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ABSTRACT 

Creating sustainable alternatives to fossil fuel resources is one of the greatest 

challenges facing mankind.  Solar energy provides an excellent option to alleviate 

modern dependence on fossil fuels.  However, efficient methods to harness solar energy 

are still largely lacking.  Biomass from photosynthetic organisms can be used as 

feedstock to produce traditional fuels, but must be produced in great quantities in order to 

meet the demands of growing populations.  Cyanobacteria are prokaryotic photosynthetic 

microorganisms that can produce biomass on large scales using only sunlight, carbon 

dioxide, water, and small amounts of nutrients.  Thus, Cyanobacteria are a viable option 

for sustainable production of biofuel feedstock material.  Photobioreactors (PBRs) offer a 

high degree of control over the temperature, aeration, and mixing of cyanobacterial 

cultures, but cannot be kept sterile due to the scales necessary to meet domestic and 

global energy demands, meaning that heterotrophic bacteria can grow in PBRs by 

oxidizing the organic material produced and excreted by the Cyanobacteria.  These 

heterotrophic bacteria can positively or negatively impact the performance of the PBR 

through their interactions with the Cyanobacteria.  This work explores the microbial 

ecology in PBR cultures of the model cyanobacterium Synechocystis sp. PCC6803 

(Synechocystis) using microbiological, molecular, chemical, and engineering techniques.  

I first show that diverse phylotypes of heterotrophic bacteria can associate with 

Synechocystis-based PBRs and that excluding them may be impossible under typical PBR 

operating conditions.  Then, I demonstrate that high-throughput sequencing can reliably 

elucidate the structure of PBR microbial communities without the need for pretreatment 

to remove Synechocystis  
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16S rRNA genes, despite the high degree of polyploidy found in Synechocystis.  Next, I 

establish that the structure of PBR microbial communities is strongly influenced by the 

microbial community of the inoculum culture.  Finally, I show that maintaining available 

phosphorus in the culture medium promotes the production and enrichment of 

Synechocystis biomass in PBRs by reducing the amount of soluble substrates available to 

heterotrophic bacteria.  This work presents the first analysis of the structure and function 

of microbial communities associated with Synechocystis-based PBRs.   
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Chapter 1 

Introduction 

1.1  Renewable energies and sustainability 

Concerns over global climate change, dependence on foreign oil, and resource 

limitations have spurred the search for reliable renewable energy sources.  Burning fossil 

fuels generates carbon dioxide (CO2) gas, a major greenhouse gas that contributes 

substantially to global climate change (Solomon et al., 2009).  Furthermore, fossil fuel 

resources are finite, and unchecked consumption may leave future generations of human 

society without the energy resources necessary to fuel and support continually growing 

populations (Rittmann, 2008).  To extend the longevity of fossil resources, mankind has 

developed many clever methods of harvesting fossil fuel resources, such as deep-sea 

drilling, hydraulic fracturing, and recovery of oil from bituminous sands.  However, these 

methods cause damage to the environment, do nothing to reduce CO2 emissions, and do not 

change the fact that consumption of fossil resources is unsustainable (Kelly et al., 2010; 

Miller and Robert, 2011; Peterson et al., 2012). 

Renewable, environmentally sound energy sources are required to ensure the long-

term sustainability of human society.  Unfortunately, no current renewable energy sources 

provide the same energy density, convenience, and versatility as fossil fuels.  Furthermore, 

current renewable energy sources do not produce the amount of energy that is needed to 

support a growing and developing society (Rittmann, 2008).  Because of this, society must 

develop a diverse repertoire of sustainable energy sources to replace fossil fuels.  This new 

energy landscape will likely include wind, geothermal, nuclear, and solar sources (Gross et 

al., 2003).  Solar energy is by far the most bountiful source of energy on the planet, 
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annually providing the Earth with far more energy than is needed to power human society 

(Morton, 2006).  However, efficient methods to capture and convert solar energy into 

useful forms on large scales are still lacking.   

 

1.2  Renewable energy from photosynthetic biomass 

Photosynthesis is the biological process in which light, CO2, and water are used to 

produce organic matter and molecular oxygen.  Photosynthetic organisms fix CO2 and 

produce oxygen by using energy from freely available sunlight.  The organic matter 

generated through photosynthesis can become a source of renewable energy for human 

society.  

Energy from biomass currently makes up only 10-14% of the world’s energy 

consumption, and is used disproportionately in developing nations (Kaltschmitt et al., 

2003).  The most common way that biomass is used, particularly in developing countries, is 

through direct combustion, such as of wood.  However, biomass can be processed to 

produce combustible oils, ethanol, or biogases such as methane (Kaltschmitt et al., 2003; 

Saxena et al., 2009).  Currently, most of photosynthetic biomass that the developed world 

used for energy comes from plant-based sources such as corn or sugar cane.  However, 

these sources are not sustainable on a large scale, as they compete with human food 

sources, require arable land for cultivation, and cannot be cultivated in sufficient quantities 

(Chisti, 2008).  Biodiesel is another important biofuel that can be made from the lipids 

extracted from photosynthetic biomass.  This process involves transesterification of lipids 

to form fatty acid methyl esters.  Currently, most biodiesel in the United States is produced 
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from soybeans, which also competes with human food supply and cannot meet the 

domestic demand for liquid transportation fuels (Chisti, 2007).   

Photosynthetic microorganisms, including Cyanobacteria and eukaryotic algae, are 

another potential source of renewable biomass.  These microalgae have higher 

photosynthetic efficiencies and areal yields than terrestrial plants, and they do not require 

arable land for cultivation.  Most importantly, biomass from these sources does not 

compete with human food supplies and can be cultivated domestically (Chisti, 2007).  

Although microalgal biofuels have great promise, several challenges are preventing large-

scale deployment of the technology.   

The first, and arguably largest, challenge is to produce sufficient quantities of 

biomass to meet the energy demands of a first-world economy.  Replacing 1% of U.S. 

annual consumption of petroleum requires around 31 million tons of microalgal biomass, 

and current culturing methods are not productive enough to meet these demands (Chisti, 

2013).  This challenge is directly addressed in this work and will be more thoroughly 

explored in the following sections.   

The second challenge is harvesting and dewatering the biomass, which is seen as a 

major roadblock to the economic viability of micoalgal biofuels due to the high-energy 

inputs associated with harvesting technologies.  A number of methods are available for 

harvesting biomass including centrifugation, flocculation, filtration, or flotation.  While 

each technology has advantages and disadvantages, none has emerged as superior (Uduman 

et al., 2010).  The final challenge is the conversion of microalgal biomass into different 

feedstock and fuels.  One method is the direct conversion of biomass into biocrude oil 

through a process termed hydrothermal liquefaction (HTL), which employs high 
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temperatures and pressures to convert microalgal biomass directly into a biocrude oil that 

has similar energy content to petroleum and can potentially be co-refined in existing 

petroleum refineries, meaning that modern infrastructure may be suitable for production of 

renewable fuels.  HTL has the added benefit of using wet biomass slurries, bypassing the 

need to completely dry the biomass (Barreiro et al., 2013).  Alternately, lipids can be 

extracted from microalgal biomass and converted into biodiesel through a 

transesterification process (Sheng et al., 2011b).  Lipid recovery from microalgal biomass 

can be enhanced through the use of pretreatments such as pulsed electric fields (Lai et al., 

2014; Sheng et al., 2011c).  Energy also can be recovered from microalgal biomass (lipid 

extracted or not) as methane through anaerobic digestion or as ethanol through 

fermentation (Brennan and Owende, 2010).   

 

1.3  Cyanobacteria:  a unique tool for large-scale production of biomass 

Compared to eukaryotic algae, prokaryotic cyanobacteria have several key 

advantages.  First, lipid accumulation in Cyanobacteria is directly related to photosynthetic 

activity and biomass production, whereas nutrient limitation or some other stress factor is 

required for lipid accumulation in eukaryotic microalgae (Sheng et al., 2011b).  Second, 

Cyanobacteria are more amenable to genetic engineering than eukaryotic algae, allowing 

for rapid strain improvement and providing an avenue for production of specific high-value 

compounds, such as fatty acids (Liu et al., 2011b; Vermaas, 1998).  Cyanobacteria also are 

known to produce a wide range of bioactive compounds that have uses outside of the 

renewable energy sector (Abed et al., 2009).  Finally, Cyanobacteria can have higher areal 

biomass yields than eukaryotic microalgae (Mata et al., 2010). 
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Cyanobacteria are oxygenic photoautotrophs, meaning they produce molecular 

oxygen and organic matter from light energy and carbon dioxide (Ducat et al., 2011).  

Thus, biofuels derived from Cyanobacteria are carbon neutral:  i.e., every carbon dioxide 

molecule released as a result of oxidizing biofuels derived from Cyanobacteria was 

recently fixed from the atmosphere and incorporated into the cyanobacterial biomass.  

Synechocystis sp. PCC6803 (Synechocystis) is an especially well characterized 

cyanobacterium that exhibits robust photoautotrophic growth.  Synechocystis was the first 

photoautotrophic organism to have a fully sequenced genome and has served as a model 

organism in numerous studies in both the molecular and engineering fields (Knoop et al., 

2010; Sheng et al., 2011b; Vermaas, 1998).  Synechocystis has already been used as a 

platform for production a number of biofuel and feedstock compounds including ethanol 

and fatty acids (Liu et al., 2011a; Liu et al., 2011b; Ortiz-Marquez et al., 2013).  

Furthermore, Synechocystis contains genetic pathways capable of directly producing 

alkanes, suggesting the potential for direct production of common transportation fuels 

(Schirmer et al., 2010).  

 

1.4  Photobioreactors for mass cultivation of cyanobacterial biomass 

Cyanobacteria can be cultivated on large scales in either open-pond or closed-

photobioreactor (PBR) systems.  Compared to open ponds, PBRs offer important 

advantages, including improved control over culture temperature, reduced water loss to 

evaporation, and reduced risk of culture contamination.  Moreover, PBRs can achieve 

much higher biomass densities in less space than open ponds (Chisti, 2007; Pulz, 2001).  

PBRs come in a variety of sizes and configurations including tubular, flat plate, column, 
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and stirred tank, although tubular and flat plate photobioreactors appear to provide the most 

optimal conditions for mass cultivation of cyanobacterial biomass, especially in terms of 

light delivery (Lakaniemi et al., 2012b; Pulz, 2001). 

In order for biofuels derived from cyanobacterial biomass to be competitive with 

petroleum-based fuels, they must be inexpensive to produce (Chisti, 2013).  Since PBRs 

are intrinsically more expensive to build and maintain than open ponds, it is critical to 

reduce operational costs as much as possible, while increasing biomass production (Chisti, 

2007).  The culture medium and PBR vessel cannot be sterilized, as this would be costly 

and is practically impossible at large scale.  Although PBRs reduce the risk of culture 

contamination by heterotrophic bacteria, the requirement to not sterilize the medium and 

growth vessel means that heterotrophic bacteria are likely to colonize PBR cultures, a 

phenomenon that is already documented (Lakaniemi et al., 2012a; Lakaniemi et al., 2012b).   

Previously, our group characterized important operational aspects of PBR cultures 

of Synechocystis in order to understand how limitations in light, inorganic carbon, and 

nutrient supply may limit biomass productivity in PBRs.  One key finding of these studies 

was that inorganic carbon (Ci) supply could become limiting when Synechocystis 

efficiently takes up the available Ci, and applying more CO2 could alleviate this (Kim et al., 

2010a).  These studies also demonstrated that macronutrients, particularly phosphate, could 

also be limiting in PBRs for which the goal is high biomass productivity (Kim et al., 

2010b).  Thus, methods to improve Ci and nutrient delivery are required to prevent these 

limitations from halting production in industrial PBR settings.  
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1.5  Implications of microbial ecology in PBR operations 

Microbial ecology is the study of communities of microorganisms and their 

interactions with each other and their environment.  Those that study microbial 

communities seek to determine which microorganisms are present in the system, what their 

metabolic capabilities are, which metabolic pathways are actually being used, and how the 

different members of the community affect one another.  Microbial ecology has 

implications in many biotechnological processes including wastewater treatment, 

bioremediation technologies, microbial fuel cell technologies, and PBRs (Rittmann et al., 

2006; Rittmann et al., 2008).   

In natural settings, heterotrophic bacteria almost always are found in association 

with Cyanobacteria.  Heterotrophic bacteria grow by oxidizing the organic compounds 

produced by the cyanobacteria and produce CO2 as a result, which can be used as a carbon 

source by the Cyanobacteria (Abed et al., 2007; Berg et al., 2009; Eiler and Bertilsson, 

2004; Li et al., 2011; Prasad et al., 2013).  Heterotrophic bacteria can benefit 

Cyanobacteria by reducing oxygen saturation in the culture, increasing the availability of 

micronutrients, and recycling macronutrients from decaying biomass (Keshtacher-Liebson 

et al., 1995; Mouget et al., 1995; Purvina et al., 2010).  However, predatory heterotrophic 

bacteria can be detrimental to Cyanobacteria, by causing cell lysis that ends in termination 

of the cyanobacterial culture (Radhidan and Bird, 2001).  Furthermore, heterotrophic 

bacteria may compete with the cyanobacteria for nutrients, or consume a valuable 

bioproduct excreted by the Cyanobacteria (Bratbak and Thingstad, 1985; Liu et al., 

2011b).  The impact of heterotrophic bacteria on PBR operations must considered since 

they cannot be excluded from industrial-scale cultures and may provide important benefits 
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to the system.  Thus, the structure and function of PBR microbial communities must be 

addressed in order to successfully bring PBR technologies to the industrial scale.   

 

1.6  Types of heterotrophic bacteria associated with Cyanobacteria 

Most of the available data regarding the particular types of heterotrophic bacteria 

associated with Cyanobacteria come from natural settings, such as cyanobacterial blooms 

in lakes.  One such study showed that Alphaproteobacteria, mostly from the genera 

Sphingopixys and Rhodobacter, dominated the community of heterotrophic bacteria 

associated with a bloom of the toxic cyanobacterium Microcystis (Li et al., 2011).  Another 

study showed that cyanobacterial blooms in four lakes, each with different types of 

Cyanobacteria, had different types of associated heterotrophic bacteria (Eiler and 

Bertilsson, 2004).  Thus, the communities of heterotrophic bacteria that associate with 

naturally occurring cyanobacterial populations may differ depending on the species of 

Cyanobacteria and the environment. 

 

1.7  Soluble microbial products in PBRs 

All bacteria produce soluble microbial products (SMP) as a part of their normal 

metabolism.  SMP are very heterogeneous organic materials and can be further categorized 

as utilization-associated products (UAP) or biomass-associated products (BAP).  UAP 

result directly from oxidation of an electron donor, while BAP result from hydrolysis of 

biomass or extracellular polymeric substances (EPS) (Laspidou and Rittmann, 2002).  UAP 

tend to be smaller and more easily biodegraded than BAP (Ni et al., 2011a).  Importantly, 

SMP produced by autotrophic bacteria can support the growth of heterotrophic bacteria (Ni 
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et al., 2011b).  Thus, SMP produced by Cyanobacteria are likely the major carbon source 

and electron donor for the heterotrophic bacteria that grow in PBRs.   

While SMP produced by cyanobacteria have not been well characterized, a variety 

of studies have been conducted on EPS produced by Cyanobacteria.  EPS produced by 

Synechocystis are composed mostly of polysaccharides and proteins (Panoff et al., 1988).  

The polysaccharide fraction is highly enriched in glucose, but also contains a number of 

other monosaccharide subunits (Fisher et al., 2013).  The high proportion of carbohydrates 

in Synechocystis EPS indicates that it is potentially a very important energy source for 

heterotrophic bacteria that associate with Synechocystis.  Indeed, it has been demonstrated 

that heterotrophic bacteria can grow using EPS extracted from Cyanobacteria as a sole 

carbon source and electron donor (Giroldo et al., 2003; Li et al., 2009).  Because SMP and 

EPS are closely related (Laspidou and Rittmann, 2002; Ni et al., 2011a), it is likely that 

SMP produced by Synechocystis are also highly enriched in saccharide moieties.  Another 

carbon source and electron donor available to heterotrophic bacteria in PBRs is decaying 

biomass (Laspidou and Rittmann, 2002).  Compared to EPS-derived substrates, the 

products resulting from cellular decay are probably richer in proteins and lipids.   

Heterotrophic bacteria in a PBR have two major functions:  depolymerizing and 

solubilizing EPS to SMP and subsequently biodegrading the SMP; and biodegrading the 

SMP that results from decay of cyanobacterial and heterotrophic cells.  While it is perfectly 

possible for one type of heterotrophic bacteria to perform both of these functions, it is 

equally likely that distinct groups of heterotrophic bacteria biodegrade SMP either from 

EPS or from cellular biomass. 
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1.8  A multidisciplinary approach to manage microbial ecology in Synechocystis-based 

PBRs  

The PBR presents a wonderful opportunity to integrate tactics from multiple 

disciplines to understand the complex interactions between Synechocystis and heterotrophic 

bacteria.  Next generation sequencing (NGS) allows for rapid phylogenetic profiling of 

microbial communities (Liu et al., 2012), but can be costly, requires intensive 

bioinformatics analysis, and is not useful as a rapid diagnostic of microbial communities.  

The combination of NGS techniques with other potentially high throughput phylogenetic 

analyses, such as terminal-restriction fragment length polymorphism (T-RFLP) (Liu et al., 

1997) and quantitative real-time polymerase chain reaction (qPCR) (Zhang et al., 2011), 

can provide a robust system for rapidly profiling the structure and dynamics of PBR 

microbial communities.   

Classical microbiological techniques to isolate bacteria used in tandem with these 

molecular techniques can help to understand more fully the growth kinetics of the 

heterotrophic bacteria that live in the PBR.  These empirically derived kinetic constants can 

then be used to inform mathematical models to predict the growth of heterotrophic bacteria 

in PBRs and to provide PBR operators with information on how to manage the 

heterotrophic bacteria.   

Bulk chemical analyses of chemical oxygen demand (COD), dissolved organic 

carbon (DOC), carbohydrates, and proteins are useful to measure the available substrates in 

the PBR and provide a convenient way to assess the function of PBR microbial 

communities.   Determining how the growth of heterotrophic bacteria affects the relative 

levels of these substrates may help to elucidate the preferred substrates of heterotrophic 
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bacteria.  Knowing the preferred substrates of dominant heterotrophic bacteria, along with 

the effects of those bacteria on Synechocystis, will provide options for mitigating the 

impact of undesirable heterotrophic bacteria on PBR performance.   

 

1.9  Objectives and summary of work 

The major goals of this work are to examine the structure and function of PBR 

microbial communities and to develop methods to manage PBR microbial communities.  

Chapter 2 focuses on understanding the structure of the microbial communities using 

culture-dependent and culture-independent methods to assess the heterotrophic bacteria 

present in PBR cultures.  Chapter 3 expands upon this by examining the growth kinetics of 

some of the cultured bacteria from Chapter 2 under PBR-like conditions, and it presents a 

simple mathematical model to predict heterotrophic growth in Synechocystis-based PBRs.   

Chapter 4 presents a qPCR assay for specific detection of Synechocystis 16S rRNA 

genes and a magnetic capture hybridization technique for specific removal of Synechocystis 

16S rRNA genes from pools of gDNA extracted from Synechocystis-based PBRs.  Chapter 

5 demonstrates that the inoculum used to start Synechocystis-based PBRs has a strong 

influence on the microbial community that develops in that PBR.  Finally, Chapter 6 shows 

that phosphate limitation is associated with higher levels of SMP and heterotrophic bacteria 

in Synechocystis-based PBRs, demonstrating that nutrient availability is critical for driving 

production of Synechocystis biomass.  Chapter 7 provides a summary and ideas of future 

research. 

Taken together, the research presented here provides a fundamental analysis of 

microbial community structure and function in Synechocystis-based PBRs and provides 
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tools to manage, monitor, and thoroughly characterize PBR microbial communities.  

Detailed summaries of each technical chapter are provided below.   

 

Chapter 2.  Phylogenetic characterization of heterotrophic bacteria isolated and 

enriched from photobioreactor (PBR) cultures of Synechocystis sp. PCC6803 

The first step toward understanding PBR microbial communities is to determine the 

types of heterotrophic bacteria most commonly associated with PBR cultures of 

Synechocystis sp PCC6803.  Towards this goal, I isolated and enriched heterotrophic 

bacteria from different PBRs and compared the phylogenetic distribution of these 

heterotrophic bacteria to the distribution of heterotrophic bacteria detected directly in PBR 

cultures using 16S rRNA gene sequencing.    

I isolated 65 heterotrophic bacteria distributed across five main classes:  

Actinobacteria, Alpha/Beta/Gammaproteobacteria, and Bacilli, with 

Gammaproteobacteria being the most common.  I then used EcoPlates to show that 

representative isolates from each class could grow on a variety of carbon substrates, but 

that the substrates containing organic nitrogen were the most favorable.  I enriched 

heterotrophic bacteria from two different PBRs using either acetate of glucose as a carbon 

source.  All four enrichment cultures had different heterotrophic bacteria, but the 

enrichments from the same PBR were more similar to one another than they were to the 

enrichments from the other PBR.  The types of heterotrophic bacteria detected in the 

enrichment cultures were similar to those that were isolated.   
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Chapter 3.  Kinetic characterization of heterotrophic bacteria isolated and enriched 

from Synechocystis sp. PCC6803-based photobioreactors 

In this chapter, I provided simple and complex carbon substrates for growth of the 

heterotrophic bacteria described in Chapter 2 and evaluated their growth kinetics.  The goal 

of this work was to understand the growth rates of heterotrophic bacteria in PBR-like 

settings in order to develop effective strategies to manage heterotrophic bacteria in PBR 

settings.  I selected one of the fastest growing isolates (B2, Pseudomonas stutzeri) to 

further characterize and compared it to a mixed community of heterotrophic bacteria 

enriched from a PBR (ENR1), which was dominated by bacteria from the classes 

Alphaproteobacteria and Cytophagia.  

First, I conducted a series of batch experiments to measure important kinetic 

parameters for the different heterotrophic bacteria.  One important parameter was the 

maximum specific growth rate, which represents how rapidly the bacterial population will 

grow in a chemostat culture.  Another kinetic parameter determined for the heterotrophic 

bacteria was cellular yield, which measures the efficiency of the bacteria to convert the 

growth substrate into biomass.  The final kinetic parameter measured through these 

experiments was the Monod constant (Km), which can be thought of as the affinity of the 

bacteria for a particular substrate (Kovárová-Kovar and Egli, 1998).  I demonstrated that, 

when provided with very labile substrates such as acetate, glucose, or laurate, P. stutzeri 

grew more rapidly than ENR1.  However, P. stutzeri and ENR1 had similarly low Km 

values for these substrates, indicating that even low substrate concentrations could support 

the growth of heterotrophic bacteria in PBRs.  I then examined the growth of ENR1 on 

SMP harvested from a Synechocystis PBR.  I showed that the SMP could support some 
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growth of ENR1, but the growth was much slower than it was for the more labile 

substrates, demonstrating that PBR effluent probably contains relatively recalcitrant SMP.   

I then used a mathematical model to predict the growth of the heterotrophic bacteria 

in a PBR setting.  This analysis showed that heterotrophic bacteria could grow very well 

when labile substrates were provided, even at very short hydraulic retention times (HRTs).  

Even recalcitrant SMP could support the growth of heterotrophic bacteria in the range of 

HRTs at which Synechocystis PBRs are typically operated, indicating that it may be 

difficult to exclude heterotrophic bacteria from PBR cultures by operating at HRTs 

normally used in practice.   

 

Chapter 4.  Removal of Synechocystis sp. PCC6803 16S rRNA genes does not 

significantly improve resolution of heterotrophic bacteria in 16S rRNA-based 

microbial community analysis 

In this chapter, I used and validated a qPCR assay developed by Jonathan 

Badalamenti for specific detection of Synechocystis 16S rRNA genes.  I then developed a 

novel magnetic capture hybridization (MCH) technique to specifically remove 

Synechocystis 16S rRNA genes from pools of genomic DNA (gDNA) extracted from 

Synechocystis-based PBRs with the goal of improving detection of low-abundance 

heterotrophic bacteria with high-throughput sequencing and T-RFLP assays.   

First, I showed that the Synechocystis specific qPCR assay is quantitative and can 

quantify the abundance of Synechocystis 16S rRNA gene copies with reasonable accuracy.  

Furthermore, I showed that the Synechocystis specific qPCR assay can be used in 
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conjunction with previously described total bacterial qPCR assays to predict the abundance 

of heterotrophic bacteria in PBRs.  

