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ABSTRACT 
  

 In vitro selection technologies allow for the identification of novel 

biomolecules endowed with desired functions. Successful selection methodologies 

share the same fundamental requirements. First, they must establish a strong link 

between the enzymatic function being selected (phenotype) and the genetic 

information responsible for the function (genotype). Second, they must enable 

partitioning of active from inactive variants, often capturing only a small number of 

positive hits from a large population of variants. These principles have been applied 

to the selection of natural, modified, and even unnatural nucleic acids, peptides, and 

proteins. The ability to select for and characterize new functional molecules has 

significant implications for all aspects of research spanning the basic understanding 

of biomolecules to the development of new therapeutics. Presented here are four 

projects that highlight the ability to select for and characterize functional 

biomolecules through in vitro selection. 

 Chapter one outlines the development of a new characterization tool for in 

vitro selected binding peptides. The approach enables rapid screening of peptide 

candidates in small sample volumes using cell-free translated peptides. This strategy 

has the potential to accelerate the pace of peptide characterization and help advance 

the development of peptide-based affinity reagents. 

 Chapter two details an in vitro selection strategy for searching entire 

genomes for RNA sequences that enhance cap-independent initiation of translation. A 

pool of sequences derived from the human genome was enriched for members that 

function to enhance the translation of a downstream coding region. Thousands of 

translation enhancing elements from the human genome are identified and the 

function of a subset is validated in vitro and in cells. 
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 Chapter three discusses the characterization of a translation enhancing 

element that promotes rapid and high transgene expression in mammalian cells. 

Using this ribonucleic acid sequence, a series of full length human proteins is 

expressed in a matter of only hours. This advance provides a versatile platform for 

protein synthesis and is espcially useful in situations where prokaryotic and cell-free 

systems fail to produce protein or when post-translationally modified protein is 

essential for biological analysis. 

 Chapter four outlines a new selection strategy for the identification of novel 

polymerases using emulsion droplet microfluidics technology. With the aid of a 

fluorescence-based activity assay, libraries of polymerase variants are assayed in 

picoliter sized droplets to select for variants with improved function. Using this 

strategy a variant of the 9°N DNA polymerase is identified that displays an enhanced 

ability to synthesize threose nucleic acid polymers. 
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CHAPTER 1 

General Approach for Characterizing In Vitro Selected Peptides with Protein Binding 

Affinity 

Publication Note 

This research was originally published in Analytical Chemistry. Larsen, A.C., Gillig, 

A., Shah, P., Sau, S.P., Fenton, K.E., Chaput, J.C. (2014) General approach for 

characterizing in vitro selected peptides with protein binding affinity. Analytical 

Chemistry 86:7219-7223 © The American Chemical Society. 

Introduction 

 In vitro selection technologies have become indispensible tools for identifying 

high affinity peptides to proteins of broad medical and biological interest (1–3). 

However, the technological advances that have made it possible to generate long 

lists of candidate peptides have far outpaced our ability to characterize the binding 

properties of individual peptides. This disparity is due, in part, to recent advances in 

DNA sequencing technology, which have made it possible to generate millions of 

peptide sequences from a single in vitro selection experiment (4, 5). Other factors 

that have contributed to the rise in peptide sequence discovery include the use of bar 

coded libraries and liquid handling robots in selection protocols (6, 7). 

 Countering these advances is the slow pace at which individual peptides are 

characterized. In many cases, peptides identified by in vitro selection are produced 

by solid-phase synthesis, purified by HPLC chromatography, and assayed for function 

using analytical techniques, such as surface plasmon resonance (SPR), that require 

large amounts of highly pure peptide or protein. Because this process is both time-

consuming and costly, many researchers have turned to column binding assays as a 

way to quickly screen in vitro selected peptides for high affinity binding (8, 9). 

Although such assays are relatively easy to perform and use only small amounts of 
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peptide, the data produced is not quantitative. These assays also suffer from high 

background and problems caused by differential peptide expression, which can make 

it difficult to compare different peptides analyzed in side-by-side assays (9). Even 

when high affinity peptides are discovered, additional experiments are needed to 

obtain quantitative metrics, such as equilibrium binding affinity constants (Kd) that 

help describe the physical properties of the peptide–protein interaction. 

 Recognizing the limitations of traditional methods, we sought to develop a 

new analytical technique to identify high affinity peptides from enriched pools of in 

vitro selected sequences. Our goal was to develop a rapid and inexpensive method 

that would make it possible to rank selected peptides based on their relative binding 

affinity and, in a second step, determine the Kd value for the subset of high affinity 

ligands. The challenge was to design a system that would require minimal amounts 

of peptide and protein, was amenable to diverse protein classes, and allowed 

individual assays to be performed in a parallel format. 

 We envisioned an overall system in which peptides generated by cell-free 

expression would be brought to equilibrium with their cognate protein, and bound 

peptide–protein complexes would be separated from the unbound peptide using a 

double-filter binding assay (Figure 1.1). We felt that this strategy has a number of 

key advantages over existing methods. First, cell-free peptide synthesis makes it 

possible to synthesize large numbers of different peptide sequences in a fraction of 

the time that it would take to obtain the same constructs by solid-phase synthesis 

(hours vs days) (10). Second, peptides made by cell-free synthesis can be 

engineered to carry a protein affinity tag, which allows for purification by affinity 

chromatography. Third, peptides produced by cell-free synthesis can be labeled with 

35S-methionine, a radioisotope that allows for accurate detection at low 

concentrations without altering the physical properties of the peptide. Fourth, filter-
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binding assays provide a useful method for determining Kd values, as binding can be 

measured across a range of protein concentrations (11). Last, the entire process can 

be performed in parallel, which makes it possible to simultaneously analyze the 

binding properties of many different peptides. 

 

Figure 1.1. General strategy to identify and validate high affinity peptides isolated 
by in vitro selection. (a) DNA sequences encoding peptides with ligand binding 
affinity are inserted into a custom peptide expression vector, expressed in a coupled 
cell-free transcription–translation system as 35S-labeled peptides and purified by 
affinity chromatography. (b) Peptides are equilibrated in solution with their cognate 
protein target. (c) Bound and unbound peptides are separated in a 96-well dot blot 
apparatus by passing the mixture through a two-membrane system. 

Results 

 To test our strategy, we designed a custom peptide expression vectorthat 

would encode our peptide of interest followed by a TEV protease cleavage site and 

the amino acid sequence for the streptavidin binding peptide (SBP) (12, 13). We 

anticipated that the SBP tag would pro-vide a convenient positive control for 

subsequent binding assays, since the SBP-streptavidin interaction is well known (14). 

In our peptide expres-sion assays, we found that peptides generated in rabbit 

reticulocyte lysate could bepurified from the crude lysate by affinity capture on 

streptavidin-coated agarose beads. We developed two elution strategies to recover 

the peptide from the beads. The first strategy involved eluting the beads with 

deionized water, which allowed us to obtain the peptide of interest as anSBP fusion 

peptide for control assays with streptavidin. The second strategy involved eluting the 
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peptide of interest as a free peptide by incubating the beads with TEV protease, 

which separated the peptide of interest from the SBP portion of the fusion. 

 While the synthesis and purification of SBP-tagged peptides proceeded 

without problem, developing a two-membrane system that could efficiently partition 

bound peptide–protein complexes from the unbound peptide proved more 

challenging. Although filter-binding assays represent an established method for 

studying the binding properties of protein–DNA interactions (13, 15, 16) and more 

recently have been extended to include protein–XNA complexes (17), such systems 

have not been developed for protein–peptide interactions. This is presumably due to 

the fact that nitrocellulose has a general nonspecific affinity for amino acids, which 

precludes its ability to distinguish peptides from proteins. 

 To identify a suitable membrane pair, we evaluated the binding properties of 

several common laboratory membranes with different surface compositions and pore 

sizes in a dot blot apparatus. We tested nitrocellulose, PVDF, nylon, and cellulose 

membranes with various pore sizes. However, reproducible results were only 

observed using a double filter membrane setup with a top layer composed of 

regenerated cellulose and a bottom layer composed of nylon. Using this membrane 

configuration, peptide–protein complexes were retained on the top cellulose 

membrane and unbound peptides that passed through the top membrane were 

captured on the lower nylon membrane. 

 We tested the reproducibility of the cellulose–nylon membrane system by 

performing a 96-well dot-blot assay using SBP and streptavidin to represent a model 

peptide–protein complex. In this binding assay, SBP-tagged peptides labeled with 

35S-methionine were equilibrated in phosphate buffered saline (PBS, pH 7) solutions 

that either lack or contain streptavidin (50 nM). After 1 h of incubation at 25 °C, the 

solutions were loaded into the dot blot apparatus and passed through cellulose and 
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nylon membranes. The membranes were removed, dried, and quantified by 

phosphorimaging (Figure 1.2a). Analysis of the individual spots allowed us to 

quantify the amount of SBP peptide present on the cellulose and nylon membranes. 

We found that 89 ± 2% of the 35S-labeled peptide was retained on the cellulose 

membrane when streptavidin was present in the PBS buffer. By contrast, only 19 ± 

6% of the 35S-labeled peptide remained on the cellulose membrane when 

streptavidin is absent from the buffer. While some variability was observed across 

the members, this result suggested to us that the cellulose–nylon double-filter 

system should be sufficient to distinguish the binding properties of different peptides. 

 

Figure 1.2. Two-membrane double-filtration system for separating bound and 
unbound peptide–protein complexes. (a) Analysis of the streptavidin binding peptide 
(SBP) on cellulose and nylon membranes in the absence and presence of streptavidin 
protein. (b) Equilibrium dissociation plot measuring the binding interaction of SBP 
with streptavidin. 

 For the cellulose–nylon system to function as an accurate predictor of peptide 

binding affinity, it was necessary to confirm that equilibrium was maintained during 

the filtration step. If equilibrium were disrupted as the peptide–protein complexes 

passed through the membranes, then the observed binding values would 

underestimate the true binding affinity of the peptide. To explore this possibility, we 
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measured the binding affinity constant of the SBP–streptavidin interaction using the 

double-filter assay. SBP-tagged peptides labeled with 35S-methionine were 

equilibrated for 1 h in PBS solutions that contained a range of streptavidin protein 

concentrations. The solutions were loaded into the dot blot apparatus and passed 

through the cellulose–nylon membranes (Figure 1.2b). Analysis of the bound fraction 

at each SBP concentration yielded a binding isotherm with a Kd of 2.3 ± 1 nM, which 

is consistent with the literature value of 2.4 nM (12). On the basis of this result, we 

concluded that equilibrium is maintained for high affinity peptide–protein complexes. 

 One of the problems facing those that attempt to identify high affinity 

peptides to proteins of medical or biological interest is the challenge of distinguishing 

the highest affinity peptides from a list of in vitro selected peptide sequences. In 

many cases, the highest affinity peptides are not the most abundant sequences or 

even the sequences that share a common motif (4, 5). Recognizing this problem, we 

wondered if our cellulose–nylon membrane system could be used to identify and 

characterize high affinity peptides from a set of in vitro selected sequences. To 

explore this possibility, we identified an mRNA display selection in which a random 

library of 1011 different mRNA–peptide fusions was used to isolate peptides that 

could bind to human α-thrombin (18). The authors reported 45 sequences that 

remained in the pool after 10 successive rounds of in vitro selection and 

amplification. Using a column binding assay, two peptides (T10.39 and T10.11) were 

identified with high affinity to the protein target. Both peptides were synthesized and 

tested for binding by surface plasmon resonance. T10.39 was found to bind human 

α-thrombin with a Kd of 166 nM, while T10.11 bound with a Kd of 520 nM (18). 

 Considering the possibility that some high affinity peptides may have been 

overlooked due to the limitations of the original column binding assay, we decided to 

test 24 of the 45 sequences in our cellulose-nylon membrane system. The set of 24 
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peptides were randomly chosen (Figure 1.3a), inserted into our custom peptide 

expression vector, expressed in rabbit reticulocyte lysate as 35S-labeled peptide 

fusions, purified on streptavidin coated agarose beads, and eluted by TEV protease 

cleavage of the fusion peptide. Three of the peptides (T10.35, T10.46, and T10.57) 

did not express well and were discarded. Coincidentally, these three peptides also 

have high hydrophic values, indicating that our screen could be an indicator of 

peptide solubility. The remaining peptides were each separately incubated with 250 

and 500 nM human α-thrombin for 1 hour at room temperature and analyzed in 

parallel by passing the solutions through the cellulose–nylon membrane system. 

Control samples lacking thrombin were used to define the level of background 

binding to the membrane and the fraction of bound peptide was compared to T10.39, 

a high affinity thrombin-binding peptide (Figure 1.3b). 

 From our filter-binding assay, we discovered five previously uncharacterized 

sequences (T10.06, T10.13, T10.25, T10.30, and T10.37) that exhibit at least 25% 

binding to human α-thrombin when the protein was poised at a concentration of 250 

nM. The remaining sequences showed little or no binding, indicating that these 

sequences are all weak affinity ligands. Of the high affinity peptides, three contain a 

conserved DPGR motif that is found in T10.39, while the other two show no similarity 

to T10.39 or each other. This could suggest the peptides bind different sites on the 

surface of human α-thrombin, with the DPGR containing peptides targeting the same 

epitope as T10.39 and the two unique peptides binding elsewhere on the surface; 

however, further experiments are needed to test this hypothesis. 
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Figure 1.3. Screen of in vitro selected thrombin-binding peptides. (a) A list of 45 
thrombin-binding peptides. Peptides selected for dot blot analysis (gray) (18). (b) 
Membrane-based screen of 24 thrombin-binding peptides for affinity to human α-
thrombin. Stars indicate peptides with expression levels below the detection limit for 
dot blot analysis. High affinity peptides are numbered in blue. Arbitrary threshold 
(dashed blue line). 
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 Given the importance of human α-thrombin as a potential therapeutic target 

(19), we sought to determine the binding affinity of the five novel thrombin-binding 

peptides. We began by validating our filter-binding assay using peptide T10.39, 

which was previously characterized and found to bind thrombin with a Kd of 166 nM 

(18). Peptide T10.39 was expressed and purified as described above for the SBP 

peptide. The peptide was then incubated with a range of thrombin concentrations, 

and peptide–protein complexes were separated from the free peptide by passing the 

solutions through the cellulose–nylon membranes. Analysis of the binding isotherm 

revealed Kd of 170 ± 40 nM, which closely approximates the known literature value 

(Figure 1.4a) (18). Moreover, no difference was observed when the T10.39 was 

measured as a free peptide or as an SBP fusion peptide (data not shown). 

 Next, we measured the equilibrium binding affinity of the five uncharacterized 

peptides using the same methodology described above. In each case, the peptides 

were expressed and purified as 35S-labeled free peptide by eluting the peptides from 

the beads with TEV protease. The five peptides were incubated with a range of 

thrombin concentrations and their Kd values were determined by quantifying the 

amount of 35S-label on the cellulose and nylon membranes. Peptides T10.25, T10.30, 

and T10.6, which share the DPGR motif with T10.39, have Kd values of 200, 360, 

and 460 nM, respectively (Figure 1.4a). By contrast, peptides T10.13 and T10.37, 

which are unique with respect to the T10.39 sequence, have Kd values of 160 and 

310 nM, respectively (Figure 1.4b). 
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Figure 1.4. Equilibrium dissociation plots measuring the binding affinity for six high 
affinity thrombin-binding peptides. Binding isotherms were compared for peptides 
containing (a) and lacking (b) a conserved DPGR motif. 

 To further validate our results, we produced peptides T10.13 and T10.37 by 

solid-phase synthesis, purified both sequences by HPLC chromatography, and 

confirmed their binding affinity by microscale thermophoresis (Figure 1.5). This 
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technique measures changes in the hydration shell (due to conformational changes) 

along a temperature gradient, which makes it possible to determine Kd values using 

minimal amounts of sample (20). We found that peptides T10.13 and T10.37 bind 

thrombin with Kd values of 180 and 290 nM, which closely approximates the Kd 

values obtained using our double-filter binding assay. 

 

Figure 1.5. Microscale thermophoresis (MST) analysis of two thrombin-binding 
peptides. (a) A constant concentration of Cy5-labeled T10.13 peptide (50 nM) was 
equilibrated with varying concentrations of non-labeled thrombin protein before 
loading into glass capillaries for MST analysis. A Kd of 178 nM ± 22.5 nM was 
determined for this interaction. (b) A constant concentration of Cy5-labeled thrombin 
protein (100 nM) was equilibrated with varying concentrations of non-labeled T10.37 
peptide before loading into glass capillaries for MST analysis. A Kd of 291 nM ± 35.2 
nM was determined for this interaction. 

 In addition, we also demonstrated that the high affinity peptides function in a 

complex biological medium. In this case, peptides T10.13 and T10.37 were 

conjugated to streptavidin-coated magnetic beads and used to recover recombinant 

human α-thrombin that had been doped into HeLa cell lysate. After an incubation of 

1 h at 25 °C, the beads were precipitated, the supernatant was removed, and the 

beads were washed with TBST buffer. The supernatant and bead samples were 

analyzed by SDS acrylamide gel electrophoresis. Both peptides pulled-down human 

α-thrombin from the cell lysate with efficiencies similar to peptide T10.39 and no 
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contamination above the bead-only control was observed (Figure 1.), demonstrating 

high affinity and high specificity binding. 

 

Figure 1.6. Pull-down assay using high affinity thrombin binding peptides. 
Biotinylated peptides were immobilized on streptavidin coated magnetic beads and 
incubated with thrombin spiked HeLa cell lysate (1 ug thrombin in 12.5 ug HeLa cell 
lysate). After an hour of incubation magnetic beads were pulled down and the bead 
and supernatant samples were run on an SDS-page gel stained with Coomassie blue. 

Discussion 

 The past few years have witnessed an explosion in the demand for high-

quality peptides that can be used to support a growing industry of peptide-based 

therapeutic and diagnostic applications. Unlike antibodies, peptides are amenable to 

chemical synthesis, generally nonimmunogenic, and their small size allows them to 

penetrate further into soft tissue (21, 22). These properties, along with improved 

strategies for increasing serum stability, warrant new methods to streamline the 

peptide discovery process (23). In line with these efforts, we present a general 

approach for characterizing the binding properties of in vitro selected peptides. This 

approach provides an inexpensive method to synthesize, purify, screen, and 

characterize peptides for high-affinity binding to their cognate protein target. We 
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validated the method using peptides with known protein-binding interactions and 

applied the strategy to identify five new peptides that bind to human α-thrombin 

with nanomolar affinity and high specificity. 

 In summary, we provide a new analytic technique to rapidly screen and 

characterize in vitro selected peptides with high protein binding affinity. We have 

successfully evaluated peptides that range in size from 22 to 74 amino acids and 

exhibit binding affinity constants of 1–500 nM. While it is likely that subnanomolar 

binding affinities could be measured using this approach, we suspect that weaker 

interactions may not be possible due to long transit times through the membrane. 

During the course of our study, we noticed that peptides that do not express well by 

in vitro translation tend to have high hydrophobic values, suggesting that peptide 

recovery after expression and purification could be an indicator of peptide solubility. 

This observation could provide a simple way to determine whether a peptide will be 

soluble in an aqueous solution. Relative to more conventional analytical techniques, 

like SPR or isothermal titration calorimetry (ITC), the method presented here allows 

for rapid screening of multiple peptide candidates in small sample volumes using 

cell-free translated peptides that can be obtained in a cost-effective manner. By 

contrast, SPR and ITC generally require large amounts of purified peptide and/or 

protein that can be cost prohibitive when screening large numbers of peptides. While 

our approach is ideal for peptide screening and characterization, high affinity ligands 

discovered using this method may require further characterization in order to obtain 

a complete kinetic and thermodynamic profile of the peptide–protein interaction. 

Recognizing the advantages of small sample volumes, low cost, and high throughput, 

we suggest that this strategy could be used to accelerate the pace of peptide 

characterization and help advance the development of peptide-based affinity 

reagents (24). 
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Experimental 

Materials 

 Synthetic DNA oligonucleotides were purchased from Integrated DNA 

Technologies (Coralville, IA). Klenow Fragment (exo-) DNA polymerase, HindIII and 

SbfI restriction enzymes and T4 DNA ligase were purchased from New England 

BioLabs (Ipswich, MA). The in vitro transcription/ translation (TnT) rabbit reticulocyte 

lysate and ProTEV protease were purchase from Promega (Fitchburg, WI). 

Streptavidin agarose and the cellulose membrane (10 Kda nominal cut-off, PI88245) 

were obtained from Thermo Fischer (Waltham, MA). The vacuum Minifold-I Dot Blot 

apparatus was purchased from GE (Fairfield, Ct). All peptide-protein equilibration 

reactions were performed in phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) supplemented with 0.3% BSA and 

0.025% Tween-20. 

Synthesis of Peptide Expression Vectors 

 Partially complimentary DNA oligonucleotides were annealed by heating to 

90°C followed by five minutes of incubation at 4°C and then extended with Klenow 

DNA polymerase for 30 minutes at 37°C (Figure 1.7). This produced a synthetic 

double-stranded DNA with the peptide-coding region flanked by fixed-sequences. 

