex polyhedral uncertainty sets can be used insteaad [a$].

D={deR":d/”D; <d, <d™D, v¥n} (6.1)

In this uncertainty set, the system demand is bounded byatsigtermined lower and
upper limits. The uncertainty description used in (6.1) @e@conservative than the uncer-

tainty sets used in [70] and [71]. The size of the uncertasetys defined by the parameters
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Df andD,. WhenD; and D, = 1, the uncertainty is zero ar® is a singleton, i.e.,
d, = d/™. WhenD; < 1andD; > 1, the uncertainty set is a polyhedron and its size is

defined by the values dp;" and D, .
6.4 Deterministic Topology Control

Equations (6.2)-(6.7) represent the generic form of datastic TC, which includes
a DCOPF corrective switching formulation. In this formubex, vectorc andb are cost
vectors. The parameters, B, E, F,, f, H, h andg represent the system data. The
system demand in this case is the forecasted demand andeihdedi by vectod; each
entry in d represents the forecasted demand at each djifs, Deterministic corrective
switching is a MIP problem. The variablerepresents the binary variable associated with
the switching action, where = 1 if the line is closed/in service ot = 0 if the line
is open/out of service. The continuous variapleepresents all of the OPF continuous

variables, such as line currents, bus angles, and geneigpatch.

rrmliyn o4+ bly (6.2)
s.t. Flaz < f, (6.3)
Hy < h, (6.4)

Az + By < g, (6.5)

By =d, (6.6)

z e€{0,1} (6.7)

6.5 Robust Corrective Topology Control Formulation

In the deterministic corrective transmission switchinglgem, the switching action is
based on a single system state. However, in the robust TGgonpkhe switching action is

determined based on a range of operating states. The ekjettiobust TC is to find a ro-
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bust switching solution in response to a contingency whileatlowing any load shedding
for any realizable load within the uncertainty set. It stiblog noted that demand response
can also be used as a control mechanism in response to agemtin however, this option
is not included in this research. Furthermore, in this cbiaiite TC problem is modeled as
a feasibility problem; hence, vectarandb in (6.2) are equal to zero.

The generic form of robust TC formulation is given in (6.8)4(3), which is a two part
optimization problem. The first part of the problem is to finfansmission switching so-
lution and the second part is to find the worst-case cost ostwiase realization of demand
associated with the switching solution obtained in the joey stage. Robust optimiza-
tion is seen as being more conservative than stochastimizgtion since it minimizes the
worst-case approach. While this is often seen as a drawldackwast optimization, this is

exactly the motivation: to create a robust, reliable cdivecswitching methodology.

min <ch + max bTy(d)) (6.8)
st. Fr<f (6.9)
Hy(d) < h, (6.10)

Az + By(d) < g, (6.11)
Ey(d) = d, (6.12)

x €{0,1} (6.13)

When the system demand uncertainty is zero, the TC modetmpiexsin (6.2)-(6.7) is
the same as the model given in (6.8)-(6.13). In (6.12), tha igd) is used to emphasize
the dependency of continuous variall®n the demand uncertainty, The second part
of the robust formulation is further divided into two partsdaresults into a three-stage
optimization problem as shown in (6.14). The objective dif@é¢ stage robust problem is

to find a feasible topology under the worst-case demand. T$testage will determine the
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topology or switching action, whereas stages two and thi#el@termine the feasibility

of the switching action for the entire uncertainty set.

min (ch + max  min bTy) (6.14)
zeX deD  yeQ(z,d)
st. Foe < f, x € {0,1} (6.15)

The set)(x, d) is a set of feasible solutions for a fixed topology and demamhich
is represented b§2(x,d) = {y : Hy < h, Ax + By < g, Ey = d}. In (6.14), the
max rg(ind) by part of the problem determines the worst-case cost or demssutiated

€D yeQ(zx,

with the switching solution (determined in the first stage§l @an be combined together

into one problem by taking the dual ofnin b"y. The resultant problem is shown in

yeQ(z,d)
(6.16)-(6.18).
max A (Az —g) — o"h +n'd (6.16)
dp A
st. —MNB—-"H+n"E=0", (6.17)
deD, A>0,0>0,n free (6.18)

v, A andn are dual variables of constraints (6.4), (6.5), and (6 §)eetively. In (6.16),
the termn”d is nonlinear. In [70], an outer approximation techniquessdito solve this
bilinear problem. In [70], the bilinear term?d, is linearized using a first order Taylor se-
ries approximation as shown in (6.19), whérgl, ) is a linearized approximation that is
linearized acrosg; andn,. Furthermore, the resultant LP problem is solved by emplpyi
an iterative process between the outer approximation amdet of the evaluation prob-
lem. The benefit of this method is that it is simple and theltastioptimization problem is
a simplified LP. However, this method does not guaranteeagloftimality; therefore, the

solution obtained from this outer approximation methodyaniarantees local optimality.
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Furthermore, this approach assumes that the problem ibliease corrective TC problem
is a feasibility problem and, thus, it requires a global solu Therefore, the outer approx-
imation technique is not suitable for the robust correctwgtching problem. Hence, in
this chapter, instead of using an outer approximation nugttiee bilinear term is defined

by describing the extreme point of the uncertainty set.

L(d,n) =n]d; + (n—mn;)"d; + (d — d;)"n; (6.19)

Since the DCOPF problem is a convex problem, the new subgmofdrmulation pre-
sented by (6.16)-(6.18) can be reformulated into a MIP @obIBy classifying all extreme
points of the polyhedron representing the uncertaintyvgetcan guarantee a robust solu-
tion due to the convexity of the DCOPF problem, i.e., we caargntee that all interior
points are feasible if the robust solution is feasible fbeatreme points of the polyhedron.
This reformulation allows us to solve the nonlinear prob(ém.6)-(6.18) by mixed integer
programming while still being able to guarantee a globaimatsolution. This reformula-
tion procedure is also used in [71]. The MIP reformulationtfe polyhedron representing
the demand uncertainty is shown by (6.43)-(6.46).

The master problem is a MIP problem and represented by (§a2P)) and the sub-
problem is represented by (6.16)-(6.18).

min ¢’z (6.20)
rzeX
s.t. Fo < f, z € {0,1} (6.21)

The robust corrective switching formulation used in thigter is presented in (6.23)-
(6.35), with an objective presented by (6.22). The formataincludes generator limit con-
straints (6.23)-(6.24), generator contingency ramp uprantgp down constraints (6.25)-

(6.26), line limit constraints (6.27)-(6.28), transm@sswitching constraints (6.29)-(6.30),
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the node balance constraint (6.31), and demand uncer{&irgg)-(6.33). The maximum
number of line switchings per solution are limited by partéean@/ in (6.34). In this re-
search, only one corrective line switching solution is ¢deed to be implemented in the

post-contingency state.

i (04w, pin o) (622
st.— P, > —P"u,, Vg (6.23)
Py > P"Mugy, Vg (6.24)
— P, > (=R} — P"), Vg (6.25)
Py > (=R, + P, Vg (6.26)
— P, > —P"™ Z,N1;, Vk (6.27)
P, > —P"* 7, N1, Vk (6.28)
Py — Bi(6, — 60,n) + (1 — ZyN1) My, > 0, Vk (6.29)
Py — Bi(0, — 0,,) — (1 — ZyN1,)M,, < 0, Vk (6.30)
> B—> P+ > Py=dnVn (6.31)

5(n)+ 5(n)— Vg(n)
d, < d'™DF Vn (6.32)
d, > d™ D Vn (6.33)
Y-z <M (6.34)

vk

Z, € {0,1}, P,, Dy, 6, free (6.35)

The complete robust corrective switching problem is spti itwo parts: a master prob-
lem, and a subproblem. The master problerTerii*g(O with constraints represented by
KE
(6.34)-(6.35), which determine the topology. The subpepbis a two part optimization

problem, which determines the worst-case demand for acpéatitopology. The first part
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of the subproblem is represented by an objeqsieug with constraints (6.32)-(6.33), which
determines the worst-case system demand within the uindgrst. The second part of the
subproblem is represented by the objecgﬁhg'ég(zm) 0 with constraints (6.23)-(6.31).
This second part of the subproblem is a DCOPF formulatiohdtaluates the feasibility
of the system demand, which is selected in the first part oftigroblem.

The objective of the third stage’s dual is givenin (6.36)enéda, o, O, Q0 VB F
Sy, Sy, L, are dual variables associated with constraints (6.23fGespectively. When
the second stage and the third stage of the subproblem areircesntogether, the term
d,L, in (6.36) makes the objective nonlinear. The nonlinearftyhe dual objective is
removed by restructuring the nonlinear problem into a MIBbpgm. The resultant sub-
problem is given in (6.37)-(6.46), where the dual formwatof the third stage subproblem

is combined with the demand uncertainty.

max — Z Pl ug ot + Z Prtuga; (6.36)
Vg
+ Z R+c Puc Q+ + Z R— Puc Q_

=Y P NL(FY + Fy) Zd Ly,
vk

=) (1= ZuN1) Mi (S + Sy)
Vk

A big-M formulation is used to represent the extreme poiritthe polyhedron rep-
resenting the uncertainty set. The drawback of such an appris that it causes a poor
relaxation. To overcome this problem, CPLEX'’s indicatonstpaint modeling approach is

used to model (6.43)-(6.47).
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max — Z Py,af + Z Py (6.37)
+) (=R = P + ) (—R, + P9,
Vg Vg

—ZP “ILNI(ES +FD)+ >
n

—> "1 = ZuNL)M(SF + S7)

vk

st.—aof +a, —Q +Q, + L, =0, Vg (6.38)
—Ff+F +Sf-S,+L,— L, =0, Vk (6.39)
— Y BST+ Y BuST+ > BiSy — Y BiSp =0,Vn (6.40)

5( ()~ + 5(n)=
oz;,ozg,QJr Q, >0, Vg (6.41)
Ff Fo,SF, S, >0, Vk (6.42)
Np — Lnd?™ DY + (1 — D,)M, >0, Vn (6.43)
i — Lnd}" Dy — (1 = Dp)M,, <0, Vn (6.44)
Np — Lpd?™ D> + D, M, >0, Vn (6.45)
Ny — Lnd!™ D, — D, M, <0, VYn (6.46)
D, €{0,1} (6.47)

6.6 Solution Method for Robust Corrective Topology Control

The robust TC problem is a three-stage problem with a mastdrigm and two sub-
problems. However, it is reformulated into a two-stage fobwith a master problem
and a subproblem. The solution method proposed in this i&sém an iterative process
between the master problem and the subproblem. The mastdepris a MIP, which de-

termines the system topology. The subproblem is a nonlipedniem, which is converted
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into a MIP and it searches for the worst-case demand for thepkar topology. For the
proposed solution method, it is assumed that the unit comemnit problem is solved prior

to solving the robust corrective switching problem.
6.6.1 Initialization

The unit commitment problem is first solved with the fixedfialitopology. The solu-
tion of this unit commitment problem, the unit commitmergtss, the generators’ sched-
uled dispatch, and the acquired reserves, are fed into thest@C framework. The first
step of solution method is to solve the dual problem given@#§), whereZ, represents
the initial topology. The model presented in (6.48) is thalaif the DCOPF problem. The
dual variables of constraints (6.38)-(6.40) &g P, 0,, respectively. If the problem is in-
feasible, then the proposed unit commitment solution is¥idtreliable and a cut must be
added to the master problem in the form of (6.50). The pragppapproach will then search
for a robust corrective switching action that enables tHat&m to be N-1 compliant, if

such a solution exists.

max — Z Pl ug ot + Z Pruga; (6.48)
Yg Yg
+ ) (“R = PrQS + ) (RS + P9,
Vg Vg
— > PPZN(ES + )+ Y doLy,
Vk Vn

— Y (1= ZuN1L) Mi(Si + S;)
Vk

s.t.(6.38) — (6.42)

74



6.6.2 Master Problem: Topology Selection

The master problem is a MIP problem and its objective is t@meine the system
topology. The master problem contains a topology sele@ionulation and combinatorial

cuts. The master problem is represented by (6.49)-(6.5®)itération; > 1,

min 0 (6.49)
St1< > Zy+ Y (1-2Z), Vi< (6.50)
Z)4,=0 Zp=1
Y-z <M (6.51)
Vk
Z, € {0,1} (6.52)

At each iteration, the master problem finds a feasible swiugnd then passés. to the
subproblem as an input parameter. The solufigrwill be evaluated for the worst-case
scenario in the subproblem. If the master problem is inbBdasthis states that all of the
possible topologies are infeasible and there is no feasibitching action for the defined

uncertainty set, as shown in stage 1 of Fig 6.5.

Master
Problem

Initilization,
=1

\ 4

Add cut, j=j+1

No

Objective=07?

Subproblem

Figure 6.5: Flowchart for Robust Corrective Topology Cohtr
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6.6.3 Subproblem: Worst-case Evaluation

The objective of the subproblem is to determine the worseciemand associated with
the topology (determined in the master problem). The suliprois a MIP and presented
in (6.37)-(6.47). If the subproblem is feasible and the otiye is equal to zero, then it
proves that, for a given topology, there is no system dematidnithe uncertainty set that
will produce an infeasible OPF solution. In other words,¢beesponding topology is fea-
sible for the entire uncertainty set; hence, a robust swius obtained. On the other hand,
if the subproblem’s objective is non-zero, then the comesing topology is infeasible
for a particular demand within the uncertainty set. Henlsat topology is discarded and
a feasibility and/or combinatorial cut is applied to the eagproblem in form of (6.50).
Equation (6.50) is known as a combinatorial cut, which pnés¢he master problem from
choosing any prior binary. solution that is known to be infeasible. The master problem
is solved again and the process continues till the robustieal is found or all possible
topologies are confirmed to be infeasible. The solution wektor the robust TC problem

is summarized in Fig. 6.5.

6.7 Numerical Results: Demand Uncertainty

The computational study for robust corrective switchingesformed on the IEEE 118-
bus test case. The test case consisid gfenerators] 18 buses, and86 transmission lines.
The IEEE 118-bus test case given in [87] does not have gemendbrmation. Therefore,
generator information from the Reliability Test Systen88987] is used. The fuel costs
given in [23] are used to calculate generator operatingscoeie basic unit commitment
model presented in [14] is adopted. 24-hour unit commitment problem is solved. The
reserve requirement for the unit commitment problem is thme sf 5% of demand supplied

by hydro generators arits of demand supplied by non-hydro units or the single largest
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contingency, whichever is greater. It is assumed that at #0&: of total required reserves
will be supplied by spinning reserves and the rest will bgodied by non-spinning reserves.
This assumption is in line with CAISO’s guidelines for spimpreserve and non-spinning
reserve [59]. The hou6 solution of the unit commitment problem is used for deteistio
as well as robust corrective switching analysis. The IEE&Hds test case in [87] does not
have emergency transmission rating. Therefore, it is asduhmat the emergency thermal

rating for the transmission elementslizs% of the steady state operating limits.

6.7.1 Deterministic Corrective Switching

In the deterministic corrective switching analysis, thended uncertainty is assumed
to be zero. The switching action is determined with the stdéimand levels used in the
unit commitment problem. It is observed that transmission contingencies (out t§6)
can only be alleviated if transmission switching is comdiméth generation re-dispatch,
i.e., generation re-dispatch on its own cannot satisfyefh@dransmission contingencies.
The generation re-dispatch allows each unit to change nvithiminutes of its ramping
capability. This result is important because, traditibpauch contingencies are mitigated
by expensive generation re-dispatch. Moreover, ti@deansmission contingencies have
multiple corrective switching actions. The ability of thercective switching algorithm to
generate multiple solutions for a single contingency ificai from a system operations
point of view. The corrective switching formulation is bdsen a DC framework. There-
fore, the solution needs to be tested for AC feasibility aystesm stability requirements.

Hence, the probability of having at least one AC feasible stadble corrective switching

solution is higher if the corrective switching algorithmngeates multiple corrective solu
tions.
Itis also observed that the solution for corrective trarssioin switching will not always

be ‘to open the congested line’, but frequently it will be &pen a lightly loaded line’. This

77



demonstrates that the commonly held assumption that ctedjkses are the top candidate
lines for switching is not always correct. Furthermore fsexamples demonstrate the need

for systematic tools for TC.

6.7.2 Robust Corrective Switching Analysis

For robust corrective switching analysis14.3%, i.e., 324.5MW, demand uncer-
tainty is assumed. For computational simplicity, the dethancertainty is assumed only
on 50% of the system MW demand involving roughly half of the load dmis It is also
assumed that all of the system reserves are available withminutes and the genera-
tors are allowed to change their outputs within each geoexat0 minutes ramp rate. Of
the 186 transmission contingencie$;9 can be alleviated by dispatching reserves alone.
While corrective switching is not required for thels&® contingencies, TC can still be use-
ful in response to these contingencies because it can redaaggeed for a costly system
re-dispatch; furthermore, the TC algorithm provides nplétifeasible switching solutions
for thesel 59 transmission contingencies. Thdransmission contingencies listed in Table
6.1 require corrective transmission switching actionsrioheo to avoid load shedding, i.e.,
generation re-dispatch alone was not sufficient to resporldet contingencies. Note that
these robust corrective switching solutions involve bailrective switching and genera-
tion re-dispatch.

The first column of Table 6.1 represents the transmissiotirggency and the second
column represents the corresponding corrective switchatigns. All7 of these transmis-
sion switching contingencies can only be alleviated if eotive transmission switching is
employed. For instance, a contingency on liné can only be mitigated by switching line
108 or 109 combined with generation re-dispatch. No feasible safutsoavailable with
generation re-dispatch alone due to network congestiom. stitching solutions for the

other6 transmission contingencies are documented in Table 6.1.
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Table 6.1: Robust Corrective Switching Solution with Deigh&imcertainty.