  Next, I validated the MCH method for specific removal of Synechocystis 16S rRNA 

genes using gDNA extracted from two different Synechocystis-based PBRs.  First, I 

showed with qPCR that the MCH method successfully reduced the concentration of total 

bacterial and Synechocystis 16S rRNA gene sequences.  Next, I used high-throughput 

sequencing to assess the community structure in the PBR gDNA samples and MCH treated 

samples.  I showed that, in general, the MCH treatment decreased the relative proportion of 

16S rRNA gene sequences assigned to Synechocystis and increased the relative proportion 

of 16S rRNA gene sequences assigned to heterotrophic bacteria, showing that the MCH 

treated samples may more accurately represent the distribution of heterotrophic bacteria in 

Synechocystis-based PBRs.   However, the MCH treatment did not lead to the discovery of 

heterotrophic phylotypes that were not detected in the untreated samples.  I then showed 

that the MCH treatment could improve the number of non-Synechocystis terminal-

restriction fragments (T-RFs) detected in T-RFLP assays.  However, this was only the case 

for PBRs with a relatively high abundance of Synechocystis 16S rRNA genes.   

Finally, I demonstrated that the MCH capture probe shared at least nine base pairs 

of sequence similarity with a variety of non-Synechocystis 16S rRNA genes, as well as with 

a variety of non-16S rRNA genes (protein coding genes) in the genomes of Synechocystis 

and other bacteria.  From this, I concluded that the MCH capture probe was not sufficiently 

specific to Synechocystis 16S rRNA genes.  Taken together, the results presented in this 

chapter showed that high-throughput sequencing was sufficient to uncover all of the 

microbial diversity in Synechocystis-based PBRs without the need to remove Synechocystis 
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16S rRNA genes prior to sequencing analysis.  Thus, this MCH technique was not used for 

the high-throughput 16S rRNA gene sequencing analyses in the subsequent chapters. 

 

Chapter 5.  Effects of inoculum source on the structure of microbial communities in 

Synechosyctis sp. PCC6803-based photobioreactors 

After identifying the types of heterotrophic bacteria found in PBRs and 

characterizing them in terms of growth kinetics, the next goal was to develop strategies to 

manage PBR microbial communities.  Towards this goal, I conducted four PBR 

experiments that were operated under identical environmental conditions.  Two PBRs 

(PBRA and PBRA2) were started with the same starter culture (inoculum), while the other 

two PBRs (PBRB and PBRC) were started using different inocula.  PBRA and PBRA2 had 

nearly identical microbial communities and performed similarly in terms of overall biomass 

production.  PBRB and PBRC each had unique microbial communities and performed 

differently than one another, although PBRB performed similarly to PBRA and PBRA2.   

To further investigate the impact of the inoculum on PBR microbial community 

structure, I conducted a simple batch test.  First, I obtained three flasks of Synechocystis 

culture from three different sources.  I then used those flasks to inoculate three 

experimental flasks each, for a total of nine flasks.  I then grew the nine flasks under 

identical conditions for 96 hours.  Finally, I examined the microbial communities in each of 

the inoculum and experimental flasks using 16S rRNA gene sequencing and T-RFLP.  

Both techniques demonstrated that the microbial communities in each set of experimental 

flasks were more similar to one another and the respective inoculum flask than they were to 

the other sets of flasks.   
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From all the results, I concluded that the microbial community in the inoculum 

played a major role in shaping the microbial community that develops in PBRs.  I 

demonstrated that light microscopy was not sufficient to detect heterotrophic bacteria in 

these inocula and that molecular methods were more sensitive and more appropriate for 

determining the purity of PBR inocula than was light microscopy.  Finally, I showed strong 

agreement between the 16S rRNA gene sequencing and T-RFLP data, demonstrating that 

T-RFLP can be used as a rapid diagnostic to compare the heterotrophic bacteria present in 

PBR microbial communities.   

 

Chapter 6.  Effects of phosphate limitation on the production of soluble microbial 

products (SMP) in Synechocystis-based photobioreactors 

In this chapter, I examined another strategy to manage PBR microbial communities:  

controlling the availability of SMP in the PBR.  SMP probably are the major drivers of 

heterotrophic growth in Synechocystis PBRs.  Thus, reducing the concentration of SMP 

should help to reduce heterotrophic bacteria in the PBR.  

Towards this goal, I operated two semi-continuous PBRs with HRTs of 3 days and 

identical light and temperature profiles.  The first (PBRP0) was operated with normal BG-

11 medium, while the second (PBRP+) was operated with additional phosphate, added on a 

daily basis.  In PBRP0, the soluble phosphate was completely removed after a few days of 

operation, inducing phosphate limitation.  After the phosphate became limiting, the growth 

rate of Synechocystis in PBRP0 was lower than the dilution rate, and the culture density 

decreased.  The soluble phosphate in PBRP+ was never depleted and the growth rate 

became roughly equal to the dilution rate after several days of operation.   
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PBRP0 had more soluble COD (SCOD) and dissolved organic carbon (DOC) than 

did PBRP+, indicating more SMP in PBRP0.  Further analysis showed that the SMP in 

PBRP0 was dominated by carbohydrates that were probably derived from shearing and 

hydrolysis of EPS, which is rich in carbohydrates (Panoff et al., 1988).  In PBRP+, 

carbohydrates represented a much smaller fraction of the SMP, suggesting that more of the 

SMP in this PBR was derived from non-EPS sources, such as cell lysis.   

I then used 16S rRNA gene sequencing to analyze the microbial communities in 

both PBRs.  PBRP0 had a much higher relative proportion of heterotrophic bacteria than 

did PBRP+, which was probably a result of the higher levels of SMP in PBR0.  I concluded 

that, under phosphate-limited conditions, Synechocystis produced excess EPS in order to 

store photo-assimilated carbon and electrons.  The EPS then acted as a substrate for 

heterotrophic bacteria.  However, when phosphate was available, the carbon and electrons 

were used to produce Synechocystis biomass.  Thus, maintaining phosphate availability in 

PBRs was key to maintaining biomass production and reducing heterotrophic bacteria.   
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Chapter 2 

Characterization of heterotrophic bacteria isolated and enriched from photobioreactor 

(PBR) cultures of Synechocystis sp. PCC68031 

2.1  Introduction 

 Interactions between Cyanobacteria and heterotrophic bacteria are well 

documented for natural conditions (Eiler and Bertilsson, 2004; Li et al., 2011).  Recently, 

researchers have turned to Cyanobacteria as promising sources of renewable feedstock for 

biofuel production, and they have begun growing Cyanobacteria in engineered 

photobioreactor (PBR) systems (Ducat et al., 2011; Kim et al., 2010a).  Sterilization and 

aseptic maintenance of large-scale PBRs are neither technically nor economically feasible 

for producing low-cost biofuels.  Thus, heterotrophic bacteria will naturally colonize PBR 

systems (Lakaniemi et al., 2012b).  These heterotrophic bacteria can be beneficial to 

Cyanobacteria by recycling macronutrients or by increasing the availability of 

micronutrients, such as iron (Keshtacher-Liebson et al., 1995; Lakaniemi et al., 2012b).  

Heterotrophic metabolism also lowers O2 concentration in the culture medium, which may 

help promote photosynthesis (Mouget et al., 1995).  However, heterotrophic bacteria can 

compete with Cyanobacteria for nutrients (Bratbak and Thingstad, 1985), consume 

valuable organic products excreted by the Cyanobacteria (Liu et al., 2011b), and in some 

cases induce lysis of Cyanobacteria (Radhidan and Bird, 2001).  Therefore, it is important  

______________________________ 

1This chapter is adapted from a manuscript submitted for publication. 
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to characterize the types of heterotrophic bacteria that commonly associate with 

Cyanobacteria in PBRs. 

 In the natural environment, one study reported that Gammaproteobacteria were the 

majority of heterotrophic bacteria associated with cyanobacterial blooms from several 

bodies of fresh and salt water (Berg et al., 2009).  Another study reported a high proportion 

of Bacteriodetes in association with freshwater cyanobacterial blooms (Eiler and 

Bertilsson, 2004).  Others have shown diverse consortia of heterotrophic bacteria 

associated with a cyanobacterial mat (Abed et al., 2007).  Thus, the phylogeny of bacteria 

that associate with Cyanobacteria seems to vary greatly for different species of 

Cyanobacteria and in different environments.  Only a few studies have addressed the 

phylogenetic diversity of heterotrophic bacteria that exist in engineered PBR settings 

(Lakaniemi et al., 2012a; Lakaniemi et al., 2012b), and none have done so for PBR cultures 

dominated by Cyanobacteria.   

Heterotrophic bacteria in PBRs grow by oxidizing organic compounds produced 

and excreted by photoautotrophs, such as the model cyanobacterium Synechocystis sp. 

PCC6803.  Important excreted organic compounds are extracellular polymeric substances 

(EPS) and soluble microbial products (SMP), which can be formed by shearing and 

hydrolysis of EPS (Laspidou and Rittmann, 2002; Li et al., 2009).  EPS produced by 

Synechocystis sp. PCC6803 are mostly glucose-rich carbohydrates and protein (Panoff et 

al., 1988), indicating that glucose and dissolved free or combined amino acids likely 

represent the major carbon substrates utilized by heterotrophic bacteria in a PBR.  Other 

SMP produced by Cyanobacteria may include fatty acids and alcohols (Abed et al., 2007).   
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Here, I isolated pure strains and enriched mixed consortia of heterotrophic bacteria 

from PBR cultures of Synechocystis sp. PCC6803 to assess the phylogenetic diversity and 

metabolic capability of the heterotrophic bacteria in these systems.  I demonstrated that 

phylogenetically diverse heterotrophic bacteria can be isolated and enriched from PBR 

cultures of Synechocystis sp. PCC6803, but they are similar in terms of their abilities to 

grow well on a variety of carbon substrates.   

 

2.2  Materials and Methods 

Cyanobacteria cell cultures, strains and media  

Stock cultures of Synechocystis sp. PCC 6803 (hereafter referred to as 

Synechocystis) were provided by the laboratory of Dr. Willem Vermaas (School of Life 

Sciences, Arizona State University).  Stock cultures were grown in Erlenmeyer flasks at 

30°C in BG-11 medium (Rippka et al., 1979) bubbled with air.   

 

Isolation of heterotrophic bacteria  

I isolated heterotrophic bacteria from several sources including 16-L bench top 

(BT) PBRs (Kim et al., 2010b), a 350-mL Photobioreactor FMT-150 (FMT) (Photon 

Systems Instruments, Czech Republic), and several flask cultures.  All of the PBR cultures 

were Synechocystis-based and were grown with continuous light irradiation at a 

temperature of 30˚C in BG-11 medium.  To isolate the bacteria, I first diluted fresh PBR 

culture to 10-3 and 10-6 in BG-11.  I then plated 100 µL of the diluted culture onto R2A 

agar (Teknova, Hollister, CA) or BG-11 agar plates supplemented with 0.1-mM laurate 

(Sigma Aldrich), 50-mM sodium acetate (Sigma Aldrich), or 100-mg/L glucose (Sigma 
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Aldrich); I incubated the plates at 30°C.  After colonies formed (typically 1-3 days), I 

picked individual colonies, streaked them onto the same medium type, and allowed 

colonies to form again.  I repeated this process three times to ensure purity of the isolated 

bacteria.  Once the third set of plates showed growth, I picked colonies and used them to 

inoculate 5-mL cultures of the same liquid medium and grew them at 30°C.  After the 

starter cultures grew to an appropriate density (1-3 days), I mixed 0.5 mL of the starter 

culture with 0.5 mL sterile 40% glycerol and stored these samples at -80°C as freezer 

stocks.  

 

Growth on R2A 

I selected one representative from each class of isolated heterotrophic bacteria to 

characterize further.  The chosen representative bacteria were: Pseudomonas stutzeri 

PBR#6 (Acc no. KF539914), Bacillus cereus PBR#10 (Acc no. KF539915), Sphingomonas 

adhaesiva PBR#14 (Acc no. KF539916), Corynebacterium amycolatum PBR#21 (Acc no. 

KF539917), and Ralstonia pickettii PBR#24 (Acc no. KF539918).  To determine growth 

rates of selected isolates on R2A medium, I inoculated 50 mL of R2A medium at a starting 

optical density at a wavelength of 600nm (OD600) of approximately 0.1.  I then incubated 

the cultures at 30˚C and removed 1-mL samples at regular intervals and measured the 

OD600 using a Cary-50-Bio UV-Visible spectrophotometer.  I determined the specific 

growth rate (SGR) using Eq. 1, where t is time in days (Rittmann and McCarty, 2001).   

Eq. 1)  SGR 
1
day

=
1

OD600
*
dOD600
dt  
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Ecoplate Analysis 

I used EcoPlates (BioLog, Hayward, CA), which are microwell plates that contain a 

panel of 31 unique carbon substrates and a negative control (water), to characterize the 

metabolic capacity of the five representative isolated bacteria.  To do this, I first grew the 

heterotrophic bacteria on R2A medium and then centrifuged 1 mL of this culture at 13K 

RPM for 1 minute, removed the supernatant, and resuspended the cells in a final volume of 

100 mL of fresh BG-11 medium without ferric ammonium citrate or calcium carbonate.  I 

then added 150 µL of this to each well of the EcoPlates, incubated the EcoPlates at 30˚C in 

the dark, and measured the absorbance of each well at a wavelength of 590 nm (A590) using 

a SpectraMax 190 (Molecular Devices, Sunnyvale, CA) at regular intervals for a total of 

120 hours.  I performed principal components analysis (PCA) using the R programming 

language.  

 

Enrichment of consortia heterotrophic bacteria  

I enriched consortia of heterotrophic bacteria from two Synechocstis-based PBRs 

that were separate from the PBRs from which I isolated heterotrophic bacteria.  These 

PBRs will be referred to as PBR-1 and PBR-2.  Both PBRs were operated as batch reactors 

and using BG-11 medium, constant light irradiation, constant temperature of 30˚C, and 

bubbling with filter-sterilized air (Pall).  To enrich for heterotrophic bacteria, I added 200 

µL of PBR culture to 50 mL of sterile BG-11 containing either 50 mM sodium acetate or 

100 mg/L glucose.  I then incubated these cultures at 30˚C for three days, or until bacterial 

growth was evident.  I passaged these enrichment cultures into the same liquid medium two 

times before taking DNA samples.  
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DNA Extraction  

For DNA extraction, 1 mL of the 5 -mL starter cultures was centrifuged to 

concentrate biomass, which was stored at -80°C prior to DNA extraction.  I extracted total 

genomic DNA using the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA) with the 

following modifications designed to enhance lysis.  I resuspended cell pellets in 200 µL 

lysis buffer (30 mM Tris·HCl, 10 mM EDTA, 200 mM sucrose, pH 8.2) and incubated the 

mixture at 65°C for 10 minutes.  I then added chicken egg white lysozyme (Sigma Aldrich, 

St. Louis, MO) to a final concentration 10 mg/mL and incubated the samples for 1 hour at 

37°C.  Next, I added SDS at 1% (w/v) and incubated the samples at 56°C for 10 minutes.  

Finally, I added 25 µL proteinase K and 200µL buffer AL (Qiagen), incubated that mixture 

at 56°C for 30 minutes, and completed the DNA extraction according to the manufacturer’s 

(Qiagen) instructions. 

 

16S rRNA gene sequencing (Sanger) and phylogenetic assignment 

I first PCR amplified the 16S rRNA genes from the genomic DNA extracted from 

each isolate using the universal bacterial primers 8F and 1525R (Torres et al., 2009) and 

purified the resulting PCR amplicons using a Qiaquick PCR Purificaiton Kit (Qiagen, 

Valencia, CA).  I then sequenced the 16S rRNA genes from the isolates on an Applied 

Biosystems 3730 DNA Analyzer (Life Technologies, Grand Island, NY) using the 

universal bacterial primers 8F, 342F, 533F, and 1525R (Löffler et al., 2000; Weisburg et 

al., 1991).  I assembled the partial 16S rRNA gene sequences using BioEdit v.7.0.9 (Ibis 

Biosciences, Carlsbad, CA) and assigned taxonomy to each isolate according to the closest 

match among cultured organisms from the NCBI BLAST tool.  Only sequences with >1000 
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base pairs (bp) were used.  I constructed maximum likelihood phylogenetic trees with the 

MEGA V 5.2.2 (Tamura et al., 2011) software.  The sequences of the heterotrophic bacteria 

used in these studies were deposited in GenBank under accession numbers KF539914-

KF539918 and KJ806207-KJ806264.   

 

High throughput 16S rRNA gene sequencing and data analysis 

I sequenced 16S rRNA genes from the enriched consortia of heterotrophic bacteria 

using previously described methods (Caporaso et al., 2012). I amplified the V4 region of 

bacterial 16S rRNA genes using Golay barcoded primer set 515F/806R (Caporaso et al., 

2010a).  I then pooled the triplicate PCR reactions and quantified them using the Quant-iT 

PicoGreen dsDNA Assay Kit (Life Technologies).  Next, I pooled 240 ng of each sample in 

and cleaned the final pool using the QiaQuick PCR Cleanup Kit (Qiagen).  For loading the 

samples onto the Illumina MiSeq, I quantified the PCR library using the KAPA SYBR 

FAST Universal qPCR Kit for Illumina (KAPA Biosystems).  I then sent the prepared 

library to the Microbiome Analysis Laboratory at Arizona State University for sequencing 

on the Illumina MiSeq.  I analyzed all 16S rRNA gene sequencing data using the QIIME 

software using the default quality filters (Caporaso et al., 2010b).  In order to examine only 

the heterotrophic bacteria from the representative PBR experiment, I filtered all 

cyanobacterial OTUS from the OTU table using the script filter_taxa_from_otu_table.py 

prior to downstream analysis and removed any unassigned sequences.  All analyses are of 

150-bp forward reads.  All sequence reads included in this work were uploaded to the 

NCBI Sequence Read Archive under BioProject accession number SRP049557 with the 
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individual samples under accession numbers SRR1640754-SRR1640758 and 

SRR1640762.   

 

2.3  Results and Discussion 

Heterotrophic bacteria isolated from Synechocystis-dominated PBRs belong to five 

bacterial classes 

I isolated 65 strains of heterotrophic bacteria from PBR cultures of Synechocystis.  

The isolates belonged to five classes:  Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria, Bacilli, and Actinobacteria.  Figure 2.1 shows the distribution of 

heterotrophic bacteria isolated from Synechocystis-based PBRs at the class level.  

Gammaproteobacteria accounted for 52% of the bacteria isolated, Betaproteobacteria 

accounted for 24%, and Bacilli accounted for 14%.  Actinobacteria and 

Alphaproteobacteria were less common, representing 8% and 3% of the isolates, 

respectively.   

34 of the bacterial isolates belonged to the class Gammaproteobacteria.  Of the 

isolated Gammaproteobacteria, 21 belonged to the genus Pseudomonas, 10 were 

associated with the genus Stenotrophomonas, and two from Pseudoxanthomonas.  The 

species identified were closely related to Pseudomonas aeruginosa, Pseudomonas 

alcaligenes, Pseudomonas pseudoalcaligenes, Pseudomonas stutzeri, Stenotrophomonas 

maltophilia, Stenotrophomonas acidaminiphila, and Pseudoxanthomonas mexicana.  A full 

list of the isolated heterotrophic bacteria is provided in Table 2.1.   

Comparative genomic studies have revealed that Gammaproteobacteria are able to 

metabolize large carbon compounds, such as EPS or SMP (Livermore et al., 2013).  
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Consequently, Gammaproteobacteria may play a critical role in the PBR by breaking down 

EPS produced by Synechocystis into smaller subunits.  Additionally, some S. maltophilia 

strains produce a variety of extracellular hydrolytic enzymes (Ryan et al., 2009), adding to 

the notion that these bacteria are responsible for the biodegradation of large polymeric 

materials in the PBR.  Gammaproteobacteria typically display high growth rates compared 

to other heterotrophic bacteria and may simply outcompete the other members of the PBR 

microbial communities during isolation, an effect that has been previously observed 

(Newton et al., 2011).  Thus, high growth rate may be the reason that 

Gammaproteobacteria accounted for the majority of the isolated heterotrophic bacteria and 

the ability to metabolize EPS may be the reason that Gammaproteobacteria were present in 

the PBR cultures.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1  Distribution of heterotrophic bacteria isolated 
from Synechocystis PBRs at the class-level.  The majority 
of the bacterial isolates belonged to the functionally diverse 
Gammaproteobacteria. 
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Table 2.1  List of isolated heterotrophic bacteria.  The heterotrophic 
bacteria were isolated from different Synechocystis-based PBR 
experiments.  The isolates used in growth rate and EcoPlate studies are 
indicated in bold font. 
 
PBR# Class Nearest BLAST hit species 

Isolated from BT-PBR 
1 Gammaproteobacteria Stenotrophomonas maltophilia 
2 Betaproteobacteria Comamonas acidovorans 
3 Bacilli Staphylococcus hominis 
4 Gammaproteobacteria Stenotrophomonas sp. 
6 Gammaproteobacteria Pseudomonas stutzeri 
7 Gammaproteobacteria Pseudomonas sp. 
8 Gammaproteobacteria Pseudomonas sp. 
9 Bacilli Staphylococcus epidermidis 
10 Bacilli Bacillus cereus 
11 Betaproteobacteria Achromobacter insolitus 
13 Gammaproteobacteria Pseudomonas sp. 
14 Alphaproteobacteria Sphingomonas adhaesiva 
15 Gammaproteobacteria Pseudomonas sp. 
16 Gammaproteobacteria Pseudomonas sp. 
17 Gammaproteobacteria Pseudomonas putida 
19 Bacilli Staphylococcus epidermidis 
20 Bacilli Staphylococcus hominis 
21 Actinobacteria Corynebacterium amycolatum 
23 Bacilli Staphylococcus sp. 
67 Gammaproteobacteria Pseudomonas sp. 
68 Betaproteobacteria Pigmentiphaga sp. 
69 Gammaproteobacteria Stenotrophomonas sp. 
72 Gammaproteobacteria Stenotrophomonas sp. 
74 Gammaproteobacteria Pseudomonas pseudoalcaligenes 
75 Gammaproteobacteria Stenotrophomonas maltophilia 
76 Gammaproteobacteria Stenotrophomonas maltophilia 
77 Gammaproteobacteria Stenotrophomonas maltophilia 
78 Betaproteobacteria Delftia tsuruhatensis 
79 Gammaproteobacteria Stenotrophomonas sp. 
81 Actinobacteria Rhodococcus sp. 
82 Gammaproteobacteria Stenotrophomonas maltophilia 
83 Gammaproteobacteria Pseudomonas sp. 
84 Actinobacteria Agromyces mediolanus 
88 Betaproteobacteria Delftia tsuruhatensis 
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90 Gammaproteobacteria Stenotrophomonas maltophilia 
91 Gammaproteobacteria Pseudomonas pseudoalcaligenes 
92 Gammaproteobacteria Pseudomonas aeruginosa 
93 Betaproteobacteria Delftia sp. 
95 Betaproteobacteria Delftia tsuruhatensis 

Isolated from Flask Cultures 
25 Betaproteobacteria Cupravidius respiraculi 
26 Betaproteobacteria Cupravidius respiraculi 
27 Betaproteobacteria Cupravidius respiraculi 
28 Betaproteobacteria Hydrogenophaga pseudoflava 
29 Betaproteobacteria Cupravidius respiraculi 
30 Bacilli Staphylococcus epidermidis 
31 Betaproteobacteria Cupravidius respiraculi 
32 Betaproteobacteria Cupravidius respiraculi 
33 Actinobacteria Streptomyces rochei 
34 Actinobacteria Streptomyces rochei 
49 Gammaproteobacteria Pseudomonas alcaligenes 
50 Gammaproteobacteria Pseudomonas stutzeri 
51 Gammaproteobacteria Pseudomonas stutzeri 

Isolated from FMT-PBR 
24 Betaproteobacteria Ralstonia pickettii 
52 Alphaproteobacteria Sphingomonas sp. 
53 Gammaproteobacteria Pseudomonas stutzeri 
54 Bacilli Staphylococcus aureus 
55 Actinobacteria Acidovorax sp. 
56 Gammaproteobacteria Pseudoxanthomonas mexicana 
57 Gammaproteobacteria Pseudomonas stutzeri 
58 Gammaproteobacteria Pseudomonas stutzeri 
60 Bacilli Staphylococcus aureus 
61 Gammaproteobacteria Pseudoxanthomonas sp. 
62 Gammaproteobacteria Pseudomonas pseudoalcaligenes 
64 Gammaproteobacteria Pseudomonas stutzeri 
65 Gammaproteobacteria Pseudomonas stutzeri 
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From the 65 isolates, 16 belonged to the class Betaproteobacteria.  All of these 

isolates were classified in the order Burkholderiales and had the most diversity at the 

genus-level, including bacteria from the genera Cupravidius, Ralstonia, Delftia, 

Achromobacter, Hydrogenophaga, Comamonas, Acidovorax, and Pigmentiphaga.  Bacteria 

from the order Burkholderiales are known to play a central role in bioremediation of 

aromatic compounds such as benzene and toluene, especially members of the genera 

Cupravidious and Ralstonia (Pérez-Pantoja et al., 2012).  Thus, these heterotrophic bacteria 

may occupy a special niche in the PBR setting, potentially catabolizing humic substances 

or aromatic amino acids more rapidly than other members of the PBR microbial 

communities (Weishaar et al., 2003).    

