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ABSTRACT 

Ramping up a semiconductor wafer fabrication facility is a challenging endeavor. 

One of the key components of this process is to schedule a large number of activities in 

installing and qualifying (Install/Qual) the capital intensive and sophisticated 

manufacturing equipment. Activities in the Install/Qual process share multiple types of 

expensive and scare resources and each activity might potentially have multiple 

processing options. In this dissertation, the semiconductor capital equipment Install/Qual 

scheduling problem is modeled as a multi-mode resource-constrained project scheduling 

problem (MRCPSP) with multiple special extensions. Three phases of research are 

carried out: the first phase studies the special problem characteristics of the Install/Qual 

process, including multiple activity processing options, time-varying resource 

availability levels, resource vacations, and activity splitting that does not allow 

preemption. A modified precedence tree-based branch-and-bound algorithm is proposed 

to solve small size academic problem instances to optimality. Heuristic-based 

methodologies are the main focus of phase 2. Modified priority rule-based simple 

heuristics and a modified random key-based genetic algorithm (RKGA) are proposed to 

search for Install/Qual schedules with short makespans but subject to resource constraints. 

Methodologies are tested on both small and large random academic problem instances 

and instances that are similar to the actual Install/Qual process of a major semiconductor 

manufacturer. In phase 3, a decision making framework is proposed to strategically plan 
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the Install/Qual capacity ramp. Product market demand, product market price, resource 

consumption cost, as well as the payment of capital equipment, are considered. A 

modified simulated annealing (SA) algorithm-based optimization module is integrated 

with a Monte Carlo simulation-based simulation module to search for good capacity 

ramping strategies under uncertain market information. The decision making framework 

can be used during the Install/Qual schedule planning phase as well as the Install/Qual 

schedule execution phase when there is a portion of equipment that has already been 

installed or qualified. Computational experiments demonstrate the effectiveness of the 

decision making framework.  
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CHAPTER 1 INTRODUCTION 

 

1. Introduction and Motivation  

The semiconductor manufacturing industry is a capital intensive industry. 

Nowadays, a state-of-the-art 300mm wafer fabrication (fab) facility with over one 

thousand pieces of major capital equipment costs at least $3 billion (Chien and Zheng 

(2012), Chasey and Pindukuri (2012)) and up to $10 billion (Ibrahim, Chik and Hashim, 

2014) depending on fab capacity. Error! Reference source not found. shows the total 

annual capital investment from 2011 to 2013 of several semiconductor companies has 

been more than 45 billion dollars (source: http://www.icinsights.com/ March 26, 2013, 

Article: Intel and Samsung Forecast to Represent 42% of Semiconductor Capital 

Spending in 2013).  

The capital equipment supply chain is the process of planning, procuring, 

transporting, installing and qualifying each piece of capital equipment to support 

production. The objective of capital equipment supply chain planning is to purchase the 

right amount of production capacity at the right time to reduce the mismatch of capacity 

and market demand. On one hand, the lack of capacity or bringing the right amount of 

capacity online at the wrong time can result in hundreds of million dollars of lost sales. 

On the other hand, excessive capacity means idle capital equipment, each of which can 

http://www.icinsights.com/
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cost millions of dollars, e.g. currently, a single photolithography stepper costs over 100 

million dollars (Thoms, 2012).  

 

Table 1: Top Semiconductor Capital Investment from 2011 to 2013 

Company 2011 Actual ($M)  2012 Actual ($M)  2013 Forecast ($M)  

Intel 10,764 11,000 13,000 

Samsung 11,755 12,225 12,000 

TSMC 7,333 8,324 9,000 

GlobalFoundries 5,400 3,000 3,500 

SK Hynix 3,165 3,655 3,200 

Micron 2,913 1,773 2,225 

Toshiba 1,935 1,637 1,600 

UMC 1,585 1,723 1,500 

SanDisk 1,368 988 1,000 

Sony 1,805 1,100 775 

Total 48,023 45,425 47,800 

 

Within the entire supply chain, the equipment installation and qualification 

(Install/Qual) process consists of physically installing a piece of equipment (and 

necessary infrastructure, e.g. pipes for water, gas, wires, etc.) and qualifying the 

necessary equipment for a specific production requirement. Currently, the Install/Qual 

process faces several challenges (described below) and has the potential to be 

significantly improved.  

First, the Install/Qual process spans 18 to 24 months and it consumes most of the 

supply chain lead time. Shortening the Install/Qual process can reduce the supply chain 

lead time and delay on capital investment planning decisions.  
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Second, there are over one thousand pieces of major production equipment that 

need to be installed and qualified. To install and qualify each one of them involves 

multiple activities, each of which might require multiple resources (labor, testing tool, 

etc.). The current Install/Qual scheduling approach in practice is mostly based on manual 

scheduling without a systematic way to search for better schedules that conform to 

certain resource limits. Thus, potentially better schedules may not be considered.   

Third, the Install/Qualification process determines the timing of expenditures 

since equipment is generally paid for partially when it is received and partly after it is 

qualified. A better Install/Qual schedule can defer capital payment and reduce overall 

capital time-value of money.  

Fourth, the Install/Qual process determines the capacity ramp-up strategy. A 

better Install/Qual schedule can potentially bring the right amount of capacity online at 

the right time to maximize revenue. Further, during schedule execution when there are 

market information changes, manual re-schedule is the current practice for the 

Install/Qual process. It is time-consuming and often results in sub-optimal solutions.  

The Install/Qual process is extremely important and requires strategic decision 

making and careful planning. With such intensive capital involved, a small improvement 

can potentially bring millions of dollars of savings.   

The objective of this dissertation is to provide effective scheduling and re-

scheduling methodologies to support decision making in the Install/Qual process. This 
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dissertation research develops mathematical-based analytical modeling for the 

Install/Qual process and proposes various heuristic optimization methodologies to 

approach this challenging problem.  

The three main phases of research are organized as follows. Phase 1 and phase 2 

study different methodologies that search for Install/Qual schedules with short project 

makespans to reduce supply chain lead time. In Phase 3, ramp-up strategies that consider 

market price, market demand, resource consumption cost and the timing of capital 

equipment expenditures are investigated.  

In phase 1, the Install/Qual scheduling problem is modeled as a multi-mode 

resource-constrained project scheduling problem. In this phase, the difference between 

preemption and activity splitting in the project scheduling literature is discussed. The 

semiconductor Install/Qual process represents a unique environment where activities can 

be split but not preempted. Other specialties of the Install/Qual process such as multiple 

processing options, time-varying resource constraints, and resource vacations are also 

modeled and discussed. A modified precedence tree-based branch-and-bound algorithm 

is proposed as an exact method to solve small size academic problem instances to 

optimality. Experiments demonstrate that allowing activity splitting results in major 

project makespan reductions compared to preemption. The higher the range of time-

varying renewable resource limits and the tighter the renewable resource limits are, the 
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bigger the resulting makespan reductions can be. The computational complexity of the 

problem is observed since it still takes over hours to solve some small problem instances.  

In phase 2, heuristic-based scheduling algorithms are proposed and studied for 

the Install/Qual scheduling problem. The first algorithm is based on priority rule-based 

simple heuristics and the second algorithm modifies the random key-based genetic 

algorithm (RKGA) to incorporate both mode assignments and relative priorities for 

activities. The third algorithm is based on ILOG-CPLEX to dynamically search for a 

good project horizon to reduce computational effort. Project decomposition is also 

proposed to integrate with meta-heuristics. A decomposition score is defined to measure 

whether an instance is better to be decomposed or not. Practical constraints of the 

Install/Qual process such as schedule infeasibility regarding non-renewable resources or 

time windows (ready time and due date) and backward scheduling approaches are studied 

and discussed. Computational experiments show that when the decomposition score is 

low, combining decomposition with other meta-heuristics is recommended. 

Decomposition works better when availability levels for non-renewable resources are 

high. Overall, the proposed RKGA outperforms simulated annealing, simple heuristics 

and modified CPLEX solutions, especially for large size problem instances. Some simple 

heuristic rules that consider problem characteristics are shown to work well when there 

are high resource levels. The Phase 3 focuses on how to ramp the right amount of 

capacity at the right time to maximize overall expected profit which includes revenue 
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generated by satisfying market demand, costs for consuming resources and the time 

value of money for capital investment. Uncertain market demand and market price are 

modeled using Geometric Brownian Motion (GBM) processes. This is true for cases 

where the final fab capacity is given as input and when it is a decision variable. A 

scheduling framework is proposed such that the Simulated Annealing algorithm is used 

as the optimization method to find better solutions along with Monte Carlo simulation as 

the solution evaluator to deal with uncertainty. Computational experiments show that a 

good threshold setup between optimization and simulation can achieve a good balance 

between computational effort and solution quality. Integrating both the optimization and 

simulation modules can find better solutions than only assuming static market demand 

and market price. The benefit of adding simulation increases as the demand uncertainty 

level increases. When demand uncertainty level is low, matching demand and capacity is 

recommended to achieve high expected profit. However, when the demand uncertainty 

level is high, over investing capacity is preferable since the cost of losing sales is higher 

than the cost of idle assets.   

 

Table 2: Potential Research Application Areas of this Dissertation 

Industries Project scheduling problems 

Semiconductor This research 

Construction Brucker et al. (1999), Brucker and Knust (2006), Kim (2007), 

Pan et al. (2009) 

Software Development  Brucker et al. (1999), Wang (2005), Buddhakulsomsiri and 

Kim (2006), Gonsalves et al. (2008)). Hapke et al. (1998) 
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Agricultural  Wang et al. (2005) 

Steel Manufacturing Voß and Witt (2007) 

Movie shooting  Bomsdorf and Derigs (2008) 
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This dissertation demonstrates an example of applying mathematical-based 

approaches to analyze a real world challenging problem in the semiconductor industry. 

However, the basic methodologies can be adapted to other environments. Error! 

Reference source not found. shows other problem domains that can potentially use the 

research efforts in this dissertation.  
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CHAPTER 2 MULTI-MODE RESOURCE-CONSTRAINED PROJECT 

SCHEDULING PROBLEMS WITH NON-PREEMPTIVE ACTIVITY SPLITTING 

 

1. Introduction 

Equipment installation and qualification (Install/Qual) is the process of ramping 

up a wafer fabrication (fab) facility. During the Install/Qual process, each piece of 

equipment is first physically installed with necessary infrastructure (e.g. water and gas 

pipes) by trades (e.g. architects, electricians, mechanics, and plumbers). Supplier 

qualification is the next step and it consists of running experimental tests by the 

equipment supplier (supplier resource). Next, the semiconductor company’s engineer 

(company resource) runs product test as the company qualification process before using 

the equipment for actual wafer production. A shorter Install/Qual process can make the 

next generation product available to customers sooner and delay capital investment 

decision-making since overestimation and underestimation can lead to millions of dollars 

wasted from either idle capital equipment or lost sales.  

However, the complexity of the Install/Qual process makes the scheduling 

problem a challenging endeavor. Activities have precedence relationships such that 

physical installation is always followed by supplier qualification and company 

qualification, and support equipment needs to be installed before the production 

equipment. Availabilities on resources (human resources, project budget, factory floor 



 

10 

space, etc) need to be considered during execution of each activity which could have 

different options. For example, a piece of equipment can be installed by 3 senior and 1 

junior technician with a total cost of $20K in 6 working days or 1 senior and 3 junior 

technicians with a total cost of $16K in 8 working days. Resources often have different 

working calendars. For example, trades may work 4 days/week and 10 hours/day while 

supplier resources may work 5 days/week and 8 hours/day and the company can deploy 

its own resources 7 days/week and 24 hours/day with 3 shifts. Thus, activities longer than 

four or five days may need to pause during weekends and resume the following week. 