Number of
Line Deter ministic
Contingency Switching Solution(s) Solutions
63 64 3
111 108, 109 163

33, 34, 35, 38, 51, 78,
115 165
86, 112,121,132, 141

116 141 151

120 132 162
137,138, 139, 140, 141, 143, 158,

148 157, 158, 159, 160, 161, 162, 1683, 163

165, 166, 167, 168, 169, 173

139, 140, 153, 155, 157, 158, 159,
154 166
160, 161, 163,165, 167, 169, 17

w

The contingencies of lin@é11, 115, 148, and 154 have multiple robust corrective
switching actions. Table 6.1 shows that there can be mel8plitching solutions for a
single contingency. Similarly, one switching action malgwahte multiple contingencies.
For instance, the robust switching solution to open liniemitigated3 transmission contin-
gencies. This result shows the potential of robust corre&witching to generate multiple
candidate switching solutions for a real-time dynamic ségcassessment tool to evaluate
switching actions for real-time operations.

In the last column of Table 6.1, the number of deterministic&ctive switching so-
lutions, for a particular contingency, is presented. Itvehiohat the number of possible
deterministic corrective switching solutions is much masecompared to the number of
robust solutions. However, the robust solutions guaraswégion feasibility over a wide

range of operating states whereas the deterministic sakitio not guarantee solution fea-
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sibility if there is any change in the operating state. Tfarre the possibility of having a
successful corrective action with the deterministic octive switching solutions is far less
than the potential success rates for the robust correatiitetsng solutions.

For a contingency on liné3, with the initial topology no feasible solution is obtained
with a fixed demand. Hence, the unit commitment solution is/Mel compliant. How-
ever, with the robust corrective switching framework,/éxl feasible solution exists; fur-
thermore, the robust corrective switching framework iseabl produce anV-1 feasible
solution that is robust against the demand uncertaintys fdsult is extremely important
and powerful as we have proven that TC can take a solutiongh#t1 infeasible for a
deterministic fixed demand and makeNt1 feasible even with a high level of demand
uncertainty. Indeed, the assumption that transmissiotckimg must degrade system re-
liability is false. Furthermore, in prior research, TC haswn considerable operational
benefits and cost savings [14]. The detail analysis for caghgs, obtained from robust
corrective TC methodology, is presented in Chapter 7.

The computational time fo#=14.3% uncertainty set is about) minutes per contin-
gency with a2.93 GHz, Intel i-7 processor witk GB RAM. It is also observed that the
computational time increases with small increases in tlreeainty set. For instance, a

1% decrease in uncertainty causes3é; drop in computational time.

6.8 Numerical Results: Wind Uncertainty

In this section, robustV-1 system reliability studies with wind uncertainty are pre-
sented. For these studies the robust corrective topologlyalanethodology, presented in
Section 6.6, are modified to account for the wind uncertaimtyhis section, the wind un-
certainty is modeled as shown in (6.53). Polyhedral unogytaets are used to capture the
intermittency of renewable resources, as shown in (6.58)rénewable resources (in this

case, wind generation) are assumed to vary within thesegtermined lower and upper
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limits and the size of uncertainty set depends on the passief, and D;. Furthermore,
D, < 1andDj > 1. In this analysis, the wind uncertainty is assumed tat26%;

thereforeD,_=0.8 and D =1.2.

W ={PecR": P"D- <P, < Pl"DF vuw} (6.53)

In order to address the wind uncertainty, the robust cauetpology control formula-
tion is updated; the master problem is same as shown in (§6482) and the subproblem is
as shown in (6.54)-(6.59). In the subproblem, the wind geireat is modeled as a negative
load, which is a standard practice in industry to model rexid@/generation. The solution
method to solve the robust corrective topology control fEol) presented in Section 6.6,

is used to solve this problem.
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_ max + min —
max g Pl ugay +E P uga

Vg Vg

+) (“R = PrQs + ) (R, + P9,
Vg Vg

> P LNL(F A FD) + Y
Vk Vn

=Y (1= ZeN1) Mi (S + Sy)

vk

Sty — Lu(d, — Y PI™DY) + (1= D,)M, >0, ¥n
Yw(n)

Mo = Lo(dy — Y PJDS) = (1= D,)M, <0, Yn
Yw(n)

Mo — Lu(dy — > PJ"Dy)+ DM, >0, ¥n
Yw(n)

Mo — Lo(dy — > PJ"D,) = DuM, <0, Yn
Yw(n)

D,, € {0,1}

(6.38) — (6.42)
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(6.54)

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

In general, TC algorithms are either based on the ACOPF oD®@PF [97, 11, 91,
98]. However, in an optimization framework, there is no eysatic and highly accurate
method to insure system stability with TC. In prior litensuTC actions combined with
stability constraints are proposed [83, 84]. Furthermiore,robust corrective TC problem,
as shown in [97], there is no simple method to insure AC felitgilof TC actions. The
robust corrective TC methodology, which is used in this ¢thigps based on the DCOPF.
Therefore, the TC solution obtained from the robust coiwvectC algorithm is tested for
the AC feasibility and the system stability, to ensure thatTC action will provide AC fea-
sible and stable operating point. Therefore, in this SacliG solutions, obtained from the

robust corrective TC algorithm, are tested for AC feadipilin Section 6.9, TC solutions,



obtained from the robust corrective TC algorithm, are cde®d for stability studies.

The robust corrective TC methodology for system reliapiktpresented in [97]. The
security constraint unit commitment solution is used asidial operating condition for all
the studies presented in this chapter. The branch datagdEEFE-118 bus test case is given
[87]; however, the generation information for this testteysis not available. Therefore,
the generator mix of reliability test systeifio6 is used to create generator information for
the IEEE-118 bus test case [87]. There are télatonventional generators afdwind
injection locations, with peak demand 4§04 MW. The load profile and wind forecast is
obtained from the California Independent System Oper&é&i$0O) duck chart [99].

A 24 hour security constrained unit commitment (SCUC) is solaed the SCUC so-
lution is used as a starting point for all the simulationsspreed in this chapter. The basic
SCUC model and the fuel costs, given in [14], are used to tatle\generator operating
costs. The reserve requirements for the SCUC are modeladvasf$% of demand sup-
plied by conventional generators ah@)s of demand supplied by wind units or the single
largest contingency, whichever is greater. On top of thdeast50% of total required re-
serves will be supplied by spinning reserves and the resbeisupplied by non-spinning
reserves. A similar assumption is cited in CAISO’s guidedirfor spinning reserve and
non-spinning reserve [59]. Note that the corrective TCamgimay or may not be com-
bined with generator re-dispatch. However, for the robostective TC procedure gener-
ator re-dispatch is taken into consideration. Furthermior¢his N-1 analysis, only one

simultaneous TC actions considered.

6.8.1 Robust V-1 Analysis

To see the effect of higher penetration of renewable regsuwa the system reliability,
the N-1 contingency analysis with the robust corrective TC is pnése in this chapter.

The basic model and solution method is the same as [97]. Fdysis purposes, the wind
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uncertainty is assumed to Be%.

The comprehensivé/-1 reliability study with the robust corrective TC for the IEEE
118 bus test system is presented in Fig. 6.6. In this analySiscontingencies (generator
and transmission combined) ovet hours are considered. From this analysis, it is ob-
served that-72.7% contingencies does not requires TC to mitigate contingenaiith a
base case wind forecast and with a wind uncertainty. Iri@ablogy along with generation
re-dispatch is sufficient to mitigate these contingenc\fth a base case wind forecast,
~25% contingencies can be mitigated with initial topology andheration re-dispatch;
however, with a wind uncertainty, initial topology and geaten re-dispatch alone is in-
sufficient to mitigate these contingencies. To mitigats#ie25% contingencies, TC along
with generation re-dispatch is required. Furthermorexfor% contingencies, with a base
case wind forecast, initial topology and generation repalich is sufficient to mitigate con-
tingencies. However, in presence of wind uncertainty,@hek 5% contingencies cannot
be mitigated with a single TC action along with generatiowliggpatch. In this case, a sin-
gle TC action has shown no benefit for contingency mitigatksr ~0.8% contingencies,
with the initial topology no feasible solution is obtainedtwa base case wind forecast.
Hence, the unit commitment solution is ngt1 compliant. However, with a corrective TC
action along with generation re-dispatch, /sinl feasible solution exists; furthermore, the
robust corrective TC is able to produce &Rl feasible solution that is robust against the
wind uncertainty. This result is extremely important anevpdul as we have proven that
TC can take a solution that -1 infeasible for a deterministic fixed wind forecast and
make it N-1 feasible even with a high level of wind uncertainty. Indettdy assumption

that TC must degrade system reliability is false.
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72.7% 25%

Robust solution w/ initial topology Contingencies need RTC ,
- No need of TC action / - No need of TC w/ base case wind forecast

- Generation re-dispatch - Need TC action under uncertainty
alone is sufficient
1.5%

Contingencies does not

have RTC solution
- Feasible solution without
TC w/ base case wind forecast

- No possible TC action
under given uncertainty

0.8%

Contingencies need TC w/ base case wind

forecast and w/ uncertainty

- Infeasible contingencies w/ initial topology

- TC provides feasible solution w/ base case
wind forecast and w/ uncertainty

Figure 6.6: Comprehensivg-1 Analysis with Robust Corrective Topology Control on the
IEEE-118 Bus Test Case.

The N-1 analysis of the IEEE-118 bus test system with CAISO’s duckriciemand
and wind forecast is presented in Fig. 6.7. In this analygstingencies, which can be
mitigated by10 minute generator re-dispatch alone, are not consideredr@ncbnsidered
as trivial cases; these are cases that do not require deerdc@ actions. Contingencies
that require a corrective TC action, along withh minute generator re-dispatch, are con-
sidered nontrivial cases and are presented in Fig. 6.7;ahehart in Fig. 6.7 shows the
number of nontrivial contingencies for2d hours period. During high wind generation and
low demand periods, such as hourg, 13-15, and23-24, the numbers of contingencies
requiring corrective TC forV-1 reliability are much higher. In these hours, the system
cannot avoid load shedding for most of thel contingencies with generator re-dispatch
alone, if the forecasted renewable output deviatezbyfrom its base value. Furthermore,

during these hours of operations, the system has suffiareotiat of reserves to overcome
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the single largest contingency; however, due to networkyestion, these reserves cannot
be delivered with the initial topology. The corrective TQians essentially redirects the
power flow within the network so that the system reserves @dddivered to mitigate
contingencies. In this analysis, only one corrective TGoacper contingency is consid-
ered. Similar conclusions are drawn with the IEEE-118 basdgstem with a traditional
demand/wind profile.

The computational time for these simulations ah@® GHz, Intel i-7 processor witt8

GB RAM computer is aboui seconds per iteration.

Contingencies Requiring Topology Control — Uncertainty 20%

B+ of Contingencies
-o-\\ind Forecast
—Demand Forecas

o 1603
) (&)
g g
g 3 120¢g
£
B @)
o 4 180 5
3+
2 40
0 0
0 2 4 6 8 10 12 14 16 18 20 22 24
Time, (Hour)

Figure 6.7:N-1 Analysis with Robust Corrective Topology Control on the EEE18 Bus
Test Case.

6.8.2 AC Feasibility of Topology Control Solution

The robust corrective TC formulation used in [97] is basedadDC approximation.
Therefore, a corrective TC solution obtained from this athpon must be tested for AC
feasibility. The basic AC optimal power flow (ACOPF) formtitan presented in [13] is

used to check AC feasibility of the TC solutions obtainedrrthe robust TC algorithm.

86



The commercially available nonlinear solver KNITRO [108]used to solve the AC fea-
sibility problem. The DC solution obtained from a TC algbnt, such as a generator’s
real power output, line flows, etc., are used as a startingt por the AC feasibility test.
Fig. 6.8 shows the base case bus voltages and the bus voltag&sC action for an hour
of peak demand (i.e., houR) with contingency of “loss of ling#119”. Fig. 6.8 shows
that bus voltages do not change much with the corrective TiGrgan fact, with TC, bus
voltages are closer to unity (the ideal voltage scenario)pared with its pre-contingency
state. The bus angle differences for the same base casdicnrahd post-contingency
simulation are presented in Fig. 6.9, which shows that bgteatifferences do not change
much with the proposed corrective TC action. The maximuméamgge difference for this
test case is about15 degrees, which is less than its approximate stability liohit=30
degrees.

To check for the overall AC feasibility of the corrective TGlgtions, for the IEEE-
118 bus test case with the CAISO duck chart, more tb@i®) TC solutions are tested.
Out of those3000 DC robust solutions;-90% of the TC solutions, obtained from a robust
corrective switching algorithm, produce AC feasible siming. This result is very critical
from system operations point of view, as this result fills gla@ between the disconnected
DC formulation and an AC operation. Similarly, with the IERES8 bus test system using
traditional demand/wind profile;85% of robust DC TC solutions provides an AC feasible
corrective TC solution for the base case operating poine dédmputational time for an
AC feasibility test on .93 GHz, Intel i-7 processor wittl8 GB RAM computer is about

seconds per contingency.
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Effect of Topology Control Action on Steady State Bus Voltage
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Figure 6.8: Bus Voltages (in pu) With and Without Topologyn@ol Action.

Effect of Topology Control Action on Bus Angle Difference
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Figure 6.9: Bus Angle Difference (in Degree) for All the Tsamssion Elements With and

Without Topology Control Action.
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6.9 Stability Study with Robust Corrective Topology Control Actions

In this section, different stability studies are condudtednalyze the TC solutions for
the IEEE-118 bus test system presented in Section 6.8. BousBion purposes, results
associated with the peak load hour (hdg) with base case wind forecast are presented
in this chapter. The dynamic data for the IEEE-118 bus test émnot available; there-
fore, generator information from generators in the eastaerconnection of the United
States are used to generate dynamic data. The dynamic olateh MW individual wind
generator, given in [90], are used to model wind injectiothis analysis.

Small signal eigenvalue studies are carried out on thisces#, with SCUC dispatch
solution, for hour 18. The real part of the smallest eigamwalbtained from this study
is ~—112 and the real part of largest eigenvalue~is-0.01. This study shows that all
eigenvalues are negative and lie on the left hand side of pii@ indicating that the given
system is stable. This result shows that the given systemnadl signal stable and will
remain stable for small perturbations in the operatingestdthis analysis is carried out

using SSAT [101].

6.9.1 Generator Contingency

To demonstrate the effect of TC, on system reliability urides of generation condi-
tion, the scenario described in Table 6.2 is simulated. ®he bf wind represented by this
scenario is equivalent to loss ©2% of total generation. Note that, in the western intercon-
nection, for many stability related studies, the worstecasenario is the loss of two Palo
Verde nuclear units [102], which is abakff; of total online generation.

The effect of TC action on system frequency is presented gn B.10. Due to the
sudden drop of wind generation, the system frequency drelmsw$9.8 Hz and recovers

to ~59.88 Hz using system inertia. After implementing the line switchaction, the sys-
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tem frequency improves and reaches#@d.89 Hz. This small improvement in frequency
happens because TC action decrease the losses in the systieimcan be viewed as in-
creased in generation. At160 sec., the generators are re-dispatched to overcome the loss
of renewable generation. After generation re-dispatclasdf the frequency improves and
settle downs te-59.97 Hz. In this analysis]0 minutes ramping capability of generators
are considered and it is assumed that after éactec. the real power supplied by gener-
ators is available online. This additional generation igoted from generators providing
spinning reserves.

The effect of the TC on bus voltage stability is also studiéuthe above scenario,
the loss of wind on bus voltages are not significant; howether, TC alters the voltages
on buses close to line switching action. The magnitude ofigban voltage is highest on
buses that are connected to the switched line.

Bus Frequency — TC solution "Open line from Bus#65 to Bus#6¢

60.0
—Bus # 69
60!
N
L 59.9
>
(&]
S 59 : :
> — Start of Generation Re—dispatch
g59 8 T . . .
L~ Line Switching
(%2}
@ 59.
T - .
59.75 Loss of Wind Generation, ~20%
59 | | | | | | | |
0 100 200 300 400 500 600 700 800

Time, (sec.)
Figure 6.10: Effect of TC on System Frequency Under Geneaatingency.
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Table 6.2: Scenario to Study the Effect of TC on System Ritipdnder Generator

Contingency

Time Event

10-12 sec. Loss of wind generatioa({%)

130 sec. Topology control solution implemented (open lieeveen Bug-65-Bus#68)

160-760 sec. Generators are dispatched based on rampialgjlitsp

Furthermore, the small signal analysis after TC and geioere¢-dispatch indicates that
the change in dominant poles of the system<a2&, as compared with the pre-contingency
steady state condition. This study shows that a single TiGradbes not affect small signal

stability of the system.

6.9.2 Transmission Contingency

In bulk power system, occurrence of transmission contiogsnare relatively more
than generator contingencies. In this chapter, the effgciC under transmission con-
tingencies are also studied. Furthermore, the robust@oreeTC algorithm can produce
multiple switching solutions for a single contingency [9@} the same time, single TC
action can mitigate multiple contingencies. To demonettiis feature of corrective TC,
in this chapter, the same TC action is used to mitigate génaras well as transmis-
sion contingencies. To demonstrate the effect of TC, oregystliability when there is a
transmission contingency, the scenario described in TaBlés simulated. Note that the
generator dispatch is kept constant and not allowed to tieftiam its desired dispatch

point.
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Table 6.3: Scenario to Study the Effect of TC on System R#iliatynder Transmission

Contingency

Time Event

10 sec. Transmission contingency (Loss of line betwee#B@sBust77)

70 sec. Topology control solution implemented (open linsveen Bust65-Bus#68)

The effect of transmission contingency and its associabeckctive TC action on sys-
tem frequency is shown in Fig. 6.11. Due to the transmissaticgency, the system
frequency deviates and settles down after a transient ddoaynaximum deviation in the
frequency due to the contingencyAg0.03 Hz. After implementation of TC action and
the transients, the system frequency settles dovio tdz.