Only two isolates were classified as Alphaproteobacteria, both associated with the 

genus Sphingomonas.  Alphaproteobacteria are common in freshwater systems, although 

they do not account for a great proportion of the bacteria in these habitats.  These bacteria 

might also contribute to the biodegradation of humic substances (Newton et al., 2011).  

Thus, the microbial ecology of the PBR appears to be similar to that of natural settings.  

The isolated Gram-positive bacteria belonged to the classes Actinobacteria and Bacilli and 

included species from the genera Rhodococcus, Corynebacterium, Agromyces, 

Streptomyces, Bacillus, and Staphylococcus.   

Because a high diversity of heterotrophic bacteria in association with 

Cyanobacteria has been well documented, I expected to see similar diversity in the PBR 

communities.  All of the clades of bacteria isolated as a part of this study have been found 

in association with natural cyanobacterial populations and commonly inhabit soil and 

freshwater environments (Berg et al., 2009; Li et al., 2011).  Thus, a wide variety of 
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heterotrophic bacteria probably possess the genes necessary to grow using EPS and SMP 

produced by Synechocystis as substrates. 

 

Isolated heterotrophic bacteria demonstrate high specific growth rates and versatile 

metabolic capabilities 

Figure 2.2 shows growth curves and associated SGR of the five representative 

isolates for growth on R2A medium.  B. cereus and P. stutzeri showed the highest SGRs, 

while C. amycolatum and R. pickettii had the lowest.  All of the isolates demonstrated 

SGRs that were in a range typical for heterotrophic bacteria (Kovárová-Kovar and Egli, 

1998).  The SGRs of all the tested heterotrophic bacteria were significantly higher than 

reported SGRs for Synechocystis, which have been reported in the range of 0.2-3.2/day 

(Kim et al., 2010a; Zavřel et al., 2015).  Thus, provided with sufficient concentrations of 

substrate, the size of heterotrophic populations in PBRs could be significant compared to 

the size of the Synechocystis population.  A substantial fraction of heterotrophic biomass 

would be detrimental to the performance of the PBR, since the goal is to produce lipid-rich 

cyanobacterial biomass.   

Figure 2.3 shows the average well color development (AWCD) of the EcoPlate for 

each isolate.  AWCD provides an indicator of when growth on the EcoPlates has ceased 

and also provides a comparison of the growth of the growth of the different isolates across 

the entire panel of substrates provided.  The maximum AWCD for each isolate was 

achieved within 48-72 hours and remained relatively steady thereafter.  In general, the 

isolates showed similar AWCD values indicating that they had similar growth kinetics.  

Thus, while P. stutzeri and B. cereus had the fastest growth rates under copiotrophic 
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conditions (R2A medium), their growth rates were more similar under more oligotrophic 

conditions (EcoPlate minimal medium). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  AWCD of the EcoPlates for the five 
representative isolates.   Maximum AWCD was 
achieved in 48-72 hours 
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Figure 2.2 Growth of representative isolates on R2A medium.  
The maximum measured SGR (1/day) of each isolate is noted in 
the legend.  All of the isolates demonstrated significantly higher 
SGRs than the maximum reported SGR of Synechocystis 
(3.2/day).  
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After the incubation period, all of the isolates tested showed A590 values above that 

of the negative control (water) for the 31 carbon substrates, meaning that the representative 

heterotrophic bacteria had the ability to metabolize a wide variety of carbon substrates.  

The measured A590 values for each carbon substrate after the 120-hour incubation are 

shown in Figure 2.4.  In general, the A590 values for the carbohydrate substrates were lower 

than those of the organic nitrogen containing substrates.  Thus, the heterotrophic bacteria in 

PBRs that grew on protein-derived substrates probably had faster growth kinetics than 

those that grow on EPS-derived substrates.  

Figure 2.5 shows PCA of the EcoPlate data, which uses mathematical 

transformations of the EcoPlate data to explain the variability between the different 

isolates.  Samples that cluster on PCA biplots are more similar, while those that do not 

cluster are less similar.  For the EcoPlate analysis clustering on the PCA biplot was heavily 

positively correlated with A590 values.  Thus, the substrates that showed the highest average 

A590 values are furthest to the right on PC1 while those that showed the lowest average A590 

values are furthest to the left.  The PCA indicates that the representative isolates tended to 

have similar metabolic capabilities, as shown by the arrows pointing to the right direction 

of PC1.  The amino acids asparagine, arginine, and serine, as well as other compounds 

containing organic nitrogen (putrescine, phenylethylamine) showed the highest average 

A590 values.  This is logical, as these compounds contain readily available carbon and 

nitrogen, and indicates that products resulting from the biodegradation of biomass may be 

the favored carbon source of heterotrophic bacteria in PBRs.  This was especially true for 

P. stutzeri, which grouped most strongly with these substrates.  The complex polymers, 

Tween 40 and Tween 80, were also heavily favored by all of the isolates.  
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Figure 2.4  Heatmap of EcoPlate results after 120-hour incubation period.  
The isolates tested were P. stutzeri (Ps), B. cereus (Bc), S. adhaesiva (Sa), C. 
amycolatum (Ca), and R. pickettii (Rp).  All of the isolates showed greater A590 
values for all of the carbon substrates than for the negative control, water (not 
shown). 

No. Substrate Ps Bc Sa Ca Rp 
1 L-Asparagine 
2 Tween 40 
3 Tween 80 
4 L-Arginine  
5 L-Serine 
6 Phenylethylamine 
7 D-Cellobiose 
8 Putrescine 
9 D-Mannitol 

10 D-Galacturonic Acid 
11 α-D-Lactose 
12 4-Hydroxybenzoic Acid 
13 Glycogen 
14  D-Malic Acid 
15 Itaconic Acid 
16 D-Xylose  
17 D,L-α-Glycerol Phosphate 
18 Glycyl-L-Glutamic Acid 
19 Phenylalanine  
20 α-Ketobutyric acid 
21 N-Acetyl-D-Glucosamine 
22 Glucose-1-phosphate 
23 L-Threonine 
24 i-Erythritol 
25 Pyruvic Acid Methyl Ester 
26 γ-Hydroxybutyric Acid 
27 β-Methyl-D Glucoside 
28 D-Glucosaminic Acid 
29 2-Hydroxybenzoic Acid 
30 α-cyclodextrin 
31 D-Galactonic Acid γ-Lactone  

A590 
 

2.2 
1.8 
1.1 
0.7 
0.5 
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The most favored carbohydrate compounds included cellobiose, galacturonic acid, 

mannitol, lactose, and glycerol phosphate.  Cellobiose, galacturonic acid, and mannitoal 

can be derived from Synechocystis EPS (Panoff et al., 1988), and may be available in PBR 

settings.  B. cereus and S. adhaesiva grouped more with mannitol and cellobiose while C. 

amycolatum and R. pickettii grouped more with galacturonic acid.  Glycogen was 

metabolized to a similar extent by all of the isolates.  B. cereus, S. adhaesiva, C. 

amycolatum, and R. pickettii grouped more with the carboxylic acid substrates, especially 

malic acid, itatonic acid, α-ketobutyric acid, and 4-hydoxybenzoic acid, than did P. stutzeri.   

Figure 2.5 PCA of EcoPlate results.  In general, the isolates showed similar 
metabolic profiles, indicated by clustering on PC1.  However, each isolate 
showed preference for different types of substrates, indicated by clustering on 
PC2.  P. stutzeri (Ps) heavily favored the amino acids and amine nitrogen-
containing compounds (red) and Tween molecules (purple).  B. cereus (Bc), S. 
adhaesiva (Sa), C. amycolatum (Ca), and R. pickettii (Rp) tended to show 
greater preference for carbohydrate (blue) and carboxylic acid (green) 
substrates.  The substrates are numbered as shown in Figure 2.4.   
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Even though each isolate showed slightly different substrate preferences, all could 

metabolize a wide variety of carbon substrates, and the most preferred substrates across all 

of the isolates were those that are most easily metabolized by the bacteria (e.g., amino acids 

and small carbohydrates).  Thus, the heterotrophic bacteria in PBRs utilize simple 

substrates more rapidly than complex polymer substrates.  Analysis of the metabolic 

potential of bacteria closely related to each of the tested isolates using the KEGG database 

(data not shown) demonstrated that, with few exceptions, the representative isolates 

showed a great amount of overlap in their metabolic pathways, especially in terms of their 

ability to metabolize carbohydrates and amino acids. 

 

Heterotrophic bacteria enriched from PBRs are taxonomically similar to the isolated 

bacteria 

I enriched consortia of heterotrophic bacteria from two different PBRs using acetate 

and glucose as organic substrates.  Figure 2.6 shows the distribution of the heterotrophic 

bacteria in the four enrichments based on high-throughput sequencing.  The enrichments 

from PBR-1 (1-Ac and 1-Gluc) contained bacteria belonging to the orders Rhizobiales, 

Burkholderiales, Cytophagales, and Actinomycetales.  Sphingobacteriales and Opitutales 

appeared in 1-Gluc, but not in 1-Ac.  Rhizobiales are typically involved in nutrient cycling 

are often associated with plant roots (Newton et al., 2011; Rodríguez and Fraga, 1999).  All 

of the isolated Betaproteobacteria were from the order Burkholderiales, and these were 

also the only Betaproteobacteria found in the enrichment cultures.  Thus, Burkholderiales 

may be the major type of Betaproteobacteria that associate with Synechocystis-based 

PBRs.  Bacteria from the order Opitutales have been shown to degrade polysaccharides 
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derived from algae (Sakai et al., 2003) and thus may have played a role in the degradation 

of Synechocystis EPS.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudomonadales dominated both enrichments from the second PBR (2-Ac and 2-

Gluc) while a smaller proportion of Cytophagales was also present.  This indicates that fast 

growing and metabolically diverse Pseudomonas spp. can outcompete other bacteria for 

carbon substrates in the PBR setting.  Cytophagales, although not seen in the set of isolates, 

were the only bacteria to be identified in all of the enrichment cultures.  Cytophagales are 

known degraders of polymers such as EPS and proteins (Koeck et al., 2014).  Thus, many 

of the bacteria in the enrichment cultures appear to have the ability to grow on EPS, 

indicating that this and other polymers are probably important substrates for heterotrophic 

Figure 2.6  Consortia of heterotrophic bacteria enriched from two different 
PBRs using acetate or glucose as the sole carbon substrate at order-level 
classification.  The enrichments from the first PBR (1-Ac, 1-Gluc) were 
dominated by bacteria mostly from the order Rhizobiales but also contained 
bacteria from Burkholderiales, and Cytophagia.  Pseudomonadales heavily 
dominated the enrichments from the second PBR (2-Ac, 2-Gluc).  In both cases, 
enrichment on glucose led to greater bacterial diversity than did enrichment on 
acetate.   

1-A
c

1-G
luc 2-A

c
2-G

luc
0

20

40

60

80

100

Pseudomonadales
Rhizobiales
Burkholderiales
Cytophagales
Sphingobacteriales
Actinomycetales
Opitutales
Sphingomonadales
Xanthomonadales
Caulobacterales

%
 1

6S
 rR

N
A

 g
en

e 
se

qu
en

ce
s



! 38 

bacteria in the PBR environment.  This argument is strengthened by the EcoPlate data 

showing that all of the representative isolates could grow on complex polymers such as 

xylose, Tween 40, Tween 80, and glycogen.   

In summary, I isolated and enriched heterotrophic bacteria from Synechocystis-

based PBRs and showed that, in general, the same phylotypes of heterotrophic bacteria 

were present in the set of isolates and the enrichment cultures.  Gammaproteobacteria, 

especially Pseudomonas spp., accounted for the majority of the isolated bacteria and also 

accounted for the majority of the bacteria in one of the enrichment cultures.  Furthermore, a 

representative P. stutzeri showed a relatively higher growth rate compared to several of the 

other representative isolates.  Isolates from each taxonomic class detected in the isolation 

study showed very diverse metabolic capabilities, although different isolates showed 

preferences for different types of substrates.  Taken together, these data indicate that the 

ability to grow on a variety of carbon substrates is an important factor for the success of 

heterotrophic bacteria in Synechocystis-based PBRs, but that the simple substrates are the 

most favored.  This, many different taxa of heterotrophic bacteria likely possess the genes 

necessary to grow in Synechocystis-based PBRs.  In further studies, the heterotrophic 

bacteria isolated and enriched as a part of this study will be used to determine if they have 

differential effects on the growth of Synechocystis.  
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Chapter 3 

Kinetic analysis and modeling of heterotrophic bacteria associated with photobioreactor 

cultures of Synechocystis sp. PCC6803 

3.1  Introduction 

Mass culture of cyanobacterial biomass has attracted a great deal of attention as a 

possible route towards production of renewable biofuels (Ducat et al., 2011; Kim et al., 

2010b) and other valuable bioproducts.  Large-scale cultivation of Cyanobacteria presents 

several key engineering challenges.  One such challenge is, as in other biotechnologies, 

management of microbial interactions in the system (Rittmann et al., 2006).  Heterotrophic 

bacteria are almost always associated with natural populations of cyanobacteria and, as 

demonstrated in the literature and in the previous chapter, have also been shown to 

associate with cyanobacteria in engineered settings, such as photobioreactor (PBR) cultures 

(Berg et al., 2009).  These heterotrophic bacteria could have positive or negative impacts in 

the PBR.  For example, heterotrophic bacteria can recycle organic carbon as carbon dioxide 

and can reduce oxygen saturation in the PBR (Mouget et al., 1995).  Heterotrophic bacteria 

also can recycle macronutrients and increase the availability of micronutrients (Buchan et 

al., 2014; Keshtacher-Liebson et al., 1995).  However, heterotrophic bacteria may compete 

with cyanobacteria for available nutrients in PBR settings.  Furthermore, heterotrophic 

bacteria can consume valuable organic products excreted by the Cyanobacteria, such as 

fatty acids (Liu et al., 2011b).  Thus, it is important to develop an understanding of the 

heterotrophic bacteria that associate with PBR cultures.  

As demonstrated in Chapter 2, taxonomically diverse and metabolically versatile 

heterotrophic bacteria can be associated with PBR cultures of Synechocystis.  In PBRs, 
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heterotrophic bacteria grow by oxidizing the organic matter produced by Synechocystis.  

One major pool of these compounds includes soluble microbial products (SMP).  SMP can 

be derived from several sources.  Utilization-associated products (UAP) are produced as a 

direct result of electron donor oxidation, while biomass-associated products (BAP) are 

produced as a result of biomass decay or hydrolysis of extracellular polymeric substances 

(EPS) (Laspidou and Rittmann, 2002).  Synechocystis EPS is composed of proteins and 

polymeric carbohydrates that contain up to 70% glucose monomers along with other 

monosaccharides (Panoff et al., 1988) that can be decorated with methyl or acetyl groups 

(Schmidt et al., 1980).  Thus, compounds such as glucose, acetate, and free or combined 

amino acids could represent the most labile types of SMP available to the heterotrophic 

bacteria in the PBR.   

Here, I examine the growth kinetics of heterotrophic bacteria associated with PBR 

cultures of Synechocystis on several model compounds, including SMP derived from 

Synechocystis PBRs (S-SMP) and compare the kinetic properties of a single pure strain of 

P. stutzeri to a mixed consortium of heterotrophic bacteria (ENR1).  I then use simple 

mathematical models to explore the behavior of the heterotrophic bacteria in PBR settings.  

I demonstrate that the heterotrophic bacteria associated with Synechocystis PBRs display 

oligotrophic kinetic properties in that they have low Monod substrate half-maximum-rate 

concentrations (Km) for labile substrates and low maximum specific growth rates (!) 

(Kovárová-Kovar and Egli, 1998), especially when growing on S-SMP.  The model results 

suggest that even relatively recalcitrant S-SMP can support the growth of heterotrophic 

bacteria at hydraulic retention times (HRTs) typical of Synechocystis PBRs (3-5 days) 

(Kim et al., 2010b), while the more labile substrates can support heterotrophic growth at 
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HRTs well below this range.  This indicates that exclusion of heterotrophic bacteria from 

Synechocystis PBRs may be difficult with current PBR-operating strategies.   

 

3.2  Materials and Methods 

Bacterial strains, media, and substrates 

The laboratory of Dr. Willem Vermaas (School of Life Sciences, Arizona State 

University) provided stock cultures of wild-type Synechocystis sp. PCC6803.  

Pseudomonas stutzeri strain PBR_B2 (GenBank Accession KF539914, hereafter referred 

to as B2) and PBR Enrichment Culture 1 – Acetate (BioSample Accession 

SAMN03165108, hereafter referred to as ENR1) came from our laboratory’s strain 

collection.  B2 and ENR1 were derived from Synechocystis PBR cultures as described in the 

previous chapter.  I conducted all experiments with BG-11 medium (Rippka et al., 1979) to 

which I added simple organic substrates (1-100 mM sodium acetate (Sigma-Aldrich), 1-

500 mg/L D-glucose (Sigma-Aldrich), or 1-50 mM sodium laurate (Fluka)), or S-SMP 

harvested from a PBR.   

 

SMP harvest 

To harvest the S-SMP, I removed cells from 1 L of Synechocystis culture by 

centrifuging them at 4,000 RPM for 30 minutes at 4˚C.  I then harvested the supernatant, 

which contained SMP, and removed residual particles by passing it across a membrane 

filter with a nominal pore size of 0.45µm (Whatman).  It is critical to note that the S-SMP 

used in these experiments was harvested from PBRs in which heterotrophic bacteria were 
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present.  Thus, the S-SMP used here represents the relatively recalcitrant substrates 

available to heterotrophic bacteria in Synechocystis-based PBRs.   

 

Experimental setup and derivation of kinetic constants 

To determine the growth kinetic constants of maximum specific growth rate on 

compound m (!!), the Monod half-maximum-rate concentration for substrate m (Km), and 

yield for growth on each substrate (Y), I conducted a series of batch growth tests using the 

different bacterial cultures.  I grew the bacteria on various concentrations of each substrate 

and monitored the growth of the bacteria and consumption of the substrate.   

For each substrate, I calculated the observed specific growth rate (!!"#) using Eq. 

1, in which Xa is the measured concentration of biomass as chemical oxygen demand (mg 

COD/L), and t is time in days.  I then calculated the specific growth rate due to synthesis 

(!!"#) using Eq. 2, wherein b is the endogenous-decay coefficient having a value of b = 

0.1 d-1
, which is a typical value for aerobic heterotrophs (Rittmann and McCarty, 2001).  I 

then plotted the !!"# values versus substrate concentration (S) measured in mg COD/L and 

determined the values of ! and !!!by fitting the data points to the Monod Equation (Eq. 3) 

using non-linear regression analysis.  I then calculated Y using Eq. 4.   

Eq. 1)  µobs=
1
Xa
*
dXa
dt  

!q. 2)  µsyn=µobs+b!

Eq. 3)  µsyn=µm
Sm

Km+Sm
 !
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Eq. 4)  Y= 
µsyn*Xa
dS/dt  

[θx
min]lim is the absolute minimum HRT and the maximum µsyn value necessary to 

have steady-state biomass in a chemostat bioreactor.  Thus, any HRT lower than [θx
min]lim 

will cause washout of the bacteria.  I calculated the value of [θx
min]lim using Eq. 5., in which 

q is equal to µm divided by Y.  Smin represents the minimum input substrate concentration 

required to sustain steady-state biomass.  Thus, if S is less than Smin, the µsyn value is 

negative and biomass cannot accumulate.  I calculated Smin using Eq. 6.  All calculations 

were carried out in Microsoft Excel and GraphPad Prism.  All equations were adapted from 

Rittmann and McCarty, (2001). 

Eq. 5)![θxmin]lim = Yq-b
-1

   

Eq. 6) Smin=K
b
Yq-b

  

 

Measurement of microbial biomass 

I measured biomass by directly measuring optical density at a wavelength of 600 

nm (OD600) using a Cary-50-Bio UV-Visible spectrophotometer and converting that value 

to the dry biomass Iight (DW) using a calibration curve determined for each bacterial 

culture.  For the calibration, I determined DW using the total suspended solids (Method 

2540D) in Standard Methods (American Public Health Association, American Water 

Works Association, 1998).  I then converted dry biomass to chemical oxygen demand 

(COD) using a conversion factor of 1.29 mg COD/mg dry biomass and that biomass was 

53% carbon based on the empirical formula C5H7O2N (Rittmann and McCarty, 2001). 
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There were two instances in which there was interference with OD600 

measurements.  The first was when sodium laurate, which precipitated in BG-11 medium at 

concentrations greater than ~20 mg/L, was used as an electron donor and carbon source.  

The second was when S-SMP was used as an electron donor and carbon source, In this 

case, biomass concentrations often were too low to be measured reliably by OD600.  In 

these two instances, I estimated the biomass by measuring cellular protein.  To do this, I 

centrifuged a 1-mL sample (13K RPM, 3 min) to pellet the cells, removed the supernatant, 

resuspended the cell pellet in 1 mL deionized water, and stored these samples at -20˚C for 

at least 24 hours.  Later, I thawed the cell pellets at room temperature and quantified 

protein in the samples using a QuantiPro BCA Kit (Qiagen) according to the 

manufacturer’s protocol.  Finally, I converted from protein to biomass by assuming that the 

protein comprised 55% of total dry weight biomass (Rittmann and McCarty, 2001; Ziv-El 

et al., 2012).   

 

Analytical techniques 

To quantify acetate, I used an HPLC (Waters) equipped with an Aminex HPX-87H 

column (Bio-Rad) and a photodiode array detector (PDA) (Waters).  The operational 

parameters were 10 µL injection volume, flow rate of 0.6 mL/min for 35 minutes, column 

temperature of 50˚C, and PDA wavelength set to 210 nm.  I used sodium acetate (Sigma 

Aldrich) as a reference compound and converted acetate concentration to COD using a 

conversion factor of 1.07 mg COD/mg acetate.  To quantify laurate, I used a GC-FID 

(Shimadzu) equipped with an Rxi-1HT column (Restek).  The operational parameters were 

4-µL injection volume, linear velocity of 60.3 cm/sec, split ratio of 2, injector temperature 
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of 240˚C, the column temperature starting at 110˚C and rising at a rate of 20˚C/min to 

240˚C and then at a rate of 50˚C/min to 320˚C, detector temperature of 340˚C, makeup gas 

of H2 supplied at a rate of 10 mL/min.  The carrier gas was H2 and was supplied at a rate of 

32 mL/min; and the air flow was 400 mL/min.  I used dodecanoic acid (Sigma Aldrich) as 

a reference standard and converted the laurate concentration to COD using a conversion 

factor of 2.67 mg COD/mg laurate.  To quantify glucose, I used a Dionex ICS3000 

equipped with a CarboPac PA10 and an electrochemical detector (Dionex).  The 

operational parameters were 20 µL injection volume, flow rate of 1 mL/min with a gradient 

elution which began at 90% H2O and 10% 200 mM NaOH (Thermo Fisher) for 15 minutes, 

then 100% 200 mM NaOH for 15 minutes, and finally 90% H2O and 10% 200 mM NaOH 

for 15 minutes.  The column temperature was 30˚C.  I used high-purity D-glucose (Sigma 

Aldrich) as a reference standard and converted the glucose concentration to COD using a 

conversion factor of 1.07 mg COD/mg glucose.  I measured total organic carbon (TOC) 

and inorganic carbon (Ci) using a TOC-V Analyzer (Shimadzu) using potassium hydrogen 

phthalate (Sigma Aldrich) as a reference standard.  Dissolved organic carbon (DOC) was 

equal to the difference of TOC and Ci.  To convert from mg DOC to mg COD, I assumed 

that the DOC could be represented as glucose and used a conversion factor of 2.67 mg 

COD/mg C.   

 

Modeling approach 

I used a chemostat model to examine and compare the growth of B2 and ENR1 at 

different HRTs and with different substrates in steady-state conditions (Rittmann and 

McCarty, 2001).  For growth on a single substrate, I calculated Xa using Eq. 7 and S using 
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Eq. 8, solving both equations with the kinetic parameters I determined for the different 

substrates tested.   

 Eq.7)  Xa=Y S0-S
1

1+bθ
 

Eq.8)  S=Km 
1+bθ

Yqθ- 1+bθ  

It is likely that very labile substrates such as fatty acids and monosaccharides are 

present in a true PBR setting, even if their presence is only transient prior to their rapid 

utilization by heterotrophic bacteria.  Thus, I modeled growth of ENR1 when other, more 

labile, substrates were available in addition to S-SMP.  To achieve this, I first derived the 

equations for the steady-state mass balances for Xa growing on S-SMP with one (Eq. 9) 

additional substrate, wherein m is the substrate that is more labile than S-SMP (acetate, 

laurate, or glucose).  In this equation, I included a switch function Km
Km+Sm

 to control the 

utilization of S-SMP.  Thus, S-SMP is used only when the concentration of more labile 

substrate is low.   

Eq.9)  0= YSMP
qSMP*SSMP
KSMP+SSMP

Xaθ*
Km

Km+Sm
+Ym

qm*Sm
Km+Sm

Xaθ-bXaθ- Xa 

To calculate steady-state substrate concentrations for the labile substrates, I used 

Eq. 10, the steady-state mass balance on substrate m. The steady-state mass balance for 

SSMP in the presence of one additional substrate is Eq. 11.   