However, during weekdays when an activity is processing, it cannot be interrupted. For 

instance, the equipment qualification process requires a combination of highly 

specialized personnel and precise tool configurations. Interrupting an ongoing 

qualification process with another process requires re-mapping these personnel and re-

configuring tool settings, which in turn might bring an undesired complexity of progress 

tracking, significant process risk, and high operational costs.  

Motivated by the semiconductor capital equipment Install/Qual scheduling 

problem, this research studies and extends the well-known resource-constrained project 

scheduling problem (RCPSP) framework and potentially can be applied to other 

production planning and scheduling problems (e.g. job shop, open shop) in the 

semiconductor industry. Examples of challenging semiconductor problems can be found 

in Mönch et al., 2012.  
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In RCPSP, activities are represented by nodes and precedence relations are 

represented by directed arcs. Precedence constraints restrict an activity from starting until 

all of its predecessors are finished. Processing an activity requires either renewable 

resources with availability restrictions on each time period (e.g., the number of 

technicians per day, the number of tools per shift, etc.) and/or non-renewable resources 

with availability restrictions over the whole project horizon (e.g., project budget, raw 

materials, factory floor space, etc.). In a multi-mode RCPSP (MRCPSP), each activity 

can be processed in one of several possible ways, each of which is described by a 

combination of required resources and activity duration. 

In classical RCPSPs and MRCPSPs, renewable resource limits are assumed 

constant over time. In practice, however, the total amount of resources available might 

not be constant for a number of reasons. Predictable reasons can be weekends and 

holidays for labor resources or scheduled maintenance for machines; unpredictable 

reasons can be personnel taking unexpected sick leave or unscheduled machine 

breakdowns. In the RCPSP with time-varying resource constraints, the assumption of 

constant resource limits is relaxed and a resource profile function is used to specify 

resource availability during each time period (Drexl and Grünewald, 1993, Hartmann, 

1999 and Klein, 2000).  

Even in the RCPSP with time-varying resource constraints and resource vacations, 

it is often assumed that activities cannot be split such that activities can only be 
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scheduled in consecutive time periods within which resources must be constantly 

available. These restrictions make this RCPSP model less than ideal for modeling some 

real-world cases. For example, if some labor resources only work five days per week 

(while others work seven days per week) on a project containing activities with durations 

longer than five days, no feasible solution can be found as there is no consecutive work 

period of sufficient length. 

In fact, it may be feasible (even preferable) to interrupt some ongoing activities 

and replace them by other activities until a later time at which the interrupted activities 

are resumed. Consider the example problem instance in Figure 1, which is adapted from 

Ballestin et al., (2008). Activities 2 through 6 have a serial precedence relationship while 

activity 1 is parallel to all of them. Activity 0 is a dummy start activity and activity 7 is a 

dummy finish activity. Each activity’s resource requirement and duration is specified in 

Figure 1(a). Only one renewable resource is considered in the example and the resource 

profile is a constant two resource units (Figure 1b). Both solutions in Figure 2 are subject 

to the resource profile constraint. The optimal makespan when activity splitting is not 

allowed is Cmax = 7 time units (Figure 2a), while the optimal makespan with activity 

splitting is Cmax = 5 time units as activity 1 is split into three segments (Figure 2b). 
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Figure 1: An example of a project network with a single resource 

 

Several research efforts have modified the classical RCPSP to allow activity 

splitting. One such example is the Preemptive RCPSP (PRCPSP), which allows activities 

to be interrupted in any time period and resumed later at no additional cost. The idea of 

preemption is very popular in the machine scheduling literature as well. However, one 

drawback of the PRCPSP is that activities are allowed to be interrupted arbitrarily, not 

necessarily because of resource vacations or resource limits changes. 

 

 

Figure 2: Optimal solutions for the example of an RCPSP without and with activity 

splitting 
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Another extension is the RCPSP with calendarization, which focuses on activity 

splitting resulting from workweek calendars and workday patterns. Unfortunately, most 

of these research efforts assume constant resource limits during workdays and only 

consider a single mode of activity processing. In this research, we examine a more 

general case of calendarization by allowing time-varying resource constraints and 

multiple processing modes.  

In order to illustrate the differences between activity splitting and preemption, 

consider the project network in Figure 3 containing nine activities (1-9), dummy start (0), 

and completion nodes (10). One renewable resource 𝑅1with the resource profile is 

provided as well. Resource 𝑅1 is not available from time unit 6 to time unit 8.  

 

 

Figure 3: An example of a project network and resource profile 
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lack of resource and the activity resumes when resource becomes available at time 8; 

however activity 5 is split from time 13 to 14 even though the resource is available. In 

practice, these two types of activity splitting might need to be treated differently. To 

pause an ongoing activity because of resource unavailability and resume it later may 

have small financial or time impact. However, interrupting an ongoing activity by 

switching to another activity can result in a high penalty such as setup time lost, re-

configuring complicated equipment settings, etc.  

 

 

Figure 4: Example of different types of activity splitting  

 

To specify the unique case wherein activities are only allowed to be split when 

resources are insufficient, we define preemption and activity splitting as follows: a 

preempted activity is an activity for which there is at least one time period after the start 

of the activity wherein the activity is eligible to be processed but is not being processed. 

Alternately, a split activity is an activity that is not processed in consecutive time periods. 

In our previous definitions, a time period that is “eligible” for an activity should 

be both resource feasible for renewable resources and precedence feasible. According to 
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our definitions, one can easily see that a preempted activity is a split activity, but the 

converse is not necessarily true. The cases wherein activities are split may result from 

insufficient resources rather than by choice. The relationship between preempted and 

split activities is illustrated in Figure 5. Preemptive RCPSP is a more generalized 

assumption where activities can be interrupted at any integer time period. RCPSP without 

activity splitting is the basic assumption in the majority of existing RCPSP research 

efforts. We denote the special case wherein activity splitting is only allowed when there 

are insufficient resources as non-preemptive activity splitting. 

 

 

Figure 5: Activity splitting vs. preemption 

 

In non-preemptive activity splitting, an activity that has started processing is 

allowed to pause only when resource levels are temporarily insufficient. However, it 

must be resumed at the next eligible processing time period until the activity is 
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 𝑷𝟐: Non-preemptive activity splitting RCPSP (or MRCPSP) 

 𝑷𝟑: Preemptive RCPSP (PRCPSP) (or PMRCPSP) 

The remaining sections of this paper are organized as follows. In Section 2, we 

review the literature relevant to our research problem under study. Next, the RCPSP 

model and different activity splitting cases are described mathematically in Section 3. In 

Section 4, a modified branch-and-bound algorithm is proposed that is subsequently tested 

and analyzed in Section 5. Finally, conclusions and directions for future research are 

offered in Section 6. 

 

2. Literature Review 

Literature related to project scheduling dates back to the 1950s. The development 

of the Program Evaluation and Review Technique (PERT) (Malcolm et al., 1959) and the 

Critical Path Method (CPM) (Kelley, 1963) made it possible to find minimum duration 

schedules for projects when resource availability was not constrained. Since the 

availability of resources in real-world projects (e.g., humans, machines, financial budget, 

etc.) is typically a constraint, researchers started to consider project scheduling problems 

with resource constraints. Before Johnson (1967) first used the term “resource-

constrained project scheduling problem,” researchers used different descriptors, 

including resource allocation in project networks (Davis,1966 and Laue,1968), resource 

allocation in project planning (Petrović, 1968), project scheduling with resource 
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constraints (Balas, 1971), and projects with limited resources (Wiest, 1964 and 1967). 

Several authors have reviewed the body of RCPSP research knowledge (Davis, 

1973, Icmeli et al., 1993, Özdamar and Ulusoy, 1995, Herroelen et al., 1998, Brucker et 

al., 1999, Kolisch and Padman, 2001, Hartmann and Briskorn, 2010 and Węglarz et al., 

2011). After years of research on the basic RCPSP, extensions started to attract research 

attention. According to the emphasis of different aspects, several major RCPSP 

extensions are summarized in Węglarz et al., (2011):  

 Multi-mode RCPSP (MRCPSP)  

 Generalized RCPSP (GRCPSP)  

 RCPSP with Generalized Precedence Constraints (RCPSP-GPC) 

 RCPSP with time-varying resource constraints  

 Bi-criteria and multi-criteria RCPSP  

 RCPSP or PRCPSP with activity splitting 

 Dynamic RCPSP  

In the classical RCPSP model, resource limits are assumed constant and activities 

are not allowed to split. Preemptive RCPSP and RCPSP with activity splitting allow 

activities to be split. Demeulemeester and Herroelen (1996) show that allowing 

preemption has limited benefit on makespan reduction but increases computational 

efforts when resource limits are constant. However, as pointed out in Kolisch et al., 

(1995) and Ballestin et al., (2008), the Patterson (1984) instance set tested in 
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Demeulemeester and Herroelen (1996) are not generated by controlled parameters and 

instances are not equally difficult to solve even with the same number of activities.  

Buddhakulsomsiri and Kim (2006, 2007) show that with time-varying resource 

profiles and resource vacations, preemption can reduce project makespan significantly. 

Ballestin et al., (2008, 2009) support the conclusion that preemption can decrease project 

length even with a limited number of preemptions allowed for each activity. But the 

“interruption” discussed in Buddhakulsomsiri and Kim (2006, 2007) and Ballestin et al., 

(2008, 2009) is in fact activity splitting that includes both preemption and non-

preemptive activity splitting. 

In most existing RCPSP research, activity splitting and preemption are considered 

to be interchangeable. Tk̉indt and Billaut (2006) discuss both preemption and activity 

splitting in the scheduling context that can be specified as prmp and split in the activity 

characteristic 𝛽  field, respectively, according to the classical 𝛼|𝛽|𝛾  classification of 

Graham et al., (1979) and the RCPSP classification scheme of Brucker et al., (1999) and 

Herroelen et al., (2001). Other research that treated activity splitting and preemption as 

equals can be found in Buddhakulsomsiri and Kim (2006), Debels and Vanhoucke (2006), 

Buddhakulsomsiri and Kim (2007), Damay et al. (2007), Peteghem and Vanhoucke 

(2010), and Węglarz et al., (2011).  

Another branch of preemptive scheduling research effort is to assume a 

preemption penalty. Basically a delay on time or setup cost will be incurred to continue a 
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job when it is preempted. Several different assumptions are made to the concept of 

preemption. Preemption-restart assumes an interrupted job can only restart from the 

beginning of the job which means all current progress on this job will be lost. Researches 

on this can be found at Zheng et al., (2006), Fung et al., (2008) and Hoogeveen, Potts, 

and Woeginger (2000). It makes sense that only on-line scheduling problems need to 

include a preemption-restart case since an off-line version including the preemption-

restart assumption is essentially non-preemption. Preemption-resume is the assumption 

that most researchers take such that an interrupted job can resume execution at the point 

where it is preempted with some penalty. Different discussions are also carried out on. 

Defining and quantifying preemption penalties is also a topic of interest. Several 

researchers have discussed time-related preemption penalties. For example, job-

dependent setup times are assumed on preempted jobs in Zdrzałka (1994), Magazine and 

Hall (1997), Schuurman and Woeginger (1999), Liu and Cheng (2002) and Liu and 

Cheng (2004); batch setup times are assumed in Chen (1993) and Monma and Potts 

(1993). Financial preemption penalty is also studied by many researches. Zheng, Xu, and 

Zhang (2007) assumes preemption cost and maximizing profit is the scheduling objective; 

Fung (2008) assumes a penalty cost that related to the value of each preempted job.  

