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ABSTRACT

In software testing, components are tested individually to make sure each performs

as expected. The next step is to confirm that two or more components are able to

work together. This stage of testing is often difficult because there can be numerous

configurations between just two components.

Covering arrays are one way to ensure a set of tests will cover every possible config-

uration at least once. However, on systems with many settings, it is computationally

intensive to run every possible test. Test prioritization methods can identify tests

of greater importance. This concept of test prioritization can help determine which

tests can be removed with minimal impact to the overall testing of the system.

This thesis presents three algorithms that generate covering arrays that test the

interaction of every two components at least twice. These algorithms extend the

functionality of an established greedy test prioritization method to ensure important

components are selected in earlier tests. The algorithms are tested on various inputs

and the results reveal that on average, the resulting covering arrays are two-fifths to

one-half times smaller than a covering array generated through brute force.
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Chapter 1

INTRODUCTION

A system consists many component or factors, each with its own set of unique settings

or values. As systems become more complex, testing procedures to verify the systems’

performance also become more complicated. In addition to verifying an individual

component works as intended, there is a need to perform tests such that two or more

factors work together no matter how they are configured. The reason is because there

can be instances where one specific setting in a component can cause an unexpected

error in a different piece of the system. As a system grows in complexity, it becomes

more difficult to test every possible permutation of factors. The procedure to minimize

the number of tests needed to fully test a system is referred to as combinatorial testing

[1].

A covering array can be used to sufficiently encompass the main system config-

urations. The idea is that the covering array acts as a test suite containing a series

of tests. Each test contains a set of values that represent a specific setting for each

component in the system. In a covering array, λ is used to indicate how many times

a specific set of factors is covered. Often, when λ = 1 meaning every subset of factors

is tested at least once, the symbol is omitted [2]. There are numerous methods to

construct a covering array, such as heuristics-based, iterative, and artificial life-based

[3]. However, there is less research on methods to specifically generate a covering

array that covers each interaction at least twice (λ = 2). The benefit of covering a

specific subset of factors twice is that it gives an opportunity to test the subset in

conjunction with different settings of the other factors. This may reveal unexpected

interactions between components, such as an error.
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There are scenarios where there is not enough time or resources to execute every

test in the covering array. To combat this issue, test prioritization methods can

change the order of tests so that more important components can be tested earlier.

An alternative method is change the test generation process to factor in the priorities

of certain factors. In this way, a subset of the covering array can be used to test a

system. While the subset may not get full coverage, it will cover the features deemed

the most important in the system [4].

A simple method of fulfilling λ = 2 is to first generate a covering array for λ = 1

by setting each component to its first setting and then iteratively change the values

one at a time. A copy of all the tests are then appended to the array. While this

method essentially covers every factor combination at least twice, it doubles the size

of the test suite. It is possible there is a covering array of a smaller size that can still

satisfy λ = 2. In addition, this test suite does not take into account the priorities of

certain factors.

The purpose of this thesis is to develop an algorithm that can generate a mixed

level covering array to fulfill the condition of λ = 2 and use test prioritization to select

the tests by order of importance. The fewer tests in the covering array, the better.

One motivation behind this research is that it can reduce the amount of time

required to test a system and can more quickly detect errors. This benefit reaches

out into the may fields that use covering arrays, such as computer software and

hardware[5], biology [6], [7], aviation [8] and finance [9]. Another motivation is that

covering arrays can be used in the construction of locating arrays, which focus on

finding which factor interactions are causing errors [10]. The smaller the number of

tests in a covering array can lead to a smaller locating array, which will improve the

efficiency of finding the errors.

2



Chapter 2 reviews background information and defines terms used throughout

the thesis. Chapter 3 describes related work on covering arrays. Chapter 4 explains

three algorithms designed in this research. Chapter 5 shows the results of using these

algorithms on various inputs. Finally, Chapter 6 summarizes the work accomplished

and concludes with a discussion of future work discovered during the implementation

of the algorithms.
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Chapter 2

BACKGROUND AND DEFINITIONS

Section 2.1 reviews the common terms that are used throughout the thesis. Sections

2.2, 2.3, 2.4, and 2.5 explain nomenclature that use the common terms and provide

algorithms and formulas used to generate these components.

2.1 Common Terms

Definition 2.1 Factor := {fi}

A factor represents a component in a system.

Definition 2.2 Level := {fi,j}

Level j represents a specific value of factor i.

Table 2.1: Example of Factors and Levels for a Book.

fi,0 fi,1 fi,2

f0 Type Electronic Paperback Hardcover

f1 Genre Non-fiction Fantasy Biography

f2 Language English French Russian

Table 2.1 gives an example of 3 factors, with 3 levels each, for a book. Each row

corresponds to a factor, and the columns indicate the levels. An electronic book is

denoted by f0,0. A book printed in Russian is denoted by f2,2.
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Definition 2.3 Test := {f0,a, f1,b, ..., fi,j}

A test is a set of factors, where each factor is assigned to a specific level.

For example, using the factors from Table 2.1, {f0,0, f1,2, f2,1} is a test for an

electronic biography in French.

2.2 Interaction Pair

Definition 2.4 Interaction Pair := {fa,b, fx,y}

An interaction pair represents a combination of two different factors, fa and fx,

at levels b and y, respectively.

For example, using the factors and levels from Table 2.1, {f0,1, f2,0} indicates a

paperback book printed in English. A factor is unfixed if it is not set to a level. In

this case, the genre of the book is unfixed.

Algorithm 1 Create Interaction Pair Table

1: numOfFactors← factors.size
2: Start with an empty table
3: for i = 0 to numOfFactors− 1 do
4: for j = i+ 1 to numOfFactors− 1 do
5: Create a column for interaction pairs of fi and fj
6: for k = 0 to factor[i].levels.size do
7: for l = 0 to factor[j].levels.size do
8: Create a new row for the factor-level pair (fi,k, fj,l)
9: end for
10: end for
11: Insert the column into the table
12: end for
13: end for

Algorithm 1 generates a table of interaction pairs. Lines 3 and 4 loop through

each possible combination of factors. If there are 2 factors, each factor has 2 levels,

then the interaction pairs are {(f0,0, f1,0), (f0,0, f1,1), (f0,1, f1,0), (f0,1, f1,1)}. Once all

the interaction pairs are created, line 11 inserts the set as a column in the interaction

5



Table 2.2: Interaction Table of 3 Factors, with 2 Levels Each.

f0, f1 f0, f2 f1, f2

00 00 00

01 01 01

10 10 10

11 11 11

Table 2.3: Interaction Table after Generating Test {0,1,0}.
f0, f1 f0, f2 f1, f2

00 00 00

01 01 01

10 10 10

11 11 11

table. The results of applying this algorithm to 3 factors with 2 levels each is shown

in Table 2.2. Each column holds all the interaction pairs for the two factors listed at

the top. Column f0, f1 lists out all the interaction pairs for factors 0 and 1. Column

f0, f2 lists out all the interaction pairs for factors 0 and 2. Column f1, f2 lists out all

the interaction pairs for factors 1 and 2.

As tests are selected for insertion into a covering array under construction, the

corresponding interaction pairs are removed from the interaction table. For example,

if the test {0,1,0} is generated, Table 2.2 is modified into Table 2.3. {0,1,0} is an

interaction pair of factors 0 and 1. {0,1,0} is an interaction pair of factors 0 and

2. {0,1,0} is an interaction pair of factors 1 and 1. The crossed out pairs in Table

2.3 indicate they have been covered and subsequent tests should not contain them, if

possible.

6



2.3 Covering Array

Definition 2.5 Covering Array := CAλ(N ; t, k, v)

A N × k array, where N is the total number of rows, k is the total number of

factors, t is the strength of coverage in the array, and v is the number of levels for

each factor. A t-tuple is a selection of t factors. In every N×t sub-array, each t-tuple

appears at least λ times [11].

Algorithm 2 Naive Covering Array

Require: factors[]
1: function setFactor(i, newTest)
2: numOfFactors← factors.size
3: for all levels of factor fi do
4: newTest.factor[i]← currentlevel
5: if fi is not the last factor then
6: return setFactor(i+ 1, newTest)
7: else
8: uncoveredPairs← 0
9: for j = 0 to numOfFactors− 1 do
10: for k = j + 1 to numOfFactors do
11: if {fj, fk} is not covered then
12: uncoveredPairs← uncoveredPairs+ 1
13: end if
14: end for
15: end for
16: if uncoveredPairs > 0 then
17: Add newTest to test suite
18: Update interaction table to mark pairs that are now covered
19: end if
20: end if
21: end for
22: end function

Algorithm 2 is a recursive function. Its input is an integer i indicating which

factor to set. newTest is initialized to a test with unfixed factors and the algorithm

iteratively sets the factor to each of its levels. The algorithm uses the information de-

fined in factors[] to know how many factors there are and each factors’ corresponding

levels.

7



2.3.1 Algorithm 2 Walk-through

The input for this example of the naive covering array algorithm is 3 factors with

2 levels each {0,1}. The 2 -tuples for each interaction pair are {(0,0), (0,1), (1,0),

(1,1)}.

1. Initialize a test, called newTest, to have unfixed factors, {X,X,X}.

2. Start the recursive algorithm with the call setFactor(0, newTest). This call sets

the value of factor f0. Line 3 iterates through each level of factor f0.

3. Line 4 sets f0 to level 0. newTest is now {0,X,X}.

4. Line 5 checks if the factor being set is not the last one. For this step, the

condition is true since there are 3 factors and only f0 has been set. Thus, a new

call setFactor(1, newTest) is executed to set the level of factor f1.

5. Line 4 sets factor f1 to level 0. newTest is now {0,0,X}. Since this is not the

last factor, another recursive call is executed to set the next factor.