Eq. 10)  0= -
qm*Sm
Km+Sm

Xaθ+ S0-S !

Eq. 11)  0= -
qSMP*SSMP
KSMP+SSMP

Xaθ*
Km

Km+Sm
 + S0-S !



! 47 

I simultaneously solved the equations for steady-state values of Xa, SSMP, and Sm 

using the Solver function of Microsoft Excel.   

 

3.3  Results and Discussion 

Heterotrophic bacteria from PBRs demonstrate rapid growth on labile organic 

compounds compared to S-SMP 

Table 3.1 shows a comparison of the empirically derived growth kinetic parameters 

for B2 and ENR1 when acetate, laurate, glucose, or S-SMP was provided as single 

substrates.  In general, B2 and ENR1 displayed similar ! values for growth on acetate, 

laurate, and glucose as sole carbon substrates, although those for B2 were typically slightly 

higher.  The !!values for B2 and ENR1 were between 5.7 and 8.8/d, which is lower than 

those of some E. coli strains that demonstrated !!values up to 29/d when grown on glucose 

as a sole carbon source (Kovárová-Kovar and Egli, 1998).  However, they were higher than 

reported growth rates of some heterotrophic bacteria isolated from oligotrophic 

environments, which demonstrated specific growth rates around 2/d when grown on a low 

nutrient medium (Cho and Giovannoni, 2004).  B2 and ENR1 had Km values for glucose 

similar to characterized strains of E. coli (Kovárová-Kovar and Egli, 1998).  The Km value 

of ENR1 for growth on glucose was much lower than that of B2, while B2 had lower Km 

values for growth on acetate and laurate.  In general, the measured Km values were typical 

for heterotrophic bacteria in general, but tended to be higher than those of heterotrophic 

bacteria grown in truly oligotrophic conditions (Button, 1985).   Representative growth 

curves and Monod fits are presented in Appendix A.   
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Compared to growth on the labile substrates, ENR1 demonstrated a much lower ! 

value and a much higher Km value when utilizing S-SMP.   Thus, S-SMP was 

comparatively recalcitrant.  B2 did not show significant growth or substrate consumption 

when S-SMP was provided as a sole carbon substrate.  One reason for this might be that B2 

does not possess the enzymes necessary to degrade the polymers present in S-SMP, while 

the bacteria in ENR1 do.  This is often the case when comparing single bacterial strains to 

mixed consortia of bacteria (Sutherland, 1999).   

 

Because the measured ! and Km values tended to be higher than reported values for 

bacteria in oligotrophic environments, it is reasonable to conclude that PBR environments 

have characteristics similar to eutrophic lakes.  This assessment is reasonable, as some 

eutrophic lakes may only have DOC concentrations in the range of 1-10 mg C L-1 

(Biddanda et al., 2001; Imai et al., 2001), which is considerably lower than DOC 

concentrations of >1 g C L-1 measured in photobioreactor cultures (Lakaniemi et al., 

2012b).  Furthermore, nutrient concentrations in BG-11 medium are significantly higher 

Table 3.1  Kinetic parameters for growth of B2 and ENR1 on acetate, laurate, glucose, and         
S-SMP. 

 Acetate/Laurate Glucose SMP 
Constant Units B2 ENR1 B2 ENR1 ENR1 

Y mg COD/mg COD 0.51/0.5 0.37/0.52 0.53 0.51 0.3 

Km mg COD/L 2.4/8.8 18.8/34.5 
 44.1 0.17 187.3 

! 1/d 6.0/8.8 7.2/5.7 7.3 6.5 1.7 
q mg COD/mg COD*d 11.8/17.6 19.5/11.0 13.9 12.7 5.7 

Smin mg COD/L 0.04/0.1 0.7/0.62 0.62 0.003 11.7 
[θx

min]lim d 0.17/0.11 0.14/0.18 0.14 0.16 0.63 
KPi mg P/L 0.045 0.18 
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than those in eutrophic lakes (Huang et al., 2003; Rippka et al., 1979), indicating that PBRs 

will have more primary productivity and, thus, more release of DOC than their natural 

counterparts.   

However, the KPi values measured for B2 and ENR1 when acetate was provided in 

excess indicate that both can grow at phosphate concentrations <1 mg P/L and can drive P 

concentrations very low.  These values are in the range of those reported for both 

heterotrophic bacteria and Cyanobacteria (~0.031-0.31 mg P/L) (Button, 1985), indicating 

that competition between Synechocystis and heterotrophic for phosphate may be an 

important consideration in PBR operations.  Thus, the heterotrophic bacteria in 

Synechocystis-based PBRs demonstrate copiotrophic growth kinetics, but have the ability 

to grow even at very low concentrations of DOC and phosphate, suggesting that they can 

also display oligotrophic properties.   

The calculated [θx
min]lim values for growth on the labile substrates range from 0.14-

0.38 d.  PBRs would have to achieve a minimum Synechocystis specific growth rate of 

2.7/d in order to wash out the heterotrophic bacteria.  The [θx
min]lim for S-SMP was 0.63 d, 

requiring a Synechocystis specific growth rate of at least 1.6/d.  These values are 

significantly higher than reported growth rates of Synechocystis in continuously operated 

PBRs (Kim et al., 2010a; Kim et al., 2010b; Sheng et al., 2011a).  This means that, once 

introduced, heterotrophic bacteria probably will not be washed out of the PBR, provided 

that sufficient quantities of carbon substrates are available.   

The Smin values for the labile substrates ranged from 0.003 to 0.7 mg COD/L, and it 

was 11.7 mg COD/L for S-SMP.  To limit the growth of heterotrophic bacteria, the carbon 

substrates, especially the most labile ones, must be effectively removed from the culture 
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medium.  However, in continuously operated PBRs, Synechocystis biomass concentrations 

can reach concentrations of up to 1200 mg/L.  Thus, if Synechocystis biomass itself is 

considered to be a potential substrate for heterotrophic bacteria, then sufficient 

concentrations of substrate will always be available to heterotrophic bacteria.  

 Figure 3.1 shows the average result of two batch growth experiments of ENR1 

using S-SMP as a carbon substrate.  The average net biomass production was 47 mg 

COD/L, which corresponds to 36.4 mg biomass dry weight/L.  Thus, the biomass contained 

about 20 mg C/L.  The S-SMP concentration decreased rapidly from 60 to 23 mg C/L and 

never dropped below 18 mg C/L, indicating that a certain fraction of S-SMP was resistant 

to biodegradation by the heterotrophic bacteria.  Biodegradation of S-SMP was linked to an 

increase in Ci by 23 mg C/L, reaching a maximum of 40 mg C/L.  

  

 

 

 

 

 

 

 

 

 

 
Figure 3.1  Growth of ENR1 on S-SMP.  ENR1 
biomass (blue) grew by utilizing S-SMP (green).  The 
growth of ENR1 was tied to an increase in Ci (black).   
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Figure 3.2 shows a mass balance for the carbon in the system along with the pH.  

The estimated total carbon was calculated as the sum of the measured DOC, Ci, and the 

calculated C in biomass at the beginning of the experiment.  Throughout the experiment, 

the sum of measured DOC, Ci, and calculated C in biomass was close to the estimated total 

C.  This demonstrated that all the organic C that was consumed was conserved within the 

system.  Some of the organic carbon was returned as Ci, the carbon source for 

Synechocystis.  The decrease in pH from 10.3 to 8.5 indicates that the partitioning of Ci was 

driven from mostly carbonate to mostly bicarbonate.  This is also beneficial for 

Synechocystis-based PBRs, as bicarbonate is a form of Ci available to Synechocystis while 

carbonate is not (Kim et al., 2010a).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Carbon balance for growth of ENR1 on 
S-SMP. The top panel shows pH. The bottom panel 
shows DOC (green), Ci (red), C in biomass (blue), 
estimated total C (orange), and sum of DOC, Ci, and C 
in biomass (black). 
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Modeling analysis reveals trends of heterotrophic growth in continuous Synechocystis-

based PBRs  

I used the kinetic parameters in Table 3.1 to predict the concentration of 

heterotrophic biomass in continuous Synechocystis-based PBRs.  I assumed a constant 

Synechocystis biomass concentration of 400 mg COD/L and that Synechocystis diverted 

20% of fixed COD to SMP, including labile and recalcitrant substances; thus, the influent 

concentration of organic substrate was 100 mg COD/L, or 20% of the total of 500 mg 

COD/L.  Figure 3.3 shows the modeled Xa for growth of B2 and ENR1 on 100 mg COD/L 

of acetate, laurate, glucose, or S-SMP as a sole carbon substrate and for HRTs from 0.25 to 

10 days.  Because most of the [θx
min]lim values were around 0.2 days, I decided to only 

model the system at HRTs longer than this.  B2 displayed similar biomass concentrations 

for growth on the three labile substrates.  ENR1 demonstrated the most biomass production 

with glucose and laurate as a sole carbon sources, but slightly less with acetate.   

Figure 3.4 shows growth of ENR1 at various input S-SMP concentrations for HRTs 

up to 10 days (B2 did not grow on S-SMP.)  Lower input concentration of S-SMP caused 

ENR1 to washout at a larger HRTs.  For example, 100 mg COD/L input showed washout  

at HRTs < 2 days, while the washout HRT was < 1 day for 500 mg COD/L.  Achieving 

washout for and HRTs of 5 days would require that the input S-SMP concentration be 

lower than 40 mg COD/L.  Thus, achieving a low input of S-SMP can be a strategy to 

minimize heterotrophic growth in Synechocystis-based PBRs. 
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Figure 3.3  Modeled Xa values for B2 and ENR1 for growth on acetate 
(red), laurate (orange), glucose (blue),  or S-SMP (green).  The top panels 
show the modeled values for HRTs up to 10 days, while the bottom panels 
expand the horizontal scale for the same data for HRTs up to 2 days.  B2 
showed similar trends for all the labile substrates, while ENR1 showed greater 
biomass production on glucose than on the other substrates.  
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Figure 3.5 shows the modeled Xa values for growth of ENR1 on equal-COD 

mixtures of S-SMP with acetate, S-SMP with glucose, or S-SMP with laurate; the total 

substrate loading was set at an initial concentration of 100 mg COD/L (50 mg COD/L of 

each substrate).  The glucose and S-SMP mixture showed the most biomass at HRTs <3 

days.  At HRTs >3 days, the laurate and S-SMP mixture showed similar biomass 

concentrations to the glucose and S-SMP mixture.  The acetate and S-SMP mixture showed 

the least growth at all HRTs, because ENR1 had a lower Y value for growth on acetate 

compared to glucose and laurate.    

 

 

Figure 3.4  Modeled Xa values for growth of ENR1 on different input 
concentrations of S-SMP.  In the panel on the left, the values used were: 100 mg 
COD/L (solid line), 250 mg COD/L (dashed line), and 500 mg COD/L (dotted line).  
As the input S-SMP concentrations increased, the HRT required for washout 
decreased.  The panel on the right shows the modeled Xa values for a system with an 
input S-SMP concentration of 40 mg COD/L.  In this instance, washout occurred at 
all HRTs<5 days.   
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Figure 3.6 shows modeled Xa values for mixtures of glucose and S-SMP in which 

the two substrates were added in different ratios, but the total substrate loading was always 

100 mg COD/L.  As expected, the scenarios with higher initial ratios of glucose showed 

overall higher Xa values.  However, as the ratio of S-SMP increased, the highest Xa values 

were achieved at longer HRTs.  This demonstrates that the presence of labile substrates 

drives growth of heterotrophic bacteria at low HRTs and that that excluding labile 

substrates is a key if the goal is to minimize heterotrophic bacteria from Synechocystis-

based PBRs. 

 

Figure 3.5  Modeled Xa for growth of ENR1 on S-
SMP with acetate (red), glucose (blue), or laurate 
(orange) with a total COD loading of 100 mg COD/L.  
The mixture of glucose and S-SMP showed the most 
growth at all HRTs while acetate showed the least.  
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However, this may not be achievable if fatty acids and monosaccharides are derived 

directly from Synechocystis biomass by cell lysis or through the hydrolysis of EPS.   This 

presents an important challenge in systems where the goal is to recover excreted 

biomolecules, such as laurate (Liu et al., 2011b).  To examine this, I modeled a system with 

100 mg COD/L input laurate concentration with no additional substrate, 10 mg COD/L S-

SMP, or 10 mg COD/L glucose.  Figure 3.7 shows that at an HRT of 0.25 days, the 

addition of 10 mg COD/L S-SMP did not greatly affect the effluent laurate concentration, 

while addition of 10 mg COD/L glucose reduced the effluent laurate concentration by 

nearly 50%.  At HRTs >1 day, all effluent laurate concentrations were below 8.25 mg 

Figure 3.6  Modeled Xa for growth of ENR1 on different 
mixtures of S-SMP and glucose.  In all cases, the total 
substrate loading was 100 mg COD/L.  The ratios (Glucose:S-
SMP) used were 90:10 (closed squares), 50:50 (open squares), 
25:75 (closed circles), and 10:90 (open circles).  The highest 
biomass concentrations were achieved with higher glucose 
loadings.  As the ratio of S-SMP increased, the highest 
biomass concentrations were achieved at longer HRTs.   
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COD/L, which corresponds to 3.1 mg laurate/L.  Thus, if the goal of the PBR is to recover 

laurate, then the PBR must be operated at HRTs < 0.25 days, which corresponds to a 

Synechocystis growth rate of at least 4/day.  This growth rate is much higher than typically 

reported Synechocystis growth rates in PBR operations, which range from 0.22-3.4/day 

(Kim et al., 2010a; Zavřel et al., 2015).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three routes may be useful to suppress heterotrophic bacteria in Synechocystis-

based PBRs.  The first is to prevent the introduction of any heterotrophic bacteria to the 

system.  At very large scales, however, this represents a significant practical challenge.  

The second is to rapidly and thoroughly remove the available labile substrates while 

Figure 3.7 Modeled effluent laurate concentrations for a 
chemostat culture of ENR1.  The modeled input substrate 
concentration was 100 mg COD/L laurate (orange) with an 
addition of 10 mg COD/L S-SMP (green), or 10 mg COD/L 
glucose (blue).  At HRTs longer than 1 day, the effluent 
laurate concentration was always below 10 mg COD/L.    
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driving the concentration of S-SMP as low as possible in the PBR.  SMP can be reliably 

removed from PBRs by contacting the culture medium with granular activated carbon, 

which will adsorb the SMP (Gur-Reznik et al., 2008).  However, active and inactive 

Synechocystis biomass can act as a substrate for heterotrophic growth.  The third option is 

to operate the PBR in a way that achieves the highest µ value for Synechocystis while 

minimizing the concentration of Synechocystis biomass in the PBR.  This will allow the 

PBR to be operated at low HRTs, which will drive the system more towards washout of the 

heterotrophic bacteria by maintaining low concentrations of both labile and recalcitrant 

Synechocystis-derived substrates in the PBR.  If the goal is to operate Synechocystis-based 

PBRs at HRTs shorter than 5 days, the S-SMP concentration should be maintained below 

40 mg COD/L, meaning that the Synechocystis biomass concentration should be 

maintained below 200 mg COD/L.   

Here, I demonstrated that heterotrophic bacteria isolated or enriched from 

Synechocystis-based PBRs could grow on a variety of simple carbon substrates, such as 

short and long-chain fatty acids and monosaccharides.  In general, the pure isolated strain 

of P. stutzeri (B2) and the enriched culture (ENR1) displayed similar kinetic properties for 

growth on the simple substrates.  In contrast, ENR1 could grow on more recalcitrant carbon 

substrates harvested directly from Synechocystis-based PBRs (S-SMP).   I used empirically 

determined kinetic parameters to predict the concentration of heterotrophic biomass in 

continuous Synechocystis-based PBRs and demonstrated that heterotrophic bacteria can 

grow at HRTs well below the typical operating range of Synechocystis-based PBRs (3-5 

days) (Kim et al., 2010a).   

 



! 59 

Chapter 4 

Removal of Synechocystis sp. PCC6803 16S rRNA genes does not significantly improve 

resolution of heterotrophic bacteria in 16S rRNA-based microbial community analysis 

4.1  Introduction 

The work in Chapters 2 and 3 focused on developing an understanding of the 

heterotrophic bacteria associated with Synechocystis-based PBRs using culture dependent 

methods.  However, culture independent methods, especially 16S rRNA gene sequencing, 

offer a greater ability to assay the structure of microbial communities.  The work in this 

chapter presents the first step towards developing 16S rRNA gene sequencing techniques to 

analyze the microbial diversity in Synechocystis-based PBRs.   

Cyanobacteria are a diverse group of photoautotrophic microorganisms that can be 

used to produce renewable fuels and replace traditional fossil fuel resources (Rittmann, 

2008).  The cyanobacterium Synechocystis provides an excellent platform for biofuel 

production due to its fast growth rate and tolerance of a wide range of environmental 

factors (Sheng et al., 2011a).  Additionally, Synechocystis is naturally transformable and 

has a fully sequenced genome, opening the door for large-scale production of many 

valuable products (Ducat et al., 2011; Vermaas, 1998). 

Closed photobioreactors (PBRs) are more productive per unit area, offer greater 

protection from environmental factors, and provide increased control over culturing 

conditions when compared to traditional open ponds or raceways (Chisti, 2007).  However, 

maintaining axenic culturing conditions in closed PBRs can be difficult because 

sterilization of the culture vessel and media is neither economically feasible or technically 

practical at large scale (Lakaniemi et al., 2012b).  In natural settings, diverse communities 
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of heterotrophic bacteria associate with Cyanobacteria (Eiler and Bertilsson, 2004; Hube et 

al., 2009; Li et al., 2011), and heterotrophs have been found in PBR cultures as well 

(Carney et al., 2014; Lakaniemi et al., 2012a; Lakaniemi et al., 2012b).  Heterotroph-

Cyanobacteria interactions are ubiquitous, because heterotrophic bacteria grow by 

catabolizing organic compounds that the Cyanobacteria produce and release.  The 

Cyanobacteria can benefit when the heterotrophs recycle nutrients (Abed et al., 2007; Berg 

et al., 2009; Eiler and Bertilsson, 2004), but the heterotrophic bacteria could be harmful by 

causing lysis of cyanobacterial cells (Radhidan and Bird, 2001) or by competing for 

nutrients (Bratbak and Thingstad, 1985).  

Since heterotrophic bacteria are intrinsic in PBR technologies, determining which 

heterotrophic bacteria are commonly associated with the cyanobacteria is essential for the 

effective management of PBR systems.  Studies on microbial communities associated with 

Cyanobacteria are so far limited in number and focus solely on natural settings such as 

freshwater cyanobacterial blooms (Berg et al., 2009; Eiler and Bertilsson, 2004; Li et al., 

2011).  Heterotrophic-community analysis of PBR cultures is made difficult because 

Synechocystis normally is by far dominant in terms of cell numbers and biomass, as it is the 

primary producer of the system.  This dominance often is amplified when using genomics 

approaches, since Synechocystis is highly polypoid (Chisholm and Binder, 1995; Griese et 

al., 2011; Labarre et al., 1989).  Thus, Synechocystis usually is overwhelmingly dominant 

when the assay is based on the abundance of 16S rRNA genes.  Eliminating the 

Synechocystis 16S rRNA genes prior to analysis should be a means to amplify the signal 

from the less abundant species in the PBR.  
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Streptavadin-coated magnetic beads coupled with biotin-tagged oligonucleotide 

probes are routinely used to isolate and purify nucleic acids on the basis of sequence 

similarity (Rodriguez et al., 2012).  The technique, termed magnetic capture hybridization 

(MCH), is usually employed to concentrate low-abundance bacterial or viral DNA from 

complex pools of DNA (Böni et al., 2004; Parham et al., 2007).  Here, I use MCH to 

specifically remove high-abundance Synechocystis 16S rRNA genes from a pool of 

genomic DNA (gDNA) extracted from PBR cultures in order to enrich the low-abundance 

16S rRNA genes from the heterotrophic population of the PBR.  This novel application of a 

classical technology stands to greatly improve our understanding of the heterotrophic 

bacteria associated with Synechocystis in PBR cultures and can be adapted to almost any 

system.  I then compare the microbial community profiles before and after MCH removal 

of Synechocystis 16S rRNA genes by high-throughput sequencing of PCR amplified 16S 

rRNA gene libraries using an Ion Torrent Personal Genome Machine (PGM).  

I found that the MCH treatment did not significantly improve the resolution of 

heterotrophic bacteria in 16S rRNA gene-based assays and that, in some cases, the MCH 

treated samples showed lower abundances of certain groups of heterotrophic bacteria.  I 

then determined that this was because the oligonucleotide probe shared at least nine base 

pairs of sequence similarity with a number of non-Synechocystis 16S rRNA gene sequences 

and also shared this degree of sequence similarity with a number of non-16S rRNA genes 

from Synechocystis and other bacteria and was likely cross-reactive with these other 

sequences and probably removed them along with the Synechocystis 16S rRNA genes.  
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4.2  Materials and Methods 

Cell cultures, growth and sampling 

The laboratory of Dr. Willem Vermaas (School of Life Sciences, Arizona State 

University) provided stock cultures of wild type (WT) Synechocystis sp. PCC 6803 

(hereafter abbreviated as Synechocystis) and a genetically modified strain designed to 

produce and excrete the fatty acid laurate.  Stock cultures of both strains were grown in 

Erlenmeyer flasks at 30°C in BG-11 medium bubbled with air.  I obtained a stock of 

Pseudomonas stutzeri strain PBR_B2 (GenBank Acc. No. KF539914) from our 

laboratory’s culture collection. 

 

DNA Extraction 

I took 1-mL samples from each PBR daily and centrifuged them (13K RCF, 3 min) 

to remove the biomass.  I removed the supernatant and stored the samples at -80˚C prior to 

DNA extraction.  I extracted total genomic DNA from PBR samples using the DNeasy 

Blood & Tissue Kit (Qiagen, Valencia, CA) with the following modifications designed to 

enhance lysis.  I resuspended cell pellets in 200µL lysis buffer (30 mM Tris·HCl, 10 mM 

EDTA, 200 mM sucrose, pH 8.2) and incubated the mixture at 65°C for 10 minutes. I then 

added chicken egg white lysozyme (Sigma Aldrich, St. Louis, MO) to a final concentration 

10 mg/mL and incubated the samples for 1 hour at 37°C.  Next, I added SDS at 1% (w/v) 

and incubated the samples at 56°C for 10 minutes.  Finally, I added 25µL proteinase K and 

200µL buffer AL (Qiagen) and incubated that mixture at 56°C for 30 minutes and 

completed the DNA extraction according to the manufacturer’s (Qiagen) instructions. 
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Capture/TaqMan probe design 

I performed a Basic Local Alignment Search Tool (BLAST) search against the 

Synechocystis 16S rRNA gene sequence (accession no. BA000022.2) and generated a list 

of highly similar 16S rRNA gene sequences from other cyanobacteria.  I selected four 

closely related 16S rRNA gene sequences from Synechocystis spp. (accession nos. 

AB041938, AB041937, AB039001, and AB041936), as well as the more distantly related 

Microcystis aeruginosa and Anabaena sp. PCC 7120.  I then used ClustalW to generate a 

pairwise sequence alignment to identify the conserved and variable regions within the 16S 

rRNA gene.  A hyper-variable region near nucleotide position 560 on the Synechocystis 

16S rRNA gene was identified as a target for probe annealing.  The sequence of the probe 

was (5’-CTCCTATGGAGTTAAGCTC-3’).    

 

qPCR for specific detection of Synechocystis 16S rRNA genes 

I determined that the SynMCH probe was appropriate for use as a TaqMan qPCR 

probe (when labeled with the appropriate fluorescent dye and quencher molecule) when 

combined with the forward primer SYN522F (5’- CGTCCGTAGGTGGTTATGC-3’) and 

reverse primer SYN620R (5’-CCTGCTACCCCTACTGT-3’).  Control templates for the 

16S rRNA gene were generated by PCR amplifying the entire 16S rRNA gene from 

Synechocystis using the universal bacterial primers 8F and 1525R (Löffler et al., 2000).  

PCR products were purified using the QiaQuick PCR Purification Kit (Qiagen) and cloned 

using the TOPO-TA cloning kit for sequencing (Life Techonolgies).  I extracted plasmid 

DNA from transformants with the expected insert length using a Qiaprep Spin Minprep Kit 

(Qiagen).  I used a similar approach to generate control templates for the other 
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cyanobacterial species.  qPCR conditions were as follows:  1x 5PRIME RealMasterMix 

probe and 300 nM each of SYN522F and SYN620R and the SynMCH probe (labeled with 

a 5’FAM and 3’ BHQ1 quencher) in a total volume of 10 µL.  Reactions were denatured at 

95°C for 2 minutes, followed by 40 cycles of 95°C for 10 seconds, 56°C for 20 seconds, 

68°C for 20 seconds.  I performed qPCR reactions in a Realplex 4 epGradient S 

Mastercycler (Eppendorf) and ran all reactions in triplicate.  To measure total bacterial 16S 

rRNA gene sequences, I prepared qPCRs exactly as described above, but using forward 

primer Bac1055yf (Ritalahti et al., 2006), reverse primer 1392r, and probe 16STaq1115 

(Dionisi et al., 2003) carrying a 5’ FAM fluorescent dye and 3’ BHQ1 quencher.  I 

generated a calibration curve using serial dilutions of the plasmid harboring the 16S rRNA 

gene from Synechocystis described above which ranged from 72.492 to 7.2492e7 16S 

rRNA gene copies/µL.   