Kaplan (1988) is one of the earliest researchers to consider single mode PRCPSP 

and to provide an exact algorithm for finding optimal solutions for small size problem 

instances. Demeulemeester and Herroelen (1996) prove that Kaplan’s solution algorithm 
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is incorrect and propose a branch-and-bound procedure instead. Debels and Vanhoucke 

(2006) also consider PRCPSP but with setup times. Ballestin et al., (2008) and 

Vanhoucke and Debels (2008) propose heuristics to solve PRCPSP while Damay et al., 

(2007) provide a linear programming-based algorithm. To the best of our knowledge, 

there are five papers that have considered PMRCPSP: Nudtasomboon and Randhawa 

(1997), Prashant Reddy et al., (2001), Buddhakulsomsiri and Kim (2006), 

Buddhakulsomsiri and Kim (2007), and Peteghem and Vanhoucke (2010). Węglarz et al., 

(2011) review the first four papers and point out potential research directions in 

PMRCPSP, such as change of mode when a preempted activity is resumed.  

However, existing research efforts on PRCPSP or PMRCPSP are focused on 

cases where activities can be interrupted at any integer time period. So solutions obtained 

from these research efforts are less than ideal for some real-world cases where activities 

allow splitting only when resources are insufficient.  

Hallefjord and Wallace (1998) point out that work pattern and calendarization 

have been neglected in most academic research of project scheduling. The idea of work 

patterns is treated as the origin of the idea of calendarization in project scheduling. Work 

patterns are defined by assigning either “workday” or “holiday” to each time period 

when executing tasks in a project. As tasks can only be executed on “workdays” and not 

on “holidays,” the idea of work patterns focuses on when the resource is available instead 

of the amount of the available resource. Preemption is discussed, but only a finite 
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number of preemptions are allowed in executing each task. Each task might be able to be 

divided into sub-tasks that do not allow further interruption when executing.  

Franck et al., (2001) and Neumann et al., (2003) represent the idea of 

calendarization by introducing a 0/1 binary function independent from resource 

constraints. General temporal constraints are given by minimum and maximum time lags. 

The minimum (maximum) time lags specify an activity can be started a certain unit of 

time after the start of another activity at the earliest (latest).The activity calendar 

specifies “work day” or “holiday” on activities instead of on resources. But in practice, if 

common resources are utilized by a large number of activities, it is easier to define a 

resource profile or a resource calendar than a large number of activity calendars. When a 

single mode is assumed, the activity completion time can be uniquely determined by the 

activity start time and the activity calendar.  

Most exact approaches for RCPSP are based on branch-and-bound algorithms 

such as in Talbot (1982), Patterson et al., (1989), Speranza and Vercellis (1993), Sprecher 

(1994), Sprecher et al., (1997), Hartmann and Drexl (1998), and Sprecher and Drexl 

(1998). Hartmann and Drexl (1998) propose a precedence tree-based branch-and-bound 

algorithm and conclude that it outperforms others. The branch-and-cut-based algorithm 

proposed by Zhu et al., (2006) is also very promising but requires a longer running time 

compared to the precedence tree-based branch-and-bound algorithm.  

The precedence tree-based branch-and-bound algorithm is essentially an 
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enumeration scheme that evaluates all possible partial schedules. Efficient bounding 

rules such as data reduction rules, initial solution rules, and time window rules can 

improve performance (Hartmann and Drexl, 1998). Buddhakulsomsiri and Kim (2006) 

modify the precedence tree-based branch-and-bound algorithm to solve PRCPSP and 

point out 97% of the instances they explore can be solved optimally within one hour, but 

there are still several instances that required over 40 hours obtaining an optimal solution. 

As pointed out by Węglarz et al., (2011), it is still computationally intractable to find 

optimal solutions for instances with more than 20 activities.  

In summary, previous efforts in RCPSP usually treat preemption and activity 

splitting interchangeable. However, we identify a case where activities can only split 

when there are insufficient resources. Time-varying resource constraints and resource 

vacations are considered and each activity has multiple processing modes where mode 

switching is not allowed. Our research can be considered as an extension of RCPSP with 

calendarization to include time-varying resource constraints and multiple processing 

modes for each activity.  

 

3. Problem Statement 

In a project network 𝐺(𝑁, 𝐴), the set of nodes 𝑁 represents the activity set(= node 

set)𝑁 (|𝑁| = 𝑛) and a set of directed arcs 𝐴 represents the precedence relations among 

activities. While there are generalized precedence constraints in the existing literature 
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(see Sprecher, 1994 and Brucker and Knust, 2006), precedence relations considered in 

this research are finish-to-start with zero time-lags relations. For network completeness 

purposes, a dummy node 0 is added as the super source node and a dummy node 𝑛 + 1 is 

added as the super sink node. Within this paper, we treat “activities”, “tasks,” and “jobs” 

interchangeably if not otherwise stated.  

 

Table 3: Mathematical Notation 

Symbols Description 

𝑗 Activity/task/job 

𝑡 Time period  

𝑘 Resource type  

𝑚 Activity processing mode  

𝑀𝑜𝑑𝑗  Set of available processing modes for activity 𝑗 

𝑝𝑗
𝑚 Processing duration for activity 𝑗 under mode 𝑚 

𝑟𝑗𝑘
𝑚 Required amount for resource type 𝑘 on activity 𝑗 under mode 𝑚 

𝑈𝑘 Available upper bound for non-renewable resource type 𝑘 

𝑈𝑘𝑡 Available upper bound for renewable resource type 𝑘 at time 𝑡 

𝑁 Activities in the project 𝑁 = {1, 2, … , 𝑛} 

𝑅𝑟 Set of renewable resources  

𝑅𝑛 Set of non-renewable resources  

𝑇 Maximum project planning horizon  

𝑟𝑎𝑑𝑗 Ready time for activity 𝑗 

𝑑𝑢𝑒𝑗 Due date for activity 𝑗 

𝐺(𝑁, 𝐴) Network 𝐺 with 𝑁 represents nodes and 𝐴 represents arcs  

𝑎𝑟𝑐(𝑖, 𝑗) Directed arc connecting node 𝑖 to node 𝑗 

𝑝𝑟𝑒𝑑(𝑗) Set of predecessor activities of activity 𝑗; 𝑝𝑟𝑒𝑑(0) = ∅ 

𝑠𝑢𝑐𝑐(𝑗) Set of successor activities of activity 𝑗; 𝑠𝑢𝑐𝑐(|𝑁| + 1) = ∅ 

 

Furthermore, both a set 𝑅𝑟of renewable resources and a set 𝑅𝑛 of non-renewable 

resources are considered in this paper. In each time period 𝑡 , the availability of a 

renewable resource 𝑘 (𝑘 ∈ 𝑅𝑟) is restricted to be between the 0 and the upper resource 
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limit 𝑈𝑘𝑡. The resource limit [0, 𝑈𝑘𝑡] is the “resource profile” function that specifies the 

availability of a particular resource over time. Throughout the entire project planning 

horizon [0, 𝑇] , the availability of a non-renewable resource 𝑘 (𝑘 ∈ 𝑅𝑛)  is limited 

between 0 and the upper resource limit 𝑈𝑘. Each activity 𝑗 (𝑗 ∈ 𝑁) has a set of available 

processing modes 𝑀𝑜𝑑𝑗  to choose from and each mode 𝑚 ∈ 𝑀𝑜𝑑𝑗  has a corresponding 

activity duration 𝑝𝑗
𝑚  and consumes 𝑟𝑗𝑘

𝑚  amount of resource 𝑘 . The mathematical 

formulations for 𝑷𝟏, 𝑷𝟐, and 𝑷𝟑 use similar mathematical notation and variables (Table 

3) to the 𝑷𝟑 formulation in Buddhakulsomsiri and Kim (2006).  

The primary decision variables are as follows: 𝑦𝑗
𝑚 = 1 if activity 𝑗 ∈ 𝑁 is being 

processed in mode 𝑚 ∈ 𝑀𝑜𝑑𝑗  and 0 otherwise; 𝑥𝑗𝑡
𝑚 = 1  if activity 𝑗 ∈ 𝑁  is being 

processed in mode 𝑚 ∈ 𝑀𝑜𝑑𝑗  at time 𝑡 = 1, 2, … , 𝑇  and 0  otherwise. In addition, 

variables 𝑆𝑗 and 𝐶𝑗 represent the start time and completion time of activity 𝑗 and the start 

time of the dummy finish activity 𝑆|𝑁|+1 is essentially the project makespan. Data inputs 

are resource profiles [0, 𝑈𝑘𝑡]  for renewable resources and [0, 𝑈𝑘]  for non-renewable 

resources. The PMRCPSP (𝑷𝟑) formulation as given by Buddhakulsomsiri and Kim 

(2006) can be represented as follows:  

min 𝑆|𝑁|+1                     (1) 

subject to 

∑ 𝑦𝑗
𝑚

𝑚∈𝑀𝑜𝑑𝑗
= 1,  1, ∀𝑗 ∈ 𝑁              (2) 

∑ 𝑥𝑗𝑡
𝑚𝑇

𝑡=1 = 𝑝𝑗
𝑚 ∙ 𝑦𝑗

𝑚,   ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗           (3) 
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𝐶𝑖 ≤ 𝑆𝑗 − 1,    ∀(𝑖, 𝑗) ∈ 𝐴               (4) 

𝑆𝑗 ≤ 𝑥𝑗𝑡
𝑚 ∙ 𝑡 + 𝑀(1 − 𝑥𝑗𝑡

𝑚), 𝑡 ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇      (5) 

𝐶𝑗 ≥ 𝑥𝑗𝑡
𝑚 ∙ 𝑡,     ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇        (6) 

𝑆𝑗 ≥ 𝑟𝑎𝑑𝑗 ,    ∀𝑗 ∈ 𝑁                      (7) 

𝐶𝑗 ≤ 𝑑𝑢𝑒𝑗 ,    ∀𝑗 ∈ 𝑁                      (8) 

∑ ∑ 𝑟𝑗𝑘
𝑚 ∙ 𝑥𝑗𝑡

𝑚
𝑚∈𝑀𝑜𝑑𝑗𝑗∈𝑁 ≤ 𝑈𝑘𝑡, 𝑡 ∀𝑘 ∈ 𝑅𝑟 , 𝑡 = 1, 2, … , 𝑇      (9) 

∑ ∑ ∑ 𝑟𝑗𝑘
𝑚 ∙ 𝑥𝑗𝑡

𝑚
𝑚∈𝑀𝑜𝑑𝑗𝑗∈𝑁

𝑇
𝑡=1 ≤ 𝑈𝑘, 𝑡𝑑∀𝑘 ∈ 𝑅𝑛       (10) 

𝑦𝑗
𝑚 ∈ {0, 1}, 1 ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗          (11) 

𝑥𝑗𝑡
𝑚 ∈ {0, 1},     ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇             (12) 

𝑆𝑗 ≥ 0, ∀𝑗 ∈ 𝑁                        (13) 

𝐶𝑗 ≥ 0, ∀𝑗 ∈ 𝑁                        (14) 

The objective function (1) minimizes the project makespan which can be 

represented by the starting time of the dummy finish activity |𝑁| + 1. Constraint set (2) 

ensures exactly one mode is selected for each activity. Constraint set (3) ensures that if 

mode 𝑚 is selected for activity 𝑗, the total processing time must equal the corresponding 

duration. Constraint sets (4) – (6) are precedence constraints and a big number 𝑀 can be 

set as the maximum project planning horizon 𝑇. The “-1” in (4) removes strict inequality 

given integer time units (e.g. an arc (2, 3) and activity 3 starts on time unit 5, 𝑆3 = 5, 

activity 2 has to complete before or on time unit 4 𝐶2 ≤ 5 − 1). Activity ready times and 

due dates constraints are in (7) - (8). Constraint sets (9) – (10) specify resource 
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availability for both renewable resources and non-renewable resources, respectively. 