Restriction sites compatible with our custom protein expression vector were added 

by overlapping PCR. Double-stranded DNA was digested and ligated into our 

expression vector using HindIII and SbfI restriction sites. Plasmids were transformed 

into E. coli TOP10 competent cells, grown at 37°C on solid agar plates containing 

ampicillin, and individual colonies were selected for peptide expression. PCR was 

performed to confirm that the colony contained the plasmid with the correctly sized 

insert and a subset of plasmids were verified by DNA sequencing (ASU Core Facility).  
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In Vitro Peptide Expression and Purification 

 Linear DNA encoding the peptide of interest and all genetic information 

required for cell-free transcription, translation, and purification was obtained by PCR 

amplifying miniprep DNA. Peptides were expressed in vitro with a C-terminal SBP 

affinity tag using a coupled in vitro transcription/translation (TnT) system (12). One 

microgram of PCR-generated dsDNA was used as template in a 100 µL reaction 

containing 35S-methionine for 90 minutes at 30°C. The lysate samples were 

combined with three volumes of PBS and applied to an affinity matrix of streptavidin-

coated agarose beads. After an incubation of 30 minutes at 4°C with rotation, the 

matrix was then washed with 60 column volumes of PBS, and thrombin peptides 

were eluted by separating the peptide of interest from the SBP tag with 10 units of 

TEV protease (overnight incubation at 24°C). The free thrombin binding peptides 

were isolated by eluting the beads with four column volumes of PBS and quantified 

by scintillation counting. Eluting the column with eight column volumes of deionized 

water isolated uncleaved thrombin-SBP fusion peptides. 
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Figure 1.7. Peptide expression vectors construction. a) Two partially complimentary 
synthetic oligonucleotides encoding the peptide of interest as well as a translation 
enhancing element (TEE) and protease cleavage site (PCS) were denatured and then 
annealed. b) Partially complimentary oligonucleotides were extended with Klenow 
DNA polymerase. c) The T7 promoter site and two restriction sites (RS) were added 
by overlap extension PCR. d) The dsDNA PCR product was digested and ligated into 
an expression vector. e) Individual clones were selected that contain all of the 
information necessary for expression and purification in cell-free lysate. f) DNA 
sequence of the expression vector in the vicinity of the peptide coding region for the 
T10.39 peptide. 
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Dot Blot Binding Assay 

 Purified 35S-labled peptides were equilibrated with their cognate protein target 

in PBS containing 0.3% BSA and 0.025% Tween-20 for 1 hour at room temperature 

and loaded onto a vacuum Minifold-I Dot Blot apparatus containing a cellulose 

membrane (top layer) and nylon membrane (bottom layer). The time required to 

bring the system to equilibrium may vary depending on the affinity of the peptide 

and the concentration of peptide isolated from the in vitro translation system. A 

vacuum pressure of 400 torr was applied overnight to pull the solutions (typically 20 

µL sample volumes) through the membrane. While stronger vacuum pressure will 

decrease the transit time, we found that a low and constant vacuum pressure 

provided the most reproducible results. The amount of 35S-labeled peptide on each 

membrane was quantified by phosphorimaging. The fraction of bound peptide for 

each well was determined by dividing the signal intensity from the cellulose 

membrane by the combined signal intensity from the cellulose and nylon 

membranes. For the peptide screen, the thrombin protein was poised at fixed 

concentrations of 250 and 500 nM. Additional peptide samples were also incubated in 

the absence of thrombin to determine the background binding of each peptide to the 

cellulose membrane. For affinity measurements, a dilution series of the target 

protein spanning at least 10-fold above and below the estimated Kd was used. The 

protein-bound and free peptide fractions were used to determine the Kd using the 

following equation:  

Ib / (Ib + If) = C1 + C2 ([Protein]/([Protein] + Kd)) 

 Ib and If are the signal from the bound and free peptide respectively and C1 

and C2 are both constants. Affinity dissociation constants were obtained using a non-

linear least-squares regression analysis performed using the R software environment 

(25). The above calculation is not valid if the concentration of peptide is similar to 
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the concentration of target protein. While most in vitro expression systems generate 

only small amounts of protein, caution should be taken as significant variability is 

observed between different expression systems and individual peptide sequences.  

Microscale Thermophoresis (MST) 

 Peptides T10.13 and T10.37 were purchased from Biomatik (Cambridge, CAN) 

in >90% purity. Both peptides were synthesized with a GSKN3 extension at their C-

terminus, where the KN3 residue carries an ε-azido lysine modification. The T10.13 

peptide was labeled with Cy5 fluorophore using Cu-free click chemistry by adding 

equimolar concentrations of DBCO modified Cy5 fluorophore (Click Chemistry Tools, 

Scottsdale, AZ) and the ε-azido lysine peptide in water. The reaction was followed to 

completion by monitoring the decreasing DBCO absorbance at 310 nm. For Kd 

measurements, the Cy5-labeled T10.13 peptide (50 nM) was equilibrated with 

thrombin across a range of protein concentrations (1.5 – 50000 nM) in PBST for 1 

hour and then loaded into glass capillaries for MST analysis. For analysis of the 

T10.37 peptide, human α-thrombin was fluorescently labeled according to the 

manufacturer's protocol using the Monolith™ Protein Labeling Kit RED-NHS from 

Nanotemper Technologyies (München, Germany) (20). Labeled thrombin protein 

(100 nM) was equilibrated with a series of non-labeled T10.37 peptide concentrations 

(1.5 – 50000 nM) in PBST buffer for 1 hour before loading into glass capillaries for 

MST analysis. Measurements were made using the Monolith NT.115 from 

Nanotemper Technologies and Data analysis was performed using Nanotemper 

Analysis software. 

Pull-down Assays 

 Pull-down assays were performed using chemically synthesized peptides with 

a C-terminal KN3 (ε-azido lysine) were conjugated to DBCO-PEG12-biotin using Cu-

free click chemistry as described above. The conjugated peptides were immobilized 
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on M-270 streptavidin coated magnetic beads (Pierce Biotechnology) by incubating a 

10-fold excess of the magnetic bead nominal binding capacity for 1 hour at 25°C. 

The beads were then washed with PBST to remove free peptide-biotin conjugates. 

Peptide immobilized beads were then incubated with HeLa cell lysate spiked with 

human α-thrombin (1 µg thrombin in 12.5 µg HeLa cell lysate). After 1 hour of 

incubation at 25°C the magnetic beads were pulled down and the supernatant was 

collected into a fresh tube. The beads were washed with PBST buffer. The 

supernatant fractions were evaporated to dryness. The washed beads and dried 

supernatant samples were denatured in 1x SDS loading buffer by heating at 90°C for 

10 minutes and run on a 4-12% gradient SDS-page gel followed by staining with 

Coomassie blue. 

  



20 

References 
 
1.  Baines IC, Colas P (2006) Peptide aptamers as guides for small-molecule drug 

discovery. Drug Discov Today 11(7-8):334–341. 

2.  Takahashi TT, Austin RJ, Roberts RW (2003) mRNA display: Ligand discovery, 
interaction analysis and beyond. Trends Biochem Sci 28(3):159–165. 

3.  Molek P, Strukelj B, Bratkovic T (2011) Peptide phage display as a tool for 
drug discovery: Targeting membrane receptors. Molecules 16(1):857–887. 

4.  Olson CA, et al. (2012) Single-round, multiplexed antibody mimetic design 
through mRNA display. Angew Chemie - Int Ed 51(50):12449–12453. 

5.  Matochko WL, et al. (2012) Deep sequencing analysis of phage libraries using 
Illumina platform. Methods 58(1):47–55. 

6.  Turunen L, Takkinen K, Söderlund H, Pulli T (2009) Automated panning and 
screening procedure on microplates for antibody generation from phage 
display libraries. J Biomol Screen 14(3):282–293. 

7.  Cung K, et al. (2012) Rapid, multiplexed microfluidic phage display. Lab Chip 
12(3):562–565. 

8.  Baggio R, et al. (2002) Identification of epitope-like consensus motifs using 
mRNA display. J Mol Recognit 15(3):126–134. 

9.  Colwill K, Gräslund S (2011) A roadmap to generate renewable protein binders 
to the human proteome. Nat Methods 8(7):551–558. 

10.  Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free 
protein synthesis. Trends Biotechnol 23(3):150–156. 

11.  Wong I, Lohman TM (1993) A double-filter method for nitrocellulose-filter 
binding: application to protein-nucleic acid interactions. Proc Natl Acad Sci U S 
A 90(12):5428–5432. 

12.  Wilson DS, Keefe AD, Szostak JW (2001) The use of mRNA display to select 
high-affinity protein-binding peptides. Proc Natl Acad Sci U S A 98(7):3750–
3755. 

13.  Kapust RB, Waugh DS (2000) Controlled intracellular processing of fusion 
proteins by TEV protease. Protein Expr Purif 19(2):312–318. 

14.  Keefe AD, Wilson DS, Seelig B, Szostak JW (2001) One-step purification of 
recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, 
the SBP-Tag. Protein Expr Purif 23(3):440–446. 

15.  Yu H, Jiang B, Chaput JC (2011) Aptamers can discriminate alkaline proteins 
with high specificity. ChemBioChem 12(17):2659–2666. 



21 

16.  Xu D, Shi H (2009) Composite RNA aptamers as functional mimics of proteins. 
Nucleic Acids Res 37(9):1–9. 

17.  Yu H, Zhang S, Chaput JC (2012) Darwinian evolution of an alternative genetic 
system provides support for TNA as an RNA progenitor. Nat Chem 4(3):183–
187. 

18.  Raffler N a., Schneider-Mergener J, Famulok M (2003) A novel class of small 
functional peptides that bind and inhibit human alpha-thrombin isolated by 
mRNA display. Chem Biol 10(1):69–79. 

19.  Crawley JTB, Zanardelli S, Chion CKNK, Lane D a. (2007) The central role of 
thrombin in hemostasis. J Thromb Haemost 5:95–101. 

20.  Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) 
Molecular interaction studies using microscale thermophoresis. Assay Drug 
Dev Technol 9(4):342–353. 

21.  Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: 
technological advances driving peptides into development. Curr Opin 
Biotechnol 17(6):638–642. 

22.  Goodwin D, Simerska P, Toth I (2012) Peptides As Therapeutics with Enhanced 
Bioactivity. Curr Med Chem 19(26):4451–4461. 

23.  McGregor DP (2008) Discovering and improving novel peptide therapeutics. 
Curr Opin Pharmacol 8(5):616–619. 

24.  Williams BA, et al. (2009) Creating protein affinity reagents by combining 
peptide ligands on synthetic DNA scaffolds. J Am Chem Soc 131(15):17233–
17241. 

25.  R Core Team R: A Language and Environment for Statistical Computing. 
Available at: http://www.r-project.org. 

 
  



22 

CHAPTER 2 

Genome-Wide Profiling of Cap-Independent Translation Enhancing Elements 

Publication Note 

This research was originally published in Nature Methods. Wellensiek, B.P., Larsen, 

A.C., Stephens, B., Kukurba, K., Waern, K., Briones, N., Liu, L., Snyder, M., Jacobs, 

B.L., Kumar, S. and Chaput, J.C. (2013) Genome-Wide Profiling of Cap-Independent 

Translation Enhancing Elements. Nat. Methods 10:747-750 © Macmillan Publishers 

Limited. 

Introduction 

 In eukaryotes, initiation of translation usually follows a cap-dependent 

mechanism, in which the 43S ribosomal preinitiation complex is recruited to a 7-

methylguanosine cap located at the 5′ end of the mRNA strand via recognition of the 

cap-binding complex eIF4F (26, 27). Although we now have a detailed structural and 

mechanistic understanding of each step in the cap-dependent process (26, 27), very 

little is known about the molecular basis of cap-independent initiation of translation 

(28). Cap-independent translation occurs during normal cellular processes (for 

example, mitosis and apoptosis) or when the cap-dependent translation machinery is 

compromised by viral infection or disease (29, 30). To address this critical gap in our 

understanding of protein translation, we developed an in vitro selection strategy to 

identify sequences in the human genome that mediate cap-independent initiation of 

translation. 

 Our selection strategy relies on mRNA display, which is a cell-free method for 

covalently linking newly translated proteins to their encoding RNA message (31). In 

this approach (Figure 2.1a), a genomic library is inserted into the 5′ untranslated 

region (UTR) of a DNA construct containing the genetic information necessary for 

mRNA display. The library is in vitro–transcribed to yield a pool of uncapped single-
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stranded mRNA that is photo-ligated at the 3′ end to a DNA linker containing a 3′ 

puromycin residue. When translated in vitro, RNA sequences that mediate cap-

independent initiation of translation become covalently linked to a peptide affinity tag 

encoded in the open reading frame. Formation of a chemical bond between newly 

translated peptides and their encoding mRNA occurs via the natural peptidyl 

transferase activity of the ribosome, which recognizes puromycin as a tyrosyl-tRNA 

analog (Figure 2.1b). Functional RNAs are then isolated, reverse-transcribed and 

amplified by PCR to regenerate the pool of DNA for another selection cycle. 

 

Figure 2.1. In vitro selection of RNA elements that mediate cap-independent 
translation. (a) A library of human genomic DNA fragments was inserted into a DNA 
cassette for mRNA display. For each selection round, the dsDNA pool was in vitro–
transcribed into single-stranded RNA, conjugated to a DNA-puromycin linker and 
translated in vitro. Uncapped mRNA sequences that initiate translation of an intact 
open reading frame become covalently linked to a His-6 protein affinity tag encoded 
in the RNA message. Functional molecules are recovered, reverse transcribed and 
amplified by PCR to generate the DNA for the next selection cycle. T7, T7 RNA 
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polymerase promoter; XL, photo–cross-linking site. (b) Schematic of RNA-protein 
fusion molecule generated via the natural peptidyl transferase activity of the 
ribosome. (c) Percentage of 35S-labeled fusion molecules recovered from the 
oligo(dT) and Ni-NTA affinity columns. 

Results  

 We began the selection with a library of ~1013 RNA-DNA-puromycin molecules 

containing a random region of genomic fragments (~150 nucleotides) derived from 

total human DNA (32). We translated the library for 1 h at 30 °C and then incubated 

the translation mixture overnight at −20 °C under high-salt conditions to promote 

formation of mRNA-peptide fusions. We isolated the fusions from the crude lysate by 

oligo(dT) affinity purification, reverse-transcribed the mRNA portion into cDNA to 

form chimeric cDNA-RNA heteroduplexes and immobilized sequences displaying a 

His-6 affinity tag on Ni-NTA agarose beads. After washing the beads to remove RNA 

molecules that did not form mRNA-peptide fusions or did not translate in the correct 

reading frame, we eluted the remaining mRNA-peptide fusions with imidazole, 

exchanged the eluate into buffer and performed PCR amplification to reinitiate 

another selection cycle. 

 The abundance of mRNA-peptide fusions plateaued after six rounds of mRNA 

display, indicating that the library had become dominated by sequences that could 

enhance cap-independent initiation of translation (Figure 2.1c). To assess the level of 

sequence diversity that remained in the pool, we cloned and sequenced individual 

members from the selection output. We identified 636 unique sequences, 225 of 

which exhibited 100% identity to the human reference genome (hg18). The 

remaining 411 sequences had high homology (85–99% identity) but contained 

sequence variation that included single nucleotide polymorphisms in addition to small 

insertions and deletions. Such variation is expected for individuals in a population, 
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and it is known that functionally relevant sequences can differ between individual 

genomes (33, 34). 

 To test our selected sequences for functional activity in human cells, we 

modified two luciferase reporter vectors used previously to evaluate translation 

initiation by adding a promoter sequence specific to our cell-based system (35) 

(Figure 2.2a). The first vector contained an unstructured 5′ UTR designed to quantify 

the activity of TEEs. The second vector contained a stable stem-loop structure (Gibbs 

free energy (∆G) = −58 kcal mol−1) upstream of the insert, which blocks translation 

in the absence of an internal ribosomal entry site (IRES). Translation of both mRNA 

templates containing a no-insert 13-nucleotide control sequence confirmed that the 

stem-loop structure inhibited translation (~99% inhibition) in vitro and in cells 

(Figure 2.2b). Quantitative real-time PCR (qRT-PCR) confirmed that the differences 

in translation were not caused by differences in RNA expression. 

 Because cryptic splicing activity is a common cause of IRES misinterpretation 

(36), we used a cytoplasmic expression system that bypasses nuclear expression 

(37). In this system, mammalian cells transfected with an expression vector carrying 

a vaccinia virus (VACV)-specific promoter are immediately infected with VACV. The 

virus produces its own RNA polymerase that recognizes the viral promoter and 

mediates RNA expression in the cytoplasm. We confirmed that nuclear expression did 

not contribute to translation by measuring the luciferase activity of transfected cells 

that were not infected with VACV. These cells yielded luciferase values equivalent to 

those for untreated control cells (data not shown). 
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Figure 2.2. Functional analysis of selected TEEs in human cells and in vitro. (a) 
Firefly luciferase reporter (Luc) with or without (+/−) a stable stem-loop structure in 
the 5′ UTR. p(A)n, polyadenylation signal. (b) Translation efficiency, as measured by 
luciferase activity, of a no-insert control in the absence and presence of the stem-
loop structure, assayed in HeLa cell lysate (in vitro) and in HeLa cells. Error bars, 
s.d.; n = 3. (c) Translation-enhancing activity of 225 representative sequences after 
six rounds of in vitro selection, assayed using a luciferase reporter construct in the 
absence and presence of the stem-loop structure (hairpin) in HeLa cells. Results 
were compared to data for an unstructured 13-nucleotide insert (red), which defined 
the basal level of bioluminescence activity for the reporter plasmid. Error bars, s.d.; 
n = 2. (d) Comparison of 12 high-activity sequences (red) to an equal number of 
unselected sequences from the starting library (blue) in the absence and presence of 
the stem-loop structure in HeLa cells and in HeLa cell lysate. Fold enhancement of 
translation was measured relative to a no insert reporter containing a 13-nucleotide 
unstructured sequence in place of the TEE. Data shown represents an average of 2 
experiments. Raw data are provided in Table 2.1. Luciferase values were normalized 
to luciferase mRNA data for cell-based experiments in b and d but not in c. 
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 Next, we tested perfectly matched sequences for TEE and IRES function in 

human cells. Using the unstructured vector, we found that the selected sequences 

produced up to 100-fold more luciferase than the no-insert control (Figure 2.2c), 

demonstrating that our in vitro selection strategy enriched for sequences that 

enhance translation. Approximately 20% of our TEEs remained functional when  

tested in the stable stem-loop structure (Figure 2.2c), suggesting that a subset of 

our in vitro–selected TEEs function as IRESs. To ensure that the observed IRES 

activity was not due to a cryptic promoter (38), we screened 20 high-activity 

sequences in HeLa cells using a vector lacking the VACV promoter. This assay 

identified 8 sequences with modest to high luciferase activity, indicating that these 

sequences harbored a cryptic promoter (Figure 2.3). We considered the remaining 

12 sequences to be human IRESs, as their function was not an artifact of RNA 

splicing or cryptic promoter activity. 
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Figure 2.3. Cryptic promoter activity of TEEs. (a) Twenty of the top translation 
enhancing sequences identified from round 6 of the selection were evaluated for 
cryptic promoter activity in the transfect/infect assay using a plasmid that does not 
contain any known promoters. Results for plasmids containing sequences from round 
6 were compared to those of a plasmid which contained a simple filler sequence in 
place of the TEE. (b) The luciferase activity from the promoter-less plasmids was 
compared to the activity of the twenty TEEs in a plasmid containing a stable 
stemloop upstream of the TEE in the 5’ UTR. Any TEEs which generated promoter-
less activity greater than 10% of the stemloop activity, indicated with a *, were not 
included in further studies. 
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 We then compared the 12 human IRESs to 12 randomly chosen sequences 

from the starting library in the unstructured and stem-loop luciferase reporter 

vectors, both in HeLa cells and in HeLa cell lysates. In the unstructured luciferase 

reporter system, we observed strong concordance between luciferase assays 

performed in HeLa cells and in HeLa cell lysates, which resulted in ~100-fold greater 

translation-enhancing activity for the 12 human IRESs relative to the randomly 

chosen sequences from the starting library (Figure 2.2d and Table 2.1). We observed 

a similar trend for the stem-loop luciferase reporter system, which showed that the 

selected sequences exhibit up to ~400-fold higher activity in cells and up to ~100-

fold higher activity in vitro than the randomly chosen sequences from the starting 

library (Figure 2.2d and Table 2.1). Collectively, these results establish the ability of 

our in vitro selection strategy to identify RNA sequences from the human genome 

that function as efficient translation-enhancing elements, a subset of which function 

as IRESs. 
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Table 2.1 
Translation enhancing activity of 12 selected TEEs following 6 rounds of mRNA 
display selection.  Activity was calculated as fold enhancement over results obtained 
when using a 13-nt unstructured (no insert) sequence in place of the TEE.  
 

Fold Enhancement (±SD) 
 No hairpin Hairpin 

Clone ID In cells Cell lysate In cells Cell lysate 
6.100 182±4 90±1 235±9 36±3 
6.340 160±14 33±2 76±3 24±4 
6.400 87±2 27±1 156±22 41±4 
6.675 252±17 100±4 258±10 26±3 
6.694 278±11 184±8 151±10 75±13 
6.721 80±8 80±2 60±12 60±2 
6.757 149±10 129±3 59±2 84±7 
6.825 191±11 26±2 135±6 41±11 
6.878 137±5 49±3 220±18 75±10 
6.884 146±13 106±2 183±17 113±21 
6.967 325±55 240±4 99±9 113±5 
6.1267 203±16 110±2 368±37 92±26 

 

 One caveat of our HeLa cell assay is that the mRNA transcripts likely contain 

a 5′ cap because of the strong capping enzymes encoded in the VACV genome (37). 

