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ABSTRACT

When scientific software is written to specify processes, it takes the form of a workflow,

and is often written in an ad-hoc manner in a dynamic programming language. There

is a proliferation of legacy workflows implemented by non-expert programmers due

to the accessibility of dynamic languages. Unfortunately, ad-hoc workflows lack a

structured description as provided by specialized management systems, making ad-

hoc workflow maintenance and reuse difficult, and motivating the need for analysis

methods. The analysis of ad-hoc workflows using compiler techniques does not address

dynamic languages - a program has so few constrains that its behavior cannot be

predicted. In contrast, workflow provenance tracking has had success using run-time

techniques to record data. The aim of this work is to develop a new analysis method

for extracting workflow structure at run-time, thus avoiding issues with dynamics.

The method captures the dataflow of an ad-hoc workflow through its execution and

abstracts it with a process for simplifying repetition. An instrumentation system first

processes the workflow to produce an instrumented version, capable of logging events,

which is then executed on an input to produce a trace. The trace undergoes dataflow

construction to produce a provenance graph. The dataflow is examined for equivalent

regions, which are collected into a single unit. The workflow is thus characterized

in terms of its treatment of an input. Unlike other methods, a run-time approach

characterizes the workflow’s actual behavior; including elements which static analysis

cannot predict (for example, code dynamically evaluated based on input parameters).

This also enables the characterization of dataflow through external tools.

The contributions of this work are: a run-time method for recording a provenance

graph from an ad-hoc Python workflow, and a method to analyze the structure of
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a workflow from provenance. Methods are implemented in Python and are demon-

strated on real world Python workflows. These contributions enable users to derive

graph structure from workflows. Empowered by a graphical view, users can better

understand a legacy workflow. This makes the wealth of legacy ad-hoc workflows ac-

cessible, enabling workflow reuse instead of investing time and resources into creating

a workflow.
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Chapter 1

INTRODUCTION

When scientific software is written to specify processes, it takes the form of a

workflow. A workflow is a graph that describes the execution of tasks to achieve a

goal. Many workflows are written in an ad-hoc manner in a dynamic scripting lan-

guage. The accessibility of many dynamic languages has led to a large body of legacy

workflows written by non-expert programmers and which cannot be reused because of

the difficulty in their understanding and discovery. Previous work on analyzing and

understanding dataflow in dynamic languages using compile-time techniques has en-

countered issues stemming from the difficulty of capturing the semantics of dynamic

code (e.g., [36, 26]). The execution of such programs have so few constraints that

their behavior cannot be predicted and the use of specialized formalisms to deal with

the situation has had little success (e.g., [105]). While using compile-time techniques

has had little success, the use of run-time techniques has fared better, albeit not

for general workflow analysis. Run-time techniques have been used successfully for

provenance tracking (e.g., [81]) but existing results do not apply to the more general

problem of workflow understanding. The goal of this work is to develop a new anal-

ysis method for extracting workflow structure at run-time, thus circumventing the

limitations of compile-time approaches.

The method given here captures the dataflow of an ad-hoc workflow through

its execution and abstracts it with a process for simplifying repetitive regions. To

use the method, both an ad-hoc workflow and an input is required. Although an

execution of the workflow provides a semi-structured view of the workflow, it is not

a full generalization of the workflow process. Functionality in the workflow which
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is not used in processing the job is unseen, as well as the logic that produced the

execution. However, a trace always provides a valid view of a workflow in terms of its

tools. In fact, such a view of a workflow can reduce the complexity of its structure

by containing only relevant elements.

There are four steps to the method in this work. An instrumentation engine

processes the workflow to produce an instrumented workflow capable of logging events.

The instrumented workflow is then executed on a sample input. The execution log

undergoes trace analysis to produce a dataflow graph. The dataflow graph is analyzed

and simplified to produce a graph that captures the essential structure of the workflow.

This process is illustrated in Figure 1.1.

Workflow

Data

A

B B

A

X

C C

trace

Trace

Instrumentation                        Execution           Trace Analysis                             Abstraction

Instrumented
Workflow

Dataflow Dataflow

Figure 1.1: Overview of analysis process.

The contributions of this work are the following:

• a trace-based method for recording a provenance graph from an ad-hoc Python

workflow,

• a method to analyze the structure of a workflow from provenance.

Methods are implemented in Python and demonstrated on several real world work-

flows. These contributions enable users to derive graph structure from ad-hoc Python

workflows. Unlike other methods, a dynamic approach characterizes workflow’s run-

time behavior; including elements which static analysis cannot predict. For example,
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the inmembrane workflow uses a job parameter to dynamically load Python code

into the runtime - the static code base simply does not encode the information which

describes the workflow. Runtime behavior, whether influenced by configuration files,

or programming language features, can indicate critical dataflow in ad-hoc workflows

that is otherwise unknown. Runtime analysis also enables characterization of dataflow

through external programs by recording an example of their impact on the filesystem.

Empowered by a graphical view, users can better understand a legacy workflow. This

makes the wealth of legacy ad-hoc workflows more accessible, potentially facilitating

the reuse of existing workflows instead of investing time and resources into creating

a workflow which may already exist.

The rest of this thesis is organized as follows. Chapter 2 discusses related work

in scientific workflows and code analysis in Python. In Chapter 3, three main ap-

proaches to extracting the structure of a workflow are discussed. Chapter 4 details

the instrumentation portion of the method and how a trace of the workflow is used to

produce a dataflow graph. A method for finding and removing repetitive structures

is then discussed in Chapter 5. Chapter 6 illustrates the application of the method(s)

to several real world workflows and the discusses the performance impact. Chapter 7

concludes with a discussion on future extensions.
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Chapter 2

RELATED WORK

A workflow is a graph that describes the execution of tasks to achieve a goal. A

workflow is represented as a program composed of one or more tasks that are related

by flow of data or control. A task is an atomic representation of a way to transform

data, which is associated with some input and output. A task receives an input

produced by other tasks in the workflow and produces an output to be consumed by

other tasks in the workflow. A workflow may be executed on any input with valid

format and systemically provides output for each. The description of tools used and

how they are linked are a workflow’s specification. The concept of workflows has

seen use in both science and business environments. In science, a scientific workflow

arises from the need of a scientist answering a specific question - e.g., a scientific

protocol. Workflows have found application in business environments, where business

processes must be regulated to ensure quality. Some workflows are created by using

a graphical interface to compose various elements. Others are written in a high-level

programming language such as Python.

Python is a dynamic programming language that was designed to let users develop

systems quickly by providing a feature rich environment that is easy to learn. Python

has become pervasive in scientific workflow development because of its accessibility,

particularly in life sciences. This has lead to a wealth of existing ad-hoc workflows in

Python. The prevalence of Python is shown in Figure 2.1, which shows the languages

used in bioinfomatics workflows on GitHub 1 in April 2015, and similar numbers

1https://github.com/search?q=bioinformatics
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from the Bioinformatics Career Survey 2 in 2012. Note that the survey results are

significantly older than the GitHub results but include language use in commercial

settings. An ad-hoc workflow takes the form of a collection of related scripts with some

master script which orchestrates their execution. That is, the workflow is defined in

an unorganized way - each piece of code underlying its function exists in some source

file but without relation to the whole.

0.006 10.006 20.006 30.006 40.006 50.006

Python

Perl

Java

Ruby

C++

GitHubmBioinformaticsmLanguagesm2015

0.006 10.006 20.006 30.006 40.006 50.006 60.006

R

Perl

Python

Java

C++

BioinformaticsmCareermSurveym2012

Figure 2.1: Left: Top five languages on GitHub. Right: Top five languages from
Bioinformatics Career Survey.

This chapter starts in Section 2.1 with a discussion on systems for managing

and executing workflows. The state of the art for recording provenance in ad-hoc

workflows is given in Section 2.2. In Section 2.3, methods for finding a workflow

specification to address a need are discussed, followed by Section 2.4 which discussing

rewriting workflows. Section 2.5 gives general methods for simplifying a graph or

tree structure. Lastly, Section 2.6 introduces static and dynamic program analysis in

general Python programs.

2.1 Workflow Management

A common motif, lending itself to visual development, is the presentation of a

workflow as a graph. This shields the user from the underlying complexity of resources

and execution. Thus, workflows are developed with the aid of Workflow Management

2https://github.com/michaelbarton/bioinformatics-career-survey
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Systems (WFMS), which typically provide a coordinated development environment,

specification language, and execution engine. WFMSs require the explicit knowledge

of the workflow’s structure because they define a high level representation - they

express processes as a sequence of related tasks. WFMSs are successful among the

scientific community as they provide scientists with the ability to conceptualize sci-

entific protocols as a sequence of related steps. This has lead to a large variety of

WFMSs that are available to users.

Kepler [70], a WFMS based on the Ptolemy II system [76, 77], supports modular

workflow design (with IDE) and high level task scheduling (using a director/actor

system). WOODSS [78] emphasizes the abstraction levels of workflow design and fa-

cilitates workflow composition and reuse. Taverna [78] is a workflow system targeting

bioinformatics and web service integration. WFMSs that target Grid computing en-

vironments, such as Pegasus [35], have been around for some years. Or more recently,

Triana [98] which provides a middleware based environment to construct Grid enabled

workflows while allowing integration with web services. Some WFMS utilize a web

platform to enable collaboration and ease of use. Systems such as the cloud driven

Galaxy [46] WFMS, can leverage Taverna workflows by using Tavaxy [3]. SQLShare

[54] is a web based platform for doing scientific workflow like data analysis. SQLShare

focuses on providing an accessible SQL query view of workflows. Related to workflows

are data visualization pipelines. The Ediflow platform [14] enables the convergence

of visual analytics and workflows in creating visualization processes by integration of

persistent DBMS. VisTrails [12] is a data visualization platform which makes a clear

distinction between process and instance results.

Some workflow authors take a less structured approach of using a workflow pro-

gramming language or a general programming language with a workflow framework.

Swift [108] provides a scripting language for describing processes made of loosely
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coupled and data-centric elements, together with an execution engine for distributed

environments. snakemake [62] provides a DSL implemented in Python which gives a

makefile-like structure for describing scientific workflows. Dispel4Py [37] is a Python

library which provides methods to compose data based workflows and execute them

in various environments. However, many scientific workflows are not implemented

with a WFMS, or even a workflow framework [71]. So-called ad-hoc workflows are

implemented directly in a language such as Python. Scripts are developed either as

a pure orchestrational program, designed to execute applications and connect their

outputs appropriately, or may also contain specific algorithms which are used to guide

the process. Using a general programming languages leaves the workflow designer at

a disadvantage. Such languages lack support for provenance and repeatability, while

promoting unstructured use of tools [71]. These issues are especially problematic

when re-targeting a workflow for a new platform [71].

Despite the variety of ways to use workflows, each with corresponding represen-

tations and execution engines, there two general types of workflows: Control-driven

and Data-driven [91]. In a control flow based workflow, a dependency between tasks

A and B indicates that B can start only after A has completed, i.e., it defines task

order [71]. In a data flow based workflow, a similar dependency would indicate that

A produces data that B consumes, i.e, it defines a dataflow [71]. After preprocess-

ing steps, scientific workflows are typically data-driven and so best represented by a

dataflow [71].

2.1.1 Semantics

While WFMSs represent a workflow as a graph to enable its execution, they do

not always give useful semantics. In the ProtocolDB [60, 65] WFMS, workflows are

expressed in terms of a domain ontology, where each task expresses a specific scientific
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aim. However, this requires that tasks are available with semantic information. The

Structural Bioinformatics Semantic Map (SBMap) [95] is a dual level ontology for

storing scientific concepts and resources. SBMap was conceptualized as a method

for discovering resources (services) based on ontological concepts instead of textual

searches. Other existing systems such as BioMoby, [31] allow mainly textual searches

for services or service formats, which are not able to return semantically relevant

options. In addition, general resource repositories may be augmented with semantics.

In [64], Lacroix and Aziz survey the state of the BioMoby [104] web services registry

for bioinformatics. They propose a method for extracting semantics from BioMoby

and give concrete results. Semantic models can also be used to represent workflows

during their life cycle. One way to capture a workflow (and its life cycle) is by using

the the idea of Research Objects (RO) [34]. A RO is the encapsulation of various

dimensions (e.g., reusable, repurposable, repeatable, etc.) of some scientific problem

as a social object to enable interaction between researchers and existing work. ROs

can used together with existing ontologies to capture information about a workflows

basic specification, executions, and various annotations [13].

2.1.2 Workflow Similarity

An advantage of using a WFMS is that the structure of a workflow is explicitly

defined. The structure of a workflow provides a means to enable comparison via

similarity. Comparison is a fundamental operation for workflow discovery - it enables

queries. Similarity is a topic already considered for general programs with source code.

Liu et al. [67] looked at using a Program Dependence Graph to discover similarity

between programs as a way to detect plagiarism. Their approach involves solving a

restricted version of the graph isomorphism problem based on the constraints that

are mandated by using a Program Dependence Graph on real world programs. When
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workflows are structured, semantics can aid comparison. For example, in ProtocolDB

[65] equivalence of workflows and tasks is realized by mapping elements to an ontology

and checking for identity or subtyping of concepts. Another approach is to define a

set of rules for assessing the similarity of a workflow and analyzing its graph like

representation of nodes and edges in terms of their semantics [15]. Specifically, [15]

use this assessment for the retrieval of workflows from a repository. One limitation

of [15] is that the authors only consider the semantics of the workflow. Workflow

executions provide another way to characterize workflows but are not yet in use [94].

At least in the domain of of scientific workflows, the community lacks repositories to

store provenance [94]. Another concern is the quality of service offered by multiple

workflows. Ma et al. [72] give a distance based measure for selecting similar workflows

based on an execution time constraints.

2.2 Workflow Provenance

A workflow naturally describes the process to create an end product, however

the process is generic and may be applied to many inputs, with each input evoking

a slightly different process. The record of how a specific product was created is its

provenance. A trace is the provenance of a workflow execution. Provenance is useful

in science for tracking analysis progress and enabling reproducibility. Provenance can

also be leveraged to support reuse of data for new workflow executions.

WFMSs like Taverna capture data provenance, but do not focus on data reuse.

Before, during, and after, run time, Chiron [53] stores provenance information based

on the flow of relations between workflow activities. Chiron supports reuse of data

as well monitoring the run time state of executions to identify deviations. In some

domains, interacting with provenance during a workflow’s development is important.

VisTrails [12] maintains provenance for visualization results by storing the pipeline
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process which created it. During development, data exploration provides core in-

sight. This can be enhanced by providing better tools for iterative development (e.g.,

parameter sweep); a user may interact with a tree representing different cumulative

changes [25]. The Ediflow platform [14] enables the convergence of visual analytics

and workflows in creating visualization processes by integration of persistent DBMS.

A second focus is on providing a live interface between a DBMS and a visualization

system to enable change propagation [14].

Analysis of traces is also valuable, for instance, Bao et al. [10] give a method

for differencing executions to understand control flow in provenance. Bao et al. de-

fines the differencing problem as the computing a list of transformation between two

traces which adhere to a workflow specification. Workflows are specified in so-called

sp-workflow format, which is comprised of a sp-graph [101] annotated with informa-

tion about looping and forking. This was implemented in PDiffView [9], an graphical

application which imports workflows into a sp-workflow format, generates valid runs,

and then shows the operations in differencing them. This differs from workflow struc-

tural extraction as it focuses on comparing the structure between executions, not

extracting executions or comparing elements within an execution to deduce overall

structure.

2.2.1 Python Workflows

Provenance tracking has been addressed for Python based systems in several ways.

One way to track provenance is by enabling the user to explicitly define the dataflow

using a provenance API (e.g., [18]). However, this is intrusive since the workflow must

be engineered to use the API. IncPy [50] is a non-intrusive and low level approach to

the issue of data reuse; it involves the replacement of the standard Python interpreter

with one which automatically catches the result of functions as they are called.
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Starflow [8] addresses the issue of tracking provenance and data reuse in workflows

authored in Python. Starflow provides a data analysis environment at the level of

Python’s interactive interpreter. Starflow takes a function view of programs - func-

tions are versioned and their execution parameters recorded. Using a combination of

static analysis, dynamic analysis, and user annotations, Starflow builds a dependency

graph of functions in terms of the files and folders they use. Based on the depen-

dency graph, Starflow detects changes in functions or input and thus determines what

functions must be reexecuted.

ProvenanceCurious [55] provides a method to extract provenance from a Python

program for debugging. Using an input Python file, ProvenanceCurious constructs a

provenance graph from the syntax of the program while interacting with the user to

annotate elements with information on file access. The provenance graph, similar to a

program dependency graph, is then refined using a number of graph rewriting rules to

propagate properties between nodes, thus making some redundant and so removable.

Once a provenance graph has been extracted, ProvenanceCurious supports analyzing,

and querying, the dataflow of that program’s execution.

noWorkflow [81] addresses the issue of providing a non-intrusive and systematic

way to collect provenance information in a general Python program. Like Starflow,

noWorkflow is file centric, but unlike Starflow is based on static programs instead of

interactive development. During workflow execution, functions are tracked if they are

user created or if they are part of the standard library and involve accessing a file.