To test the quantitative capacity of the total bacterial (TBac) and Synechocystis 

specific qPCR (Syn) primer sets, I performed qPCR on mixtures of the plasmid carrying 

the Synechocystis 16S rRNA gene (described above) and genomic DNA (gDNA) extracted 

from a pure culture of P. stutzeri strain PBR_B2.  I first quantified 16S rRNA gene copies 

in each separate gDNA stock using the TBac primer set.  I then made mixtures targeting a 

total of 106 16S rRNA gene copies/µL.  The mixtures were composed of 100, 99, 90, 75, 

50, 25, 10, and 1% Synechocystis 16S rRNA genes with the remainder (i.e. 0, 1, 10, 25, 50, 

75, 90, and 99%) composed of 16S rRNA genes from the P. stutzeri strain PBR_B2.   
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Specific removal of Synechocystis 16S rRNA genes by MCH 

I based the conditions for the MCH on previous work (Parham et al., 2007; 

Rodriguez et al., 2012; Thompson et al., 2006).  I selected a hybridization temperature of 

47°C based on the predicted Tm of the SynMCH probe (49°C).  I used a biotin-tagged 

oligonucleotide probe SynMCH (5’-Biotin-CTCCTATGGAGTTAAGCTC-3’, Integrated 

DNA Technologies) to specifically target and remove Synechocystis 16S rRNA genes from 

gDNA extracted from PBR cultures.  First, I normalized all samples of gDNA to 20 ng/µL 

and placed 10µL of this into a clean microcentrifuge tube (200 ng gDNA total).  To test the 

effect of different concentrations of the SynMCH probe, I added the SynMCH to the 

normalized gDNA at concentrations of 0.5 µM or 1 µM.  I incubated this mixture at 90˚C 

for 10 minutes to denature the DNA and then incubated the samples at 47˚C for 1 hour to 

allow the SynMCH probe to anneal to the gDNA.  I washed and prepared fresh 

Streptavadin-coated Dynabeads (Life Technologies) for DNA manipulations as described 

by the manufacturer.  To test the effect of different concentrations of the magnetic beads, I 

added 5, 10, or 15 µL of the prepared beads to the reaction mixtures and incubated these 

mixtures at 47°C and 800 RPM for 30 minutes on a Thermomixer R (Eppendorf).  I then 

separated the beads magnetically and moved the supernatant, which contained non-

Synechocystis 16S rDNA, to a fresh tube.  Finally, I recovered the non-Synechocystis DNA 

by purifying the reactions using a QiaQuick PCR Cleanup Kit (Qiagen).  I repeated this 

experiment using gDNA extracted from a separate PBR.  Table 4.1 shows the different 

MCH conditions used in this study.  In all instances, the concentrations of the SynMCH 

probe and streptavidin coated beads were above the dissociation for the biotin-streptavidin 

interaction (0.04 pM) (Holmberg et al., 2005).   
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High-throughput sequencing and data analysis 

I sequenced 16S rRNA genes from the different samples using previously described 

methods (Caporaso et al., 2012).  I amplified the V4 region of bacterial 16S rRNA genes 

using Golay barcoded primer set 515F/806R (Caporaso et al., 2010a).  I then pooled the 

triplicate PCR reactions and quantified them using the Quant-iT PicoGreen dsDNA Assay 

Kit (Life Technologies).  Next, I pooled 240 ng of each sample in and cleaned the final 

pool using the QiaQuick PCR Cleanup Kit (Qiagen).  For loading the samples onto the 

Illumina MiSeq, I quantified the PCR library using the KAPA SYBR FAST Universal 

qPCR Kit for Illumina (KAPA Biosystems).  I then sent the prepared libraries to the 

Microbiome Analysis Laboratory at Arizona State University for sequencing on the 

Illumina MiSeq.  I analyzed all 16S rRNA gene sequencing data using the QIIME software 

using the default quality filters (Caporaso et al., 2010b; Zhou et al., 2014).  All sequences 

that were not assigned a specific taxonomic classification and taxa that represented less 

Table 4.1  MCH conditions.  The SynMCH probe was used 
in two different concentrations and the magnetic beads were 
used in three different concentrations.   

Reaction 
Number 

Probe 
Concentration 

(µM) 

Bead 
concentration 

(mg/mL) 

Theoretical 
total 

binding 
capacity of 
beads* (µg 

dsDNA) 
1 

0.5 
0.3 0.2 

2 3.0 2 
3 4.5 3 
4 

1 
0.3 0.2 

5 3.0 2 
6 4.5 3 

* Based on binding capacity of 20 µg dsDNA/mg Beads 
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than 1% of the microbial community were removed from the analyses.  All analyses are of 

150 bp reads in the forward direction.  I computed rarefaction curves using the PD Whole 

Tree index.  

  

Terminal-restriction fragment length polymorphism (T-RFLP) analysis 

I amplified 16S rRNA genes using the universal bacterial primers 8F (5’-

AGAGTTTGATCCTGGCTCAG-3’) and 1392R (5’-ACACACCGCCCGT-3’) (Fortuna et 

al., 2011; Liu et al., 1997).  The 8F primer carried a 5’-HEX fluorescent dye (Integrated 

DNA Technologies), while the 1392R primer was unlabeled. PCR conditions were as 

follows: 1x Taq PCR Master Mix (Qiagen), 250 nM each primer, 1 mM Mg2+, and 10 ng 

template DNA in a total of 50 µL.  PCR reactions were denatured at 94°C for 6 minutes, 

followed by 30 cycles of 94°C for 45 seconds, 55°C for 45 seconds, 72°C for 2 minutes 

and a final extension period at 72°C for 10 minutes.  Following PCR, I checked for 

amplicons of the proper size on a 1% (w/v) agarose gel.  I then digested the amplified 16S 

rRNA genes using the restriction enzymes HhaI or MseI (New England Biolabs, Ipswich, 

MA).  Next, I analyzed the sizes of the T-RFs produced on an ABI 3730 DNA Analyzer 

using the GeneScan500 ROX Size Standard (Applied Biosystems).  I gathered raw T-RFLP 

data using the Peak Scanner Software v1.0 (Applied Biosystems) and analyzed the data 

using previously described methods (Rees et al., 2004).  I determined total fluorescence 

intensity within each individual sample by summing the fluorescence intensity of all 

detected T-RFs for that sample.  I normalized T-RFLP data by removing peaks that 

contained less than 1% of the total fluorescence intensity and calculated a new total 

fluorescence intensity using only T-RFs detected as above background.  I then determined 
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true T-RFs as any T-RF that contained more than 5% of the new total fluorescence 

intensity (Rees et al., 2004).  To compensate for T-RF drift, all T-RFs were aligned 

manually by assuming that T-RFs within ±1 bp were the same size (Smith et al., 2005).  T-

RFs smaller than 50 base pairs (bp) and larger than 600 bp were omitted from the analyses, 

as fragments of these sizes are not supported by the size standard I used.  I performed all 

manipulation of raw T-RFLP data using original Perl scripts and Microsoft Excel 

spreadsheets. 

 

BLAST analysis for alternative hybridization sites for SynMCH probe 

To test for cross-reactivity between the SynMCH probe and 16S rRNA genes from 

other bacterial species, I used the NCBI BLAST tool with the megablast algorithm to find 

sites in other bacterial 16S rRNA gene sequences that had at least 9 bp of sequence 

similarity with the SynMCH probe sequence.   I also used the BLAST tool to find other 

sites within the genome of Synechocystis sp. PCC6803 and within the genomes of 

heterotrophic bacteria including Pseudomonas and Bacillus spp. that had at least 9 bp of 

sequence similarity with the SynMCH probe.  To determine if a longer probe would have 

less cross-reactivity, I performed a BLAST analysis similar to above, but with a probe 

sequence that was 40 bp long.  I generated this sequence by extending the original 

SynMCH probe sequence 10 bp in the 5’ direction and 11 bp in the 3’ direction along the 

Synechocystis 16S rRNA gene.  This sequence was 5’-

GAGCTTAACTCCATAGGAGCGGTGGAAACTGCAAGACTAG-3’. 
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4.3  Results and Discussion 

qPCR for specific detection of Synechocystis 16S rRNA genes 

Figure 4.1 shows amplification plots for qPCR reactions performed using the 

SYN522F/SYN620R/SynMCH primer and TaqMan qPCR probe set (hereafter referred to 

as SynTaq).  Synechocystis 16S rRNA gene templates showed amplification, while the 16S 

rRNA genes of the four other Cyanobacteria did not show amplification.  Therefore, the 

SynTaq probe set demonstrated high specificity for Synechocystis 16S rRNA genes.  

The results of the test of the quantitative ability of the two probe sets are shown in 

Figure 4.2.  Except for the 99%, 90%, and 75% mixtures, the TBac probe set returned 

around 106 16S rRNA gene copies/µL.  The 50%, 25%, 10%, and 1% mixtures returned the 

greatest concentrations of 16S rRNA gene copies, indicating that the TBac probe set had 

greater quantitative accuracy for systems dominated by heterotrophic bacteria.  However, 

for the 100% and 99% mixtures, the SynTaq probe set showed more 16S rRNA gene 

copies/µL than did the TBac probe set.  Thus, for systems that are highly enriched in 

Synechocystis, the TBac probe set may underestimate the true concentration of 16S rRNA 

genes.   
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Figure 4.1 Amplification plots of cloned cyanobacterial 16S rRNA genes. 
Templates were present in qPCRs in triplicate at either 40 pg (concentrated) or 40 fg 
(dilute) per reaction. The y-axes are scaled identically in each plot. The red line is 
shown at the same fluorescence threshold on each plot and was determined as the 
noiseband value from the Synechocystis amplification plot.  Amplification was only 
detected for Synechocystis. 
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qPCR shows a reduction in 16S rRNA gene copy concentration after MCH treatment 

Figure 4.3 shows qPCR results from the original, untreated sample of gDNA 

extracted from each PBR (Pool) and from the six different treated samples.  For the first 

sample set (A), the Pool sample showed more 16S rRNA gene copies/µL for the TBac 

probe set than for the SynTaq probe set, while the Pool sample for the second sample set 
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Figure 4.2  qPCR analysis of mixtures of a plasmid carrying 
the Synechocystis 16S rRNA gene and P. stutzeri gDNA.  The 
TBac probe set (red) detected more 16S rRNA gene copies at 
higher concentrations of P. stutzeri, but was near the target 106 
copies/µL in all cases.  The SynTaq agreed well with the TBac 
probe set in most cases and demonstrated reasonable quantitative 
capability.   
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(B) showed more 16S rRNA gene copies/µL for the SynTaq probe set.  This indicates that 

sample set B was initially more enriched for Synechocystis than was sample set A.   

 

All of the treated samples in both sample sets showed more 16S rRNA gene 

copies/µL with the SynTaq probe set than for the TBac probe set.  This result was 

unexpected, as the specific removal of Synechocystis 16S rRNA genes ought to have 

enriched for 16S rRNA genes from heterotrophic bacteria, which should have increased the 

ratio of 16S rRNA gene copies detected with the TBac probe set compared to those 

detected with the SynTaq probe set.  Nevertheless, both qPCR probe sets showed a 

reduction in the 16S rRNA gene copies/µL for all of the treated samples in both sample 

Figure 4.3  qPCR analysis of the two MCH sample sets.   The Pool from sample set 
A showed more 16S rRNA gene copies/µL for the TBac probe set (red) than for the 
SynTaq probe set (green) while the opposite was true for the Pool sample set B, 
indicating that sample set B was more enriched for Synechocystis than sample set A.  
For both sample sets, the MCH treatment reduced the 16S rRNA gene copies/µL 
detected with both probe sets. The probe and bead concentrations did not affect the 
efficiency of the MCH.   
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sets.  Thus, it is reasonable to conclude that the MCH technique successfully removed 16S 

rRNA genes from the two samples.   

 

High-throughput 16S rRNA gene sequencing reveals minimal removal of 

Synechocystis 16S rRNA genes 

High-throughput sequencing results presented at the order-level are summarized in 

Figure 4.4  For sample set A, sequences assigned to the order Chroococcales, to which 

Synechocystis belongs, comprised only around 10% of the 16S rRNA gene sequences in the 

Pool sample, while the remaining sequences were assigned to orders of heterotrophic 

bacteria.  All of the MCH-treated samples from sample set A showed similar abundances of 

sequences from the order Chroococcales, indicating that the MCH failed to remove any of 

the 16S rRNA genes from Synechocystis.  Interestingly, the treated samples showed a 

decrease in the relative proportion of sequences assigned to the order Bacillales compared 

to the Pool sample.  Thus, the SynMCH probe may have some cross-reactivity with 16S 

rRNA genes from non-Synechocystis bacterial species.  All of the other bacterial orders 

detected showed increased relative abundance in the MCH treated samples compared to the 

Pool sample.   

For sample set B, the relative abundance of 16S rRNA genes assigned to the order 

Chroococcales was slightly reduced (5-10%) in the MCH treated samples compared to the 

Pool sample.  In this sample set, sequences assigned to the order Saprospirales also 

decreased slightly (1-2%) in the MCH treated samples as compared to the Pool sample.  As 

in sample set A, all of the other bacterial orders detected showed increased relative 

abundance in the MCH treated samples compared to the Pool sample.  In both sample sets, 
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all of the bacterial orders detected in the Pool samples also were detected in the MCH 

treated samples, but the MCH treatment did not lead to the detection of bacterial orders that 

were not detected in the Pool samples.  Thus, the MCH treated samples may more closely 

represent the actual structure of the heterotrophic communities in the different PBRs.  Both 

the qPCR and high-throughput sequencing results suggest that neither the amount of probe 

nor the amount of magnetic beads used had a great effect on the removal of Synechocystis 

16S rRNA genes.  

 

Tables 4.2 and 4.3 show whether or not the MCH treatment increased or decreased 

the relative abundance of each taxonomic order detected compared to the untreated “Pool” 

sample in sample set A and sample set B, respectively.  In sample set A, the relative 

abundance of Chroococcales increased in some of the MCH-treated samples, while the 

relative abundance of Bacillales decreased.  In sample set B, the relative abundance of 

Figure 4.4  High-throughput 16S rRNA gene sequencing analysis of the two 
MCH sample sets at order-level definition.  Sample set A did not show any 
reduction, while sample set B showed only minor reduction in the relative abundance 
of sequences assigned to the order Chroococcales (Synechocystis).  In general, the 
relative abundance of the different orders of heterotrophic bacteria increased 
following the MCH treatment.  
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Chroococcales and Saprospirales decreased in all of the MCH treated samples, while the 

relative abundance of Pseudomonadales decreased in all but one of the MCH-treated 

samples.  For both sample sets, the relative abundance of the other taxonomic orders 

increased following the MCH treatment.  This demonstrated that the SynMCH probe may 

have had some cross-reactivity with the 16S rRNA genes of several other species.  

Furthermore, this showed that the MCH treatment was most effective in reducing the 

relative abundance of Synechocystis (Chroococcales) in systems with a greater initial 

proportion of Synechocystis 16S rRNA genes, as was the case for sample set B.   

 

 

 

 

 

Table 4.2  Change in abundance of each taxonomic order detected in sample set A.  
Compared to the “Pool” sample, red indicates a decrease in the relative abundance of 
each taxonomic order detected, while green indicates an increase in the relative 
abundance.  The relative abundance of Chroococcales increased in three of the MCH 
reactions while the relative abundance of Bacillales decreased in all of the MCH 
reactions.  The abundance of all the other detected taxa increased following the MCH 
treatment. 

Chroococcales Bacillales Pseudomonadales Xanthomonadales Rhizobiales Burkholderiales 
Pool 9.37 52.52 18.92 13.37 0.84 1.17 

1 10.29 35.92 31.47 13.46 2.44 1.61 
2 9.73 38.16 30.64 13.36 2.86 1.46 
3 8.67 34.3 35.71 13.82 2.2 1.24 
4 10.68 37.59 29.35 16.02 2.04 1.26 
5 9.36 45.28 24.4 14.15 2.9 1.68 
6 7.67 39.38 31.01 13.92 2.15 1.23 
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Alpha rarefaction curves for the two samples sets are shown in Figure 4.5.  In 

general, the rarefaction curves for the MCH-treated samples plateaued at lower sequences 

per sample than did the Pool samples, indicating that more of the operational taxonomic 

unit (OTU) diversity in the MCH-treated samples were detected with fewer sequences per 

sample.  Compared to the Pool samples, the MCH-treated samples showed very similar 

community profiles with fewer sequences per sample.  Thus, the MCH treatment may have 

removed redundant OTUs that would have been assigned to the order Chroococcales.  

 
 

Table 4.3  Change in abundance of each taxonomic order detected in sample set 
B.  Compared to the “Pool” sample, red indicates a decrease in the relative abundance 
abundance of each taxonomic order detected while green indicates an increase in the 
relative abundance.  In all of the treated samples, the relative abundance of 
Chroococcales and Saprospirales decreased in all of the MCH treated samples while 
the relative abundance of Pseudomonadales decreased in all but one of the MCH 
treated samples.  All of the other taxonomic orders detected increased in relative 
abundance following the MCH treatment.   

Chroococcales Pseudomonadales Rhizobiales Burkholderiales Saprospirales Sphingomonadales 
Pool 56.2 22.3 2.1 2.6 5.4 0.6 

1 50.7 18.4 6.1 5.2 4 1.6 
2 50.7 17.2 6.1 4.8 3.9 1.6 
3 49.6 19.7 6.9 5.7 3.6 1.6 
4 49 19.1 6.8 6.6 3.4 1.8 
5 43.5 22.6 7.2 6.7 4.5 2 
6 46.5 21.2 6.5 5.4 4.6 1.7 

Chlorobi Caulobacterales 
Pool 0.8 0.4 

1 1.3 1.2 
2 1.7 1.3 
3 1.3 1.4 
4 1.5 1.3 
5 1.5 1.4 
6 1.2 1.2 
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These data indicate that the MCH technique for specific removal of Synechocystis 

16S rRNA genes was most effective in systems with high ratios of Synechocystis 16S 

rRNA genes to total bacterial 16S rRNA genes.  Even in such systems, the MCH may be 

unnecessary for high-throughput sequencing techniques, as they are sensitive enough to 

detect 16S rRNA gene sequences that are present in very low abundances.   

 

MCH improves detection of heterotrophic bacteria in T-RFLP assays  

Table 4.4 shows the number of T-RFs detected for each sample with the restriction 

enzyme HhaI and MseI.  Importantly, the T-RF generated by digesting the Synechocystis 

16S rRNA gene with HhaI is too large to be detected in these T-RFLP assays.  Thus, 

Synechocystis is excluded from the analysis of the microbial community (this is examined 
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Figure 4.5  Rarefaction plots of the 16S rRNA gene sequencing data.  The MCH-treated 
samples from sample set A showed fewer sequences per sample and did not detect as many 
unique OTUs as compared to the Pool sample.  Most of the MCH treated samples from 
sample set B showed similar rarefaction measures as compared to the Pool sample.   

 



! 78 

in greater detail in the following chapter).  For sample set A, the Pool sample showed more 

T-RFs than did any of the MCH treated samples.  In contrast, for sample set B, all but one 

of the MCH treated samples (condition 6) showed more T-RFs than the Pool sample.  

Synechocystis produces a T-RF in the detectable range for T-RFLP assays using MseI.  For 

sample set A, only one of the MCH treated samples showed more non-Synechocystis T-RFs 

than did the Pool sample.  For sample set B, all of the MCH-treated samples showed as 

many or more non-Synechocystis T-RFs than the Pool sample.  Thus, the MCH treatment 

showed some improvement in detection of non-Synechocystis species in sample set B for 

both HhaI and MseI.  However, the MCH treatment tended to reduce the number of non-

Synechocystis T-RFs detected in sample set A for both restriction enzymes.  These results 

also show that the MCH treatment is most effective in systems with a higher initial 

proportion of Synechocystis 16S rRNA genes.   

 

 

 

 

 

 

 

 

 

 

Table 4.4  Number of non-Synechocystis T-RFs detected in the 
two sample sets with the HhaI restriction enzyme digest.  For 
sample set A, the most T-RFs were detected in the Pool sample.  
For sample set B, the most T-RFs were detected in the MCH 
treated samples.   
 HhaI MseI 
 A B A B 

Pool 8 6 5 2 
1 3 7 4 2 
2 5 8 4 3 
3 3 7 8 4 
4 2 8 4 3 
5 4 7 4 4 
6 1 3 2 2 
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In summary, I developed a qPCR assay targeted towards detecting Synechocystis 

16S rRNA genes in diverse backgrounds.  The qPCR assayed was highly specific to 

Synechocystis 16S rRNA genes and quantitative, although it may have slightly 

overestimated the concentration of Synechocystis 16S rRNA genes in systems that are 

highly enriched for Synechocystis.  I also developed a novel MCH strategy specifically to 

remove Synechocystis 16S rRNA genes from pools of gDNA extracted from Synechocystis-

based PBRs so that I could detect non-Synechocystis bacteria.  Analysis by qPCR showed 

that the MCH method successfully removed Synechocystis 16S rRNA genes.  However, 

this removal ability has only small impacts on the outcome of high-throughput sequencing 

analysis of the microbial community.  The MCH method improved the resolution of non-

Synechocystis bacteria in T-RFLP analyses, but this effect was limited to systems that had a 

relatively high abundance of Synechocystis.  Thus, the current MCH method may only be 

useful for the analysis of heterotrophic bacteria in PBRs that are highly dominated by 

Synechocystis.  Since I conducted the MCH using pools of gDNA, it was more 

thermodynamically favorable for large fragments of gDNA to hybridize to one another than 

to the MCH probe, which provides a likely explanation for the low removal efficiencies.  A 

future approach may be to increase the fragmentation of the gDNA prior to the MCH 

treatment using physical or enzymatic processes, which may help to increase the 

favorability of the probe-gDNA binding.  Another approach could be to perform the MCH 

on very dilute samples of 16S rRNA gene libraries prepared by PCR amplifying 16S rRNA 

genes using the universal bacterial primers described above.   
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Cross-reactivity between SynMCH probe and non-Synechocystis 16S rRNA gene 

sequences 

The reason that MCH did not have a large impact on the resolution of high-

throughput sequencing and T-RFLP was probably in part due to the probes’ cross-reactivity 

with non-Synechocystis 16S rRNA genes, as well as with non-16S rRNA genes in the 

genomes of heterotrophic bacteria.  BLAST results showed that the short and long probes 

had at least 9 bp of sequence similarity with more than 900 non-Synechocystis 16S rRNA 

gene sequences.  Thus, neither probe was wholly specific to Synechocystis 16S rRNA 

genes.  The short probe had at least 9 bp of sequence similarity with 251 unique non-16S 

rRNA gene regions within the Synechocystis genome, while the long probe shared at least 9 

bp of sequence similarity with 293 unique non-16S rRNA regions within the Synechocystis 

genome.  Similarly, the short and long probes showed more than 9 bp of sequence 

similarity with the genomes of a number of unique Pseudomonas and Bacillus species and 

it is likely that this is the case for many other heterotrophic bacteria.  From this, I conclude 

that the SynMCH probe used in the MCH treatments bound to some alternative sites either 

within the 16S rRNA genes or in non-16S rRNA gene regions of the genomes of the 

heterotrophic bacteria.  These data also explain why the MCH technique worked best in 

systems with high proportions of Synechocystis, as they had lower proportions of non-

Synechocystis 16S rRNA gene targets. 

In this chapter, I demonstrated a novel MCH technique to remove Synechocystis 

16S rRNA genes from pools of DNA from Synechocystis-based PBRs.  I found that, while 

the MCH was successful in removing 16S rRNA gene sequences, it did not affect the final 

outcome of 16S rRNA gene sequencing.  This was due to the extremely high throughput of 
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the 16S rRNA gene sequencing technique.  I also found that the capture probe used for the 

MCH treatment was cross-reactive with non-Synechocystis 16S rRNA genes and non-16S 

rRNA genes in the genome of Synechocystis and other bacteria.  From this I conclude that 

high-throughput sequencing is sufficient to detect the true diversity of heterotrophic 

bacteria in Synechocystis-based PBRs.  Thus, in the following chapters, I do not employ 

this technique for any of the 16S rRNA gene sequencing-based analyses.  
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Chapter 5 

Effects of inoculum source on the structure of microbial communities in Synechocystis sp. 

PCC6803-based photobioreactors1 

5.1  Introduction 

In Chapter 4, I demonstrated that high-throughput 16S rRNA gene sequencing 

techniques are sensitive enough to uncover the microbial diversity in Synechocystis-based 

PBRs despite the polyploidy of Synechocystis.  In this chapter, I continue to develop 

techniques to specifically interrogate the heterotrophic communities in Synechocystis-based 

PBRs and begin to focus on developing strategies to manage PBR microbial communities.  