This is not a concern for the hairpin construct as the stem-loop structure blocked 

cap-dependent initiation of translation (Figure 2.2b). However, in the case of the 

unstructured templates, where a 5′ cap could aid initiation of translation, additional 

experiments are needed to define the activity of the TEE. We therefore selected 26 

sequences that exhibited a range of TEE activities but had no observable IRES 

activity (Figure 2.2c). We then measured their luciferase activity under cap-

independent conditions relative to the no-insert control. Consistent with the 

functional constraints of our in vitro selection, the selected TEEs maintained their 

activity in the absence of a 5′ cap (Figure 2.4). In some cases, activity increased 

considerably when the 5′ cap was missing, suggesting that certain TEEs prefer cap-

independent pathways for initiation of translation. This observation provides new 

insight into the mechanism of initiation of translation where the 5′ cap is thought to 

inhibit alternate pathways (39). 



31 

 

Figure 2.4. Cap-independent activity of TEEs. A set of 26 sequences were selected 
that exhibit a range of TEE activity but no observable IRES activity. Each sequence 
was assayed in the absence of a 5’ cap in HeLa cell lysate and values of fold 
enhancement over a no insert control were plotted (light grey). For comparison 
purposes, the fold enhancement observed under cap-dependent translation in HeLa 
cells was also plotted for each sequence (dark grey). 

 As only a few human TEEs are known (40), we performed Illumina deep 

sequencing on the starting library (round 0, R0) and the selection output (round 6, 

R6). Sequence analysis revealed that only 2% of the R0 sequences remained in the 

pool after six rounds of selection. We aligned the R0 and R6 sequences to the 

reference human genome (hg19) and identified 12,278 unique regions that were 

enriched by at least tenfold (Figure 2.5 and Table 2.2). The in vitro–selected TBRs 

mapped to ~2 million base pairs. A vast majority of TBRs were shorter than 250 

base pairs (99.5%) and were widely dispersed across all 24 chromosomes (Figure 

2.6a and 3.7). Of these, 12% (1,532 TBRs) mapped to genomic regions containing 

known genes, even though genic regions (introns and exons) account for ~40% of 

the human genome (Figure 2.6b) (41). This underabundance in genic regions may 

be a result of negative selection against TEEs aimed at avoiding disruptive 
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translation in nature, which would be consistent with our results of TEE activity in 

vitro and in cells (Figure 2.2). Moreover, TBRs were preferentially located in 5′ UTRs 

of genes (threefold over-representation), which would suggest potential functional 

roles for these elements. We also observed a small but significant enrichment of 

TBRs in long noncoding RNA regions as compared to the entire human genome 

(12.2% versus 11.5%, binomial test, P = 0.003), which could lead to the production 

of novel proteins as these sites are located in intragenic regions of the genome. 

 

Figure 2.5.  Frequency (blue bars) and cumulative distributions (solid red line) of 
fold enrichment for all single-copy peaks. Fold enrichment represents the ratio of 
normalized R6 reads over R0 reads for a specific peak4. The broken red line 
illustrates that 11% of the peaks are enriched less than 10-fold. 
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Table 2.2 
Outputs from each step of the sequence processing pipeline: (a) raw Illumina reads, 
(b) after primer trimming, (c) after genome mapping, (d) after peak calling, (e) 
after enrichment estimation, and (f) after repeat masking. 
 

 

  

(a) library reads bases
R0 44,444,004 3,555,520,320
R6 15,822,677 1,265,814,160

(b) library reads bases

R0 37,844,023 2,214,081,562

R6 15,487,289 880,257,653

(c) library reads bases

R0 30,344,547 1,812,193,574

R6 8,208,028 467,542,238

R0 4,665,039 259,320,667

R6 3,834,883 204,430,440

R0 1,815,116 111,163,504

R6 1,444,416 86,354,599

R0 1,019,321 31,403,817
R6 1,999,962 121,930,376

(d) reads peaks

Single Copy 4,833,027  18,353

Low Copy 3,041,808 4,544

High Copy 799,386     8,267

(e) fold peaks

≥10               17,349 

≥100                  3,662 

≥1,000                    495 

≥10 4,246

≥100 1,020
≥1,000 113

≥10                  7,949 

≥100                    745 

≥1,000                      44 

(f) fold peaks
≥10               12,278 

≥100                  2,291 
≥1,000                    312 
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Figure 2.6. Genomic landscape of human TEEs. (a) Chromosomal ideogram of TBRs 
with different levels of sequence enrichment between the starting pool (R0) and the 
selected library (R6): low (10–99-fold), medium (100–999-fold) and high (≥1,000-
fold). The blank regions in the chromosome correspond to the unsequenced regions 
in the reference genome (hg19). Inset, total number of TBRs per chromosome, 
sorted by enrichment level. FC, fold change. (b) Quantity of TBRs in various genomic 
regions. TBRs were underrepresented in intragenic and exonic regions (binomial test, 
both P < 10−16) and overrepresented in 5′ UTRs (binomial test, P < 10−16). CDS, 
coding sequence. (c) Genomic context of an example TBR residing in an intron of the 
GRIN2B gene. 
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Figure 2.7.  Frequency (blue bars) and cumulative distribution (red line) of TBR 
lengths.  TBRs have an average length of 132 bps with a standard deviation of 34 
bps. 

 Gene Ontology analysis revealed that many TBRs associate with genes 

involved in signal transduction, cell communication and neurological system 

development pathways (Figure 2.8). These functional categories are frequently 

reported for genes that have undergone adaptive evolution (42, 43). One example is 

genes encoding glutamate receptors, which are important for neural communication, 

memory formation, learning and regulation (44). Among the 21 human genes 

encoding glutamate receptors, eight harbor TBRs in their introns. Of these, two were 

enriched by more than 1,000-fold after in vitro selection using mRNA display. Some 

of these sequences are flanked by regions that are highly conserved among species 

and exhibit transcriptional activity in cells, indicating a possible role for TBRs in the 

translation of proteins involved in important developmental pathways. One example 

is a TBR located in an intron of the GRIN2B gene (Figure 2.6c). This sequence 

overlaps with active nucleosome binding sites in the Encyclopedia of DNA Elements 
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(ENCODE) cell lines GM12878 and K562, and is upstream of a highly conserved 

region among placental mammals. We identified population polymorphisms upstream 

of, but not within or downstream of, this TBR. 

 

Figure 2.8. GeneOntology enrichment analysis of genes harboring TBRs. Among the 
1,236 genes found to contain a TBR, 1,156 were mapped and annotated in the 
PANTHER Classification System6. Biological processes enriched at p-value < 0.01 
after Bonferonni correction were displayed, as compared to all genes encoded in the 
human genome. The size of the bubbles represents the number of genes classified 
into a particular category, ranging from 25 to 348 genes. Closed bubbles correspond 
to biological processes that are significantly enriched after adjustment for gene 
length. 
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Discussion 

 In summary, we present an in vitro selection strategy for searching entire 

genomes for RNA sequences that enhance cap-independent initiation of translation. 

Using this technique, we identified >12,000 TEEs in the human genome, generated a 

high-resolution map of human TEE-bearing regions and validated the function of a 

subset of sequences in vitro and in cells. Our approach is time-effective, cost-

effective, cell line–independent and scalable, making it an effective tool for studying 

translation mechanisms in other genomes. 

Experimental 

Library assembly and mRNA display selection 

 The pool of fragmented human genomic DNA was previously constructed with 

conserved sequences flanking the random region (32). The library was modified by 

overlap PCR to add all necessary sequence information required for mRNA display. 

This included a T7 RNA polymerase promoter site upstream of the random region 

and an open reading frame and photo–cross-linking site downstream of the random 

region. The open reading frame included a canonical AUG start site followed by a 

nucleotide sequence encoding a flexible linker and His-6 protein affinity tag. The 

library was amplified using the forward primer (5′-

TTCTAATACGACTCACTATAGGGGGATCCAAGCTTCAGACGTGCCTCACTACG-3′) and 

reverse primer (5′-

ATAGCCGGTGTCCACTTCCATGATGATGGTGATGGTGGGCCATGGCTGAGCTTGACGCTTT

GC-3′). For each round of selection, 120 pmol of the dsDNA library was transcribed 

with T7 RNA polymerase into single-stranded RNA and purified after separation by 

10% denaturing urea-PAGE. Purified RNA was photo-ligated to a psoralen-DNA-

puromycin linker (5′-psoralen-TAGCCGGTG-(PEG9)2-A15-ACC-puromycin) by 

irradiating at 366 nm for 15 min. The RNA-DNA-puromycin product was ethanol-
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precipitated, and the cross-linked RNA (400 pmol) was translated in vitro by 

incubating the library with micrococcal nuclease–treated rabbit reticulocyte lysate 

and [35S]methionine for 1 h at 30 °C. The mixture was then incubated overnight at 

−20 °C in the presence of KCl (600 mM) and MgCl2 (75 mM) to promote formation 

of fusions. The mRNA-peptide fusion molecules were purified from the crude lysate 

using oligo (dT)-cellulose beads (NEB) and reverse-transcribed with SuperScript II 

(Invitrogen) by extending the DNA primer (5′-

TTTTTTTTTTTTTTTATCCACTTCCATGATGATGGT-3′) with dNTPs. Fusion molecules 

containing the correctly translated His-6 tag were isolated on Ni-NTA agarose beads 

(Qiagen). Functional sequences were recovered by eluting the column with 500 mM 

imidazole, dialyzing the sample into water and amplifying the cDNA by PCR using 

previously described overlap PCR primers to add back the necessary sequences for 

mRNA display. The selection progress was monitored by measuring the fraction of 

35S-labeled mRNA-peptide fusions that bound to and eluted from the oligo(dT) and 

Ni-NTA affinity columns. After six rounds of selection and amplification, the dsDNA 

library was cloned into a pJET plasmid (Fermentas), and individual isolates were 

sequenced at the Arizona State University core DNA sequencing facility. 

Luciferase reporter plasmids 

 A monocistronic luciferase reporter vector with an unstructured 5′ UTR, that 

contains both a T7 RNA polymerase promoter and a vaccinia virus synthetic late 

promoter (slp), was constructed from a pT3_R-luc<IRES>F-luc(pA)62 luciferase 

reporter plasmid (35). The vector was first modified using PCR to exchange the T3 

promoter with a T7 promoter (forward primer 5′-

GATCCCGGGATTAATAACGACTCACTATAGGGAACAAAAGCTGGGTACCGG-3′ and 

reverse primer 5′-GATCCCGGGTGCGCGCTTGGCGTAATCATGG-3′). The resulting PCR 

product was cut with SmaI restriction endonuclease and recircularized using T4 DNA 
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ligase. A synthetic dsDNA molecule containing the slp promoter was inserted 

immediately downstream of the T7 promoter using KpnI and XhoI restriction sites. 

Finally, the Renilla luciferase gene was removed by PCR using forward primer 5′-

ACTAGGATCCGCTTCTGTTGGGAAATGC-3′ and reverse primer 5′-

CGCGGATCCAAGCTTATCGATACCGTCGAC-3′. The PCR product was cut with BamHI 

restriction endonuclease and recircularized using T4 DNA ligase. To assay for IRES 

activity, two additional luciferase reporter vectors were used, both of which contain a 

stable stem-loop structure in the 5′ UTR. The first vector was the pT7-stem_F-

luc(pA)62 luciferase reporter plasmid described previously (26). This plasmid 

contains a T7 RNA polymerase promoter upstream of the stem-loop. The second 

vector was constructed by removing the stem-loop structure from pT7-stem_F-

luc(pA)62 using StuI and XhoI restriction sites and reciprocally inserting it into the 

unstructured vector, immediately downstream of the slp promoter. Plasmids to assay 

for cryptic promoter activity were generated by removing the T7 and slp promoters 

from the unstructured vector using SmaI and BamHI restriction sites. T4 DNA ligase 

was then used to insert a 22-nucleotide spacer (5′-ATAGCGCCACCGAGATATCTGG-

3′) in place of the promoters. To insert the human genomic sequences into the 

luciferase reporter vectors, the genomic fragments were amplified by PCR (forward 

primer 5′-TAGGGGGATCCCAGACGTGCCTCACTACGT-3′ and reverse primer 5′-

TGGGCCATGGCTGAGCTTGACGCTTTGCT-3′) to add BamHI and NcoI restriction sites 

to the 5′ and 3′ ends, respectively. The PCR products were then reciprocally inserted 

into the vectors immediately upstream of the luciferase coding region by restriction 

endonuclease digestion. 

Cell culture 

HeLa cells, obtained from American Type Culture Collection, were maintained in 

DMEM (Invitrogen) supplemented with 5% (v/v) FBS (HyClone) and 5 μg/ml 
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gentamicin (Invitrogen). Cells were kept at 37 °C in a humidified atmosphere 

containing 5% CO2. The cells were free of mycoplasma contamination, as 

determined by PCR during routine monitoring of cell lysates. 

Luciferase reporter assay 

HeLa cells were seeded at a density of 15,000 cells per well in white 96-well plates 

18 h before transfection. Cells were transfected with a complex of the luciferase 

reporter plasmid (200 ng) and Lipofectamine 2000 (0.5 μl) in Opti-MEM (Invitrogen) 

and immediately infected with the Copenhagen strain (VC-2) of wild-type vaccinia 

virus at a multiplicity of infection of 5 plaque-forming units per cell. Cells were lysed 

(6 h after infection) in the 96-well plates, and luciferase activity was measured using 

the Promega Luciferase Assay System with a Glomax microplate luminometer 

(Promega). Cell-free characterization of the top translation-enhancing sequences was 

performed using a Human In Vitro Protein Expression Kit (Pierce). Luciferase 

expression was achieved following the manufacturer's protocols using 300 ng of 

linear template for a 2-h transcription at 32 °C followed by a 90-min translation at 

30 °C. 

RNA characterization 

A portion of the cells used in the luciferase reporter transfection studies were 

separately lysed to evaluate the quality of the cellular RNA. RNA isolation was 

performed using the PerfectPure RNA cultured cell kit (5 Prime) according to the 

manufacturer's protocol. Isolated RNA was reverse-transcribed with an oligo(dT) 

primer and SuperScript II (Invitrogen). Real-time PCR (iQ SYBR Green Supermix, 

Bio-Rad) was used to determine the mRNA levels of luciferase (forward primer 5′-

GCTGGGCGTTAATCAGAGAG-3′ and reverse primer 5′-GTGTTCGTCTTCGTCCCAGT-3′) 

as well as the housekeeping gene hypoxanthine-guanine phospho-ribosyltransferase 

(HPRT, forward primer 5′-TGCTGAGGATTTGGAAAGGGTG-3′ and reverse primer 5′-
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CCTTGAGCACACAGAGGGCTAC-3′). Using the ∆∆Ct method, the amount of luciferase 

mRNA was normalized to HPRT mRNA levels. Luminescence values were then 

adjusted according to the normalized luciferase mRNA levels. 

Sequence analysis 

 An in-house pipeline was used to process Illumina HiSeq sequences. First, 

base-calling and quality control were performed using the Illumina HiSeq2000 

according to the manufacturer's instructions (Table 2.2). The average length of reads 

was 80 base pairs (bp). To detect and trim the PCR primers at both ends of each 

Illumina read, we used the 'cutadapt' program 

(http://code.google.com.ezproxy1.lib.asu.edu/p/cutadapt/) allowing a maximum of 

two mismatches. Both primers were detected in a vast majority of the reads (85% in 

R0 and 98% in R6). However, multiple primers were found to be concatenated in 

some reads, which is common for HiSeq data. For these reads, we used 'cutadapt' 

iteratively until all primer sequences were trimmed. Finally, reads shorter than 35 bp 

or longer than 75 bp were discarded because they contained too many or no copies 

of the primers (Table 2.2). To ensure correct orientation for all reads, sequences 

were reverse-complemented if the 5′ primer was present at the 3′ end or the 3′ 

primer was present at the 5′ end. 

 All trimmed reads were aligned to the human reference genome build 19 

(hg19) using iterative execution of 'bowtie' alignment and end trimmings (45). 

Sequentially, with one base at a time, 16 bp from the 3′ end, 5 bp from the 5′ end 

and another 15 bp from the 3′ end were trimmed from unaligned reads, which is 

done to ensure low-quality base calls do not interfere with sequence alignment. In all 

iterations, 'bowtie' was executed in “-n” mode with “-n 2 -e 70” setting. Reads 

uniquely mapped to exactly one location, 2–10 locations and more than 10 locations 
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in the hg19 genome were denoted as 'single-copy', 'low-copy' and 'high-copy' reads, 

respectively (Table 2.2c). 

 Based on reads mapped to the human genome, we used the command-line 

version of the CisGenome (46) to call peaks where R6 served as the positive sample 

and R0 served as the negative control sample; parameters were set as “-c 1 -m 10 -

w 60 -s 20 -p 0.009948 -br 0 -ssf 0.” Because TEEs are directional, we applied 

single-strand filtering and labeled a peak as 'forward' or 'reverse' depending on 

which strand of the genome it resided on. To further reduce spurious peaks, we 

required a peak to have a strand-specific global false discovery rate less than 10%, 

total number of reads greater than ten and at least one read present in the R0 

library (Table 2.2d). The CisGenome program compared the normalized number of 

R6 reads with the normalized number of R0 reads in a peak, which represented the 

fold enrichment level (Table 2.2e). Because repetitive elements can complicate 

downstream analysis, we focused on peaks derived from single-copy reads. 

Furthermore, single-copy peaks containing low-complexity sequences were detected 

using RepeatMasker with parameters “-noint -species human -q.” Peaks with no 

repeat masked and with more than tenfold enrichment were called putative TBRs 

(Table 2.2f). Chromosomal distributions of TBRs were converted into ideograms 

using the Idiographica website (47). 

 We performed bionomical tests for evaluating the null hypothesis that TBRs 

are randomly distributed in the human genome. In this case, the random probability 

of a base to belong to a genomic category was first estimated using the RefSeq 

database to be 0.43, 0.005, 0.005 and 0.57, for genes (all exons and introns), 5′ 

UTRs, 3′ UTRs and intergenic regions, respectively. We also conducted Gene 

Ontology enrichment analyses to identify functional categories that were over-

represented in the collection of genes found to harbor TBRs (Figure 2.8). We used 
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Gene Ontology classifications from the PANTHER (48) website and applied Bonferroni 

correction for multiple testing, using a cutoff P value of 10−3. Enriched biological 

processes were reported (Figure 2.8). Because the naive library was generated by 

randomly sampling the genome, longer genes were sampled more often than shorter 

genes. To account for this gene-length effect, we constructed a background sample 

from the human genome that matched the length distribution of genes bearing TBRs 

and redid the Gene Ontology enrichment analysis. This process was repeated ten 

times. The Bonferroni-corrected P values from each analysis were combined using 

Fisher's method. Biological processes with P < 0.01 in at least one of these ten gene 

length–adjusted analyses or with combined P < 0.05 (χ2 test) were highlighted. 

Construction and generation of Illumina library 

 The Illumina sequencing libraries were generated according to Illumina DNA 

Sample Kit Instructions (Illumina part 0801-0303). The protocol was modified such 

that enzymes were obtained from other suppliers, as previously described (49). 

Briefly, DNA from R0 and R6 was end-repaired and phosphorylated using the 'End-It' 

kit (Epicentre). The blunt, phosphorylated ends were treated with Klenow fragment 

(3′ to 5′ exo minus; NEB) and dATP to yield a 3′ A overhang for ligation of Illumina's 

adaptors. After adaptor ligation (LigaFast, Promega) DNA was PCR-amplified with 

Illumina genomic DNA primers 1.1 and 2.1. The final libraries were isolated (150–

300 bp) from an agarose gel to remove residual primers and adaptors. Purified 

library DNA was captured on an Illumina flow cell for cluster generation and 

sequenced on an Illumina HiSeq 2000 following the manufacturer's protocols. 

  



44 

References 
 
26.  Jackson RJ, Hellen CUT, Pestova T V (2010) The mechanism of eukaryotic 

translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 
11(2):113–127. 

27.  Sonenberg N, Hinnebusch AG (2009) Regulation of Translation Initiation in 
Eukaryotes: Mechanisms and Biological Targets. Cell 136(4):731–745. 

28.  Shatsky IN, Dmitriev SE, Terenin IM, Andreev DE (2010) Cap- and IRES-
independent scanning mechanism of translation initiation as an alternative to 
the concept of cellular IRESs. Mol Cells 30(4):285–293. 

29.  Spriggs KA, Stoneley M, Bushell M, Willis AE (2008) Re-programming of 
translation following cell stress allows IRES-mediated translation to 
predominate. Biol Cell 100(1):27–38. 

30.  Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P (1999) Identification of 
eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F 
concentrations using a cDNA microarray. Proc Natl Acad Sci U S A 
96(23):13118–13123. 

31.  Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection 
of peptides and proteins. Proc Natl Acad Sci U S A 94(23):12297–12302. 

32.  Salehi-Ashtiani K, Lupta A, Litovchick A, Szostak JW (2006) A Genomewide 
Search for Ribozymes. Science (80- ) 313(5794):1788–1792. 

33.  Kasowski M, et al. (2010) Variation in transcription factor binding among 
humans. Science (80- ) 328(5975):232–235. 

34.  Korbel J, Urban A, Affourtit J, Godwin B (2007) Paired-end mapping reveals 
extensive structural variation in the human genome. Science (80- ) 
13(5849):350–358. 