Fig. 6.12 shows the voltage contour plots for the pre-c@etirty, contingency, and
post-contingency states for a subsection of the IEEE-1$8ds1 system. The pre-contingency
state voltages, around the contingency affected arearesemted in Fig. 6.12-(a). In the
pre-contingency state, all the voltages are withiyb-1.05 pu and there is no congestion
within the network around the contingency affected areawéi@r, in the contingency
state, as shown in Fig. 6.12-(b), the network flow change.s Thange in power flow
results in congestion of network, which affects the dehdity of resources and causes
under-voltage situation in some areas. In the post-coatiogstate, implementation of TC
inherently removes the congestion and improves deliviiabf resources in the affected
area, as shown in Fig. 6.12-(c). Note that, in Fig. 6.12, ilmpdicity, only a subsection of

the IEEE-118 bus test system is shown.
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Figure 6.11: Effect of TC on System Frequency Under TransionsContingency.

Figure 6.12: \oltage Contours Under Transmission Contioge
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The small signal analysis after TC indicates that the chamglminant poles of the
system are<1.5%, as compared with the pre-contingency steady state conditThis
study shows that a single TC action does not affect smalbsgmability of the system.

Furthermore, for IEEE-118 bus test casé)% transmission and generation contingen-
cies with corrective TC have passed stability check andywred stable operating point. In

this analysisy~200 transmission and generation contingencies are simulated.

6.10 Conclusion

In this chapter, three different corrective switching nogtblogies are presented: real-
time, deterministic planning based, and robust correcwi#ching. Real-time corrective
switching is very difficult to implement with existing tecbllogy due to a lack of computa-
tional power and the practical barriers of needing to enaréeasibility, voltage stability,
and transient stability. Deterministic planning basedactive switching can be solved
offline, but such an approach relies on predicting the opeyatate. Furthermore, the de-
terministic planning based methods cannot guarantee@oligasibility over a wide range
of system states. The proposed method of robust correatitehéng fills the technol-
ogy gap between the real-time and the deterministic planhased corrective switching
methodologies. The offline mechanism of robust correctivieching generates multiple
solutions and can be implemented in real-time with the hékp real-time dynamic secu-
rity assessment tool. As a result, the proposed robustatmeeswitching model provides
a mathematical decision support tool that integrates T&€ewmery day operations by being
able to guarantee robust solutions.

While deterministic corrective switching frameworks maggest many potential switch-
ing solutions, the empirical results presented in thisaedeshow that many of these so-
lutions will be infeasible for minor changes in the opergtstate. In contrast, the robust

corrective switching scheme presented in this chapteragiees solution feasibility for a
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wide range of system states, given a DCOPF formulation. diitiad, the robust corrective
switching formulation demonstrates the ability of geneimultiple corrective switch-
ing actions for a particular contingency. Moreover, a @nglsulting corrective switching
solution is capable of mitigating multiple contingencies.

Day-ahead unit commitment problems with proxy reserveirequents do not guaran-
tee N-1 feasibility. Contingency analysis is used to determine tivbethere are contin-
gencies that cannot be satisfied by the unit commitmentisalutVhen this happens, unit
commitment must be resolved or the operator will employafutaarket corrections to ob-
tain a feasibleV-1 solution. The results have shown that robust corrective diChe used
to reduce the occurrence of contingencies that are nofisdtisy the re-dispatch capabil-
ities of the unit commitment solution alone. Furthermohe humerical results prove that
TC does not necessarily degrade system reliability; on ¢éimérary, it can help the system
to achieveN-1 feasibility even with uncertainty.

While transmission switching exists today, it is used tonaitid extent; historical in-
formation or the operators’ prior knowledge are the primagchanisms to establish and
implement corrective switching as opposed to using a madhieal framework to identify
corrective switching actions. The electric grid is one @& thost complex engineered sys-
tems to date. Relying on only prior observations to deteempitential corrective switching
actions limits our capability to harness the existing fléditipin the transmission network.
Systematic procedures that are capable of capturing sumplegities should be preferred
over such limited methods. Furthermore, the hardware regénts to implement TC
(circuit breakers) already exist, leaving only the needdwetbp the appropriate decision

support tools, which are low in cost, to obtain such benefits.
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Chapter 7

ENHANCEMENT OF DO-NOT-EXCEED LIMITSWITH ROBUST
CORRECTIVE TOPOLOGY CONTROL

In recent years, the penetration of renewable resourcdsdtrieal power systems has
increased. These renewable resources add more com@drif@wer system operations,
due to their intermittent nature. As a result, operatorstraogquire additional reserves in
order to maintain reliability. However, one persistentlEraye is to determine the optimal
location of reserves and this challenge is exacerbatedéonttbility to predict key trans-
mission bottlenecks due to this added uncertainty. Thiptelngresents robust corrective
topology control as a congestion management tool to managerpflows and the asso-
ciated renewable uncertainty. The proposed day-aheadodhestermines the maximum
uncertainty in renewable resources in terms of do-notexéenits combined with correc-
tive topology control. The day-ahead topology control fatation is based on the direct
current optimal power flow; therefore, topology controlig@ns obtained from these al-
gorithms are tested for AC feasibility and system stabilltige numerical results provided
are based on the IEEE-118 bus test case and the Tennessee Adathority (TVA) test
system.

7.1 Introduction

The penetration of stochastic resources (e.g., variabhel &@nd solar power) has in-
creased in past years. These intermittent semi-dispdtslalsometimes non-dispatchable,
resources add more complexity to power system operationgeteral, in most optimal
dispatch models, conventional fossil-fuel power planesdispatched to a fixed operating

point, known as a desired dispatch point (DDP). Furtherpibre assumed that each con-
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ventional fossil-fuel generator will stay at its instruttiexed operating point over a speci-
fied time period. However, it is problematic to make this aggtion for semi-dispatchable
renewable resources due to their inherent intermittentapdedictable nature. Therefore,
system operators may instruct renewable power producstayavithin a desired dispatch
range as opposed assuming, within their optimization grok| that these uncertain re-
sources will operate at a fixed operating point. Within theejpendent System Operator of
New England (ISONE), this dispatch range is known as a deero¢ed (DNE) limit for in-
termittent renewable power producers. The DNE limit defaesntinuous set of potential
dispatch solutions for the renewable resource and the [soointhe DNE limit are meant
to be set such that if the renewable resource stays withisgeeified DNE limits (i.e., the
upper and lower bounds), then the system will remain in areeand reliable operating
state. Such DNE limits are determined by constructing asbbptimization problem; the
DNE limits are represented by an uncertainty set, whictesttitat the uncertain resource
can operate at any value within this continuous feasible Berthermore, the operator
could also determine the maximum bounds for this uncestaieit by which the system can
still absorb the variable production of the renewable resdwithout sacrificing system
reliability.

Robust optimization has shown promising results in recearyto address issues as-
sociated with modeling uncertainty and decision makinganmehcertainty. In [70], a two-
stage robust optimization technique is used to solve thiecommitment problem. Robust
optimization deals with the data uncertainty and tries td &n optimal solution consider-
ing the worst-case uncertainty realization, within thermdi uncertainty set. The solution
of the robust optimization problem is guaranteed to be bta$or a pre-defined uncertainty
set [97, 72, 73]. Another way to treat uncertainty is to uselsastic programming tech-
niques; however, stochastic programming approach onbjiges probabilistic robustness

and a solution is robust only to the scenarios that are mddeline stochastic framework.

97



Therefore, in this paper, robust optimization techniquesused over the stochastic pro-
gramming approach, to determine DNE limits since robusi@pation provides a robust
guarantee against the entire uncertainty set.

In this chapter, corrective topology control (TC) is usedétermine DNE limits for re-
newable resources. Traditionally, TC is considered asr@ctive mechanism, to overcome
many power systems operational issues. In [97, 24], a @dtagview of current industrial
practices for TC are presented. In [96], a comprehensiveflisorrective TC actions used
at PJM are listed. In prior literature, TC has also been peddo mitigate many power
system related issues. In [2, 3, 4, 5, 11], TC is used to oveeomltage violations and line
overloads. TC has shown benefits, to reduce line losses &, th improve system secu-
rity [9], and/or a combination of these [10]. TC has also shaignificant improvement
in operational flexibility [97] and cost saving [14, 23, 94,20, 21]. In general, TC is a
congestion management tool; the implementation of cawediC action alters the trans-
mission network, which changes the line flows across thedmesand reduces violations
caused due to network congestion. In recent years, a nurhbeudstics to determine TC
actions are investigated; in [82, 51, 81], different TC lstigs are discussed in order to
improve the TC solution quality and the computational time.

TC algorithms are either based on the AC optimal power flow@&RE) or the DC op-
timal power flow (DCOPF) [97, 11, 91]. However, in an optintina framework, there is
no systematic and highly accurate method to insure systoilist with TC. In prior liter-
ature, TC actions combined with stability constraints amppsed [83, 84]; however, these
methodologies were never tested on realistic test casesefline, solutions obtained from
TC algorithms must be tested to insure that the TC actionneilicause a blackout. In [1],
different stability studies are recommended for poweresysbperation; they are classified
based on the nature and the type of the disturbance as wék disrte span under consid-

eration. Typically, stability studies are classified irttoete different categories: rotor angle
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stability, frequency stability, and voltage stability.this chapter, all three stability studies
are considered to study the effect of corrective TC actionsystem stability/reliability.

The main contributions of this chapter are listed below.

1. TC is applied to facilitate the integration of renewaldsaurces by enhancing DNE
limits. A multistage (day-ahead and real-time) framewarkioposed. In the day-
ahead operational planning stage, DNE limits are detemirfiorethe system with and
without TC. The DNE limits with TC provide the system operataore flexibility
to manage the uncertain renewable resources and the DNE lvithout TC can
be used to define the trigger as to when it is necessary to mgpiethe corrective
TC action in order to maintain system reliability. The mstiige framework manages
some of the computational complexities by moving part ofdbm@putational process
to the day-ahead time stage and then to reconfirm the accofaitye day-ahead
time stage solution with the real-time operating state. dag-ahead and the real-
time based robust topology control (RTC) DNE limit proceslig novel and flexible
enough to consider different types of uncertainties, sgalmaertainty in generation,

uncertainty in renewable resource, and demand uncertsginyltaneously.

2. The RTC DNE limit problem is formulated, which is a threggs robust optimization
problem with a structured uncertainty set definition. Theusi DNE limit problem
is not a standard robust optimization problem; for a stashadabust optimization
problem, the uncertainty set, i.e., the DNE limit, is knowiopto solving the robust
optimization problem. However, the DNE limit problem cantbensformed into a
standard robust optimization problem. The DNE limit prabls then combined with

transmission topology control, which increases the themgdational complexity.

3. A multistage solution method is developed to solve the RNE limit problem. The

RTC DNE limit problem is transformed into a two stage problefine uncertainty
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set, i.e., the DNE limit, for the RTC DNE limit problem is daet@ned by an iterative
procedure. The proposed solution method for the RTC DNE lpmablem requires
fewer iterations to find the solution as compared with theitsmh method used in

[97].

4. The RTC DNE limit problem and its associated solution rodtls validated on a
smaller test system, the IEEE-118 bus test case and a ietdist system, the Ten-
nessee Valley Authority (TVA) test system. The realistisules demonstrate the
benefits of the RTC on renewable integration and system tipesa Limited prior

work on TC has been done for realistic systems.

5. The majority of prior work on TC does not confirm that thetsiing solutions are
AC feasible or does not cause instability. In this chapteoaenthorough assessment
of the potential for TC by confirming whether the solutions &C feasible and
stable. Different stability studies are carried out anddffiects of the TC actions on

system stability are presented.

The rest of the chapter is structured as follows: the roboisective TC methodology
to determine DNE limits is described in Section 7.2. The RTIREDIimit formulation is
presented in Section 7.3. The solution method for the RTC MME algorithm is pre-
sented in Section 7.4. The associated simulation resulthéoRTC DNE limit algorithm,
on the IEEE-118 bus test system and the TVA test system, asepied in Section 7.5.
In Section 7.6, results related to different stability sésdassociated with TC actions are

presented. Section 7.7 provides the conclusions and dissymtential future work.
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7.2 Do-Not-Exceed Limits: Robust Corrective Topology Control M ethodology

This chapter proposes a two stage approach to determine N linits, with and
without TC. The proposed methodology, shown in Fig. 7.1,\nsdéd into two parts: a
day-ahead process and a real-time process. In the day-gheeeks, after solving the
day-ahead security constrained unit commitment (SCUCbhlpro, the solution will be
used to determine DNE limits, which includes informatioroabgenerator status, gen-
erator dispatch, and operational reserve. The standardCS&tcedure at Midcontinent
Independent System Operator (MISO) is presented in [60Fidn 7.1, after solving the
day-ahead SCUC problem, the resultant solution will be gia$s the RTC DNE limit al-
gorithm. The RTC DNE limit algorithm determines the DNE lisy{with and without TC).
The TC solution and associated DNE limits, obtained fromRfm& DNE limit algorithm,
will be tested for AC feasibility and stability. The resuital C solutions will be stored for
real-time use if needed. In real-time, TC actions are impleted if the renewable genera-
tion goes outside of the DNE limit without TC actions, i.&g boundary of the DNE limits
without TC actions, define the necessary trigger as to whemptement the TC actions.
In real-time, the DNE limits (with and without TC) will be ctinuously re-evaluated based
on the real-time system states and the updated renewablmgis. If the real-time energy
management system (EMS) determines the need to implememotinective TC action,

then a resulting signal will be passed to the operator.
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Figure 7.1: Day-ahead to real-time process for DNE limithRTC.

The RTC DNE limit algorithm determines the DNE limits withcawithout corrective
TC for the specified SCUC solution. The difference in theseeDiNits is caused by net-
work congestion that inhibits deliverability of reserv@e differences in the DNE limits
also identify the necessary triggers as to when to implertientorrective TC action. If
the DNE limits, with and without TC, are smaller than the eiptated range of potential
renewable production, then the operator can rerun the S@UsOrhmit additional units
in order to hedge against the higher resource uncertairdte that, the robust DNE limit
algorithm relies on a DC approximate power flow and, thuspésinot guarantee a robust
AC power flow solution but it substantially improves the alility of the day-ahead sched-
ule by accounting for renewable uncertainty. The resullE limits and its associated
TC actions will be sent to the EMS to be used in real-time.

In real-time, the day-ahead DNE limits with and without T@ aontinuously evalu-
ated with real-time system states and updated renewaldedsts. Furthermore, the AC
feasibility and stability checks are also performed. If thal-time renewable generation
crosses the DNE limits specified without TC, determined leyrdal-time evaluation pro-

cess, the TC solution will be passed on to the real-time EMGiniplementation. Note
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that this process is described as a two-stage (day-aheackaktime) process; however,
the DNE limits and RTC solutions can be updated more fredyesi., hour-ahead, to
create a multistage process.

One benefit of the proposed robust DNE limit process is timathé day-ahead time-
frame, the system operator will have an estimate of the DMiEd] with and without TC. If
the day-head DNE limits are less than the expected uncgriaithe renewable generation,
the operator can update the SCUC solution at the day-ahe&dstage. Currently, there
are no such systematic procedures available for day-ahsa@tmons, which determines
the effect of renewable generation on SCUC solution [60}tHarmore, the TC solutions
are determined in the day-ahead framework, which can beilusefmprove reliability
coordination of neighboring entities. The benefit of reale process is that the real-time
DNE limit evaluation process is computationally light, asstof the complex part of deter-
mining DNE limits with TC are performed within the day-ahgadcess. Therefore, with
the existing computational capabilities, the RTC DNE lipribcedure can be implemented.

In this chapter, the detailed formulation and associatédgtiso method of the RTC
DNE limit algorithm are presented. Furthermore, the erdag-ahead procedure is simu-

lated and tested on two different test cases.
7.3 DNE LimitsMode€

In [103], a procedure to determine the DNE limits for a realet application is pre-
sented. This procedure determines the DNE limits, with@litdased on available capacity
of conventional generators with automatic generationrob(AGC) and10 minutes ahead
wind forecast. In [103], the DNE limits problem is solvedeaftietermining the real-time
economical dispatch, which includes the DDP for convertigenerators. To improve
the computational time, it assumed that only conventioealegators, with AGC, would

respond to the change in the wind generation, while otheverttional generators would
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maintain DDP. For real-time applications, to have a fastitsmh time, considering only
AGC generators to respond to wind deviations is justifiablewever, at other scheduling
time stages, assuming that most of the conventional gemenaill not move and cannot
move away from their DDP is not a valid assumption as thereraey changes that can
occur between look-ahead time stages and real-time (ergcdsts will be updated, gener-
ator availability and system topology may change). Henta,day-ahead or an hour-ahead
time stage, assuming only the generators with AGC over the s$&rm ramping capabil-
ities of all the conventional generators may result in a Embution quality as it will not
accurately capture the quantity and locational aspectsafuiees. Furthermore, in [103],
a shift factor based network model is used to model line flomgch allows to monitor
subset of transmission lines while determining the DNE témin [103], only a handful
of critical transmission paths are monitored for the linevflolations, which simplifies
the DNE limit problem and reduces the computational timeweleer, this simplification
may result in inaccurate solution as change in wind and spaieding AGC injection may
cause line flow violations on unmonitored transmissiondirfgherefore, to obtain a quality
solution at the day-ahead timeframe, a more complex mattesthenodel is proposed in
this chapter, which models renewable generation uncéigaialong with a nodal optimal
power flow (OPF) structure within a robust optimization femork.