6. Factor f2 is set to level 0, so newTest becomes {0,0,0}.

7. Since f2 is the last factor, the algorithm verifies if the test can be selected.

Lines 9 - 15 go through each interaction pair of newTest and checks to see if

any of the pairs are uncovered, by checking the interaction table shown in Table

2.2. In this iteration, all the pairs, {f0,0, f1,0} = {0, 0}, {f0,0, f2,0} = {0, 0},

{f1,0, f2,0} = {0, 0}, are uncovered.

8. Since newTest covers new interactions previously uncovered, newTest is added

to the test suite. The interaction table is updated, as shown in Table 2.4. The

interaction pairs in newTest are crossed out, indicating that they are covered.

8



Table 2.4: Interaction Table after Generating Test {0,0,0}.
f0, f1 f0, f2 f1, f2

00 00 00

01 01 01

10 10 10

11 11 11

9. The algorithm loops back up to line 3. Since it is still in the setFactor() call for

factor f2, line 4 changes newTest to now be {0,0,1}.

10. Lines 9 - 15 find that the interaction pair {f0,0, f1,0} = {0,0}, is covered. How-

ever, the pairs {f0,0, f2,1} = {0, 1} and {f1,0, f2,1} = {0, 1} are not. Thus, the

modified newTest is added to the test suite.

11. The interaction table is updated as shown in Table 2.5.

Table 2.5: Interaction Table after Generating Test {0,0,1}.
f0, f1 f0, f2 f1, f2

00 00 00

01 01 01

10 10 10

11 11 11

12. At this point, setFactor() has finished going through every level of factor f2. It

returns to the previous call of setFactor() for factor f1.

13. Following the action of Step 3, line 4 sets factor f1 to level 1, which makes

newTest be {0,1,X}. A new recursive call is executed to set factor f2 to each of

its levels.

The naive covering array algorithm continues in this manner until it has created a

test for every possible combination of the given factors. Table 2.6 shows the resulting

test suite.

9



Table 2.6: Resulting CA1(8; 2, 3, 2) from Naive Covering Array Walk-through.

Test f0 f1 f2

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

2.4 Mixed Level Covering Array

Definition 2.6 Mixed Level Covering Array := MCAλ(N ; t, k, {v1, v2, . . . , vk})

A mixed-level covering array “is an N × k array in which the entries of the ith

column arise from an alphabet of size vi; in addition, choosing any t distinct columns

i1, ..., it, every t-tuple containing, for 1 ≤ j ≤ t, one of the vij entries of column ij,

appears in columns i1, ..., it in at least one of the N rows.” [12].

Covering arrays are defined such that all factors have the same number of values.

However, there are scenarios where some factors may have a different number of levels.

To model this type of situation, a mixed level covering array, described in Definition

2.6, is used.

2.4.1 Algorithm 2 Walk-through

Algorithm 2 can be used to generate a mixed-level covering array. The following

example is for 3 factors. Factors 0 and 2 have 2 levels {0,1} and factor 1 has only 1

level {0}.

10



1-11. These steps run in the same way shown in Section 2.3.1 for generating the cov-

ering array. The difference is that the interaction is table is different. Therefore

in step 8, the algorithm updates the interaction table as shown in Table 2.7.

Table 2.7: Initial Interaction Table in the Mixed-level Covering Array Walk-through.

f0, f1 f0, f2 f1, f2

00 00 00

10 01 01

10

11

12. At this point, setFactor() has finished going through every level of factor f2. It

returns to the previous call of setFactor() for factor f1. Since this factor only

has one level, the call ends and it returns to setFactor() of f0. The factor is set

to level l1 and the recursion process begins again.

The naive covering array algorithm continues in this manner until it has created a

test for every possible combination of the given factors. Table 2.8 shows the resulting

test suite.

Table 2.8: Example of MCA1(4; 2, 3, {2, 1, 2})
Test f0 f1 f2

1 0 0 0

2 0 0 1

3 1 0 0

4 1 0 1

2.5 Weights

Covering arrays produce test suites that cover every possible t-tuple for a set

of factors. The naive generation method changes one factor at a time, therefore it

11



Table 2.9: Example Weight of Each Level for the Input Used in Section 2.4.1.

Factor Level f0 f1 f2

fi,0 0.5 1 0.3

fi,1 0.5 - 0.7

includes every possible combination of factors. However, due to time and budget

constraints [13], it may not be feasible for all of them to actually be tested on a

system. In addition, there may be a need for some tests to be tested earlier because

specific factors and levels have a greater importance. Test prioritization methods

have been developed to handle these cases by placing tests of greater importance at

the beginning of the test suite[4]. These methods can change the order of rows in

the covering array, but still give full coverage on all the interaction pairs. One such

procedure is to identify specific values of each factor that must be tested earlier and

assign them a larger weight[11].

Definition 2.7 Weight := Wi,j

A numerical value that indicates the significance of level j for factor fi. The sum

of the weights of a factor does not need to equal 1.

Table 2.9 gives an example of the input for a mixed level covering array. The

weight is split evenly between the two values of factor f0. The only possible value for

factor f1 is given a weight of 1. For factor f2, level l1 has more importance, thus it is

given a larger weight. Weights are used in test prioritization methods to determine

which test are more significant and need to be tested earlier.

2.5.1 Local Density

Definition 2.8 Local Density (Li,j) := Wi,j × Ui,j
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Table 2.10: Initial Interaction Table, Local Densities, and Factor Interaction
Weights.

Interaction Table

f0, f1 f0, f2 f1, f2

00 00 00

01 01 01

10

11

Factor Local Densities Total Weight

Li,0 Li,1

f0 0.5× 3
3

= 0.5 0.5× 3
3

= 0.5 1

f1 1× 4
4

= 1 - 1

f2 0.3× 3
3

= 0.3 0.7× 3
3

= 0.7 1

Local density is a numerical value that indicates the significance of factor fi’s level

j. Ui,j is the ratio between the number of uncovered interaction pairs and the total

number of interaction pairs that factor fi level j is in.

Before generating any tests, the initial local densities of each factor are calculated,

as shown in Table 2.10. After the test, {0,0,0}, is generated, the interaction table is

updated and the local densities change to the values shown in Table 2.11. Two out

of three interaction pairs containing factor f0’s level 0 are covered. This makes U0,0

be 1
3
, which indicates that only 1 interaction pair containing this factor-level is still

uncovered. Factor f0 level 0’s local density is changed to W0,0×U0,0 = 0.5× 1
3

= 0.167.

The local density is less than the original weight because there is less of a need to

include this specific level in the next test. Interaction pairs containing factor f0 level

1 have not been covered yet, therefore U0,1 = 3
3

and the local density is the same as

its assigned weight. The local density of every level for each factor is updated in this

manner.

2.5.2 Interaction Weight

There are two types of interaction weights, factor interaction weights and factor-

level interaction weights.
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Table 2.11: Interaction Table, Local Densities, and Factor Interaction Weights after
Generating Test {0,0,0}.

Interaction Table

f0, f1 f0, f2 f1, f2

00 00 00

01 01 01

10

11

Factor Local Densities Total Weight

Li,0 Li,1

f1 0.5× 1
3

= 0.167 0.5× 3
3

= 0.5 0.667

f2 1× 2
4

= 0.5 - 0.5

f3 0.3× 1
3

= 0.1 0.7× 3
3

= 0.7 0.8

2.5.2.1 Factor Interaction Weight

The factor interaction weight indicates the weight of the uncovered interaction

pairs between two factors fi and fx. The total weight of a factor is the sum of local

densities of its levels. The interaction weight is the product of the total weight of

both factors.

Definition 2.9 Factor Interaction Weight (Ifi,fx) :=
∑li

n=0 Li,n ×
∑lx

o=0 Lx,o

Ifi,fx denotes the factor interaction weight between factors fi and fx.
∑li

n=0 Li,n

is the sum of local densities of each level of factor fi.
∑lx

o=0 Lx,o is the sum of local

densities of each level for factor fx.

From the initial local densities in Table 2.10, the initial factor interactions weights

are shown in Table 2.12. Each factor is placed in its own row and column. For each

cell, where the row and column intersects, the total weight of corresponding factors

are multiple together, unless they are same factor. For example, If0,f1 is the total

weight of factor f0 multiplied with the total weight of factor f1. Since no interaction

pairs have been covered yet, the total weight of each factor is 1. Thus, all the factor

interaction weights are 1.
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Table 2.12: Initial Factor Interaction Weights for the Input Used in Section 2.4.1.

f0 f1 f2

f0 - 1× 1 = 1 1× 1 = 1

f1 1× 1 = 1 - 1× 1 = 1

f2 1× 1 = 1 1× 1 = 1 -

After the test {0,0,0} is generated, the factor interaction weights are adjusted, as

shown in Table 2.13. From Table 2.11, factor f0’s total weight is now 0.667, f1’s is

0.5, and f2’s is 0.8. The new factor interaction weights are shown in Table 2.13.

Table 2.13: Factor Interaction Weights after Generating Test {0,0,0}.
f0 f1 f2

f0 - 0.667× 0.5 = 0.334 0.667× 0.8 = 0.534

f1 0.5× 0.667 = 0.334 - 0.5× 0.8 = 0.4

f2 0.8× 0.667 = 0.534 0.8× 0.5 = 0.4 -

2.5.2.2 Factor-Level Interaction Weight

The factor-level interaction weight is the product of the local densities of factor

fi level j and factor fx level y. This numerical value indicates the significance of

interaction pair {fi,j, fx,y}.

Definition 2.10 Factor-Level Interaction Weight (Ifi,j ,fx,y) := Li,j × Lx,y

Ifi,j ,fx,y denotes the factor-level interaction weight for the interaction pair of factor

fi level j and factor fx level y. Li,j is the local density of factor fi level j and Lx,y is

the local density of factor fx level y.