35.  Gilbert W V, Zhou K, Butler TK, Doudna JA (2007) Cap-Independent 
Translation Is Required for Starvation-Induced Differentiation in Yeast. Science 
(80- ) 217(5842):1224–1227. 

36.  Baranick BT, et al. (2008) Splicing mediates the activity of four putative 
cellular internal ribosome entry sites. Proc Natl Acad Sci U S A 105(12):4733–
4738. 

37.  Moss B (2013) Vaccinia Virus : Vaccine for Tool Development. Science (80- ) 
252(5013):1662–1667. 

38.  Van Eden ME, Byrd MP, Sherrill KW, Lloyd RE (2004) Demonstrating internal 
ribosome entry sites in eukaryotic mRNAs using stringent RNA test 
procedures. RNA 10(4):720–730. 



45 

39.  Mitchell SF, et al. (2010) The 5’-7-methylguanosine cap on eukaryotic mRNAs 
serves both to stimulate canonical translation initiation and to block an 
alternative pathway. Mol Cell 39(6):950–962. 

40.  Mokrejš M, et al. (2009) IRESite A tool for the examination of viral and cellular 
internal ribosome entry sites. Nucleic Acids Res 38:131–136. 

41.  Sakharkar MK, Chow VTK, Kangueane P (2004) Distributions of exons and 
introns in the human genome. In Silico Biol 4(4):387–393. 

42.  Akey JM, et al. (2009) Constructing genomic maps of positive selection in 
humans: Where do we go from here? Genome Res 19(5):711–722. 

43.  Sabeti PC, et al. (2006) Positive natural selection in the human lineage. 
Science (80- ) 312(5780):1614–1620. 

44.  Traynelis SF, et al. (2010) Glutamate Receptor Ion Channels: Structure, 
Regulation, and Function. Pharmacol Rev 62(3):405–496. 

45.  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome 
Biol 10(3):R25. 

46.  Ji H, et al. (2008) An integrated software system for analyzing ChIP-chip and 
ChIP-seq data. Nat Biotechnol 26(11):1293–1300. 

47.  Kin T, Ono Y (2007) Idiographica: A general-purpose web application to build 
idiograms on-demand for human, mouse and rat. Bioinformatics 23(21):2945–
2946. 

48.  Thomas PD, et al. (2003) PANTHER: A library of protein families and 
subfamilies indexed by function. Genome Res 13(9):2129–2141. 

49.  Auerbach RK, et al. (2009) Mapping accessible chromatin regions using Sono-
Seq. Proc Natl Acad Sci U S A 106(35):14926–14931. 

 
  



46 

CHAPTER 3 

A leader sequence capable of enhancing RNA expression and protein synthesis in 

mammalian cells 

Publication Note 

This research was originally published in Protein Science. Wellensiek, B. P., Larsen, 

A. C., Flores, J., Jacobs, B. L., & Chaput, J. C. (2013). A leader sequence capable of 

enhancing RNA expression and protein synthesis in mammalian cells. Protein 

Science: 22, 1392–1398 © The Protein Society. 

Introduction 

 Many applications in biotechnology require human proteins generated from 

human cells. Stable cell lines commonly used for this purpose are difficult to develop, 

and scaling to large numbers of proteins can be problematic. Transient expression 

can circumvent this problem, but protein yields are generally too low for most 

applications. Here we report a novel 37-nucleotide leader sequence that promotes 

rapid and high transgene expression in mammalian cells. This sequence was 

identified by in vitro selection and functions in a transient vaccinia-based cytoplasmic 

expression system. Vectors containing this sequence produce microgram levels of 

protein in just 6 hours from a small-scale expression in 106 cells. This level of protein 

synthesis is ideal for high throughput production of human proteins, and could be 

scaled to generate milligram quantities of protein. The technology is compatible with 

a broad range of cell lines, accepts plasmid and linear DNA, and functions with 

viruses that are approved for use under BSL1 conditions. We suggest that these 

advantages provide a powerful method for generating human protein in mammalian 

cells. 

 The synthesis of human proteins in human cells is necessary when properly 

modified protein is needed for biomedical assays (50–53). This requires developing 
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stable cell lines or engineered viruses (53), which is technically challenging, because 

it requires integrating a foreign gene of interest into the genome of the host cell or 

virus (54, 55). Even when properly constructed, stable cell lines are prone to 

contamination by viruses and microorganisms present in the laboratory environment. 

Consequently, human proteins are often synthesized in prokaryotic systems, even 

though these systems lack the capacity to produce post-translational modifications 

(56). 

 Here, we describe a novel 37-nucleotide RNA sequence that promotes strong 

protein synthesis in a vaccinia virus (VACV)-based cytoplasmic expression system. 

This system is ideal because of its activity in a broad range of mammalian cell lines, 

high expression capacity, and rapid timeframe (57). Biochemical analysis of our 

novel leader sequence reveals an unusual dual activity that leads to enhanced 

expression and translation. As a proof-of-concept, we show that 12 arbitrarily chosen 

human proteins express without the need for optimization, suggesting a 

straightforward method for generating human proteins in human cells. 

Results 

 In a previous in vitro selection experiment, we isolated translation enhancing 

elements (TEEs) from the human genome (58). The selected TEEs were evaluated in 

a VACV cytoplasmic expression system (Figure 3.1), and found to enhance 

translation by up to 100-fold when compared with unselected sequences from the 

naïve library or a traditional VACV synthetic late promoter (SLP) alone. Subsequent 

screening led us to identify one sequence, hTEE-658, with unusually high activity in 

our VACV system (Figure 3.2). Comparative studies showed that hTEE-658 enhances 

translation more than 5,000-fold over a standard SLP VACV promoter. This 

observation suggested a possible strategy for increasing protein synthesis levels in 

mammalian cells. 
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Figure 3.1. Vaccinia-based cytoplasmic expression of recombinant genes in 
mammalian cells. Cells transfected with a viral protein expression vector are infected 
with the vaccinia virus. Infected cells produce a viral RNA polymerase that recognizes 
a viral promoter in the protein expression vector and mediates the cytoplasmic 
transcription of gene-encoded RNA messages. Expressed mRNAs are translated using 
the translational machinery present inside the cell. 

 To understand the function of hTEE-658, we used quantitative real-time PCR 

(qRT-PCR) to measure RNA levels from cells transfected with a luciferase reporter 

plasmid containing sequences from the naïve library, selection output, and hTEE-

658. After normalization, the hTEE-658 plasmid produces ∼10-fold more RNA and 

leads to ∼5-fold more luciferase than the most active sequence previously identified 

from our selection (Figure 3.2b,c). We confirmed by qRT-PCR that plasmid copy 

number was not altered (Figure 3.3), demonstrating that stronger mRNA expression 

and translation was not due to differences in plasmid replication by the virus. These 

results indicate that hTEE-658 enhances transcription and translation levels in the 

cell. The observation that a single sequence can affect both steps of protein 
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synthesis is unusual, but not unprecedented. We are aware of at least one other RNA 

motif, the TISU element, which functions in this capacity (59). 

 

 

Figure 3.2. Functional characterization of hTEE-658. (A) Luciferase production 
driven by hTEE-658 compared to the average of 9 in vitro selected human TEEs and 
four randomly chosen human sequences from a naïve library. Results from the naïve 
library are equivalent to the SLP promoter alone. (B) Luciferase mRNA levels 
determined by qRT-PCR after normalization to HPRT. (C) Luciferase activity 
normalized to cellular mRNA. (D) Reporter constructs containing 5′ and 3′ deletions 
were used to identify the core functional domain of hTEE-658. Labels indicate the 
precise nucleotide fragment analyzed in vaccinia-infected cells. Relative 
enhancement is given as a percentage of full-length hTEE-658 with normalized 
percent error shown in parenthesis. (E) Luciferase mRNA and protein levels observed 
for vectors carrying and lacking the vaccinia SLP promoter upstream of hTEE-658. 
(F) 5′ RACE analysis was used to identify the viral promoter region (underlined) and 
ribosomal TEE (boxed) within the core functional region of hTEE-658. 
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Figure 3.3. Plasmid levels in vaccinia infected cells. HeLa cells were transfected with 
luciferase reporter plasmids containing either the hTEE-658 sequence in the 5 UTR 
or a 13-nt unstructured sequence (empty) and then immediately infected with 
wildtype (VC2) vaccinia virus. Plasmid DNA levels were measured six hours post-
infection by realtime-PCR. 

Next, we determined the minimal region required to achieve strong gene expression. 

A set of hTEE-658 variants were generated by first separating the parent sequence 

into the 5′ half, 3′ half, and central portion, which revealed that the functional region 

resided in the 5′ portion of the parent sequence (Figure 3.2d, Table 3.1). We then 

performed an incremental deletion analysis on the 5′ half to identify the minimal 

sequence necessary for function. Sequential deletions from the 5′ and 3′ ends 

allowed us to identify a core functional region of 37-nts spanning a boundary from 

residues 6–42. This region is ∼2-fold more active than the full-length sequence and 

additional deletions that extend into either end led to significant drops in luciferase 

activity (Figure 3.2d). The remainder of our study focuses on the activity of the 37-nt 

core region of hTEE-658. 
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Table 3.1. Relative RNA levels (±SD) for reporter constructs containing the 
nucleotide fragments of hTEE-658 used for deletion analysis in vaccinia infected 
cells. Values are the average of 3 replicates determined by the ∆∆Ct realtime PCR 
method. 

Nucleotide 
fragment 

Relative 
RNA levels 

1-90 1.00 (0.12) 
48-90 0.10 (0.01) 
25-66 0.09 (0.01) 
1-42 1.41 (0.05) 
1-37 1.00 (0.30) 
1-32 1.27 (0.35) 
1-27 0.99 (0.01) 
6-42 0.63 (0.09) 
11-42 0.99 (0.16) 
16-42 1.23 (0.17) 
6-37 0.92 (0.13) 

 To verify that hTEE-658 functioned as a VACV promoter, we removed the 

vaccinia SLP promoter from the luciferase plasmid. Analysis of cellular RNA and 

luciferase activity values from vectors containing and lacking the SLP promoter 

showed no detectible difference in mRNA and protein levels (Figure 3.2e), confirming 

that hTEE-658 functions as a VACV promoter. To discern which region of the 

sequence is responsible for promoter activity and which region is responsible for TEE 

activity, we sequenced the 5′ end of the luciferase mRNA by rapid amplification of 

cDNA ends (RACE). cDNA sequencing indicated that transcription initiated within the 

AAAACUGCUAA portion of the sequence, which was preceded by a stretch of 8 or 9 

non-templated adenosine residues (Figure 3.2f). We anticipated the presence of 

short polyA ends since VACV encodes strong poly-adenylation enzymes that modify 

the 5′ and 3′ ends of primary transcripts (60). This analysis suggests that the first 

26 nucleotides of hTEE-658 function as a VACV promoter, while the last 11 

nucleotides function as a TEE. 

 We established the activity of hTEE-658 relative to known VACV promoters 

using viral vectors that contain the SLP and I1L promoters alone and in combination 
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with hTEE-658 (Table 3.2). Vectors designed to express the luciferase and HIV-1 gag 

genes were tested in our cytoplasmic expression assay. After 6 h of expression, 

protein abundance was detected by western blot analysis using antigen specific 

antibodies. Analysis of the resulting gel indicates that vectors carrying hTEE-658, 

either alone or in tandem with SLP and I1L, produce substantial amounts of 

luciferase or HIV gag when compared with vectors containing only the SLP and I1L 

promoters alone (Figure 3.4). This result is consistent with our quantitative luciferase 

measurements. 

Table 3.2. Common sequence elements used for protein expression. 

Element Sequence 
I1L vaccinia 
promoter 

CTATTGATATATTTGTATTTAAAAGTTGTTTGGTGAACTAA 

SLP vaccinia 
promoter 

AGCTTTTTTTTTTTTTTTTTTTGGCATATAAATGGA 

T7 promoter TAATACGACTCACTATA 
EMCV IRES GGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCC

GGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTT
CCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAG
GAAGCAGTTCCTCTGGAGGCTTCTTGAAGACAAACAACGTCTGTA
GCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGT
GCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCCGCAAAG
GCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGA
AAGAGTCAAATGGCTCACCTCAAGCGTATTCAACAAGGGGCGGA
AGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGG
CCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAC
GTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAA
ACACGATGATAAT 

c-Myc Tag GAACAGAAACTGATCAGCGAAGAGGATCTGTAATGA 
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Figure 3.4. Western blot analysis confirms that hTEE-658 is a strong VACV 
promoter. Luciferase and HIV Gag proteins were produced in HeLa cells from vectors 
carrying hTEE-658, SLP, I1L or a combination of hTEE-658 in tandem with SLP or 
I1L. Western blot analysis was performed using antibodies directed against luciferase 
and HIV Gag proteins. GAPDH was used as a loading control. Empty refers to cells 
that were infected, but not transfected. No infection controls confirm that protein 
synthesis is VACV-driven. SLP and I1L protein is visible after prolonged exposure 
(data not shown). 

 Next, we evaluated cell line and viral strain compatibility by measuring 

luciferase production in three different cell types using three different viral strains. In 

this case, HeLa, HEK, and BHK cells were chosen for analysis with the VACV strains 

VC2, vTF7-3, and MVA. VC2 is a wild-type Copenhagen strain, while vTF7-3 is an 

engineered VACV designed to express the T7 RNA polymerase (61). MVA is a highly 

attenuated VACV that is non-pathogenic to humans and compatible with biosafety 

level 1 (BSL1) conditions (62). Plasmids carrying an internal ribosomal entry site 

(IRES) from the encephalomyocarditis virus (EMCV), in combination with a T7 or SLP 

promoter, were used as controls. The EMCV IRES is a ∼500-nt noncoding RNA motif 

that is commonly used for protein synthesis in mammalian cells (63). 
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 Time-dependent measurements were collected over the course of 24 h. In 

nearly all cases, hTEE-658 proved superior to the EMCV IRES with luciferase 

expression following a general trend of early rapid expression that plateaued after 6–

9 h (Figure 3.5). While expression from the EMCV plasmid followed a similar trend, 

this plasmid generally required longer expression times and produced less overall 

protein (∼10-fold). In only two cases were the hTEE-658 and EMCV plasmids similar; 

however, this required the engineered VACV strain vTF7-3, an efficient virus 

optimized for EMCV. Among the three cell lines, BHK cells consistently produced the 

highest levels of luciferase, consistent with previous VACV expression results (64). 

These findings indicate that hTEE-658 vectors produce significant quantities of 

protein in a time frame competitive with most prokaryotic expression systems. 
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Figure 3.5. Time course analysis of luciferase production in multiple cell lines. 
Luciferase synthesis was measured in three mammalian cell lines (HeLa, HEK 293T, 
and BHK), each infected with three different vaccinia virus strains (VC2, vTF7-3, and 
MVA). Protein synthesis was monitored in triplicate over a 24-hour period using viral 
expression vectors engineered with hTEE-658 (diamonds) or the EMCV IRES 
(squares).  

 To demonstrate the potential for broad protein synthesis, 12 human proteins 

of different sizes and functional categories were arbitrarily chosen for analysis (Table 

3.3). In all cases, the gene encoding sequence was inserted into an expression 

vector containing hTEE-658 upstream of the coding region, and protein production 

levels were monitored after expression in HeLa cells using a common c-Myc epitope 

tag. Western blot analysis of cell lysates indicated that full-length proteins were 

obtained in all cases (Figure 3.6). This result is important given the approximate 10-

fold range in protein sizes. The ability of hTEE-658 to mediate the production of such 
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a variety of proteins from a plasmid expression system conveys a significant 

advantage over prokaryotic and cell-free expression systems, where success rates 

for human proteins are highly variable and typically less than 50% (65). For 

example, we have found that six of the 12 human proteins analyzed above (PI3K, 

SRC, P53, MYOT, HADH, and HRAS) are undetectable or barely detectable in a 

coomassie stained gel after expression in E. coli (data not shown). 

 
Table 3.3. Full name and reference ID for all genes. 
 
Gene Reference 
Firefly Luciferase AB644228.1 
HIV-1 Gag See methods 
v-akt murine thymoma viral oncogene homolog 1 (AKT1) NM_005163.2 
BCL2-related protein A1 (BCL2-A1) NM_004049.3 
hydroxyacyl-CoA dehydrogenase (HADH) NM_005327.4 
v-Ha-ras Harvey rat sarcoma viral oncogene homolog (HRAS) NM_005343.2 
mitogen-activated protein kinase 1 (MAPK1) NM_002745.4 
myotilin (MYOT) NM_006790.2 
nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, alpha (NFKB-IA) 

NM_020529.2 

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic 
subunit gamma (PI3K) 

NM_002649.2 

tumor protein p53 (P53) NM_000546.5 
v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog 
(avian) (SRC) 

NM_005417.3 

tumor necrosis factor receptor superfamily, member 21 
(TNFRSF21) 

NM_014452.3 

tubulin polymerization-promoting protein family member 3 
(TPPP3) 

NM_016140.2 
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Figure 3.6. Synthesis of 12 human proteins in HeLa cells. (A) Twelve recombinant 
human proteins were generated from protein expression vectors engineered with 
hTEE-658. C-terminal myc-epitope tags were used to compare protein levels by 
Western blot analysis. Relative protein synthesis levels were determined by 
densitometry. (B) Quantification of luciferase production using a luciferase activity 
curve. The arrow indicates the average amount (20–50 ng/μL) of luciferase 
generated from 106 HeLa cells. This corresponds to 2–5 μg of total protein. (C) 
Western blot analysis showed strong concordance between the luciferase activity 
assay and protein synthesis levels from two independent trials. Protein samples were 
diluted to fit to the linear range of the Western blot. 

 Two different assays were used to quantify protein production in our 

expression system. First, luciferase enzyme generated from hTEE-658-mediated 

expression in HeLa cells was quantified by linear calibration using known amounts of 

commercial recombinant luciferase to measure enzymatic activity (Figure 3.6b). 

Second, Western blot analysis was performed using the same protein standards and 

anti-luciferase antibody to measure protein production (Figure 3.6c). Both methods 

gave similar results, yielding 2–5 μg of luciferase protein from 106 HeLa cells. This 

result indicates that all or nearly all of the luciferase protein was properly folded and 

enzymatically active. Comparison of the luciferase levels to the 12 human proteins 

observed in the western blot indicates that protein expression levels ranged from 0.1 
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to 2-fold, with NFkB-IA showing the highest levels of expression. These results 

suggest that this transient cytoplasmic expression protocol could produce milligram 

quantities of protein by scaling the expression to 109 cells. 

 To further simplify our expression system, linear DNA was assayed for activity 

in the cytoplasmic expression assay. Overlap PCR was used to add the hTEE-658 

sequence and the c-Myc tag to our set of 12 human proteins. The linear DNA was 

transfected into HeLa cells and protein levels were analyzed by western blot after 

overnight expression. Analysis of the cell lysates revealed the presence of all 12 full-

length human proteins (Figure 3.7). Only one protein, TNFRSF21, showed a 

truncated product that was presumably due to incomplete translation. Quantification 

of protein levels using the luciferase activity assay indicates that linear DNA produces 

∼10-fold less protein than plasmid DNA. Nevertheless, the simplicity of this approach 

makes it an attractive method for generating smaller amounts of protein for a large 

number of targets. 
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Figre 4.7. Synthesis of twelve human proteins from linear DNA. Twelve recombinant 
human proteins were synthesized in HeLa cells by transfecting PCR amplified DNA 
carrying hTEE-658 and a C-terminal myc-epitope tag. Western blot analysis was 
performed using an anti-myc antibody with GAPDH as a loading control. Relative 
protein levels were determined by densitometry. 

Discussion 

 The ability to produce significant quantities of human protein in mammalian 

cells without the need for stable cell lines or recombinant viruses is a major 

advantage of our translation enhancing technology. This advance is based on the 

discovery of hTEE-658 as a short genetic sequence capable of rapid and high 

transgene expression in a VACV cytoplasmic expression system. Relative to common 

IRESs, like EMCV, hTEE-658 is substantially shorter (37 vs. >500 nts), making it 

easy to engineer into vectors. hTEE-658 is also more effective than EMCV at 

engaging the ribosomal machinery, and functions with viruses that are non-

pathogenic to humans. We suggest that this new technology provides a versatile 
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platform for protein synthesis in mammalian cells. This could be especially useful in 

cases where prokaryotic and cell-free systems fail to produce protein or when post-

translationally modified protein is needed for biological analysis. While further 

optimization, could lead to higher yields, the system is already ideal for routine 

protein synthesis. 

Experimental 

Cell culture 

 All cells used in this study were obtained from the American Type Culture 

Collection (ATCC). HeLa and HEK293 cells were maintained in DMEM (Invitrogen), 

while BHK cells were maintained in MEM (Invitrogen). Media was supplemented with 

5% fetal bovine serum (FBS, HyClone) and 5 mg/mL gentamicin (Invitrogen). Cells 

were kept at 37°C in a humidified atmosphere containing 5% CO2. 

Vaccinia virus strains 

 The vaccinia virus Copenhagen (VC2) and vTF7-3 viral strains were obtained 

from Virogenetics and ATCC, respectively. The modified vaccinia virus Ankara (MVA) 

was obtained from Dr. Bernard Moss at the National Institute of Allergy and 

Infectious Diseases. VC2 is considered a wild-type vaccinia virus, MVA is an 

attenuated vaccinia virus strain that is non-pathogenic in humans, and vTF7-3 is a 

recombinant vaccinia virus strain derived from the Western Reserve (WR) strain that 

has been engineered to express T7 RNA polymerase. Viral stocks were stored in MEM 

with 2% FBS. 