Cyanobacteria are promising candidates for large-scale production of renewable 

biofuels to replace petroleum resources, including biodiesel made from lipids extracted 

from biomass (Chisti, 2007; Ortiz-Marquez et al., 2013).  Cyanobacteria perform oxygenic 

photosynthesis, gaining energy from sunlight and carbon from carbon dioxide.  Thus, they 

can produce carbon-neutral, non-fossil fuel feedstock.  Cyanobacteria have many 

advantages over terrestrial plants, including higher areal yields, superior photosynthetic 

efficiencies, faster growth rates, and no requirement for arable land for cultivation (Chisti, 

2008; Ducat et al., 2011; Kim et al., 2010b).  

Heterotrophic bacteria grow by oxidizing organic molecules produced by 

Cyanobacteria, including proteins, lipids, nucleic acids, and sugars (Abed, 2010).   

______________________________ 

1This chapter is adapted from a manuscript submitted for publication. 
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Although associations between cyanobacteria and heterotrophic bacteria are normal, 

studies of the communities of heterotrophic bacteria that associate with Cyanobacteria in 

natural settings are rare (Berg et al., 2009; Lakaniemi et al., 2012b; Li et al., 2011).  No 

study to date has addressed the presence of heterotrophic communities in photobioreactor 

(PBR) cultures of Cyanobacteria.  In large-scale PBRs, sterilizing the culture medium and 

maintaining axenic culture conditions are economically and practically prohibitive 

(Lakaniemi et al., 2012b).  Thus, a complete understanding of the properties and 

performance of a PBR demands knowledge of the structure and dynamics of the microbial 

community, including the heterotrophic bacteria.   

While the functions of the heterotrophic bacteria that associate with Cyanobacteria 

are not fully understood, several important beneficial interactions have been documented.  

Primarily, heterotrophic bacteria can provide CO2 to the Cyanobacteria by oxidizing 

organic compounds released by the Cyanobacteria.  Additionally, heterotrophic bacteria 

can recycle macronutrients, such as nitrogen (N) and phosphorus (P), or increase the 

availability of micronutrients, such as iron, to the Cyanobacteria with which they associate 

(Keshtacher-Liebson et al., 1995).  Heterotrophic metabolism also may reduce O2 super-

saturation in cyanobacterial cultures (Mouget et al., 1995).  Heterotrophic bacteria also can 

be detrimental to PBR operations by causing lysis of cyanobacterial cells (Radhidan and 

Bird, 2001), competing for key macronutrients, or consuming a desired product produced 

by the Cyanobacteria such as excreted fatty acids (Liu et al., 2011b).  Since the purpose of 

the PBR is to produce cyanobacterial biomass, exclusion of specific heterotrophic bacteria 

may be difficult, as the best growth conditions for the Cyanobacteria also will be suitable 
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for an array of heterotrophic bacteria.  Thus, elucidating the common heterotrophs and key 

microbial interactions is critical for successful photobioreactor operation. 

Molecular methods targeting the 16S rRNA gene are useful to uncover the structure 

of these microbial communities (Rittmann et al., 2008).  Terminal-restriction fragment 

length polymorphism (T-RFLP) is a rapid, robust, and cost-effective method that is widely 

used to analyze microbial communities (Fortuna et al., 2011; Liu et al., 1997; Schütte et al., 

2008).  T-RFLP provides a useful avenue to compare and contrast the structures of 

different PBR microbial communities.  Similarly, high-throughput sequencing of 16S 

rRNA gene libraries can be used to assess the structures of microbial communities 

(Ontiveros-Valencia et al., 2013).  High-throughput sequencing is beneficial because it is 

highly sensitive and provides phylogenetic information not afforded by T-RFLP; however, 

it is not accessible to every researcher and involves a significant time for sequencing and 

data analysis.  

Synechocystis sp. PCC6803 (hereafter referred to as Synechocystis) is one of the 

most extensively studied Cyanobacteria and was the first phototrophic organism to have a 

completely sequenced genome, making it an ideal model organism for further studies 

leading to large-scale use of Cyanobacteria to produce renewable feedstock (Kim et al., 

2010b; Sheng et al., 2011b; Vermaas, 1998).  Here, I used T-RFLP and high-throughput 

sequencing of 16S rRNA gene libraries to monitor the microbial communities in PBR 

cultures of Synechocystis.  To improve the resolution of the heterotrophic bacteria, I 

applied a strategy to remove Synechocystis from the T-RFLP analyses.  I achieve this goal 

by choosing a primer and restriction enzyme combination that produces a Synechocystis 

terminal-restriction fragment (T-RF) that is outside of the detectable range of the assay, 
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thereby excluding the Synechocystis signal from the analysis and increasing sensitivity 

towards 16S rRNA gene fragments belonging to other bacteria present in the PBR.  I 

demonstrate that communities of heterotrophic bacteria exist in the PBRs and show that the 

structure of the PBR microbial communities can be different for each PBR.  I also provide 

evidence that the starter cultures used to inoculate the various PBR experiments play an 

important role in determining the structure of the resulting PBR microbial communities.  

Finally, I demonstrate strong agreement between T-RFLP and high-throughput sequencing 

data, showing that these techniques can be used in tandem or separately to provide a 

detailed understanding of PBR microbial communities.  

 

5.2  Materials and Methods 

Cell cultures, strains, media and preparation of inocula 

The laboratory of Dr. Willem Vermaas (School of Life Sciences, Arizona State 

University) provided stock cultures of Synechocystis sp. PCC6803, which were maintained 

in BG-11 medium (Rippka et al., 1979).  0.5 mL of a stock culture was mixed with 0.5 mL 

of sterile 40% glycerol and stored as a freezer stock at -80°C.  To prepare fresh PBR 

inoculum, I spread a small amount of the freezer stock on a sterile BG-11 plate with 1.5% 

Bacto Agar (BD, Sparks, MD) using a sterile inoculation loop.  I grew the inoculated plates 

at 30°C under 200 µE/m2*sec constant incident light intensity until cells grew to sufficient 

density (5-7 days).  I then transferred a small amount of the cells from the agar plate into 

100 mL sterile liquid BG-11 medium in a 250 mL Erlenmeyer flask bubbled with air 

filtered through a 0.2 µm filter (Pall).  I grew this starter culture at 30°C under 200 

µE/m2*sec constant incident light intensity until cells grew to sufficient density (3-5 days).  
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For the purposes of this work, each separate starter culture can be considered as originating 

from a separate BG-11 agar plate.  

 

PBR operational parameters 

I used a Photobioreactor FMT-150 (Photon Systems Instruments, Czech Republic) 

equipped with a temperature/pH probe and bubble interrupter for all experiments.  I 

autoclaved the cultivation chamber to ensure that it was sterile prior to inoculation.  All 

PBR experiments were operated with a constant incident light intensity of 200 µE/m2*sec, 

maintained at 30°C, and bubbled with air that was humidified by passing through sterile 

water and filtered through a 0.2 µm filter (Pall, Ann Arbor, MI).  I measured optical density 

(OD) at a wavelength of 730 nm using a Cary-50-Bio UV-Visible spectrophotometer 

(Varian, Palo Alto, CA) and pH directly using a pH probe integrated with the 

Photobioreactor FMT-150 and calibrated according to the manufacturer’s directions.  I 

inoculated four PBRs at a starting OD730 of 0.6 and ran each experiment for a total of 168 

hours (7 days).  Two of the PBRs (PBR-A and PBR-A2) were inoculated from the same 

starter culture, and the other two PBRs (PBR-B and PBR-C) were inoculated using 

different starter cultures. 

 

Light Microscopy 

For light microscopy, I took 1-mL samples of PBR cultures daily, added 0.2 mL 

37.5% formaldehyde (Sigma Aldrich) to fix the cells, and stored these samples at 4°C.  

Cells were imaged later by light microscopy using an Olympus BX61 light microscope 

(Olympus Inc., Center Valley, PA) equipped with differential interference contrast (DIC) 
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using a 100X oil-immersion objective.  Images were captured with an Olympus DP72 color 

camera.  

 

DNA extraction 

For DNA extraction I used a previously described method (Sheng et al., 2011a).  

Briefly, 1-mL samples of the PBR culture were taken daily with a sterile syringe and 

transferred to a sterile microcentrifuge tube and centrifuged (13 g, 3 minutes) to 

concentrate the biomass, which was stored at -80°C prior to DNA extraction.  I extracted 

total genomic DNA from PBR samples using the DNeasy Blood and Tissue Kit (Qiagen, 

Valencia, CA) with the following modifications to enhance lysis.  I resuspended cell pellets 

in 200 µL lysis buffer (30 mM Tris·HCl, 10 mM EDTA, 200 mM sucrose, pH 8.2) and 

incubated the mixture at 65°C for 10 minutes.  I then added chicken egg white lysozyme 

(Sigma Aldrich, St. Louis, MO) to a final concentration 10 mg/mL and incubated the 

samples for 1 hour at 37°C.  Next, I added SDS at 1% (w/v) and incubated the samples at 

56°C for 10 minutes.  Finally, I added 25 µL proteinase K and 200 µL buffer AL (Qiagen) 

and incubated that mixture at 56°C for 30 minutes.  After these additional lysis steps, I 

completed the DNA extraction according to the manufacturer’s (Qiagen) instructions. 

 

Terminal restriction fragment length polymorphism (T-RFLP) 

I performed T-RFLP analysis using a previously described method (Sheng et al., 

2011a).  Briefly, I amplified 16S rRNA genes using the universal bacterial primers 8F (5’-

AGAGTTTGATCCTGGCTCAG-3’) with a 5’-HEX fluorescent dye and 1392R (5’-

ACACACCGCCCGT-3’) (Fortuna et al., 2011; Liu et al., 1997; Sheng et al., 2011a).  PCR 
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conditions were as follows: 1x Taq PCR Master Mix (Qiagen), 250 nM each primer, 1 mM 

Mg2+, and 10 ng template DNA in a total of 50 µL.  PCR reaction temperature profiles 

were the following: 94°C for 6 minutes, followed by 30 cycles of 94°C for 45 seconds, 

55°C for 45 seconds, 72°C for 2 minutes and a final extension period at 72°C for 10 

minutes.  Following PCR, I checked for amplicons of the proper size on a 1% (w/v) 

agarose gel.  I then digested the amplified 16S rRNA genes using the restriction enzymes 

HhaI, MseI, HaeIII, or HpaII (New England Biolabs, Ipswich, MA).  Next, I analyzed the 

sizes of the T-RFs produced on an ABI 3730 DNA Analyzer using the GeneScan500 ROX 

Size Standard (Applied Biosystems).   

 

Analysis of T-RFLP data 

I gathered raw T-RFLP data using the free Peak Scanner Software v1.0 (Applied 

Biosystems) and analyzed the data using previously described methods (Rees et al., 2004).  

I determined total fluorescence intensity within each individual sample by summing the 

fluorescence intensity of all detected T-RFs for that sample.  I normalized T-RFLP data by 

removing peaks that contained less than 1% of the total fluorescence intensity and 

calculated a new total fluorescence intensity using only T-RFs detected as above 

background.  I then determined true T-RFs as any T-RF that contained more than 5% of the 

new total fluorescence intensity.  To compensate for T-RF drift, all T-RFs were aligned 

manually.  T-RFs smaller than 50 base pairs (bp) and larger than 600 bp were omitted from 

the analyses, as fragments of these sizes are not supported by the size standard I used.  I 

performed all manipulation of raw T-RFLP data using original Perl scripts and Microsoft 

Excel spreadsheets.  When appropriate, I removed the Synechocystis T-RFs from the raw 
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data prior to downstream analyses.  I used the QIIME software (Caporaso et al., 2010b) for 

principal coordinate analysis (PCoA) of T-RFLP data.  

To analyze T-RFLP data, I used original Perl scripts in combination with Microsoft 

Excel.  First, raw T-RFLP data was gathered from the free Peak Scanner Software v1.0 

(Applied Biosystems).  I then exported all data to a .txt file using the “Export Combined 

Table” command.  Next, I imported this table into Microsoft Excel, and trimmed away all 

columns except for “Dye/Sample Peak”, “Sample File Name”, “Size”, and “Height” (I 

analyzed T-RFLP data using both T-RF peak height or peak area and no difference in the 

data after analysis, and chose to use peak height for all data).  I exported the trimmed T-

RFLP data from Microsoft Excel as a .txt file.  I then used an original Perl script to parse 

the T-RFLP data by enzyme and dye color.  The Perl script (named TRFdata.pl, shown 

below) produced four output files: one file for each enzyme used.  The output files 

contained data from only the green channel, which corresponds to the color of the HEX dye 

used to label the 8F primer.  TRFdata.pl requires useres to add in their own file paths for 

input and output files, which can be achieved using any text editor. I then imported the 

individual .txt files (with data corresponding to each restriction enzyme) to Microsoft 

Excel.  In Excel, I used simple Excel commands to sum the peak heights within each 

sample, and determined which peaks were above background. To compensate for T-RF 

drift, I manually aligned all T-RFs across all samples by assuming that T-RFs within ±1 

base pair (bp) were the same T-RF.   
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Importing T-RFLP data to QIIME software 

I imported the T-RFLP data into the QIIME software package using the QIIME 

script trflp_file_to_otu_table.py.  For each experiment, I generated one .txt file per 

restriction enzyme.  The .txt were organized as shown in Table 5.1. The intensity of each 

T-RF was then entered into the table when appropriate.  Unless otherwise noted, the values 

entered for each T-RF were the percent of fluorescence intensity occupied by the T-RF.   

Table 5.1  Example of formatted table for loading T-RFLP data into QIIME 
software.  Each sample name is placed into a row while the T-RF sizes are placed 
into columns.  Then, the relative fluorescence intensity for each T-RF detected 
within each sample is entered.  If a T-RF was not detected in a sample, it is 
assigned a value of 0. 

 100 200 300 

Sample1 0 50 30 

Sample2 25 10 0 

Sample3 15 75 0 

 

Prediction of Synechocystis T-RF sizes 

Ideally, each species generates a unique T-RF size.  I predicted the size of the 

Synechocystis T-RF generated with each enzyme used by submitting the Synechocystis 16S 

rRNA gene sequence (NCBI accession number NR_074311.1) to in silico restriction 

digests.  I determined T-RF sizes of 1048, 546, 293, and 490 bp for the enzymes HhaI, 

MseI, HaeIII, and HpaII, respectively.  I validated the predictions by performing T-RFLP 

on pure cultures of Synechocystis shown in Figure 5.1.  
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High-throughput 16S rRNA gene sequencing and data analysis 

I sequenced 16S rRNA genes from the enriched consortia of heterotrophic bacteria 

and from representative PBR experiments using previously described methods (Caporaso et 

al., 2012).  I amplified the V4 region of bacterial 16S rRNA genes using Golay barcoded 

primer set 515F/806R (Caporaso et al., 2010a).  I then pooled the triplicate PCR reactions 

and quantified them using the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies).  

Next, I pooled 240 ng of each sample in and cleaned the final pool using the QiaQuick 

PCR Cleanup Kit (Qiagen).  For loading the samples onto the Illumina MiSeq, I quantified 

the PCR library using the KAPA SYBR FAST Universal qPCR Kit for Illumina (KAPA 

Biosystems).  I then sent the prepared library to the Microbiome Analysis Laboratory at 

Arizona State University for sequencing on the Illumina MiSeq.  I analyzed all 16S rRNA 

gene sequencing data using the QIIME software using the default quality filters (Caporaso 

et al., 2010b; Ontiveros-Valencia et al., 2013).  In order to examine only the heterotrophic 

Figure 5.1 T-RFLP data from a pure culture of Synechocystis sp. PCC6803.  I 
predicted T-RF sizes of 546, 292 and 490 bp for digests using the MseI, HaeIII, and 
HpaII restriction enzymes and confirmed the predicted sizes by performing T-RFLP on a 
pure culture of Synechocystis sp. PCC6803.  Synechocystis sp. PCC6803 T-RFs are 
indicated with a black dot.  No T-RFs were detected above background for the HhaI 
restriction digest.  No other T-RFs were detected as above background for any of the 
restriction digests.  

0 200 400 600
0

20

40

60

80

100

Fragment Size (bp)

%
 T

ot
al

 F
lu

or
es

ce
nc

e 
In

te
ns

ity

0 200 400 600
0

20

40

60

80

100

Fragment Size (bp)

%
 T

ot
al

 F
lu

or
es

ce
nc

e 
In

te
ns

ity

0 200 400 600
0

20

40

60

80

100

Fragment Size (bp)

%
 T

ot
al

 F
lu

or
es

ce
nc

e 
In

te
ns

ity

MseI HpaIIHaeIII



! 92 

bacteria from the representative PBR experiment, I filtered all cyanobacterial operational 

taxonomic units (OTUs) from the OTU table using the script filter_taxa_from_otu_table.py 

prior to downstream analysis and removed any unassigned sequences.  All analyses are of 

150 bp forward reads.   

 

Inoculum effect experiments 

To determine the impact of the inoculum on the structure of PBR microbial 

communities, I conducted a series of batch tests.  I collected three different Synechocystis 

cultures, each of which was grown in a different building on the Tempe campus of Arizona 

State University.  I then used these flasks to inoculate three identical experimental flasks, 

giving a total of nine experimental flasks.  All experimental flasks were grown in the same 

light incubator under identical conditions (30˚C, 85 µE/m2*sec) for 96 hours and were 

bubbled with air filtered through a 0.2 µm filter (Pall).  Samples were collected from each 

inoculum at the time of inoculation and from the experimental flasks after the 96-hour 

incubation period.  For these experiments, I performed T-RFLP using all four enzymes and 

evaluated the structure of the microbial communities based on the presence or absence of 

the different T-RFs detected.  If a T-RF was detected in a specific sample, it was assigned a 

value of 1, and if it was not detected in that sample, it was assigned a value of 0.  

 

5.3  Results and Discussion 

PBRs operated under identical conditions show different performances  

Figure 5.2 shows the OD730 and pH for the four PBR experiments.  PBR-A and 

PBR-A2 (inoculated from the same starter culture) reached the highest OD730 values of 3.0 
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and had an average pH of 11.8 and 9.2, respectively.  PBR-B and PBR-C (different starter 

cultures) attained OD730 and pH values of at least 2.0 and 9.7, respectively.  The lower 

OD730 for PBR-C correlated with a 2-day lag period not seen in the other experiments.  The 

high pH values in all the PBR experiments indicated that Synechocystis was 

photosynthetically active and utilized available inorganic carbon efficiently (Kim et al. 

2010a).  Thus, despite being operated under identical conditions with the same culture 

medium, each PBR produced a different amount of biomass and had different final pH 

values.   

Figure 5.3 shows light microscopy images from PBR-A, which showed similar 

patterns to the other PBR experiments shown in Figure 5.4.  On Day 0 (inoculation), only 

green Synechocystis cocci were detected in the PBR culture after counting at least 200 cells 

total.  Rod-shaped heterotrophic bacteria became detectable by microscopy in PBR-A 

starting on Day 4.  For the other PBR experiments, rod-shaped heterotrophic bacteria were 

detectable by light microscopy starting on or around Day 4.  Once the heterotrophic 

bacteria became detectable in the PBR, they persisted for the duration of the experiment 

(Day 7).  This was expected, as the association of heterotrophic bacteria with 

cyanobacterial blooms and cultures is ubiquitous in natural conditions (Li et al., 2011) and 

has been observed and predicted to have impacts in other engineered PBR systems 

(Lakaniemi et al., 2012a; Unnithan et al., 2013). 
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Figure 5.2  OD730 and pH from four PBRs operated under identical conditions.  All 
PBRs were inoculated at OD730 = 0.6 with 200 µE/m2*sec constant light intensity, held at 
30°C, and bubbled with filter-sterilized air.  A, B, or C indicates inoculation with 
different starter cultures; PBR-A and PBR-A2 were inoculated with the same starter 
culture.  Despite identical operating parameters, each PBR had unique OD730 and pH 
profiles, and PBR-C did not grow as well as the others.  
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Figure 5.3  Light microscopy images from PBR-A.  All images were taken with 
a 100X oil-immersion DIC objective.  Upon inoculation (Day 0), only 
Synechocystis (black arrowheads) was detected after counting at least 200 total 
cells.  By Day 4, rod-shaped heterotrophic bacteria (white arrows) were detectable 
in the PBR.  Heterotrophic bacteria grew in the PBR until the end of the 
experiment (Day 7).  Scale bars are 10 µm.  

Day 4 

Day 7 

Day 0 
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Removal of Synechocystis signal improves detection of heterotrophic bacteria with T-

RFLP analyses 

Table 5.2 shows the number of unique T-RFs detected using the restriction 

enzymes MseI, HaeIII, HpaII, or HhaI for the PBR-A, PBR-A2, PBR-B, and PBR-C at the 

end of each experiment.  As predicted, eliminating the Synechocystis T-RF via the HhaI 

digest increased the resolution of the rest of the PBR microbial community.   

Figure 5.4 Light microscopy of PBR inocula.  Synechocystis is indicated with a black 
arrowhead.  No heterotrophic bacteria were detected in any of the inocula used in this 
study after counting at least 200 total cells.  All images were taken using a 100X oil-
immersion differential interference contrast objectives.   Scale bars are 10 µm. 
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This was especially evident for PBR-B, where the HhaI digest yielded one unique 

non-Synechocystis T-RF even though no non-Synechocystis T-RFs were detected in any of 

the other digests.  Even for PBR-A and PBR-C, where one non-Synechocystis T-RF was 

detected with the MseI, HaeIII, and HpaII digests, the HhaI digest still improved the 

resolution of the non-Synechocystis members of the PBR microbial communities.  This 

shows that using the HhaI restriction enzyme provided best resolution of the heterotrophic 

bacteria in the PBRs.  

 

 

 

 

Table 5.2  Number of unique T-RFs detected with each 
restriction enzyme.  Synechocystis T-RFs were detected for all 
restriction enzymes except for HhaI, where the Synechocystis T-RF 
is too large and is excluded from the analysis.  In all of the PBRs, 
the number of non-Synechocystis T-RFs detected with HhaI was 
greater than the number of non-Synechocystis T-RFs detected with 
any of the other restriction enzymes.   

 PBR-A PBR-A2 PBR-B PBR-C 

MseI 1 2 1 2 

HaeIII 2 2 1 1 

HpaII 2 2 1 2 

HhaI 2 2 2 3 
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T-RFLP and high-throughput sequencing analysis of PBR microbial communities 

showed similar trends 

In order to understand better the heterotrophic bacteria present in our PBR, I 

employed T-RFLP using the HhaI restriction enzyme to target the heterotrophic bacteria in 

the microbial communities and high-throughput sequencing.  Table 5.3 shows the results 

of T-RFLP analysis of the microbial communities from PBR-A, PBR-A2, PBR-B, and 

PBR-C using the HhaI restriction enzyme on Day 0, Day 3, and Day 7 of each experiment.  

 

Table 5.3  T-RFs detected in each PBR using the HhaI restriction 
enzyme.  PBR-A and PBR-A2 had nearly identical T-RF patterns while 
PBR-B and PBR-C had unique T-RF patterns.   

 

Day 0 Day 3 Day 7 
T-RF 
Size 
(bp) 

% 
Total 
Area 

T-RF 
Size 
(bp) 

% 
Total 
Area 

T-RF 
Size 
(bp) 

% 
Total 
Area 

PBR-A ND ND 242, 
582 

81.6, 
5.9 

242, 
582 87, 11.6 

PBR-A2 ND ND 242, 
582 

79.3 
11.9 

242, 
582 

68.7, 
12.1 

PBR-B 204, 
570 56, 38.5 135, 

204 
31.9, 
17.8 

135, 
240 

28.2, 
71.8 

PBR-C 
212, 
365, 
372 

65.8, 
19.1, 
6.6 

212, 
342, 
372 

75.1, 
5.5, 9.4 

212, 
342, 
372 

74.8, 8, 
9.1 

 

Figure 5.5 shows order-level taxonomic classification determined by high-

throughput sequencing of 16S rRNA gene libraries from PBR-A, PBR-A2, PBR-B, and 

PBR-C from Day 0, Day 3, and Day 7 of each experiment, and Figure 5.6 shows genus-

level taxonomic classification of the heterotrophic bacteria from the first and last days of 

each PBR experiment.   
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Figure 5.5  Microbial community structure in the four PBR 
experiments through high-throughput 16S rRNA gene sequencing.  
All taxa are classified at the order level definition.  
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On Day 0, PBR-A and PBR-A2 had very high abundances of Chroococcales, the 

order to which Synechocystis belongs, and only small proportions of heterotrophic bacteria.  