For example, using the weights given in Table 2.9, the factor-level interaction weight

If1,1,f2,1 = L1,1×L2,1 = 0.5× 1 = 0.5. When the local densities are updated after test

{0,0,0} is selected, shown in Table 2.11, the weight is changed to If1,1,f2,1 = L1,1×L2,1

= 0.167× 0.5 = 0.084.

15



2.5.3 Weighted Density

Weighted density is the overall significance of an entire test.

Definition 2.11 Weighted Density of test :=
σ({f0,a,f1,b,...,fk,n})
τ({f0,f1,...,fk})

σ({f0,r, f1,s, ..., fk,t}) =
∑

1≤a,x≤k(cfa,b,fx,y), where

cfa,b,fx,y =

 Wa,b ×Wx,y if{fa,b, fx,y} is not covered

0 if{fa,b, fx,y} is covered

σ() calculates the sum of interaction weights for every interaction pair in test {f0,a, f1,b, ..., fk,n}

to get the total interaction weight of the test. τ({f0, f1, ..., fk}) =
∑

1≤i,j≤k Ifi,fj ,

which calculates the sum of all factor interaction weights.

For example, using the weights defined in Table 2.9, the weighted density of each

interaction pair in test {0,0,0} is calculated as follows:

{f0, f1} = {0, 0} = If0,0,f1,0 = 0.5× 1 = 0.5

{f0, f2} = {0, 0} = If0,0,f2,0 = 0.5× 0.3 = 0.15

{f1, f2} = {0, 0} = If1,0,f2,0 = 1× 0.3 = 0.3

The total interaction weight is 0.5 + 0.15 + 0.3 = 0.95. From Table 2.12, the total

factor interaction weight is If0,f1 + If0,f2 + If1,f2 = 1 + 1 + 1 = 3. Thus, the weighted

density of {0,0,0} is 0.95
3

= 0.317.

Another consideration for calculating weighted density is whether or not the in-

teraction pair has already been covered. If the pair has been covered, there is no

added benefit to include it in another test and the interaction weight is set to 0. For

example, if the test {0,0,1} is generated after test {0,0,0}, the weighted density of

the new test is calculated as follows:
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{f0, f1} = {0, 0} = 0

{f0, f2} = {0, 1} = If0,0,f2,0 = 0.5× 0.7 = 0.35

{f1, f2} = {0, 1} = If1,0,f2,0 = 1× 0.7 = 0.7

The total factor interaction weight remains the same for the entire test suite.

Therefore, the weighted density is 0+0.35+0.7
3

= 0.35. Table 2.14 shows the weighted

densities of all the tests generated previously.

Table 2.14: Weighted Densities of MCA1(4; 2, 3, {2, 1, 2})
Test f0 f1 f2 Weighted Density

1 0 0 0 0.317

2 0 0 1 0.35

3 1 0 0 0.217

4 1 0 1 0.117

Now that all the important terms used throughout this thesis are defined, Chapter

3 discusses related work.
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Chapter 3

RELATED WORK

There are numerous methods that can create a covering array. Grindal et al. surveyed

more than 40 papers on strategies to generate test suites and identified 16 categories

to define the common methods [3]. Section 3.1, describing test prioritization, falls

under the Iterative Test Case Based strategy, which generates one test at a time [3].

3.1 Test Prioritization

Bryce and Colbourn proposed a greedy test prioritization method to generate a

mixed-level covering array [11]. The goal was to minimize the size of the covering

array for λ = 1 and select tests in such an order that the most significant tests were

at the top of the test suite. The algorithm fixes each factor in the order of descending

factor interaction weights. To select a level, the algorithm calculates the weighted

density of a test if the factor is fixed to a specific level. The level that produces

the highest weighted density is chosen. If there is a tie, then the first occurrence is

selected.

WeightedDensity := W (fa,b) =

 cfa,b,fx,y if factorfx is fixed

La,b×
∑lx

y=0 Lx,y

max(
∑

1≤i,j≤k Ifi,j )
if factorfx is not fixed

This function calculates the weighted density in a slightly different way from

Definition 2.11. To account for the fact that some factors are not yet fixed, the

piecewise function above shows what is done when calculating each interaction pair

if the test uses the factor-level fa,b. If factor fx is fixed, then cfa,b,fx,y is used. If factor
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fx is unfixed, then the local density is multiplied by the sum of the local densities of

factor fx. This product is divided by the maximum factor interaction weight.

cfa,b,fx,y =

 La,b × Lx,y if{fa,b, fx,y}is not covered

0 if{fa,b, fx,y}is covered

Another difference is that cfa,b,fx,y uses local densities instead of the initial weights.

The reason is that local densities take into account how many interaction pairs have

been covered and adjusts the weights to allow other factors to be selected earlier.

Using initial weights would make the algorithm select the same level until it has been

completely covered before selecting a different level.

When a new test is generated, its interaction pairs are checked off in the interaction

table and the local densities of each factor-level is re-calculated. The function is then

repeated until all the interaction pairs in the interaction table are covered [11].

Algorithm 3 Greedy Test Prioritization Algorithm [11]

1: Initialize an empty test suite
2: while Uncovered pairs remain do
3: Compute factor interaction weights
4: Set order of factor selection based on interaction weights
5: Initialize new test with all factors unfixed
6: for f = order[0] to order[end] do
7: Compute factor-level interaction weights of each level of factor f
8: Select level l for f, which offers the largest increase in weighted density
9: Fix factor f to level l in new test
10: end for
11: Add new test to the test suite
12: Update interaction table to mark pairs that are covered by test
13: Update local densities
14: end while

3.1.1 Algorithm 3 Walk-through

The following walk-through uses Algorithm 3 to generate the first three tests of

a mixed-level covering array for the the input shown in Table 3.1. The values in

parentheses are the weights of each factor at each level.
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Table 3.1: Input for Algorithm 3 Walk-through

l0 l1 Total Weight

f0 0 (0.5) 1 (0.5) 1

f1 0 (1) - 1

f2 0 (0.3) 1 (0.7) 1

1. Calculate the factor interaction weights by multiplying the total weight of each

factor together. The sum of the weights is the total factor interaction weight of

a given level.

f0 f1 f2 Total Ifi

f0 - 1× 1 = 1 1× 1 = 1 2

f1 1× 1 = 1 - 1× 1 = 1 2

f2 1× 1 = 1 1× 1 = 1 - 2

All the factor interaction weights are the same, thus the factor selection order,

{f0, f1, f2}, follows the original order. The largest weight (maxI) is used to

calculate factor-level interaction weights later steps. In this case maxI is 2.

2. Create a new test with unfixed factors, {X,X,X}.

3. In the order determined in Step 1, calculate the weighted density of each level

in a factor. Set the new test’s factor to the level with the largest weight.

W (f0,0) =
L0,0×

∑l1
l=0 L1,l

maxI
+

L0,0×
∑l2

l=0 L2,l

maxI
= 0.5×1

2
+ 0.5×(0.3+0.7)

2
= 0.5

W (f0,1) =
L0,1×

∑l1
l=0 L1,l

maxI
+

L0,1×
∑l2

l=0 L2,l

maxI
= 0.5×1

2
+ 0.5×(0.3+0.7)

2
= 0.5

The weighted densities for both levels of factor f0 are the same, thus the first

level is selected. The test is now {0,X,X}.

W (f1,0) = L1,0 × L0,0 +
L1,0×

∑l2
l=0 L2,l

maxI
= (1× 0.5) + 1×(0.3+0.7)

2
= 1

20



Since factor f0 is fixed, the interaction weight of {f0, f1} can be calculated with

the weight of factor f0’s assigned level. There is only one level for factor f1,

thus it is selected and the test is now {0,0,X}.

W (f2,0) = L2,0 × L0,0 + L2,0 × L1,0 = (0.3× 0.5) + (0.3× 1) = 0.45

W (f2,1) = L2,1 × L0,0 + L2,1 × L1,0 = (0.7× 0.5) + (0.7× 1) = 1.05

A test with f2,1 has a higher weighted density than a test with f2,0. Therefore,

the test is set to {0,0,1}.

4. Add the new test to the test suite. Update the interaction table and local

densities, as shown below.

Interaction Table

f0, f1 f0, f2 f1, f2

00 00 00

10 01 01

10

11

Li,0 Li,1 Total Weight

f0 0.5× 1
3

= 0.167 0.5× 3
3

= 0.5 0.667

f1 1× 2
4

= 0.5 - 0.5

f2 0.3× 3
3

= 0.3 0.7× 1
3

= 0.233 0.533

5. Calculate the factor interaction weights using the updated local densities.

f0 f1 f2 Total Ifi

f0 - 0.667× 0.5 = 0.334 0.667× 0.533 = 0.356 0.69

f1 0.5× 0.667 = 0.334 - 0.5× 0.533 = 0.267 0.601

f2 0.533× 0.667 = 0.356 0.533× 0.5 = 0.267 - 0.623

Following the total factor interaction weights in descending order, the factor

selection order is set to {f0, f2, f1}. maxI is set to 0.69.

6. Create a test with unfixed factors {X,X,X}.
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7. Calculate the weighted densities of each factor-level in the order determined in

Step 5.

W (f0,0) =
L0,0×

∑l1
l=0 L1,l

maxI
+

L0,0×
∑l2

l=0 L2,l

maxI
= 0.167×0.5

0.69
+ 0.167×(0.3+0.233)

0.69
= 0.25

W (f0,1) =
L0,1×

∑l1
l=0 L1,l

maxI
+

L0,1×
∑l2

l=0 L2,l

maxI
= 0.5×0.5

0.69
+ 0.5×(0.3+0.233)

0.69
= 0.749

The weighted density of a test with f0,1 is higher, thus the second level is

selected. The test is now {1,X,X}. Based on the order chosen in Step 5, factor

f2 is considered next.