Constraint sets (11) – (14) are binary (11 and 12) and non-negativity (13 and14) 

constraints.  

To modify the 𝑷𝟑 formulation for 𝑷𝟏, constraint set (15) is added to ensure that 

the duration from the activity start time to the completion time equals the activity 

duration. In other words, there is no activity splitting for any activity.  

𝐶𝑗 − 𝑆𝑗 = ∑ ∑ 𝑥𝑗𝑡
𝑚𝑇

𝑡=1𝑚∈𝑀𝑜𝑑𝑗
− 1,    ∀𝑗 ∈ 𝑁                  (15) 

To modify the 𝑷𝟑  formulation for 𝑷𝟐 , an indicator function is introduced to 

specify whether an activity 𝑗 in mode 𝑚 is feasible to process at a certain time period:  

𝛾𝑗𝑘𝑡
𝑚 = 1[0,𝑈𝑘𝑡](𝑟𝑗𝑘

𝑚) ∶= {
1 if 𝑟𝑗𝑘

𝑚 ∈ [0, 𝑈𝑘𝑡], ∀𝑡 

0 otherwise
            (16) 

Additional decision variables 𝑜𝑗𝑡 and 𝑞𝑗𝑡 are defined to indicate whether a time 

period 𝑡 is between the start time 𝑆𝑗 and the completion time 𝐶𝑗 of activity 𝑗.  

𝑜𝑗𝑡 = {
1 if 𝑡 ≤ 𝐶𝑗

0 otherwise
,    ∀𝑗 ∈ 𝑁                     (17) 

𝑞𝑗𝑡 = {
1 if 𝑡 ≥ 𝑆𝑗

0 otherwise
,    ∀𝑗 ∈ 𝑁                    (18) 

Additional constraint sets (19) – (22) are included to support the new decision 

variables 𝑜𝑗𝑡  and 𝑞𝑗𝑡 . As before, a big number 𝑀 can be set as the maximum project 

planning horizon 𝑇 . Constraint sets (23) – (24) restrict that an activity 𝑗  cannot be 

preempted at time 𝑡 if it is eligible. Constraint sets (25) – (26) are additional variable 

type constraints. 

𝑀 ∙ 𝑜𝑗𝑡 ≥ 𝐶𝑗 − 𝑡 + 1,    ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇              (19) 
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𝑀 ∙ (1 − 𝑜𝑗𝑡) ≥ 𝑡 − 𝐶𝑗,    ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇            (20) 

𝑀 ∙ 𝑞𝑗𝑡 ≥ 𝑡 − 𝑆𝑗 + 1, 𝐸𝑞∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇             (21) 

𝑀 ∙ (1 − 𝑞𝑗𝑡) ≥ 𝑆𝑗 − 𝑡,    ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇              (22) 

𝑥𝑗𝑡
𝑚 ≥ 𝑦𝑗

𝑚 + 𝛾𝑗𝑘𝑡
𝑚 + 𝑜𝑗𝑡 + 𝑞𝑗𝑡 − 3,   ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑘 ∈ 𝑅𝑛, 𝑡 =

1, 2, … 𝑇   (23) 

4 ⋅ 𝑥𝑗𝑡
𝑚 ≤ 𝑦𝑗

𝑚 + 𝛾𝑗𝑘𝑡
𝑚 + 𝑜𝑗𝑡 + 𝑞𝑗𝑡, 𝑡 ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑘 ∈ 𝑅𝑛, 𝑡 = 1, 2, … 𝑇  

(24) 

𝑜𝑗𝑡 ∈ {0, 1}, 1 ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇               (25) 

𝑞𝑗𝑡 ∈ {0, 1},    ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇               (26) 

 

4. Approach 

The focus of this work is to examine the difference between problems 𝑷𝟏, 𝑷𝟐, 

and 𝑷𝟑 in terms of problem settings, mathematical formulation, and optimal solution 

properties. In this section, several observations for problems 𝑷𝟏 , 𝑷𝟐 , and 𝑷𝟑  are 

provided, along with an exact algorithm that is proposed to solve 𝑷𝟐 optimally for small 

size problem instances. Considering some basic scenarios for 𝑷𝟏 , 𝑷𝟐 , and 𝑷𝟑 , the 

following two propositions follow: 

Proposition 1. All feasible solutions for 𝑷𝟏 are also feasible for 𝑷𝟐; all feasible 

solutions for 𝑷𝟐 are also feasible for 𝑷𝟑. Therefore, all feasible solutions for 𝑷𝟏 are 

also feasible for 𝑷𝟑.  
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Solutions obtained from 𝑷𝟏 can be considered allowing activity splitting, but no 

activity has been split. The same argument can apply from 𝑷𝟏 to 𝑷𝟑 and from 𝑷𝟐 to 𝑷𝟑. 

Proposition 2. When there are constant resource limits and no resource vacations, 

the solution space of 𝑷𝟏  is the same as the solution space of 𝑷𝟐 , and the optimal 

solution for 𝑷𝟐 is also feasible and optimal for 𝑷𝟏.  

The argument is straightforward since no activity will be split when there are 

constant resource limits and no resource vacations. Thus solutions obtained from 𝑷𝟐 are 

essentially the same as those for 𝑷𝟏.  

 

Table 4: Notation for precedence tree-based branch-and-bound algorithm 

Notation Description 

𝑔 Precedence tree level 

𝑗𝑔 Activity 𝑗 selected at level 𝑔 of the precedence tree 

𝑚𝑗𝑔
 Selected mode for activity 𝑗𝑔 

𝑀𝑜𝑑𝑗𝑔
 Set of available modes for activity 𝑗𝑔 

𝑆𝑗𝑔
 Start time of activity 𝑗𝑔 

𝐶𝑗𝑔
 Completion time of activity 𝑗𝑔 

𝑝
𝑗𝑔

𝑚𝑗𝑔
 Duration of activity 𝑗𝑔 at mode 𝑚𝑗𝑔

 

𝑆𝐽𝑔 Set of already scheduled activities at level 𝑔 

𝐴𝐽𝑔 
Set of active activities at level 𝑔(active activity: An activity that has not 

been scheduled but all of its predecessors are completely scheduled.) 

𝐸𝑆𝑇𝑗 Earliest precedence feasible start time of activity 𝑗 

 

Beyond these simple scenarios, a modified precedence tree-based branch-and-

bound algorithm is proposed to solve 𝑷𝟐 . Table 4 provides basic notation for the 

algorithm.   
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4.1 Precedence tree-based branch mechanism 

The precedence tree-based branch-and-bound algorithm is essentially an 

enumeration scheme that evaluates all possible partial schedules. The pseudo code below 

illustrates the steps in the algorithm.  

 

Algorithm: Precedence tree-based branch-and-bound algorithm for 𝑷𝟐: 

Step 1: Initialization  

Set the precedence tree level 𝑔 = 1;  

Schedule the dummy start activity 𝑗 = 0 at time zero: 𝑗1 = 0, 𝑚𝑗1
= 1, 𝑆𝑗1

=

0;  

Set the already scheduled activity 𝑆𝐽1 = ∅.  

Step 2: Update the set of active activities  

Increase the precedence tree level 𝑔 = 𝑔 + 1 

Update the set of already scheduled activities 𝑆𝐽𝑔 = 𝑆𝐽𝑔−1 ∪ {𝑗𝑔−1} 

Compute the set of active activities 𝐴𝐽𝑔 = {𝑗 ∈ 𝑁\𝑆𝐽𝑔|𝑝𝑟𝑒𝑑(𝑗) ⊆ 𝑆𝐽𝑔} 

If the last activity (dummy completion) is active, i.e., 𝑛 + 1 ∈ 𝐴𝐽𝑔, then store 

the current solution and go to step 5. Else, go to step 3.  

Step 3: Select the next activity from 𝐴𝐽𝑔 to be scheduled  

If there is no untested activity left in 𝐴𝐽𝑔, then go to step 5 

Else, randomly select an untested activity 𝑗𝑔 ∈ 𝐴𝐽𝑔 

Step 4: Select a mode for the selected job and schedule the activity  

If there is no untested mode left in {1, … , 𝑀𝑜𝑑𝑗𝑔
}, then go to step 3;  

Else, randomly select an untested mode 𝑚𝑗𝑔
∈ {1, … , 𝑀𝑜𝑑𝑗𝑔

}.  

Compute the earliest precedence feasible start time, 𝐸𝑆𝑇𝑗𝑔
= max {𝐶𝑗𝑔

|𝑖 ∈

𝑝𝑟𝑒𝑑(𝑗𝑔)} + 1  

Compute the start time 𝑆𝑗𝑔
 and completion time 𝐶𝑗𝑔

 based on the following 

constraints to satisfy non-preemptive activity splitting:  

1. 𝑆𝑗𝑔
≥ 𝐸𝑆𝑇𝑗𝑔

  

2. 𝑝
𝑗𝑔

𝑚𝑗𝑔 = ∑ (1[0,𝑈𝑘𝑡])
𝐶𝑗𝑔−1

𝑡=𝑆𝑗𝑔
  

3. ∀𝑡 ∈ [𝑆𝑗𝑔
, 𝐶𝑗𝑔

− 1], if 1[0,𝑈𝑘𝑡] = 1, then 𝑥𝑗𝑡
𝑚 = 1 

Go to step 2.  

Step 5: Backtracking  

Decrease the precedence tree level by 1, 𝑔 = 𝑔 − 1 
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If the precedence tree level is 1, then STOP;  

Else to go step 4.  

 

4.2 Bounding Rules 

We adopt basic bounding rules in Hartmann and Drexl (1998) and in 

Buddhakulsomsiri and Kim (2006) including the time window rule (latest completion 

time), data reduction rules, and precedence tree-specific rules. Since non-renewable 

resources are not considered in Buddhakulsomsiri and Kim (2006), the mode infeasibility 

rule regarding non-renewable resources is adopted from Hartmann and Drexl (1998). The 

𝑷𝟏 version of this branch-and-bound algorithm can be found in both Hartmann and 

Drexl (1998) and Buddhakulsomsiri and Kim (2006), while the 𝑷𝟑 version can be found 

in Buddhakulsomsiri and Kim (2006).  

For every activity 𝑗, the lower bound for the activity duration 𝑝𝑗
𝐿𝐵 is the shortest 

duration among all modes 𝑝𝑗
𝐿𝐵 = min {𝑝𝑗

𝑚}; the lower bounds for resource requirements 

𝑟𝑗𝑘
𝐿𝐵 are the shortest resource usages among all modes for all resource types 𝑟𝑗𝑘

𝐿𝐵 =

min {𝑟𝑗𝑘
𝑚}. It is worth mentioning that the lowest duration and lowest resource usages 

often belong to different modes.  

 

4.3 Modified Time Window Rule 

The traditional time window rule uses the critical path approach to determine the 

𝐸𝑆𝑇  (earliest start time), 𝐸𝐹𝑇  (earliest finish time), 𝐿𝑆𝑇  (latest start time) and 𝐿𝐹𝑇 
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(latest finish time) time window without resource consideration. However since for 

RCPSP where resource availability plays an important role in determining a schedule, 

adding resource constraints can tighten the scheduling time window for each activity. 