The result is source code for functions, function parameters, data files; all of which are

stored in a local database. noWorkflow then provides analysis functionality with this

database: graph analysis, difference analysis, and query analysis. noWorkflow also

captures version information for external modules as well as environment variables;

these help to fully define the execution environment.
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Although these provenance methods track data in a workflow, and factors leading

to their computation, they do not support external tools, or, reducing the complexity

of the dataflow.

2.3 Workflow Reuse

Since scientific workflows are data-centric, their reuse is attractive as users can

provide their own input data and yet leverage an existing system. Users may also

want to modify the actual workflow structure. Although WFMSs such as Taverna

provide mechanisms like composition to build new workflows from old ones, they lack

capabilities for reusing ad-hoc workflows. During the 2006 Challenges of Scientific

Workflows workshop [44], many issues were identified including the discovery (for

reuse), creation, merging (for reuse), and execution of workflows. Workflow reuse

may take the form of a user retrieving an existing workflow from a repository (see

Subsection 2.3.2), provided their search yields a satisfactory result.

Unfortunately, repositories may have a low population of workflows. Cohen-

Boulakia and Leser [30] indicated that scientific workflow management systems them-

selves have not yet reached widespread acceptance. Present solutions fail to provide

functionality required by users: Reuse, Search and Compare, Adaptation, Assembly,

and Run Analysis [30]. As noted in [44], workflow reuse continues to be a significant

issue. A major issue is that workflow users are already comfortable with existing

ad-hoc methods and do not find the learning curve for WFMSs to be worthwhile [30]

even given the inherit advantages. Another ongoing issue in the reuse of workflows is

the difficulty of understanding of existing workflows [30, 41]. Issues of maintainability

and extendability can restrict users from reusing existing legacy ad-hoc workflows [4].

In fact, Garijo et al. [41] examined updates made to workflows on MyExperiment

[45] and found that over half of them were a result of either general maintenance (e.g.
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fixing an broken external tool) or fixing bugs for continued use.

2.3.1 Workflow Discovery

Workflow repositories are places where workflows may uploaded, searched, and

retrieved. Most workflow repositories use keywords to locate workflows based on

title or description, or with additional refinement based on tagging (i.e. to indicate

WFMS). However, as repositories grow, better mechanisms for finding a workflow or

determining its similarity to another workflow [94] (e.g. a query), are necessary. There

are two main ways to compare workflows: annotation or structure [94]. Both methods

assume a workflow is available in a structured form. Annotation methods allow

comparisons (e.g., label edit distance) across different WFMS (or execution engines)

[32]. Structural methods rely on information fundamentally embedded in a workflow

(e.g., graph edit distance) but suffer from the NP-completeness of graph isomorphism.

Many methods for comparing modules reply on labels or types [94]. A comparison of

techniques for determining workflow similarity on a standardized corpus shows that

annotations provide the best to way measure module similarity, provided that the

annotations are well chosen [94]. Problematically, for legacy workflows [40] found

that discovering annotations from textual descriptions with the aid of ontological

information was difficult due to heterogeneity of workflows and lack of metadata.

Structural approaches can outperform perform annotation based on configuration,

especially for poorly annotated workflows [94].

2.3.2 Scientific Workflow Sources

There are variety of repositories a user may use to discover workflows. MyEx-

periment is a social platform for storing workflows and enabling collaboration [34].

When developing PDiffView, Bao et al. [10] used six workflows from MyExperiment.
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However, as of 3/4/2015, none of the six workflows could be retrieved, suggesting that

workflow storage may be fleetingly. Although most of the workflows found on My-

Experiment (2033 of 2686 on 3/4/2015) are for Taverna, other WFMS are supported

(e.g., Kepler, Galaxy, Vistrails). However, of the 2686 entries only 12 are tagged with

the Python keyword. All of these entries are in fact workflow elements which execute

a python script to complete a task (e.g. find an average and standard deviation).

Tavaxy [3] provides a repository containing versions of workflows, originally authored

in Taverna or Galaxy, and which have been imported into the Tavaxy format. There

is slightly more diversity in the SHIWA workflow repository 3 , which contains work-

flows using 11 execution engines (including non-WFMS such as BASH, Python, and

BinaryExecutable). However, the SHIWA workflow repository contains less than 200

workflow implementations and the SHIWA project 4 itself has ended. Beyond MyEx-

periment, scientific workflow repositories tend to focus on a particular WFMS (e.g.,

CrowdLabs [75] for VisTrails) or workflow engine (e.g., Snakemake Workflow Repos-

itory 5 ). At present, the scientific community lacks targeted repositories for ad-hoc

workflows.

An alternative source of ad-hoc workflows is code hosting websites. GitHub 6 is

a free provider of GIT source code hosting for open source projects. The following is

an example of how workflows were obtained from GitHub to study ad-hoc workflow

structure. GitHub was searched for workflows with the keywords ’python protein

workflow’ and ’python protein pipeline’. The word ’python’ helps to identify reposi-

tories with missing or incorrect language tags by matching readme or documentation.

The search is confined to the domain of protein analysis using ’protein’ - it was found

3https://shiwa-repo.cpc.wmin.ac.uk/shiwa-repo/

4http://www.shiwa-workflow.eu/

5https://bitbucket.org/johanneskoester/snakemake-workflows/src

6github.com

14



that the general term ’bioinformatics’ gave fewer results. Other keyword choices like

’sequence’ resulted in many small programs created for demonstration or practice.

Some repositories, despite storing workflows, are labeled ’pipeline’ due to their re-

stricted structure. Since they entries are also of interest, a second query was made.

These queries gave several hundred results, however, some are not workflows (i.e.,

made of tools) or are not written in Python. For any author (registered GitHub

user), only one workflow was considered. This reduces sample bias from multiple

workflows with similar designs. Based on file extensions, it is immediately clear to a

reader if a program is written in Python. To determine workflow nature, each result’s

readme or main source file was reviewed to determine its purpose. Most entries stated

constituent tools as part of their readme file, thus identifying themselves as workflows.

Others showed tool use from the manipulate of paths and executable names in their

source code. Some workflows only revealed certain tools when it failed to install or

run due to missing binaries. Of the remaining workflows, only those with at least

four tools were selected, this ensured there was sufficient dataflow to give interesting

results. Finally, each result was checked for executability: contained input files, and

used tools which were available for the Linux environment. Note that due to the large

breath and heterogeneity of ad-hoc workflow, it is not strictly possible to construct

a representative ad-hoc workflow corpus. Rather, an random section tries to capture

diversity in implementation which should include common mechanisms.

From the GitHub results satisfying the selection criteria, the first six workflows

(as ordered by search) were selected. Although more workflows may be found on

GitHub, these workflows contain a suite of nearly 30 tools which appear to illustrate

most common ways to read and write data (see Subsection 3.2.1).

• asr-pipeline [51]: enables creation of phylogenetic trees.
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• bacana [83]: predicts and annotates genes in bacterial genomes.

• hybseqpipeline [57]: a sequence assembly workflow for Illumina reads.

• inmembrane [84]: checks if a bacterial protein codes for a surface-exposed region.

• miR-PREFeR [66]: predicts plant microRNA from RNA sequences.

• pycoevol [73]: analyzes the coevolution of proteins.

2.3.3 Business Process Mining

In the business domain, there is interest in creating (or, mining) process models

from event logs. The term process is sometimes used interchangeably with workflow

in business-related literature. There are three main motivations for process mining

[1] : discovering a process, analyzing process performance, and comparing the actual

process with its definition. A log is the trace of a workflow’s execution as a series of

events. Constructing process models was first presented, for logs produced by IBM

Flowmark, in [6]. In the business realm, workflows are typically based on Petri nets

[71]. The alpha algorithm by Aalst [102] provides algorithmic foundations for mining

a process by determining which events succeed others. The alpha algorithm takes a

set of event logs, each consisting of an unordered list of tasks which occurred, and

constructs a workflow net (a class of Petri nets). Construction occurs by creating a

graph with nodes for all events, adding nodes between followers in the traces, and

removing patterns of excess edges. Dataflow is implicit in the order of the events im-

plied by the model capable of generating the input logs. Other extensions of this work

include letting users find a model by allowing visualization with dynamic parameters

[49], adding heuristics to deal with noisy logs [103], and using a genetic algorithm [33]

that creates a random model and repeatedly mutates it to produce a model which
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can produce the log. Instead of event logs, the process mining algorithms may also

consider data provenance. Zeng et al. [107] propose using the provenance recorded

by WFMSs to create scientific workflow models, which could be compared with the

workflow expressed in the WFMS. Zeng et al. tried four process mining algorithms

to construct control flow from provenance information (collected using Taverna), but

all failed to exactly reconstructed the original scientific workflow. Although the re-

sults may be improved by exploiting the additional data dependencies contained in

provenance, existing process mining tools do not use data dependency information

[107]. A separate issue is logs produced by independent but cooperating processes,

which need to be merged before a top-level process can be mined. Clases and Poels

[27] addressed this issue with a method that uses the attributes of two logs. A user

indicates which attributes of a pair of logs correspond correspond to the same job,

and then the method merges attributes to uniform values. Alternatively, the issue

of concurrent workflow logs, by using temporal dependencies and refinement is ad-

dressed in [69]. Although many methods mine a process, Abdelkafi et al. [1] argue

that a workflow is more than its process. Specifiically, these methods do not provide

insight into the organization that implements the workflow or the structure of the

data it operates over.

Analysis may also occur on a log of user actions. For traces produced by an ex-

pert using services in a medical domain, [106] presented a model merging technique to

learn repetition and branching. This was explored again in the POIROT project [24]

which combines trace analysis and learning methods to deduce procedural models. An

ontology query method to infer regions of missing dataflow was used for traces pro-

duced by expert users which include unobservable choices or actions in [43]. Outside

of digital workflows, Bouarfa and Dankelman [20] propose mining on logs of activities

during surgeries. They use a sequence alignment method to deduce a consensus log
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which could be compared with an ongoing surgery to detect discrepancies.

Models produced by process mining can also aid quality of service. Kraiss and

Weikum [61] address the issue of prefetching data in a three tiered data system being

queried by clients. A Markov chain model is created using a record of requests and

models the behavior of the attached clients to predict their requests. LogO [90]

applies this idea in the domain of distributed multimedia, where an automaton is

learned from the trace of data requested by a number of clients. The automaton

differs from Markov chains in [61] by considering dependencies on when an event

occurs, and allowing multiple resources to be requested at once.

Process mining closely relates to portion of this thesis on instrumentation and

dataflow construction. The majority of process mining occurs on traces produced by

management systems, and does not address ad-hoc workflows. Although instrumen-

tation methods are given in literature, they are mainly for workflows being managed

by a person. Hence, this work provides an instrumentation mechanism for ad-hoc

workflows. Existing process mining methods depend on an ordered list of events;

they do not use the input or output of events. Given many inputs, such methods

determine common event orders, and use them to define dependencies. By using

multiple inputs, process mining methods are able to characterize a more flexible and

complete workflow. In contrast, the work presented here records the input and out-

put of events in a single trace as a semi-structured view of a workflow. Rather than

rely on event order, this permits events to be connected based on what produced the

data it needs - this complements process mining which does not analyze data flow.

This method can provide certitude that discovered dependencies are correct, unlike

process mining where dependencies are approximations based on the number traces

analyzed. However, using a single trace limits the portion of the workflow that can

be constructed.
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2.4 Workflow Rewriting

The high complexity of some workflows can prohibit a user’s understanding or

slow other analysis methods. Garijo et al. [41] suggest that one way to handle the

complexity of existing workflows is by providing a more abstract view of the compo-

nents or sub-workflows within a system. An idea for higher abstraction in workflow

representations is views, which are composite tasks in a workflow. Views may be com-

puted from workflows but existing tools are not guaranteed to produce views that are

sound (preserve data flow) [11, 17, 96]. Directly rewriting a workflow can also ad-

dress complexity. For example, use of Taverna enables application of DistillFlow [29],

which provides methods to rewrite workflows automatically by eliminating known

anti-patterns.

Reducing the complexity of mined processes is also studied for business workflows.

Kudo et al. [63] introduced the notion of ”pseudo-hubs” - elements in a mined process

model which are produced by auxiliary events (e.g. task completion, warning mes-

sage, opening a document for a task, etc.) and which are not needed in a process’s

representation. Futhermore, a Process Skeletonization method enables the simpli-

fication of such elements from a process by searching a process for ”pseudo-hubs”,

ranking the results, and then presenting them to a user for possible removal [63].

2.5 Graph Summarization

Summarizing a graph has become an important topic due to the prevalence of

big data that is naturally modeled as a graph, e.g., gene networks, web graphs, and

social networks. Handling these graphs can cause several problems: the graph may

be too large to store in memory, graph algorithms may become slow, and the vol-

ume of information may prevent understanding [82]. This can be addressed with
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graph summarization. Recently, Pienta et al. [86] performed an extensive survey of

methods for making sense of graphs via algorithms, visualization, and interactivity.

Cluster approaches, where groups of nodes are selected by some property, involve cre-

ating super-nodes and/or super-edges representing a more complex subgraph. One

approach is to cluster nodes based on attributes or common relationships [99]. En-

tire subgraphs may also be used. In [22], the edges making up complete bipartite

subgraphs are replaced by a node with a single edge to each subgraph node. Khan

et al. [58] combine the idea of clustering on dense subgraphs with an information

theoretic approach. The idea of a Minimum Description Length (MDL), which states

that the best representation for data is the one with the most compression, is used to

select subgraphs to remove. A more general approach is searching for frequent sub-

graphs. Unique subgraphs can be discovered by enumerating possible subgraphs and

comparing their statistical prevalence with a randomized graph [79]. However, graph

enumeration is slow and the problem is similar to graph isomorphism, thus subgraphs

are limited to around 15 nodes [48]. The method in [48], uses a query rather than

enumeration approach and avoiding computation for subgraph symmetries. Instead

of subgraphs, Navlakha et al. [82] focus on node pairs and MDL optimization. Given

a graph, pairs of nodes are nodes are examined and merged into super nodes when

the resultant graph and corrections has a smaller description than the original graph.

These topics relate to the abstraction and skeletonization portion of this thesis.

In this thesis, the goal is to find repetitive regions and collapse them. Since graph

approaches intend to provide generic simplification, they depend on topology instead

of semantics (e.g., name of a tool). Typically, a graph approach identifies a dense

subgraph and replaces it by a simpler subgraph. However, dense regions (e.g., a

clique) may not occur in workflow dataflow, which often resembles a DAG. Another

issue is that the selection is somewhat arbitrary interesting features (e.g., a specific
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node) may vanish to be replaced by a super-node without explicit semantics. A closer

problem is frequent subgraph mining, which would be able to identify repetition.

However, frequent subgraph mining has mostly been examined in general graphs,

where identification is slow and imposes an upper bound on subgraph size. In contrast,

focusing on the workflow domain refines this problem to DAGs with annotations,

enabling a greedy, rather than combinatoric approach.

A related problem occurs in semi-structured data; data which contains structure

but which is irregular or incomplete with respect to a global view. Extracting the

true structure can enable data validation, user understanding, and provide an index

to speed up queries [47, 16]. One of the first methods to address this for semi-

structured data in databases was DataGuides [47], an automaton approach to creating

and maintaining a summary of a graph-based database (Lore). A more recent, and

specific, focus is extracting structure (i.e., a schema) from XML data. XML is a

hierarchical text format for storing data; the data may be constrained by a schema

which specifies the structure and content of its elements. XML often stores data in

a semi-structured manner, i.e., lacking the corresponding schema, particularly in the

web. Schema extraction may occur on small sets of XML files (where the schema

must be generalized), or large sets (where the schema must be kept concise) [16].

Techniques often focus on inferring a regular expression (or similar) from the semi-

structured XML. iDTD [16] extracts a DTD (a legacy form of schema) using subclasses

of regular expressions that can be determined with only positive examples. XStruct

[52], an extension of XTRACT [42, 42], a MDL technique, uses multiple XML files

and deduces unambiguous regular expressions for the children of each XML element.

Beyond regular expressions, Janga [56] proposed using a context free grammar to

model XML, removing dependance on structure format and allowing the extraction

of schema, DTD, or other structural representations. Schemas or data may be directly
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simplified. In [74], schemas are are summarized by ranking each element using the

PageRank algorithm and eliminating those with low scores. The summarized schema

is then used to filtered XML data, which is then aggregated based on labels, to

produce summarized XML data. Szlávik et al. [97] determine which XML elements

are important using a probabilistic method that uses eight different features covering

element topology, content, and order.

Although the trace view of a workflow provides a semi-structured view like XML

files, the solutions for schema extraction do not directly apply. The key difference is

XML possessing a hierarchical structure instead of the DAG structure of a workflow.

This is used in algorithms (e.g., DataGuides, IDTD, XTRACT) for schema extrac-

tion where a regular expression (or similar) is constructed each type of element, thus

giving a tree structure. The solutions rely on data encoded in the names of tags

and attributes, to determine the top-down similarity between branches. Much of this

information is absent in workflows, where only the name of nodes is known. These

schema extraction techniques also focus on cases where many XML files are known.