W (f2,0) = L2,0 × L0,0 +
L2,0×

∑l1
l=0 L1,l

maxI
= (0.3× 0.5) + 0.3×0.5

0.69
= 0.367

W (f2,1) = L2,1 × L0,0 +
L2,1×

∑l1
l=0 L1,l

maxI
= (0.233× 0.5) + 0.233×0.5

0.69
= 0.285

f2,0 produces a higher weighted density, thus the test is set to {1,X,0}.

W (f1,0) = L1,0 × L0,0 + L1,0 × L2,0 = (0.5× 0.5) + (0.5× 0.3) = 0.4

Since factors f0 and f2 are fixed, multiplication is used to calculate the weighted

density of f1. There is only one level for this factor, so it is selected. The test

becomes {1,0,0}.

8. Since all the factors have a level selected, add test {1,0,0} to the test suite.

Update the interaction table and local densities, as shown below.

Interaction Table

f0, f1 f0, f2 f1, f2

00 00 00

10 01 01

10

11

Li,0 Li,1 Total Weight

f0 0.5× 1
3

= 0.167 0.5× 1
3

= 0.167 0.334

f1 1× 0
4

= 0 - 0

f2 0.3× 1
3

= 0.1 0.7× 1
3

= 0.233 0.333

Repeat Steps 1-4 to generate the third test. This time however, the second

aspect of cfa,b,fx,y is used when calculating the weighted densities of a possible

test.

22



9. Calculate the factor interaction weights using the updated local densities.

f0 f1 f2 Total Ifi

f0 - 0.334× 0 = 0 0.334× 0.333 = 0.111 0.111

f1 0× 0.334 = 0 - 0× 0.333 = 0 0

f2 0.333× 0.334 = 0.111 0.334× 0 = 0 - 0.111

The total factor interaction weights of factors f0 and f2 are the same, therefore

the first factor is chosen first. The factor selection order is set to {f0, f2, f1}.

maxI is set to 0.111.

10. Create a test with unfixed factors, {X,X,X}.

11. In the order determined in Step 9, calculate the weighted density of each level

in a factor. Set the test’s factor to the level with the largest weight.

W (f0,0) =
L0,0×

∑l1
l=0 L1,l

maxI
+

L0,0×
∑l2

l=0 L2,l

maxI
= 0.167×0

0.111
+ 0.167×(0.1+0.233)

0.111
= 0.501

W (f0,1) =
L0,1×

∑l1
l=0 L1,l

maxI
+

L0,1×
∑l2

l=0 L2,l

maxI
= 0.167×0

0.111
+ 0.167×(0.1+0.233)

0.111
= 0.501

Both levels produce a test with the same weighted density. The first level is

selected and the test becomes {0,X,X}. Based on the order chosen in Step 9,

factor f2 is considered next.

W (f2,0) = L2,0 × L0,0 +
L2,0×

∑l1
l=0 L1,l

maxI
= (0.1× 0.167) + 0.1×0

0.111
= 0.017

W (f2,1) = L2,1 × L0,0 +
L2,1×

∑l1
l=0 L1,l

maxI
= 0 + 0.233×0

0.111
= 0

f2,1 has already been paired with f0,0, thus the interaction weight is set to 0

because it does not help cover new interaction pairs. This causes level 0 to

produce a higher weighted density and the test is set to {0,X,0}.

W (f1,0) = L1,0 × L0,0 + L1,0 × L2,0 = 0 + 0 = 0

The interaction pair {f0, f1} was covered in the first test and {f0, f1} was cov-

ered in the second test. Therefore, the weights of these pairs are set to 0.
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However, level l0 is selected because there is only one level for this factor. The

new test becomes {0,0,0}.

12. Add test {0,0,0} to the test suite. Update the interaction table and local den-

sities, as shown below.

Interaction Table

f0, f1 f0, f2 f1, f2

00 00 00

10 01 01

10

11

Li,0 Li,1 Total Weight

f0 0.5× 0
3

= 0 0.5× 1
3

= 0.167 0.167

f1 1× 0
4

= 0 - 0

f2 0.3× 0
3

= 0 0.7× 1
3

= 0.233 0.233

Repeat Steps 1-4 until all the interaction pairs are covered. The resulting mixed-level

covering array is shown in Table 3.2.

Table 3.2: Output of Algorithm 3 Walk-through.

Test f0 f1 f2

1 0 0 1

2 1 0 0

3 0 0 0

4 1 0 1

3.1.1.1 Algorithm 3 Analysis

The tests in Table 3.2 are the same as the tests in Table 2.8, which was generated

with the naive covering array algorithm. The difference is the order of the tests. For

example, the first test in Table 2.8 is {0,0,0} while Table 3.2 selected test {0,0,1} first.

The input in Table 3.1 assigned a larger weight to factor f2 level 1. This resulted

in a higher weighted density for test {0,0,1} than test {0,0,0}, thus the greedy test

prioritization method selected {0,0,1} first.
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The greedy test prioritization method generates a covering array in which tests are

ordered from highest weighted density to lowest. This algorithm is used to generate a

covering array to use as a base set of tests for the algorithms discussed in the following

chapter.
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Chapter 4

COVERING ARRAYS WITH λ = 2

This chapter presents three algorithms created to generate a covering array that fulfills

the condition of λ = 2. Section 4.1 describes the sample input and base covering array

used in each’s algorithm walk-through. Section 4.2 discusses the weighted density

algorithm. Based on the greedy test prioritization in Section 3.1, this method selects

tests based on their weighted densities. This approach ensures that tests with the

highest amount of coverage are selected, which reduces the number of tests in the

covering array. Section 4.3 explains the general Hamming distance algorithm, which

introduces a generalized Hamming Distance value as a metric in selecting a new test.

This approach focuses on selecting the most dissimilar tests. Section 4.4 illustrates

the weighted Hamming distance algorithm. This design combines the previous two

methods to create a covering array with the smallest number of varied tests.

4.1 Algorithm Input

Table 4.1 provides factors and the value and weight (in parentheses) of each level.

These values are used as the input for the algorithms discussed in this chapter.

Table 4.1: Values and Weights of the Levels in Each Factor.

fi,0 fi,1 fi,2 fi,3

f0 0 (.2) 1 (.1) 2 (.1) 3 (.1)

f1 4 (.2) 5 (.3) 6 (.3) 7 (.2)

f2 8 (.1) 9 (.7) 10 (.1) 11 (.1)

Algorithm 1 creates a table of all the possible interaction pairs of two factors.

Table 4.2 shows the result of creating an interaction table from the sample input.
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Table 4.2: Interaction Table for Input for t = 2.

f0, f1 f0, f2 f1, f2

0, 4 0, 8 4, 8

0, 5 0, 9 4, 9

0, 6 0, 10 4, 10

0, 7 0, 11 4, 11

1, 4 1, 8 5, 8

1, 5 1, 9 5, 9

1, 6 1, 10 5, 10

1, 7 1, 11 5, 11

f0, f1 f0, f2 f1, f2

2, 4 2, 8 6, 8

2, 5 2, 9 6, 9

2, 6 2, 10 6, 10

2, 7 2, 11 6, 11

3, 4 3, 8 7, 8

3, 5 3, 9 7, 9

3, 6 3, 10 7, 10

3, 7 3, 11 7, 11

The greedy test prioritization method explained in Section 3.1 is used to generate

MCA1. The test suite generated from Algorithm 3 is shown in Table 4.3.

Table 4.3: MCA1 using Algorithm 3.

Test f0 f1 f2

1 0 5 9

2 1 6 9

3 2 5 9

4 3 6 9

5 0 4 9

6 0 7 8

7 1 5 10

8 0 6 11

9 2 4 8

10 3 7 9

11 3 5 11

Test f0 f1 f2

12 2 6 10

13 3 4 10

14 1 7 11

15 1 4 8

16 2 7 8

17 3 5 8

18 0 6 10

19 2 6 11

20 0 6 8

21 0 4 11

22 0 7 10

Once every possible factor-level pair has been covered, λ = 1 is fulfilled. The next

step is to select additional test cases to fulfill λ = 2. The following algorithms are

executed immediately after the greedy test prioritization method. They determine

which tests should be added to the existing test suite in Table 4.3. The idea is to
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add tests to MCA1 to make it become a MCA2. Note, the set of these added tests

do not need to create a MCA.

4.2 Weighted Density

Based on the greedy test prioritization method from Section 3.1, another greedy

approach is designed to generate tests to fulfill λ = 2. For example, there are 81

possible tests that can be generated from the input in Table 4.1. The greedy test

algorithm selects 22 of them for λ = 1. The weighted density algorithm first gener-

ates the remaining 59 possible combinations of the factors. The weighted density is

calculated for each test and the one with the highest value is selected. Algorithm 4

contains the pseudo code for this weighted density (WD) method.

Algorithm 4 Weighted Density Method to Select Tests to Produce MCA2

Require: factors[ ], testSuite[ ]
1: possibleTests[]← remaining possible tests
2: highestDensity ← 0
3: while Uncovered interaction pairs remain do
4: for Each test in possibleTests[ ] do
5: weightedDensity ← weighted density of test i
6: if weightedDensity > highestDensity then
7: Set test i to be the next selected test
8: highestDensity ← weightedDensity
9: end if
10: end for
11: Add indicated test to testSuite and remove it from possibleTests[ ]
12: Update the interaction table
13: end while

4.2.1 Algorithm 4 Walk-through

The following walk-through shows how the weighted density algorithm selects the

first two tests to fulfill λ = 2 given the input in Table 4.1.
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1. Generate all possible tests and remove the tests that are already in the test

suite. Set all the pairs in the interaction table to be uncovered. The total factor

interaction weight used in calculating weighted densities is 0.5 + 1 + 1 = 2.5.