Given resource profiles for renewable resources, the 𝐸𝑆𝑇  and 𝐿𝐹𝑇  not only need to 

satisfy precedence constraints, but also need to satisfy resource constraints assuming the 

lower bound resource requirements for each activity. For 𝑷𝟏 where activity splitting is 

not allowed and 𝑷𝟐  where preemption is not allowed, additional activity splitting 

constraints also need to be considered. A detailed description can be found below.  

 

Time Windows Determination  

Forward Pass 

Initialize the dummy start activity into the active activity set 𝐴𝐽 = {0}, initialize the 

flagged activity set 𝐹𝐺 = ∅ 

Determine the 𝐸𝑆𝑇  and 𝐸𝐹𝑇  for the dummy start activity: 𝐸𝑆𝑇𝑜 = 𝐸𝐹𝑇0 = 0 , add 

dummy start activity into 𝐹𝐺 = {0} 

Exam each activity 𝑗, if each predecessor activity 𝑙 of activity 𝑗 belongs to flagged 

activity: ∀𝑙 ∈ 𝑝𝑟𝑒𝑑(𝑗), 𝑙 ∈ 𝐹𝐺 , determine the 𝐸𝑆𝑇𝑗 and 𝐸𝐹𝑇𝑗  for activity 𝑗 such that 

𝐸𝑆𝑇𝑗 = min {𝑡∗}, 𝐸𝐹𝑇𝑗 = min{𝑡∗∗}:  

𝑡∗ ≥ max𝑙∈𝑝𝑟𝑒𝑑(𝑗){𝐸𝐹𝑇𝑙} + 1 

∀𝑡 ∈ [𝑡∗, 𝑡∗∗], ∑ 𝛾𝑗𝑘𝑡
𝐿𝐵𝑡=𝑡∗∗

𝑡=𝑡∗ ≥ 𝑝𝑗
𝐿𝐵 for ∀𝑘 ∈ 𝑅𝑟 

If no such time 𝑡∗  and 𝑡∗∗  can be found, return infeasible. For 𝑷𝟏  where activity 

splitting is not allowed, these single unit time periods need to be continuous: 𝑡∗∗ =
𝑡∗ + 𝑝𝑗

𝐿𝐵 − 1 ; for 𝑷𝟐  where activity splitting is allowed but preemption is not 

allowed: ∀𝑡 ∈ [𝑡∗, 𝑡∗∗], 𝛾𝑗𝑘𝑡
𝐿𝐵 = 1; for 𝑷𝟑, these single unit time periods do not need to 

be continuous.  

If the dummy finish activity 𝑁  is flagged, set 𝐸𝑆𝑇𝑁 = 𝐸𝐹𝑇𝑁 = 𝐿𝑆𝑇𝑁 = 𝐿𝐹𝑇𝑁  and 

start backward pass.  

Backward Pass 

Backward pass follows the similar logic as the forward pass until the dummy start 

activity is flagged. To determine the 𝐿𝐹𝑇𝑗  and 𝐿𝑆𝑇𝑗  for activity 𝑗  such that 𝐿𝐹Tj =

max {𝑡∗}, 𝐿𝑆𝑇𝑗 = max{𝑡∗∗}:  

𝑡∗ ≤ min𝑙∈𝑠𝑢𝑐𝑐(𝑗){𝐿𝑆𝑇𝑙} − 1 
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∀𝑡 ∈ [𝑡∗∗, 𝑡∗], ∑ 𝛾𝑗𝑘𝑡
𝐿𝐵𝑡=𝑡∗

𝑡=𝑡∗∗ ≥ 𝑝𝑗
𝐿𝐵 for ∀𝑘 ∈ 𝑅𝑟 

If no such time 𝑡∗ and 𝑡∗∗can be found, return infeasible.  

For 𝑷𝟏, these single unit time periods need to be continuous: 𝑡∗ = 𝑡∗∗ + 𝑝𝑗
𝐿𝐵 − 1; for 

𝑷𝟐 where activity splitting is allowed but preemption is not allowed: ∀𝑡 ∈ [𝑡∗∗, 𝑡∗], 
𝛾𝑗𝑘𝑡

𝐿𝐵 = 1; for 𝑷𝟑, these single unit time periods do not need to be continuous.  

If the dummy start activity is flagged, stop the algorithm.  

 

4.4 Data Reduction Rules  

Before scheduling a project, initial data screening is conducted to remove 

infeasible or dominated modes. A mode 𝑚 for activity 𝑗 is infeasible or dominated if one 

of the following conditions holds:  

 Infeasible regarding to a non-renewable resource such that even if all other activities 

choose the LB resource requirement, the total non-renewable resource required is 

more than available limit:  

𝑟𝑗𝑘
𝑚 + ∑ 𝑟𝑙𝑘−𝐿𝐵

𝑚

𝑙≠𝑗,𝑙∈𝑁

> 𝑈𝑘, ∀𝑘 ∈ 𝑅𝑛 

 Infeasible regarding to a renewable resource and activity duration if that during the 

[ 𝐸𝑆𝑇𝑗 , 𝐿𝐹𝑇𝑗 ] time window, there are not enough time periods that satisfy the 

renewable resource requirement and activity duration. Mathematically, ∄𝑡∗, 𝑡∗∗ ∈

[𝐸𝑆𝑇𝑗 , 𝐿𝐹𝑇𝑗], such that ∀𝑡 ∈ [𝑡∗, 𝑡∗∗], ∑ 𝛾𝑗𝑘𝑡
𝑚𝑡=𝑡∗∗

𝑡=𝑡∗ ≥ 𝑝𝑗
𝑚  for ∀𝑘 ∈ 𝑅𝑟 . For 𝑷𝟏 where 

activity splitting is not allowed, these single unit time periods need to be continuous: 

𝑡∗∗ = 𝑡∗ + 𝑝𝑗
𝑚 ; for 𝑷𝟐  where activity splitting is allowed but preemption is not 

allowed: ∀𝑡 ∈ [𝑡∗, 𝑡∗∗], 𝛾𝑗𝑘𝑡
𝑚 = 1; for 𝑷𝟑, these single unit time periods do not need to 

be continuous.  
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 A mode 𝑗𝑚 is dominated by mode 𝑗𝑚∗
 for activity 𝑗 if it requires at least as resources 

and has a duration that is at least as long:  

𝑝𝑗
𝑚 ≥ 𝑝𝑗

𝑚∗
, 𝑟𝑗𝑘

𝑚 ≥ 𝑟𝑗𝑘
𝑚∗

, ∀𝑘 ∈ 𝑅 

 

4.5 Initial Solutions  

One main modification of the branch-and-bound algorithm is to add a better 

initial solution as bounding rules. We use multiple priority rule-based simple heuristics 

and return the best solution found by several simple heuristics as the initial solution.  

To solve MRCPSP, priority rule-based heuristics combine mode selection rules 

which determine mode assignments for each activity and activity priority rules which 

specify the activity loading sequence. A combination of a mode selection and an activity 

selecting rule uniquely determines a schedule (however the reverse does not hold true 

since different rules might reach the same schedule). A schedule generation scheme (SGS) 

is necessary to determine the transforming mechanism from a heuristic rule to a schedule. 

Detail description of the SGS can be found in Cheng et al., (2013). Other discussions of 

SGSs can be found at references like Sprecher et al., (1995) and Kolisch and Hartmann 

(1999). Table 5 and Table 6 summarize most commonly studied mode selection and 

activity priority rules and are all included in the initial solution generation. SDM 

(shortest duration mode) selects mode with shortest processing duration among all 

available processing modes for an activity; LTRU_R (least total renewable resource 
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usage) rule chooses the mode that utilizes the least amount of renewable resource while 

LTRU_N (least total non-renewable resource usage) prioritizes the mode that requires the 

least amount of non-renewable resource.  

 

Table 5: Mode Selection Rules 

Priority Rules Mathematical Formula Selected Reference 

SDM (shortest duration 

mode) 

{𝑚 ∈ 𝑀𝑜𝑑𝑗|𝑝𝑗
𝑚

= 𝑚𝑖𝑛∀𝑙∈𝑀𝑜𝑑𝑗
𝑝𝑗

𝑙} 

Boctor (1996), 

Buddhakulsomsiri and 

Kim (2007) 

LTRU_R (least total 

renewable resource usage) 

{𝑚 ∈ 𝑀𝑜𝑑𝑗| ∑ (𝑟𝑗𝑘
𝑚 ∙ 𝑝𝑗

𝑚)
𝑘∈𝑅𝑟

= min∀𝑙∈𝑀𝑜𝑑𝑗
∑ (𝑟𝑗𝑘

𝑙 ∙ 𝑝𝑗
𝑙)

𝑘∈𝑅𝑟
} 

Boctor (1996), 

Buddhakulsomsiri and 

Kim (2007) 

LTRU_N (least total non-

renewable resource usage) 

{𝑚 ∈ 𝑀𝑜𝑑𝑗| ∑ 𝑟𝑗𝑘
𝑚

𝑘∈𝑅𝑛

= min∀𝑙∈𝑀𝑜𝑑𝑗
∑ 𝑟𝑗𝑘

𝑙

𝑘∈𝑅𝑛
} 

Boctor (1996), 

Buddhakulsomsiri and 

Kim (2007) 

 

Table 6: Activity Priority Rules 

Priority Rules Mathematical Formula Selected Reference 

SPT (shortest processing 

time) 
{𝑗 ∈ 𝑁|𝑝𝑗

𝑚 = min
𝑙∈𝑁

𝑝𝑙
𝑚}  

Alvarez-Valdes and 

Tamarit (1989), Lova et 

al., (2006) 

LPT (longest processing 

time) 
{𝑗 ∈ 𝑁|𝑝𝑗

𝑚 = max
𝑙∈𝑁

𝑝𝑙
𝑚}  

Alvarez-Valdes and 

Tamarit (1989), Lova et 

al., (2006) 

ERT (earliest ready time) {𝑗 ∈ 𝑁|𝑟𝑎𝑑𝑗 = max
𝑙∈𝑁

𝑟𝑎𝑑𝑙}  This research 

EDD (earliest due date) {𝑗 ∈ 𝑁|𝑑𝑢𝑒𝑗 = min
𝑙∈𝑁

𝑑𝑢𝑒𝑙}  This research  

MSLK (minimum 

slackness) 

{𝑗 ∈ 𝑁|𝐿𝑆𝑇𝑗 − 𝐸𝑆𝑇𝑗 =

min
𝑙∈𝑁

(𝐿𝑆𝑇𝑙 − 𝐸𝑆𝑇𝑙)}   

Davis and Patterson 

(1975) 

Buddhakulsomsiri and 

Kim (2007) 

MLST (minimum latest 

start time) 
{𝑗 ∈ 𝑁|𝐿𝑆𝑇𝑗 = min

𝑙∈𝑁
𝐿𝑆𝑇𝑙}  

Alvarez-Valdes and 

Tamarit (1989), 

Kolisch (1995) 

MLFT (minimum latest 

finish time) 
{𝑗 ∈ 𝑁|𝐿𝐹𝑇𝑗 = min

𝑙∈𝑁
𝐿𝐹𝑇𝑙}  

Davis and Patterson 

(1975) 
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MTS (maximum total 

successors) 

{𝑗 ∈ 𝑁||𝑠𝑢𝑐𝑐(𝑗)| =

max
𝑙∈𝑁

|𝑠𝑢𝑐𝑐(𝑙)|}  

Alvarez-Valdes and 

Tamarit (1989) 

GRPW (greatest rank 

positional weight) 

{𝑗 ∈ 𝑁|𝑝𝑗
𝑚 +

∑ 𝑝𝑗
𝑚

𝑖∈𝐴𝐿𝐿_𝑠𝑢𝑐𝑐(𝑗) =

max
𝑙∈𝑁

(𝑝𝑗
𝑚 + ∑ 𝑝𝑗

𝑚
𝑖∈𝐴𝐿𝐿_𝑠𝑢𝑐𝑐(𝑗) )}   

Helgeson and Birnie 

(1961), 

Buddhakulsomsiri and 

Kim (2007) 

 

Activity priority rules determine how to select the next activity to be scheduled 

along with precedence constraints. The SPT (shortest processing time) rule chooses the 

activity with the shortest activity duration. The LPT (longest processing time) rule selects 

an activity with the longest duration and is the basic scheduling method applied in the 

current practice of the Install/Qual process. The ERT (earliest ready time) rule selects the 

activity with the earliest ready time and the EDD (earliest due date) rule chooses the 

activity with the earliest due date. MSLK (minimum slackness) is the rule that the 

activity with the minimum slackness has the highest priority to be scheduled first. 