Although this permits extracting more generic structures than the trace solution in

this work, it can produce a very specific schema when a single XML file is available.

Since this work does not use multiple traces, its generalization relies on identifying

data collections - which can be discovered from a single trace. Although XML summa-

rization simplifies a graph, its summary is designed as a sample of meaningful XML

data, instead of removing only redundant information as in this work. In contrast,

this work aims to preserve all elements by eliminating only repetition.

2.6 Program Analysis

Program analysis in Python is typically motivated by optimization. Due to

Python’s poor performance as an interpreted language, several projects (e.g., [36,
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19, 89]) offer the ability to transform the source code of a Python program into a

C/C++ program that may be run on a different platform. StarKiller [89] is designed

to generate equivalent C++ programs from Python source by a specialized compiler

with a type inference mechanism based on the Cartesian Product Algorithm [5]. Shed

Skin [36] provides similar functionality [5] but with an additional focus on optimizing

memory allocation in the generated result. PyPy [19] is alternative implementation

of the Python interpreter based on JIT compiler techniques; part of this project is

the RPython (Restricted Python) tool chain which allows analysis of RPython code

and generation of code targeting C (POSIX), CLI (.NET), or Java (JVM).

Several techniques analysis have been designed to help understanding a Python

program. pycallgraph 7 generates a call graph for the execution of a program. Snake-

food 8 recursively parses source code files to determine which other files they depend

on. Program slicing [92] is the general problem of determining which part(s) of a

program effects the value of a variable at a specific place. The problem of program

slicing in Python was first studied by Xu et al. [105]. Xu et al. observed that the

dynamics of Python’s first-class objects required special attention and so proposed,

but did not implement, a new dependance model with additional support for track-

ing dependencies between variable definition and usage. Chen et al. [26] argued that

static analysis was insufficient to determine all dependencies in Python programs.

Instead, Chen et al. give a hybrid technique for Python, involving static analysis for

control-flow analysis and data dynamic (bytecode level) tracing of memory access.

7http://pycallgraph.slowchop.com/

8http://furius.ca/snakefood/
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Chapter 3

ANALYSIS APPROACHES

There are several ways to capture the dataflow of an ad-hoc workflow. This

chapter discusses three main approaches to the analysis of ad-hoc workflows writ-

ten in dynamic languages, and the associated disadvantages and advantages. (1)

Code review - the programmer centric method of determining a program’s function

by manual inspection. (2) Static analysis - the automatic analysis of a program

to determine information about its behavior without its execution. (3) Dynamic

analysis - the automatic analysis of a program during its execution to determine

information about its behavior.

Dynamic analysis is the approach taken later in this work. In practice, code review

becomes unwieldy in legacy scientific workflows. The origin of such workflows means

that software engineering practices may not have been applied during development,

leading to a code base which is effectively obfuscated. While static analysis has

well developed techniques for dataflow analysis, they fail to support behavior in real

world workflows. For example, when a configuration file must be loaded to determine

how data should be processed, or when dynamic code evaluation is used. In general,

static analysis methods focus on compilable/typeable languages and have assumptions

which conflict with the Python programming model. A dynamic analysis approach

avoids these issues by capturing a workflows behavior at the level of execution events.

Thus, the method given in Chapter 4 for workflow structural discovery is a dynamic

analysis technique.
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3.1 Code Review

A natural approach to discovering the structure of an ad-hoc workflow is to review

its implementation. This method was used by [4] who discussed the various impacts

of workflow transformation and illustrated them with a case study on the Structural

Prediction for pRotein fOlding UTility System (SPROUTS) [68]. SPROUTS is a

bioinformatics workflow, implemented in Python. It performs predictions using a

suite of six computational tools to examine the impact of point mutations on pro-

tein stability. The SPROUTS workflow (WF1) is a set of scripts which are manually

executed in a specific order to produce uploadable SQL files. A developer began to

develop an automated workflow (WF1.5) but not all needed features were added.

WF1.5 was later finalized into a workflow (WF2) which automatically fetches and

uploads data. Developing WF2 was accomplished by an author with programming

and domain knowledge. No external tools for undeterstanding workflows were used.

Today SPROUTS is available online 1 and has users in 22 countries. Although com-

pleting WF2 required much effort, in the case of a well structured and documented

workflow, code review can be almost trivial. Code review provides a generic ap-

proach that can, potentially, deal with unexpected or novel workflow structures. It

is language-agnostic and does not require specific tools - or training users on such

tools - all that is needed is a source code editor for the language of the workflow. It

does not rely on any particular abstractions, or patterns, which the workflow may

not align with.

In [4], three ways a workflow’s implementation may become difficult to under-

stand are discussed: Problems of Iterative Design, Community-Based Practices, and

General Workflow Issues. Two of these are now discussed. Many issues in com-

1http://sprouts.rpbs.univ-paris-diderot.fr/

25



pleting WF2 came from its iterative development from multiple authors. Iterative

design: Although documentation for a system may be available (e.g., literature), it

can subsequently go out of date in favor of maintaining the concrete system. New

systems often reuse parts of old systems that are not directly applicable, this results

in the formation of ’wrappers’ that obscure interactions between tasks. A system

may end up fragmented on different execution platforms so that its true workflow

representation is undermined. A workflow may accumulate redundant and obsolete

documentation and source code, obscuring the actual workflow. Rather than being

caused by staggered development, some issues in SPROUTS come systemically from

scientific workflows. Community Based Practices: Within a community, there

may not be strict standards for information exchange, leading to incompatibility be-

tween tools or interfaces. Python’s unstructured nature can lead authors to apply

(intentionally or otherwise) easy to use but hard to understand code constructs. As

Chen et al. [26] note, Python workflows may contain ”unlimited errors”. The imple-

mentation of a system may not be consistent because often a developer is learning

the language at the same time, over time new techniques are introduced. A reviewer

might need strong familiarity with a domain to understand variable names. Variables

may have naming which does not following standard conventions, thus misleading the

reviewer.

The issue with code review is time and effort - as the complexity of a workflow

increases and/or its structure decreases, review code simply becomes unmanageable.

In the case of workflow discovery for reuse, the time needed to understand a workflow

may exceed that which would take to develop it. However, complexity in a workflow

often stems from repetition. The task of tool discovery in a workflow, for example,

must be repeated many times for each tool in the workflow. Repetition enables

automation. Automation is also a process which can ignore many of the mechanisms
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which serve to cloud an experts appraisal (e.g., bad variable names).

3.2 Static Analysis

As discussed, code reviewers may have to contend with various issues in an ad-

hoc workflow. Automation can address some of these issues. There are two types

of automation: static which considers a program’s without executing it (i.e., via

source code) and dynamic which considers a program during execution. Automation

requires a stricter idea of workflow structure: a program which orchestrates the flow

of data files between executable tools. Many static analysis techniques for dataflow in

programs have been developed (see [59] for a discussion). As an automated method,

static analysis reduces the time and effort that a user would need to understand

a workflow. A general approach would inspect a workflow’s source code to track

dependencies among code reading and writing files (e.g., ProvenanceCurious [55],

Starflow [8], noWorkflow [81]). Since static analysis is typically performed on source

code, such a method has access to all control flow. This enables coverage of decisions

made by the system. This is the approach of ProvenanceCurious, which records

provenance in ad-hoc Python workflows. StarFlow [8] also uses static analysis (with

run-time analysis) but acknowledges that a static dependency graph forms a superset

of all possible control flow graphs instead of a provenance graph itself [7].

However, existing dataflow techniques are more suitable for programming lan-

guages which are compiled and/or statically typed. In contrast, Python is a dynamic

language and supports source code introspection. This includes features such as being

able to execute (i.e., eval) a string as Python code. Introspection allows one to in-

spect and modify the contents of the runtime environment programmatically. These

dynamic features of Python make static analysis challenging. Work such as Shed

Skin [36] has attempted to provide type inference functionality, and in the process
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has demonstrated the issues with static analysis in Python. One approach, seen in

the use of RPython by the PyPy project [19], is to define a specific subset of Python

that permits static inference of the types. However, this requires that a program

be designed to use that restricted language. Workflows from GitHub revealed that

workflows make use of more dynamic language features, and data driven configu-

ration, than their functionality would suggest. This is partially due to the use of

Python that unintentionally invokes dynamic language features [4]. The SPROUTS

[68] workflow loads a file at runtime which contains information on what tools are

available and when they may be run. The workflow inmembrane [84] loads a config-

uration file based on the job parameters it receives and then loads a source file to

dynamically eval its contents. Tools like ProvenanceCurious which are purely static

and have no support for eval, are simply unable to to track provenance in these

types of workflows. In contrast, Starflow and noWorkflow, which also use dynamic

analysis, would intercept file activity even if dependencies were unknown. The miR-

PREFeR [66] workflow relies on code which is lexically correct but contextual invalid.

This causes the interpreter to crash on a line it cannot execute and trigger a runtime

exception, thus forcing the workflow to following an unintentional code path. Since

ProvenanceCurious relies on a program dependency graph to model provenance upon,

it would be unable to detect this behavior which emerges at runtime.

3.2.1 Analyzing Tools

One limitation common to Python provenance methods (e.g., ProvenanceCuri-

ous, StarFlow, noWorkflow) is a lack of support for tracking external tools. Although

static analysis gives full access to a workflow’s implementation, it provides only min-

imal information about the structure of the tools it invokes. Such a method would

need to determine the dataflow for a tool from a (likely symbolic) command string.
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For example, if something was prefixed by -input or -i it would be considered to

be an input file. As mentioned previously, it can be imprecise to use such names

because of inconsistencies in their meaning, provided the names exist at all. Due to

these concerns, the tools in six workflows were reviewed to determine how they inter-

acted with the filesystem. The workflows were asr-pipeline [51], bacana [83], hybse-

qpipeline [57], inmembrane [84], pycoevol [73], and SPROUTS [68]. These workflows

contained a total of 28 command line tools. These were: Alien Hunter, BLAST,

CAP3, DFIRE, EXONERATE, FoldX, Glimmer, HMMER3, I-Mutant 2, I-Mutant

3, Lazarus, LipoP, MAFFT, MEMSAT3, MIR3, MUpro, MSAProbs, MUSCLE,

PhyML, PRANK, RAxML, Prodigal, RNAmmer, SignalP, TMHMM, tRNAscan, and

Velvet. Tools were surveyed to determine how parameters values were passed to them

at the command prompt. This was performed by manually analyzing how the work-

flow invoked them and checking their respective user manuals. The results of the

survey are shown in Table 3.1.

Table 3.1 is separated into three parts. The first lists the method a tool uses

to label option parameters. The second (rsp. third) is how the tool determines

what file or folder to use as input (rsp. output). For input and output, the pattern

column shows what a command should look like. [keyword] designates a keyword

which annotates a parameter. [delimiter] designates a character used to show a

boundary in a parameter. [filename] designates a file name. Note that some tools

use a filename to load multiple files (i.e., a common substring). [exe] designates

the name of the tool. Note that while some workflows use keywords like input and

output, it is unlikely that the text can be used to determine the type of IO.

Reviewing this table, some parameter patterns become apparent. When passing

options to a tool, most use dash. However, some instead use the order that parameters

are given. About half of the tools take only the raw input filename with no annotation
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Table 3.1: Parameter passing patterns for tools.

Parameter Pattern Freq.

Options -- 2

- 17

- or -- 2

by order 3

n/a 4

Input File [exe] [filename] 15

[exe] [prefix][keyword][delimiter][filename] 7

[exe] [prefix][keyword]=[filename] 1

[exe] [prefix][keyword]([delimiter][filename])2 2

[exe] <[filename] (via STDIN redirect) 3

Output File [exe] [filename] 5

[exe] [prefix][keyword][delimiter][filename] 7

[exe] [prefix][keyword]=[filename] 1

[exe] >[filename] (via STDOUT redirect) 10

internal default 1

determined by input (e.g., substring) 4

to indicate its purpose. The rest of the inputs do use a keyword but require various

syntax. For outputs, many tools use the STDOUT stream (which may also be used

for logs, not only output). The others use various mechanism similar to the inputs.

From these results, the heterogeneity of data passing mechanisms can be seen. In

several cases, it is simply impossible to determine dataflow even with manual review.

Thus, it seems that additional information about the invocation of a tool is required

to understand its relevant dataflow. In order to understand a tool’s dataflow, it is
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useful to observe it’s action in the context (i.e., execution) of a workflow.

3.3 Dynamic Analysis

In the previous section, dynamic analysis was briefly introduced. There are two

branches of dynamic analysis: analyzing the workflow at run-time or recording the

workflow’s execution (a trace) for later analysis. Dynamic analysis is an automated

technique which sidesteps the dynamics of Python in favor of viewing exactly the

dataflow which takes place - it focuses on ’what’ is produced rather than the ’how’

it is done. IncPy [50] provides automatic memoization (and potentially provenance

tracking) at run-time and takes the approach of creating an instrumented interpreter.

StarFlow uses a run-time approach to validate file access against what was discovered

during script and annotation analysis, but does not use it to generate dependencies.

StarFlow works by injecting modules into the interactive interpreter to create an

interactive data analysis environment. In contrast, noWorkflow operates on a whole

program. noWorkflows executes a workflow in debug mode and attaches listeners.

A trace of an executing Python program may be obtained in several ways. Ex-

isting tools such as strace on Linux can be used to log all interactions between a

process and the OS. Systems such as Provenance-Aware Storage Systems (PASS) [80]

implement their own mechanisms for intercepting system calls to record provenance

information. Unfortunately, the file access overhead of the default Python interpreter

makes analyzing such a trace difficult [7]. For a general programming language, a

trace can instead be performed at the level of abstraction that the workflow designer

considers: libraries. This can take the form of a thin layer of code between a workflow

and the libraries, thus logging exactly the events the workflow designer has explicitly

created. Then, minimal filtering of events is needed and only one version of the inter-

preter is needed. Another advantage of tracing libraries is that a thin layer is more
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amenable to changes in the interpreter. Only the portions of the trace method which

interface with changes in the interpreter must be updated.

Unfortunately, dynamic analysis suffers several innate limitations. Correct work-

flows - Viewing behavior requires executing a workflow, so a prerequisite is a func-

tional workflow. From a workflow reuse perspective, this is a significant drawback as

a workflow must be maintained until it is examined. One option is to make dynamic

analysis part of an archival process to be completed after a workflow as served its

primary purpose. Semi-structured workflows - Behavior can be analyzed as a

semi-structured views of workflows. While a single execution gives some insight into

the overall orchestration of tasks in a workflow, an execution is not a generalization

of how a workflow processes every job. The internal logic which occurred to gener-

ate the specific interdependencies exists at a lower level of abstraction. However, an

execution always provides a valid view of a workflow. Given multiple executions of

a workflow, it is possible to learn a more generalized workflow structure based on

the similarities between traces. This is similar to systems trying to determine how

data are produced on the Web, or business process mining (see Subsection 2.3.3).

Although fully structured by the authority that designed the resource, they appear

to the other end semi-structured as their structure may have desiccated over time [2].

The secondary issue of determining what latent decisions were made or not made in

a workflow’s execution, dependent on input, is analogous to that of determining the

unobservable choices made by a human operator when implementing a procedural

workflow, a problem examined in [43].

3.4 Thesis Approach

Based on these approaches, a dynamic trace approach is the most appropriate

method for extracting structure from an ad-hoc workflow as it can capture a wide
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range of workflow behavior. The first step of the method proposed is to produce an

instrumentation of the workflow. Workflow instrumentation is the process of adding

elements (i.e., code instructions) to monitor and record behavior during workflow

execution. Such an instrumentation produces a description of the workflow structure

in terms of calls to tools, algorithms and methods, for a given execution. When

events such as a system call, or accessing a file, occur in the instrumented workflow,

they are recorded. The execution of the instrumented workflow produces an event

log which can be analyzed to determine data dependencies. The second step is to

analyze a trace produced by the execution of the instrumented workflow to construct

a dataflow graph (i.e., a data dependency graph). The dataflow graph is created by

analyzing file system changes in the context of the commands being executed. The

result is a provenance graph but also provides an initial workflow structure.

The method in this thesis has several limitations in scope. Python Workflows

- Workflows are assumed to be written in Python. According to statistics from

GitHub, Python and Perl are used in the majority of hosted bioinformatics work-

flows or pipelines. However, other programming language (e.g., Perl) may benefit

from dataflow construction. Tool based - The dataflow in a job is analyzed in terms

of tool interaction with the filesystem. There are scientific (e.g., reproducibility) as

well as practical (e.g., efficiency) reasons for such workflows to be preferred. However,

workflows which do rely on external tools such as web services cannot be completely

characterized. Explicit tools - Since trace depends on the manipulation of files by

tools, logic internal which forms an implicit tool is not tracked. This can be seen as

a problem of program slicing [92], where the goal is to determine exactly the part of

the workflow program which corresponds to an internal tool.

In the next chapter which develops the method, the following terminology is used.