Cytoplasmic expression system 

 Cells were seeded 18 h before transfection according to Table 3.4. 

Transfections were carried out using Lipofectamine 2000 (Invitrogen). In brief, 

complexes containing either plasmid or linear DNA and Lipofectamine 2000 were 

formed in Opti-MEM (Invitrogen). During complex formation, culture media was 



61 

removed from the cells and replaced with fresh Opti-MEM. Complexes were then 

carefully overlaid onto the cells. Plasmid DNA was obtained by standard mini or 

maxiprep (Qiagen), while linear DNA templates were generated by high fidelity PCR 

(accuprime taq, Invitrogen) using expression vectors as templates. Primers were 

designed so that the product included a T7 promoter, hTEE-658 core, gene of 

interest, c-Myc tag, and poly-adenosine track. Immediately following DNA 

transfections, cells were infected with VC2, MVA, or vTF7-3 at a multiplicity of 

infection (moi) of five plaque forming units (PFU)/cell for all 6 or 18 h assays and 30 

PFU/cell for 24-h time course assays. 

Table 3.4. Description of conditions used for various sized transfect-infect assays. 

 
Size of 
Well 

Cells 
Plated 

Plasmid 
Template 

Linear 
Template 

Volume of 
Lipofectamine 

Volume of 
Lysis Buffer 

96-well 15,000 200 ng --- 0.5 µL 20 µL 
24-well 200,000 800 ng --- 2.0 µL 50 µL 
6-well 1,400,000 4000 ng 800 ng 10.0 µL 100 µL 

 

Luciferase activity assay 

 Post-transfect-infect cells were lysed using passive lysis buffer (Promega). 

Luciferase activity was determined by mixing a portion of the lysate with the 

Promega Luciferase Assay System and measuring light production with a Glomax 

microplate luminometer (Promega). Luciferase concentration was quantified by 

comparison to a standard curve of QuantiLum Recombinant luciferase (Promega) 

generated using the manufacturer's recommended protocol. 

RNA characterization 

 RNA was isolated from HeLa cells 6-h post-infection. Lysate from 2-wells of a 

96-well plate was pooled and RNA isolation was performed using the PerfectPure RNA 

cultured cell kit (5′) following the manufacturer's protocol. Isolated RNA was reverse 

transcribed with Superscript II (Invitrogen) using an oligo (dT) primer. Quantitative 
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real-time PCR (iQ™ SYBR® Green Supermix, Bio-Rad) was used to measure 

luciferase mRNA levels, which were normalized to the housekeeping gene 

hypoxanthine-guanine phospho-ribosyltransferase (HPRT) using the ∆∆Ct method. 

End-mapping deletion analysis 

 To determine the core functional region of the 658 sequence, constructs were 

designed where various amounts of either the 5′ or 3′ end were removed. Each 

construct was built by Klenow extension of synthetic DNA oligos containing the 

desired fragment of hTEE-658 along with BamHI and NcoI restriction sites. The 

double-stranded DNA was restriction digested and ligated into a monocistronic firefly 

luciferase reporter plasmid carrying a vaccinia virus SLP upstream of the insert. 

Reporter plasmids containing truncated variants were assayed for activity by 

transfect-infect assay. 

Expression vectors 

 Expression plasmids were obtained by engineering a monocistronic reporter 

vector with a leader sequence of interest inserted into the 5′ UTR. This vector 

contains a T7 RNA polymerase promoter site, a 5′ UTR which directly precedes an 

ORF containing the firefly luciferase gene followed by a poly-adenosine track. In 

order to test the expression of additional proteins, the luciferase was replaced with 

either HIV-1 Gag (a kind gift of Dr. Ralf Wagner of the University of Regensburg) or 

one of 12 human genes obtained from the DNASU Plasmid Repository 

(DNASU.asu.edu). A c-Myc tag was also inserted at the 3′ end of the human gene 

constructs to be used as an epitope tag for Western blotting. The full list of human 

genes is located in Supporting Information Table S3. 

Western blotting 

 Proteins were expressed using the transfect-infect assay described above. 

After expression, HeLa cells were lysed with Passive Lysis Buffer (Promega) and 
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cellular debris was removed by centrifugation. For protein analysis, samples were 

diluted with NuPage 4× LDS sample buffer (Invitrogen) and proteins were denatured 

by heating for 10 min at 95°C before being run on a NuPage 4–12% Bis-Tris gel 

(Invitrogen). Proteins were transferred to a nitrocellulose membrane using the iBlot 

Gel Transfer system (Invitrogen). After blocking for 1 h at 24°C in TBS-T (20 mM 

Tris, 125 mM NaCl, pH 7.5, and 0.05% Tween20) supplemented with 3% milk, the 

membrane was incubated with the appropriate primary antibody concentrations 

overnight at 4°C. Membranes were then incubated with appropriate concentrations of 

goat anti-mouse or goat anti-rabbit HRP conjugated secondary antibodies (Cell 

Signaling) for 1 h at room temperature. Chemiluminescent signal was visualized after 

reaction with SuperSignal West Pico or Dura Chemiluminescent Substrate (Pierce 

Biotechnology). Anti-luciferase antibody was obtained from AbDSerotec, anti-GAPDH 

from Abcam, anti-Myc Tag (clone 4A6) from Millipore and the HIV-1 Gag antibody 

was generously provided by Dr. Hohne at the Charite Institute for Biochemie in 

Berlin, Germany. Where possible, membranes were cut to immunoblot for 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and proteins of interest 

separately. Alternatively, after the proteins of interest were detected the blots were 

stripped by incubating three times for 10 min with 0.2M glycine, 0.1% SDS, 2% 

Tween20, pH 2.2. After stripping, blots were washed twice for 10 min with 

phosphate-buffered saline (PBS), twice for 5 min with TBS-T and then placed back 

into block solution for 1 h before immunoblotting for GAPDH. Western blot signals 

were quantified using ImageJ to determine the relative intensity for bands of 

interest. Known quantities of QuantiLum Recombinant luciferase (Promega) were run 

as a standard curve to enable quantification of luciferase protein produced by 

transfect-infect assay. 
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RACE 

 RNA was isolated using the PerfectPure RNA cultured cell kit (5 Prime). RACE 

was performed with the 5′ RLM-RACE kit (Invitrogen) using total RNA following the 

small reaction protocol provided by the manufacturer with primers specific to the 

luciferase gene. RACE sequences were ligated into the pJET 1.2 vector (Fermentas), 

cloned, and sequenced at the ASU DNA Sequencing Facility. 

DNA isolation and real-time PCR 

 Cellular and plasmid DNA was isolated from transfected HeLa cells 6-h post-

infection with VC2 using the Trizol Reagent (Invitrogen) according to the 

manufacturer's protocol. Following isolation, DNA was ethanol precipitated and re-

suspended in water. Quantitative real-time PCR (iQ™ SYBR® Green Supermix, Bio-

Rad) was used to determine the levels of plasmid DNA as well as the housekeeping 

gene Ribonuclease P (RNase P) and normalized using the ∆∆Ct method. 
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CHAPTER 4 

Evolving Engineered Polymerases for the Production of Synthetic Nucleic Acid 

Polymers 

Introduction 

Synthetic biology and synthetic genetics 

 Synthetic biology is often viewed as the deliberate redesign of biological 

systems to perform new functions that benefit mankind (66, 67). Over the years, 

significant effort has gone into engineering cellular systems with modular circuitry 

and establishing minimal genomes as frameworks for building organisms with 

designed functions. Existing SB strategies rely on engineered DNA, which is 

recognized by all forms of life, opening the possibility for alteration and assimilation. 

An alternative strategy is to explore the possibility of generating SB organisms using 

synthetic genetic systems. Synthetic genetics is an emerging field that merges 

chemistry and biology to design, generate, and explore the properties of non-natural 

genetic polymers. Significant achievements in this field include but are not limited to 

examples of modified base pairs, extension of the genetic alphabet beyond the four 

natural bases, and expanded forms of base pairing (68–72). Work has even begun to 

merge these genetic polymers with biological systems by providing the first evidence 

for the replication and translation of unnatural codons in bacterial cells (73–77). The 

extent of chemical dissimilarity between particular synthetic genetic polymers and 

natural DNA or RNA varies significantly, and greatly impacts how they can be used. 

Some synthetic genetic systems have the unique advantage of traveling 

unrecognized by natural enzymes. This trait provides a firewall that separates the 

natural and synthetic systems, offering many potential benefits, but also creating 

challenges when trying to merge the chemistry into a biological system. 



68 

 In the Chaput laboratory, we study a synthetic genetic system comprised of 

α-L-threofuranosyl nucleic acids (TNA) (78, 79). TNA is one member of a general class 

of nucleic acid molecules termed xeno-nucleic acids (XNAs), where the natural ribose 

(or deoxyribose) sugar is replaced by a moiety (X) not found in natural genetic 

systems, see Figure 4.1. The substitution for threose leads to a nucleic acid polymer 

with a backbone repeat unit that is one-atom shorter than DNA or RNA, but is still 

able to cross-pair with natural polymers. Its ability to hybridize with complimentary 

DNA or RNA coupled with its chemical simplicity has generated considerable interest 

for TNA as a candidate RNA progenitor in origins of life research (78, 80, 81). TNA 

also has the advantage that it is generally unrecognized by natural enzymes. 

Significant effort has been made not only for the chemical synthesis of TNA building 

blocks that contain the natural A, C, G, and T bases, but also to develop enzyme 

based systems for the transcription of TNA polymers from a DNA template and the 

reverse-transcription of TNA polymers back into DNA. A long-term vision is to create 

a new generation of SB organisms that have genetic information encoded using TNA 

polymers. The work presented here helps progress towards this long-term goal by 

developing engineered polymerases that will improve the ability to generate and 

express information encoded in synthetic genetic matieral composed of threose 

nucleic acid (TNA).  
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Figure 4.1. Backbone structures for DNA, RNA, and TNA. Constitutional structures 
for the linearized backbones of DNA (left), RNA (center), and α-l-
threofuranosylnucleic acid, TNA (right). The phosphodiester linkage for TNA occurs 
between the 3’ and 2’ carbons on the threose sugar moieties, unlike DNA and RNA 
that share a common 5’-3’ sugar linkage. The backbone repeat unit for TNA is also 
one atom shorter than the backbone repeat unit found in RNA and DNA. 

Polymerases 

 Polymerases are highly specialized enzymes that catalyze the synthesis of 

nucleic acid polymers by directing the addition of nucleotide 5’-triphosphates onto 

the 3’ end of a growing strand. Although all polymerase enzymes share a common 

purpose, nucleotide incorporation, and accomplish this task uses the same two-metal 

ion catalysis, a great deal of structural variation exists (82). Most generally, 

polymerases can be classified into three categories based on their substrates and 

products: DNA polymerases (DNAPs), RNA polymerases (RNAPs), and reverse 

transcriptases (RTs). DNA polymerases are further classified into families that share 

evolutionary and structural relationships, as well as similar biological functions. The 

most studied polymerases belong to Family A (found in prokaryotes, eukaryotes and 

bacteriophages) and family B (found in prokaryotes, eukaryotes, Archaea, and 

viruses) (83). Family C polymerases are involved in duplication of bacterial 

chromosomes and have no eukaryotic equivalents (84). The family D polymerases 
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are from Archaea (85), with families X and Y having function in DNA repair 

mechanisms (86, 87). The reverse transcription (RT) family consists of polymerases 

generally found in viruses, but this family also includes eukaryotic telomerases.  

 Polymerases serve the core biological function of maintaining both the storage 

and flow of genetic information. Polymerases have evolved the ability to perform 

these tasks with the catalytic efficiency, processivity, and fidelity required both to 

support current life and to foster adaptive evolution. The ability to copy long genes, 

and in some cases, entire genomes, with high speed and accuracy make 

polymerases valuable tools in biotechnology and molecular medicine. Since the initial 

discovery of this class of enzyme, research aimed at characterizing and improving 

their function as progressed with great fervor. While natural polymerases offer a 

variety of capabilities to choose from, researchers are continually searching for new 

variants with improved function (i.e., longer processivity, increased fidelity, and 

resistance to changes in salt, pH, temperature, chemical inhibition, and UV 

exposure). The very strengths that enable polymerases to faithfully propagate 

genetic information often limit their deployment in a laboratory setting. A particularly 

challenging need arises from the desire to engineer polymerases that incorporate 

unnatural nucleic acids, such as TNA.  

 Because polymerases represent an ancient class of enzymes that diverged 

long ago, each family, and even each individual polymerase, has a unique set of 

abilities. These subtle differences relate to their catalytic efficiency, template 

recognition, substrate specificity, processivity, and fidelity and help to determine 

which polymerase is most suitable as a starting point for engineering a desired 

function. Family A polymerases are the most studied and widely used in molecular 

biology and biotechnology. DNA pol I from E. coli was the first DNA polymerase to be 

characterized enzymatically (88) and provided the first crystal structure of a 
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polymerase (89). The structure resembles the shape of a right hand, with domains 

that are referred to as fingers, thumb and palm. While their three-dimensional 

structures can vary significantly, most polymerases share the same three core 

domains (90). The catalytic amino acids of the active site located in the palm, a 

thumb that binds double-stranded DNA and fingers where the incoming nucleotide 

binds and interacts with the template. Differences in the topology of the palm 

domain have led some polymerases to be referred to as left-handed (91). A separate 

structural category exists where the catalytic domain resides in a double-psi β-barrel 

structures (92). Family A polymerases also provided some of the first efforts relating 

to polymerase engineering, with the deletion of full domains. Two important 

examples of such engineering are the Klenow (93) and Stoffel (94) fragments. In 

both cases the 5'-3' exonuclease domain of DNA polymerase I, from E. coli and T. 

aquaticus respectively, was removed to greatly increase the usefulness of these 

enzymes for in vitro experiments. Improvements in genetic engineering led to more 

systematic investigations of individual point mutations, leading to great advances in 

the understanding of polymerase function. 

 Family B polymerases, isolated mainly from hyperthermophilic Achaean, are 

also widely used in molecular biology and biotechnology. Members of family B share 

the right-handed structural design with finger, palm, and thumb core domains. While 

family A members are the most frequent source for polymerase engineering, strong 

thermal stability, high fidelity, and strong affinity for primer-template complexes 

have driven much interest in family B polymerases (95, 96). Interestingly, family A 

and B polymerases were shown to have different biases for the incorporation of 

unnatural substrates (97). Early engineering efforts identified key mutations in Vent 

DNA polymerase, a family B member, that could alter substrate specificity (98). 

Polymerase screens later identified that family B polymerases, especially those with 
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mutations that alter substrate specificity could recognize TNA triphosphates and 

extend TNA polymers using a DNA template (99, 100). Significant efforts to improve 

these polymerases for TNA function have been reported and are discussed below. 

TNA Replication 

 Nucleic acids in which the canonical ribose or deoxy ribose sugar is replaced by 

an alternative ring or other structure are typically poor polymerase substrates. This is 

due in part to the non-canonicai helical conformations observed even for compounds in 

the direct chemical neighbourhood of ribofuranose (79). One notable exception is TNA. 

The ability for TNA to form stable helical structures with complementary strands of itself, 

RNA and DNA, coupled with its chemical simplicty relative to ribose, has led to 

considerable attention for TNA as a possible RNA progenitor (78, 101, 102). The 

ability for TNA to cross-pair with RNA is remarkable considering that TNA polymers 

have a sugar-phosphate backbone that is one atom shorter. This ability also provides 

a plausible mechanism for the transfer of genetic information between these 

systems. Considerable efforts have been reported to develop a polymerase-mediated 

replication system that makes it possible to copy and store genetic information as 

TNA (17, 99, 103–106). Using an engineered form of the Archaean replicative DNA 

polymerase 9°N, known commercially as Therminator DNA polymerase (New England 

BioLabs, Inc.) with optimized conditions, TNA polymers can be generated from DNA 

templates sequential extension of a primer with TNA nucleotide triphosphates (107). 

We term this process TNA transcription. Single-stranded TNA can then be purified by 

denaturing polyacrylamide gel electrophoresis (PAGE) and reverse-transcribed back 

into DNA using Superscript II (SSII) (108). The overall fidelity of the combined 

transcription and reverse transcription process has been determined under a variety 

of conditions using DNA templates of a known sequence. DNA libraries composed of 

a three-letter genetic alphabet (A,T,C) can be converted to and from TNA with high 
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efficiency, and individual sequences replicate with >99% fidelity (104). Considering 

the structural deifferences between DNA and TNA it is surprising that with only minor 

modification natural polymerases can obtain this level of processivity and fidelity. 

However, this level of fidelity is significantly lower than natural polymerases and 

poses a potential problem for many applications of TNA, including the in vitro 

selection of functional TNA molecules. One likely source of poor fidelity is the 

incorporation of manganese in the TNA transcription reaction. Manganese is common 

in many XNA reactions as it helps relax the enzyme active site, increasing the 

processivity for TNA and other XNA polymers, but also decreasing the fidelity (109, 

110).  

 Additional biases are observed that limit the ability to generate TNA polymers. 

For instance, synthesis of TNA libraries using unbiased DNA templates that harbor a 

four-letter genetic alphabet (A,C,T,G) leads to termination events that inhibit TNA 

synthesis. Investigation of this phenomenon discovered that TNA transcription could 

proceed to completion using DNA templates containing low numbers of isolated dG 

residues. Analysis of the fidelity revealed a G to C transversion mutation rate 

between 3-25% during TNA transcription, depending on the identity of the 

preceeding base in the template (104). DNA templates of known sequence that 

contain successive dG residues yield TNA transcription products indicative of 

transcription inhibition at the site of the G-repeats. This inhibition was found to be 

caused by tG:dG mispairing in the enzyme active site (103). This mispairing is likely 

a result of tG:dG Hoogsteen base pair formation, which adopts a similar structure to 

the canonical dG:dC base pair (111). This structural similarity is one reason why 

many polymerases (natural and engineered) struggle to read through templates that 

are rich in G nucleotides (112). Addition of the unnatural base analogue 7-

deazaguanine (7dG) in the DNA template suppresses the tGTP misincorporation by 
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inhibiting the formation of Hoogsteen tG:dG base pairs (103). TNA transcription 

using DNA templates, even libraries of sequences, where all dG residues are replaced 

with 7dG proceeds with high efficiency and >99% overall fidelity. 

A TNA replication system is highly valuable for the ability to select for 

functional TNA aptamers or catalysts. Although the system works remarkably well 

given the use of a DNA polymerase that harbors only a single point mutation, 

improvements to this system are still needed. Strategies such as the use of 7dG in 

the DNA template provide useful workarounds to address some of the issues, but this 

strategy is costly both for the added time and the cost of the 7dG analog. In order to 

generate large, unbiased pools of TNA for in vitro selection polymerases with 

enhanced activity, specifically in the absence of manganese ions, are required. 

 The ability of polymerases to efficiently copy genetic information has long 

made them important engineering targets to improve their functions for in vitro 

experiments. For this same reasons, engineered polymerases have emerged as 

powerful tools in the synthesis of unnatural genetic polymers (113). However, 

creating such enzymes is a challenging task because it is difficult to identify the 

genetic changes needed to elicit new functional activities (114). Poor recognition of 

the modified nucleotides by natural polymerases currently limits the development of 

expanded genetic systems and thus is a major obstacle toward achieving these 

ambitious goals. The large size of polymerases limits the ability to systematically 

examine all mutants in the surrounding sequence space. In addition, polymerase-

engineering efforts are sensitive to enzyme concentrations, catalytic activity, and 

background noise that can interfere with assay detection. The following sections 

highlight some of the major advances and potential future hurdles in polymerase 

engineering. 
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Polymerase screening  

 The simplest approach to identify polymerases with new functions is to screen 

variants in vitro using a polymerase activity assay (PAA) (115). Many styles of PAAs 

have been developed to study polymerase function, ranging from laborious gel-based 

separation of extended products, to monitoring radioactive incorporation (116, 117), 

to a diverse assortment of fluorescence-based approaches (118–122). While screens 

are relatively straightforward to apply, even high-throughput screens are limited in 

their ability to search sequence space surrounding natural polymerases. 

 Because the numbers of mutations that improve activity are rare relative to 

those that diminish activity, a large number of variants must be screened. The 

number of unique single mutants of any particular polymerase is equal to 19x(N), 

where (N) represents the amino acid length of the polymerase, discounting the start 

codon. For polymerases that can be in excess of 1000 amino acids, a significant 

undertaking would be required to screen every single point mutant. Typical academic 

screens are carried out in eppendorf tubes or microtiter plates with library sizes 

ranging from tens to a few thousand mutations. Automated workstations can be used 

to increase throughput, but these systems come with significant cost due to the 

volume and quantity of reagents consumed in each assay. The theoretical complexity 

of a screen grows exponentially when one considers that multiple mutations are 

possibly required to impart a desired function. Screening through iterative rounds of 

single point mutants is one method to tackle this problem, and maximize the search 

of local sequence space, but this approach is inadequate for the identification of 

epistatic mutations (123). Screens often prove most successful when significant 

information regarding the sequence and structure of the polymerase is known a 

priori. Information about key residues located in the polymerase active site, regions 

that help form contacts with the template, or residues that show strong evolutionary 
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conservation can help researchers to limit the scope of a screen and increase the 

likelihood of identifying improved mutants. For instance, using the crystal structure 

of Taq DNA polymerase a small number of variants were screened to yield improved 

mutants that incorporate all four dideoxynucelotides at a more consistent rate during 

sequencing reactions (124). Although screening approaches are inherently low-

throughput, they have been successfully applied to a diverse set of polymerases, 

altering characteristics such as thermostability, substrate specificity and fidelity. 