The uncertainty in renewable generation is captured bytoaetsng a polyhedral un-
certainty set around the wind generation, as shown in (/i) (#&.2). The size of the
uncertainty set depends @17, andy;’, as shown in (7.1); by simplifying (7.1);, is al-
ways less than or equal teandy |, is always greater than or equalttoThe uncertainty set
definition, used in this chapter, is defined in (7.2), wheeeuhcertainty set/, is defined
by variablesp,, andy; . In (7.2), renewable resources (in this case, wind gererpére
assumed to vary between the lower limit,, and the upper limity;,. A similar uncer-

tainty set definition is used in [97], which is a more consiveauncertainty set definition
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as compared with the uncertainty set definitions used in12073, 104].

O :={p,, v €R™: PP < Pip, < Pl Yw (7.1)
PZ{ZI S Piz:pgpz; S Pgmm’vw}

U:={P, c RY: Pl"yp- < P, < PI"¢t Y} (7.2)

Note that, in the RTC DNE limits probleny,, andy; are not constant; in fact, it is
the solution of the problem, i.e., the DNE limits. Therefdree RTC DNE limit problem is
more difficult to solve as compared with standard robustoigation problems discussed
in [97, 70, 72, 73, 104]. In [97, 70, 72, 73, 104], a robust mation problem is solved
considering the predetermined uncertainty set; the solubtained from these standard
optimization problems are robust against the predeteminimeertainty set. For the RTC
DNE limit problem, uncertainty sets are not constant. In,fd® objective is to determine
the uncertainty set and associated TC action that will basbfi.e., feasible) for the entire
uncertainty. This feature makes the RTC DNE limit probleffidilt to solve and demands
a complex solution methodology to solve the problem withawtable time span.

The RTC DNE limit problem is a three stage optimization peobland it is represented
by (7.3)-(7.16); the first minimization part of the RTC DNt problem is a MIP prob-
lem, which determines the system topology and the uncéytaét. The second part of the
RTC DNE limit problem chooses the worst-case realizatioreaEwable generation from
the uncertainty set, determined based on the solution franfitst part of the problem.
The last part of the RTC DNE limit problem is a power flow (PFplgiem, which deter-
mines the feasibility of the worst-case realization of realele generation, determined in
second part of the RTC DNE limit problem, with the TC actioetetmined in the first
stage of the RTC DNE limit problem. Furthermore, the lastimimation problem, i.e.,

the PF problem, is a feasibility problem. The max-min paftshe formulation form a
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robust counterpart of the RTC DNE limit problem; when congdinthey determine the
feasibility of worst-case realization of renewable getiereassociated with the chosen TC
solution. In this formulation, generator capacity constisaare modeled as shown in (7.4)
and (7.5). To respond to the change in the renewable gemieratnventional generators’
ramping capabilities are used and are modeled as showrbhaidd (7.7); in this chapter,
at the day-ahead time stage, generatb@sminutes ramp up and ramp down capabilities
are considered. Transmission line flows are modeled as sho({nh8)-(7.11). The node
balance constraints are represented by (7.12). The nurhbenoltaneous TC actions are
controlled by constraint (7.15); in (7.15), the user defipachmeter)\/, controls the num-
ber of simultaneous TC actions. Furthermore, in this chraptdy one simultaneous TC

action is considered\(=1).

zl,f,l%f, (%% — @) +max min 0) (7.3)

St.— Py > =P u,, Vg (7.4)

P, > P;‘””ug, Vg (7.5)

— P, > (=R}~ P™), Vg (7.6)

P, > (=R, + P, Vg (7.7)

— P, > —P" 7, Vk (7.8)

P, > — P 7, Vk (7.9)

Py — Bi(6, — 6) + (1 — Zp) My, > 0,Vk = (n,m) (7.10)

Py — Bi(0, — 6,,) — (1 — Zp)M,, < 0,Vk = (n,m) (7.11)

> PB= > Pt > P+ Y Pu=dy,n (7.12)
s(n)t 5(n)~ Yg(n) Vw(n)

pmin < plivg— < plie < plizgt < pmez (7.13)
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Plirp= < p, < PlTph vy (7.14)

Y-z <M (7.15)
Vk

Z, €{0,1} (7.16)

The RTC DNE limit model presented in (7.3)-(7.16) can be espnted by a generic
robust optimization formulation as shown in (7.17)-(7.2#) a generic representatioh,
represents the binary decision variable, withinSesuch as TC decision variablg,. In
(7.17)-(7.24),x represents the continuous decision variables, withinAsesuch as un-
certainty set defining variables, and /. Similarly, in (7.17)-(7.24)y represents the
continuous decision variables, within Séf such as power flow decision variablEg P,
andd,,. The worst-case realization of the renewable generatidhjmthe uncertainty set
)V, is represented by variable Furthermore, the size of the uncertainty ¥edepends on
variablez. Similarly, the size of the uncertainty setdepends on variablasandi. The
objective cost function for the OPF problem is representetl in RTC DNE limit formu-
lation, the OPF problem is a feasibility problem; therefang7.17), the parametéris set
to be zero. In matrix representation, the system paramietensitrix form are represented
byA,C,E, G, H, K, Q, R, T and the system parameters in vector form are represented by

c,d,e, j,r,s.
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min (f(z) + max min b'y) (7.17)

al:gz( veV(xz) yeY (v,l)

stAxr<c (7.18)
Cl<d (7.19)
Ey <e (7.20)
Tx+Rv<s (7.21)
Gl+Hy<j (7.22)
Qu+Ky=r (7.23)
l€{0,1} (7.24)

The robust counterpart of the RTC DNE limit formulation, @rhed by the max-min
section of the formulation, which are LP problems that cadrabined into a single op-
timization problem. In [97], a detail procedure to transfica three stage robust optimiza-
tion problem into a two stage optimization is presented.hla procedure, the third stage
of the minimization problem, i.e., the OPF problem, is tfanwed into the dual form LP
problem and combine with the second stage maximizationi@nobThe dual form of the
OPF problem is merged with the second stage in order to gsopesserve the worst-case
scenario setting of the robust optimization problem; addal information about trans-
forming a three stage robust optimization problem into a $tage optimization problem
is presented in [70, 104, 74, 97]. The resultant two stagbleno, in a generic form, is
given in (7.25)-(7.27), wherg, A\, are the dual variables of the constraints represented
by (7.20), (7.22) and (7.23). For additional details aboahsforming a three stage robust

optimization problem into a two stage robust optimizatiookpem, refer to the Appendix.
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min f(z) + max MGl —j) — ple+n"(r — Qu) (7.25)

ql:gf A
st.—p'E—-MNTH +9TK =" (7.26)
nw>0A>0veV (7.27)

(7.18), (7.19), (7.21), (7.24)

In (7.25), the minimization problem, the master problentedaines the TC action and
the uncertainty set; the maximization problem, the sulbigro, determines the robustness
properties of the chose TC solution in the master problene. stib-problem is a nonlinear
problem, due to the” Qu term in (7.25), and can be transformed into a MIP problemgisin

a big-M formulation [97].
7.4 Solution Method: RTC DNE Limit Algorithm

The reformulated RTC DNE limit problem is a two-stage optiation problem: a mas-
ter problem and a sub-problem, as shown in (7.25)-(7.27)97h the topology selection
problem, a master problem, is a MIP problem, which is comprally inefficient, for
larger test systems. In [19], a sensitivity based greedgrdlgn is derived and used to
determine TC action for real-time emergency situations détail study of this greedy TC
heuristic method on a large scale Polish system is presen{é8]. In this chapter, a sen-
sitivity based rank list approach, presented in [19], isposed over the master problem
presented (7.17)-(7.19). The rank list suggestions aredas a sensitivity analysis of an
OPF problem, as shown in (7.28)-(7.36). The rank list foatiah consists of generator ca-
pacity constraint (7.29), generator ramping constrairt3Q) and (7.31), transmission line
constraints (7.32)-(7.34), and node balance constrai®b]7The objective of rank list for-

mulation, presented by (7.28), is to maximize the demangesarnsidering the expected
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extreme renewable generation, i.B!'. To determine the lower bound of DNE limifg’

is set toP/* - and to determine the upper bound of DNE limit is set toP/ .

max » _ dy} (7.28)
vn

st.P"" < PI' < P Vg (7.29)
Pl < RY°+ P, Vg (7.30)
Pyl > Py — R, Vg (7.31)
Pl < Pt 7, Yk (7.32)
P> P 7, Vk (7.33)
P'— B0 — 67 = 0,Vk = (n,m) (7.34)
S-S pl+> P
5(n)* 5(n)- Yg(n)
+ > Pl =dl vn ) (7.35)

Yu(n)

0<d'<d,, Vn (7.36)

The rank list problem is arranged such that for a fixed intiglology, the dual variable
of (7.35), i.e.,7,,, provides information about the marginal change in the aihje with

respective marginal change in the state of the transmidsien Note that the change in
transmission line state, i.e., in service or out of senigbjnary; however, the information
obtained from the rank list formulation is based marginarafe in the transmission line
state. Therefore, rank list approach provides only sugmestor possible TC action and
does not guarantee the solution feasibility. However, éim tist approach is still preferred
over the MIP formulation for TC selection; as solving MIP ed$ormulation is computa-
tionally challenging as compared with the linear programgbased rank list formulation.

The rank listis generated by estimating the benefit of T@actising (7.37), and arranging
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the possible TC actions in descending order.

o = B! (ty — Tm) (7.37)

In (7.37), the benefit of TC solution is representedrpythe line flow across the branch
is represented b¥;'. 7,, andr,, represent the dual variables of the node balance constraint
for nodesn andm, where node: is the “to” bus and node: is the “from” bus for linek.
Furthermore, with the IEEE-118 bus test case, it is obsetivat) with the rank list based
master problem, the number of iterations required to detex@NE limits can be reduced
by ~80% compared with the MIP based master problem.

Note that the solution method, presented in this sectido,determine the lower bound
of the DNE limits. The same solution method can be updateéterohine the upper bound
of the DNE limits; the only change would be in the uncertaisgy update section of the
solution method.

Initialization: Itis assumed that the SCUC problem is solved prior to solthedRTC DNE
limit algorithm. The solution of SCUC problem, such as gaiar status and associated
dispatch, renewable generation, system demand, is usediagud parameter to the RTC
DNE limit algorithm. The detail solution method is presehie Fig. 7.2. To initialize the
RTC DNE limit algorithm assume;’ to bel andy;, to be0; furthermore, for algorithm
termination condition assume,to be very small numberl; to be0, andU, to bel.
The uncertainty set is updated outside of the robust framevas shown in Fig. 7.2. For
simplicity, itis assumed that all the renewable injectiaslsvary with the same percentage
across all the renewable injection nodes. Therefore, terahe the lower bound of DNE
limits ¢ is set tol for all w and to determine the upper bound of DNE limit5 is set to

1 for all w.
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Figure 7.2: Solution method to determine DNE limits withusbcorrective TC.

Sage-1: The stage-1 problem determines the system topology, whilttbevevaluated
for its robustness properties in the stage-2 of this satuti@thod. The TC solutions are
generated in form of the rank list, using (7.37). If a feasitdpology is obtained from
the rank list, the resultant topology will be passed to tlageat2 problem. If the rank list
is exhausted, which indicates that there is no feasible Ti©ra@available based on the
incumbent SCUC solution and the chosen uncertainty setkefibre, at the next iteration,
the uncertainty set will be reduced.

Sage-2: The sub-problem determines the feasibility of the worstec@newable resource
realization, for a chosen TC action and generation dispafthe generic form of the
sub-problem formulation is presented in (7.25)-(7.27)e &btual formulation of the sub-
problem is given in (7.38)-(7.48), wheee , o, QF, Q- FF F7 S, S, Ly, are the dual
variables of constraints (7.4)-(7.12), respectively. Tineertainty set is defined using a
big-M formulation, as shown in (7.42)-(7.45). T, is a binary variable, which is used
to evaluate extreme points of a polyhedron uncertainty Beé sub-problem chooses the

variableD,,, such that it will maximize the sub-problem objective fuant(7.38).
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max Y (ug(—P"af + Pyay) — (RFC + Pro)Qy
Vg

+ (=R, + Pr)Qy) = > (P Zy(Fy + Fy)
Vk

+ (1= Zy) My (S; + S;) Z (7.38)

st.—a; +a, —Q +Q, +L,=0,Vg (7.39)

—Fr+F +Sf—S;+L,— L, =0, Vk (7.40)

Z Bi(Sy = S+ > Bu(S{ —S;) =0, Vn (7.41)

o(n)~

— Ly, Y Pl"of — D,)M, >0, Vn (7.42)
Yw(n)

— L, Y Pl"of — D,)M, <0, Vn (7.43)
Yw(n)

Mo — Lo Y Py + DyM, >0, Vn (7.44)
Yw(n)

Mo — Lo Y P, — DM, <0, Vn (7.45)
Yw(n)

oz;r,ozg ,Q+ Q, >0, Vg (7.46)

Ff F7 88,8 >0, Vk (7.47)

D, € {0,1} (7.48)

After solving the sub-problem, if a robust solution is obtd, i.e., the objective of the
sub-problem is equals to zero, which indicates that theahd<C solution satisfies the
entire uncertainty set, and in the next iteration the uagety set will be increased. If the
sub-problem failed to obtain a robust solution, i.e., theective of the sub-problem is not
equal to zero, the resultant TC action will be discarded aedext TC action listed in the

rank list will be tested.
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The benefit of this solution method is that the stage-2 prob&independent of the
stage-1 problem. Stage-1 of the solution method deterntimesntire rank list, for a
given renewable generation, based on a LP based rank Istifation. After stage-1, each
suggested TC action in the rank list can be tested sequgntalshown in Fig. 7.2, or
can be distributed to multiple computer/cores at the same.trherefore, the sub-problem
can be parallelized for solution speedup, which will helphwscalability. However, in
this chapter, the solution method is not parallelized aedilmerical results, presented in
Section 7.5, are based on sequential implementation ofiiign
Uncertainty set update: To simplify the RTC DNE limit problem, in this chapter, it isa
sumed that all the renewable generation deviates unifoondy all the renewable injection
nodes. We acknowledge that such an approximation is caatseryhowever, it simplifies
the problem significantly. The future work will involve elimating this approximation and
developing a more accurate solution method.

If the uncertainty set is updated due to the exhaustion ofdhg list, this indicates
that there is no available TC action that could satisfy thvemgiuncertainty set. Therefore,
in this case, the lower bound of the uncertainty set, i-€., should be increased using
(7.49) and the upper of the uncertainty set, i, remains the same. Furthermore, the
terminational conditions are also updated; the lower boiipdis updated to new,, and
the upper bound/,, remains the same.

If the uncertainty set is updated due to the robust solutidained from stage-2, which
indicates that there is a possible TC action that could fgatiiee given uncertainty set.
Therefore, in this case, the lower bound of the uncertaietyi%.,o,,, should be reduced
using (7.50) and the upper of the uncertainty set, @g,,remains the same. Furthermore,

the terminational conditions are also updated; the new muppend,U,, is equals tal,
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(previous iteration) and the new lower bourg, is equals to new,,.

0p =Ly +0(Up — Ly) (7.49)

0y = Ly = 6(Up — Ly) (7.50)

Note that optimal determination éf in each iteration, is outside the scope of this research
and is an interesting future research direction. Howewdhis chapter, the parameters
setto 0.5.
Algorithm termination: After updating the lower and the upper bound of termination-c
dition, i.e., L, andU, respectively, if the difference between thgandU, is less than the
termination conditiong¢, terminate the algorithm and the resultant robust uncextaet
along with the associated TC action will be the solution fae RTC DNE limit problem.
Furthermore, after updating the lower and the upper bouhttseeadermination condition,
if the difference between the, andU, is more than the termination condition,continue
the solution method and solve the stage-1 problem with aategddincertainty set.

Note that the TC actions are controlled by the stage-1 pnojale determine the DNE
limits without TC, the stage-1 problem should be elimindtedch the solution method. The
rank list approach should be removed and the initial toppkigpuld be passed on to the

stage-2 problem.

7.5 Numerical Results: Robust DNE Limits

In this section, the RTC DNE Ilimit algorithm is tested on tl#EE-118 bus test case
and the TVA test system.
7.5.1 |EEE-118 Bus Test Case

The branch data for the IEEE-118 bus test case is given [®Weher, the generation

information for this test system is not available. Therefdhe generator mix of reliability
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test systen1996 (RTS) is used to create generator information for the IEEB-4us test
case [87]. There are tot@l conventional generators afdvind injection locations, with
peak demand of004M W . The load profile and wind forecast is obtained from Califarn
Independent System Operator (CAISO) duck chart [99].

A 24 hour SCUC problem is solved and the SCUC solution is used terting point
for all the simulations presented in this chapter. The b88ItJIC model and the fuel costs,
given in [14], are used to calculate generator operatingscoBhe reserve requirements
for the SCUC are modeled as sum36f of demand supplied by conventional generators
and10% of demand supplied by wind units or the single largest cgetity, whichever is
greater. On top of that, at leag1% of total required reserves will be supplied by spinning
reserves and the rest will be supplied by non-spinning veserA similar assumption is
cited in CAISO'’s guidelines for spinning reserve and noimsimg reserve [59].