A workflow is a program (i.e., Python script) which orchestrates a set of external

33



WF

ex
ec

u
ti

o
n

 t
im

e

read

write/append

Filesystem

Tool

Toolinvokes

Toolinvokes

instance

instance  of usage profile

Figure 3.1: Overview of workflow execution process.

tools, managing their interdependencies and file dataflow, to produce an output with

respect to some input. A workflow may be executed on any number of input files

and systemically provides a set of output files for each. A job is the execution of a

workflow on a given input. A tool is an executable program which takes input files

and produces output files. A workflow executes tools when processing a job. Figure

3.1 illustrates a workflow interacting with a tool. Each time a workflow run executes

a tool, it is an invocation of the tool. A tool may be invoked in various ways, based

on a usage profile (i.e., the parameters that it is given). The tools and associated

usage profiles are stored in a resource library. All invocations constitute an instance

of a usage profile with respect to some specified input and output data. A trace is

a representation of the execution of a workflow on a specific job, typically an event

log. As a trace may be used to form a graph of file dependencies, we also use the

term concrete data dependency graph (CDDG) for a dataflow graph constructed from

a trace. A complementary term is abstract data dependency graph (ADDG) which,

instead of designating concrete data flow, expresses abstractly how tools are linked.

A job relies on information gathered from two sources: a workflow’s library and the

job’s (specific) input. A library is a collection of information that is built into the
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workflow itself as a local resource. Rather than being specific to a job, libraries are

part of workflows as standardized inputs. A job’s input is the collection of files specific

to its execution.
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Chapter 4

DATAFLOW ANALYSIS

As discussed, ad-hoc workflows demonstrate a heterogeneity of workflow imple-

mentations, and runtime dynamics, whose capture must be performed in a generalized

way to obtain real world applicability. This is addressed with a trace based method

which captures a workflow through it’s execution, including dataflow that emerges

only at run-time, and while avoiding implementation intricacies.

In this chapter, a method is given to instrument an ad-hoc workflow, and analyze

its log to determine tool dataflow. The mechanism to instrument a workflow is to

provide a layer between a workflow and the language’s libraries. When events such

as a system call, or accessing a file, occur, they are recorded with the file system

state. To execute an instrumented workflow, a valid input to the original workflow is

required. A provenance graph representing event data dependencies is thus created

by analyzing file system changes in the context of the commands being executed, and

serves as an initial workflow structure.

4.1 Instrumentation

While the focus of this section is Python, this thesis provides a general mechanism

for understanding workflows, The instrumentation captures events common to

programming (e.g., system calls, file access), not events specific to Python.

At the first stage of the method, an instrumented workflow is constructed. The

instrumented workflow is an equivalent workflow which produces a log, containing

information on its interactions with the file system. This is accomplished by instru-

menting the relevant calls. The instrumentation layer is transparent to the execution
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since it does not affect the dataflow and only monitors the relevant calls with a wrap-

per which intercepts functions when they are executed by the workflow’s control flow.

An overview of this is shown in Figure 4.1. The wrappers record function parameters,

before returning control to the existing library.

CPython, IronPython, PyPy, etc.

Ad-hoc Workflow

DateTime

(internal)

File IO

(internal)

etc.

Workflow

Libraries

Python

BioPython

(external)

Instrumentation Layer

Figure 4.1: Overview of instrumentation layer between workflow and Python.

The instrumentation aims at recording internal and external events. The former

represents the workflow accessing a file, while the latter represents a program invo-

cation. Internal events are characterized by the workflow’s use of file IO. External

events are system calls, typically invoking a command, which embody a task (e.g.,

running a tool) or data operation (e.g., copying a file). For each event type, the log

records information about the workflow and the filesystem. The filesystem is recorded

as a snapshot of MD5 [88] hashes for each file in the workflow’s folder. Workflows

are identified by a path, which represents a folder containing the workflow’s source

code as well as its data. A specific path denotes the extent of the workflow and so

limits the filesystem that must be analyzed. The representation of an entire region of

the filesystem is required because an event’s interaction with the filesystem cannot be

determined solely from its parameters. The comparison of before and after snapshots

of a filesystem (e.g., Figure 4.2) for each event captures the behavior of the system.

For example: if a file exists prior to an event and is not changed, it is possible, but
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not certain, that a tool may have read it. If a file changes, then data were written in

and the file was possibly read. If a file exists only in the after snapshot, and barring

parallelism, it is likely an output of the invocation.

file1.dat
(g18fwcmr)

Before

file2.dat
(jw8u03e7)

file1.dat
(g18fwcmr)

file2.dat
(jw8u03e7)

file3.txt
(e2atwi3s)

file4.dat
(i8doah5f)

file3.txt
(rdmnp8ny)

After

Tool
Invocation

Figure 4.2: Example disk interaction from tool invocation.

Algorithm 1 gives a top level view of the instrumentation and trace process. Ini-

tially, users provide a name for the workflow, a path to a clean install of a workflow,

a command to execute the workflow, and a list of input files. If the workflow has not

been run before, then a backup of its install will be made, otherwise the backup is

restored so instrumentation and execution is performed on a clean install. Next, the

path is analyzed to find the scripts it involves, and each is checked for uses (imports)

of libraries with relevant functions (see Subsection 4.1.1). For each use of a library,

the appropriate wrapper (Subsection 4.1.2) is inserted into the workflow script. Once

instrumentation has completed, the command provided by the user is executed to

run the workflow and produce a trace. The trace is finally annotated with the input

information, and is ready for dataflow construction (Section 4.2).
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Algorithm 1 Instrument and trace a workflow.

1: procedure trace(name, path, cmd, inputs)

2: if not backed up then . prepare workflow folder

3: make backup(path)

4: else

5: restore back(path)

6: scripts←find workflow scripts(path) . find scripts

7: for s ∈ scripts do

8: import lines = find imports(s) . identify libraries

9: for line ∈ import lines do

10: insert hook(s, line) . insert library instrumentation

11: run(path + cmd, name + ”.log”) . execute instrumented workflow

12: annotate inputs(name + ”.log”, inputs) . annotate trace

4.1.1 Finding Event Sources

A workflow may contain multiple files that need to be instrumented. There are

two approaches to determining these files. The first is to identify all Python files

in the path by selecting the appropriate extension. However, if the path contains

source code files which are not a part of the workflow, e.g., tools, then the log will

include events inside the tool(s) as well. Alternatively, scripts may be identified

with snakefood, which creates a module dependency graph for a set of files. This

provides a minimal set of files which typically form the workflow. Both approaches

determine a list of files whose instrumentation produces valid logs but at different

levels of abstraction. snakefood is the default approach. Each of the scripts identified

is scanned to determine which libraries are being used. Python’s built-in functionality

is used to generate a program’s abstract syntax trees (AST) for this task. The AST
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Table 4.1: Instrumented standard library components.

Module Type Name Event Type

builtin function open internal

codecs function open internal

os function system external

shutil function mv external

shutil function cp external

subprocess function call external

subprocess function check call external

subprocess class Popen external

urllib function urlretrieve external

is explored to find where a module (Python library) from Table 4.1 is loaded. Each

of place is rewritten with instrumentation set immediately after the original module

loading code. The builtin library is always loaded, and so is instrumented at the

beginning of each file. The instrumentation module works by preserving access to the

latest loaded function(s) and inserting wrapper function(s) in the runtime. Loading

a module brings function names into the current scope, so each time it happens, the

trace engine module which contains the instrumented functions must be loaded.

4.1.2 Wrapper Mechanisms

All external events record the filesystem’s state for dataflow construction. When

os.system or subprocess.Popen are called, the specific command issued to the system is
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also recorded. Unlike os.system, Popen includes functionality for streams and returns

an object representing the ongoing execution of the command. The subprocess module

also includes call and check call which are degenerate cases of Popen.

In normal operation, Popen is designed to be non-blocking. To properly capture

the filesystem after the execution of the tool, the instrumented Popen waits for the

command’s completion. Because it is possible that a Popen invocation completes

at any time, this causes no side effects in the workflow. In addition to file system

access, tools executed by Popen may interact with the standard streams: STDIN,

STDOUT, and STDERR. It is a somewhat common pattern that scientific tools use

these streams as their default means to input or output a single file. Prior to executing

a command, STDIN is checked for presence of a file like object and its hash is recorded.

Additionally, STDOUT or STDERR streams are checked for the presence of a file like

object. If either is a file, it is flushed, hashed, and then replaced with an similar file

object. This captures the file exactly as it was written by the command.

In contrast to external events, BUILTIN .open and codecs.open, act differently.

Rather than executing a command, they produce a file object which is later manip-

ulated by the workflow. When such an object is created, Python immediately loads

the file. The instrumentation delays this operation and loads the file first for hash-

ing. The instrumentation code also returns a modified file object (constructed with

inheritance) to enable logging execution events. In addition to recording opening a

file, the instrumentation also records when the file is closed. The process is analogous

except that the hash is recorded after the library mechanism has closed it. Note that

in some workflows, authors inadvertently leave out a final call to close. For these

cases, the trace data will be saved when the deconstructor for the object is called.

Calls to certain functions in the shutil and urllib libraries are also wrapped. In

shutil , this is shutil.mv and shutil.cp. This module provides shell-like functionality
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for manipulating functions (i.e., moving, copying). These operations are used by

workflows to position files in directories prior to executing tools. The operations are

captured as if they were os.command calls to the Linux command line tools of the

same name. The same idea is applied to urllib where urllib.urlretrieve is reduced

to wget. Although the action of these commands can be recorded, even without this

information their dataflow will be discovered during analysis.

4.2 Dataflow Construction

The remainder of this thesis is independent of Python. Supposing an appropriate

trace engine can be constructed, traces provided by another language (e.g., Perl)

may be analyzed with the techniques described in the rest of this thesis.

The method for constructing a dataflow graph is now described. From a trace,

a library of application resources and a data flow graph will be constructed. The

resource library contains a list of tools that were invoked in the execution, usage

profiles, and their expected interaction with the file system. In the graph, each node

represents an event (likely an command) and each in-edge is a file dependency and

each out-edge is a file produced by that event.

The graph contains two types of nodes: external and internal. Each node contains

an IORecord produced from analyzing the associated event, and a reference to the

application library. An IORecord is the encapsulation of how a particular event

interacted with the file system. Each IORecord is generated by the application of

a usage pattern to an invocation. Each usage profile has a number of ports, which

represent specific files or folders that an invocation relies upon. For invocations, ports

become bound to values (file or folder names). An IORecord tracks the values of the

input and output ports and the files (via path and hash) which those values relate.

In the case of files used by an invocation but not related to a specific port, a general
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pool of file access is also maintained. An IORecord optionally contains zero or one

input and output streams.

As a prerequisite to constructing the dataflow graph, the initial input files must

be known. A dataflow graph is initiated with three special nodes, which are taken

to be external events. The graph starts with a node called Source which acts a tool

with no inputs which produces the initial input files. The second node is the Library

node which acts as a tool which produces any file existing prior to the workflow’s

execution which is not an input. Lastly, a node called Sink acts as a tool whose

input dependency is every file which exists at the end of a workflow’s execution. This

ensures that the graph details any output file the workflow generates. Although the

user may only be interested in some files, this subset may not be clearly delineated.

Hence, all files available at the end of execution should be considered.

4.2.1 Event Refactoring

The goal of this step is to transform external events so each corresponds to the

execution of exactly one program. A system command typically involves the execution

of a program but may display additional behavior from shell syntax. These events

are thus restructured into a more simple form that accounts for the action of these

features. The trace is analyzed for three cases: 1) Auxiliary commands; 2) Commands

communicating by pipe operator; and 3) GNU parallel.

Some commands can be wrapped within an application in such way that the

wrapper does not effect the execution of the command or workflow. For example,

programs like time display the run time of a command. The pipe operator is used to

pass streams between programs. Many scientific tools utilize stream data therefore the

pipe operator provides a simple mechanism to compose programs by passing streams

from one to another. When a command contains a pipe command, the command
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is the split into two commands. Some workflows authors utilize GNU parallel to

enable a degree of parallelism. These commands are expanded into multiple concrete

commands that can be executed in parallel.

4.2.2 Command Analysis

Initially, each event is analyzed to identify how it interacts with the file system.

An internal event denotes the direct interaction of a workflow with the filesystem. An

internal event can be either be the opening of a file, indicating the possible dependency

of workflow execution on a specific file, or the closing of a file, indicating the workflow

making a file available for tools to depend upon. When a file is read (resp. written),

it is captured as a command with the file being opened (resp. closed) as its sole

dependency. External events denote when the workflow is making a system call.

These are typically the invocations of scientific or data preparation tools. While any

execution of an application is an invocation, different invocations of an application

may involve different parameters. This is encapsulated by the idea of usage profiles.

Applications are uniquely defined by their path in the file system. For each exter-

nal event, we check if the application being executed has already been seen. Existing

usage profiles are then used to analyze the state of the workflow. IORecords for events

are constructed using the usage profiles as follows. The local file system is examined

to determine the files relevant to the event which satisfy the ports and patterns found

in the usage profile. A usage profile defines not only an abstract system command

used to execute a tool, but expected input and output dependencies for the tool.

As a first step, the method computes the added, removed, and changed files for the

snapshots around an event. These are the basis to determine if a file is an input or an

output. There are three types of dependencies to capture between files. A direct file

dependency occurs when an invocation names exactly the file or folder being used.
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A file dependency is indirect when an invocation names a substring of a file or folder

being used. The third category includes the cases when a file or folder changes be-

tween invocation filesystem snapshots and some general data usage pattern is able to

capture it. The latter are called implicit dependencies. These three types also form a

hierarchy of heuristics use. A particular indirect heuristic is only applied when its use

would cause no conflict (overlap) with the initial direct ports discovered or another

indirect heuristic being applied. A particular implicit heuristic is only applied when

it would cause no conflict with the direct or indirect ports.

For each dependency type, there are several IO identification heuristics. The first

step consists of the identification of the portions of the active command which may

correspond to a port; these are direct dependencies. This is done by tokenizing the

command on spaces and then trying to mount each token as either a file or folder

in the filesystem known from the snapshot. Each matching token that matches is

greedily assumed to be a port. Each of token which matches in the filesystem are

then classified. If a file exists before a tool is executed, and it’s state does not change

after the invocation, then it is an input. If a file exists only after the invocation it is a

output. In cases where additional information is known, for instance the >> operator

in Unix, a file may be labeled as being appended. Folders are analyzed in a similar

way. Any file within an input folder may be an input, so each is internally marked

as a dependency. There are two types of output folders: pure, no files exist within it

prior to invocation, or impure, some files exist within it prior to invocation but are

not changed. A command pattern is then created by replacing each port substring

with a symbolic port name and number. The files and folders found in this step make

up the direct dependencies. Next, the method checks for indirect access with two

heuristics. The first indirect heuristic detects grouped files. This pattern is typically

seen in programs which utilize a named database shared between a collection of files.
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For each of the file ports, the local file system is examined for files which contain its

concrete name as a prefix. Matching files are determined to be indirectly used by the

invocation, as named following the port. This has the effect of a expanding a single

file port into a set of files. This is separate from a folder dependency since the exact

name of each file can be determined from the name bound to the port. The second

indirect heuristic rule enables the detection of collections of folders. This is seen in

tools which perform some division operation on a singular input. This rule is only

active when more than one folder containing files has been created. For each folder, we

assume each may be a element of a set of folders. Each folder is assumed to have some

pattern. A pattern is guessed from a sample folder, where local names (e.g., folder

or file names) are abstracted away. The potential pattern is then checked against

the other folders. Whichever sample folder provides the best coverage of folders (i.e.,

captures the entire folder collection) while not overlapping with other heuristics is

selected as the indirect folder collection rule. Last, the method checks for implicit

outputs. This heuristic assumes that only the active event is being executed by the

workflow. When GNU parallel is being used, this heuristic must be disallowed. For

any file which appears in the working directory of the active program, it is assumed

that each file is an output. Such a file is assumed to have a static name which will

be the same for any invocation.

After analyzing each event, the method has produced a set of IORecords to con-

struct the dataflow graph as explained in Section 4.2.3. Because the process for

generating a IORecord is greedy, its correctness is partially checked by tracking a

virtual representation of the filesystem. Any file being read must be available in the

virtual filesystem. Provided this is the case, files being written are then updated in

the virtual filesystem and are checked against the log. In this way, the cumulative

changes to file system are simulated.
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4.2.3 Graph Construction

Once IORecords have been constructed, the dataflow graph may be constructed.

A node is created for each event in addition to three special nodes (i.e., Library,

Source, and Sink). Nodes reference their usage profile, input and output ports, as

well as possible streams (i.e., STDIN, STDOUT). When tools use files provided by

another tool, edges will connect the nodes, and be annotated with the file’s name,

hash, and IO port names. For a technical description of the format, see Section 5.1.

Using a nested loop, the inputs of each event’s IORecord are compared to the

output of the other IORecords to match files read with those written. Due to par-

allelism, the algorithm permits any tool in the sequence to produce output for any

other tool. This is validated by ensuring that use of a file is not ambiguous (i.e., only

one file matches). There are two criteria for matching a file: hash and path. When a

file is used by an invocation both must match, whereas only the hash must match for

a stream. For both types of inputs (file and stream), a list of candidate source nodes

is gathered. A node is a candidate if it provides the data’s hash as either a file or an

output stream. For streams, which lack the filename criteria, the method defines a

priority order for choosing a candidate node. In general external events are preferred

over internal events and file sources are preferred over stream sources.