However, no non-Synechocystis T-RFs were detected for these PBRs on that day.  Thus, 

high-throughput 16S rRNA gene sequencing was more sensitive to the presence of 

heterotrophic bacteria than was the HhaI T-RFLP.  On Days 3 and 7, PBR-A and PBR-A2 

showed a large proportion of heterotrophic bacterial phylotypes from the order Bacillales, 

which was a single Bacillus sp. that corresponded to a large 242-bp T-RF detected in both 

PBRs.  The smaller 582-bp T-RF may correspond to the bacterial species from the order 

Xanthomonadales, which was a single Stenotrophomonas sp.  These data demonstrate that 

Figure 5.6  Heterotrophic bacteria detected in the four PBR experiments 
through high-throughput 16S rRNA gene sequencing.  All taxa are classified at 
the genus level unless otherwise indicated.   
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the same species of heterotrophic bacteria were present in the microbial communities of 

PBR-A and PBR-A2.  In these PBRs, the Bacillus sp. was the most dominant bacterial 

species by the end of the experiments. 

On Day 0 of PBR-B, I detected heterotrophic bacterial phylotypes belonging to the 

orders Burkholderiales, Pseudomonadales, and Saprospirales.  By Day 7, Saprospirales 

and Bacillales became the most dominant phylotypes.  This shift in the structure of the 

microbial community also was seen with the HhaI T-RFLP, in which a 570-bp T-RF 

disappeared, while 135-bp T-RF appeared.   

Heterotrophic bacteria assigned to the orders Xanthomonadales and 

Flavobacteriales were most abundant on Day 0 of PBR-C.  The lag period at the beginning 

of this PBR was correlated with the presence of a bacterium from the order 

Flavobacteriales, which was a single Flavobacterium sp.  Flavobacteria associated with 

marine phytoplankton typically are most abundant during the decay phase (Buchan et al., 

2014).  Thus, the inoculum for PBR-C may have been in decay, which inhibited the growth 

at the beginning of the experiment.  As the culture entered exponential growth, the 

Flavobacterium sp. was no longer detected, and the relative proportion of Chroococcales 

increased.  By Day 7, the most predominant non-Synechocystis phylotypes were 

Xanthomonadales, Pseudomonales, and Rhizobiales.  As with PBR-B, T-RFLP also 

detected the shift that occurred in microbial community of PBR-C between Day 0 and Day 

3:  the disappearance of the 365-bp T-RF and the appearance of a 342-bp T-RF.   

Our data demonstrated strong agreement between the high-throughput sequencing 

and T-RFLP analysis of the different PBR microbial communities.  While high-throughput 

sequencing usually detected more unique taxa of heterotrophic bacteria (more non-
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Synechocystis OTUs) than did the HhaI T-RFLP, T-RFLP usually detected the major 

heterotrophic phylotypes in the PBRs.  Thus, high-throughput sequencing was more 

informative than T-RFLP for determining microbial community structure, but T-RFLP was 

more suitable for routine monitoring of the structures of different PBR microbial 

communities due to its low cost and rapid turnaround time.   

 

Inoculum source strongly influences PBR microbial community structure 

The two PBRs inoculated with the same starter culture (PBR-A and PBR-A2) had 

similar microbial communities, while the two PBRs inoculated with different starter 

cultures (PBR-B and PBR-C) had unique microbial communities.  I conducted a separate 

set of experiments to examine more closely the effects of using different inocula on the 

structure of PBR microbial communities.  Here, three unique inocula (labeled 1, 2, and 3) 

were used to inoculate three experimental flasks (nine flasks in total), which were then 

grown under identical conditions.  Figure 5.7 shows high-throughput sequencing data from 

the microbial communities from the three unique Synechocystis inocula and from the 

experimental cultures derived from the inocula.  The microbial communities in the 

respective experimental flasks were most similar to the microbial community from that 

inoculum, even though the culture conditions were identical.  The microbial communities 

within a set of experimental flasks also were more similar to one another than to any of the 

other experimental or inoculum flasks.  The heterotrophic bacteria in the first set of flasks 

(1Inoc, 1A, 1B, and 1C) contained mostly phylotypes from the order Cytophagales, while 

those in the second set (2Inoc, 2A, 2B, and 2C) mostly contained phylotypes from the 

orders Burkholderiales and Sphingobacteriales.  All of the flasks in the third set (3Inoc, 
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3A, 3B, and 3C) were composed almost entirely of Synechocystis.  However, the microbial 

communities exhibited slight difference between the flasks within each set.  Most notable 

was the second set (2Inoc, 2A, 2B, and 2C), where each of the experimental flasks 

contained bacteria from the order Sphingobacteriales, even though those bacteria were not 

detected in the inoculum flask.   

 

Figure 5.7  Microbial communities in experimental flasks are similar to 
the microbial communities in inocula.  For each different inoculum (1, 2, 3), 
the microbial communities in the experimental flasks (A, B, C) were similar to 
the microbial communities in the respective inoculum (Inoc) flasks.  
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Figure 5.8 shows PCoA biplots of the high-throughput 16S rRNA gene sequencing 

data and T-RFLP data generated using the MseI, HaeIII, HpaII, or HhaI restriction 

enzymes.  As expected from the 16S rRNA gene sequencing taxonomic data, PCoA 

showed that the microbial communities in each set of experimental flasks grouped with the 

inoculum flask from that set, indicating that those microbial communities were more 

similar to one another than they were to the microbial communities in the other sets of 

flasks.  PCoA generated from the T-RFLP showed the same trends as the PCoA generated 

from the high-throughput sequencing data in terms of the grouping of the different 

microbial communities.   

 

 

Figure 5.8  PCoA of high-throughput 16S rRNA gene sequencing (left) and 
T-RFLP (right) data.  The T-RFLP data represent a jackknifed PCoA analysis 
of data from the four restriction enzymes used.  Each set of four flasks 
(inoculum and three experimental flasks) is shown in a different color.  Both 
techniques show that the microbial community in each flask was more similar to 
those in the flasks within that set than to the microbial communities in the flasks 
from the other sets.   

PC1 (22%)

PC
2 

(2
0%

)

PC1 (17%)

PC
2 

(1
4%

)

PC1 (17%) PC1 (22%) 

PC
2 

(1
4%

) 

PC
2 

(2
0%

) 



! 105 

These data show that the inoculum source strongly influenced the structure of 

microbial communities of the PBRs, an effect that has been demonstrated in other 

biotechnological applications (Ruiz et al., 2014).  This further explains the similar structure 

of the microbial communities in PBR-A and PBR-A2, for which I also showed strong 

agreement between the T-RFLP and high-throughput sequencing data.   

Because heterotrophic bacteria will be ubiquitously associated with large-scale PBR 

cultures, it is critical to develop rapid and sensitive techniques to track the structure of PBR 

microbial communities.  In all of the PBRs, I detected heterotrophic bacteria in the 

inoculum cultures with either T-RFLP, high-throughput sequencing, or both techniques, 

even though light microscopy indicated that these cultures were free of heterotrophic 

bacteria.  This finding points out the value of using sensitive genome-based methods to 

assess the purity of starter cultures, which seem to control the heterotrophic community 

structure.  I demonstrated that T-RFLP (a quick and inexpensive method) was valuable for 

comparing and tracking the structures of different PBR microbial communities.  

Furthermore, I showed that using the same inoculum source preserved PBR microbial 

communities.  Thus, in order to truly appreciate the effects of different operational or 

culturing conditions on the performance of PBRs and on the structure of the PBR microbial 

communities, it is important to use the same inoculum source.  This would remove the need 

to account for effects of different phylotypes of heterotrophic bacteria and allow for direct 

comparisons between different PBR conditions.   
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Chapter 6 

Effects of phosphate limitation on soluble microbial products and microbial community 

structure in semi-continuous Synechocystis-based photobioreactors1 

6.1  Introduction 

 In the previous chapters, I developed methods to interrogate the structure of 

microbial communities associated with Synechocystis-based PBRs.  Here, I demonstrate a 

method to manage PBR microbial communities and drive the system towards the 

production of Synechocystis biomass. 

Cyanobacteria provide a potential avenue for large-scale production of biomass 

feedstock, as they require only sunlight, carbon dioxide, water, and stoichiometric amounts 

of nutrients for growth (Chisti, 2007).  Cyanobacteria achieve higher areal yields than land 

plants and do not compete with human food sources (Chisti, 2008).  Closed photobioreactor 

(PBR) systems are an effective means to cultivate large quantities of cyanobacterial 

biomass in small areas and offer more control over culturing conditions such as 

temperature and mixing when compared to open-pond PBRs (Pulz, 2001).  

Recently, attention has been paid to the importance of interactions between 

heterotrophic bacteria and microalgae in PBRs, especially in terms of the types of 

heterotrophic bacteria present (Carney et al., 2014; Lakaniemi et al., 2012a; Lakaniemi et 

al., 2012b; Unnithan et al., 2013).  

______________________________ 

1This chapter is adapted from a manuscript accepted for publication in Biotechnology and 

Bioengineering 
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Heterotrophic bacteria can have beneficial or harmful impacts in PBR settings.  On 

the one hand, heterotrophic metabolism recycles organic carbon produced by the 

Cyanobacteria as inorganic carbon and can reduce oxygen saturation in the PBR culture 

(Mouget et al., 1995).  Furthermore, heterotrophic bacteria can remineralize important 

macronutrients, particularly nitrogen and phosphate, and can increase the availability of 

micronutrients, such as iron (Keshtacher-Liebson et al., 1995).  On the other hand, some 

heterotrophic bacteria can cause lysis of cyanobacterial cells through enzymatic or 

antibiotic action, an obvious detriment to PBR technologies (Radhidan and Bird, 2001).  

Additionally, heterotrophic bacteria can consume valuable organic products if they are 

excreted by the Cyanobacteria. 

Soluble microbial products (SMP) are released by all bacteria as part of their 

normal metabolism, and they can have deleterious impacts in many industrial 

biotechnological applications (Fenu et al., 2011; Jarusutthirak and Amy, 2006; Jiang et al., 

2010; Ni et al., 2011a).  SMP are classified as either utilization associated products (UAP) 

that result directly from substrate oxidation or biomass associated products (BAP) that 

result from hydrolysis of extracellular polymeric substances (EPS) and decay of biomass 

(Laspidou and Rittmann, 2002).  Previous research showed that heterotrophic bacteria grew 

solely by utilizing SMP produced by autotrophic bacteria in nitrifying biofilms (Merkey et 

al., 2009; Ni et al., 2011b).  Therefore, SMP produced by autotrophic Cyanobacteria in 

PBRs are likely to support the growth of heterotrophic populations.  This has been 

demonstrated to some extent in natural settings, where heterotrophic bacteria were grown 

on EPS produced by Cyanobacteria (Giroldo et al., 2003; Li et al., 2009).  Although one 

study examined the production of general dissolved organic carbon in microalgal PBRs 
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(Hulatt and Thomas, 2010), no studies have linked the dynamics of SMP to the dynamics 

of heterotrophic bacteria in PBRs, even though SMP represent a major pool of dissolved 

organic carbon in the PBR and are important drivers for the growth of heterotrophic 

bacteria in PBRs.   

Because associations between Cyanobacteria and consortia of heterotrophic 

bacteria are ubiquitous in natural and PBR settings (Lakaniemi et al., 2012a; Lakaniemi et 

al., 2012b), understanding the composition of SMP produced by Cyanobacteria is a critical 

step towards the goal of managing PBR microbial communities.  Here, I examine SMP in 

axenic PBR cultures of Synechocystis, a well characterized cyanobacterium that has been 

used as a model organism in a variety of molecular and engineering studies (Ikeuchi and 

Tabata, 2001; Kim et al., 2010b; Sheng et al., 2011a).  I show that phosphate-limited 

conditions in the PBR led to increased amount of SMP derived from EPS produced by 

Synechocystis.    

 

6.2  Materials and Methods 

Synechocystis sp. PCC6803 cultures 

The laboratory of Dr. Willem Vermaas (School of Life Sciences, Arizona State 

University) provided stock cultures of Synechocystis sp. PCC6803.  I maintained the stock 

cultures in Erlenmeyer flasks with BG-11 medium (Rippka et al., 1979) bubbled with air 

filtered through a 0.2-µm air filter (Pall).  This flask culture was used to inoculate the PBR 

to a starting optical density (OD) of 0.2.   
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PBR experiments 

The PBR was a Photobioreactor FMT-150 (Photon Systems Instruments, Czech 

Republic), which has a volume of 350 mL and is equipped with a temperature/pH probe 

and bubble interrupter for all experiments.  I autoclaved the cultivation chamber to ensure 

that it was sterile prior to inoculation and sterilized BG-11 medium prior to all experiments.  

The first experiment (PBRP0) used only BG-11 medium.  The second experiment (PBRP+) 

used BG-11 medium with an addition of 350 µL of 30.5 g L-1 KH2PO4 each day beginning 

on Day 2 of operation.  I operated each PBR at a constant temperature of 30˚C, in semi-

continuous mode with a hydraulic retention time (HRT) of three days, and with constant 

illumination of 200 µmol PAR photons m-2 s-1.  The PBRs were bubbled with humidified 

air filtered through a 0.2-µm air filter (Pall).  I measured optical density (OD) of the culture 

at a wavelength of 730 nm using a Cary-50-Bio UV-Visible spectrophotometer (Varian, 

Palo Alto, CA) and converted the OD730 value to dry weight (DW) using calibration curves 

for Synechocystis.  For the calibration, DW was determined using the total suspended solids 

(Method 2540D) (American Public Health Association, American Water Works 

Association, 1998), and DW was converted to COD using 1.4 mg COD/mg DW (Rittmann 

and McCarty, 2001).  I measured pH directly using a pH probe integrated with the 

Photobioreactor FMT-150 and calibrated according to the manufacturer’s directions.  

 

SMP collection 

To collect SMP, I centrifuged the samples at 4,000 RPM for 20 minutes at 4˚C, 

collected the supernatant (containing the SMP), and stored it at 4˚C.  Prior to all analyses, 
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SMP samples were placed into microcentrifuge tubes and centrifuged at 13,000 RPM for 5 

minutes to further remove particles.   

 

Chemical Analyses 

I measured total chemical oxygen demand (TCOD) and soluble chemical oxygen 

demand (SCOD) using HACH TNT822 (HACH, Loveland, CO).  For TCOD, 1 mL of the 

whole culture (biomass and SMP) and 1 mL of deionized water were added to the test vial.  

For SCOD, 2 mL of SMP were added to the test vials.  I calculated particulate chemical 

oxygen demand (PCOD) as the difference between TCOD and SCOD.  I measured total 

and reactive phosphate using the HACH TNT843 kit and Total Nitrogen and NO3
-/NO2

- 

using the HACH TNT880 kit.  All HACH test vials were treated according to the 

manufacturer’s instruction and analyzed in a HACH DR 2800 Spectrophotometer (HACH, 

Loveland, CO).  I measured the carbohydrate fraction of the SMP with the phenol-sulfuric 

acid method using glucose as a standard and report values as glucose equivalents (Dubois 

et al., 1956).  I converted glucose equivalents to COD using a conversion factor of 1.07 mg 

COD/mg glucose (Rittmann and McCarty, 2001).  I measured the protein fraction of the 

SMP with a QuantiPro BCA Assay Kit (Sigma-Aldrich, St. Louis, MO) using bovine 

serum albumin (BSA) as a standard and converted BSA equivalents to COD using a 

conversion factor of 1.4 mg COD/mg BSA (Rittmann and McCarty, 2001).  I measured the 

absorbance at 254 nm (A254) using a Cary-50-Bio UV-Visible spectrophotometer (Varian, 

Palo Alto, CA), dissolved organic carbon (DOC) using a HACH TNT Plus 810 TOC Kit 

(HACH, Loveland, CO), inorganic carbon (Ci) using a TOC-V Carbon Analyzer 
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(Shimadzu), and chlorophyll fluorescence in the SMP (Ex. 342 nm, Em. 684 nm) using a 

Cary Eclipse Spectrofluorometer (Varian, Palo Alto, CA).   

 

Calculations 

I estimated the carbon in Synechocystis biomass by assuming that 49.8% of dry 

Synechocystis biomass is carbon (Kim et al., 2010a).  I calculated the mean oxidation 

number of carbon (MOC) in the SMP using the equation:  MOC = 4-1.5*(SCOD/DOC) 

(Vogel et al., 2000) and the Specific UV Absorbance at 254 nm (SUVA254) using the 

equation:  SUVA254 = (A254/DOC)*100 (Weishaar et al., 2003).  I calculated the average 

internal light intensity (AILI) in the photobioreactors from the incident light intensity and 

the dry weight concentration data using the Beer-Lambert law with previously described 

equations and constants (Kim et al., 2010a).   

 

DNA extraction 

For DNA extraction, 1-mL samples of the PBR culture were taken daily with a 

sterile syringe and transferred to a sterile microcentrifuge tube and centrifuged (13 g, 3 

minutes) to concentrate the biomass, which was stored at -80°C prior to DNA extraction.  I 

extracted total genomic DNA from PBR samples using the DNeasy Blood and Tissue Kit 

(Qiagen, Valencia, CA) with the following modifications to enhance lysis:  Cell pellets 

were resuspended in 200 µL of lysis buffer (30 mM Tris·HCl, 10 mM EDTA, 200 mM 

sucrose, pH 8.2) and incubated the mixture at 65°C for 10 minutes.  I then added chicken 

egg white lysozyme (Sigma Aldrich, St. Louis, MO) to a final concentration 10 mg/mL and 

incubated the samples for 1 hour at 37°C.  Next, I added SDS at 1% (w/v) and incubated 
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the samples at 56°C for 10 minutes.  Finally, I added 25 µL proteinase K and 200 µL buffer 

AL (Qiagen) and incubated that mixture at 56°C for 30 minutes.  After these additional 

lysis steps, I completed the DNA extraction according to the manufacturer’s (Qiagen) 

instructions. 

 

Quantitative Polymerase Chain Reaction (qPCR)  

For specific quantification of 16S rRNA genes from Synechocystis, I prepared 

triplicate qPCR reactions containing 1X 5 PRIME RealMasterMix probe (4 U HotMaster 

Taq DNA polymerase, 1 mM magnesium acetate, 0.4 mM each deoxynucleotide 

triphosphate [dNTP] final concentration; 5 PRIME Inc., Gaithersburg, Maryland) and 300 

nM each of forward primer CYAN 108F, reverse primer CYAN 377R, and probe 

CYAN328R carrying a 5’ FAM fluorescent dye and a 3’ BHQ1 quencher (Rinta-Kanto et 

al., 2005).  I generated 16S rRNA gene control templates by PCR amplifying the entire 16S 

rRNA gene from Synechocystis using the universal bacterial primers 8F and 1525R (Löffler 

et al., 2000).  PCR products were purified using the QiaQuick PCR Purification Kit 

(Qiagen) and cloned using the TOPO-TA cloning kit for sequencing (Life Techonolgies).  I 

extracted plasmid DNA from transformants with the expected insert length using a Qiaprep 

Spin Minprep Kit (Qiagen) and used these plasmids to generate calibration curves with 

precise concentrations.  For the qPCR reactions, I used the following cycling program:  

initial denaturation at 95°C for 2 minutes, followed by 40 cycles of 95°C for 10 seconds, 

56°C for 20 seconds, 68°C for 20 seconds.  I performed qPCR reactions in a Realplex 4 

epGradient S Mastercycler (Eppendorf).   
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High-throughput 16S rRNA gene sequencing and data analysis 

I sequenced 16S rRNA genes from the enriched consortia of heterotrophic bacteria 

and from representative PBR experiments using previously described methods (Caporaso et 

al., 2012).  I amplified the V4 region of bacterial 16S rRNA genes using Golay barcoded 

primer set 515F/806R (Caporaso et al., 2010a).  I then pooled the triplicate PCR reactions 

and quantified them using the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies).  

Next, I pooled 240 ng of each sample in and cleaned the final pool using the QiaQuick 

PCR Cleanup Kit (Qiagen).  For loading the samples onto the Illumina MiSeq, I quantified 

the PCR library using the KAPA SYBR FAST Universal qPCR Kit for Illumina (KAPA 

Biosystems).  I then sent the prepared libraries to the Microbiome Analysis Laboratory at 

Arizona State University for sequencing on the Illumina MiSeq.  I analyzed all 16S rRNA 

gene sequencing data using the QIIME software using the default quality filters (Caporaso 

et al., 2010b; Zhou et al., 2014).  All sequences that were not assigned a specific taxonomic 

classification and taxa that represented less than 1% of the microbial community were 

removed from the analyses.  All analyses are of 150 bp reads in the forward direction.  The 

sequence reads associated with this study have been uploaded to the NCBI SRA under the 

BioProject with accession number PRJNA266438.  The accession numbers for the 

individual BioSamples are SAMN03283295-SAMN03283304. 

 

6.3  Results and Discussion 

Growth of biomass and utilization of PO4
3- in the PBR experiments  

Figure 6.1 shows the concentrations of soluble PO4
3--P, NO3

--N, SO4
2--S, and Ci, as 

well as pH values from both PBR experiments.  The soluble PO4
3- in PBRP0 was rapidly 



! 114 

depleted and was driven below detection by Day 4, indicating severe limitation of soluble 

PO4
3-.  NO3

- and SO4
2-sulfate were amply available at all times in PBRP0.  The measured 

pH and Ci indicated no limitation in the availability of Ci to Synechocystis (Kim et al., 

2010a) in PBRP0.  Therefore, the specific growth rate of Synechocystis was determined by 

the dilution rate (0.3 d-1) from Day 5 until the end of the experiment.     

 

 

Figure 6.1  Macronutrient profiles in the two PBRs.  The soluble 
phosphate in PBRP0 was completely depleted by Day 4, while all other 
macronutrients were available.  PBRP+ had no nutrient limitation.  
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Furthermore, the average internal light irradiance (AILI) demonstrated that light 

also was not limiting the growth of Synechocystis as shown in Figure 6.2.  Thus, the sole 

factor limiting the growth of Synechocystis in PBRP0 was PO4
3-.  In PBRP+, the PO4

3- 

concentration was never depleted and began to increase after Day 3.  As in PBRP0, PBRP+ 

had no limitations in NO3
-, SO4

2-, Ci, or light.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 shows the OD730 and daily concentrations of TCOD and PCOD from 

both PBR experiments.  PBRP0 achieved a maximum OD730 of 1.7 on Day 4 and decayed 

slightly in the following days.  PBRP+ achieved a maximum OD730 of 2.4 on Day 5, and 

the OD730 remained stable for the rest of the experiment.  The TCOD in PBRP0 reached 

850 mg COD L-1, and the TCOD in PBRP+ reached around 1100 mg COD L-1; these 

results are consistent with previously reported TCOD and biomass concentrations in 

Figure 6.2 AILI in the two PBRs.  PBRP0 
(grey line) and PBRP+ (black line) both had 
available light for the entire experiment, 
indicating that there was no light limitation in 
either PBR.  
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Synechocystis PBRs operated under similar conditions (Kim et al., 2010b).  The greatest 

difference between the TCOD and PCOD values occurred in PBRP0 during the period of 

decay following the depletion of PO4
3- (Day 4 to Day 9).  The PCOD values from both 

PBRs mirror the OD730 measurements making PCOD a good representation of the energy 

stored in biomass in each PBR.  

 

 

 

 

Figure 6.3  OD730 (above), TCOD (below squares), and PCOD (below dashed 
lines) from the two PBR experiments.  PBRP+ had a much higher OD730 value than 
did PBRP0.  PBRP0 produced around 800 mg TCOD L-1 while PBRP+ produced 
1200 mg TCOD L-1.  TCOD was substantially greater than PCOD only in PBRP0.  
The OD730 values track well with the PCOD values.  
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SMP Analysis  

SMP quantity can be gauged by concentrations of SCOD and DOC.  Figure 6.4 

shows that the SCOD and DOC values were higher in PBRP0 than in PBRP+.  The greatest 

difference occurred from Day 5 to Day 9, which is when PBRP0 had severe PO4
3- 

limitation.  From Day 4 until the end of the experiment, the SCOD in PBRP0 averaged 150 

mg COD L-1.  In PBRP+, the SCOD averaged only 82 mg COD L-1 from Day 4 until the 

end of the experiment.  Thus, despite the increased production of PCOD in PBRP+, the 

SCOD was significantly lower than in PBRP0.  The DOC in PBRP0 rose to concentrations 

of over 60 mg C L-1, while the DOC in PBRP+ stayed relatively steady at 40 mg C L-1 

during this period.  

 

 

 

 

 

Figure 6.4  SCOD (black triangles) and DOC (blue diamonds) from the two PBR 
experiments.  PBRP0 produced more SCOD and DOC than PBRP+ indicating higher 
SMP concentrations in PBRP0. 
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Table 6.1 shows important values and ratios from the final day of operation from 

both PBRs.  The MOC of the SMP in PBRP0 was much lower than in PBRP+, meaning 

that the C in the SMP in PBRP0 was more reduced and energy dense than the SMP-C in 

PBRP+.  SCOD represented 31% of the PCOD in PBRP0, but only 7% of the PCOD in 

PBRP+.   

 

 

 

 

 

 

Likewise, the DOC represented 31% of the calculated carbon in Synechocystis 

biomass in PBRP0; again, this is much more than the 13% in PBRP+.  Thus, much more of 

the light energy captured by Synechocystis photosynthesis was diverted to SMP in PBRP0 

than in PBRP+.   