The DNE limits for the IEEE-118 bus test case, with and witlemurective TC actions,
are presented in Fig. 7.3. The total penetration wind ression MW generation, is about
22%. In this chapter, conventional generators’ 10 minutes iagpapabilities are used to
respond to intermittencies in renewable generation. In Fi@, the bar chart shows the
amount of available reserve generation that cannot be nsedrease the DNE limits. Fig.
7.3 shows that, with corrective TC, during some of the lowdvperiods, such as hours
1,2, 7-10, 18 and 19, the lower bound of DNE limit with TC can be increased by8%
as compared with DNE limits without corrective TC. In thiseadue to higher congestion
in initial topology, the generators ramping capabilities aot utilized to its limit. With
TC, the congestion within the system is reduced, which tesalan increase in transfer
capability across the network and subsequent DNE limitéolrs,3-6, 11-17 and20-24,
the lower bound of DNE limit obtained with and without TC asaree; for these hours, the
DNE limits are bounded by the availability of reserves. Iis itase, the initial topology is

sufficient to deploy reserves in event of drop of renewableegation. However, in these
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cases, robust DNE limits algorithm also suggests multides®lutions, which gives more
options to system operator to choose from in real-time imletation. Furthermore, dur-
ing hoursl-6, 11-16 and20-24, the upper bound of DNE limit with TC can be increased by
~T74% as compared with DNE limits without corrective TC. Furthers for the entir@4
hours, it is observed that the upper bound of DNE limits ngess beyond maximum real
power supplied by wind generators; it is due to the smallez sf test system. However,
on a realistic test case, the upper bound of DNE limit woulddestrained by the phys-
ical limitations of wind generators to produce real powenrtkermore, for the entirg4
hours, the DNE limits with TC can be increasedb32% from the DNE limits determined
without TC.

In the IEEE-118 bus test case, the peak demand occurs dusingl® and hour19,
as shown in Fig. 7.3. In this case, from hadérto hour18, the system demand increases
by 29% and wind generation decreases 23¢s. Therefore, to meet the system demand
in peak hours, the slow start units will be committed durimgihl 3-16, resulting in the
higher amount of available generation in these hours. Hewelue to the congestion
within the network, this additional available generationlcl not be utilized to increase the
upper bound of DNE limit. In these situations, the TC actibovgs great benefit to system
operation as it helps to reduce congestion within the nétwehich results in increase in
DNE limits. Furthermore, the computational time, requitedietermine DNE limit is~3
seconds per iteration; the master problem requi¥ésec. and the sub-problem requires
~2 sec. Note that parallelization techniques can be used toowvephe computational

performance; however, such testing is outside the scogesothapter.
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DNE Limits: IEEE-118 Bus Test System
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Figure 7.3: DNE limits with the IEEE-118 bus test case anlization of reserves.

In the past, with TC, significant savings were obtained fer BEE 118-bus test case
[91]. While costs are not included in the proposed formalatiby improving this stage
of the multistage scheduling process, it is possible togedhe overall cost to operate the
system reliably. Denote the DNE limit obtained when topglogntrol is used as DNETC.
This DNE limit is a larger uncertainty set than the DNE limé@tdrmined when topology
control is not implemented. If the operator decides to piotiee system against DNETC
without implementing topology control, then there will leato be either generation re-

dispatch or additional units committed because the origoplogy was only able to re-
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liably handle a smaller uncertainty set. Thus, if DNETC icéal to be achieved without
TC, the operational cost would be increased by at I&dsthis is determined by solving a
robust unit commitment problem where both additional cotnmants and de-commitments
are allowed in reference to the original unit commitmentestthe (the schedule that was
used within the original DNE limit problem). If only additial commitments are allowed,
then the cost increase is estimated to~bel%. The solution method presented in [70] is
used to solve the robust unit commitment problem; howewstead of the outer approx-
imation method, suggested in [70], a big-M method is usedefind the uncertainty set.
This result proves that TC not only helps to integrate refdsveesources, by increasing
the DNE limits, but also provides substantial cost savimgsyistem operations. Further-
more, the TC solutions, obtained from the RTC DNE limit alggon, are tested for AC
feasibility on base case wind forecast. The ACOPF modekpntesl in [13] is used to test
the AC feasibility of the TC solution. In this cas€90% of TC solutions have produced

AC feasible solution; for this analysis1000 TC solutions are tested for AC feasibility.

7.5.2 TVATest System

The TVA test system consists 779 nodes,1708 transmission lines321 traditional
generators299 two-winding transformer$)8 three-winding transformers, an@s switched
shunts. The TVA test system does not have wind generatienefibre, for analysis pur-
poses,10 different wind injection locations are considered. Thedviarecast is obtained
from the NERL western wind resource database, profile#&8&14 for 20" December
2005 [105]. A 24 hours SCUC model is solved using same reserve requiremest used
in the IEEE-118 bus test case, and used as a starting poietéongine RTC DNE limits.
For entire24 hours, the total wind penetration on MW basisi26%. Fig. 7.4, shows the
DNE limits on the TVA test systems. In this case, farhours, the DNE limit obtained

with TC are~19% more than the DNE limit obtained without TC.
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DNE Limits: TVA System
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In the TVA test system, for all the4 hours, the lower bound of DNE limit obtained
with TC is more than the lower bound of DNE limit obtained vaitht TC. For all24 hours,
the lower bound of DNE limit obtained with TC is66% more than the lower bound of
DNE limit obtained without TC, as shown in Fig. 7.4. This riég$ughlights the benefit of
robust TC for renewable resource integration. In gener@lpfiovides better control over
the available resources and utilizes the existing infuastire, without adding additional
installation cost. Furthermore, for &l hours, the upper bound of DNE limit is bounded
by maximum real power supplied by wind generators. Thisltgsoves the initial intu-
ition about the upper bound of DNE limit. For a realistic tease, it may not be critical
to determine upper bound of DNE limit, with and without TC,iteis mainly bounded by
install capacity of the wind generation. An upper limit fe@newable penetration reflects
a situation where renewable generation exceeds the foeeckevel. For the upper limit
to be anything other than the capacity indicates the folgwpossibilities: i) the limita-
tions of delivering the energy to the load locations, i.eansmission congestion, ii) the
unavailability of enough ramping capability with convemtal units, or iii) the minimum

physical operating levels with conventional generatoesraached. If the renewable gen-
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eration is controllable and the renewable generationagellis allowable then the upper
bound of DNE limits would always be the installed capacityesewable generation can
be reduced. Note that in this case also determining the upgperd of DNE limit with-
out such an assumption of spillage is critical as this woldshtdefine trigger to implement
spillage. Computational time required to determine DNEtkrron the TVA system, i5-36
seconds per iteration; the master problem requiré$ sec. and the sub-problem requires
~26 sec.

The TC solution obtained from the RTC DNE limit algorithm foWA system, are
tested for the AC feasibility on base case wind forecast.tiv®iTVA system34% of TC
solution obtained from the RTC DNE limit algorithm have puocdd AC feasible solution;

for this analysis~70 TC solutions are considered.
7.6 Stability Study with Robust Corrective Topology Control Actions

In this section, the RTC DNE limit solutions for IEEE-118 ktest system, presented
in Section 7.5, are tested for different stability studi€®r discussion purposes, results
associated with the peak load hour (ha8j are presented in this chapter. The dynamic
data for the IEEE-118 bus test case is not available; thexefenerator information from
generators in the eastern interconnection are used toaerdgmamic data. The dynamic
data, forl.5 MW individual wind generator, given in [90], are used to modeldhnjection
in this analysis.

To demonstrate the effect of TC, on system reliability, scendescribed in Table 7.1
are tested. The presented scenario represents the weestwirad scenario for the given
operating condition; the loss of wind represented by thénado is equivalent to loss of
~2% of total generation. Note that, in the western intercorinactfor many stability
related studies, the worst-case scenario is the loss of adm\Rrde nuclear units [102],

which is about% of total online generation.
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Table 7.1: Scenario to Study the Effect of TC on System Railiab

Time Event
10-12 sec. Loss of wind generatior {(7%)
120 sec. Topology control solution implemented (open liegvMeen Nodg¢-65-Node#68)

150-750 sec. Generators are dispatched based on rampiigltsp

The effect of TC action on system frequency is presentedgn Fi5. Due to the sud-
den drop of wind generation, the system frequency dropsab&fo8 H = and recovers to
~59.88 H z using system inertia. After implementing the line switahiaction, the sys-
tem frequency improves and reaches+@f.89H z. This small improvement in frequency
happens because TC action decrease the losses in the systielncan be viewed as in-
creased in generation. At150 sec., the generators are re-dispatched to overcome the loss
of renewable generation; in this analysi8,minutes ramping capability of generators are
considered. After generation re-dispatch, at last, thguieacy improves and settle downs
to ~59.97H .

Small signal (SS) eigenvalue studies are carried out ontébiscase, with SCUC dis-
patch solution, for hout8. The SS eigenvalue studies are carried out at two instances:
before the loss of renewable generation, i.e., at tintesec. in Fig. 7.5, and at the end
of generation re-dispatch, i.e., at time880 sec. in Fig. 7.5. Before the loss of wind
generation, the real part of the smallest eigenvalue, obtairom the small signal study,
is ~—112 and the real part of largest eigenvalue|ds-0.01. This study shows that all the
eigenvalues are negative and lie on the left hand side of i@ indicating that the given
system is stable. The SS eigenvalue analysis, at the enchefaen re-dispatch, shows
that the maximum change in dominant eigenvalues2%. This result shows that with TC

action the given system is small signal stable and will renséable for small perturbations
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in the operating state. This analysis is carried out usingTg$01].
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Figure 7.5: Effect of TC on System Frequency.

The relative rotor angle of generators nearer to topologyrobaction are presented
in Fig. 7.6. The effect of loss of wind generation on genetatmtor angle is relatively
smaller than the implementation of topology control act@sthe loss of wind generation
is not close of these buses. On other hand, the topologyaiattion is close to these
buses; therefore, the effect of loss of wind generation,eregators relative rotor angle, is
smaller compared to topology control action. The real pasugplied by these generators

are also presented in Fig. 7.7.
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Figure 7.6: Generator Relative Rotor Angle - TC Solution 8@@.ine From Bus-65 To
Bus-68”
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The effect of the TC on bus voltage stability is also studiéuthe above scenario,
the loss of wind on bus voltages are not significant; howetber, TC alters the voltages
on buses close to line switching action. The magnitude ofighan voltage is highest on

buses that are connected to the switched line, as shown.i7 Fdg
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Figure 7.8: Bus \oltage - TC Solution “Open Line From Bus-@bBlus-68"

7.7 Conclusion

The penetration of renewable resources in electrical psy&ems has increased in re-
cent years. This increase in intermittent renewable ressus forcing a change in regards
to the way bulk power systems are operated today. This chaptevs the usefulness of
TC for integration of renewable resources.

In case of renewable resource integration, the determimafiDNE limits is critical; in
this chapter, a systematic procedure to determine DNE isyptesented. With corrective

TC, the DNE limits can be increased Bg-26%, as compared with no topology control
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actions. At the same time, TC can lower the operational cpsitbeast6%. The RTC
DNE limit algorithm is based on a DCOPF; therefore, the T@gohs obtained from this
algorithm must be checked for AC feasibility; on the IEEEBHLs test case,90% of TC
solutions obtained from the RTC DNE limit algorithm are A@é$éle.

The stability studies, presented in this chapter, dematestrthat the TC solution ob-
tained from the RTC DNE limit algorithm can pass AC feastpiind stability tests. Fur-
thermore,~66% of TC solutions obtained from the RTC DNE limit algorithm pabe
stability check. At the same time, these results show thatid€s not deteriorate the sys-
tem stability; on the contrary, when TC is done properly,ah delp to maintain stable
operations.

Future work will involve testing of the robust topology caritalgorithm on real-life
test cases along with investigation of the benefits of palrabmputation of the robust

topology control algorithm.

7.8 Appendix

The presented model is a three-stage robust optimizatmivigm that is reformulated
into a two-stage robust optimization problem as shown in Fig§. The proposed robust
optimization problem structure is similar to other robugtimization problems solved in
prior literature [70, 103, 104]. One key difference is thas final stage of the proposed
DNE limit problem is a linear feasibility problem as compar® a linear optimization
programming problem as is the case in [70, 103, 104]. Note Wizile our final stage is
a linear feasibility problem, the solution approach is nistidct from other work that has
a linear optimization problem (a non-zero objective) infinal stage; all linear optimiza-
tion problems can be converted into a linear feasibilityopea that will either produce the
global solution to the original problem or say that the ar@iproblem is infeasible. This is

possible by modeling the linear equality and inequalityuresments of primal feasibility,
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dual feasibility, and strong duality as these three coodgiare both necessary and suffi-
cient for optimality [106]. Thus, any such robust optimiaatproblem that has its final
stage as a linear program, that linear program can be tmanstbinto a linear feasibility
problem. While the proposed model has a fixed objective ferfithal stage, it can still
return two outcomes: i) either zero stating that there isasifde solution or ii) infinity
stating the problem is infeasible. To adequately captueeatspropriate characteristics of
the final two stages, which can be interpreted as an attale{ender (max-min) problem,
even though the final stage is a feasibility problem, it séfjuires to take its dual (stdp
in Fig. 7.9) so that final two stages can merge properly inécotie problem (stepin Fig.
7.9). This is the same approach as what is seen in [70, 10Ba%0dpreserves the desired
attacker-defender structure. Simply changing the fingestaoblem from mird to max

0 will not preserve the robust optimization structure; if suctrivial reformulation were
otherwise possible, it would also be possible in such woik §280, 103, 104] as well since

all linear programs can be transformed into linear feagjgroblems.

Stagel Stage?2 Stage3

Min Max Min
e Dﬁ?ﬁsﬁf
Step 3 Comﬁzifﬁgiz ;lrﬁ :}Zagc‘s
Step 4 Stagel i\lew Stage2
Min Max

Figure 7.9: Transformation of a three stage robust optiticingoroblem into a two stage

robust optimization problem.
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The presented robust min-max-min structure, in this chhiajgtehe appropriate struc-
ture to solve the DNE limit problem. This min-max-min st guarantees the solution

feasibility for the entire uncertainty set, i.e., the DNmitis.
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Chapter 8

ZONAL DO-NOT-EXCEED LIMITSWITH ROBUST CORRECTIVE
TOPOLOGY CONTROL

The penetration of renewable resources in electrical pey&ems has increased over
the years. This increased levels of intermittent resouadels complexities in power sys-
tem operations. At the Independent System Operator of Neglaid (ISONE), in real-
time operation, the renewable resources are integratedhatsystem using do-not-exceed
(DNE) limits. The determination of DNE limits, in real-timé challenging; to reduce
the computational time, approximations are made and mattiemhmodels are simplified.
In this chapter, a zonal approach is proposed to determing hits, which reduces the
network model into few interlinked zones. The approximasivith the zonal approach do
not affect the quality of solution to a great extent. Howetlgey reduce the computational
time so that the zonal DNE limits approach may be implemeitedal-time. The DNE
limits determined with the zonal approach are compared thighdetail nodal DNE limits
on a smaller IEEE-118 bus test case and a realistic systewidprbby Tennessee Valley
Authority (TVA).

8.1 Introduction

As the penetration of stochastic resources (e.g., varabld and solar power) in-
creases in power systems, the challenge to maintain a canisnsupply of electrical en-
ergy, at minimal cost, has increased. Traditionally, ecoicodispatch models, used in
system operations, are deterministic and do not optimigeeay resources while explicitly
accounting for uncertain resources. In order to reduceadip@ial costs, while maintaining

reliability, uncertainty modeling plays an important rotehe decision making process; by
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ignoring uncertainty, the operational decision can be ptibw@l or even infeasible.

Today, in most optimal dispatch models, conventional fds&l generators are dis-
patched to a fixed operating point known as desired dispatict (DDP). In these models,
it is assumed that the conventional generators can operatdix@ed operating point for
the desired time period. However, this assumption cannohdee for semi-dispatchable
or non-dispatchable renewable resources because of iheireint intermittent nature and
limited operational control. Therefore, in such casestesyoperators instruct renewable
power producers to operate within the desired dispatcherasg that these uncertain re-
sources will be at a fixed operating point. At the Independrgtem Operator of New
England (ISONE), this dispatch range is known as a do-noéeck (DNE) limit for inter-
mittent wind power producers [103]. The DNE limit defines atouous set of potential
dispatch solutions for the renewable resource; this cootis set of dispatch solutions that
can be viewed as an uncertainty set. The bounds of the DNEdmmimeant to be set such
that if the renewable resource stays within the specified OiMis (i.e., the upper and
lower bound), then the system will remain in a secure andlidioperating state [103].

In ISONE’s DNE limit formulation, only generators with aati automatic generation
control (AGC) are considered to respond to intermittenaiesind generation [103]. In
real-time application, such approximation is justified dese expected uncertainty in re-
newable generation is relatively smaller in real-time apiag state. However, tradition-
ally, AGC is used for load following and addressing smalltpdrations in system oper-
ation. If all available AGC is used to address renewable ggio® intermittency, addi-
tional resources may be required for load following and eysperturbations. In [103],
details about these additional resource requirementsatngresented but these additional
resources can be obtained with more frequent and more aeatispatch instruction to
conventional generators or by committing additional gatees [107]. Furthermore, in

[103], the DNE limits are determined close to real-time agtien, where more accurate
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information about the quantity and location of AGC is aValéa However, in day-ahead or
hour-ahead timeframe, the AGC based approach restricehebdities of DNE limits, as
generator output or DDP changes over time due to changetesyiemand and renewable
generation. At the same time, in day-ahead timeframe, atedetermination of AGC, in
terms of location and quantity, is difficult and may resulinaccurate DNE limits.