2. For each possible test, calculate its weighted density. For example, test {0,7,9}’s

weighted density is calculated as follows:

{0,7} = If0,0,f1,3 = 0.2× 0.2 = 0.04

{0,9} = If0,0,f2,1 = 0.2× 0.7 = 0.14

{7,9} = If1,3,f2,1 = 0.2× 0.7 = 0.14

Weighted Density = 0.04+0.14+0.14
2.5

= 0.128

3. Add the test with the highest weighted density to the test suite. In the first

iteration, the selected test is {0,6,9}. Remove this test from possibleTests[ ].

4. Update the interaction table to indicate that some pairs are now covered by the

new test.

f0, f1 f0, f2 f1, f2

0, 4 0, 8 4, 8

0, 5 0, 9 4, 9

0, 6 0, 10 4, 10

0, 7 0, 11 4, 11

1, 4 1, 8 5, 8

1, 5 1, 9 5, 9

1, 6 1, 10 5, 10

1, 7 1, 11 5, 11

f0, f1 f0, f2 f1, f2

2, 4 2, 8 6, 8

2, 5 2, 9 6, 9

2, 6 2, 10 6, 10

2, 7 2, 11 6, 11

3, 4 3, 8 7, 8

3, 5 3, 9 7, 9

3, 6 3, 10 7, 10

3, 7 3, 11 7, 11

Repeat Steps 2-4 to generate the next test.

5. For each possible test, calculate its weighted density. Now that a test has been

selected, some of the interaction pairs are covered, which in turn affects the

weighted densities for some of the tests. For example, test {0,7,9}’s weighted

density is now as follows:
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{0,7} = If0,0,f1,3 = 0.2× 0.2 = 0.04

{0,9} = 0

{7,9} = If1,3,f2,1 = 0.2× 0.7 = 0.14

Weighted Density = 0.04+0+0.14
2.5

= 0.072

6. Add the test with the highest weighted density to the test suite. In this iteration,

the selected test is {1,5,9}. Remove this test from possibleTests[ ].

7. Update the interaction table to indicate some pairs are now covered by the new

test.

f0, f1 f0, f2 f1, f2

0, 4 0, 8 4, 8

0, 5 0, 9 4, 9

0, 6 0, 10 4, 10

0, 7 0, 11 4, 11

1, 4 1, 8 5, 8

1, 5 1, 9 5, 9

1, 6 1, 10 5, 10

1, 7 1, 11 5, 11

f0, f1 f0, f2 f1, f2

2, 4 2, 8 6, 8

2, 5 2, 9 6, 9

2, 6 2, 10 6, 10

2, 7 2, 11 6, 11

3, 4 3, 8 7, 8

3, 5 3, 9 7, 9

3, 6 3, 10 7, 10

3, 7 3, 11 7, 11

Repeat Steps 2-4 until all the interaction pairs are covered. All selected tests are

appended to the test suite in Table 4.3 to create a covering array that fulfills the

condition of λ = 2. Table 4.4 shows the tests selected using the weighted density

(WD) algorithm.

4.3 General Hamming Distance

Producing a covering array of λ = 2 means there is a great focus on re-testing

each t-tuple interaction. This also gives an additional benefit of testing more overall

interactions. For example, a covering array contains the test {0,0,0}. The 2 -tuple

interaction, (0,0), for factors f0 and f1 is tested when factor f2 is set to 0. The
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Table 4.4: Tests added to MCA1 to make it a MCA2 using the WD Method.

Test f0 f1 f2

23 0 6 9

24 1 5 9

25 2 4 9

26 0 7 9

27 0 5 8

28 3 5 9

29 0 4 10

30 1 6 8

31 2 5 10

Test f0 f1 f2

32 3 6 10

33 1 4 11

34 1 7 10

35 2 7 11

36 3 4 8

37 0 5 11

38 3 7 8

39 2 6 8

40 3 6 11

covering array also has the test {0,0,1}. This covers the same interaction for factors

f0 and f1 when factor f2 is set to 1.

An issue with the generated MCA2 in Table 4.4 is that the selected tests contain

a similar combination of factors in MCA1, shown in Table 4.3. Test 1 in MCA1 and

test 23 in MCA2 differ by 1 factor. A similar pattern is seen between tests 2 and 24,

3 and 25, as well as most of the other tests. This behavior indicates that the covering

array does not effectively test distinct configurations. An idea to ensure tests are

more varied is to use a general Hamming distance value.

Definition 4.1 General Hamming Distance

(T1={f0, f1, ..., fn},T2={f0, f1, ..., fn}) :=
∑n

x=0 ghd(T1fx , T2fx)

ghd(T1fx , T2fx) =

 0 if the levels assigned to T1fx and T2fx are the same

1 if the levels assigned to T1fx and T2fx are different

ghd compares factor fx in two tests, T1 and T2. If both tests assign the same level

to factor fx, ghd returns 0. If the levels are different, then ghd returns 1.

A Hamming distance value indicates the number of different bits between two

binary strings of equal length [14]. It has been used in anti-random testing to achieve
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good coverage on the functionality of system [15]. The general Hamming distance

value generalizes this idea to indicate the number of factors that are assigned to

different levels between two tests. For example, consider the tests T1 = {0,0,0} and

T2 = {1,0,1}. Factor f0 and f2 are assigned to different levels while factor f1 is the

same in both tests. Since two of the factors are set differently, the general Hamming

distance value is 2.

The general Hamming distance algorithm first generates all the tests for every

possible combination of factors and ignores the tests that are already selected for

MCA1. The method then calculates the general Hamming distance value and the

weighted density of each test. The algorithm selects the test with the highest general

Hamming distance value. If there is a tie, the weighted density is used as a tie breaker.

The weighted density is calculated in the same manner used in the weighted

density algorithm. The approach to calculate the general Hamming distance is to

compare the current set of selected tests with a possible test and store the sum of

all the general Hamming distance values. For example, the tests {0,0,0} and {1,0,1}

are in a test suite. The test {1,5,8} is a possible test that can be selected. When

compared against the first selected test, this possible case has a general Hamming

distance value of 3. When compared against the second test, the general Hamming

distance value is 2. Therefore, the total general Hamming distance value of {1,5,8}

is the sum: 3 + 2 = 5.

This method selects the tests with the greatest difference from the tests already in

the test suite. Algorithm 5 shows the pseudo code of the general Hamming distance

(GHD) method.
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Algorithm 5 General Hamming Distance Method to Select Tests to Produce MCA2

Require: factors[ ], testSuite[ ]
1: possibleTests[]← remaining possible tests
2: numOfFactors← factors.size
3: highestHD ← 0
4: highestDensity ← 0
5: while Uncovered interaction pairs remain do
6: for Each test i in possibleTests[ ] do
7: weightedDensity ← weighted density of test i
8: for Each test j in testSuite[ ] do
9: for k = 0 to numOfFactors do
10: if testi[k]! = testj[k] then
11: localHD ← localHD + 1
12: end if
13: end for
14: end for
15: if localHD > highestHD then
16: Set flag to indicate test i should be selected
17: highestHD ← localHD
18: highestDensity ← weightedDensity
19: else if localHD = highestHD then
20: if weightedDensity > highestDensity then
21: Set flag to indicate test i should be selected
22: highestHD ← localHD
23: highestDensity ← weightedDensity
24: end if
25: end if
26: end for
27: Add the marked test to the test suite. Remove it from possibleTests[ ]
28: Update the interaction table
29: end while

4.3.1 Algorithm 5 Walk-through

The following walk-through shows how the general Hamming distance algorithm

selects the first two tests to fulfill λ = 2 given the input in Table 4.1.

1. Generate all possible tests and remove the tests that are already in the test suite

produced for λ = 1. Set all the pairs in the interaction table to be uncovered.

The total factor interaction weight used in calculating weighted densities is

0.5 + 1 + 1 = 2.5.
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2. For each possible test:

2a. Calculate its weighted density. For example, test {0,5,11}’s weighted density is

calculated as follows:
{0,5} = If0,0,f1,1 = 0.2× 0.3 = 0.06

{0,11} = If0,0,f2,3 = 0.2× 0.1 = 0.02

{5,11} = If1,1,f2,3 = 0.3× 0.1 = 0.03

Weighted Density = 0.06+0.02+0.03
2.5

= 0.044

2b. Calculate the general Hamming distance value. For example, test {0,5,11}’s

general Hamming distance value is 48 and is calculated as follows:

Test f0 f1 f2 GHD

1 0 5 9 1

2 1 6 9 3

3 2 5 9 2

4 3 6 9 3

5 0 4 9 2

6 0 7 8 2

7 1 5 10 2

8 0 6 11 1

9 2 4 8 3

10 3 7 9 3

11 3 5 11 1

Test f0 f1 f2 GHD

12 2 6 10 3

13 3 4 10 3

14 1 7 11 2

15 1 4 8 3

16 2 7 8 3

17 3 5 8 2

18 0 6 10 2

19 2 6 11 2

20 0 6 8 2

21 0 4 11 1

22 0 7 10 2

3. Add the test with the highest general Hamming distance value to testSuite[ ],

using weighted density as a tie-breaker. In the first iteration, the selected test

is {1,5,11}. Remove this test from possibleTests[ ].

4. Update the interaction table to indicate some pairs are now covered by the new

test.
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f0, f1 f0, f2 f1, f2

0, 4 0, 8 4, 8

0, 5 0, 9 4, 9

0, 6 0, 10 4, 10

0, 7 0, 11 4, 11

1, 4 1, 8 5, 8

1, 5 1, 9 5, 9

1, 6 1, 10 5, 10

1, 7 1, 11 5, 11

f0, f1 f0, f2 f1, f2

2, 4 2, 8 6, 8

2, 5 2, 9 6, 9

2, 6 2, 10 6, 10

2, 7 2, 11 6, 11

3, 4 3, 8 7, 8

3, 5 3, 9 7, 9

3, 6 3, 10 7, 10

3, 7 3, 11 7, 11

Repeat Steps 2-4 to select the next test.