Slackness is obtained from the difference between LST (latest start time) and EFT 

(earliest finish time) of an activity. LFT (latest finish time) and EST (earliest state time) 

are calculated by backward recursion method in (Pinedo, 2008) with consideration of the 

due date and ready time of each activity (a LFT cannot be later than the due date, and an 

EST cannot be earlier than its ready time). MMSLK (modified minimum slackness) 

modifies the MSLK rule by including activity durations. MLST (minimum latest start 

time) is the rule that prioritizes the activity with the smaller LST. MLFT (minimum latest 

finish time) is the rule that gives priority to the activity with the smallest LFT. MTS 



 

37 

(maximum total successors) rule prioritizes the activity with the maximum number of 

immediate successors. GRPW (greatest rank positional weight) is a widely used rule 

originally proposed by Helgeson and Birnie (1961) as a line balancing method in the 

machine scheduling literature. For single mode RCPSP, this rule prioritizes the activity 

with the highest cumulative sum of the individual processing times and the processing 

time of all successors of that activity. The sum is the so-called “positional weight” of that 

activity (see Alvarez-Valdes and Tamarit, 1989).  

 

5. Computational Experiments 

5.1 Experimental Design 

As discussed in Buddhakulsomsiri and Kim (2006), allowing preemption can 

reduce the makespan when resource constraints are time-varying. In this section, 

computational experiments are conducted to identify factors and problem characteristics 

that lead to makespan reduction in problems 𝑷𝟐 and 𝑷𝟑 as compared to 𝑷𝟏. 

The tested problem instances are from a well-known online library PSPLIB 

(Kolisch and Sprecher, 1997) and generated by a project generator ProGen (Kolisch et al., 

1995). However, the benchmark problem instances from PSPLIB and ProGen do not 

consider time-varying resource profiles, resource vacations or activity ready times and 

due dates. In this research, time-varying resource constraints are generated by 

introducing randomness around the constant resource limits. Other approaches for 
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generating time-varying resource constraints can be found in Klein (2000) and Böttcher 

et al., (1999). Resource vacations are generated by adding vacation patterns. Activity 

ready times and due dates are randomly generated based on the entire project horizon 𝑇. 

Details of our instance modification procedure can be found in the appendix. Six major 

factors considered in this experiment are briefly discussed in the following paragraphs. 

Network complexity (𝑁𝐶), resource factor (𝑅𝐹), resource strength (𝑅𝑆) are adopted from 

PSPLIB and ProGen. Resource range (𝑅𝑅) and), resource vacation (𝑅𝑉 ) and ready 

time/due date (𝑅𝐷) are new proposed parameters.  

 

5.2 Network Complexity (𝑵𝑪) 

Network complexity is measured as the average number of non-redundant arcs 

per node including the dummy start and completion nodes. An arc (ℎ, 𝑗) is redundant if 

there are arcs (𝑖0, 𝑖1), …, (𝑖𝑠−1, 𝑖𝑠) in the network with 𝑖0 = ℎ, 𝑖𝑠 = 𝑗 and 𝑠 ≥ 2 (Kolisch 

et al., 1995). A detailed description on how to construct a network for a given 𝑁𝐶 level 

can be found in Kolisch et al., (1995) and Kolisch and Sprecher (1997). Hartmann and 

Kolisch (2000) and Buddhakulsomsiri and Kim (2006) point out that the 𝑁𝐶 factor does 

not significantly affect the makespan difference between 𝑷𝟏 vs. 𝑷𝟑. In this experiment, 

we set network complexity factor constant since the activity precedence network in the 

practical semiconductor problem is not a decision point (precedence relation among 

activities are pre-determined and will not be impacted).  
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5.3 Resource Factor (𝑹𝑭) 

Resource factor measures the average percentage of resource types required per 

activity. 𝑅𝐹 = 1 means each activity requires all types of resources while 𝑅𝐹 = 0 means 

no activity requires any resource (scheduling without resource constraints). In the 

experiment, 𝑅𝐹 has two levels: 𝑅𝐹 = 0.5 and 𝑅𝐹 = 1. 

 

5.4 Resource Strength (𝑹𝑺) 

Resource strength measures the “tightness (richness)” of a resource and it is 

normalized on a 0 – 1 scale. 𝑅𝑆 = 0 (tightest) means the minimum resource level such 

that there is a feasible schedule; 𝑅𝑆 = 1 (richest) indicates all resource are available 

enough so that all activities can be scheduled at their earliest start time. In the experiment, 

two levels of 𝑅𝑆 are selected, 𝑅𝑆 = 0.2 and 𝑅𝑆 = 0.7, since they are the basic levels in 

PSPLIB. 

 

5.5 Resource Range (𝑹𝑹) 

Resource range is a percentage value that measures the maximum width of 

resource limits over time. The resource limit 𝑈𝑘𝑡 is generated randomly using a uniform 

distribution:  

𝑈𝑘𝑡~uniform(𝑈𝑘0
′ (1 − 𝑅𝑅), 𝑈𝑘0

′ (1 + 𝑅𝑅)) 

in which 𝑈𝑘0
′  is assumed to be the “baseline” level of renewable resource 𝑘. In 
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Figure 6, the resource limit in (a) is constant (𝑅𝑅 = 0). Figure 6(b) has a time-varying 

resource profile at a relative low level (𝑅𝑅 = 0.25). The dashed lines around the constant 

resource level indicate the upper and lower bound of the uniformly distributed random 

numbers. The time-varying resource limit is at a medium level when 𝑅𝑅 = 0.5 (6c) and 

at a high level when 𝑅𝑅 = 0.75 (6d). 𝑅𝑅 = 1.0 is not considered since the resource level 

could be zero when 𝑅𝑅 = 1.0.  

 

5.6 Resource Vacation (𝑹𝑽) 

Resource vacation is a binary factor that captures the fact that it is very possible 

that a resource is totally unavailable in some time periods. For example, human resources 

in many practical cases are not available during weekends and holidays. Second, 

unavailable resource time periods usually follow some kind of pattern. If a resource is 

only available five days per week, the resource is not available two days during every 

seven-day period.  
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Figure 6: Resource range levels 

 

If 𝑅𝑉 = 0 (false), no resource vacations are considered in the resource profile, 

while for 𝑅𝑉 = 1 (true), resource vacations are included. To apply the idea of resource 

vacations, the pattern of vacations should be defined first. Since the resource vacation 

patterns are highly dependent on the actual problem, we do not provide a general 

formulation for the resource pattern. In this experiment, 𝑅𝑉 = 1 indicates that there is 

one day with no resource available every 14 days. The pattern of 2 weeks = 14 days is 

selected since the activity durations from PSPLIB and ProGen are from 1 to 10, if the 

vacation is every seven days, there might not be any feasible solution when there is 

activity longer than seven days for 𝑃1. Figure 7(a) is the resource profile for 𝑅𝑅 = 0 and 

𝑅𝑉 = 0, while Figure 7(b) represents 𝑅𝑅 = 0 and 𝑅𝑉 = 1; Figure 7(c) is a resource 

profile generated by setting 𝑅𝑅 = 0.75 and 𝑅𝑉 = 0, and Figure 7(d) is a resource profile 

generated by setting 𝑅𝑅 = 0.75 and 𝑅𝑉 = 1.  
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Figure 7: Resource range and resource vacation factors 

 

One thing worth mentioning is that the differences between 𝑷𝟏, 𝑷𝟐, and 𝑷𝟑are 

related to renewable resources since activity splitting and preemption are time-related 

and thus only apply to renewable resources. Even though non-renewable resources are 

considered in our research, they are not included as possible factors that might 

distinguish 𝑷𝟏, 𝑷𝟐, and 𝑷𝟑 . Thus, 𝑅𝑆𝑅  and 𝑅𝐹𝑅  are resource strength and resource 

factor for renewable resources, respectively.  

 

5.7 Ready Time and Due Date (𝑹𝑫) 

Activity ready times and due dates are well-studied concepts in the machine 

scheduling literature (Pinedo, 2008). In the project scheduling literature, generalized 
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precedence constraints can be indirectly used to model activity ready times and deadlines 

(De Reyck and Herroelen, 1999). In this research, two levels (loose, tight) of activity 

ready times and due dates settings are generated based on the project horizon as follows. 

If 𝑅𝐷 = loose: 𝑟𝑎𝑑𝑗~uniform(0, 5% ∙ 𝑇), 𝑑𝑢𝑒𝑗~uniform(95% ∙ 𝑇, 𝑇); while if 𝑅𝐷 =

tight : 𝑟𝑎𝑑𝑗~uniform(0, 10% ∙ 𝑇) , 𝑑𝑢𝑒𝑗~uniform(90% ∙ 𝑇, 𝑇) . The determining of 

using 5% as loose and 10% for tight ready times and due dates levels is based on 

preliminary test runs.  

The computational experiment contains two parts in order to answer to different 

questions. The first part is to show whether there is a significant makespan difference 

between 𝑷𝟏 , 𝑷𝟐 , and 𝑷𝟑  while the second part of the experiment is to identify 

significant factors that can distinguish 𝑷𝟏, 𝑷𝟐, and 𝑷𝟑. Each tested project instance has 

three alternative processing modes. The activity duration is generated from a discrete 

uniform distribution from [1, 10] time units. There are two types of renewable resources 

and two types of non-renewable resources. Table 7 summarizes the major factors levels 

that are studied.  

The experiment is a full factorial design with 8 replicates to balance the 

computational time and accuracy of the experiment. Theoretically there would be 2 ∙ 2 ∙

2 ∙ 4 ∙ 2 ∙ 2 ∙ 2 ∙ 8 = 2048  problem instances but only a total of 1538 instances are 

generated and tested since certain parameter settings (e.g. 𝑅𝑆𝑅 = 0.25) are not able to 

construct an instance.  
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Table 7: Factor levels overview  

Factors 𝑁 𝑅𝐹𝑅 𝑅𝑆𝑅 𝑅𝑅 𝑅𝑉 𝑅𝐷 Initial Solution 

Levels 12 

16 

0.5 

1 

0.25 

0.75 

0 

0.25 

0.5 

0.75 

0 

1 

Loose 

Tight 

No 

Yes  

 

 The precedence tree-based branch-and-bound algorithm is programmed in C++ 

(Microsoft Visual Studio 2008 version: http://www.microsoft.com/visualstudio), and the 

experiment was conducted on a desktop with an Intel® 2 Quad Core™ CPU Q9400 @ 

2.66GHz, 4.00 GB installed memory, and the Windows 7 Enterprise 64-bit Operating 

System. The computational time for most problem instances is less than one minute, but 

there are a few instances that require a few hours to solve. 