Past research has shown benefits of topology control (TGykiem operation and reli-
ability. Today, most of the TC decisions are determined thaseoperators’ past knowledge
or other ad-hoc methods. The review of current TC relatedstréhl practices are discussed
in [97] and [24]; furthermore, at PJM, TC actions are inclddethe transmission manual
as corrective solutions for reliable power system openat[06]. In literature, TC has been
proposed to mitigate many power system related issues. In213, 4, 5], TC is used
to overcome voltage violations and line overloads; in [69%, 14], TC is used for line
losses and operational cost reduction. TC is also propasarove system security and
operational flexibility [97, 8, 19]. TC has shown significamiprovement in operational
flexibility [97] and cost saving [23, 21, 18, 14]. TC has alkown benefits in transmission
planning studies [27].

Robust optimization has shown promising results in receatyto address issues asso-
ciated with modeling uncertainty and decision making unoteertainty. In [70] and [104],
a two-stage robust optimization technique is used to sdlgeuhit commitment problem.
Robust optimization deals with the data uncertainty arestto find an optimal solution
considering the worst-case uncertainty realization. Thet®n of the robust optimization
problem is guaranteed to be optimal for a defined uncertaiety97], [70, 104, 72, 73].
Since the optimal solution is a hedge against the worstieadization, the solution is often
conservative and probably expensive. For the applicatiggower system reliability, such
a robust policy is preferred due to the enormous costs ofenpiat blackout.

In general, TC algorithms are either based on the AC optiroalegp flow (ACOPF)
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or the DC optimal power flow (DCOPF) [97, 11, 91]. However, iodust optimization

framework, there is no simple method to insure AC feasibiit TC actions. The zonal
DNE limit formulation, presented in this chapter, is baseddCOPF; therefore, the TC
solution, obtained from the zonal DNE limit problem, is tssfor the AC feasibility to

ensure that the TC action will provide AC feasible operapogt.

The main contribution of this chapter is summarized below.

1. Identified the limitations of the DNE limits procedure dday ISONE. The AGC
based DNE limit procedure may not be sufficient to determimeeDNE limits in
day-ahead timeframe. In this chapter, a more generic metbgy to determine the

DNE limits is presented.

2. Addressed the scalability issue of the robust DNE limaigem. In this chapter, a
zonal DNE limit procedure is proposed, over the detailedahagproach, to deter-

mine DNE limits.

3. Formulated the zonal DNE limit problem using robust ojation techniques. The
proposed solution method to determine the DNE limits is a $tege process and

capable of determining the DNE limits with and without TC.

4. The proposed solution method is tested on two differesttdgstems: the IEEE-118

bus test system and the Tennessee Valley Authority (TVAEesys

5. The TC solution determined using the zonal approachteddsr the AC feasibility.
The zonal DNE limit is based on DCOPF formulation. Therefohe TC solution

obtained from the DNE limit algorithm needed to be tested agsthility.

The chapter is structured as follows: the zonal DNE limitprapch is described in

Section 8.2. The clustering method, used in this chaptedetermine system zones is
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presented in Section 8.3. The mathematical model for thalZDNE limit approach is
presented in Section 8.4. The solution method for the zoME Dmit problem is pre-
sented in Section 8.5. The associated simulation resulteéazonal DNE limit algorithm,
on IEEE-118 bus test system is presented in Section 8.6. dticBe8.7, simulation re-
sults related to TVA test system are presented. Section®\8des the conclusions and

discusses potential future work.

8.2 Zonal DNE Limits

In [103], a procedure to determine real-time DNE limits woitith TC is presented. At
ISONE, the DNE limits are determined, for the real-time &ggilon, considering the real-
time (5 minutes ahead) dispatch instructions to conveatigenerators. The real-time
DNE limits demands fast solution time, which necessitadesrplify the DNE limit prob-
lem and restricts the problem modeling details. In [1033, ENE limit formulation, used
at ISONE, is presented, which consists of energy balancsti@nts, line flow constraints,
and generator capacity constraints. However, in actudleimentation, to reduce the com-
putational time, only a handful of transmission lines anbsequent nodes are considered.
This reduction in the modeling detail reduces the solutioretbut degrades the solution
quality. Furthermore, the transmission lines considerrdku this formulation are deter-
mined based on operators’ past knowledge or historical data

To address the issue of systematically scaling down thesystodel, from including
each node to only a critical node representation, the zgo@aloach is proposed in this
chapter. The benefit of the zonal model is that it helps tocedbbe model to few number
of zones and associated branches. With this reduced systeiel the DNE limits can be
determined quickly without degrading the solution qualitythis chapter, to determine the
zones, previously investigated clustering method is use][

In the zonal approach, the critical buses are representbdiva associated zones; each
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zone may have multiple buses. After identifying all the zbaad their respected nodes,
the aggregated level of conventional generation, renengdreration, and system demand
at each zone is determined. Only the transmission linesemimy different zones are used
in zonal analysis. Therefore, if the number of zones is etu#he number of buses, the

resultant zonal structure will be the same as the detailddlrstructure.

8.3 Zonal Approach: Clustering Methods

Traditionally, clustering methods are used to sort big dat@lectrical power systems,
clustering methods are used to determine reserve zonel €bdgestion zones [109], con-
sumer classifications [110], and for additional applicasioln [110], different clustering
methods used in electrical power systems are studied ahshéed for electricity consumer
classifications.

In this chapter, the k-means clustering algorithm is usetetermine the zones. The k-
means method is a simple clustering method, which atterogiartitions/N observations
(i.e., buses in this case) into clusters (i.e., zones in this case). In [108], power transfe
distribution factor (PTDF) differences are used to detemmeserve clusters. In this pa-
per, also PTDF differenceXI’ D F' D) is used to determine different zones from the nodal
information. The PTDF difference between huand busj is represented by (8.1), where
K represents the number of transmission lines. PAeD F' D represents the difference
between the flow on branchdue to a MW injection at busand the flow on branch due
to a MW injection at bug. The PTDF difference provides a metric to group buses t@geth

based on their impact on the overall system.

K
> |PTDF}, - PTDE)|

PTDFD,; = *= - (8.1)

Note that the objective of this chapter is to study the efééd¢he zonal approach over

134



the nodal DNE limit approach; however, this chapter doesmastigate the best cluster-
ing procedure to determine different zones. Future work meagive investigating better
clustering method to determine zones; for instance, in]j1@8ighted PTDF difference

method is proposed over the PTDF difference method.

8.4 Zonal DNE Limits Modé€

The basic DNE limit problem is a three stage optimizatiorbpem, as shown in (8.2)-
(8.16). The objective function for the DNE limit problem isegented in (8.2). The first
minimization part of the DNE limit problem is a mixed integamograming (MIP) prob-
lem, which determines the system topology and the uncéytagt. The second part of
the DNE limit problem choses the worst-case realizatiorenéwable generation from the
uncertainty set, determined in the first part of the probl&hme last part of the DNE limit
problem is an optimal power flow (OPF) problem, which detemsithe feasibility of the
worst-case realization of renewable generation, detexdhim the second part of the DNE
limit problem, with the TC action determined in the first paftthe DNE limit problem.
The max-min part of formulation forms a robust counterpBE) of the DNE limit prob-
lem. The co-optimization of the first minimization part oetBNE problem along with
the RC determines the maximum range of renewable genel@ionthe DNE limit), and
associated system topology, for a given security congtuaith commitment (SCUC) solu-
tion. The formulation for the DNE limit problem is as followEhe node balance constraint
is represented by (8.3), the line capacity constraintsepeesented by (8.4) and (8.5), the
TC actions for transmission elements are modeled as sho{g6h and (8.7), the gen-
erator ramp rate constraints are represented by (8.8) a8y &d the generator capacity
constraints are represented by constraints (8.10) and)(8Tlhe deviation in renewable
generation is determined using constraint (8.12). The rmicgy set, IV, is defined by

(8.13). In this formulation, the node balance constrairt Bme capacity constraints are
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relaxed to achieve the feasibility of RC problem and thexaian is penalized in the RC
objective using parameteér Furthermore, the objective of this research is not to detex
true value ofd; for simplicity, in this research, value dfis setl. Determining the true

value ofé can be included in potential future work.

min <(P£P - B,") + max miné[vzn(LZ + L) + %(%‘I + %J)]) (8.2)
st. Y Pi— > Pty P+) P (8.3)
kes(n)+ k€d(n)- Vg(n) Vuo(n)
+ Lt - L, =d,, Vn
— Y+ P < P 2, VK (8.4)
— Y, — P < B2, Yk (8.5)
Py — Bp(0,, — 0n) + (1 — Zy) My, > 0, Vk (8.6)
Py, — Bp(6,, — 0,,) — (1 — Z,)Mj, < 0, Vk (8.7)
P, < Ri“+ P, Vg (8.8)
~ P, < R;°— P!, Vg (8.9)
Py < P""uy, Vg (8.10)
— P, < —PM"y,, Vg (8.11)
Pyt < PYP < Pr < PUP < P Y (8.12)
PLB < p, < PYB vy (8.13)
L Lo >0, Vn (8.14)
W =0, Vk (8.15)
Zy, € {0,1} (8.16)
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The DNE limit problem, presented in (8.2)-(8.16), is for aaabrepresentation; how-
ever, the same formulation can be used for a nodal represemteonsidering each zone as
a single node. Furthermore, the formulation presented.#){(®.16) can be represented in
a generic form as shown in (8.17) and (8.18). In (8.2 T¢presents the cost associated with
the first stage decision variable ahdepresents the cost associated with the second stage

decision variable. System data is represented by parasnétér, C, D, E, F, H, J, L, P.

min (ch -+ max min bTy) (8.17)
zeX weW yeY
StAx < B,Cy< D,Ex+ Fy < H,Jy+ Lw = P. (8.18)

A systematic procedure to transform a three stage robushization problem into a
two stage problem is presented in [97]. The RC part of the DiNi fFormulation, i.e.,
max-min part of (8.17), consists of two linear programmibB) problems. These two LP
problems can be transformed into an optimization singl®lera by formulating the dual
of OPF problem (i.e., minimization part of RC) and combinwith the maximization part
of RC. The resultant two stage robust formulation, for theEhit problem, is presented
in (8.19) and (8.21), where minimization part of problem mWn as a master problem
and the maximization part of problem is known as a sub-prabl@he master problem
determines the range of renewable generation, i.e., the DNIE, and associated TC
action. The sub-problem is a RC of DNE limit formulation, whidetermines the worst-
case violation associated with the renewable generatimgerand the TC action chosen in
master problem. By co-optimizing the master and the sublprnotogether the robust DNE
limits can be found. The detail formulation of the masterigbeon and the sub-problem is
presented in Section 8.5. Note that, in (8.19), the tefhw makes the objective function
nonlinear; therefore, to overcome this nonlinearity,atiént methods have been proposed

in prior literature. In [70], the outer approximation basggproach is used to overcome
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nonlinearity in the robust optimization problem; in [97]b&y-M method is suggested to
overcome the nonlinearity. This thesis also, for a zonal DNt formulation, a big-M

method is used to overcome the nonlinearities in the sublpno.

mine’ z + max N (Ex — H) — " D + (' (P — Lw) (8.19)
reX w, (A, ¢

stAz < B, —puTC - NTF+(TT =0 (8.20)

>0, A>0 weW (8.21)

8.5 Zonal DNE Limits: Solution Method

In section 8.4, a generic robust optimization based DNEtlpnoblem is presented,
where the master problem is a mixed integer programming YMiBblem and the sub-
problem is a nonlinear problem. Furthermore, using a bigekinulation technique, the
nonlinearity in the sub-problem is removed by reformulgtine sub-problem into a MIP
problem.

Initialization: It is assumed that the SCUC problem is solved prior to soltiegDNE
limit problem. The solution of SCUC problem, such as gerratatus and associated
dispatch, is used as an input parameter to the DNE limit dlguor

Sage-1 (master problem): The master problem is a MIP problem, which determines
the range of renewable generation (i.e., the DNE limits) isdssociated system topol-
ogy (i.e., the TC action). The master problem, presente@.RR(-(8.44), consists of four
sections. ThéD N E section determines the deviation in renewable generdtied)”® sec-
tion considers the power flow under the lowest renewablergéina realization, the)"
section considers the power flow under the highest renevggrieration realization, and
the topology control actions are controlled by sectiari. The DN E section determines

the maximum range of renewable generation and is reprasbytés.23). TheD' section
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consists of generator ramping constraints (8.25) and Y8g&herator capacity constraints
(8.27) and (8.28), line flow constraints (8.29) and (8.3 kcapacity constraints (8.31)
and (8.32), and node balance constraint (8.33). Similtrgx)"* section consists of con-
straints (8.34)-(8.42). In sectidhC', in constraint (8.43), the number of simultaneous TC
actions are controlled by parametef. In this chapter only one simultaneous TC action
is considered for the analysis; therefoid,is set to 1. Note that the master problem can
be formulated excluding th@'* andO“* sections. However, in that case, the number of
iterations between the master problem and the sub-problayincrease. Furthermore,
the master problem is an optimality problem which determitie renege of renewable
generation and the associated TC action. The solution afempoblem, i.e.P, P> and

7). are passed on to the sub-problem.

i ;(Pjp —PI")+¢ (8.22)

s.t.
DNE :P™n < pPlb < pr < pub < pmar (8.23)
¢ > Z Z PP (Ff + Fy) + Y (1= Zu)Mi(S5 + Siy) (8.24)

vk

* Z (dn = Y (GuaPu® + (L= G PP Ana + Y _(By + Ry,
)

Yw(n Vg

+Y (R =P, + > ug(Prmaf, — Prmag), Vi€ cut

¢ >0

O" P < R+ P}, Vg (8.25)
— P <R “—F; Vg (8.26)
Pl < Py, Vg (8.27)
— P < —P""ug, Vg (8.28)
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PP — Bi(0® — 6") + (1 — Z,)My, > 0, Vk (8.29)

PP — B0 —0") — (1 — Zy) My <0, Yk (8.30)
PP < Pz, Yk (8.31)
— P < —Pl" Zy, Ik (8.32)

Z Py Z PP+ Py (8.33)
ked(n ked(n Vg(n)

+ Z PP =d,. Vn

0" P <RI+ Pr, Vg (8.34)
~ PB"< R~ P, Vg (8.35)
P < P, Vg (8.36)
— P;b < —P;”mug, Vg (8.37)
P — Bi(0 — 0*%) + (1 — Z) My > 0, Vk (8.38)
P — Br(0" — ") — (1 — Zy)M,, <0, Vk (8.39)
P < P Zy, Vk (8.40)
W< — PP 7y, Yk (8.41)
Z P— N P> P (8.42)
ked(n ked(n)~ Yg(n)

+ Z P = d,, Vn
TC:> (1-Zy) <M (8.43)
Zp € {0,1} (8.44)

Stage-2 (sub-problem): The sub-problem is a RC of zonal DNE limit problem and it is
presented in (8.45)-(8.56), wherk,, Fy\, F,, S, S, QF, Q , af, o are dual variables

9’79’79
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of (8.3)-(8.11). The sub-problem is a nonlinear optimizatproblem, with a nonlinear
(bilinear) term in the objective function, as shown in (§.1Bhis nonlinearity in the (8.19)
is removed, by using big-M formulation [97], as shown in ,4(8.49)-(8.52). Note
that the sub-problem is an optimality problem and the sotuis always feasible due to
relaxation of the OPF problem.

max Y nn+ Y ZePPU(FT + FY)+ Y (P + REOQS (8.45)

n Vk Vg

+) (R = Py + ) (1= Zo)Mi(SF + Sp)
Vg Vk

+ Z ug(P* ot — P o)

Vg
st.—SF+ S, +FF—F, +X\ —\u=0, Vk (8.46)
Qr —Q + X \ta, —a, =0, Vg (8.47)
> Bi(SE =S+ > Bi(Sy = Si)=0,Yn (8.48)
d(n)t o(n)~
o = (dn— Y Pe")An + (1= ()M, > 0Vn (8.49)
Yw(n)
Mo — (dn— Y Pi)Ay — (1= )M, < 0Vn (8.50)
Yw(n)
Mo = (dn = Y P+ GM, > 0Vn (8.51)
Yw(n)
M — (dn = > P)An — GuM, < 0Vn (8.52)
Yw(n)
A <8, Vn (8.53)
— A\ <6, Vn (8.54)
— Ff <4, Vk (8.55)
— F7 <6, Vk (8.56)
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FF RS S8, S; <0, Yk (8.57)
Q;,Q;,a;,ag_ <0, Vg (8.58)

¢n € 10,1} (8.59)

A detailed solution method for the zonal DNE limits problesrpresented in Fig. 8.1.
The threshold value for the termination condition is setémz The solution of the mas-
ter problem, determined based on the day-ahead SCUC suligipassed on to the sub-
problem. The sub-problem determines the worst-case oolassociated with the renew-
able generation range and the TC action, chosen in the nastglem. If the worst-case
violation is within the threshold value, which indicatestlhere is no realization within
the renewable generation range with TC that will cause pdiwer violations, the solu-
tion method will terminate as the robust DNE limits with TCvhaeen obtained. If the
worst-case violation is more than the threshold value, @matity cut in form of (8.24)
will be added into the master problem and resolved. This oadieates that there is a
renewable generation realization, within the chosen rabé&generation operating range
with TC, which will cause infeasibility in the OPF problemdamay result in power flow
violations. Thus, the resultant DNE limits are not robust #ive master problem is resolved
with the added optimality cut in form of (8.24). This two stagplution method is similar

to Benders’ decomposition algorithm.
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DasyéaS gad | Master| | Sub
: Problem Problem
solution T
Add cut

Solution
Within
Threshold

Figure 8.1: Algorithm to Solve the Zonal DNE Limit Problem.

The benefit of this solution method is that the master probtesimplified by using
O" andO" structure, which results in less number of iterations anargproved solution

time.