 A major ingredient in the ability to increase throughput of screening 

approaches has been the development of fluorescence-based PAAs. These assays 

make use of fluorescent nucleotides (121), fluorescent intercolating agents (115) 

and labeled nucleic acids that carry fluorophore-quencher pairs. Not all PAAs are 

equally effective, and are often too narrow in the types of polymerases or 

polymerase functions they can analyze (120). Marx et al. have reported the greatest 

strides at adapting high-throughput liquid-handling with fluorescence-based 

detection to identify novel polymerase variants through screening efforts.  By 

monitoring the fluorescence increase of SYBR Green upon intercalation into duplex 

DNA during primer extension reactions, or qPCR, the Marx group has identified Taq 

polymerase mutants with improved mismatch discrimination (125), reverse 

transcriptase activity (115), and the ability to amplify damaged DNA with lesions that 

are often difficult for polymerases to bypass (126). Recently the Marx group has also 

reported the identification of T7 RNA polymerase variants with greater flexibility for 

the incorporation of 2'-modified nucleotides (127). 

 While screening approaches have proven fruitful for many engineering efforts, 

they are limited in scale both by the number of mutants that can be screened and by 

the reaction volume required to query each variant. While in vitro PAAs can be 

performed in what might appear to be small volumes, microliters quickly add up to 
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milliliters and possibly liters when large libraries are queried. For many types of 

polymerase function this is a costly, but not altogether unrealistic scale. But when 

commercially unavailable, non-natural substrates are being investigated there are 

often not enough triphosphates in the world to satisfy the demand. Several selection 

approaches have been developed to engineer polymerases for improved or altered 

function; either by letting bacterial cells take over the leg work, or by harnessing the 

power of bacteriophage display, or in vitro compartmentalization methods. While 

these selection approaches overcome some of the limitations of screens for the 

ability to search larger regions of sequence space, screening methods will always 

remain crucial for proper characterization of selection outputs. 

In Vivo Selections 

 Selections have been performed in vivo using bacterial host cells transformed 

with synthetic polymerase sequences and screened against external pressure to 

identify functional mutants. Loeb et al. pioneered the use of an in vivo selection 

approach that relies on the genetic complementation of E. coli (128). The key to the 

technique is a temperature sensitive mutant of E. coli DNA pol I that is permissive to 

growth at lower temperatures, but has impaired function at 37ᵒC making it lethal to 

the cell. Functional mutants of polymerases that can rescue the DNA pol I activity 

are identified following transformation by their ability to form colonies at the non-

permissive temperature. This approach has been used to study various polymerase 

scaffolds and identified mutants of HIV type 1 reverse transcriptase with increased 

fidelity of DNA synthesis (129) and mutants of Taq pol I  with lower fidelity of dNTP 

incorporation (130, 131). This method has also been used to help study the 

mechanism of polymerase activity selecting for all variants from a randomized library 

that retained function (132, 133). This enabled the authors to identify which amino 

acid residues of Taq DNA pol I were mutable and which mutations were permitted. 
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Genetic complementation was also extended in yeast to identify variants of human 

DNA polymerase η with an enhanced ability to bypass site-specific DNA lesions 

(134). Genetic complementation has proven to be a straightforward and convenient 

selection strategy to identify active variants from large pools of polymerase mutants. 

However, only polymerases that can rescue cellular polymerase activity can be 

identified and in its current form it is not amenable for non-natural templates or 

substrates. 

 A second in vivo selection approach involves a self-amplification strategy for 

the evolution of T7 RNA polymerases (135). Libraries of T7 RNA pol variants are 

cloned downstream from mutated versions of their own promoter sequence. 

Polymerase mutants capable of recognizing the altered promoter generate increasing 

copies of their own mRNA and by extension more protein. Extraction of the mRNA 

followed by reverse transcription and cloning leads to a new library that is enriched 

for functional variants (both polymerase and their new promoter). This approach was 

capable of selection from libraries with as many as 106 variants and led to the 

identification of one T7 RNA pol that recognizes a T3-like promoter and one that has 

an expanded promoter range, identifying multiple mutations of the T7 promoter 

sequence. While current in vivo selection approaches are limited to the types of 

function that can be achieved, they highlight excellent examples of ingenuity for 

selection design and the ease of their implementation is highly attractive. It is 

conceivable that these approaches could be re-imagined or extended to broaden 

their capacity for alternative polymerase function. 

Phage Display  

 Phage display is a protein selection technology that uses bacteriophage to 

maintain a physical link between polymerase genotype and phenotype (136). While 

most phage display selections aim to identify binding interactions for the displayed 
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protein, phage display has also been adapted for the selection of functional 

polymerases by proximal display of the polymerase and a primer-template complex 

on the surface of the phage particle (137–139). Phage display is a widely used 

selection technique that enables large libraries to be searched to identify functional 

variants. The application to polymerase selection introduces new challenges as the 

enzyme and template nucleic acid strand must be linked. This approach tends to 

constrain the processivity of the selected enzymes because each enzyme acts on a 

single, well-defined template that is often very short. However, this does enable tight 

control over the primer and template sequence used in any round of selection and 

opens the possibility for templates that contain unnatural nucleic acids. Recovery of 

functional variants relies on the incorporation of a biotinylated nucleotide, which 

introduces background through chromatographic separation, but enables selection 

based on single nucleotide incorporation. Phage display also suffers from cross-

reactivity of variants since they are not physically separated during the selection 

step. Cross-reactivity can lead to decreased enrichment per round and increase the 

number of variants that must be screened post-selection to identify optimal variants. 

 Phage selection has enabled the discovery of mutants with increased 

substrate recognition, including Stoffel fragments of Taq DNA polymerase with 

strikingly improved incorporation of NTPs (139), or the ability to incorporate 2′-OCH3 

substituted NTPs (140). By coupling an RNA template to the phage library, a 

selection was performed to identify variants of the Stoffel fragment with reverse 

transcription activity (141). Phage display has even been used to identify a 

polymerase variant of the Stoffel fragment capable of working through an unnatural 

base pair (142). While the Klenow fragment and Taq DNA polymerase were known to 

synthesize a propinyl isocarbostyril (PICS) self-pair, the Stoffel fragment could not. 

Using phage display a variant of the Stoffel fragment was identified that could extend 
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a primer template pair where the terminal 3' base of the primer was a PICS residue 

that self-paired to an identical residue in the template strand. The identified variant 

not only extended this self-pair, but was also shown to be capable of synthesizing a 

PICS residue into a growing strand. Although the efficiency of this reaction was 

limited, the results demonstrated the potential to use phage display to select for 

unnatural substrates. The ability to incorporate unnatural primers, templates or 

triphosphate substrates coupled with the potential for large library diversities makes 

phage display an attractive candidate for XNA work. 

Miniaturization using artificial reaction compartments 

 Screening reactions in cells is a useful way to interrogate libraries for new 

enzymatic activity under conditions that promote multiple turnover kinetics (143). 

However, these systems are limited to substrates that can diffuse into a cell and 

remain in the cell after the reaction is complete. To overcome this problem, water-in-

oil (w/o) droplet emulsions have been developed as artificial compartments with cell-

like dimensions (144). Artificial w/o droplets have volumes in the picoliter to 

femtoliter range, which reduces the reaction volume (and cost) by > 105-fold 

compared to robotic or manual screens. Trapping the enzyme and substrate in a 

compartment allows one to select for multiple turnover kinetics, as opposed to 

phage-based selections, which use single turnover kinetics. Polymerase selections 

using w/o emulsion droplets that rely on bulk mixing techniques suffer from 

variations in compartment size (68, Figure 4.2). These differences complicate the 

selection by negatively effecting the distribution of functional molecules (i.e., active 

and inactive variants in the same compartment) and reducing the signal-to-noise 

ratio of the fluorescent readout. Using microscale emulsification techniques, 

monodisperse w/o droplet emulsions (146, 147) and water/oil/water double 
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emulsions (148) can be formed with to statistically reduce assay variation and favor 

predictable distributions of functional molecules. 

 

Figure 4.2. Water-in-oil emulsions. A) Emulsion formed using a bulk emulsification 
approach where aqueous and oil phases were mixed by repeated passage through a 
12 µm filter in an extruder device following a literature approach (149). B) Emulsion 
formed by microfluidic flow focusing junction as described here in the experimental 
section. 
  
Compartmentalized self-replication (CSR) 

 CSR is based on a feedback loop, where the ability of a polymerase to amplify 

its own genotype leads to its increased prevalence in the population (145). Since 

individual variants are encapsulated in emulsion droplets, functional variants are only 

capable of self-replication. In this system, polymerase variants expressed in E. coli 

are encapsulated in bulk w/o droplet emulsions with dNTPs, primers, and buffer. 

Heat is used to release the polymerase and plasmid from the E. coli without 

damaging the w/o compartment. Upon thermocycling, variants are challenged to 

amplify their own gene from the plasmid. The enzymes that are successful become 

enriched over the inactive population by making linear copies of their DNA sequence. 

The amplified DNA is then recovered, inserted into a new expression vector, and 

transformed back into E. coli to repeat the selection cycle. By controlling the 
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contents within the aqueous compartments or altering the extension conditions, the 

selective pressure of each round can be easily modulated. In this system the 

adaptive gains of useful variants translated into an increased genetic copy number, 

thus the prevalence of a variant is proportional to its catalytic activity. Despite its 

simplicity, CSR is limited to template-copying reactions that can undergo PCR; and 

therefore, may not be suitable for unnatural XNA backbones.  

 CSR was developed as a general strategy to improve the stability of DNA 

polymerases used in the polymerase chain reactions (PCR) and the original 

publication yielded variants of Taq DNA polymerase with increased thermostability 

and increased resistance heparin. Selections performed under increased heat 

denaturation have produced DNA polymerases with increased thermal stability, while 

selections performed in the presence of heparin have yielded variants that can 

amplify DNA directly from blood (145). Adapting this strategy with the addition of 

primer mismatch at the a 3' end yielded variants of Taq DNA polymerase with 

increased DNA lesion bypass, as well as the ability to incorporate unnatural 

substrates such as fluorescent dye-labeled nucleotide triphosphates (150). A 

significant limitation of the original CSR approach is the requirement that successful 

variants are capable of copying their entire genotype. This could prove overly 

challenging when trying to impart specificity for a new substrate of interest and 

precludes the ability to select for the use of unnatural templates. 

 An extension of CSR, short-patch compartmentalized self-replication (spCSR) 

requires only a small region (or patch) of the genotype to be copied by the 

polymerase variant. While this approach still relies on the DNA genotype to serve as 

the template, it reduces the burden on processivity. This approach was used to 

identify mutations in Taq DNA polymerase that increased its substrate spectrum to 

enable NTP incorporation while maintaining dNTP incorporation (151). Identified 
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mutants also displayed activity for additional 2'-substituted nucleotides. In a second 

example of spCSR standard dCTP was replaced with nucleotide triphosphates 

modified with cyanine fluorescent dyes inside the selection droplets. A mutant library 

of family B DNA polymerase from Pyrococcus furiousus (Pfu) was searched for the 

ability to replicate a defined segment of its encoding genotype with the modified 

substrates. With only two rounds of selection a variant was isolated with the ability 

to perform PCR amplification of long DNA polymers where all dC bases were 

substituted by Cy3- or Cy5-labeled dC equivalents (152). These demonstrations 

highlight the potential for the use of CSR-based selection approaches to identify 

variants with increased substrate specificity, including for unnatural substrates. The 

key drawback to CSR is the requirement for the encoding DNA to function as a 

template and the need for PCR-like amplification, a task that may be too challenging 

as a starting point when working with XNAs. 
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Table 4.1. Comparison of strategies for the identification of enhanced polymerase 
variants. 
 
Strategy Advantages Disadvantages 
Screening - Each reaction is simple to setup 

- Direct control over template, 
substrate and conditions 
- Flexible 

- Large volume of reagents (µLs) 
required to screen each polymerase 
variant 
- Labor intensive 
- Only "small" screen sizes are 
feasible 

In Vivo Selections 
 

- No cross reaction between mutants 
- Sufficient activity to replicate 
genome ensured 
- Screening process is simple 

- Only natural substrates possible 
- Selection pressure difficult to control 
- Only a subset of polymerase 
scaffolds possible 

Phage Display - Straightforward to select for 
modifications in primer, 
template and/or nucleotide 
triphsophate, including 
modifications in both strands 
simultaneously; 
- Control of selection pressure;  
- Challenging selection conditions 
easy to apply  
- Selection possible without 
amplification and even with 
the incorporation of a single 
nucleotide 

- Cross reactivity with sufficient 
enrichment, 
mandating the use of post-selection 
screen; 
- Complicated 
- Requires biotin-streptavidin 
purification 

CSR - No cross reaction between mutants 
- spCSR overcomes some of the 
limitations for processivity 
- Selection for unnatural substrates 
possible 

- Requires amplification of double 
stranded DNA 
- Full length CSR has stringent 
demands on enzyme processivity 
- Selection pressure is difficult to 
modulate 

CST - No cross reaction between mutants 
- Primer extension only, no 
requirement for double stranded 
amplification 
- Selection for unnatural substrates 
possible 

- Chromatographic separation based 
on biotin-streptavidin purification 
- Limited ability to modulate template 

CFA 
(compartmentalized 
fluorescence 
amplification - 
outlined in this work) 

- No cross reaction between mutants 
- Any primer/template complex 
- Any nucleotide triphosphate 
substrate 
- Control over processivity 
requirements by altering template 
length  

- Complex selection strategy involving 
microfluidics double emulsification 
and FACS 

 
Compartmentalized self-tagging (CST) 

 CST was developed to address some of the complications of CSR when 

evolving DNA polymerases that can copy DNA templates into XNA (113). Like CSR, 

polymerase variants expressed in E. coli are encapsulated in bulk w/o droplet 

emulsions to create a library of artificial cells in which the DNA and polymerase of 

each enzyme variant are compartmentalized in a single microreactor. Heat is used to 

release the plasmid and polymerase from the E. coli. Polymerases that extend a 
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biotin-modified DNA primer annealed to a region of the plasmid create a stable DNA-

XNA hybrid duplex that can be separated by affinity purification on streptavidin-

coated beads. Plasmids encoding active variants are recovered, their genes are PCR 

amplified, inserted into an expression vector, and cloned back into E. coli to repeat 

the process. 

 CST has been used to evolve DNA polymerases that display the ability for 

primer extension using multiple different XNA substrates with modest fidelity (113). 

While CST overcomes the requirement for double stranded amplification using CSR, 

use of the genotype as a template strand limits the ability to modulate the template 

used for selection. This prevents the ability to evolve polymerases with other types 

of XNA activity, such as the ability to copy XNA into XNA or XNA back into DNA. In 

addition, the technique requires chromatographic separation of extended primers, 

which often introduces significant background through nonspecific DNA binding to 

streptavidin-coated beads.  

Polymerase diversification 

 A central challenge to any effort attempting to identify engineered versions of 

a natural polymerase with new or improved function is the decision of which 

mutations to search. The use of screening versus selection technology will help 

influence this decision, as screens can only cover a vanishingly small fraction of 

neighboring sequence space. A key aspect of all in vitro selection technologies is the 

ability to generate a pool (or library) of variants at the genetic level that can be used 

for input into the selection. Random mutagenesis is common in many forms of in 

vitro selection and can be used to mimic mutations that might arise spontaneously in 

nature. This is often accomplished through error prone PCR (ePCR), which employs 

PCR conditions that increase the error rate of a polymerase. However, for the 

selection of large proteins like polymerases random mutagenesis is unattractive due 
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to vast size of sequence space and the low frequency of useful mutations. Since all of 

the selection approaches described above rely on bacterial transformation, initial 

library diversity is limited to 109 members or less. While this number is vast 

compared to what is capable with screening technology, full randomization of only 

seven amino acid positions with any of the 20 natural amino acids would yield 

207=1.3x109 possible variants. For this reason researchers often choose to 

randomize a section of the polymerase, such as the active site, or just a few key 

residues in an effort to search a larger fraction of the possible variants that can be 

generated.  

 To simplify library generation for our selection experiments, we have studied 

what is known about the structure and function of family B polymerases as well as 

any previous efforts for their directed evolution to choose key amino acid residues 

for randomization. By taking a targeted approach, we are attempting to limit our 

search through protein sequence space to those regions that are most likely to yield 

mutations that modulate substrate specificity. Using sequence and structure 

alignments with comparison to known structure-activity data we have identified 

genetic “hotspots” that exhibit strong sequence and structural conservation among 

related polymerases from different clades including: archaea, prokaryotes, 

eukaryotes, and viruses. Our analysis indicate that the amino acid positions 408, 

409, 485, 521, 664, and 730 represent ideal starting points for identifying 

polymerases with altered substrate specificity. Using cassette mutagenesis we can 

saturate each of these sites with all possible amino acid mutations and select for 

improved TNA activity. While structural and evolutionary comparison along with 

mechanistic analysis are important tools in polymerase engineering, to date our 

understanding of chemical theory does not provide the tools to predict the exact 

outcome of any amino acid mutation on the performance of any protein, including 
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polymerases. This means that a significant amount of trial and error is generally 

inherent in protein engineering endeavors.  

Microfluidic-based droplet generation 

 Emulsion droplet technologies are an excellent way to isolate and manipulate 

nano-liter and sub-nanoliter scale reactions from each other and from their 

surroundings. Given a minimum presence of biochemical reactants within each 

volume, the tiny nano-liter reactions will contain a high signal over background by 

virtue of their scale. This makes them ideally suited for dilution free measurement of 

their contents and also makes each reaction more robust against inhibitory effects. 

For example, an individual cell trapped inside a small droplet containing reagents can 

be lysed and thermocycled to perform PCR without being inhibited by ancillary 

cellular contents. The technology naturally lends itself to high-throughput biological 

assays because the droplet size allows microliter reactions to be broken up into 

thousands to millions of reaction compartments that can be individually monitored in 

each experiment. Droplet formation is possible at frequencies of 5-10 kilohertz. Both 

CSR and CST style selections are performed using w/o emulsion droplets to 

physically separate each polymerase variant. To date these approaches have 

employed bulk-mixing techniques for emulsion droplets (113, 153). This strategy 

leads to significant variation in the size of each droplet, greatly affecting the 

concentration of polymerase and template (plasmid DNA) from droplet to droplet. 

Although this variation has not hindered the selection of functional polymerases, it 

introduces a significant variable. Microfluidics technology offers an ideal solution by 

tightly controlling droplet formation within a microfluidics device. Monodispersed 

droplets can be reproducibly generated with variation in the droplet diameter 

maintained within 3% (154). 



88 

 Emulsion droplet generation requires two distinct solution phases, an aqueous 

phase which contains the biological reagents and an oil phase to surround the 

reactions, along with biocompatible surfactants to stabilize the droplet emulsion 

(155). Droplets are formed at droplet generating junctions within a microfluidic chip 

where both fluid phases are forced through a small channel intersection. 

Manipulation of phase viscosity, surface tension and the velocity of the dispersed and 

continuous phases allows precise control over the size of droplets being formed 

(156). The side-walls of the containing microfluidic channel or tubing need to be of 

the correct chemical structure to preferentially wet the oil phase and repel the 

aqueous phase (157). Proper surface wetting is crucial for both droplet formation 

and stability as well as to prevent sample carryover from reaction to reaction. 

Different from hydrophobic-hydrophilic interactions, the oils used in many biological 

emulsion droplet microfluidic systems are fluorinated to exhibit a strong fluorophillic 

binding to Teflon/PTFE tubing or other materials such as glass, PDMS and metal 

which have been stably modified with a fluoropolymer surface coating (158). The 

fluorinated oil has the added benefits of being very heavy to improve phase 

separation, exhibit a low-viscosity to reduce back-pressure, and have superior inert 

qualities with respect to anything suspended in the aqueous phase. These droplets 

can be fluorescently interrogated and sorted using custom fluorescence activated 

droplet sorting (FADS) approaches (159), or formed into double emulsions to more 

easily manipulate them with commercial technologies such as fluorescence-activated 

cell sorting (FACS) equipment (160). 

 Double emulsions are generated using multi-phase droplet microfluidic 

technology. By running the formed w/o droplets through another droplet generating 

junction, with the opposite hydrophilic and fluorophobic surface properties, it is 

possible to generate droplets within droplets with the critical aqueous phase inside 
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an oil phase which is inside an aqueous carrier phase. So called water-in-oil-in-water 

(w/o/w) double emulsions present a powerful means of conducting complex 

biological assays with the ability to maintain an outer aqueous phase that is 

compatible with technologies such as fluorescence-based cell sorting. 

 Recently, microfluidics-based droplet generation and FACS have been applied 

to select for enzymes where enzymatic conversion of substrate to product yields a 

fluorescent signal. However, the systems (microfluidics and FACS sorting) have not 

been applied to the evolution of polymerases. Not all fluorescence-based PAAs are 

amenable to miniturization in droplets, mainly due to poor signal-to-noise ratios that 

are confounded when populations of droplets with varying sizes are examined. Here 

we discuss a new selection approach that was designed not only to help generate 

polymerase variants for TNA transcription, but should also be adaptable to other XNA 

substrates and the ability to select for variants that accept XNA template molecules. 