The graph is stored in GraphML [21], and annotated with display information

to enable user understanding. For visualization, Graphviz [39] is used in hierarchi-

cal layout mode. Nodes which are external events are shown as circles while nodes

which are internal events are shown as rectangles, and each is labeled with respect

to the program names and an unique event ID. Since the three special nodes are

essentially tools, they are shown as circles with special labels. There are two types

of internal events: reads and writes. Respectively, they are labeled WF INT READ and
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WF INT WRITE. Directed edges go from data producer to data consumer. Each edge

is labeled with the corresponding filename and represents a file dependency.

Every node in a CDDG can be understood with the same meaning: a command

which had access to the filesystem. However, each node may be produced by mech-

anisms with slightly different meanings. If the Source has no outputs, then none of

the input files provided to the trace engine were used during its execution. Likely,

the program analyzed is not a file-based workflow or the input files were incorrectly

identified by the user. External events may have input dependencies and/or output

dependencies. When a tool has no input dependencies, the tool is decoupled from

the workflow’s input and likely an independent data source (e.g. downloads a file). If

the output of a tool is not used by a later command, it is likely a final product of the

workflow, and the graph will omit an edge. When a tool has no output dependencies

(not simply omitted), the tool does not create data. This can occur when a tool

fails or has an unseen action (e.g., uploads a file). A WF INT READ node represents

the workflow reading a file for internal purposes, while WF INT WRITE nodes represent

writing. Neither includes opposite dependencies since workflow state is not tracked.

Since control flow is not tracked, the context of files accessed by internal events is

unknown. The use of the data read is unknown, and the source of the data written

is unknown. However, internal events can be implicitly related. That is, a file is

opened, the workflow performs some operation, f , and then writes the file back. This

produces a WF INT READ and a WF INT WRITE node which together form an implicit

tool (performing f) in the workflow that could not be captured. See Figure 4.3 for

a comparison. Implicit tools are discussed further in Chapter 6, with SPROUTS as

context. Note that when a workflow has many internal events, it is not trivially clear

which nodes form an implicit tool.
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WF_INT_WRITE WF_INT_READ

WF_INT_READ

WF_INT_WRITE

Figure 4.3: Left: standalone WF INT WRITE node. Middle: standalone WF INT READ
node. Right: example of implicit tool formed by two internal events.

4.3 Protein Synthesis Example

The trace method is now illustrated with a bioinformatics workflow which sim-

ulates Protein Synthesis. The input is a file of one or more DNA sequences stored

in FASTA format. The output is a folder called aa which contains separate FASTA

files for each sequence that was found in the input. Each input sequence undergoes

the protein synthesis process of transcription followed by translation. The full source

code for this workflow is shown in Figure 4.4. This workflow relies on three external

tools (split multifasta.py, dna2rna.py, and rna2aa.py) to split a FASTA file,

perform transcription, and perform translation, respectively.

The instrumentation method was applied to the source code shown in Figure 4.4.

Since the main source code file does not import any modules, no other files will

be instrumented. The instrumented workflow can be seen in Figure 4.5, where two

places have been instrumented (blue text). The first instrumentation is performed at

the top to monitor the built-in open function. The second is performed after the os

module is imported, to monitor os.command. Since these are the only module imports,

they are the only places instrumented. This workflow was run on an input FASTA
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Figure 4.4: Source code for Protein Synthesis workflow.

import sys , os

input_name = sys.argv [1]

cmd = "split_multifasta.py -input " + input_name + " -outfolder dna"

os.system(cmd)

files = [f for f in os.listdir("./dna")]

for fn in files:

cmd = "dna2rna.py -inputfile dna/" + fn +" -outputfile rna/" + fn

os.system(cmd)

files = [f for f in os.listdir("./rna")]

for fn in files:

cmd = "rna2aa.py -inputfile rna/" + fn +" -outputfile aa/" + fn

os.system(cmd)

(seq col.fa) containing three DNA sequences: 3OE0, 1ASU, and 1BNI. Table 4.2

shows the external events recorded at execution time. All events are external. The

File Changes column gives a summary of how the file system changed during the

execution of each command. A plus symbol indicates an added file.

The log indicates that the execution of the workflow triggered seven external

events (see Table 4.3). The first was executing split multifasta.py on the input

file. During this command, three new files were created in the dna subfolder. The

tool dna2rna.py was then executed three times. Each time it read one of the files in

the dna subfolder and produced a corresponding file in the rna subfolder. Last, the

tool rna2aa.py tool was executed three times. Each time it read one of the files in

the rna subfolder and produced a corresponding file in the aa subfolder.
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Figure 4.5: Instrumented source code for Protein Synthesis workflow.

import sys

sys.path.append("/home/ruben/Desktop/wf -trace/")

import trace_engine

open = trace_engine.hook_open

import sys , os

import sys

sys.path.append("/home/ruben/Desktop/wf -trace/")

import trace_engine

os.system = trace_engine.hook_system

input_name = sys.argv [1]

cmd = "split_multifasta.py -input " + input_name + " -outfolder dna"

os.system(cmd)

files = [f for f in os.listdir("./dna")]

for fn in files:

cmd = "dna2rna.py -inputfile dna/" + fn +" -outputfile rna/" + fn

os.system(cmd)

files = [f for f in os.listdir("./rna")]

for fn in files:

cmd = "rna2aa.py -inputfile rna/" + fn +" -outputfile aa/" + fn

os.system(cmd)

The log was analyzed to produce the dataflow graph displayed in Figure 4.6. Three

applications were discovered with one usage profile, each with a number of instances.

Each usage profile corresponds to one of the system calls, while the instances cor-
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Table 4.2: Summarized event log.

Source ID Command File Changes

main.py 1 split multifasta.py -input seq.fa -outfolder dna + dna/1BNI.fa

+ dna/1ASU.fa

+ dna/3OE0.fa

main.py 2 dna2rna.py -in dna/1BNI.fa -out rna/1BNI.fa + rna/1BNI.fa

main.py 3 dna2rna.py -in dna/1ASU.fa -out rna/1ASU.fa + rna/1ASU.fa

main.py 4 dna2rna.py -in dna/3OE0.fa -out rna/3OE0.fa + rna/3OE0.fa

main.py 5 rna2aa.py -in rna/1BNI.fa -out aa/1BNI.fa + aa/1BNI.fa

main.py 6 rna2aa.py -in rna/1ASU.fa -out aa/1ASU.fa + aa/1ASU.fa

main.py 7 rna2aa.py -in rna/3OE0.fa -out aa/3OE0.fa + aa/3OE0.fa

respond to each time a particular call was executed. The graph contains one node

for each of the external events that were logged as well as three special nodes. The

Source produces the initial input, seq col.fa, while the Library node is unused.

The dataflow graph represents the structure of the workflow, as a dataflow view of

the workflow. The user can observe that a repetitive process is being applied to

a elements created by some process. This is not immediately clear from the serial

implementation, and implies the workflow could be parallelized.
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Table 4.3: Usage profiles and invocations discovered.

Application Profile Command

split multifasta.py 1 -input INPUT0 -outfolder FOLDER OUT0

(instance) -input seq col.fa -outfolder dna

dna2rna.py 2 -inputfile INPUT0 -outputfile OUTPUT0

(instance) -inputfile dna/TEST1.fa -outputfile rna/TEST1.fa

(instance) -inputfile dna/TEST2.fa -outputfile rna/TEST2.fa

(instance) -inputfile dna/TEST3.fa -outputfile rna/TEST3.fa

rna2aa.py 3 -inputfile INPUT0 -outputfile OUTPUT0

(instance) -inputfile rna/TEST1.fa -outputfile aa/TEST1.fa

(instance) -inputfile rna/TEST2.fa -outputfile aa/TEST1.fa

(instance) -inputfile rna/TEST3.fa -outputfile aa/TEST1.fa

Library (1) Source (2)

split_multifasta.py (3)

seq_col.fa

dna2rna.py (4)

3OE0.fa

dna2rna.py (5)

1ASU.fa

dna2rna.py (6)

1BNI.fa

Sink (10)

1ASU.fa 1BNI.fa 3OE0.fa

3OE0.fa rna2aa.py (7)

3OE0.fa

1ASU.fa rna2aa.py (8)

1ASU.fa

1BNI.fa rna2aa.py (9)

1BNI.fa

3OE0.fa 1ASU.fa 1BNI.fa

Figure 4.6: Visualization of the dataflow graph.
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Chapter 5

DATAFLOW ABSTRACTION

In Chapter 4, the extraction of data dependencies from a trace was presented.

This can be represented as a graph with edges for data dependencies and nodes for

commands. A concrete data dependency is the use of a specific file by a specific

command in a trace. When every edge in a graph is a concrete data dependency, it is

called a concrete graph. A concrete graph does not represent a generalized form of the

workflow - it captures provenance. The next task is to identify nodes with the same

character (i.e. invocation and dataflow) and combine them. As scientific workflow

tend not use looping structures, this is typically seen as parallel execution structures.

For example, see the concrete graph given on the left in Figure 5.1. This figure shows

the same two node linear process being applied to each output of a predecessor node.

Thus, it includes three repetitive regions. Given multiple repetitive regions, they may

be systemically combined into a single process (right of figure) with input-gathering

connections to regions which provide instances of input.

A

B B B

C C C

A

B

C
Figure 5.1: Left: sample CDDG with repetition. Right: repetition reduced to
region.
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Continuing the aim of extracting scientifically relevant workflow structure, this

chapter discusses building an Abstract Data Dependency Graph (ADDG) where

equivalent nodes have been combined into collection regions. A collection region

indicates that a set of inputs has the same process applied on a partition of its input.

In the previous figure, the bottom six nodes which would be replaced by two nodes

linear that process each output from the initial node. The method given performs

the iterative merging of equivalent nodes as a concrete graph is explored. At present,

equivalence focuses on the usage profiles found during dataflow construction. How-

ever, this is not a requirement. Setting multiple commands to the same profile may

make them equivalent to the algorithm and thus mergeable. See Subsection 7.1.3 for

an example.

Section 5.1 describes the format of the graph for concrete dataflow. The algorithm

for discovering repetition of parallel regions is given in Section 5.3. Section 5.4 gives

an example of the algorithm applied to the protein synthesis workflow. A method for

further simplifying a ADDG is given in Section 5.5

5.1 Concrete Data Dependency Graph

A Concrete Data Dependency Graph (CDDG) is a digraph that represents de-

pendencies between commands during a job. Nodes are called concrete commands

and represent a trace event. During dataflow construction, each event is analyzed to

determine how it refers to files or folders being read or written. Each of these depen-

dencies is called a port. Usage profiles thus define a list of input and output ports.

Edges are called concrete edges and represent a dependency between ports on a pair

of concrete commands. Whenever a concrete edge connects to a concrete command,

the port that the edge uses must belong to the usage profile of the concrete command.

When multiple edges exist with the same port name, it implies that the port accepts
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a collection (e.g., a folder, or an implicit grouping). By its construction, every CDDG

has at least one node with in-degree zero (the source). For CDDGs, the definition is

given is not rigorous. Since CDDGs are mostly the product of heuristics, enforcing

rigorous formation reduces real-world applicability.

A CDDG contains one type of node: concrete commands. Each node, n, contains

one attribute: n.profile, an identifier for the usage profile used to create that node.

For a node n, we use the notation inedges(n) to represent the set of edges incoming

to n and outedges(n) to represent the set of edges out going from n.

Definition 1 (cddg nodes) Let n be a CDDG node if

• n.profile ∈ Z.

A CDDG contains one type of edge: a file. For an edge e, the notation e.src

represents node it came from, and e.dst, the node it enters. On either end, a file

may be bound to a file port, or, may be the element of a folder port. Each edge, e,

contains four attributes: e.srcport, the port which produced the file, and e.dstport,

a port which reads the file, and two for referencing the file (e.hash and e.filepath).

Definition 2 (cddg edges) Let e be a CDDG edge if

• e.srcport and e.dstport are port names.

• e.src and e.src are CDDG or ADDG nodes.

• n.filepath is a string

• n.hash is a string

Each port name is composed of a port type from Table 5.1, or 5.2, composed

with an ID number. For example, a tool which takes two input files and produces
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Table 5.1: Types of input ports.

Class Class Description

INPUT file A file input dependency.

APPEND file An existing file which may be read

and written.

FOLDER IN folder A folder input dependency.

FOLDER IMPURE folder A folder dependency which may be

read or written.

STDIN stream The standard input stream.

Table 5.2: Types of output ports.

Class Class Description

OUTPUT file A file output dependency.

APPEND file An existing file which may be read

and written.

FOLDER OUT folder A folder output dependency.

FOLDER IMPURE folder A folder dependency which may be

read or written.

FOLDER OUT SCATTERN special A pattern of files which is repeated

(’scattered’) across a number of out-

put folders.

OUTPUT INDIRECT file A indirectly named file output de-

pendency.

STDOUT stream The standard output stream.

one output folder would have input ports INPUT0, INPUT1 and output ports

FOLDER OUT0.
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When a port type is listed with class file, each name and port ID combination is

bound to exactly one file. When a port type is folder, a name and port ID combination

is bound to some number of files, together representing a folder. During abstraction,

the dependency becomes the folder rather than its contents.

There are two exceptions. First, FOLDER OUT SCATTERN does not follow

the pattern for output folders, it creates a number of folders which are not known

statically. In a CDDG, each scattered folder will be port labeled from SCATTER1 to

SCATTERnth while the tool itself will have only a single SCATTERN to represent

the scatter operation. The second exception is that a file input port may have multiple

files bound to it, representing a file matching pattern (e.g., a star).

5.1.1 Command Library and Equivalence

As introduced in Chapter 4, when a trace is analyzed, a resource library of all

executable tools, and how they were executed, is created. The library is used to define

concrete command equivalence. Recall that an usage profile contains information on

the inputs, outputs, and parameters, used by a program. They represent a tool being

executed in a specific manner - the same profile implies identical process. Thus,

profiles are a basic level of process equivalence. However, profile equivalence is not

necessary for commands to be semantically equivalent; different tools may perform

the same semantic task.

For the purposes of Section 5.3, the resource library is a list of usage profiles such

that: 1) profiles can be identified, and 2) define a list of ports. A usage profile also

includes a program’s location and parameters but this information is only needed if

a tool is to be executed.

Definition 3 (process equivalent) Let n1, n2 be CDDG or ADDG nodes. n1 and

n2 are process equivalent iff n1.profile=n2.profile.
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This notion of equivalence lies in transformation. Even if two nodes are equivalent

in isolation, the data they produce may be transformed in different ways. This second

type of equivalence, flow equivalence, is further discussed in Section 5.3. This is

similar to how Starlinger et al. [94] identified two aspects of workflow similarity:

single modules (i.e., tools), and whole workflows.

5.2 Abstract Data Dependency Graph

A CDDG refined to contain repetition in specific regions is called a Abstract Data

Dependency Graph (ADDG). The nodes of an ADDG are called abstract command

nodes. All the structure characteristics of a CDDG are used by ADDGs, i.e., nodes

and edges, but ADDGs introduce additional elements (collection operators). Each

ADDG corresponds to a CDDG, and is a subgraph (excluding operators) of it.

There are two types of nodes in the graph: abstract commands (rectangles) and

collection operators (see below). There are two subtypes of collection operators:

collectors (inverted triangles) and dispensers (triangles). Operators are special nodes,

which indicate dataflow over a collection (or repetition), and whose bounds denote a

collection region. A collection contains some number of elements which are unordered,

have an identical representation, and serve as inputs to a collection region. An ADDG

contains two types of edge: files and folder. These naturally correspond with the

concepts of a file, and a set of files, which exist in CDDGs. Edges may be connected

between ports of the same class, or, represent the construction or destruction of a set

of files when the class changes. A port may reference either a file or a folder.

Nodes in an ADDG have several attributes:

• (abstract command) abstracted: links to the concrete node that the abstract

node replaced.
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• (collectors) portmap: records the connectivity between collector ports, and

ports on nodes inside.

• (dispensers) portmap: analogous to above.

Edges in an ADDG have several attributes:

• (optional) collected index: When an edge enters a collector, this attribute con-

tains a number (index) which groups a set of edges satisfying the input of the

collector.

• (optional) dispensed index: When an edge exits a dispenser, this attribute con-

tains a number (index) which groups a set of edges satisfying the output of the

dispenser.

5.2.1 Collection Operators

Collection regions are defined by operator pairs which indicate collection of inputs,

and dispensing of outputs. The subgraph between a collector and dispenser represents

a data process applied repetitively on a partition of inputs. The partition on the edges

into or out of a collection region are formed as nodes are merged.