5. For each possible test:

5a. Calculate its weighted density. Since a test has been selected, some of the

interaction pairs are now covered which, in turn, affects the weighted densities

for some of the tests. For example, test {0,5,11}’s weighted density is calculated

as follows:
{0,5} = If0,0,f1,1 = 0.2× 0.3 = 0.06

{0,11} = If0,0,f2,3 = 0.2× 0.1 = 0.02

{5,11} = 0

Weighted Density = 0.06+0.02+0
2.5

= 0.032

5b. Calculate the general Hamming distance by comparing the test with the test

suite, including the test that was added in Step 3. For example, test {0,5,11}’s

general Hamming distance value is 49 and is calculated as follows:
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Test f0 f1 f2 GHD

1 0 5 9 1

2 1 6 9 3

3 2 5 9 2

4 3 6 9 3

5 0 4 9 2

6 0 7 8 2

7 1 5 10 2

8 0 6 11 1

9 2 4 8 3

10 3 7 9 3

11 3 5 11 1

Test f0 f1 f2 GHD

12 2 6 10 3

13 3 4 10 3

14 1 7 11 2

15 1 4 8 3

16 2 7 8 3

17 3 5 8 2

18 0 6 10 2

19 2 6 11 2

20 0 6 8 2

21 0 4 11 1

22 0 7 10 2

23 1 5 11 1

6. Add the test with the highest general Hamming distance value to testSuite[ ],

using weighted density as a tie-breaker. In this iteration, the selected test is

{1,4,10}. Remove this test from possibleTests[ ].

7. Update the interaction table to indicate some pairs are now covered by the new

test.

f0, f1 f0, f2 f1, f2

0, 4 0, 8 4, 8

0, 5 0, 9 4, 9

0, 6 0, 10 4, 10

0, 7 0, 11 4, 11

1, 4 1, 8 5, 8

1, 5 1, 9 5, 9

1, 6 1, 10 5, 10

1, 7 1, 11 5, 11

f0, f1 f0, f2 f1, f2

2, 4 2, 8 6, 8

2, 5 2, 9 6, 9

2, 6 2, 10 6, 10

2, 7 2, 11 6, 11

3, 4 3, 8 7, 8

3, 5 3, 9 7, 9

3, 6 3, 10 7, 10

3, 7 3, 11 7, 11
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Repeat Steps 2-4 until all the interaction pairs are covered. Table 4.5 shows the

tests that would be added to Table 4.3 to fulfill the requirement λ = 2.

Table 4.5: Tests added to MCA1 to make it a MCA2 using the GHD Method.

Test f0 f1 f2

23 1 5 11

24 1 4 10

25 2 7 9

26 3 5 10

27 1 7 8

28 2 4 11

29 3 5 9

30 2 6 8

31 3 7 11

32 1 4 9

33 0 5 10

34 1 6 10

Test f0 f1 f2

35 3 4 8

36 2 7 11

37 0 6 9

38 2 5 8

39 1 7 10

40 3 4 11

41 0 4 8

42 3 6 11

43 2 5 10

44 1 7 9

45 0 7 11

4.4 Weighted Hamming Distance

A problem with the general Hamming distance method is that it often starts

with selecting tests that have very low weighted densities because they are the most

dissimilar to the currently selected test cases, which have very high weighted densities.

This means the values with less significance are tested before values that are deemed

more important. The reason for test priority is that if the execution of the tests

is halted early, at least the most important features have already been tested. To

solve this problem, instead of using weighted densities as a tie-breaker, the idea is to

take the general Hamming distance value and multiply it with the weighted density.

This combines the characteristics of test diversity (Hamming distance) and factor

significance (weights).
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The proposed weighted Hamming distance method first generates all the tests

for every possible combination of factors and ignore the tests that have already been

selected in MCA1. It calculates the general Hamming distance value and the weighted

density of each possible test. Both values are multiplied together. The test with the

highest weighted value is selected and added to the test suite. Algorithm 6 shows the

pseudo code for the weighted Hamming distance (WHD) method.

Algorithm 6 Weighted Hamming Distance Method to Select Tests to Produce
MCA2

Require: factors[ ], testSuite[ ]
1: possibleTests[]← remaining possible tests
2: numOfFactors← factors.size
3: highestWeight← 0
4: while Uncovered interaction pairs remain do
5: for Each test in possibleTests[ ] do
6: weightedDensity ← weighted density of test i
7: localHD ← general Hamming distance value of test i
8: localWHD ← weightedDensity × localHD
9: if localWHD > highestWeight then
10: Set flag to indicate test i should be selected
11: highestWeight← localWHD
12: end if
13: end for
14: Add the marked test to testSuite[ ]. Remove it from possibleTests[ ]
15: Update the interaction table
16: end while
17: Add the indicated test to selectedTests[]

4.4.1 Algorithm 6 Walk-through

The following walk-through shows how the weighted Hamming distance algorithm

selects the first two tests to fulfill λ = 2 given the input in Table 4.1.

1. Generate all possible tests and remove the tests that are already in the test

suite. Set all the pairs in the interaction table to be uncovered. The total factor

interaction weight used in calculating weighted densities is 0.5 + 1 + 1 = 2.5.

2. For each possible test:
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2a. Calculate its weighted density. For example, test {0,7,9}’s weighted density is

calculated as follows:
{0,7} = 0.2× 0.2 = 0.04

{0,9} = 0.2× 0.7 = 0.14

{7,9} = 0.2× 0.7 = 0.14

Weighted Density = 0.04+0.14+0.14
2.5

= 0.128

2b. Calculate its general Hamming distance value. For example, test {0,7,9}’s gen-

eral hamming distance value is 47 and is calculated as follows:

Test f0 f1 f2 GHD

1 0 5 9 1

2 1 6 9 2

3 2 5 9 2

4 3 6 9 2

5 0 4 9 1

6 0 7 8 1

7 1 5 10 3

8 0 6 11 2

9 2 4 8 3

10 3 7 9 1

11 3 5 11 3

Test f0 f1 f2 GHD

12 2 6 10 3

13 3 4 10 3

14 1 7 11 2

15 1 4 8 3

16 2 7 8 2

17 3 5 8 3

18 0 6 10 2

19 2 6 11 3

20 0 6 8 2

21 0 4 11 2

22 0 7 10 1

2c. Multiply together its weighted density and general Hamming distance value.

Test {0,7,9}’s weighted Hamming distance value is 0.128× 47 = 6.016.

3. Select the test with the highest weighted Hamming distance value and add it

to the test suite. In this iteration, the test selected is {0,6,9}.

4. Update the interaction table to indicate some pairs are now covered by the new

test.
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f0, f1 f0, f2 f1, f2

0, 4 0, 8 4, 8

0, 5 0, 9 4, 9

0, 6 0, 10 4, 10

0, 7 0, 11 4, 11

1, 4 1, 8 5, 8

1, 5 1, 9 5, 9

1, 6 1, 10 5, 10

1, 7 1, 11 5, 11

f0, f1 f0, f2 f1, f2

2, 4 2, 8 6, 8

2, 5 2, 9 6, 9

2, 6 2, 10 6, 10

2, 7 2, 11 6, 11

3, 4 3, 8 7, 8

3, 5 3, 9 7, 9

3, 6 3, 10 7, 10

3, 7 3, 11 7, 11

Repeat Steps 2-4 to select the next test.

5. For each possible test:

5a. Calculate its weighted density. Some of the interaction pairs are now covered,

which causes some tests to have different weighted densities. For example, test

{0,7,9}’s weighted density is calculated as follows:

{0,7} = 0.2× 0.2 = 0.04

{0,9} = 0

{7,9} = 0.2× 0.7 = 0.14

Weighted Density = 0.04+0+0.14
2.5

= 0.072

5b. Calculate its general Hamming distance value. For example, test {0,5,8}’s gen-

eral Hamming distance value is 48 and is calculated as follows:
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Test f0 f1 f2 GHD

1 0 5 9 1

2 1 6 9 2

3 2 5 9 2

4 3 6 9 2

5 0 4 9 1

6 0 7 8 1

7 1 5 10 3

8 0 6 11 2

9 2 4 8 3

10 3 7 9 1

11 3 5 11 3

Test f0 f1 f2 GHD

12 2 6 10 3

13 3 4 10 3

14 1 7 11 2

15 1 4 8 3

16 2 7 8 2

17 3 5 8 3

18 0 6 10 2

19 2 6 11 3

20 0 6 8 2

21 0 4 11 2

22 0 7 10 1

23 0 6 9 1

5c. Multiply together its weighted density and general Hamming distance value.

Test {0,7,9}’s weighted value is 0.072× 48 = 3.456.

6. Select the test with the highest weighted Hamming distance value and add it

to the test suite. In this iteration, the test selected is {0,6,9}.

7. Update the interaction table to indicate that some pairs are now covered by the

new test.

f0, f1 f0, f2 f1, f2

0, 4 0, 8 4, 8

0, 5 0, 9 4, 9

0, 6 0, 10 4, 10

0, 7 0, 11 4, 11

1, 4 1, 8 5, 8

1, 5 1, 9 5, 9

1, 6 1, 10 5, 10

1, 7 1, 11 5, 11

f0, f1 f0, f2 f1, f2

2, 4 2, 8 6, 8

2, 5 2, 9 6, 9

2, 6 2, 10 6, 10

2, 7 2, 11 6, 11

3, 4 3, 8 7, 8

3, 5 3, 9 7, 9

3, 6 3, 10 7, 10

3, 7 3, 11 7, 11
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Repeat Steps 2-4 until all the interaction pairs are covered. Table 4.6 shows the

tests that would be added to Table 4.3 using the weighted Hamming distance (WHD)

algorithm.

Table 4.6: Tests added to MCA1 to make it a MCA2 using the WHD Method.