We have validated the use of a donor-quencher fluorescence based PAA in emulsion 

droplets as a viable selection strategy to identify novel polymerases with XNA 

function, demonstrated enrichment values of approximately 1000-fold per selection 

round and used this technology to identify polymerase variants with improved 

activity for TNA. Using this system we were able to identify new variants of the 9°N 

polymerase that show enhanced activity in the absence of manganese ions, leading 

to high fidelity reactions that do not require 7dG in the DNA template. 

Results 

 The simplest way to identify polymerases with new or improved functions is to 

screen large numbers of variants using a primer-extension assay. However, because 

mutations that improve activity are rare relative to those that diminish activity, a 

large number of variants must be screened to identify the novel, complex functions 

needed to further the field of synthetic genetics. To accelerate the pace of 
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polymerase discovery we set out to develop a novel microfluidics-based approach 

that could be used as a general strategy for evolving DNA polymerases with TNA 

activity. Although emulsion-based approaches have been applied to the evolution of 

polymerase enzymes, our work represents the first use of microfluidics for this 

purpose. This was made possible using a fluorescence-based PAA to monitor 

polymerase activity inside of emulsion droplets. A conceptual overview of our 

selection scheme is outlined in Figure 4.3. Specifically, a population of individual E. 

coli cells are encapsulated in their own w/o droplets generated using a microfluidic 

chip. Prior to droplet encapsulation the bacterial cells were trasnfromed with a library 

of polymerase variants. Encapsulation of an E. coli cell enables delivery of the 

expressed polymerase variant along with its encoding genotype. Each droplet also 

contains all of the reagents required to achieve a fluorescence signal from a PAA. 

Artificial w/o compartments that contain active polymerase variants extend a primer-

template complex and elicit a fluorescence signal by disrupting a donor-quencher 

pair at the end of the template. Droplets that exhibit strong fluorescence are 

recovered using fluorescence-activated cell sorting (FACS). In order to enable droplet 

sorting on a commercial flow cytometer the surface characteristics of the w/o droplet 

must be changed from hydrophobic to hydrophilic. This is achieved using a second 

microfluidic chip to encapsulate the w/o population into monodisperse double 

emulsions known as water-in-oil-in-water (w/o/w) emulsions. The selected (FACS 

sorted) w/o/w compartments are extracted to recover the encoding DNA plasmids, 

which are transformed back into E. coli to initiate another round of selection. 
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Figure 4.3. In vitro selection of XNA polymerases inside monodisperse 
compartments. A) A random library of polymerase variants is generated cloned into 
a protein expression vector and transformed into E. coli. B) The population of E. coli 
are grown to log phase in liquid media and induced with IPTG. C) Water-in-oil (w/o) 
emulsion droplets are generated in a microfluidic devise to produce artificial 
compartments that contain one or no E. coli cells and the substrates required for the 
polymerase activity assay. D) The w/o emulsions are heated to lyse the bacteria and 
release the polymerase into the droplet. The droplets are then incubated under 
conditions that allow for primer extension. Extension of the primer displaces the 
quencher probe from the template, which causes the droplet to fluoresce. E) After 
extension, w/o emulsions are passed through a second microfluidic device to 
generate water-in-oil-in-water (w/o/w) emulsions in a bulk aqueous phase. F) 
Fluorescence-activated cell sorting (FACS) is used to sort w/o/w droplets based on 
their fluorescence signal. G) DNA is recovered and transformed into E. coli to start a 
new round of selection or sent for sequencing to identify the polymerase variant.  

 Several in vitro selection strategies have been designed previously for use in 

identifying novel polymerase variants with improved function (114). Although these 

approaches have been successful and have made significant strides in the use of 



92 

synthetic genetic systems, we sought to develop a more flexible technology that 

removed any limitations on the desired substrate or template.  For example, existing 

strategies are limited to the use of DNA or RNA templates delivered to the system as  

encoding plasmid or expressed mRNA (113, 145). With the future goal of evolving 

polymerases that recognize XNA templates we chose to validate universal 

fluorescence-based PAA that would function using substrate and template molecules 

that we deliver during the emulsification process. This also offers the opportunity to 

modify the template for each new round of selection, providing stringent control over 

the selective pressure. Our PAA is modeled on a standard primer-extension reaction 

using a template strand carrying a fluorescent label at the 5' end (Figure 4.4). Along 

with a primer, a third oligonucleotide that is complimentary to the 5' end of the 

template and carries a quencher dye at its 3' end is introduced into the system. 

Hybridization of the quencher probe to the template brings the quencher into close 

proximity with the template fluorophore and quenches the fluorescence signal. 

Polymerases that extend the primer to the end of the template disrupt binding of the 

quencher probe, causing the w/o compartment to generate fluorescent signal. The 

universal nature of this assay makes it amenable to just about any type of XNA 

function, which is quite different from past selection efforts where individual assays 

were developed for specific applications. 
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Figure 4.4. Fluorescence-based reporter assay for polymerase function. The 
reporter assays consists of a primer-template complex that contains a downstream 
fluorescent donor-quencher pair. At room temperature, the primer (pink) is annealed 
to a template (green), which is also annealed to a short probe bearing a 3’ quencher 
(black). At elevated temperatures, the probe dissociates from the template and 
thermophilic polymerases have the opportunity to extend the primer to the end of 
the template. When the temperature is lowered for sample analysis, fully extended 
primers create a fluorescent signal by preventing the probe from re-annealing with 
the template. Primers that are not fully extended fail to generate an optical signal 
because of quenching by the probe. 

 Two key characteristics of our assay required experimental validation to 

optimize the system. The first parameter we explored was the length of the quencher 

probe. Many commercial fluorescence based PAAs, used for applications like qPCR, 

rely on polymerase functions such as exonuclease or strand displacement activity to 

help generate a signal. Taqman® probes are an example of such a PAA, relying on 

the 5'-3' exonuclease activity of Taq DNA polymerase to degrade a dual-labeled 

probe, eliciting a fluorescence signal by releasing the fluorophore from the quencher 

(161). Polymerases commonly used for XNA work are mutated to silence their 

exonuclease domains and often have weak or no strand displacement activity. To 

overcome this limitation we designed our quencher probe such that it dissociates 

from the template at the permissive temperature for polymerase extension (Figure 

4.5 A and B). The second important parameter was the selection of an appropriate 

donor quencher pair. Although a simple binary fluorescence system could be 

achieved in bulk solution with a variety of different fluorophores and quenchers, 
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miniturization proved challenging. Even though microfluidics offers tight control and 

strong reproducibility over the size of emulsion droplets, some variation is inevitable 

when attempting to generate droplets at a rate that is feasible for selections. When 

droplets are later sorted by FACS, the distribution in droplet size leads to a 

distribution in the amount of fluorescence signal, limiting the ability to distinguish 

populations of quenched versus fluorescent droplets. A fluorophore-quencher pair 

with signal-to-noise ratio of ~10-fold for two solutions, one with an unextended 

primer and the other with a fully extended primer, yielded droplets with a continuum 

of fluorescence signal. By screening fluorophore and quencher pairs we were able to 

identify candidates with ~200-fold signal-to-noise ratio in bulk solution, which 

translated to two distinct populations of droplets that could be clearly distinguished 

by FACS (Figure 4.5 C and D). 
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Figure 4.5. Optimizing thermal and fluorescence properties of the polymerase 
activity assay. A) Template fluorescence was monitored in a real time PCR 
instrument in absence of a quencher probe (QP) or in the presence of three QPs of 
varying length in 1x ThermoPol buffer. The DNA template was labeled at the 5’ end 
with a FAM residue and the quencher probes were labeled at the 3’ end with Black 
Hole Quencher Dye 1. Fluorescence was monitored as the temperature was raised to 
a permissive temperature for polymerase extension and then brought back down to 
room temperature (B). C) Solution fluorescence for template molecules carrying 
either a 5’ FAM or Cy3 label in the presence or absence of 14 nt quencher probes. 
Fluorescence was measured at 22°C. D) Calculated signal-to-noise ratio of template 
fluorescence without quencher probe divided by with quencher probe. See Table 4.3 
for template and quencher probe sequences. 

 An additional key to this selection approach is the creation of w/o droplets 

that encapsulate one E. coli cell per compartment. Each E. coli cell will deliver the 

plasmid and polymerase (i.e., genotype and phenotype) for an individual library 

member. The compartments are formed using an emulsion droplet microfluidic 

device (Dolomite) that is attached to a series of pumps and mounted on a 

microscope equipped with a digital camera that allows us to monitor droplet 

formation in real-time. This process begins with a population of E. coli that is 

engineered to express a library of polymerase variants. The cells are grown to log 

phase and induced to express the protein of interest. After expression, the cells are 
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washed to remove lysed cellular debris and unwanted media, placed into the 

microfluidics device with the primer-template complex, buffer and substrates 

required for primer extension, and encapsulated into w/o droplets using a 

commercial fluorocarbon oil (3M) as the carrier phase (Figure 4.6). The w/o 

compartments are stable for weeks when kept at room temperature; however, when 

temperatures are elevated, the compartments are only stable for hours. This makes 

them an effective way to separate a population of enzymes into individual 

microreactors. Upon heating, the population of E. coli cells lyse without damaging 

the w/o compartments, maintaining the physical linkage between the polymerase 

genotype and phenotype. This step introduces the polymerase to the contents of the 

artificial compartment, which contains our PAA. Because the distribution of bacteria 

encapsulated in w/o droplets is dependent on cell density, single compartment 

occupancy is calculated using a Poisson distribution. 
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Figure 4.6. Microfluidics formation of water-in-oil (w/o) droplets. A) A commercial 
glass microfluidics device with a flow-focusing junction designed to form w/o 
droplets. B) Polytetrafluoroethylene tubing is connected to the microfluidic devise 
using connections that seal the tubing to the microchannels etched in the device. C) 
A cartoon depiction of the flow focusing junction inside the microfluidic device. The 
microchannels have a hydrophobic coating that enables the aqueous sample to form 
droplets inside of a bulk oil phase at the channel junction. The throughput and 
consistence of droplet formation is affected by the solution flow rate, surface tension, 
and surfactant composition. D) Bright field micrograph of the flow-focusing junction 
of the microfluidic device with stable w/o droplets (bottom). 

 To validate the ability to generate droplets containing single bacterial cells, 

we encapsulated E. coli engineered to express the green fluorescent protein (GFP) 

and measure cell occupancy and protein function using bright field and fluorescence 

microscopy. Overlaying images of w/o compartments enabled assessment of 

occupancy for various input cell densities (Figure 4.7). In doing so, we demonstrated 

that we are able to construct uniform w/o droplet emulsions that contain cell 

occupancy that follows a Poisson distribution, and that we are able to use E. coli as a 

vehicle to deliver expressed proteins. Next, we demonstrated that we could deliver 

functional polymerase that could be released from their E. coli host and function in 

our PAA. 
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Figure 4.7. Determining distribution of E. coli cells in w/o emulsion droplets. E. coli 
cells were diluted to a final OD600 of A) 0.5, B) 1.0 and C) 2.0 prior to emulsification. 
Brightfield (left) and fluorescence microscopy (middle) were combined (right) to 
determine the fraction of droplets that contain 0, 1, 2 or multiple E. coli cells. 

 To demonstrate that bacteria can deliver functional polymerase to w/o 

droplets we encapsulated two populations of E. coli cells. The first population 

expressed the DNA polymerase 9°N bearing the mutations V93Q, Y409G, A485L, and 

E664K (termed 9°N-QGLK), which endows the enzymes with strong RNA synthesis 

activity. The second population expressed 9°N carrying only the A485L mutation 

(9°N-L), which is unable to extend a DNA primer-template complex with RNA and 

served as a negative control. We encapsulated the E. coli in separate populations of 

w/o droplets containing our PAA and NTP substrates. After droplet formation the 

emulsions were heated to 90ᵒC for five minutes to release the expressed polymerase 

followed by incubation at 55ᵒC for three hours. Next, the droplets were analyzed by 
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bright field and fluorescence microscopy (Figure 4.8). Droplets that contain no 

bacteria have very low fluorescence, indicating that in the absence of a functional 

polymerase the PAA remains quenched. With only NTP substrates added to the 

droplets, the 9°N-L polymerase is not expected to extend the primer-template 

complex. Low fluorescence from droplets containing cells expressing the 9°N-L 

polymerase demonstrates that a non-functional polymerase will not lead to a 

fluorescent signal. These droplets also highligh an important control, revealing that 

polymerases and nucleotide triphosphates endogenous to the bacterial are not 

sufficient to extend the primer-template complex. Finally, droplets containing cells 

expressing the 9°N-QGLK variant yield strong fluorescence, demonstrating that 

bacterial cells are able to deliver sufficient polymerase to function in our PAA. 

 

Figure 4.8. Delivery of functional polymerase enzymes to w/o droplets by 
encapsulation of bacterial cells. Water-in-oil (w/o) emulsion droplets provide artificial 
compartments where polymerase variants can be evaluated on an individual basis for 
a desired activity. After formation in a microfluidic device, the w/o emulsions are 
heated to lyse the E. coli, releasing the polymerase into the droplet. The droplets are 
then incubated under conditions that allow for primer extension. Active variants that 
extend a primer-template complex with NTPs yield a fluorescence signal, while 
inactive variants remain quenched. From left to right the panels show a cartoon 
depiction of the droplet, a brightfield micrograph with arrows indicating E. coli cells, 
a fluorescence micrograph of the same field of view, and an overlay of the brightfiel 
and fluorescence images. A) E. coli cells expressing the 9°N-QGLK polymerase. B) E. 
coli cells expressing the 9°N-L polymeraes. 
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 Having successfully demonstrated that our assay functioned in emulsion 

droplets using polymerase enzymes delivered by bacteria, the next challenge was to 

recover droplets with functional polymerase and isolate their plasmid DNA. The 

fluorescence signal from the polymerase activity assay was used to partition droplets 

based on polymerase activity using FACS. Since FACS requires that samples be in an 

aqueous phase, we passed the w/o droplets through a second flow focusing 

microfluidics device to generate water-in-oil-in-water (w/o/w) emulsions (Figure 

4.9). The size and fluorescence characteristics of the droplets were assessed by flow 

cytometry and w/o/w droplets were found to be stable for days at room 

temperature. Droplets with strong fluorescence were collected and the solution was 

extracted to recover the plasmid DNA from the bacteria. Successful transformation of 

these plasmids into E. coli generated a new pool of variants that are enriched in a 

desired activity. The fraction of droplets that display strong fluorescence could be 

used during a selection to monitor the enrichment progress through successive 

rounds and determine if changes in the selective pressure are needed. Selective 

pressure can be adjusted by modulating parameters such as the length of the 

template strand or the time of incubation at the polymerase permissive temperature. 



101 

 

Figure 4.9. Microfluidics formation of water-in-oil-in-water (w/o/w) droplets. A) A 
cartoon depiction of the flow-focusing junction inside the microfluidic device used for 
w/o/w formation. The microchannels of microfluidics device have a native glass 
surface with no coating. The w/o emulsion enters the top of the flow-focusing 
junction, while a bulk aqueous phase enters from both sides. Optimization of solution 
flow rates and surfactant concentrations enables conversation of the w/o droplets to 
w/o/w droplets. B) Bright field micrograph of the flow-focusing junction of the 
microfluidic device with stable w/o/w droplets produced at the bottom of the image. 

 With each step in our selection scheme validated, we performed a single 

round mock selection for RNA synthesis using the 9°N and 9°N-QGLK polymerases to 

measure population enrichment per round of selection. Only the 9°N-QGLK 

polymerase can synthesize RNA. In addition to the point mutations required for 

function, we engineered the 9°N-QGLK plasmid with a unique restriction site to 

monitor enrichment after selection (Figure 4.10). We induced expression of both 

bacterial strains in liquid culture, and just prior to w/o droplet formation we mixed 

the strains at ratios of 1:100, 1:1,000, and 1:10,000 with the 9°N-QGLK strain 

present in lower abundance. The bacteria were to be encapsulated in w/o emulsions 

with the primer-template complex, buffer, and NTPs. The plasmid and polymerase 

were released from the E. coli by heat, and allowed to extend the DNA primer with 

RNA. The w/o droplets were examined by bright field and fluorescence microscopy to 
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ensure a proper distribution of functional w/o compartments. Next, the w/o droplets 

were encapsulated into w/o/w droplets and sorted by FACS. The selected population 

was recovered, plasmid DNA was extracted, and transformed into E. coli to generate 

a new population. 

 

Figure 4.10. Single round mock selection constructs. A) Crystal structure of 9°N 
polymerase bound to a DNA template. Three key mutations required to enable RNA 
synthesis are highlighted. B) PAGE gel showing primer extension reactions for 9°N-L 
and 9°N-QGLK polymerases using dNTP and NTP substrates. C) Fluorescence PAA 
results for primer extension reactions for 9°N-L and 9°N-QGLK polymerases using 
dNTP and NTP substrates. D) Vector deisgn for both polymerase constructs. The only 
differences between the two plasmids are the three point mutations and the inclusion 
of a unique restriction site in the 9°N-QGLK coding region. E) Agarose gel of PCR 
products from the segment of the coding region surrounding the NotI restriction site. 
PCR products were run with and without restriction digest (RD) using the NotI 
restriction enzyme. 

 Enrichment is determined as the fraction of the pool that has become 

enriched in the 9°N-QGLK strain as a result of RNA synthesis activity and FACS 

selection. The gene encoding region of the plasmid population was amplified by PCR 

and subjected to a restriction enzyme digest. The cut and uncut fragments were run 

on an agarose gel. The ratio of cut to uncut DNA following PCR and restriction digest 
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was determined by densitomitry. Based on this single round mock selection we 

observed an average enrichment factor of ~1000-fold (Figure 4.11 and Table 4.2), 

which is consistent with literature using similar approaches (162). 

 

Figre 5.11. Analysis of mock selection Output. PCR amplification product from the 
coding region of the selected pools run on an agarose gel with and without restriction 
digest using NotI restriction site.  

Percentage of 
"active" QGLK 

variants in 
starting 

population 

Average number 
of E. coli cells 
per emulsion 

droplet 

Percentage of 
"active" QGLK 

varianst in 
selected 

population 

Enrichment  
(n-fold) 

1.0% 0.1 100% >100 
0.1% 0.1 76.7% 767 
0.01% 0.1 15.8% 1580 

Table 4.2. Quantification of enrichment from mock selection. Enrichment values are 
derived from the increae in the percentage of active 9°N-QGLK variants after one 
round of selection. 

 While results from the mock selection indicate a potential for strong 

enrichment, the simple binary design is a poor reflection of the background that 

would be observed with a complex library of variants To ensure that our 

microfluidics-based selection would scale to a library of polymerase variants, we 

performed a polymerase selection starting with a pool of ~8,000 unique variants. 

First, we used cassette mutagenesis to create a combinatorial library of all possible 

variants at amino acid positions 409, 485 and 664 of the 9°N DNA polymerase. 

Three long oligonuceotides were generated synthetically (IDT, gBlocks) such that 
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codons at positions 409, 485 and 664 were completely degenerate (Figure 4.13). 

Using overlapping PCR the three oligonucleotides were combined to generate one 

large fragment that was cloned into a plasmid containing 9°N using restriction 

digestion and ligation. During library creation we noted a significant number of 

unanticipated mutations present in the library. We attributed these mutations to our 

PCR strategy but noted that they resulted in a significant fraction of the pool 

expressing truncated protein. To improve the quality of the library, we subjected the 

pool to one round of selection where a DNA template and primer were coupled with 

standard dNTPs for the PAA. Following this pre-selection step we observed that 

almost all of the clones generated full-length protein. Additionally, sequencing 

indicated that a significant variation of mutations were present at the three desired 

positions, with some additional mutations spread throughout the palm, finger, and 

thumb domains. 

 Next, we used our pre-selected library and performed one round of selection 

with a PAA that included NTPs for RNA extension. By this point we had identified that 

the V93Q mutation in 9°N-QGLK was not required for RNA extension so we knew a 

priori that at least one variant in the library, the 9°N-GLK mutant, should function for 

RNA extension. However, it was also possible that other variants would display 

similar RNA extension activity. Following one round of selection we sequenced 

several clones and among several other sequences we identified the 9°N-GLK 

mutant. The ability to identify an active variant from a population of unique 

polymerases offers a more robust test of our methodology and suggested that our 

selection was capable of significant enrichment from a library of variants.  

 The original goal for development of our selection approach was to identify 

polymerases with enhanced activity for TNA polymerization. The best TNA 

polymerase identified to date, 9°N-L, suffers from sequence biases and is only 
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capable of transcribing complex libraries of TNA when manganese ions are in the 

reaction. The most striking challenge observed for TNA synthesis is the ability to 

incorporate tCTP when the polymerase encounters dGTP in the template (103). To 

overcome this limitation we performed a selection for TNA transcription in the 

absence of manganese ions. Our previously generated, and pre-selected library 

served as a promising starting point for this selection. A485L is a key mutation that 

has proven important for the ability of 9°N to synthesize TNA and in combination 

with mutations at positions 409 and 664 is also important for RNA synthesis. Not 

only do these three positions play a pivotal role in substrate specificity, but 

mutations at these positions are well tolerated by 9°N. We hypothesized that other 

combinations of residues at these three positions could help to enhance TNA 

synthesis. 