A collector operator represents the formation of a collection, where each element

is a valid input produced from various nodes. Each value of collected index defines

edges making up an element, with each element containing inputs for the ports used

by the collector. A collector has out-edges to match the abstract command(s) which

operates on the elements. A collector node, n, has one attribute portmap[n] which

records node connectivity between the operator’s ports and the inside nodes.

A dispenser operator represents dispensing data contained as an element of a

collection. Each value of dispensed index defines the edges making up an element,

with each element containing outputs for the ports provided by the dispenser. A
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dispenser has in-edges from the abstract command(s) which operate on the elements

the dispenser forms. These edges are determined by output ports available on the

abstract command, rather than the output edges from the command, which may

be omitted if the command produces a final output. A dispenser node, n, has one

attribute portmap[n], same as a collector.

5.3 Abstraction Algorithm

This section discusses an algorithm for identifying and combining repetition in a

dataflow graph. The algorithm functions by searching for a pair of equivalent nodes,

and replacing them with a collection region. Once a collection region exists, the

algorithm folds other equivalent nodes into it. As the algorithm advances along the

dataflow, collection regions can occur in sequence, and provided their cardinalities

are the same, they are merged to represent sequential repetition. Two words are

commonly used to describe the actions of the algorithm: seed and solute. A seed

is set of nodes (concrete or abstract) that can be compared to a set of concrete

nodes, a solute. If the two sets of nodes are equivalent, then the solute nodes will be

merged into a collection region equivalent with the seed. Hence the name given to

the algorithm: crystallize.

The pseudocode for the top level mechanism is given in Algorithm 2. The inputs

are a CDDG, and its resource library. Note that during abstraction, the algorithm

acts in place on the graph, and so the graph may contain both CDDG and ADDG ele-

ments. By the termination, all CDDG nodes will be transformed to ADDG elements.

Algorithm 2 makes use of six functions:

• is collector(n) takes a node, and returns true if it is a collector.

• gen solutes(G, concretes, seed) takes a set of concrete nodes, a seed, and re-
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turns a list of all solutes that may merge with the seed. To reduce the number

of solutes, each is required to contain nodes process equivalent to the seed.

• try seed(G,P, solutes, seed nodes) takes a set of solutes, and a seed. It com-

pares the seed with each solute, if there are matches, then the nodes are com-

bined. See Algorithm 3.

• create abstract command(n) takes a concrete command node, and returns

an abstract command node with identical node attributes and a reference to

the concrete node.

• transfer edges(n1, n2) takes two nodes, and moves edges from n1 to n2.

• collectors simplify inputs(G) takes an ADDG, and returns it with file edges

simplified to folder edges. Checks collectors for folder input ports and replaces

file edges with a single folder edge.

The algorithm maintains a set of leading nodes, comprised of all the concrete

nodes that have no concrete successors, as a list of nodes which may be merged. As

nodes are merged, this set is refreshed, similar to a topological sort. The leading

nodes perform a partition between the abstracted nodes, and the remaining concrete

nodes which cannot be abstracted. The main loop implements three ways to perform

abstractions. 1) If collectors have already been formed, their predecessors hint at

repetition. Thus, the collectors predecessors are partitioned on index with the first

set used as a seed, and rest as solutes. try seed is then run on these sets. 2) For each

leading node, try seed is run with each as a seed, thus merging repetition within the

leading nodes. 3) If no nodes were abstracted, then a leading node is selected and is

transformed into an abstract node. Note that since the CDDG is acyclic, and each

loop iteration abstracts at least one node, this algorithm always terminates. After
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the main loop, the algorithm cleans up the graph by simplifying edges between nodes

producing folders and collectors.

Algorithm 2 Main crystallization algorithm.

1: procedure crystallize(G,P ) . a CDDG and its usage profiles.

2: for cn ∈ G.nodes do

3: cn.abstracted← null

4: leading ← {n|n ∈ G.nodes ∧ |successors(n)| = 0}

5: abstract← ∅

6: while leading 6= ∅ do

7: for an ∈ abstract do . try extending collectors with upward elements

8: if is collector(an) then

9: likely solutes← {nodes|predecessors of a collected index of an}

10: likely solutes← {s|s ∈ likely solutes ∧ s ⊆ leading}

11: if |likely solutes| > 1 then

12: collector = try seed(G,P, likely solutes[1 :], likely solutes[0])

13: for n ∈ leading do . discover repetition in leading nodes

14: if abstracted[n] = null then

15: collector = try seed(G,P, gen solutes(G, leading, {n}), {n})

16: abstract← abstract ∪ any new collectors

17: if did not abstract node then . ensure a node is abstracted

18: an←create abstract command(G, leading.pop())

19: transfer edges(cn, an)

20: cn.abstracted← an

21: concrete← {n|n ∈ N [G]∧¬abstracted[n]∧ n has no concrete successors }

22: collectors simplify inputs(G)

63



try seed (Algorithm 3) finds the solutes of the equivalence class defined by flow

equivalence with seed and merges them into a collection region. Equivalence is deter-

mined by the existence of an equivalence map; a bijective function between two sets

of flow equivalent nodes such that each pair is also process equivalent. It uses three

functions:

• seek flow eq(G, nodes1, nodes2) takes two sets of nodes, and returns an equiv-

alence map if it exists. See Algorithm 4.

• create collection region(G,P, nodes) takes a set of nodes, and returns a col-

lector node. The collector is followed by abstract nodes derived from nodes, and

then a dispenser. The collector has input ports corresponding (but renumbered)

to nodes, the dispenser has output ports the same as nodes, and corresponding

internal edges. When internal edges are added, but did not exist in the CDDG,

they are called artificial. Each collector and dispenser records the connectivity

between the nodes it contains and the ports it exhibits as a portmap, a list of

3-tuples containing a exposed port name, a node within the collection region,

and the name of the port on the node.

• merge into collector(G, nodes, collector, eq map) takes a set of nodes, a col-

lector, and an equivalence map between nodes to be merged. It moves the in-

and out-edges between from nodes to the abstract nodes inside the collection

region.

The core of this function is a loop checking flow equivalence between seed and each

solute. When they are flow equivalent, they need to be merged. If no merge has

taken place, equivalence is compared between the seed and the solute. If the seed was

already merged with another solute, then successors of the collector (nodes equivalent
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to the seed) and the solute are compared. If an equivalence map exists, then a collector

will be introduced into G if needed, and the solute will be merged into the collector.

Algorithm 3 Try merging seed with some solute.

1: procedure try seed(G,P, solutes, seed). a CDDG, its resource profiles, set of

solutes, and a seed.

2: collector ← null

3: for solute ∈ solutes do

4: eq map← null

5: if not collector then . not collected

6: eq map← seek flow eq(G, seed, solute)

7: else . collected, compare with collector

8: eq map← seek flow eq(G, successors(collector), solute)

9: if eq map then

10: if not collector then

11: collector, collector eq map = create collection region(G,P, seed)

12: merge into collector(G, seed, collector, collector eq map)

13: eq map = composition of eq map and collector eq map

14: merge into collector(G, solute, collector, eq map)

seek flow eq (Algorithm 4) tries to find a equivalence map between nodes1 and

nodes2. It uses two functions:

• are commands process eq(n1, n2) takes two nodes, and returns true if they

are process equivalent.

• are nodes flow eq(G, nodes1, nodes2) takes two equivalent concrete nodes,

and returns true if they are flow equivalent. See Algorithm 5.
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Two sets of nodes are flow equivalent if there exists an exchange of nodes that does

not change the set’s output. This function uses nested loops to compare each pair

of possible matches. Each n ∈ nodes1 will be mapped to exactly one n ∈ nodes2;

although the correspondence may not be unique. For each comparison, the set of

friend nodes is computed; it comprises every node in one of the input sets except the

node being computed. This represents the dataflow context of the comparison. For

nodes to be matched, they must be both process and flow equivalent.

Dataflow context represents the downward dependency of some nodes on a child.

Consider Figure 5.2. It is clear that the two bottom nodes, labeled E, are equivalent

since they have same process and no later dataflow. The next step in the algorithm

would be to examine the newly exposed leading nodes: left C, left D, right C, right

D. If these nodes were compared only on their process equivalence and downstream

dataflow, then left C and right C would be equivalent, as they have the same process

and provide input to E (likewise for the D nodes). However, this is incorrect. The

two Cs are not be equivalent because the output of the left CD pair gives output to

an E, and the right CD pair gives input to another E. The C and D nodes cannot

be mixed - other nodes give them context - so the pairing must be maintained. This

is properly represented as the left CD nodes being equivalent to the right CD nodes,

i.e., they must be treated as unit.

A

B

C D

B

C D

E E
Figure 5.2: Dataflow context example.
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Algorithm 4 Checks if two sets of nodes are flow equivalent.

1: procedure seek flow eq(G, nodes1, nodes2) . a CDDG, two sets of nodes.

2: matches = list the size of nodes1

3: for n1 ∈ nodes1 do

4: for n2 ∈ nodes2 do

5: friends1 = nodes1.remove(n1)

6: friends2 = nodes2.remove(n2)

7: if are commands process eq(G, n1, n2) then

8: if are nodes flow eq(G, n1, n2, friends1, friends2) then

9: if n2 not already matched then

10: matches[n1] = n2

11: if not matches[n1] then

12: return null

13: eq map = matches between nodes1 and nodes2

14: return eq map

are nodes flow eq (Algorithm 3) takes two equivalent concrete command nodes,

two sets of friend nodes, and returns true if they are flow equivalent. That is, if their

output dependencies could be exchanged without change in the output of successors.

Friend nodes make up the data context of node - they are parallel nodes which produce

the data within the local collection region. It uses four function:

• is abstract(n) takes a node, and returns true if it is an abstract node.

• get outedges(n) returns the edges comprising the non-collection data flow out

of n. When a node is not adjacent to a dispenser, then its outedges are used.

Otherwise, a sample of the dispensed edges is selected, remapped to real port

names, and then returned. See Algorithm 5.
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• get collector inedges by index(n, index) takes a collector, and returns all

inedges with collected index = index.

are nodes flow eq first retrieves the outedges for each node it is comparing. The

edges are checked to determine if their the successor is a collector. If the nodes have

friends, they can only be equivalent if they belong to the same index. Recall that each

index may contain other nodes processing other data - this gives the nodes context. If

this context is different, such nodes cannot be equivalent. Next, all edges must enter a

existing collection region, this recursively perseveres any previous repetition. Lastly,

all of the outedges between the nodes must be matched such that they come from the

same port, and go to the same port. Since previous caller has already verified that

n1 and n2 are process equivalent, and the previous statement ensures they go to the

same subgraph, thus, these nodes are flow equivalent.
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Algorithm 5 Checks if two concrete command nodes are flow equivalent.

1: procedure get outedges(n, dispenser)

2: edges = out edges(n)

3: . if n is next to dispenser, use its edges instead

4: if ∀e ∈ edges, e.dst.type = DISPENSER then

5: dis = n out[0].dst

6: dis out = out edges(dis)

7: if |dis out| > 0 then

8: index = a dispensed index from dis out

9: used ports = {pm.newport|pm ∈ dis.portmap ∧ pm.abstract = n}

10: edges = {e|e ∈ edges ∧ e.dispensed index = index}

11: edges = {e|e ∈ n1 out ∧ e.srcport ∈ used ports}

12: for e ∈ edges do

13: for averted ∈ portmap[dis] do

14: if averted.abstract = n ∧ e.srcport = averted.newport then

15: e.srcport = averted.realport

16: else

17: edges = dis out

18: return edges
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19: procedure are nodes flow eq(G, n1, n2, n1 friends = ∅, n2 friends = ∅) .

a CDDG, two nodes, two sets of nodes.

20: n1 out← get outedges(n1)

21: n2 out← get outedges(n2)

22: . If either node has external nodes, they must have same index.

23: if n1 out has edge with collected index then

24: n1 index = n1 out[0].collected index

25: n1 index edges = get collector inedges by index(G, n1 out.dst, n1 index)

26: n1 external = {e.src|e ∈ n1index edges∧ e.src 6= n∧ e.src 6∈ n friends}

27: n2 index = n2 out[0].collected index

28: n2 index edges = get collector inedges by index(G, n2 out.dst, n2 index)

29: n2 external = {e.src|e ∈ index edges ∧ e.src 6= n ∧ e.src 6∈ n friends}

30: if |n1 external| > 0 ∧ |n2 external| > 0 then

31: if n2 index 6= n1 index then

32: return false

33: if ∃e ∈ (n1 out ∪ n2 out) s.t. e.dst.type 6= COLLECTOR then

34: return false

35: matches = list the size of n1 out

36: for e1 ∈ n1 out do

37: for e2 ∈ n2 out do

38: if e1.srcport = e2.srcport ∧ e2.dstport = e2.dstport then

39: if e2 not already matched then

40: matches[e1] = e2

41: if not matches[i] then

42: return False

43: return True
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5.4 Protein Synthesis Example

In Chapter 4, a simple workflow for simulating protein synthesis was given. In this

section, that example is continued to illustrate abstraction. The CDDG produced by

dataflow construction was shown in Figure 5.3. This graph differs from the Chapter 4

as it lacks nodes for the library (unused) and sink (only for sanity checking). The

workflow contains four profiles: 2 (source node), 4 (use of split fasta.py), 5(use of

dna2rna.py), and 6 (use of rna2aa.py). The edges of the graph have been labeled

with the ports used by the concrete dependencies.

COMMAND.d7I
Workflow.Job

Profile:.7

COMMAND.d8I
split_multifastaLpy

Profile:.9

dRI
srcport=OUTPUTR
dstport=INPUTR

COMMAND.d9I
dna7rnaLpy
Profile:.5

d6I
srcport=FOLDER_OUTR

dstport=INPUTR

COMMAND.d5I
dna7rnaLpy
Profile:.5

d7I
srcport=FOLDER_OUTR

dstport=INPUTR

COMMAND.d6I
dna7rnaLpy
Profile:.5

d8I
srcport=FOLDER_OUTR

dstport=INPUTR

COMMAND.d7I
rna7aaLpy
Profile:.6

d9I
srcport=OUTPUTR
dstport=INPUTR

COMMAND.d8I
rna7aaLpy
Profile:.6

d5I
srcport=OUTPUTR
dstport=INPUTR

COMMAND.d9I
rna7aaLpy
Profile:.6

d6I
srcport=OUTPUTR
dstport=INPUTR

Figure 5.3: Raw CDDG for protein synthesis.

First Iteration: Initially, the algorithm selects the leaf nodes (7, 8, 9) as the

leading nodes. These are the nodes which have a dashed outline in the figure. All

three node use the same usage profile and will be merged. The first of these nodes

(7) is selected as a seed. The node is then compared against the rest of the concrete

node set. Initially, this is node 8. Node 7 is compared with node 8, to determine

if they are equivalent. Since they have the same profile they are process equivalent.
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Since they have no outputs, they are trivially flow equivalent. Thus, they may be

combined. From node 7, a collection region is constructed. This is composed of a

collector (11), a command (10), and a dispenser (12). Note that the edge between

10 and 12 is dashed. This represents a port used by the command profile but whose

output was not used in the CDDG - an artificial edge. The collection region is then

merged with the main graph. The edge input to 7 is directed to the new collector

and given index 1. The edge input to 8 under goes the same process. The result is

shown in Figure 5.4.

COMMAND.d9I
Workflow.Job

Profile:.9

COMMAND.dSI
split_multifastaLpy

Profile:.-

dRI
srcport=OUTPUTR
dstport=INPUTR

COMMAND.d-I
dna9rnaLpy
Profile:.5

d6I
srcport=FOLDER_OUTR

dstport=INPUTR

COMMAND.d5I
dna9rnaLpy
Profile:.5

d9I
srcport=FOLDER_OUTR

dstport=INPUTR

COMMAND.d6I
dna9rnaLpy
Profile:.5

dSI
srcport=FOLDER_OUTR

dstport=INPUTR

COLLECTOR.d66I

d6I
srcport=OUTPUTR
dstport=INPUTR

CI:.R

d9I
srcport=OUTPUTR
dstport=INPUTR

CI:.6

COMMAND.d9I
rna9aaLpy
Profile:.6

d6I
srcport=OUTPUTR
dstport=INPUTR

COMMAND.d6RI
rna9aaLpy
Profile:.6

DISPENSER.d69I

dRI
srcport=OUTPUTR
dstport=INPUTR

dF6I
srcport=OUTPUTR
dstport=INPUTR

Figure 5.4: Protein synthesis CDDG during second iteration, after merging first two
nodes.

Next, node 9 is examined. This node is also equivalent with node 7 in the same

way that node 8 was. However, node 7 has already been abstracted. Thus, node

9’s input edge is simply merged as another element (index 3) of the collector. This
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completes the first iteration as there are no more concrete nodes to examine. The

result is shown in Figure 5.5.