Figure 6.5 shows concentrations of total carbohydrates (glucose equivalents 

converted to COD) and protein (BSA equivalents converted to COD) in the SMP.  In 

PBRP0, carbohydrates accounted for the majority (>70%) of the SCOD, especially during 

the period in which no net growth was observed (Day 4 to Day 9), and the concentration of 

total carbohydrates continued to rise even after biomass production had ceased.  The MOC 

values from PBRP0 (0.35) also support the claim that the SMP in this PBR was mostly 

composed of carbohydrates (an MOC of 0).  The concentration of soluble protein remained 

relatively stable for the entire experiment, accounting for ~20% of the SCOD.  The 

Table 6.1  Important ratios and values from the final day of PBR 
operation.  PBRP0 had a lower MOC value and a higher ratio of 
SCOD:PCOD and DOC:Biomass C 

 MOC SCOD:PCOD DOC:Biomass C 

PBRP0 0.35 0.31 0.31 

PBRP+ 1.6 0.078 0.13 
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majority of soluble carbohydrates probably were derived from shearing and hydrolysis of 

Synechocystis-generated EPS, which is rich in polysaccharides (Panoff et al., 1988).  

Therefore, Synechocystis may have used EPS as a sink for electrons and photosynthetically 

assimilated carbon during the period when phosphate limitation halted the production of 

active biomass.  This type of mechanism for the disbursal of excess electrons and carbon 

under nutrient stresses has been observed and proposed in many different algal and 

cyanobacterial systems (Bratbak and Thingstad, 1985; Huang et al., 2007; Wyatt et al., 

2014).   

 

In PBRP+, carbohydrates accounted for only 39% of the SCOD, and the protein 

fraction contained 15% of the SCOD.  Since the sum of these two fractions represented 

only about half of the SCOD in PBRP+, the main source of SMP in PBRP+ probably was 

not carbohydrates from EPS, but from other sources, such as the direct release of 

Figure 6.5  Total carbohydrates (red) and protein (teal) from the two PBR experiments.  
In PBRP0, carbohydrates account for around 70% of the SCOD by the end of the experiment.  
In PBRP+, however, carbohydrates account for a much smaller fraction of the SCOD. 
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utilization-associated products or biomass lysis/decay (Laspidou and Rittmann, 2002).  

This difference in the composition of SMP further supports the notion that the increase in 

SMP carbohydrates in PBRP0 was triggered by phosphate limitation, which did not occur 

in PBRP+.  Both PBRs showed much lower proportions of soluble protein than soluble 

carbohydrates, even though EPS produced by Synechocystis is known to be 40% (w/w) 

protein (Panoff et al., 1988), indicating that the carbohydrate fraction of Synechocystis EPS 

is more resistant to microbial degradation than the protein fraction.  This helps to explain 

the rise in soluble carbohydrates in PBRP0 with no concurrent increase in the soluble 

proteins.  

 I used specific UV absorbance at a wavelength of 254 nm (SUVA254) to estimate 

the aromatic content of the PBR SMP.  Table 6.2 shows the A254 and SUVA254 values from 

the final day of operation of both PBRs.  PBRP0 had a higher A254 than PBRP+, probably a 

result of PBR having more total SMP.   

 

 

 

 

 

 

However, both PBRs had similar SUVA254 values.  Therefore, the relative aromatic 

content of SMP in Synechocystis-based PBRs was not affected by phosphate limitation.  I 

also measured fluorescence of chlorophyll in the SMP (Figure 6.6).  In PBRP0, the 

fluorescence of the SMP decreased over time, while it increased in PBRP+.  Thus, 

Table 6.2  A254 and SUVA254 on the final day of PBR operation.  
Both PBRs had similar SUVA254 values 

 A254  (cm-1) SUVA254 (L m-2 mg-1) 

PBRP0 0.27 0.40 

PBRP+ 0.17 0.41 
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chlorophyll (and possibly other pigment molecules) was more dominant in the SMP of 

PBRP+ than in PBRP0.  These pigments probably were released upon cell lysis, supporting 

that a significant portion of the SMP in PBRP+ was derived from biomass lysis/decay, not 

from EPS.  

 

 

 

 

 

 

 

 

 

 

 

Microbial community analysis 

I analyzed the microbial communities in both PBRs using high-throughput 

sequencing of 16S rRNA gene libraries.  Figure 6.7 shows the bacteria present in both 

PBRs over the course of each experiment at order-level definition.  As expected, bacteria 

from the order Chroococcales, to which Synechocystis belongs, dominated both PBRs.  In 

PBRP0, the most abundant heterotrophic bacteria were from the orders Xanthomonadales, 

Bacillales, Rhizobiales, Actinomycetales, and Caulobacteriales.  Upon inoculation (Day 0) 

of PBRP0, Xanthomonadales were the most dominant heterotrophs.  However, by Day 2 

Figure 6.6 Fluorescence from the SMP in the 
two PBRs.  PBRP0 (grey line) showed a slight 
decrease in fluorescence while PBRP+ (black line) 
showed a great increase in fluorescence.  
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bacteria from the order Bacillales became the most dominant heterotrophs and remained as 

such until the end of the experiment (Day 9), while the Xanthomonadales diminished 

rapidly.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In PBRP+, the heterotrophic bacteria detected were from the orders Cytophagales, 

Rhizobiales, Pseudomonadales, Sphingomonadales, and Burkholderiales.  Cytophagales 

were the dominant heterotrophic bacteria at the beginning of PBRP+ operation, but, 

decreased with time and, by the end of the experiment, were present in relatively the same 

Figure 6.7  16S rRNA gene sequencing analysis of the two PBR 
experiments.  In both PBRs, heterotrophic bacteria were detected, but 
each PBR had different types of heterotrophic bacteria present.  In 
both PBRs, Synechocystis was the dominant microbe.  However, 
PBRP0 had a substantially higher proportion of heterotrophic bacteria.   
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proportion as the Rhizobiales, representing about 4% of the 16S rRNA gene sequences.  In 

PBRP0, the relative proportion of Chroococcales dropped between Day 0 and Day 2 and 

then increased.  In contrast, the proportion of Chroococcales in PBRP+ rose steadily over 

the duration of the experiment.  Therefore, the microbial communities in both PBRs had 

heterotrophic bacteria present, but the ratios of Chroococcales to total heterotrophic 

bacteria and compositions of the heterotrophic communities were unique from one another.  

 To specifically track the growth of Synechocystis, I used qPCR to target only 

Cyanobacteria.  Figure 6.8 shows the number of 16S rRNA gene copies per liter from 

Cyanobacteria from both PBRs.  In PBRP0, the 16S rRNA copies from Cyanobacteria 

increased slowly over the first few days and then remained relatively stable for the rest of 

the experiment.  This indicates that the heterotrophic bacteria were likely being washed out 

of PBRP0, as the relative proportion of Cyanobacteria increased with no corresponding 

increase in the 16S rRNA gene copies from Cyanobacteria.   

 In contrast, the 16S rRNA gene copies from Cyanobacteria in PBRP+ rose 

rapidly at the beginning of the experiment and became stable after that.  The qPCR data 

from both PBRs agree well with the OD730 and PCOD data that Synechocystis was the 

dominant microbe in both systems and that the bulk of the COD in the system was derived 

from Synechocystis.  The qPCR, 16S rRNA gene sequencing, OD730, and PCOD data also 

agree that PBRP+ had higher total amounts of Synechocystis and also higher relative 

proportion of Synechocystis than PBRP0.  This supports that avoiding phosphate depletion 

improved production of Synechocystis biomass and enriched the community for 

Synechocystis in the PBR setting.  
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Figure 6.9 shows high-throughput 16S rRNA gene sequence analysis of only the 

heterotrophic bacteria from the two PBRs at genus-level definition on the final day of 

operation.  The most dominant heterotrophic bacterium in PBRP0 was a single species 

belonging to the genus Bacillus.  Bacillus spp. have been shown to produce extracellular 

polysaccharases that can hydrolyze complex polysaccharides, such as glucan and xanthan 

gum (Sutherland, 1999).  Furthermore, some Bacilliales spp. are known to have the ability 

to solubilize phosphate from organic and inorganic compounds (Rodríguez and Fraga, 

1999).   

 

Figure 6.8  Measurement of 16S rRNA gene copies from 
Cyanobacteria in PBRP0 (closed circles) and PBRP+ (open 
circles).  PBRP+ had more 16S rRNA gene copies per liter 
than PBRP0, indicating a higher density of Synechocystis cells 
in PBRP+.  
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Thus, this bacterium may have also been involved in phosphate cycling in PBRP0 

due to its ability to recycle phosphate from diverse sources.  Other heterotrophic bacteria 

detected in PBRP0 included a single Rhizobiales sp., a single Caulobacteraceae sp., and a 

Stenotrophomonas sp. 

In PBRP+, the most dominant heterotrophic bacteria belonged to a single species in 

the family Cyclobacteriaceae and a single species in the genus Agrobacterium.  Members 

of the family Cyclobacteriaceae have previously been found in association with cultures of 

Figure 6.9  Identification of heterotrophic bacteria at the genus-level on the final 
day of PBR operation.  The most abundant heterotrophic bacterium in PBRP0 was a 
single species belonging to the genus Bacillus, which represented the vast majority of 
the bacteria from the order Bacillales.  In PBRP+, a single species belonging to the 
family Cycolobacteriaceae and a single species belonging to the genus Agrobacterium 
were the most dominant heterotrophic bacteria.   

* A single operational taxonomic unit that was not defined below the family-level 
** A single operational taxonomic unit that was not defined below the order-level 
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the microalga Dunaliella sp. SAG 19.3 (Le Chevanton et al., 2013), as well as in 

association with macroalgae and have been isolated from numerous environments and have 

diverse metabolic capabilities (Anil Kumar et al., 2012).  Agrobacterium spp. are common 

soil bacteria most studied for being the causative agent of crown gall tumors and other 

diseases in many plants (Matthysse, 2006).  Thus, these bacteria are probably well suited to 

grow on different types of biomass.  A single Erythrobacteraceae sp. was also detected in 

PBRP+.   

I analyzed the SMP and microbial communities in two xenic PBR cultures of the 

model cyanobacterium Synechocystis sp. PCC6803.  One PBR was limited by phosphate 

availability (PBRP0), while the other was not (PBRP+).  PBRP0 produced less total 

biomass, but more SMP than PBRP+.  Carbohydrates, probably originating from hydrolysis 

of EPS, dominated the SMP in PBRP0, while the SMP in PBRP+ appeared to be 

dominated by compounds released as a result of cell lysis or decay.  Both PBRs showed 

relatively low concentrations of soluble protein.  I detected heterotrophic bacteria in both 

PBRs.  PBRP0 had a higher proportion of heterotrophic bacteria and less total 

Synechocystis than PBRP+.  The greater proportion of heterotrophic bacteria in PBRP0 

surely was the result of the higher SMP release in this PBR.  Because the purpose of the 

PBR is to generate lipid-rich Synechocystis biomass (Sheng et al., 2011b), it is most 

desirable to minimize SMP production, which represents a loss of energy and organic 

carbon.  Thus, it is important to avoid nutrient limitations so that Synechocystis can use the 

available energy to produce biomass, rather than SMP.   
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Chapter 7 

Conclusions and Recommendations for future work 

7.1  Summary of Work  

Cyanobacteria and eukaryotic microalgae are photoautotrophic microorganisms 

that have gained much attention as a useful source of biomass that can be used to produce 

transportation fuels and help to displace fossil fuel resources (Chisti, 2008; Rittmann, 

2008).  However, a number of technical barriers must be overcome to ensure the viability 

of these technologies on industrial scales.  For example, it is generally accepted that large-

scale cultures of photoautotrophic microorganisms must be viewed as biologically diverse 

microbial communities (Smith et al., 2009), yet few studies have assessed the implications 

of microbial ecology in photobioreactor (PBR) operations (Lakaniemi et al., 2012a; 

Lakaniemi et al., 2012b).  As in natural systems, the growth of Cyanobacteria in PBRs is 

usually going to be associated with the growth of heterotrophic microorganisms, 

particularly bacteria (Li et al., 2011).   

Interactions between microorganisms play important roles in many biotechnological 

processes including wastewater treatment and microbial fuel cell technologies.  Often, the 

performance of these systems can be improved by optimizing the conditions such that the 

microbial communities carry out the desired processes (Rittmann et al., 2006).  This same 

logic holds true for PBRs, as heterotrophic bacteria can positively or negatively affect the 

growth of cyanobacteria.  Examples of positive effects would be providing carbon dioxide, 

reducing oxygen saturation, increasing the solubility of micronutrients, and recycling 

nutrients from decying biomass (Giroldo et al., 2003; Keshtacher-Liebson et al., 1995; 

Mouget et al., 1995).  However, some heterotrophic bacteria may prey upon Cyanobacteria 
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and cause a termination of the culture (Radhidan and Bird, 2001).  Thus, it is critical to 

mitigate the negative effects of heterotrophic bacteria while promoting the positive effects.  

This work focused on understanding the microbial ecology in (PBR) cultures of 

Synechocystis sp. PCC6803 (Synechocystis).   

In Synechocystis-based PBRs, soluble microbial products (SMP) derived from 

extracellular polymeric substances (EPS) and decaying biomass probably are the major 

electron donors and carbon sources available for heterotrophic bacteria to use for growth 

(Laspidou and Rittmann, 2002; Merkey et al., 2009).  Thus, understanding the origin, 

composition, and fate of SMP is critical to understanding the linkage between 

Synechocystis and heterotrophic bacteria in these systems.   

 

7.2  Conclusions and Synthesis 

Chapter 2 focused on understanding the phylogenetic distribution of heterotrophic 

bacteria that associate with Synechocystis-based PBRs through culturing methods, 

including isolation and enrichment of bacteria, and through culture-independent high-

throughput 16S rRNA gene sequencing.  The work demonstrated that a wide variety of 

bacterial taxa could be found in association with Synechocystis-based PBRs, including 

bacteria from the phyla Proteobacteria, Bacilli, Bacteroidetes, Actinobacteria, and 

Firmicutes.  These results were further confirmed through high-throughput 16S rRNA gene 

sequencing in Chapters 4, 5, and 6.   

I expected that a high diversity of heterotrophic bacteria would be found in 

association with Synechocystis-based PBRs, as this has been documented for other 

microalgal systems (Berg et al., 2009; Carney et al., 2014; Eiler and Bertilsson, 2004; 
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Krohn-Molt et al., 2013; Li et al., 2011).  Furthermore, I expected that the microbial 

communities in Synechocystis-based PBRs would be similar to those in natural settings in 

terms of the types of heterotrophic bacteria present.  This was confirmed, as the 

heterotrophic bacteria found in association with Synechocystis-based PBRs were common 

soil and freshwater bacteria, some of which had previously been found in association with 

Cyanobacteria in natural systems (Berg et al., 2009; Livermore et al., 2013; Newton et al., 

2011).  Taken together, these data indicate that these diverse taxa of heterotrophic bacteria 

all possess the functional genes necessary to succeed in Synechocystis-based PBRs.   

In Chapter 3, I expanded upon this by investigating the growth kinetics of 

heterotrophic bacteria that were isolated or enriched as a part of the work in Chapter 2.  

Here, I measured the growth of these heterotrophic bacteria on several different labile 

carbon substrates and on recalcitrant carbon substrates.  I found that the growth rates of the 

heterotrophic bacteria from the PBRs were similar to those of heterotrophic bacteria from 

oligotrophic environments (Cho and Giovannoni, 2004; Eiler et al., 2003).  To predict the 

growth of heterotrophic bacteria in PBR settings, I used a mathematical modeling approach 

using the empirically derived kinetic constants to represent the PBR as a chemostat 

bioreactor.  The model results showed that concentrations of labile substrates above 1 mg 

COD/L could support the growth of heterotrophic bacteria at hydraulic retention times well 

below the typical operating range of Synechocystis-based PBRs.  Thus, the work in this 

chapter set forth the important notion that heterotrophic bacteria will almost certainly be 

present in mass cultivations of Synechocystis and will likely be an intrinsic part of PBR 

operations. 
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The work in Chapter 4 was conducted under the major hypothesis that, in 16S 

rRNA gene based assays, Synechocystis would be overwhelmingly dominant due to being 

present in higher cell numbers and due to the high degree of polyploidy (carrying multiple 

genome copies in each cell) found in Synechocystis (Chisholm and Binder, 1995; Griese et 

al., 2011).  The goal of Chapter 4 was to develop a molecular subtraction method to 

specifically remove Synechocystis 16S rRNA genes from pools of DNA extracted from 

Synechocystis-based PBRs.  The purpose of this was to improve the resolution of 

heterotrophic bacteria in 16S rRNA gene based assays.  However, the technique did not 

significantly improve the resolution of non-Synechocystis bacteria in high-throughput 16S 

rRNA gene sequencing analyses of PBR microbial communities.  This was due mostly to 

the sensitivity of the high-throughput sequencing technology.  From this, I rejected the 

hypothesis that Synechocystis was overwhelmingly dominant in 16S rRNA gene-based 

assays and concluded that high-throughput sequencing was sufficient to capture the true 

bacterial diversity in PBR cultures.  This work also demonstrated that, in some 

Synechocystis-based PBRs, 16S rRNA gene sequences from heterotrophic bacteria greatly 

outnumber those from Synechocystis.   

 

In Chapter 5, I investigated the effect of the inoculum on the structure of PBR 

microbial communities.  First, I showed that four PBRs that were operated under identical 

conditions produced different biomass concentrations but that two of the PBR experiments, 

which were started using the same inoculum culture, produced the most similar biomass 

concentrations while the other two, each started with unique inocula, produced different 

biomass concentrations.  I then showed that the microbial communities in the two PBRs 
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that were started using the same inoculum culture were very similar in terms of the types 

and relative abundances of heterotrophic bacteria present in the PBR.  However, the PBRs 

that were started using different inoculum cultures each had unique microbial communities 

in terms of the heterotrophic bacteria detected and their relative abundances.  I then 

expanded upon this work by conducting a series of batch experiments in which I compared 

the microbial communities in flask cultures to the microbial communities in the inoculum 

cultures used to start the different flasks.  I found that the flask microbial communities 

were most similar to the microbial communities in the inoculum culture that as used to start 

the flask in terms of both the types of heterotrophic bacteria detected and the relative 

abundance of the heterotrophic bacteria.  From this, I concluded that the microbial 

community in the inoculum used to start a PBR culture has a very strong impact on the 

structure of the microbial community that develops in that PBR.  

 

The work in Chapter 6 focused on understanding the relationship between 

phosphorus availability, SMP production, and microbial community structure in PBRs.  I 

found that a phosphate-limited PBR had higher concentration of SMP that was correlated 

with lower biomass density and higher relative proportion of heterotrophic bacteria than 

did a PBR that had ample available phosphate.  Furthermore, the phosphate-limited PBR 

had a higher ratio of SMP to biomass than did the PBR with ample phosphate.  The SMP in 

the phosphate limited PBR was dominated by carbohydrates that were probably derived 

from Synechocystis EPS, while the SMP in the PBR with ample phosphate had a lower 

proportion of carbohydrates and appeared to be mostly derived from biomass decay, due to 

a higher relative proportion of proteins and aromatic compounds.  These data led me to 
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conclude that, under phosphate-limited conditions, Synechocystis shunts excess electrons 

and photoassimilated carbon to the production of EPS.  Conversely, in conditions with 

ample phosphate, Synechocystis can use the electrons and photoassimilated carbon to 

produce cell mass.  Thus, maintaining phosphate availability in Synechocystis-based PBRs 

is critical for managing SMP production.  In turn, this manages the heterotrophic 

population by removing the most readily available substrates.  These data strongly agree 

with previous studies in natural systems showing that phytoplankton produce more 

dissolved organic matter in low-nutrient conditions than they do in nutrient replete 

conditions (Unnithan et al., 2013).   

 

Initially, I had hypothesized that the polyploidy of Synechocystis (Griese et al., 2011) 

would cause it to be greatly overestimated in 16S rRNA gene-based molecular analyses of 

PBR microbial communities.  However, the high-throughput sequencing data presented in 

Chapters 4-6 indicated that this was not the case.  Indeed, in some cases, the relative 

abundance of 16S rRNA gene sequences assigned to Synechocystis was lower than that of 

the 16S rRNA gene sequences assigned to taxa of heterotrophic bacteria.  This indicates 

that, in some PBRs, heterotrophic bacteria can exist in vastly greater cell numbers than 

does Synechocystis.   In terms of the microbial community structure, Chapters 2, 4, 5, and 6 

showed that some PBR microbial communities are dominated by a single heterotrophic 

bacterium while others have a more even distribution of several types of heterotrophic 

bacteria.  Furthermore, these chapters showed that once heterotrophic bacteria had 

colonized a PBR, the community did not change greatly over time so long as there were no 

changes to the operational parameters of the PBR.   
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7.3 Recommendations for future work 

Effects of heterotrophic bacteria on growth of Synechocystis 

A critical continuation of the work in Chapter 2 is to determine the effects the 

different heterotrophic bacteria isolated from PBR cultures have on the growth of 

Synechocystis.  The first goal of this study would be to determine which bacteria, if any, 

promote the growth of Synechocystis in controlled co-cultures.  One study showed that, in 

general, the addition of heterotrophic bacteria decreased the maximum growth rate of a 

microalgal species, although no mechanism for this was proposed (Le Chevanton et al., 

2013), while another showed that the addition of heterotrophic bacteria increased the 

growth of microalgae by recycling organic carbon as carbon dioxide (Bai et al., 2014).  If a 

suitable co-culture partner were to be identified, it could be used as a “probiotic” to control 

the microbial community in Synechocystis-based PBRs (Verschuere et al., 2000).   

 

Metagenomics and metatranscriptomics to discover genes important for 

heterotrophic growth in PBRs 

Comprehensive understanding of heterotrophic bacteria in PBRs requires 

knowledge of the genes most important for colonization and sustained growth in PBRs.  As 

demonstrated throughout this work, diverse phylotypes of heterotrophic bacteria are 

associated with PBR cultures, meaning that the genes that confer success in the PBR are 

equally widespread.  Metagenomic studies would help to uncover the most abundant genes, 

which would inform about the most important substrates in the PBR.  Furthermore, 

metagenomic studies would help determine which heterotrophic bacteria are most 
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responsible for hydrolysis of large polymers such as EPS and which heterotrophic bacteria 

consume the lower molecular weight compounds.  Metatranscriptomic studies can uncover 

temporal shifts in gene expression (Gilbert et al., 2008).  PBR metagenomes will certainly 

be dominated by sequences from Synechocystis.  However, as demonstrated in Chapters 4, 

5, and 6, deep sequencing techniques are sensitive enough to detect gene sequences from 

heterotrophic bacteria even in a high background of Synechocystis genes.    

 

Analysis of extracellular enzyme activity in PBRs 

Another method to uncover the function of heterotrophic bacteria in PBRs is 

through direct measurement of extracellular enzyme activity.   Extracellular enzymes such 

as ß-glucosidases are critical for the biodegradation of EPS (Sutherland, 1999), while 

peptidases, and alkaline phosphatases are important for biodegradation of polypeptides and 

for remineralization of phosphate from biomass, respectively (Morrissey et al., 2013).  

Bacterial extracellular enzymes have been shown to be important for the cycling of carbon 

and other nutrients in marine and soil habitats (Cañizares et al., 2011; Dang et al., 2008; 

Piontek et al., 2011).  Thus, these enzymes probably play an equally important role in 

sustaining heterotrophic growth in Synechocystis-based PBRs.  An exploration of 

extracellular enzyme activity in PBRs would be a strong addition to the metagenomic work 

described above.   

 

Couple PBRs with water treatment 

Another application of PBR technologies is coupling production of microalgal 

biomass with treatment of wastewater streams (Carney et al., 2014; Su et al., 2011; 
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Unnithan et al., 2013).  Interactions between photosynthetic and heterotrophic 

microorganisms will be especially important in these systems as most wastewater streams 

have heterotrophic bacteria present (Carney et al., 2014; Su et al., 2011).  Already, several 

groups have shown promising results for using microalgae or cyanobacteria to remove 

nitrogen and phosphorous from municipal or industrial wastewater streams (Mata et al., 

2010).   
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Figure A.1  Representative growth curves for B2 (above blue) 
and ENR1 (below red) on acetate (black) as a sole carbon source.   
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Figure A.2  Representative growth curves for B2 (above blue) 
and ENR1 (below red) on glucose (black) as a sole carbon 
source.   
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Figure A.3  Representative growth curves for B2 (blue) on laurate (black) as a 
sole carbon source.   
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Figure A.4  Representative growth curves for ENR1 (red) on laurate (black) as a 
sole carbon source.   
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Figure A.5  Monod fits for growth of B2 (left) and ENR1 (right) on acetate 
as a sole carbon source.   
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A.7  Monod fits for growth of B2 (left) and ENR1 (right) on laurate 
as a sole carbon source.   
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Figure A.8  Monod fit for growth ENR1 on S-SMP 
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