8.6 Numerical Results: IEEE-118 Bus Test Case

The IEEE-118 bus test case, consistd&f branches71 conventional generators, and
9 wind injection locations with a peak demandddb4MW. The branch data is given [87];
however, the conventional generation information for tBEE-118 bus test system is not
available. Hence, the generator mix of reliability testtegs1 996 is used to create conven-
tional generator data for the IEEE-118 bus test case [88.Id4d profile and wind forecast
is obtained from California Independent System Operat&i 80O) duck chart [99].

The SCUC solution is used as a starting point for all the sathorhs presented in this
chapter. A24 hour SCUC problem is solved; the basic SCUC model and thechsk,
given in [14], are used to calculate generator operatingscoBhe reserve requirements
for the SCUC are modeled as sum36t of demand supplied by conventional generators
and10% of demand supplied by wind units or the single largest cgetity, whichever is

greater. On top of that, at leag1% of total required reserves will be supplied by spinning
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reserves and the rest will be supplied by non-spinning veserA similar assumption is
cited in CAISO’s guidelines for spinning reserve and nomsing reserve [59].

To determine zones from the k-mean clustering method, foalZDNE limits, different
clustering strategies are evaluated. On the IEEE-118 Btisdse, zones are determined us-
ing different zoning strategies and evaluated, againgjtlaéity of the DNE limits obtained,
with respect to accurate nodal DNE limits. In this chaptéfetent zoning strategies such
as zones based on load centers, renewable injection losafassil-fuel based generation
injection location, and combinations of these are evatlateis observed that the zonal
DNE limits, based on renewable injection location alonghwidssil-fuel based injection
location providing spinning reserve produces better ¢gpabnal DNE limits. This obser-
vation can be justified as the uncertainty in renewable geitoeris addressed by changing
DDPs of fossil-fuel based generators. Therefore, conisigdocation of uncertainty and
location of responding uncertainty together may give betsults than considering each
of them independently. Hence, in this chapter, all the z&@ME limits are calculated
based on zones determined using renewable injection dwcatbng with fossil-fuel based
injection location.

Furthermore, the benefit of having maximum one wind injetiiecation per zone,
due to adopted clustering strategy, simplifies the probleétheDNE limit sharing within
the zone. Multiple wind injection locations per zone imposgiestion of determining
true DNE limits of each wind injection location for the zor@NE limit solution. By
allowing only one wind injection location per zone, this DNf&it sharing problem can be

eliminated.

8.6.1 DNE limitswithout TC

The DNE limits obtained without TC using the nodal and theat@pproach are pre-

sented in Fig. 8.2. The zonal DNE limits are determined Withzones. In this case,
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the upper bound of DNE limits obtained from the zonal appihaa@lways greater than or
equal to the upper bound of DNE limits obtained from the n@&x€E limits approach. This

is an anticipated result as the zonal approach is an appatiximof the nodal approach;
therefore, the solution obtained from the zonal approadinat be better off than the so-
lution obtained from the nodal approach. Furthermore, dlaet bound obtained from the

zonal approach is close to the lower bound obtained from dl@lrapproach.

DNE Limits W|thout TC: Nodal vs. Zonal
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Figure 8.2: Comparison of DNE Limits on IEEE-118 Bus Test&¥éthout Topology

Control.

Fig. 8.3 shows the average error, oRdrhours, between solutions obtained from the
zonal approach and the nodal approach, for different nurmbeones. With an increase
in number of zones the average error in the zonal DNE limitwations (compared with
nodal DNE limit solution) decreases. However, the decra@asiee average error in DNE
limit calculation is not monotonic in nature; for instantlee average error increases by
2% from DNE limits determined with 8 zones oveit9 zones. Furthermore, the maximum
error in the zonal DNE limit calculation decreases with @ase number of zones; the

maximum error in DNE limit calculation decreases fren320 MW to ~130 MW with
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increase in number of zones froiM to 21. This decrease in maximum error is due to the
increase in modeling details with higher number of zonestheumore, in this particular
test case, the maximum error occurs in hgwf DNE limit calculation. Note that in this
analysis, the firsd zones are based on renewable injection locations; the cotige zones

are determined considering the maximum spinning reserppligd by the fossil-fueled

generators.
Error in DNE Limits Calculation without TC
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Figure 8.3: Error in DNE Limits on IEEE-118 Bus Test Case WithTopology Control.

8.6.2 DNE limitswith TC

The DNE limits obtained with TC using the nodal and the zopakaach is presented in
Fig. 8.4. The zonal DNE limits are determined withzones. For the zonal approach, the
DNE limits obtained with TC are greater or at least equalhi®@NE limits determined
without TC action. Furthermore, due to limited modelingadlet in hoursl, 2, and12-

16, the upper bound of DNE limits determined with the zonal apph is lower than the
upper bound of DNE limits determined with the nodal approachthe zonal approach,
only branches connecting different zones are considenedefore, in the zonal DNE limit

approach, the possible TC actions are also limited, whitiseguently restricts the DNE
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limits. Furthermore, the lower bound of DNE limits obtainedh the zonal approach is

close to the lower bound of DNE limits obtained with the nodpproach. Note that the

zonal DNE limits, presented in Fig. 8.4, are determined whth same21 zones used to

determine the zonal DNE limits in Fig. 8.2.

DNE Limits with TC: Nodal vs. Zonal
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Figure 8.4: Comparison of DNE Limits on IEEE-118 Bus Test&¥Asth Topology Con-

trol.

Fig. 8.5 shows the average error with TC, oérhours, between solutions obtained
from the zonal approach and the nodal approach, for diftevember of zones. Ovexi
hours, with increase in number of zones, the average errtireirzonal DNE limit with
TC decreases from97MW per hour tol 12MW per hour. Furthermore, the average error
in the zonal DNE limits calculation with TC is lower than theegage error in the zonal
DNE limits calculation without TC. With TC the average eriarzonal DNE limits is
betweenl 00-50 MW per hour; however, the average error in zonal DNE limitgheut TC
is between 80-55 MW per hour.

The total difference between the DNE limits determined wité zonal approach2{(

zones) and the nodal approach.ig-12%, as shown in Table 8.1. The computational time
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needed to solve the DNE limits problem, for ente hours, with the zonal approach is

~75-93% lower than the computational time required for the nodalraggh. With the

zonal approach, the equivalent system size can be reduce@8®b$2% as compared with

detailed nodal representation of the system.

Error in DNE Limits Calculation with TC
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Figure 8.5: Error in DNE Limits on IEEE-118 Bus Test Case Witipology Control.

Table 8.1: Comparison of DNE Limits Obtained with the Zonadl éhe Nodal Approaches

on the IEEE-118 Bus Test Case

Nodal Zonal Difference
DNE Limits | DNE Limits
DNE Limits without TC (MW) 10674 11998 12.4%
DNE Limits with TC (MW) 13444 12883 4.17%
Computational time without TC (sec}) 33 8 75.75%
Computational time with TC (sec.) 200 13 93.5%
Number of buses 118 21 82.2%
Number of branches 186 64 65.6%
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The TC solutions, determined with the zonal approach, atedeor the AC feasibility
on the detail nodal model to observe the capability of theakapproach to produce AC
feasible solution at base case. For the IEEE-118 bus test €88% zonal TC solution
have produced AC feasible solution. These results arearifiom operational point of
view, as it fills the gap between DCOPF based optimizatioméwaork solutions to the
real AC operating state. For example, in practice solutimnigined from optimization
algorithms based on DCOPF formulation, which could not poadAC feasible solutions
are discarded. However, the zonal DNE limit algorithm isatap of producing AC feasible

TC solutions.

8.7 Numerical Results: TVA Test System

The TVA test system consists 0779 buses,1708 transmission lines321 traditional
generators299 two-winding transformerg)8 three-winding transformers, and8 switch-
able shunts. The TVA test system data does not have wind gigmeinformation; there-
fore, for analysis purposes)) different wind injection locations are considered. Theavin
forecast is obtained from the NERL western wind resourceluete, profile cagel 2514
for 20" December2005 [105]. A 24-hour SCUC model is solved to provide a starting
solution for the DNE limit problem. The SCUC model uses thesaeserve rules as what
was used within the IEEE-118 bus test case. For the TVA testéry, the DNE limits with
TC using the zonal approach (with zones) and the nodal approach are presented in Fig.
8.6. For this analysis the same zoning strategy, used fdEfBE-118 bus test system, is
utilized. Table 8.2 presents a comparison between the zomhathe nodal DNE limit ap-
proaches. The zonal-based DNE limits determined are appadely equals to the nodal-
based DNE limits; the difference between the zonal and tldalndNE limits approaches
is ~1.64%. The computational time for the zonal approach is signifigdower than the

computational time required for the nodal approach; thekorethod requires only.81%
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of computational time compared with

the nodal method. Wité zonal approach, the

equivalent system can be reduced-t®-10% of its original nodal representation.

DNE Limits
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Figure 8.6: Comparison of DNE Limits on TVA Test System Withpdlogy Control.

Table 8.2: Comparison of DNE Limits Obtained with the Zonad éhe Nodal Approaches

on the TVA Test System

Nodal Zonal Difference
DNE Limits | DNE Limits
DNE Limits without TC (MW) 90538 96892 7.02%
DNE Limits with TC (MW) 113742 111882 1.64%
Computational time without TC (sec|) 735 25 96.60%
Computational time with TC (sec.) 4685 38 99.19%
Number of buses 1779 72 95.95%
Number of branches 2301 210 90.87%

The average error with TC between solutions obtained froenztinal approach and

the nodal approach, with reference to different number okzpfor the TVA test system

150



is shown in Fig. 8.7. From Fig. 8.7, oved hours, with increase in number of zones,
the average error in the zonal DNE limit decreases f668MW per hour t0202MW per
hour. Subsequently, the maximum error in the zonal DNE Igoiution and the nodal
DNE limit solution also decreases fra2n95MW to 907MW. Furthermore, the decrease in
the average error and the maximum error in the DNE limit dakoon is not monotonic in
nature with the increase in number of zones as shown in Fig. 8imilar average error
analysis without TC, between solutions obtained from theak@approach and the nodal
approach, is performed on the TVA test system. Qehours, with increase in number
of zones, the average error in the zonal DNE limit without Técréases fromd62MW
per hour to287MW per hour. Subsequently, the maximum error in the zonal DiNi
solution without TC and the nodal DNE limit solution withol€ also decreases from
3832MW to 1633MW. This analysis shows that TC helps to reduce the errorerztinal

DNE limits calculation.
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Figure 8.7: Error in DNE Limits on TVA Test System With TopglpControl.

The TC solutions, determined with the zonal approach, atedeor the AC feasibility

on the detail nodal model to observe the capability of theakapproach to produce AC
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feasible solution. For the TVA test systemg5% zonal TC solution have produced AC
feasible solution. These results demonstrate the critipatational benefits of the zonal

DNE limits approach.

8.8 Conclusion

The increased levels of intermittent renewable resourdds aomplexities to power
system operations. Unlike fossil-fuel generators, reitdsvgenerators are not dispatchable
to DDPs; therefore, intermittent renewable generatorsliamatched based on an operating
range, known as a DNE limit. Accurate DNE limits are critiéal power system opera-
tions. The DNE limit procedure, proposed by ISONE, detegsiDNE limits for real-time
application using AGCs; however, same procedure may notskd to determine DNE
limits in day-ahead time frame. This chapter provides aesystic approach to determine
DNE limits in day-ahead time frame.

In this chapter, the zonal DNE limit methodology is presdntghich systematically
reduces the system size and determines the DNE limits. TheiarDNE limits obtained
from the zonal method and the nodal method-512%. Furthermore, the computational
time reduces by-75-99% with the zonal DNE limit formulation. This chapter also ad-
dresses the scalability issue of the DNE limit problem, \whi critical for real life ap-
plications and fast solution time. The DNE limit results, DA system, shows that with
5-10% of modeling information~98% accurate solutions can obtained with less th#n
computation time. This result shows the benefit of the zooahtilation. The tread off
between the computational and the accuracy shows the @dtehthe zonal formulation
and application in determining DNE limits. Furthermoreg thC solution, obtained from
the zonal DNE limit algorithm, is capable of producing ACddde operating state-80-
85% of TC solutions obtained from the zonal DNE limit algorithangproduce AC feasible

solution.
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The zonal methodology, presented in this chapter, is natdaronly to the DNE limit
calculation. The zonal methodology can be used to addressbslity of other power sys-
tem operational problems. For instance, potential futuvekwnay involve developing the
zonal methodology for planning studies and SCUC problene. fliture work may also in-
volve investigating the locational aspect of the renewaljétion location and developing

a methodology to address the correlation between diffeegr@wable generation locations.
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Chapter 9

SCALABILITY OF TOPOLOGY CONTROL ALGORITHMS: HEURISTICS
APPROACH

9.1 Motivation

Robust topology control methodology, presented in Chaptertested on an IEEE-118
bus test case, which consistsidfgenerators] 18 buses, and&86 transmission lines. This
test system is much smaller than any realistic test casesx@ample, the PJM system is
consists ofl 375 generators(2, 556 miles long transmission network and peak demand of
183, 604 megawatts [111]. Therefore, for any practical implemeatgthe robust topology
control methodology must scale from IEEE-118 bus test aageuich larger test system.

The master problem, presented in Chapter 6, Section 6.5M#aproblem with a
combinatorial cut to determine the system topology. Howes@mbinatorial cut is com-
putationally inefficient, may lead to many iterations betwehe master problem and the
sub-problem, which will increase the computational time/anthe master problem will
become so big that it will be even infeasible to solve. To oware this issue, topology
control heuristic, presented in [19], is proposed to replée master problem. The topol-
ogy control heuristics is based on a sensitivity analysts@movides the topology control
solutions in terms of a ranking list. This ranking list wik lburther used as a chosen topol-
ogy control action and will be evaluated for its robustnasgprties in a sub-problem. The
detail analysis of topology control heuristic is presente8ection 9.2, where accuracy and
effectiveness of heuristic to identify correct topologynhtrol action is tested 02383 bus

Polish test system.
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9.2 Performance of AC and DC Based Topology Control Heuristics

Traditionally, the transmission network is considered aassive system and genera-
tion was optimized assuming a fixed transmission topolodye doncept of dispatchable
transmission was introduced in [20], which proposed a pgnaghift in the way the trans-
mission topology is viewed. As a result, optimal topologyirol (OTC) was developed
to harness the benefits of co-optimizing generation withgmaission topology [91, 21].
Previous research shows that OTS would result in significasttsavings even under relia-
bility constraints [18, 14]. Transmission switching hasatapplications, such as reliability
improvement via corrective switching [97].

Binary variables representing the status of transmisdimesImake OTC a mixed-
integer program problem. Real world power systems havestads of transmission lines
making the resulting OTC MIP a computationally expensivabpem. Since the available
computational time is limited, an MIP based implementatiérOTC in day-ahead and
real-time procedures is not practical. An alternative tlvisg the full MIP is the use of
switching heuristics to obtain a good, suboptimal solusanificantly faster. The MIP-
heuristic introduced in [23] allows only one switching atime, reducing the number of
binary variables to one per iteration. This would signifttareduce the complexity of the
problem. However, the formulation still requires mixedeigér programming, which may
still be too computationally challenging for certain applions that require fast solutions.
There are other heuristics proposed in the literature, hvbidy need the results of the
original OPF. A DC-based heuristic is introduced in [81,,8@fich ranks the lines based
on their economic value. The lines value, or the congesaahaf a single line, is the price
difference at the two ends of the line multiplied by the flowatries [112]. The calcula-
tions are based on the results of a DCOPF. This will be redetweas the ‘DC heuristic’.

A similar heuristic is derived based on an ACOPF [113], whigh be referred to as the
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‘AC heuristic’. In addition to the real power value of thedinthe AC heuristic takes into
account the reactive power and losses. The results obtéioedthe heuristics in small
scale test cases show that they perform relatively well][112

In this section, these heuristics are tested to see if thdgnpewell for a large-scale test
case, the Polish system. The mathematical representatighe heuristics are presented
briefly in the next section. The results suggest that theisiges are not very different
and the inclusion of losses and reactive power does not havwgndicant impact. This
finding is in line with the conclusions made in [113], statihgt the heuristics would be
significantly different if the system was voltage consteginThe results also show that the
best solutions are among the top twenty candidates idehbfiehe heuristics. However,

the correlation between the estimated and actual benefitsgwitching is not very strong.
9.2.1 Methodology

In this section, MATPOWER, a MATLAB based open sources posystem simula-
tion package, is used to solve the OPF problems [114, 115.dEailed formulation and
solution method for ACOPF and DCOPF problem is provided b5]1 Here, brief de-
scriptions of AC as well as DCOPF formulations are presentég ACOPF problem can
be represented as shown in (9.1)-(9.10), with an objectiuetfon presented in (9.1). The
upper bound on AC line flow equations are provided in (9.2 Téal and reactive power
flow across the transmission lirkeis represented by (9.3) and (9.4) respectively, the node
balance constraints for real and reactive power are repi@s$®y (9.5) and (9.6). Note that
the dual variables for node balance constraihts,and\,,, represent the active and reac-
tive power locational marginal prices (LMP). Constrairs/{-(9.10) represent the lower

and upper bounds on variables.
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min Y ¢, Py (9.1)
Vg
st.Pl+QF < Sp,Vk (9.2)

P, = V2Gy — Voo Vi (Gy cos(0p, — 0,) + By sin(6,, — 6,)), Vk (9.3)

Qx = —VBr = ViuVa(Gisin(6, — 6) — By cos(b, — 6,)), Yk (9.4)

o - > PHZP_dn,vn (9.5)

Vked(n)t+ Vkes(n)~
o k- > PHZP (9.6)

Vked(n)t+ Vkes(n)~

Pt < Py < PIM g (9.7)

Q" < Qy < QP Vg (9.8)

VI <V, <V g (9:9)

0" < 0, — O < 07",V (9.10)

Using the ACOPF formulation presented, the sensitivityhef dbjective function to a
marginal change in the status of a transmission line is Gked in [113]. This metric is
used as a heuristic to estimate the benefits of switchingrike The heuristic is shown in

(9.11),

LVaie = PimApm — PenAen + QemAom — QenAgn, Yk (9.11)

In this research, we refer to the method that ranks linescbase(9.11) as the AC
Heuristic. The metric represents the economic value ofitieg Which equals the revenue
collected from the sale of power at the importing end minesctbst of buying power at the
exporting end, considering losses and reactive power. ACistec considers the negative

of the line value, suggesting that a line with a larger negagconomic value is a potential
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switching candidate. It is not expected that the heuristimeates match the actual benefits
accurately, because the change in the status of the line rarginal.