 

5.8 Experiment part 1: Binary response 

For each problem instance tested in experiment part 1, the response is either a 1 

(makespan difference) or a 0 (no makespan difference) between 𝑷𝟏 vs. 𝑷𝟑, 𝑷𝟏 vs. 𝑷𝟐, 

and 𝑷𝟐  vs. 𝑷𝟑 . The percentage of instances that have makespan improvement is 

calculated through equation (27).  

% 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬 𝐰𝐢𝐭𝐡 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭 =  
# 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐝 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

# 𝐭𝐨𝐭𝐚𝐥 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬
            (27) 

 

Table 8: Results summary for part 1 

Scenarios % instances with improvement 

 Total 𝑅𝑅 = 0, 𝑅𝑉 = 0 

𝑷𝟏 vs. 𝑷𝟑 83.1% 4.6% 

𝑷𝟏 vs. 𝑷𝟐 69.3% 0 

𝑷𝟐 vs. 𝑷𝟑 61.7% 4.6% 



 

45 

Results for part 1 are summarized in Table 8. In total, the majority of problem 

instances have makespan improvement: 83.1% for 𝑷𝟏 vs. 𝑷𝟑, 69.3% for 𝑷𝟏 vs. 𝑷𝟐, and 

61.7% for 𝑷𝟐 vs. 𝑷𝟑. However when resource limits are constant (Table 8, 𝑅𝑅 = 0 and 

𝑅𝑉 = 0), only 4.6% instances have a makespan difference for 𝑷𝟏 vs. 𝑷𝟑 and 𝑷𝟐 vs. 𝑷𝟑. 

No instance has makespan improvement from 𝑷𝟏 to 𝑷𝟐 since non-preemptive activity 

splitting does not exist when resource limits are constant (Proposition 2). Instances have 

makespan improvement from 𝑷𝟏 to 𝑷𝟑 and 𝑷𝟐 to 𝑷𝟑 because of preemption.  

 

5.9 Experiment part 2: Magnitude of makespan improvement 

In part 2, we are interested in finding out the magnitude of makespan 

improvement and significant factors between different problem settings. Equations (28) 

and (29) define the quantity of makespan improvement between 𝑷𝟏 to 𝑷𝟑 and 𝑷𝟏 to 𝑷𝟐, 

respectively. These definitions follow the makespan improvement definition in 

Buddhakulsomsiri and Kim (2006).  

% 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭𝑷𝟏−𝑷𝟑 =
(𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟏−𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟑)

𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟏
             (28) 

% 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭𝑷𝟏−𝑷𝟐 =
(𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟏−𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟐)

𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟏
             (29) 

For the comparison between 𝑷𝟐 and 𝑷𝟑, there are two possible measurement 

criteria. Equation (30) uses 𝑷𝟏 as the denominator in order to match the magnitude of the 

other two as well as satisfying equation (32). The other criteria (31) use 𝑷𝟐  as the 

denominator to measure the quantity of makespan improvement between 𝑷𝟐 and 𝑷𝟑.  
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% 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭𝑷𝟐−𝑷𝟑(𝟏) =
(𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟐−𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟑)

𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟏
             (30) 

% 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭𝑷𝟐−𝑷𝟑(𝟐) =
(𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟐−𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟑)

𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧𝑷𝟐
             (31) 

% 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭𝑷𝟏−𝑷𝟑 = % 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭𝑷𝟏−𝑷𝟐 + % 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭𝑷𝟐−𝑷𝟑(𝟏)  (32) 

Table 9 provides the overall quantity of makespan improvement. There is a 18.8% 

makespan improvement from 𝑷𝟏 to 𝑷𝟑 and a large portion (14.0% / 18.8% = 74.3%) of 

these improvements are because of non-preemptive activity splitting from 𝑷𝟏 to 𝑷𝟐, 

while a relatively much smaller portion (4.8% / 18.8% = 25.7%) is because of 

preemption from 𝑷𝟐 to 𝑷𝟑. However, in the case of constant resource limits and no 

resource vacations (at Table 9, 𝑅𝑅 = 0 and 𝑅𝑉 = 0), the makespan improvement is very 

limited. There is only 0.4% makespan improvement from 𝑷𝟏 to 𝑷𝟑 and 𝑷𝟐 to 𝑷𝟑 (1). 

Compared to the 𝑷𝟏 vs. 𝑷𝟑 with 𝑅𝑅 = 0 and 𝑅𝑉 = 0 experiment conducted in Patterson 

(1984), they have slightly higher makespan improvement (0.7%). This indicates that 

preemption provides limited benefits for makespan improvement when resource limits 

are constant and there are no resource vacations. Based on Proposition 2, makespan 

improvement from 𝑷𝟏 to 𝑷𝟐 is 0 when resource limits are constant.  

 

Table 9: Results summary for part 2 

Scenarios % improvement 

 Total 𝑅𝑅 = 0, 𝑅𝑉 = 0 

𝑷𝟏 vs. 𝑷𝟑 18.8% 0.4% 

𝑷𝟏 vs. 𝑷𝟐 14.0% 0 

𝑷𝟐 vs. 𝑷𝟑 (1) 4.8% 0.4% 
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Figure 8 provides a histogram for the magnitude of makespan improvement. The 

X-axis is the percentage of improvement from 0.0% to 100.0% while the Y-axis is the 

number of instances. For most of the 1538 tested instances, the magnitudes of makespan 

improvement are below 40%. There are limited instances for % improvement𝑃1−𝑃3 

higher than 40% and they are all because of non-preemptive activity splitting from 𝑷𝟏 to 

𝑷𝟐. The magnitude of preemption-caused makespan improvement from 𝑷𝟐 to 𝑷𝟑 is low 

since no instance has higher than 40% makespan improvement.  

 

 

Figure 8: Histogram for the magnitude of makespan improvement 

 

In order to study the relative difficulty of different problem parameter settings 

and performance of heuristics-based initial solutions, CPU time for each instance run is 

captured. Table 10 provides the average CPU time comparison between runs with or 

without heuristics-based initial solutions. It is observed that heuristic-based initial 
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solutions can help reduce CPU time for all three types of problem settings.  

 

Table 10: CPU study for heuristic performance 

CPU (sec.) no heuristics with heuristics 

𝑷𝟏 34.4 33.3 

𝑷𝟐 41.3 40.0 

𝑷𝟑 705.5 702.0 

 

Figure 9 provides a histogram view of how initial solutions impact each test run. 

On average, initial solutions reduce CPU time by about 1-2 seconds. The majority of test 

runs do not show significant CPU time reduction (run with or without initial solutions 

only impact CPU time by -5 seconds to + 5 seconds). However, there are still a 

noticeable number of test runs that initial solutions can help in reducing CPU time by 

more than 10 seconds, 20 seconds, or more than 600 seconds.  

 

Figure 9: Histogram for CPU time reduction with heuristics 
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Possible explanations are: first, generating heuristic-based initial solutions is fast 

(less than 1-2 second), so running with initial solutions will not penalize the overall CPU 

time; second, the precedence tree-based branch-and-bound algorithm is a depth-first 

search enumerating scheme and returns feasible solutions as soon as the algorithm finds 

them. If these feasible solutions are close to the initial solutions found by heuristics, runs 

without initial solutions will perform similarly runs with initial solutions. However in 

some scenarios where branch-and-bound cannot find a competing solution fast enough, 

the initial solution can help in bounding a number of precedence tree branches.  

In the majority of scenarios, generating heuristics-based initial solutions will not 

increase nor decrease the overall CPU time. However, their use can significantly reduce 

the overall solution time for some problem instances.   

 

Table 11: Effect tests of factors 

Prob>|𝑡| |𝑁| 𝑅𝑆𝑅 𝑅𝐹𝑅 𝑅𝑅 𝑅𝑉 𝑅𝐷 𝑅𝑆𝑅
∙ 𝑅𝑅 

𝑅𝐹𝑅
∙ 𝑅𝑅 

𝑅𝑅
∙ 𝑅𝑉 

𝑷𝟏 vs. 𝑷𝟑 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

𝑷𝟏 vs. 𝑷𝟐 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

𝑷𝟐 vs. 𝑷𝟑 (2)  <.001 <.001 <.001 <.001 0.094 <.001 <.001 <.001 <.001 

 

Regression analysis is conducted to specify what factors are significant in 

affecting the makespan difference between 𝑷𝟏 to 𝑷𝟑, 𝑷𝟏 to 𝑷𝟐, and 𝑷𝟐 to 𝑷𝟑 (2). Basic 

statistical assumptions for regression analysis such as normality and homogeneity of 

variance are checked and satisfied.  
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|𝑁| is strongly significant for all three comparisons. Since makespan differences 

are measured on relative portion basis instead of absolute number of time units, it is more 

likely to find a high "percent" of makespan difference between 𝑷𝟏 , 𝑷𝟐  and 𝑷𝟑  at 

problem instances with less activities than more activities. For example, instances with 

10 time units makespan difference between different problem settings out of total 

makespan of 100 time units are more likely to be found than instances with 100 time 

units makespan difference for total makespan of 1000 time units. However, since 

problem instances tested in the research are from the benchmark problem instance 

generator ProGen, the observation here could be just reflecting how ProGen is setup 

instead of other practical project scheduling instances. Future research can focus on 

verify if |𝑁| is still significant in identifying makespan difference among three problem 

settings on practical problem instances.  

Factors that relate to resource requirements (𝑅𝑆𝑅, 𝑅𝐹𝑅, 𝑅𝑅, 𝑅𝑆𝑅 ∗ 𝑅𝑅, 𝑅𝐹𝑅 ∗

𝑅𝑅) are strongly significant for all three comparisons. In other words, resource tightness, 

resource requirements and time-varying resource constraints all significantly affect 

activity splitting, non-preemptive activity splitting, and preemption. The 𝑅𝑆𝑅 ∗ 𝑅𝑅 

interaction term is strongly significant since when renewable resources are tight and 

resource constraints are time-varying, it is more likely to expect large differences 

between 𝑷𝟏 and 𝑷𝟑, 𝑷𝟏 and 𝑷𝟐, or 𝑷𝟐 and 𝑷𝟑.  

𝑅𝑉 is significant for the first two experiments since both 𝑷𝟐 and 𝑷𝟑 can split 
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activities when there are resource vacations; however, 𝑅𝑉 is not significant for 𝑷𝟐 vs. 

𝑷𝟑  since both 𝑷𝟐  and 𝑷𝟑  have “equal” advantage on makespan reduction regarding 

resource vacations.  

𝑅𝐷  factor is significant for all three experiments since the tightness of ready 

times and due dates determines when each activity can be scheduled and thus impacts the 

makespan of tested instances. Also, for tight 𝑅𝐷 factor, more 𝑷𝟏 instances are not able to 

find feasible solutions.  

 

6. Conclusion and Future Research 

In this research, we distinguished the differences between preemption, activity 

splitting, and non-preemptive activity splitting in project scheduling. A new type of 

problem 𝑷𝟐  (RCPSP with non-preemptive activity splitting) was identified to model 

real-world project scheduling challenges where resource limits are time-varying and 

there are also resource vacations. Comparison experiments were conducted in this 

research to study what parameter factors impact the makespan difference from 𝑷𝟏 to 𝑷𝟑, 

𝑷𝟏  to 𝑷𝟐 , and from 𝑷𝟐  to 𝑷𝟑 . With resource vacations and time-varying resource 

constraints, there is a significant makespan improvement when comparing 𝑷𝟏 to 𝑷𝟑 - 

most of the makespan reduction occurs during the transition from 𝑷𝟏to 𝑷𝟐. The tighter 

resource limits and higher time-varying resource limits become, and tighter activity ready 

times and due dates become, the larger the makespan difference is between 𝑷𝟏 vs. 𝑷𝟑, 
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𝑷𝟏  vs. 𝑷𝟐 , and 𝑷𝟐  vs. 𝑷𝟑 . However, resource vacations do not generally lead to 

significant makespan improvements between 𝑷𝟐 and 𝑷𝟑.  