COMMAND.dSI
Workflow.Job

Profile:.S

COMMAND.d-I
split_multifastaLpy

Profile:.4

dRI
srcport=OUTPUTR
dstport=INPUTR

COMMAND.d4I
dnaSrnaLpy
Profile:.5

d6I
srcport=FOLDER_OUTR

dstport=INPUTR

COMMAND.d5I
dnaSrnaLpy
Profile:.5

dSI
srcport=FOLDER_OUTR

dstport=INPUTR

COMMAND.d6I
dnaSrnaLpy
Profile:.5

d-I
srcport=FOLDER_OUTR

dstport=INPUTR

COLLECTOR.d66I

d6I
srcport=OUTPUTR
dstport=INPUTR

CI:.R

dSI
srcport=OUTPUTR
dstport=INPUTR

CI:.6

d-I
srcport=OUTPUTR
dstport=INPUTR

CI:.S

COMMAND.d6RI
rnaSaaLpy
Profile:.6

DISPENSER.d6SI

dRI
srcport=OUTPUTR
dstport=INPUTR

dF6I
srcport=OUTPUTR
dstport=INPUTR

Figure 5.5: Protein synthesis CDDG after one iteration.

Second Iteration: The leading nodes are updated to include all nodes which

are concrete and have only abstract successors (4, 5, 6). The first of these nodes (4)

is selected as a seed. The node is then compared against the rest of the concrete

node set. Initially, this is node 5. The nodes are compared to determine if they are

equivalent. Since they have the same profile they are process equivalent. To be flow

equivalent nodes must have outputs which are exchanged. Both nodes output into a

collector, each as a different input. Since a collector region applies the same process

to each input index, they are naturally flow equivalent. Thus, they may be merged.

The process of creating a collector region and attaching the input dependencies is

now repeated for node 6. The result is shown in Figure 5.6.

73



COMMAND.dSI
Workflow.Job

Profile:.S

COMMAND.d-I
split_multifasta8py

Profile:.5

d6I
srcport=OUTPUT6
dstport=INPUT6

COLLECTOR.dn5I

d8I
srcport=FOLDER_OUT6

dstport=INPUT6
CI:.n

dn6I
srcport=FOLDER_OUT6

dstport=INPUT6
CI:.S

d7I
srcport=FOLDER_OUT6

dstport=INPUT6
CI:.6

COMMAND.dn6I
rnaSaa8py
Profile:.7

DISPENSER.dnSI

d6I
srcport=OUTPUT6
dstport=INPUT6

COLLECTOR.dnnI

d1nI
srcport=OUTPUT6
dstport=INPUT6

COMMAND.dn-I
dnaSrna8py
Profile:.9

DISPENSER.dn9I

d9I
srcport=OUTPUT6
dstport=INPUT6

d5I
srcport=OUTPUT6
dstport=INPUT6

d9I
srcport=OUTPUT6
dstport=INPUT6

DI:.n
CI:.n

dnnI
srcport=OUTPUT6
dstport=INPUT6

DI:.S
CI:.S

d7I
srcport=OUTPUT6
dstport=INPUT6

DI:.6
CI:.6

Figure 5.6: Protein synthesis CDDG during second iteration, after second abstrac-
tion.

The resulting graph has a collector and dispenser pair with matching cardinality.

In this case, the information about the dataflow between collector and dispenser is re-

dundant. Since each index is being processed the same, and the collection regions can

be combined. This is directed by selecting the first index and using it to map between

the dispenser’s predecessor and the collectors’ successor. Then the extra collector and

dispenser nodes are removed. The complete iteration is shown in Figure 5.7.
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COMMAND.dSI
Workflow.Job

Profile:.S

COMMAND.d5I
split_multifasta8py

Profile:.4

d6I
srcport=OUTPUT6
dstport=INPUT6

COLLECTOR.dn4I

d8I
srcport=FOLDER_OUT6

dstport=INPUT6
CI:.n

dn6I
srcport=FOLDER_OUT6

dstport=INPUT6
CI:.S

d6I
srcport=FOLDER_OUT6

dstport=INPUT6
CI:.6

COMMAND.dn6I
rnaSaa8py
Profile:.6

DISPENSER.dnSI

d6I
srcport=OUTPUT6
dstport=INPUT6

COMMAND.dn5I
dnaSrna8py
Profile:.5

dnSI
srcport=OUTPUT6
dstport=INPUT6

d4I
srcport=OUTPUT6
dstport=INPUT6

Figure 5.7: Protein synthesis CDDG after two iterations.

Two more iterations of the algorithm are applied at this point but are not shown.

Both iterations simply mark the predecessor node of the already simplified region as

being abstracted. Since there is no more repetition, no nodes can be combined to

form a new collection region.

Final Result: As a post process, the edges between command 15 and collector 14

are removed. This happens because command 15 provides a folder, and each element

of the folder makes up an input to the collector. Thus, collector is refactored to take

a folder as input with the meaning that it must process each element it contains. The

final result is shown in Figure 5.8.
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COMMANDcLwk4
rnaJaaFpy
Profile:c6

DISPENSERcLwJ4

Lk4
srcport=OUTPUTk
dstport=INPUTk

COMMANDcLwb4
dnaJrnaFpy
Profile:c5

LwJ4
srcport=OUTPUTk
dstport=INPUTk

COLLECTORcLw74

L74
srcport=OUTPUTk
dstport=INPUTk

COMMANDcLw54
split_multifastaFpy

Profile:c7

Lw84
srcport=FOLDER_OUTk
dstport=FOLDER_INk

COMMANDcLw64
WorkflowcJob

Profile:cJ

Lw74
srcport=OUTPUTk
dstport=INPUTk

Figure 5.8: ADDG for protein synthesis.

5.5 Skeletonization

Previously, simplification has preserved the exact execution and dataflow struc-

ture. Skeletonization removes such details in favor of enabling user understanding.

The abstraction process focuses on identifying repetitive regions and replacing

them with simpler graph elements that designate the repetition. Since this process

preserves the exact structure of the execution, dataflow is recorded in a higher fidelity

than is necessary for understanding its semantics. These additions obfuscate the

overall design of the workflow. As a preliminary effort, skeletonizing the ADDG

is proposed. Skeletonization consists of two steps: 1) Removing parallel edges. 2)
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Removing collection operators. The dataflow in the graph is simplified by rewriting

all nodes and profiles to take a set of inputs and have exactly one output. Then, all

parallel edges are removed. To remove collection operations, each node in the graph is

examined. If that node is a collection operator, then it is removed and dependencies

added between its predecessors and successors. This preserves the connectedness of

the graph. While skeletonization may be performed on either a CDDG or ADDG, a

skeletonized graph may not adhere to the format of either.

The clarity that this process brings is demonstrated in Chapter 6 when it is shown

with a ADDG representation in several workflows. Skeletonization is discussed again

in Section 7.1.2 which discusses which future work based on formalism.
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Chapter 6

RESULTS

In addition to Protein Synthesis, a simple workflow to apply the protein syn-

thesis process to a number of sequences, the method was applied to a number of

workflows on GitHub. Evaluation has focused on four GitHub workflows (see Sub-

section 2.3.2): hybseqpipeline [57], a sequence assembly workflow for Illumina reads,

Inmembrane [84] which checks if a bacterial protein codes for a surface-exposed re-

gion, miR-PREFeR [66] which predicts plant microRNA from RNA sequences, and

pycoevol [73] which analyzes the coevolution of a pair of proteins. In addition, the

method is evaluated on SPROUTS [68], a true legacy workflow not intended for pub-

lic release, which examines the impact of point mutations on protein stability. As

discussed in Subsection 2.3.2, selection of test workflows was retrieved from GitHub.

While not representative of all workflows, the selection was meant minimize bias in an

effort to assemble a (small) random sample. All of the workflows except SPROUTS

included a README file which discussed the purpose of the workflow and the tools

utilized. These workflows contain more dynamic language features, and data driven

configuration, than their functionality would suggest. In particular, inmembrane and

SPROUTS would be difficult to analyze with a static approach. For the first three

workflows and SPROUTS, the method produces a complete dataflow graph. The

remaining workflows demonstrate some of the limitations discussed in Subsection 3.4.

In both workflows, the method identifies that dataflow is incomplete but not the

cause.

The instrumentation program, instrumented workflow(s), and dataflow construc-

tion algorithm were executed on CPython 2.7.6 and Xubuntu 14.04. Performance
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evaluations were performed on a virtual machine with an Intel 2500K (at 4.5Ghz),

and 4GB RAM. Workflows were installed using the instructions specified in their re-

spective readme files, and were executed in a virtualized filesystem for reproducibility.

6.1 Workflow Implementations

The scale characteristics of the workflows are the number of lines of code (LOC),

the number of lines of comments in the code (C), the number of tools invoked (T),

the sample input size (I) expressed as number of concept (e.g., a protein) instances,

and the type of information given in the workflow description (D). The characteristics

of the test workflows are listed in Table 6.1.

Table 6.1: Characteristics of test workflows.

Workflow LOC C T I D

Protein Synthesis 25 2 3 3 N/A

HybSeqPipeline 307 41 4 44 text

Inmembrane 2341 694 4 1702 text

Pycoevol 3648 502 4 1 graph

miR-PREFeR 2966 340 1+set 3 text

SPROUTS 3438 951 8 1 graph

These workflows use external tools to carry out their analysis. This is problem-

atic for existing provenance methods (e.g., ProvenanceCurious, StarFlow, noWork-

flow) because they track direct file access, and function calls, but neglect external

tools. In this work, tool execution is tracked to determine how they interact with

the filesystem. The six workflows invoked a total of 21 external tools, including:

BLAST, CAP3, DFIRE, dna2rna.py. EXONERATE, FoldX, HMMER3 I-Mutant

2, I-Mutant 3, LipoP, MAFFT, MEMSAT3, MIR3, MUpro, rna2aa.py, Samtools,

SignalP, split multifasta.py, TMHMM, Velvet, and ViennaRNA. Although the tools
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listed in documentation are shown for validation, the method does not require this

prior knowledge. The method discovers tools, stores them as resources, and assigns

them nodes in the dependency graphs. Note that the number of tools used by miR-

PREFeR is not precise because it uses samtools, a collection of tools.

Comments (measued with PyLint 1 ) covered from 7% to 22% of the code base(s).

While the GitHub workflows included a README file, with Pycoevol also provid-

ing a conceptual overview, only SPROUTS gave a top-level graph of the interactions

between tools. Comments range from well documented (e.g., descriptions for every

function) in Inmembrane and Pycoevol, to descriptive in miR-PREFeR and HybSe-

qPipeline, extremely sparse in Protein Synthesis, and incomplete in SPROUTS. Like

many in house legacy workflows, SPROUTS and Protein Synthesis were not meant

to be publicly released, thus explaining their poorly documented code. When a work-

flow is aimed at public release, such as those retrieved from GitHub, documentation

is more likely accurate and informative.

The input size (column I in Table 6.1) is used to predict the level of parallelism

of the workflow execution. The execution of a workflow that may run on a single

instance with an input sample containing several instances will likely display signif-

icant parallelism. Although some workflows demonstrate parallel dataflow, they are

implemented in a sequential manner. The method is expected to capture such hidden

parallelism, and show how performance can be improved significantly when the input

dataset contains several instances.

6.2 Inputs and Executions

The input for Protein Synthesis is a set of sequences in a FASTA formatted file.

The input of HybSeqPipeline is a set of sequences of different proteins in FASTA. The

1www.pylint.org
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input for Inmembrane is one or more bacterial genes in FASTA and a parameters file.

The input of Pycoevol is a pair of proteins as PDB IDs. The input for miR-PREFeR

is one or more small RNA-Seq data samples of the same species as SAM files. The

input of SPROUTS is a protein as a PDB ID. The method was run on the workflows

using their respective sample data: a set of 3 genes for Protein Synthesis, a set of

44 sequences for HybSeqPipeline, a set of 1,702 sequences for Inmembrane, a pair of

proteins for Pycoevol, a set of three sequences for miR-PREFeR, and a single protein

for SPROUTS.

The method produced a complete dataflow graph for Protein Synthesis, Hyb-

SeqPipeline, Inmembrane, and SPROUTS. A dataflow graph is complete when it

provides unambiguous sources for each intermediate dependency; that is, all dataflow

for tool execution is known. The dataflow graph for HybSeqPipeline contains 512

nodes with edges for 3,065 files. HybSeqPipeline is a workflow designed to control

the execution of tools and the paths to files that they read or write. Therefore it

does not modify the contents of files directly. In contrast, the method produces only

55 nodes with edges for 3,713 files on Inmembrane although it is 759% longer than

HybSeqPipeline. The results for SPROUTS display a similar scale with 60 nodes and

3,719 edges. Both inmembrane and SPROUTS contain a majority of external events

with a few internal events for data preparation.

The graph results are reported in Table 6.2. Each instrumented workflow is listed

with its size in terms of lines of code (ILOC), exclusive of tools, and the number of

raw dataflow graph elements found. DN and DE are the number of nodes and edges

in the concrete dataflow dependency graph, respectively. A is the number of nodes

obtained in the skeleton.

For all workflows but Pycoevol, the method discovers all the tools given in the

workflow’s description. It also discovers tools (e.g., data preparation scripts), typically
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Table 6.2: Results on test workflows.

Workflow ILOC DN DE A

Protein Synthesis 33 11 16 4

HybSeqPipeline 319 512 3065 34

Inmembrane 2421 55 3713 18

SPROUTS 3518 60 3719 31

Pycoevol 3696 3112 2092 N/A

miR-PREFeR 2978 1160 1194 N/A

custom made for the workflow, which are not in its description (e.g., SPROUTS: 7

graph generators, 1 output formatter, 1 output validator, and 2 data uploaders).

Pycoevol and miR-PREFeR demonstrate the limits of the implementation: specific

libraries instrumented and assumptions about file system use. Pycoevol makes use

of web services to download data files, instead of local applications. miR-PREFeR

uses the assigned temporary folder of the computer executing it for processing. Since

the folder is outside of the workflow, the dataflow within it is not tracked by the

implementation. In both case, the recovered dataflow graph includes annotations

about missing data required by specific nodes.

6.2.1 Inmembrane

Inmembrane is a workflow to determine whether a bacterial protein sequence may

include coding for a surface-exposed region. Inmembrane is documented by a readme

which discusses the workflow’s purpose and usage, as well as a publication describing

the workflow’s science and architecture. The input is processed with a suite of tools:

HMMER (a.k.a., nmmsearch) uses probabilistic models called profile hidden Markov

models (profile HMMs) [38], SignalP uses neural networks trained on separate sets

of prokaryotic and eukaryotic sequences and an hidden Markov model algorithm to
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identify signal peptides and their cleavage sites [85], LipoP predicts lipoproteins out

of signal peptides [87], and TMHMM predicts transmembrane helices in proteins [93].

Each tool is documented with version information and a web link. The results from

each tool are used to produce a summary spreadsheet and citations list. The readme

describes the main input format and the format of the parameters file.

Inmembrane exhibits dynamic run-time behavior in two ways. First, by requiring

a parameters file which is stored as a source file that must be evaled to inject param-

eters into the run-time. Second, after the parameters have been dynamically loaded,

one of them is used to select a source folder (representing a scientific protocol) con-

taining workflow scripts which are evaled to enact the workflow in the run-time. If a

static approach (e.g., ProvenanceCurious) was applied to inmembrane, static analysis

would fail to detect tools, or file access, as they are defined at run-time using a param-

eter value. A dynamic approach (e.g., StarFlow, noWorkflow) is needed to capture

the tools and writing the summary files. None of the existing provenance methods

are able to capture this workflow’s tool use although StarFlow and noWorkflow would

detect the run time file access.

The input to this workflow is a set of bacterial genes and a parameters file which

indicates if it is a gram- or gram+ strain. Although the repository contains five

sample files, users are left to construct parameter files. Inmembrane was executed on

input file AE004092.fasta, with the gram+ option, and produced a graph composed

of 55 nodes with edges for 3,713 files. The concrete and abstract data dependency

graphs are respectively displayed in Figures 6.1 and 6.2. All nodes are produced by

tools with the exception of a series of internal nodes reading each result produced by

a single internal event which produces an output. An additional two nodes represent

a pair of internal events to write the summary and citation list. In Figure 6.1, at

the top and reading from left to right, the first node represents the workflow run,
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the second the access to the Library, the remaining nodes correspond to which, a

Linux command which locates an executable. (This particular workflow uses which

to determine whether the tools it uses are installed.) The second layer of the graph

displays 17 tool nodes (that act on a file). Note that the 8th node represents a copy

operation (it records the input file to include it as part of the output) and is not a

tool. The three disconnected nodes displayed on the right side are, again, instances of

which. The graph overall indicates that the workflow is parallel. Once the abstraction

algorithm is applied, the simplification is dramatic and 11 similar nodes - instances

of a single tool TMHMM - are combined as illustrated in Figure 6.2. The abstraction

step makes it easier to see that a single tool is executed many times, each time

combining the same input file with a different file from the library. The other tools

occur only once and directly take the input and process it. At this point, the graph

still retains more information than is strictly necessary to understand the workflow.

The skeletonized result is shown in Figure 6.3, which simplifies the abstract data

dependency graph further.
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Figure 6.1: Inmembrane dataflow graph.
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Figure 6.2: Abstract data dependency graph for Inmembrane.