 Using our emulsion-based polymerase evolution strategy, we encapsulated a 

population of E. coli expressing our pre-selected library along with our PAA and TNA 

triphosphates in a w/o emulsion. The selection proceeded as described for the NTP 

selection above to enrich for polymerase variants capable of TNA extension. The 

template used for the selection contained only a single dG residue (excluding the 

primer region). After one round of selection, the sorted variants were amplified at 

the DNA level by cloning recovered plasmids into new E. coli cells. We obtained 

individual isolates by growing a portion of the cultures on solid media and picking 

individual colonies. Individual colonies were grown to recover the plasmid DNA for 

sequencing and to test their functional activity. For protein expression the clones 

were grown in deep-well plates, induced with IPTG, lysed, and centrifuged to 

separate the lysate from the cellular debris. Variants were tested for their ability to 

extend a primer using tNTPs. One variant in particular, carrying the mutations A485R 
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and E664I and retaining a Y at position 409 showed improved ability to read through 

sequential G residues in the template compared to 9°N-L (Figure 4.12).  

 

Figure 4.12. Screening functional polymerases. After selection, an enriched pool of 
polymerase variants are transformed into E. coli and plated onto agar plates 
supplemented with ampicilin. A) Individual colonies are then chosen, grown in liquid 
media supplemented with ampicilin and polymerase expression is induced during log 
growth phase with the addition of Isopropyl β-D-1-thiogalactopyranoside (IPTG). B) 
Following four hours of protein expression the cells are lysed by the addition of 
lysozyme for one hour followed by heating at 75°C for 15 minutes. The cellular 
debris is removed from the soluble polymerase enzymes by centrifugation. C) 
Polymerase variants are screened using the fluorescence reporter assay in 96-well 
plates. 

Discussion 

 While simple screening approaches have yielded many useful polymerases, 

the capacity to push beyond modulation of polymerase activity and reach towards 

completely altered function is likely to require significant engineering and 

increasingly larger searches of sequence space. In vitro selections offer the ability to 

query larger libraries than would ever be possible with screening alone. Successful 

enzyme selection methodologies share the same two requirements: First, they must 

establish a strong link between the enzymatic function being selected (phenotype) 

and the genetic information responsible for the function (genotype). Second, they 
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must enable partitioning of active from inactive variants, often identifying only a 

small number of positive hits from a large population of variants. Emulsion droplet 

microfluidics technology is being established as a general tool for engineering 

enzymes with novel or improved activities. Our selection represents the first 

application of this technology for polymerases. Key to our technology is a novel, 

fluorescence-based assay to identify functional polymerases in monodisperse w/o 

compartments with sub-nanoliter reaction volumes. The compartments are formed in 

high-throughput using commercial emulsion droplet microfluidics devices, and 

recovery of functional variants is achieved with the aid of FACS. This technology aims 

to increase the number and types of selections that can be performed by enabling 

the use of XNA templates of any length or complexity in the selection step. This 

advance will open the door for identification of polymerases that can faithfully 

replicate new forms of genetic polymers. 

 In addition to their roles in the storage and flow of genetic information, 

nucleic acids have great potential for the development of high-affinity ligands (as 

aptamers), catalysts (DNAzymes and RNAzymes), nanostructures, and 

nanomaterials. However, applications based on natural nucleic acids are limited by 

their narrow chemical diversity and poor biological stability. There is increasing 

interest in the ability to generate modified nucleic acids to expand this chemical 

diversity and for use as expanded genetic alphabets. As sophisticated new 

chemistries are generated the demand grows for advances in polymerase 

engineering to enable enzymatic synthesis, replication and evolution of these 

unnatural polymers. The new sequence and chemical space that can be explored by 

combined advances in chemistry and biology are likely to be a fruitful source of novel 

nucleic acid therapeutics, aptamers and enzymes with useful applications in 

medicine, biotechnology, nanotechnology and material science.  
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 Here we have taken another step towards these goals by identifying new 

mutations that enhance the ability to generate TNA polymerase with increased 

processivity and fidelity. The ability to code and decode sequence-defined genetic 

polymers, like TNA, provides access to many non-biological applications that will 

benefit materials science, nanotechnology, and molecular medicine. For example, 

TNA is highly resistant to nuclease degradation, making it a stable scaffold for future 

diagnostic and therapeutic applications. In addition, because TNA has the ability to 

evolve in response to imposed selection constraints, it could also be used to enhance 

our understanding of why nature chose RNA as the molecular basis of life’s genetic 

material (79, 163). Previous work in this area has been limited by the absence of 

polymerases that could be used to study alternative chemistries of life. As this 

paradigm is now changing, we may soon discover that many different types of 

genetic polymers exhibit the characteristic signatures of heredity and evolution two 

important hallmarks of life (113). 

Experimental 

Materials 

DNA oligonucleotides were purchased from Integrated DNA Technologies 

(Coralville, IA), and purified by denaturing polyacrylamide gel electrophoresis 

followed by electroelution and ethanol precipitation. Oligonucleotide concentrations 

were determined by UV absorbance using a NanoDrop spectrophotometer. NTPs and 

dNTPs were purchased from Sigma (St. Louis, MO). TNA triphosphates (tNTPs) were 

obtained by chemical synthesis as previously described (ref). Hen egg lysozyme was 

purchased from Sigma. Fluorinated oil HFE-7500 was purchased from 3M Novec, 

USA, and the fluorosurfactant and microfluidic chips were purchased from Dolomite, 

UK.  
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Polymerase Library Generation 

The library of 9°N polymerase variants was generated by replacing the region 

coding for the finger thumb and palm domains of the protein with a DNA cassette 

containing mutations of interest. The triple saturation mutagenesis cassette, where 

amino acid positions 409, 485, and 664 were randomized, was created using three 

gBlock fragments purchased from IDT. These double stranded DNA fragments were 

chemically synthesized with all three positions of the desired codons having a 

random distribution of A, C, G, and T. The fragments were designed to have 

overlapping constant regions and defined restriction sites for cloning into a protein 

expression vector. The fragments were first amplified by PCR using three sets of 

unique primers (P1.For, P1.Rev, P2.For, P2.Rev, P3.For, P3.Rev) and the high fidelity 

AccuPrime polymerase (Life Technologies). An optimized number of PCR cycles were 

determined by qPCR analysis to minimize excessive amplification. 15 ng of each 

fragment was then pooled into a 100 µL PCR using the outermost forward (P1.For) 

and reverse primers (P3.Rev) to generate the full length DNA cassette. Following 

restriction digestion, the library was ligated into a protein expression plasmid 

backbone containing the remainder of the 9°N polymerase coding region. 
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Figure 4.13 Polymerase library creation. A) Three gBlock dsDNA fragments were 
purchased fron IDT with fully degenerate codons at positions 409, 485 and 664 of 
the 9°N polymerase. Fragment two contains a 5’ region that is conserved with the 3’ 
end of fragment one and a 3’ region that is conserved with the 5’ end of fragment 
three. B) Each of the three fragments was individually amplified to generate 
sufficient quantities. C) The three fragments were pools and combined into a single 
PCR reaction using the forward primer for fragment one and the reverse primer for 
fragment three. The full length fragment was cloned into a protein expression vector 
containing the 9°N polymerase by restriction digestiong, ligation and transformation. 

Microfluidic Droplet Generation 

All microfluidic devices for monodisperse emulsion formation were purchased 

from Dolomite, UK and designs are available from their website. Syringe pumps and 

1/16” OD fluorinated ethylene propylene (FEP) tubing with 0.01” ID (Idex 1478-20) 

was used to transport fluids through to microfluidic chips, and from the chip outlet to 

collection vessels. All fluid connections off chip were formed using 1/16′′ Upchurch 
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fitting connectors. The formation of water-in-oil single emulsions was performed 

using a quartz glass microfluidic device with a single inlet flow focusing junction 

geometry of 14 x 17 µM with a hydrophobic/fluorophilic coating (Cat. C000525G, 

Dolomite, UK). The device was connected by FEP tubing  through a top interface 

linear connector (Cat. 3000109, Dolomite, UK) to syringes (100 μL, 500 μL SGE 

glass syringes, 2500 μL Hamilton Gastight syringe or 3 mL plastic syringe (Becton-

Dickinson, Madrid, Spain)), which were driven by either an NE1002x syringe infusion 

pumps (New Era Pump Systems Inc., USA) or a pump manifold of neMESYS low 

pressure syringe pumps (Cetoni Gmbh, Germany) with accompanying control 

software. Carrier fluid was filtered using a 0.2 µm inline syringe filter, while the 

aqueous phase was filtered using an inline 10 µm frit filter. Droplet generation was 

monitored using a Nikon eclipse TS100 microscope with 20x ELWD Nikon objective 

and captured using a QIclick 12 bit monochrome CCD camera (QImaging, BC 

Canada). Flow rates were adjusted based on visual inspection with an average rate 

of 5 μL/min for the aqueous phase and 12 μL/min for the carrier oil. These flow rates 

yielded droplets with an average diameter of 14 ± X μm (~1 pL volume). A low 

viscosity fluorinated oil (HFE-7500, 3M USA) containing 1% (w/w) picosurf surfactant 

(Dolomite, UK) was used as the carrier fluid.  

The formation of water-in-oil-in-water double emulsions was performed using 

a quartz glass microfluidic device with a single inlet flow focusing junction geometry 

of 14 x 17 µM (Cat. 3200136, Dolomite, UK). The water-in-oil emulsion and aqueous 

carrier phase were delivered to the device using syringes connected in the same 

fashion as described above for single emulsion formation. The water-in-oil emulsion 

was slowly drawn into a 250 μl SGE glass syringe, mounted into an infusion pump in 

a vertical position and left to settle for at least 30 minutes prior to delivery. Carrier 

fluid (25 mM NaCl, 1% Tween-80) was filtered using a 0.2 µm inline syringe filter, 
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while the water-in-oil emulsion was filtered using an inline 10 µm frit filter. Flow 

rates were adjusted based on visual inspection with an average rate of 1 μL/min for 

the single emulsion and 8 μL/min for the carrier aqueous phase. 

Polymerase expression 

Individual polymerase variants were tested by growing a clonal population of 

XL-1 blue E. coli carrying a plasmid encoding the polymerase of interest in Luria 

Broth (LB) supplemented with ampicillin (100 μg mL-1). Cultures were grown at 37°C 

with shaking at 240 rpm and protein expression was induced by adding IPTG to a 

final concentration of 1 mM when the culture reached an OD600 of 0.6. Induced 

cultures were grown for 3 hours at 37°C with shaking to express protein. Following 

protein expression the cells were pelleted, the media was removed, and the cells 

were suspended in lysozyme buffer [50 mM TrisHCl pH 8.0, 300 mM NaCl, 0.1% 

(v/v) Triton X-100, 0.1 mg/ml lysozyme] with hen egg lysozyme. Cellular debris was 

removed by centrifugation for 15 min at 13,000 rpm and the supernatant was used 

directly as a source of polymerase for extension activity assays. Protein expression 

was confirmed by SDS-PAGE analysis and coomassie blue staining. 

Cell compartmentalization in droplets 

Cell populations were grown and polymerase variants were expressed as 

described above. After expression, a 2 mL aliquot of culture was centrifuged for 5 

min (2,000 rcf) and the supernatant discarded. The cells were washed three times 

with 1x ThermoPol buffer [20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl, 2 mM 

MgSO4, 0.1% Triton X-100, pH 8.8] (New England Biolabs Inc., Massachusetts, 

USA). After each was cells were centrifuged for 5 min (2,000 rcf) and the 

supernatant discarded. The bacterial pellet was taken up in 500 μL 1x ThermoPol 

buffer and the A600nm was determined. Cells were diluted to enable encapsulation 

at occupancies of 0.1 cells per droplet, according to the assumption that 1 mL E. coli 
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suspension at A600 of 1.0 contain 5 x 108 cells. Just prior to emulsification the cells 

were mixed with the PAA (see section below). The w/o emulsion was collected under 

a layer of mineral oil in an Eppendorf tube. Subsequently the water-in-oil emulsion 

was transformed into double emulsion as described under device operation. 

Microscopy 

Images were collected using a brightfield microscope (Eclipse TE300, Nikon) 

equipped with a a Hamamatsu Orca 3CCD camera using a 60×, 1.32 NA, oil-

immersion objective lens and Immersion Oil Type DF (Cargille Laboratories) imaging 

medium. QED InVivo 3.2 (Media Cybernetics) was used to collect images, which were 

processed with Photoshop CS4 (Adobe) or ImageJ (NIH) software.  

  Microfluidic droplet generation was monitored using a Nikon eclipse TS100 

inverted microscope with either a 10x, 0.3 NA Plan fluor, or 20x, 0.45 NA ELWD S 

Plan Fluor, Nikon objectives and captured using a QIclick 12 bit monochrome CCD 

camera (QImaging, BC Canada). 

Flow cytometric analysis of double emulsion droplets 

Water-in-oil–inwater double emulsion droplets were diluted into 150 mM NaCl 

and subjected to flow cytometric analysis (FACSCalibur, BD Biosciences). The sample 

was excited with a 488 nm argon laser and the emission was detected using a 530 ± 

15 nm band-pass filter. Double emulsion populations were gated on logFSC/logSSC. 

Fluorescent readout was obtained from more than 15,000 droplets for each 

measurement. Cytometr software (Cell Quest, BD Biosciences) was used for data 

analysis. 

Fluorescence-activated droplet sorting 

Prior to sorting droplets using a fluorescence-activated cell sorter (FACS), the 

aqueous carrier phase (1% w/w Tween 80 in 25 mM NaCl) was exchanged for a 

solution of 25 mM NaCl to reduce the presence of surfactant in the aqueous phase. 
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Samples were sorted in a BD FACSAria (BD Biosciences) using PBS as sheath fluid. A 

set-up with a 70 μm nozzle was chosen to give an average sort rate of 5,000 – 8,000 

events per second. The threshold trigger was set on side scatter. The sample was 

excited with a 488 nm argon laser and the emission was detected using a 530 ± 15 

nm band-pass filter. The double emulsion population was gated from other 

populations in the sample on logFSC/logSSC  

DNA recovery and transformation 

Sorted samples were de-emulsified by extraction with ~2 volumes of 

Picobreak (Dolomite, UK) which contains 1H,1H,2H,2H-perfluorooctanol (PFO). After 

addition of Picobreak, the samples were vortexed followed by centrifugation (15 

seconds, 2,000 rcf) to attain phase separation. The top, aqueous layer containing the 

plasmid DNA of interest was recovered. The bottom layer was re-extracted with 1 

volume of molecular grade water to improve recovery yields. The plasmid DNA was 

concentrated from the combined aqueous layers using a spin column (DNA Clean & 

Concentrator™-5, Zymo Research), eluting with molecular grade water (10 μL). The 

DNA Clean & Concentrator™-5 also facilitates removal of protein from the sample. 

Electrocompetent E. coli cells (50 μL, β-10 E. coli cells NEB, USA) were transformed 

with 5 μL of purified DNA by applying one electric pulse of 1.80 kV (using an E. coli 

Pulser Cuvette, 0.1 cm electrode; Bio-Rad MicroPulser). Sterile S.O.C Medium (500 

μL, Invitrogen) was added immediately after pulsing and the sample was grown at 

37 °C with shaking at 240 rpm for 30 minutes before plating on LB agar containing 

ampicillin (100 μg mL-1) followed by incubation at 37 °C overnight. Plasmid recovery 

efficiency was determined by comparison of the number of sorted droplets to the 

number of colonies obtained after transformation and plating. When large numbers 

of colonies were obtained, dilution plating was used to estimate the number of 

successful transformants.  
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Polymerase activity assay  

Polymerase assays for selection were performed using an unlabeled DNA 

primer, a template with a fluorophore label at the 5' end and a quencher probe 

labeled with a quencher dye at the 3' end. The primer-template complex was 

annealed in 1x ThermoPol buffer by heating for 5 min at 95°C and cooling for 5 min 

at 4°C. The concentration of primer and template and quencher strands were 2, 1 

and 3 µM respectively. Nucleotide triphosphates (100 μM final) were added to the 

reaction after primer annealing. Bacterial cells expressing polmyerase variants were 

added just prior to emulsification. Following emulsification, the reactions were 

incubated at 90°C for 5 minutes to lyse cells, followed by 55°C for the indicated 

amount of time.  

Polymerase assays monitored by gel electrophoresis were carried out with a 

DNA primer labeled at the 5’ end with an IR800 dye. The primer-template complex 

was annealed in 1x ThermoPol buffer [20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM 

KCl, 2 mM MgSO4, 0.1% Triton X-100, pH 8.8] by heating for 5 min at 95°C and 

cooling for 5 min at 4°C. The concentration of primer and template strands were 1 

and 2 µM respectively. The polymerase and nucleotide triphosphates (100 μM final) 

were added to the reaction after primer annealing. Following addition of all 

components, the reactions were incubated at 55°C for the indicated amount of time. 

Upon completion, reactions were quenched by addition of 10-fold stop buffer [1x 

Tris-boric acid buffer, 20 mM EDTA, 7 M urea, pH 8]. Samples were denatured by 

incubating at 90°C for 5 minutes prior to separation by denaturing PAGE and 

visualization of the IR800 dye using a LICOR Oddysey CLx imager. 
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Table 4.3. DNA primers and templates sequences. 
 
Name DNA Sequence (5’ -> 3’) 
Lib.409.NNN GAACGTGAACTGGCGCGCCGTCGTGGCGGTTATGCGGGCGGTTATGTGA

AAGAACCGGAACGTGGCCTGTGGGATAACATTGTGTATCTGGATTTTCGT
AGCCTGNNNCCGAGCATTATTATCACCCACAATGTGAGCCCGGATACCC
TGAACCGTGAAGGCTGCAAAGAATATGATGTGGCGCCGGAAGTGGGCCA
TAAATTCTGCAAAGATTTCCCGGGCTTTATT 

Lib.485.NNN AAGATTTCCCGGGCTTTATTCCGAGCCTGCTGGGCGATCTGCTCGAGGAA
CGCCAGAAAATCAAACGCAAAATGAAAGCGACCGTTGATCCGCTGGAAA
AAAAACTGCTGGATTATCGTCAGCGCNNNATTAAAATTCTGGCCAACAGC
TTCTATGGCTATTATGGTTATGCGAAAGCGCGTTGGTATTGCAAAGAATG
CGCGGAAAGCGTGACCGCGTGGGGCCGTGAATATATCGAAATGGTGATC
CGCGAGCTCGAAGAAAAATTCGGCTTCAAAGTGCTGTATGCGGATACCG
ATGGCCTGCATGCGACCATTCCGGGTGCGGATGCGGAAACCGTGAAAAA
AAAAGCGAAAGAATTCCTGAAATACATCAATCCGAAACTGCCGGGCCTGC
TGGAACTGGAATATGAAGGCTTTTATGTGCGTGGCTTTTTCGTGACCAAA
AAAAAATACGCGGTGATCGATGAAGAAGGCAAAATTACCACCCGTGGCCT
GGAA 

Lib.664.NNN AATACGCGGTGATCGATGAAGAAGGCAAAATTACCACCCGTGGCCTGGA
AATTGTGCGTCGTGATTGGAGCGAAATTGCGAAAGAAACCCAGGCGCGT
GTGCTGGAAGCGATTCTGAAACATGGCGATGTGGAAGAAGCGGTGCGTA
TTGTTAAAGAAGTGACCGAAAAACTGAGCAAATATGAGGTACCGCCGGAA
AAACTGGTGATTCATNNNCAAATTACCCGTGATCTGCGTGATTATAAAGC
GACCGGTCCGCATGTGGCGGTGGCAAAACGTCTGGCAGCGCGTGGCGT
GAAAATTCGTCCGGGCACCGTGATTAGCTATATTGTGCTGAAAGGCAGCG
GCCGCATTGGCGATCGTGCGATTCCGGCGGATGAATTTGATCCGACCAA
ACATCGTTATGATGCGGAATATTATATCGAAAACCAGGTGCTGCCGGCGG
TGGAACGTATTCTGAAAGCGTTTGGCTATCGTAAAGAAGATCTGCGCTAT
C 

P1.For AACTGGCGCGCCGTCGTGGCGGTTATGCGG 
P1.Rev CGTTCCTCGAGCAGATCGCCCAGCAGGCTCGGAATAAAG 
P2.For ATCTGCTCGAGGAACGCCAGAAAATCAAACGC 
P2.Rev TTCCAGGCCACGGGTGGTAATTTTGC 
P3.For AATACGCGGTGATCGATGAAG 
P3.Rev GATAGCGCAGATCTTCTTTACGATAGCC 
PBS2 GACACTCGTATGCAGTAGCC 
ST.1G.Cy5 /5Cy3/ACAACCATACTCTCCTCATCACTATTCAACTTACAATCGATACAAC

CTTATAATCCACATGGCTACTGCATACGAGTGTC 
ST.1G.FAM /56FAM/ACAACCATACTCTCCTCATCACTATTCAACTTACAATCGATACAA

CCTTATAATCCACATGGCTACTGCATACGAGTGTC 
QP13.Iowa ACAACCATACTCT/3IABkFQ/ 
QP16.Iowa ACAACCATACTCTCCT/3IABkFQ/ 
QP20.Iowa ACAACCATACTCTCCTCATC/3IABkFQ/ 
QP13.BHQ ACAACCATACTCTCCT/3BHQ_1/ 
QP16.BHQ ACAACCATACTCTCCTCATC/3BHQ_1/ 
QP20.BHQ ACAACCATACTCTCCTCATC/3BHQ_1/ 
QP20.BHQ ACAACCATACTCTCCTCATC/3BHQ_1/ 
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