Test f0 f1 f2

23 0 6 9

24 1 5 9

25 2 4 9

26 0 7 9

27 0 5 10

28 3 5 9

29 0 4 8

30 1 6 11

31 2 5 11

Test f0 f1 f2

32 3 6 10

33 2 6 8

34 1 7 10

35 3 4 11

36 3 7 8

37 1 4 10

38 2 7 11

39 1 5 8

40 0 7 11

41 2 4 10

Three algorithms are proposed in this chapter to generate covering arrays to fulfill

the condition of λ = 2. The weighted density algorithm focuses on selecting tests with

the highest amount of interaction coverage. The general Hamming distance algorithm

is designed to select tests that provide the most test diversity. The weighted Hamming

distance algorithm’s goal is to select tests that provide high interaction coverage and

test variance. The next chapter examines the algorithms’ effectiveness through testing

each on a number of factors and levels.

42



Chapter 5

RESULTS

The greedy test prioritization method in Section 3.1 is used to produce a covering

array of λ = 1. The resulting test suite acts as a base set for the weighted density,

general Hamming distance, and weighted Hamming distance algorithms, presented in

Chapter 4, to select tests to add onto the covering array and fulfill the condition of

λ = 2. The results of the weighted density, general Hamming distance, and weighted

Hamming distance algorithms are labeled “WD”, “GHD”, and “WHD” respectively.

A naive covering array is included in the results to act as a base comparison to

determine the effectiveness of the three algorithms. Algorithm 2 is used to iterate

through every possible test and produce a covering array for λ = 1. All the tests are

copied and added to the test suite to fulfill the condition of λ = 2. The results of this

method are labeled as “NCA”.

The tables shown in this chapter display the covering array sizes produced from

using each algorithm. The MCA1 column shows the number of tests selected to fulfill

the condition of λ = 1. The MCA2 column shows the number of added tests selected

to fulfill the condition of λ = 2, i.e. it does not include the number of tests selected

previously. The Total column is the total number of tests selected for the MCA2

covering array.

The figures show the cumulative weight of the covering array for each input. For

example, the cumulative weight of test 10 is the sum of the weighted densities of

tests 0 - 10. When the cumulative weight reaches 100, all the interaction pairs are

covered at least once. When the cumulative weight is 200, the covering array covers

all the interaction pairs at least twice. In other words, MCA1 is complete when the
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cumulative weight is 100 and MCA2 is complete when the cumulative weight is equal

to 200.

All the factor levels in the following inputs are assigned a weight of ( 1
vmax

)2, where

vmax is the number of levels in the factor [11]. For example, if a factor has 2 levels,

then each of its levels are assigned a weight of (1
2
)2 = 1

4
= 0.25.

The algorithms attempt to cover every 2-tuple interactions at least twice. The

inputs contain either 3 or 4 factors. As testing progressed, I added more levels to

each factor to view the effectiveness of the algorithms as the input size grew. Listed

below are the MCA2(N ; 2, k, {v1, v2, . . . , vk}) generated when testing the algorithms

presented in Chapter 4 in the increasing order of the number of possible tests.

Input 1 Factors f0, f1, f2, f3 each have 3 levels of weight 0.11. The results are shown

in Figure 5.1.

There are 81 possible tests that can be created using Input 1. The weighted

density, general Hamming distance, and weighted Hamming distance algorithms

completed MCA2 after adding 11, 19, and 12 tests, respectively, to MCA1. The

Naive covering array algorithm added 33 tests to complete MCA2. The graph in

Figure 5.1 shows that when the presented algorithms reach a cumulative weight

of 200, the Naive covering array algorithm has a cumulative weight of around

70 to 90. This means that the Naive covering array algorithm had 70-90% of

the interaction pairs at least once when the other algorithms had covered every

pair at least twice.

Input 2 Factor f0 has 10 levels of weight 0.01. Factors f1, f2 each have 3 levels of

weight 0.11. The results are shown in Figure 5.2.

There are 90 possible tests that can be created using Input 2. In this case, the

total size of the Naive covering array test suite exceeds this number. Since the
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Figure 5.1: Results of Input 1.

algorithm copies the tests of MCA1 and uses the copy for MCA2, only 54 of

the 90 possible tests are actually used. The weighted density, general Hamming

distance, and weighted Hamming distance algorithms reach a cumulative weight

of 100 around test 30, while the Naive covering array covers about 80% of

the interactions at the same point. When the weighted density and weighted

Hamming distance algorithms reached a cumulative weight of 200, the Naive

covering array had a cumulative weight about 150. When the general Hamming

distance method reached a cumulative weight of 200, the Naive covering array

method had a weight of about 170.

Figure 5.2: Results of Input 2.
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Input 3 Factor f0 has 4 levels of weight 0.0625. Factors f1, f2, f3 each have 3 levels

of weight 0.11. The results are shown in Figure 5.3.

There are 108 possible tests that can be created with Input 3. The weighted

density, general Hamming distance, and weighted Hamming distance algorithms

generate a complete covering array for λ = 2 in less than 40 tests. The graph

in Figure 5.3 shows that when the weighted density and weighted Hamming

distance algorithms reach a cumulative weight of 200, the Naive covering array

algorithm covered about 80% of the interaction pairs. When the general Ham-

ming distance reaches a cumulative of 200, the Naive covering array is close

to 100, meaning it is almost done with covering every interaction pair at least

once.

Figure 5.3: Results of Input 3.

Input 4 Factors f0, f1, f2 each have 4 levels of weight 0.0625. Factor f3 has 2 levels

of weight 0.25. The results are shown in Figure 5.4.

There are 128 possible tests that can be selected with Input 4. The weighted

density, general Hamming distance, and weighted Hamming distance algorithms

add 16, 27, and 20 tests, respectively, to MCA1 to produce MCA2. On the

other hand, the Naive covering array adds 47 tests to produce MCA2. When
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the presented algorithms reach a cumulative weight of 200, the Naive covering

array method has a cumulative between 80 and 120.

Figure 5.4: Results of Input 4.

The covering array sizes for Input 4 are smaller than the results for Input 3.

This is an interesting result since Input 4 has a greater number of possible tests.

Intuitively, covering arrays for Input 4 should be larger. The unexpected result

occurs because Input 4 has more factors, but fewer levels for each factor. This

makes it easier to iterate through all the levels and cover more interaction pairs

at a faster rate.

Input 5 Factor f0 has 10 levels of weight 0.01. Factor f1 has 9 levels of weight 0.12.

Factor f2 has 8 levels of weight 0.016. The results are shown in Figure 5.5.

There are 720 possible tests that can be selected with Input 4. The three

algorithms presented in Chapter 4 produce covering arrays with almost half the

number of tests selected by the Naive covering array algorithm. This is shown

in the cumulative weight graph. At around 200 tests, the presented algorithms

reach a weight of 200 while the Naive covering array method has a cumulative

weight of about 100. The naive algorithm selects a total of 432 tests to cover

every interaction pair at least twice. The weighted density algorithm selects a
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total of 191 tests, the general Hamming distance algorithm selects a total of

216 tests, and the weighted Hamming distance algorithm selects a total of 193

tests.

Figure 5.5: Results of Input 5.

Input 6 Factors f0, f1 each have 12 levels of weight 0.0069. Factor f2 has 10 levels

of weight 0.01. The results are shown in Figure 5.6.

There are 1440 possible tests that can be generated from Input 6. The Naive

covering array algorithm produces a covering array of size 702 to cover every

interaction pair at least twice. The weighted density algorithm selects a total of

316 tests, the general Hamming distance algorithm selects a total of 340 tests,

and the weighted Hamming distance algorithm selects a total of 313 tests. The

graph in Figure 5.6 shows that the three presented algorithms reach a cumulative

weight of 200 when the Naive covering array method has a cumulative weight

of 90 to 100.

Input 7 Factor f0 has 25 levels of weight 0.0016. Factor f1 has 10 levels of weight

0.01. Factor f2 has 4 levels of weight 0.25. Factor f3 has 2 levels of weight 0.25.

The results are shown in Figure 5.7.
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Figure 5.6: Results of Input 6.

There are 2000 possible tests for Input 7. The Naive covering array algorithm

generates a covering array for λ = 2 with 778 tests. The weighted density and

weighted Hamming distance algorithms both select a total of 501 tests. The

general Hamming distance algorithm selects 563 tests.

Figure 5.7: Results of Input 7.

In the previous input cases, the cumulative weight of the general Hamming dis-

tance algorithm increased at a similar rate to the weighted density and weighted

Hamming distance algorithm. For Input 7, the general Hamming distance al-

gorithm’s cumulative weight increases at about half the rate as the other two

algorithms. This indicates that the tests selected are covering fewer interac-

tion pairs, which drives the algorithm to select more tests to get full coverage.
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The tests cover so few interactions, that after about 550 tests, the general Ham-

ming distance method had a smaller cumulative weight the Naive covering array

method.

Another interesting result is that the weighted density and weighted Hamming

distance algorithms produced covering arrays that are less than half the size of

covering array generated by the naive algorithm. The result of this test input

breaks the pattern of completing with half the number of tests as seen in the

previous input cases.

Input 8 Factors f0, f1 each have 25 levels of weight 0.0016. Factor f2 has 4 levels of

weight 0.0625. The results are shown in Figure 5.8.

There are 2500 possible tests that can be selected for Input 8. The Naive cov-

ering array algorithm generates a covering array with 1544 tests. The weighted

density algorithm selects a total of 1252 tests. The weighted Hamming distance

algorithm selects 1253 tests. The general Hamming distance algorithm selects

1388 tests. In Figure 5.8’s graph, the weighted density and weighted Hamming

distance algorithms reach cumulative weight of 200, while the Naive covering

array algorithms has a weight of about 165 at this point. In the graph, at

around 1400 tests, the cumulative weights of general Hamming distance and

Naive covering array algorithms are almost the same.