The skeleton graph indicates the same information as the abstract data depen-

dency graph but is more human readable. If the implicit data dependencies for the

creation of the spreadsheet and citation files were added, then edges would occur from

84



nodes 62, 71, 74, and 77, to both 80 and 81. Nodes 62, 71, 74, and 77 are events

created when the workflow opened the result produced by each of the four tools. The

information contained in these files is then used to produce a summary spreadsheet,

saved in event 80, and a citation list, saved in event in 81.
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Figure 6.3: Skeletonized abstract data dependency graph for Inmembrane.

6.2.2 SPROUTS

SPROUTS is an ad-hoc workflows developed by Arizona State University with

international collaboration. Like many legacy scientific workflows it is partially de-

scribed in published articles. SPROUTS performs predictions using a suite of eight

computational tools (i.e., MUPro, DFIRE, I-Mutant (4 versions), FOldX, and MIR)

to examine the impact of point mutations on protein stability. An online database is

used to store the data that is generated. The first seven tools produce identical infor-

mation describing stability but in a variety of formats. The last tool, MIR, provides

a linear description of a protein in terms of interaction density. The input to the

workflow is either a PDB ID, used to download remote input files, or user provided

input files. The results from each tool are parsed by scripts to produce a graph (by

parser X.py, where X is a tool name) and an uploadable SQL file. The SQL files

are created by a script called insert result.py while the script insert protein.py

uploads the protein sequence to the SPROUTS database to register the protein. A
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final script called populateDB.py uploads the result of insert result.py to the

SPROUTS database. SPROUTS exhibits dynamic behavior by loading a configura-

tion file to populate a list of tools to execute. If a static approach (e.g., Provenance-

Curious) was applied to inmembrane, it would be able to detect the data preparation

steps, which are statically defined, as well as MIR, but would find only a tool invo-

cation point without knowledge of the seven tools that will be executed. A dynamic

approach (e.g., StarFlow, noWorkflow) is needed to capture the tools. None of the

existing provenance methods are able to capture this workflow due to tools but all

would detect the file access. SPROUTS was run with the PDB code 1LFC. The

dataflow graph for this execution, displayed in Figure 6.4, seems to indicate that

SPROUTS is a parallel workflow with some disconnected regions.

Recall that WF INT READ nodes represent events when the workflow is reading a

file whereas WF INT WRITE nodes denote the workflow saving data in a file. In some

occurrences, the two events are implicitly related, thats is a file is opened, the workflow

performs some function and then writes the results in the file. This acts as an implicit

tool: a part of the workflow’s code which makes up an internal tool. Since the trace

depends on the manipulation of files by tools, it does not represent the logic internal

to the workflow. Although a workflow may read or write in a file, the implementation

cannot yet determine the manipulation applied and its dependencies. The regions in

a workflow between internal read and write events can be examined to determine if

they are independent (e.g., taking only parameters) from the rest of the workflow.

The internal events corresponding to such regions can be refactored into a proper tool

representation.

The result of processing implicit tools is illustrated in Figure 6.5. Post-processing

for implicit tools consists in merging a read event with a write event. In the dataflow

graph, five new implicit tools with both input and output were created by merging the
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internal commands 10 and 11, 17 and 18/19, 23 and 14, 28 and 30, and 101 and 102.

Dependencies were also added between nodes 3 and 7/8/9 to indicate that the job

encodes information required to download the initial data files. Had SPROUTS run

on local files instead of retrieving a file online with an ID, this step would have been

unnecessary. Note that the abstraction step does not require such post-processing.

The three nodes labeled wget in the middle top of the graph indicate three in-

stances of the tool used to download three separate input files from the ID in the

job file. The file resulting from one of these downloads (left most) flows through a

two node validation process (152, 153) before reaching MUPro, DFIRE, I-Mutant (4

versions), and FoldX. The file also undergoes one more formatting step (151) before

being passed to MIR. The two other files require no validation and are directly used by

the tools that need them. One can observe that one tool (MIR) is treated differently

than the others, with its output is directly read by the workflow (for uploading). The

other tools generate output that goes to two other commands, insert result.py and

a parser. The data from each parse then is read by a series of internal events, which

validate the file and then upload it. One of the tools, DFIRE, failed to run properly

during this execution, thus its output does not reach the command populateDB.py.

The abstraction method is applied to Figure 6.4 to produce the abstract data

dependency graph displayed in Figure 6.6. The overall logical organization of the

workflow is now appearing to the human eye. One can see that the output of each

tool is being processed in the same way. The graph includes multiple nodes with the

same label, insert result.py. All these nodes refer to the same script, but, since

the command parameters are different in each instance, they cannot be combined.

The skeleton of the abstract data dependency graph is displayed in Figure 6.7.
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Figure 6.4: SPROUTS dataflow graph.
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Figure 6.5: SPROUTS dataflow graph after creating implicit tools.
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Figure 6.6: SPROUTS abstract data dependency graph.

6.3 Method Performance

As expected, instrumenting a workflow impacts its execution performance. The

execution times of the original and instrumented workflows on the inputs described
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Figure 6.7: Skeletonized abstract dependency graph for SPROUTS.

in Table 6.1 are listed in columns I and D of Table 6.3 (in seconds). The impact of

instrumentation in Protein Synthesis is negligible since there are few tool invocations

and they involve small files. For HybSeqPipeline and Inmembrane, the execution of

the instrumented workflow is 5.7% and 3.1% slower than the initial workflow, respec-

tively. SPROUTS runs 12.1% slower. Note that SPROUTS uses an internal timer to

determine when it may exit - this obscures the actual run time. For Pycoevol, the

instrumented workflow is 51.8% slower than its non-instrumented version while the in-

strumented version of miR-PREFeR runs 815.3% slower than before instrumentation.

The slower performance of instrumented workflows is principally caused by repeated

IO access for logs and hashing the filesystem. Workflows that generate many files, or

large files, are likely to be the slowest. However, since an instrumented workflow is

only needed to generate traces, not as a permanent refactoring, these execution times

are acceptable.

In the method, only the time to produce the instrumented workflow is independent
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Table 6.3: Performance (in seconds) of the execution of the original workflow (O)
vs. its instrumented version (I).

Workflow O I

Protein Synthesis 0.071 0.091

HybSeqPipeline 51.204 54.129

Inmembrane 75.578 77.919

SPROUTS 1781.37 1996.371

Pycoevol 906.871 1376.225

miR-PREFeR 25.165 230.332

of an input. These times are shown in the column I of Table 6.4. The dataflow

and abstraction times scale based on the size of the input. The third column (D)

gives the time to build the dataflow graph from the trace. The time for abstraction

algorithm to identify repetition, and simplify it, is given in column A. The abstraction

is quick, in fact, the times in column A also include time for writing DOT files at

each stage. For Pycoevol and miR-PREFeR, the dataflow construction is slowed

since the algorithm constructs placeholder edge(s) and node(s) for missing data, and

reports debug information. For these two workflows, the abstraction algorithm was

not applied since its result would inherit the missing dataflow. The sum of columns

D and A correspond to the total time required to convert the trace to an ADDG.

The quality of skeletonization can be judged by examining its ability to capture

tools as nodes while omitting non-tool nodes. The goal is to capture all tools con-

tained by a workflow as nodes of the skeleton. Based on Table 6.1 (column T), and

the workflow documentation, each skeleton was checked for expected tools. The first

four workflows were confirmed to contain at least one node corresponding to each ex-

pected tool. The second two workflows were omitted since they were not skeletonized.

The method should also produce a skeleton where are all nodes correspond to tools.
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Table 6.4: Performance (in seconds) recorded for the production of the instrumented
workflow (I), its dataflow (D) and its abstraction (A).

Workflow I D A

Protein Synthesis 0.101 0.004 0.549

HybSeqPipeline 0.084 15.870 6.640

Inmembrane 0.064 10.611 2.289

SPROUTS 0.075 15.757 3.743

Pycoevol 0.455 32.400 N/A

miR-PREFeR 0.383 77.015 N/A

Comparing Table 6.1 (column T) which lists the number of tools per workflow and

Table 6.2 (column A) which lists the number of nodes in the workflow skeletons, it

is seen that no skeleton exactly matches the number of tools. However, since graphs

contain a Source node to designate input, they contain at least one more node than

needed by the tools. Thus, Protein Synthesis is an ideal case, with 3 expected tools

and 4 nodes in the skeleton. The other workflows do not give such precise results:

HybSeqPipeline contains 750% more nodes, Inmembrane 350% more, and SPROUTS

387.5% more. In contrast, the concrete data dependency graphs include even more

nodes: Protein Synthesis with 175% more nodes, HybSeqPipeline with 12700% more,

Inmembrame with 1275% more, and SPROUTS with 650% more. Thus, while the

current implementation does not identify only scientific tools, it significantly reduces

the raw number of nodes.

91



Chapter 7

CONCLUSION

This thesis presented a method for discovering the tool-based structure of a ad-hoc

Python workflow. The method starts with instrumenting an ad-hoc workflow written

in Python to produce a log, and then using the log to determine file dependencies

to build a dataflow graph by analyzing file system changes. This approach enables

the characterization of workflows with behavior that only emerges at run-time, either

from implementation specifics or language features, precluding the use of existing

static analysis methods. A graph representing the file dependencies for events is cre-

ated by analyzing file system changes. The data dependency graph generated by

this process contains repetition based on the workflow’s structure. This repetition is

removed by a process in which identical commands are combined. Gradually, regions

of dataflow which operate on different sets of inputs are formed. This simplification

enables the viewer to better understand the structure of the workflow. The collected

repetition provides a view of the workflow which can be used as a base for a WFMS or

other formal representation. The method was applied to a example synthetic workflow

for illustration purposes and a set of real world workflows to demonstrate relevance.

These workflows demonstrated behavior via configuration files (SPROUTS) or lan-

guage dynamics (inmembrane) which can only be captured at run-time. For three of

these workflows, the method fully captures the file data flow. For the other two, some

of system’s limitations produced incomplete dataflow. Moving forward, the aim is to

finish extracting the semantic workflow organization. This will take the form of iter-

ative refinement of a datagraph of workflow into a higher level form where scientific

tasks are explicitly defined. The process for abstracting repetition may be leveraged
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to achieve this.

7.1 Future Work

Future work includes addressing the limitations mentioned in the paper to in-

crease the accuracy and generality of the method. As discussed in Chapter 2, process

mining techniques address the issue of eluding a workflow’s control flow from multi-

ple executions, and are complementary to the dataflow approach taken in this work.

Process mining can extend this work by recovering an overall workflow structure with

multiple executions. The dataflow knowledge discovered by this work gives the exact

dependencies between workflow elements in that overall structure, thus characterizing

both control- and data-flow in a workflow. Although the trace method in Chapter 4

correctly captures the test workflows, it is possible that more exotic tools produce

filesystem snapshots which do not capture their action unambiguously. The present

technique for determining a program’s interaction with the file system is greedy. A

backtracking mechanism would enable safer application of more aggressive heuristics

for determining file access and is a natural extension. The algorithm could be designed

to optimize the rules for a usage profile over the set of invocations while preserving

the filesystem consistency checks. For dataflow issues from threaded workflows, one

can also consider forcing a workflow to run on single physical processor, to allow to

examining the system as if only one tool is running. In addition to improving the

dataflow construction scheme, three more areas demand improvement: 1) Detecting

implicit tools, 2) Skeletonization, and 3) Extracting Semantics

7.1.1 Implicit Tools

One of the limitations that was illustrated with SPROUTS, is the method’s depen-

dance on explicit representation of tools. As mentioned in Section 6.2.2, the dataflow
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of the SPROUTS workflow is interrupted at points due to workflow functions which

open a file, do some computation, and then save the result. Such a function forms

an implicit tool - a region of the workflow’s code base which makes up a tool. Since

the trace depends on the manipulation of files by tools, it does not represent logic

internal to workflow. Although a workflow may read or write a file, the method

cannot determine the manipulation applied or its dependencies. To rectify this, the

regions in a workflow between internal read and write events could be examined to

determine if they are independent (e.g., taking only parameters) from the rest of the

workflow. The internal events making such regions could be refactored into a proper

tool representation. This can be seen as a problem of program slicing [92], where the

portion of a program which some variable depends on must be determined. Here the

goal is to determine exactly the part of the workflow program which corresponds to

an internal tool that manipulates files.

7.1.2 ProtocolDB Ecosystem Integration

In Section 5.5, a preliminary method to simplify an ADDG was given. It reduced

the complexity of the workflow’s graph by eliminating redundant edges and unnec-

essary nodes. The aim was to move closer to the semantics of the workflow. The

semantics of a workflow are its key structure. However, the skeletonization process

exists in this work as the final end product, requiring users to manually investigate

a graph (instead of using a query system), and not providing facilities to execute the

workflow. A key extension is to provide a complete system for managing, modify-

ing, and storing workflow skeletons and their associated provenance. Doing so would

form the foundations for allowing ad-hoc workflow adaptation, optimization, data

provenance, and data integration.

Previously [60, 4], Lacroix et al. proposed ProtocolDB with a two layer approach
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to design and record workflows. In ProtocolDB, a scientific workflow is composed of

a design protocol that captures the scientific aim of the workflow expressed in terms

of a domain ontology and one or more implementation protocols that specify the

resources selected to implement each task. Complementary to ProtocolDB, Strauser

et al. [95] developed Semantic Map, a dual level ontology for storing scientific concepts

and resources. Together, ProtocolDB and Semantic Map provide the infrastructure

to manage the workflow and resource knowledge discovered in this thesis. Since

ProtocolDB addresses the need of a scientist to structure a high-level protocol, it

does not currently address the needs of digital workflow users. The existing layers

are

• Semantic: captures the design protocol of the workflow. This is viewed as

a network of conceptual relationships that describe the workflow’s conceptual

tasks.

• Implementation: a specific network of resources which is used to implement a

conceptual task, as needed for its execution - i.e. which concrete tools are used

with their input and output requirements.

The implementation layer in ProtocolDB mirrors the result of skeletonization. How-

ever, the skeletonization information also corresponds to an ADDG and a CDDG.

Thus, two addition layers for these granular views of workflows are necessary.

• Execution: specifies a program that executes the workflow in concrete terms.

This duty is typically taken by a WFMS, a script, or a similar mechanism. The

information implicit in a particular program is key to tracking tool versions and

understanding how changes propagate across layers.

• Dataflow : the trace of the program flow that is produced by executing the

workflow. The dataflow can support data provenance, which may impact the

95



way the data are analyzed, compared, and integrated with other data sets.

Based on its relation to the other layers, the dataflow can be expressed as

ontology-driven schema mappings.

An overview of this ecosystem is shown in Figure 7.1. In this figure, a workflow’s trace

is iteratively reduced in step with the ProtocolDB layers until an implementation has

been extracted. At the same time, the ADDG relates to an execution, and a CDDG

to data. An analogue process would support other methods for tracing workflows,

thus populating ProtocolDB with workflows which were originally created in many

different ways. The workflows managed by ProtocolDB could then be uniformly

transformed or deployed.
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Figure 7.1: Thesis work in the context of ProtocolDB and SemanticMap.
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7.1.3 Semantic Extraction

The present work has maintained the goal of constructing a dataflow graph with-

out regards to the semantics of the tools used by the workflow. Mapping the dataflow

graph to a semantic map where all tools are represented as edges in a domain ontology

[100] would support the documentation of the workflow in terms of its aim expressed

conceptually as proposed in [60] and workflow reuse, optimization, etc. [65]. The

present trace mechanism should be extended to extract semantic information at run

time and propagate it to the dataflow graph. This can be implemented by connecting

tools discovered in a trace to a resource collection. Tools necessarily provide some

unique identification (i.e., executable, service URL) for their execution, it is possible

to seek its resource counterpart. However, this is difficult in cases where a tool does

not exist in a collection, in which an existing resource collection should be extended

with any knowledge about that tool that is gained from analysis of its interactions

with other, known, tools. It is also possible to extract semantics from a workflow

by analysis of the libraries used, provided they have conceptual relation to a scien-

tific domain. In fields like bioinformatics, libraries like BioPython [28] are used to

provided standard mechanisms to write and read files - with semantic information

like sequence or structure. Since the library has some semantics attached its various

components, those semantics can be inferred for the workflow under analysis.

The extracted semantics may be used to further simplify the dataflow graph. At

present, the method given in Chapter 5 checks if two elements are equivalent by

comparing their usage profile. However, this provides only a low level grouping of

elements. In Figure 7.2, the ADDG for SPROUTS is shown again. This workflow

contains seven tools which perform the same purpose but cannot be merged since

they are different tools. Their equivalence exist at the semantic level which is not
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currently observed.
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srcport=OUTPUTd
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Profile:f=b
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Profile:f=x
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Figure 7.2: Skeletonized ADDG for SPROUTS.

Figure 7.3 shows the result of the method when the different tools are given the

same usage profile. This enables the abstraction method to merge them properly.

Here, three groups of profiles has been merged: launcher, parser, and insert result.

Each contains seven nodes as implied by the function of the workflow. For this

example, the profiles were merged manually. However, by extracting the semantics

of the executing workflow, it may be possible to merge these profiles automatically

to produce a clearer structure.
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Figure 7.3: Skeletonized ADDG for SPROUTS with merged profiles.
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