With the well-known assumptions of DC power flow, the ACOPHrialated in (9.1)-
(9.10) can be simplified to a DCOPF, in which there is no rgagibwer or network losses.
Moreover, the power flow constraint can be approximated Inyeat equation presented in
(9.12). Under this set of assumptions, and with linear aasttions, the DCOPF becomes
a linear program (LP). Because of the special propertiesol.P-based DCOPF can be

solved much faster than the original ACOPF.

P, = B0, —0,),Vk (9.12)

The same sensitivity is calculated with the DC set of assiomgtin [81, 80]. The
metric estimating the DC benefits of the line is presente®.ib3). We refer to the method
ranking lines based on this metric as the DC heuristic. TheeBtnation of the lines value
is the same as the AC estimation, ignoring the reactive pandrlosses. It is concluded
in [113] that the two heuristics may produce significantlifedent results if the system is

voltage constrained.

LVpc = Py(Apm — Apn),Vk (9.13)

9.2.2 Smulation Sudies

We test the two heuristics on the Polish test case provid&dAWPOWER. The system
has2383 nodes,327 generators, and896 transmission lines. We assume that all of the
generators are on. The cost functions included in the dasmsdinear, which matches
the formulation presented in the previous section. In otdestudy the performance of
the heuristics, we compare the actual benefit from the pexpewitching action with the

estimated benefit calculated by the heuristics. The actugdtsing benefit is the total cost
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difference between the case in which the transmissiondinethe system, and the case in
which it is taken out. We simulate the performance of the isias under three different

settings:

1. DC Heuristic with DCOPF: a DCOPF is performed and all thenpt and dual vari-
ables are taken from the DCOPF solution. The actual beneditsadculated through
the total cost comparison of the two DCOPFs. The switchinebts are also es-
timated through the DC heuristic introduced in (9.13). A gamson between the
actual and estimated benefits provides information on timfogmeance of the DC
heuristic with a DCOPF. Note that the solution to a DCOPF nrayay not be AC

feasible.

2. DC Heuristic with ACOPF: the dual and primal variables a# as the actual benefits
are calculated through an ACOPF. The estimated switchimgfiis are obtained
from the DC heuristic, which does not include losses or reagiower. Note that
under this setting, despite using the DC heuristic, the pdwer and active power
LMP come from an ACOPF. A comparison between the actual aimda&®d benefits

provides information on the performance of the DC heurisith an ACOPF.

3. AC Heuristic with ACOPF: the dual and primal variables specified through an
ACOPF algorithm. The actual switching benefits are alsoutaled by comparing
the total cost obtained from the two ACOPFs. Under this sgttihe benefits are
estimated through the AC heuristic presented in (9.11). Wmarison between the
actual and estimated benefits provides information on tmmeance of the AC

heuristic with an ACOPF.

Fig. 9.1 compares the benefits obtained by a single switcmtign with the estimated

benefits calculated by the DC heuristic under setting 1. Big.shows the performance
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of an algorithm based on the DC heuristic using a DCOPF foffiteetwenty switching

candidates. The dashed line specifies the maximum posshlefibfrom the switching
identified by an ACOPF while the dotted line shows the maxinpossible benefits of
switching using a DCOPF. The results show that the algorihnot able to find the best
switching action in the first twenty candidates it proposEse out of twenty proposed
candidates are beneficial actions when tested with a DCO®keYer, there exist only two
candidates that provide ACOPF beneficial switching actidm®lectricity markets today,
all the procedures are based on DCOPF due to the computatmmalexity of ACOPF.

However, operators need to make sure that the solution ise@€ilfle. This is often done
via out of market correction (OMC) mechanisms [116]. Ouuhsssuggest that switching
candidates identified by the solution of a DCOPF may not be é43ible or may not be

beneficial even though DCOPF identifies them to be beneficial.

Cost Benefits by Actual DCOPF Vs. DC Estimation Using DCOPF
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Figure 9.1: The Benefits Identified by DCOPF Versus the DC KgaiEstimation of the
Benefits Using DCOPF.
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Performance of DC Heuristic Identified by Using DCOPF
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Figure 9.2: Performance of the DC Heuristic for the First fityelines Identified by the
Heuristic Using DCOPF.

Fig. 9.3 and 9.4 show the same results under setting 2 whe@PA&Gs used instead of
DCOPF. The results suggest that the algorithm is able tdifge¢he best switching action
among its first twenty proposed candidates. Six out of twpndyposed actions are benefi-
cial. Note that the only difference between settings 1 arglRe fact that ACOPF solution
is used under setting 2 for both actual and estimated berddlation. However, under
both settings the DC heuristic presented in (9.13) is enguloy he difference between the
results comes from the fact that the dispatch and pricesitiegetht when AC power flow

constraints are taken into account in the optimal power flovbiem.
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Cost Benefits by Actual ACOPF Vs. DC Estimation Using DCOPF
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Figure 9.3: The Actual Benefits Obtained by ACOPF Versus tBeH2uristic Estimation
of the Benefits Using ACOPF.

DC Heuristic Performance — First Twenty Lines
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Figure 9.4: Performance of the DC Heuristic for the First fityelines Identified by the
Heuristic Using ACOPF.
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Fig. 9.5 and 9.6 show the results under setting 3 where the @gigtic is used with

ACOPF solution. The results are very similar to those ofisgt® with six beneficial

solutions among the first twenty proposed actions.

Cost Benefits by Actual ACOPF Vs. AC Estimation Using ACOPF
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Figure 9.5: The Actual Benefits Obtained by ACOPF Versus t@eH&uristic Estimation

of the Benefits Using ACOPF.
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AC Heuristic Performance - First Twenty Lines
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Figure 9.6: Performance of the AC Heuristic for the First mtyelines Identified by the
Heuristic Using ACOPF.

The results obtained under settings 2 and 3 show that AC antddd@stics produce
very similar results when the ACOPF solution is used. Undwh [settings, six out of
twenty proposed actions were beneficial and the algorithis atde to identify the best
switching action. The only difference was a slight changigécandidates order. Such re-
sults were expected and are in line with the conclusionsI8][which suggests the results
to be similar when the system is not heavily voltage consé@i Nevertheless, the results
obtained under setting 1, where the DCOPF solution is useldiaristic calculations, are
substantially different from those of settings 2 or 3. Thiedénce appears both in the
suggested switching candidates and the benefits.

As was stated before, in electricity markets today, ACOREtgms are not generally
available similar to setting 1. Our results show that thelisil heuristics do not provide

consistent results when they are based on the DCOPF soldimpared to a more real-

164



istic ACOPF. The more realistic benefits, ACOPF based benefit well as the proposed

candidates are different than those based on a DCOPF.
9.2.3 Conclusion

Due to the computational complexity of the OTC problem,ati#int heuristics are used
to obtain fast sub-optimal solutions. The heuristics aterofested on small scale systems
and the scalability of their application is not well undemsl. We studied the performance
of two such fast heuristics on the Polish system. The hécsistere studied under three
different settings: DC heuristic with DCOPF, DC heuristithwWACOPF, and AC heuris-
tic with ACOPF. Our results suggest that the AC and DC hauasstire not very different
when they are based on the solution to ACOPF. However, thedties do produce differ-
ent results if they are based on DCOPF solutions. Our resugigest that DCOPF based
solutions obtained for OTC may not perform well under re@lisystem conditions mod-
eled by an ACOPF. Since the market procedures are based oi?BCG0t ACOPF, and
AC feasibility is achieved via OMC routines, implementatiof ACOPF based heuristics

would not be straightforward.
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Chapter 10

CONCLUSION

10.1 Conclusion

Topology control is an integral part of power system operati Today, most of the
topology control actions are determined based on opetg@assknowledge about the sys-
tem or other ad-hoc methods. Relying on only prior obseowatito determine potential
corrective topology control action limits the capability harness the existing flexibility
in the transmission network. Systematic procedures thatcapable of capturing such
complexities should be preferred over these limited methddirthermore, the hardware
requirements to implement topology control (circuit brexsy already exist, leaving only
the need to develop the appropriate decision support tabigh are low in cost, to obtain
such benefits.

In this research, three different corrective topology omininethodologies are pre-
sented: real-time, deterministic planning based, andstbarrective topology control.
Real-time corrective topology control is very difficult tmplement with existing technolo-
gies due to a lack of computational power and the practicaldra of needing to ensure
AC feasibility, voltage stability, and transient staljliDeterministic planning based cor-
rective topology control can be solved offline, but such goreach relies on predicting the
operating state. Furthermore, the deterministic planbaged methods cannot guarantee
solution feasibility over a wide range of system states. gio@osed method of robust cor-
rective topology control fills the technology gap betweenrdal-time and the deterministic
planning based corrective topology control methodolagigse offline mechanism of ro-

bust corrective topology control algorithm generates tsmhs, which can be implemented
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in real-time with the help of a real-time dynamic securitgessment tool. As a result,
the proposed robust corrective topology control model jpies a mathematical decision
support tool that integrates topology control into every daerations by being able to
guarantee the robustness of solutions.

While deterministic corrective topology control framewsmay suggest many poten-
tial switching solutions, the empirical results preserntethis research show that many of
these solutions will be infeasible for minor changes in therating state. In contrast, the
robust corrective switching scheme guarantees solut@asilfdity for a wide range of sys-
tem states, given a DCOPF formulation. In addition, the sbbaorrective topology control
formulation demonstrates the ability of generating mistiporrective switching actions
for a particular contingency. Moreover, a single resultogrective switching solution is
capable of mitigating multiple contingencies.

Day-ahead unit commitment problems, with proxy reserveiregqents, do not guar-
anteeN-1 feasibility. Contingency analysis is used to determine tivbethere are con-
tingencies that cannot be satisfied by the unit commitmeuntisa. When this happens,
unit commitment must be resolved or the operator will emmai-of-market corrections
to obtain a feasiblév-1 solution. The results have shown that robust correctiveltay
control can be used to reduce the occurrence of contingetici are not satisfied by the
re-dispatch capabilities of the unit commitment solutitoma. Furthermore, the numerical
results proved that the topology control does not necdgsigrade system reliability; on
the contrary, it can help the system to achiéid feasibility even with uncertainty.

The penetration of renewable resources in electric powsesys has increased in re-
cent years. This increase in intermittent renewable ressuiorces changes in the oper-
ational paradigm of the bulk electric power systems. Thé®aech shows the usefulness
of topology control actions for integration of renewablsaerces, in terms of determining

DNE limits. For renewable resource integration, the deteation of DNE limits is crit-
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ical; in this research, a systematic procedure to determME limit is presented. With
corrective topology control actions, the DNE limits can bereased bg0-100%, as com-
pared with no topology control actions. At the same timeptogy control actions can
lower the operational cost by at led@st. The robust topology control algorithm is based
on a DCOPF,; therefore, the topology control solutions otgdifrom the robust optimiza-
tion problem must be checked for AC feasibility. On the IEEEB bus test case;85-90%

of topology control solutions obtained from the robust oy control algorithm are AC
feasible.

The stability studies, presented in this research, dematesitthat the solution obtained
from the robust topology control algorithm can pass AC fieitisy and stability tests. Fur-
thermore 30 topology control solutions, obtained from robust topolagytrol algorithm,
are tested for stability and66% of the topology control solutions pass the stability check.

This research also address the scalability of the DNE limubjgm; for a realistic sys-
tem the DNE limit formulation, presented in Chapter 7, is bensome and may result in
longer computational time. Therefore, in this researcl,zitnal DNE limit methodology
is presented, which systematically reduces the systenasizeletermines the DNE limits.
The error in DNE limits obtained from the zonal method andrtbéal method is-2-12%.
Furthermore, the computational time reducest%-99% with the zonal DNE limit formu-
lation. This chapter also addresses the scalability isbtreedNE limit problem, which is
critical for real life applications and fast solution timEae DNE limit results, on the TVA
system, show that with-10% of modeling information, the accuracy of the solutions is
~98% while, at the same time, the computational time-is)% of what it would otherwise
take to solve a nodal model for the DNE limit problem. Thisuteshows the benefit of
the zonal DNE limit formulation. The tradeoff between themgutational time and the
accuracy shows the potential of the zonal DNE limit formiolat Furthermore, numeri-

cal results demonstrated that a DC optimal power flow basedlz@pproach can produce
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topology control solutions, which can pass AC feasibilggtt Based on the empirical
studies conductedy80% of TC solutions obtained from the zonal DNE limit algorithm

produced AC feasible solution.

10.2 Proposed Future Research

10.2.1 Probabilistic Do-not-exceed Limits

In Chapters 7 and 8, the DNE limits are determined withousaering the locational
aspect of at each renewable injection location. In Chaptet ig8 assumed that all the
renewable generation deviates uniformly over all renewvatjection nodes. This model-
ing approach is a conservative approach as it is assumeeti@table generation varies
uniformly, from its forecasted value, at the same time. Taediit of this method is that
it simplifies the uncertainty set definition and reduces thmnlper of variables. However,
past research has shown that forecasting renewable geneaad predicting the renew-
able uncertainty is difficult. From a DNE limit point of viewhis approximation is most
conservative in nature and results in narrower DNE limisChapter 8, it is assumed that
the renewable generation, at each node, is allowed to @ewidependently with respect
to each other. This approach is more practical and closeatstie behavior of renewable
generating units, as the variability of one wind farm is nioectly related output of other
wind farms. However, this modeling approach complicatesrdbust DNE limit formu-
lation with TC; in this approach, there are more variables subsequently requires more
complex solution method. The future work may involve exiagdhe concept of DNE
limit considering the locational aspect of renewable gatien. In this modeling approach,
each renewable injection location can be weighted basdusoexpected probabilistic value
of deviation and the DNE limits can be determined based orobatnilistic function. In

this case, the weights for each renewable injection nodédimidetermined based on his-
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torical data and improved scenario selection techniquéss dpproach can be combined
with a stochastic model that captures the correlation ofaimel farms and quantifies the
spatial-temporal correlation in wind generation. Thisraagh is complex and may prove

to be beneficial for future power system operations.
10.2.2 Non-uniqueness of Do-not-exceed Limits

In Chapter 8 and [117], for a fixed topology, it is observed tha lower limit of the
DNE limits are bounded by the amount of available spinnirsgrees in the system. How-
ever, in some cases, the DNE limits are not unique in natorenstance, identical DNE
limits, in terms of total MW, can be obtained with differenjections of renewable gener-
ation. This problem exists when the DNE limits are determiagssuming the deviation in
renewable generation is independent of each other. In psystem operations, locational
aspects of renewable injection is critical; future work nmayolve understanding the non-
unique nature of the DNE limits and establishing the methmgioto analyze this nature of

the DNE limit problem.
10.2.3 Co-optimization of Do-not-exceed Limits

In an ideal situation, the DNE limits should be determinethimithe SCUC problem.
Co-optimizing the DNE limit with the SCUC problem may progitietter results in terms
of addressing uncertainty in renewable generation. Inntegears, multiple research ini-
tiatives has investigated the benefits of robust optimizator solving unit commitment
problem and addressing uncertainties in renewable geoerdthe DNE limits can extend
this robust unit commitment problem to address uncer&sriti renewable generation and

power system operations.
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10.2.4 Effect of Clustering Methods on Do-not-exceed Limits

In Chapter 7, PTDF difference with k-means clustering meétisaised to determine the
clusters for the zonal DNE limit problem. In this researttg éffect of different clustering
method on the solution quality of this problem is not addedsg$-uture work may involve
understating effects of different clustering methods am gblution quality of the zonal

DNE limit problem and improving the zonal DNE limit formuiah.

10.2.5 Co-optimization of Robust Corrective Topology Control for System Reliability

In this thesis, the robust corrective topology control roelblogies are presented to
achieveN-1 reliability. However, these methodologies are outside SIXJC problem
formulation. Co-optimizing the SCUC with the robust cotreetopology control method-
ologies can help in improving the system reliability. Instltziase, including allV-1 con-
tingencies in the robust corrective topology control fotation with the SCUC may lead
to an insolvable problem. However, only including criticaintingencies, with the robust
corrective topology control methodologies in SCUC may lea@ more secured SCUC

solution and improved system reliability.

10.2.6 Robust Corrective Topology Control Heuristics

The future work may also involve investigating new methofdsiodeling TC problem
and developing better topology control heuristics. The T@bfem is complex problem
and solving it in its genetic form is computationally cundmne for large scale realistic
systems. TC heuristics may help to reduce the computationalbut does not guarantees
AC feasibility and its effects on system stability. Undatstg these critical operational

issues and addressing them in a optimization frameworksisrggl.
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10.2.7 AC feasibility and Sability of Robust Corrective Topology Control

From TC point of view, AC feasibility and system stabilitydstical. At present, there
are not many reliable methods to address the AC feasibitiththae system reliability of the
TC solution in a optimization framework, which can scaledalistic test systems. Future

work may involve investigating these issues.
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