Similar to the scenario in Input 7, the general Hamming distance algorithm

selects tests that covers very few interaction pairs. These selections force the

algorithm to continue adding more tests to reach full coverage. Another interest-

ing result is that all three algorithms presented in Chapter 4 generated covering

arrays with nearly the same number of tests generated by the Naive covering ar-

ray algorithm. However, the smallest possible of tests to cover every interaction
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Figure 5.8: Results of Input 8.

is the product between the factors with the most levels, 25 × 25 = 625. This

means the lower bound on the covering array size for λ = 2 is 625× 2 = 1250.

Since, the algorithms produce covering arrays close to this lower bound, they

are still efficient despite being similar in size to the naive method.

5.1 Results Analysis

Figure 5.9: Size Ratios between Algorithms.

Figure 5.9 displays the size ratio of the algorithms for each input. The size ratio

is the number of tests selected by each algorithm presented in Chapter 4 divided by

the number of tests selected by the naive covering array algorithm. For example,
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the size ratio of weighted density to Naive CA for input 1 is 100 − (13+11
33+33

× 100) =

100− (24
66
× 100) = 100− (0.364× 100) = 100− 36.4 = 63.6. Therefore, the weighted

density test suite is 36.4% the size of the Naive CA test suite.

On average, the weighted density algorithm produces a test suite that is 49.3%

smaller than the Naive CA test suite. The general Hamming distance test suite is on

average 40.9% smaller than the Naive CA test suite. The weighted Hamming distance

algorithm produced test suites that are on average 48.2% smaller than the Naive CA

test suite.

The general Hamming distance algorithm consistently produced larger test suites

than the other two algorithms. As the input gained more factors and levels, the

number of tests selected increased until it was almost equal in size to the test suite

generated by the naive covering array algorithm. The reason for this is that the algo-

rithm neither cares about the weights of the factor-levels nor how many interaction

pairs a test may cover. This causes the algorithm to skip over tests that provide more

coverage in favor of a test that is different from the already assigned tests.

The ineffectiveness in covering interaction pairs is expected in the general Ham-

ming distance algorithm. The main goal of its design is to select tests of greater

variety.

Figure 5.10 shows a 3-dimensional representation of the covering arrays generated

by the Naive covering array and general Hamming distance methods for Input 6. The

figure uses dots to indicate tests selected for MCA1 and triangles for tests selected

for MCA2. The Naive covering array algorithm changes factor one at a time in a

sequential order, which leads to the diagram containing tests that appear along the

border axes. The tests selected by the general Hamming distance algorithm appear

relatively scattered all around the 3-dimensional space. This indicates the tests are
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Figure 5.10: 3D Representation of NCA and GHD Arrays from Input 6.

varied enough to ensure specific factor levels are tested with different levels of the

other factors.

Figure 5.11 shows a 3-dimensional representation of the covering arrays generated

by the general Hamming distance method for Input 6 and 8. The figure uses dots to

indicate tests selected for MCA1 and triangles for tests selected for MCA2.

Figure 5.11: 3D Representation of GHD Arrays from Input 6 and 8.

Similar to the diagram of Input 6, the 3-dimensional graph for Input 8 shows that

the tests are randomly scattered. The difference is that some of the points form a

line along the axes’ boundaries. This happens because the general Hamming distance

53



algorithm selects so many tests in the middle of the 3-dimensional space that it starts

to select the border tests in almost sequential order. For Input 8, the last 100 tests

closely followed the pattern of {0,0,2}, {0,1,1},...,{0,24,1},{1,0,0}, and so on. This

situation can be avoided by selecting tests that also consider weight.

The weighted density and weighted Hamming distance algorithms produced cover-

ing arrays that are of similar size and have a similar increase in cumulative weight for

all the inputs tested. Inspection of the actual tests selected revealed the differences

between these two algorithms.

The 3-dimensional representation in Figure 5.12 shows the weighted Hamming

distance algorithm selects tests similar to the weighted density algorithm for Input 6.

The figure uses dots to indicate the tests selected for MCA1 and triangles for tests

selected for MCA2.

Figure 5.12: 3D Representation of WD and WHD Arrays from Input 6.

However, as more factors and levels are added to the input, the weighted Hamming

distance algorithm begins to diverge because it starts to select tests that have the

same weight, but a greater Hamming distance value. Since the generalized Hamming

distance value does not take into account interaction pair coverage, it can drive the

algorithm to select a test that covers less interaction pairs. This is the main reason
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that the weighted Hamming distance algorithm produces a slightly larger covering

array for most of the input tested in this chapter.

While the weighted Hamming distance algorithm does not show any improvement

in terms of size, it does address the need of generating dissimilar tests. The ability

to ensure this condition became more apparent as the input size increased. Figure

5.13 shows a 3-dimensional representation of the covering arrays generated by the

weighted density and weighted Hamming distance algorithms for Input 8. The figure

uses dots to indicate the tests selected for MCA1 and triangles for tests selected for

MCA2.

Figure 5.13: 3D Representation of WD and WHD Arrays from Input 8.

Once all the interaction pairs of a factor are covered, the weighted density al-

gorithm typically sets that factor to level 0 on subsequent tests in MCA1. During

the selection process of MCA2, fully covered factors are typically assigned to level

1. This behavior causes the scatter plot to almost fill an entire plane for the first

and second levels of factor f2. The scatter plot also shows that MCA1 and MCA2

contain a cluster of tests in the form of a diagonal line when factor f2 = 2 or f2 = 3.

This indicates that factors f0 and f1 are assigned to similar levels when factor f2 is

set to level 2 or 3.
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On the other hand, the weighted Hamming distance algorithm selects the tests for

MCA2 appear randomly in its scatter plot. This reveals that tests are not selected in

a predictable manner. It also indicates that each factor-level is included in multiple

tests regardless of whether or not it has been fully covered. This means the tests get

the extra benefit of testing a specific factor in conjunction with different settings.

5.2 Summary

All three algorithms presented in Chapter 4 can produce covering arrays that cover

every interaction pair at least twice. The general Hamming distance and weighted

Hamming distance algorithms produce covering arrays with the extra benefit of test-

ing a specific factor in various settings. In terms of size, all the algorithms select fewer

tests than an array generated by a naive covering array algorithm. In terms of test

prioritization, the weighted density and weighted Hamming distance algorithms fulfill

this requirement for the entire test suite. The general Hamming distance algorithm

does not satisfy the test prioritization requirement for MCA2.
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Chapter 6

CONCLUSIONS & FUTURE WORK

The purpose of this thesis is to generate covering arrays to cover every interaction

pair at least twice. All three presented algorithms can produce covering arrays with

full coverage for λ = 2 without having to generate every possible test.

The weighted density and weighted Hamming distance algorithms consider the

weights of all the factors and levels and are able to select tests in an order of signifi-

cance. While both algorithms generate smaller covering arrays than a naive covering

array, the weighted density algorithm performs better in terms of size.

The general Hamming distance and weighted Hamming distance algorithms gen-

erate covering arrays that provide test diversity. The former algorithm does not take

into account interaction pair coverage, thus its selection process becomes less effective

as the input becomes larger. The weighted Hamming distance algorithm is the better

option to construct a covering array with test diversity.

Overall, the weighted Hamming distance algorithm most effectively produces a

prioritized mixed-level covering array that covers every interaction pair twice. The

generated test suites of this method are not the smallest, but it provides the test

diversity desired when testing systems with multiple components.

6.1 Future Work

This research focused on getting coverage for interaction pairs that represent a

combination of two different factors, also known as 2-wise or 100% pair-wise coverage.

A possible direction for future work is to automatically produce covering arrays for

t-wise coverage, where t ≥ 3. This can be further extended by considering variable
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strength coverage. In this case, subsets of the factors require different t-wise coverage

[3].

The algorithms presented in this thesis generated all the possible tests and ex-

amined each one. The drawback to this idea is that as the input becomes larger,

the number of possible tests can grow exponentially and storing the set will use too

many resources. This implementation approach was used because the test input were

relatively small, thus the programs would quickly iterate through the set of possible

tests. However this method cannot be used in real-world applications where there are

multiple factors and levels. A different implementation idea is to create the next test

by setting the factors one-by-one, similar to the greedy test prioritization algorithm.

This approach reduces the amount of space used since it only stores the tests in the

covering array. The reason this method was not used in this thesis was because it is

more computational intensive and causes the execution time to be longer.

Another consideration for future work is to handle different weights for each level,

as seen in the tests using the greedy test prioritization algorithm [11]. Run-time and

memory allocation errors sometimes occurred when testing the presented algorithms

on various inputs. The main cause was how each levels’ weight was set. Different

weight values for a factor are not used in Chapter 5 (i.e., level 0’s weight is 0.3 and

level 1’s weight is 0.9). The reason is that a level with a large weight retains a high

local density until most of its interaction pairs are covered. For example, a level with

a weight of 0.9 needs to have 8
9

of its interaction pairs covered to get a local density

of 0.1. Until this occurs, the algorithms skips over levels with weights of 0.1. Once

this implementation issue is solved, the input factors and levels used in Chapter 5 can

be assigned different weights and the results should produce very different covering

arrays.
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There are instances where one specific setting in one component causes an error

when working in conjunction with another piece. If these cases are known, tests

containing the undesired interaction pairs should not be selected. Nie and Leung

note that some work has been done to address constraint factors to indicate invalid

values [4].

In the opposite scenario, a certain test must be included in the test suite. A

possible direction to implement this functionality is to use seeding. Nie and Leung

define seeding as a “means to assign some specific test cases ... in testing”[4].

Covering arrays are a strategy often used in testing large systems. The work

accomplished here is another step in the ongoing process to improve the efficiency of

selecting fewer tests with higher coverage.
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