Even though our problem instances only have 12 or 16 jobs, two renewable 

resources, two non-renewable resources and three alternative processing modes, many 

tested instances cannot find optimal solution within the 1 hour CPU limit time. Thus, the 

natural next step of our research agenda is to study simple heuristics and meta-heuristics 

for solving for medium (10-50 activities), large (50-100), and practical (>500 activities) 

size problem instances. The proposing of priority rule-based simple heuristics already 

shows great advantage in computational time (< 1 sec.). An on-going research effort is 

underway that focuses on simple heuristics and meta-heuristics.  

Appendix. Modified ProGen 

Step 1: Set the 𝑁𝐶, 𝑅𝑆𝑅, 𝑅𝐹𝑅, 𝑅𝑆𝑁 and 𝑅𝐹𝑁 levels.  

Step 2: Generate problem instances from ProGen. A detailed description of ProGen can 

be found in Kolisch et al., (1995) and Kolisch (1996). The ProGen generator can be 

downloaded from the PSPLIB site: http://129.187.106.231/psplib/. 

Step 3: Retrieve the resource limit 𝑈𝑘0
′  for each renewable resource 𝑘 in the generated 

instance.  

Step 4: Specify the 𝑅𝑅 level. 

Step 5: Randomly generate a time-varying resource profile based on the following:  

𝑈𝑘𝑡~uniform(𝑈𝑘0
′ (1 − 𝑅𝑅), 𝑈𝑘0

′ (1 + 𝑅𝑅)) 

http://129.187.106.231/psplib/
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Even with the same 𝑅𝑅 level (𝑅𝑅 ≠ 0) of the original instance from PSPLIB and 

ProGen, different resource profiles can be generated. In order to evaluate the variance in 

resource profile generation, we generate two resource profiles for each original problem 

instance as duplicate measurements (Montgomery, 2008).  

Step 6: Specify the 𝑅𝑉 level.  

 if no resource vacation is considered, set 𝑅𝑉 = 0 and stop. 

 if resource vacation is considered, set 𝑅𝑉 = 1and go to step 7. 

Step 7: Generate a random number 𝑟𝑛 between [0, 1) and use the mode function (𝑀𝑂𝐷) 

to specify whether a time period is weekend (resource vacation). 

 If 𝑟𝑛 < 0.5, set {𝑈𝑘𝑡 = 0|𝑀𝑂𝐷(𝑡, 14) = 0, ∀𝑡 = 1,2, … , 𝑇} 

 if 𝑟𝑛 ≥ 0.5, set {𝑈𝑘𝑡 = 0|𝑀𝑂𝐷(𝑡, 14) = 7, ∀𝑡 = 1,2, … , 𝑇} 

Step 8: Generate activity ready times (𝑟𝑎𝑑𝑗) and due dates (𝑑𝑢𝑒𝑗) for each activity 𝑗as 

follows.  

Loose ready times and due dates:  

𝑟𝑎𝑑𝑗~uniform(0, 5% ∙ 𝑇)  

𝑑𝑢𝑒𝑗~uniform(95% ∙ 𝑇, 𝑇)  

Tight ready times and due dates:  

𝑟𝑎𝑑𝑗~uniform(0, 10% ∙ 𝑇)  

𝑑𝑢𝑒𝑗~uniform(90% ∙ 𝑇, 𝑇)  
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 CHAPTER 3 HEURISTIC-BASED SCHEDULING ALGORITHMS WITH 

DECOMPOSITION FOR PRACTICAL PROJECT SCHEDULING PROBLEMS IN 

SEMICONDUCTOR MANUFACTURING 

 

1. Introduction  

The process of “ramping up” a semiconductor wafer fabrication facility is a 

challenging endeavor. Depending on capacity, a state-of-the-art 300mm wafer fab can 

costs from $3 billion USD (Chien and Zheng (2012), Chasey and Pindukuri (2012)) to 

$10 billion USD (Ibrahim, Chik and Hashim, 2014). The vast majority of this investment 

procures over 1,000 pieces of capital equipment that need to be installed and qualified 

(“Install/Qual”) for wafer production. The timing of the Install/Qual process is critical 

since it represents the time period between equipment delivery and product release-to-

market. Shortening the Install/Qual process can defer capacity decisions to lower the risk 

of demand-capacity mismatch. 

Practical limitations in the Install/Qual process make the project scheduling 

problem nontrivial. First, both renewable resources (e.g. technicians, testing equipment) 

and non-renewable resources (e.g. project budget, floor space) are constrained. Secondly, 

working calendars can differ for different types of renewable resources (e.g. 4 days per 

week @10 hours per day vs. 5 days per week @8 hours per day). Even for a given 

renewable resource, the total available resources per working day can vary, as workers 
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take vacations and/or testing machines break down. Next, each activity may have 

multiple alternative processing modes. For example, a piece of equipment could be 

installed by three senior and one junior technician for a total cost of $20,000 in six 

working days. Alternately, one senior and three junior technicians can complete the same 

installation in eight working days for a total cost of $16,000. 

While each activity is allowed to pause when resources are temporarily not 

available, the activity cannot be preempted by other activities. The size of this 

practically-motivated Install/Qual process containing over 1,000 pieces of equipment and 

multiple types of resources is much bigger than typical project scheduling instances 

studied in the literature. Currently, simple rules based on historical data (“tribal 

knowledge”) are used to solve the Install/Qual scheduling problem in practice. Our goal 

is to determine the latest start time of the Install/Qual process subject to resource 

constraints, precedence relationships, and activity due dates so that capacity planning 

decisions can be made as late as possible. 

The main contribution of this paper is to propose and compare heuristic-based 

methodologies to solve the Install/Qual scheduling problem in a reasonable amount of 

computation time. The methodologies under study include 1) a modified exact method 

via the use of the CPLEX solver, 2) priority rule-based simple heuristics, 3) simulated 

annealing, and 4) a modified random key-based genetic algorithm (modified RKGA). A 

project decomposition mechanism is studied for practical size problem instances. The 
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remaining sections of this paper are organized as follows. In Section 2, the Install/Qual 

scheduling problem is briefly described and formally modeled. In Section 3, related 

research efforts are reviewed and our problem solving methodologies are discussed in 

detail. An overview of our computational experiments is presented in Section 4, followed 

by an analysis of the results in Section 5. Finally, research conclusions and suggestions 

for future research directions are presented in Section 6. 

 

2. Problem Statement  

In Cheng et al. (2014), the Install/Qual scheduling problem is formulated as a 

multi-mode resource-constrained project scheduling problem (MRCPSP). A project 

network 𝐺(𝑁, 𝐴) contains a set of nodes 𝑁 representing the activity set ℕ and a set of 

directed arcs 𝐴 representing the precedence relations among activities. Dummy nodes 0 

and |ℕ| + 1 are added as super source and super sink nodes, respectively, to start and 

complete the project network. Both renewable resources ℝ𝑟 and non-renewable resources 

ℝ𝑛 are considered. At each time period 𝑡, the availability of a renewable resource 𝑘 is 

restricted to be in the range [0, 𝑈𝑘𝑡] (“resource profile”). The availability level of a non-

renewable resource 𝑘  is limited by the upper bound 𝑈𝑘  throughout the entire project 

horizon [0, 𝑇]. Each activity 𝑗 can be processed in multiple modes such that each mode 

𝑚 ∈ 𝑀𝑜𝑑𝑗  specifies duration 𝑝𝑗
𝑚  and 𝑟𝑗𝑘

𝑚  amount of resource. An activity needs to be 

scheduled between the ready time 𝑟𝑎𝑑𝑗 and its due date 𝑑𝑢𝑒𝑗. 𝐸𝑆𝑇𝑗 (𝐸𝐹𝑇𝑗), 𝐿𝑆𝑇𝑗 (𝐿𝐹𝑇𝑗) 
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represent the earliest start (finish) time, latest start (finish) time of activity 𝑗, respectively. 

Activity splitting is only allowed when resources are not sufficient which is non-

preemptive activity splitting according to the classification scheme introduced in Cheng 

et al. (2014). 

 

 

Figure 10: A Project Network Example 

 

When resource limits are constant for all renewable resources and resource 

vacations are not allowed, forward and backward scheduling approaches are 

interchangeable by simply “sliding” the entire schedule in time. However, in the 

Install/Qual process as well as other similar situations where resource limits for 

renewable resources are time-varying and resource vacations are included, forward and 

backward schedules are different. An example instance is shown in Figure 10 with the 

objective to minimize project makespan. When the resource limit is constant at 4 

resource units (Figure 11 a, c, e), schedule (a) is an optimal schedule found by using the 

backward scheduling approach (activities are scheduled as late in time as possible). 

While schedule (c) is an optimal schedule found by the forward scheduling approach 
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(activities are scheduled as early in time as possible). By simply sliding to its end date, 

forward schedule (c) is converted into an alternate optimal backward schedule (e) with 

only the forward scheduling approach and the sliding mechanism. However, when the 

resource limit is time-varying as in (b), an optimal forward schedule (d) cannot use the 

“slide” mechanism to become an optimal backward schedule. In fact, the slide backward 

schedule (f) is much worse compared to the backward schedule (b).   

 

 

Figure 11: Forward vs. Backward Schedules 

 

To implement the backward scheduling approach, the original project network 

𝐺(𝑁, 𝐴) is converted to a “backward” network 𝐺′(𝑁′, 𝐴′) by reversing the direction of 

each arc. Furthermore, for each activity in the project, the ready time and due date are 
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replaced by each other. To modify the mathematical formulation in Cheng et al. (2014) to 

handle backward scheduling, the objective function needs to be changed from 

minimizing the start time of the dummy finish activity (which is equivalent to the 

completion time of the last actual activity) to maximizing the completion time of the 

dummy start activity (which is equivalent to the start time of the first actual activity).  

 

3. Literature Review and Methodology 

This research work is the follow on related to Cheng et al. (2014) where a 

detailed literature review on resource-constrained project scheduling problem (RCPSP) 

and various extensions can be found. The main extensions include (1) both renewable 

and non-renewable resources, (2) multiple activity processing modes, (3) time-varying 

resource constraints, (4) non-preemptive activity splitting and (5) activity ready times 

and due dates. To formulate the Install/Qual scheduling problem, Cheng et al. (2014) 

extend the basic RCPSP model to include (1), (2), (3) and (4). Reviews on extensions (1), 

(2) and (3) can be found at Kolisch and Padman (2001), Hartmann and Briskorn (2010), 

and Węglarz et al. (2011). Extension (4) is first discussed in Cheng et al. (2014) where 

activities are only allowed to split when there are insufficient resources available but 

activity preemption is prohibited. Extension (5) is included in this work to handle activity 

ready times and due dates which is a common concept in the machine scheduling 

literature (Pinedo, 2008). In the project scheduling literature, generalized precedence 
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constraints can be indirectly used to model activity ready times and deadlines (De Reyck 

and Herroelen, 1999).   

A modified precedence tree-based branch-and-bound algorithm is proposed in 

Cheng et al. (2014) as an exact approach. However, computational limitations are 

observed even for small size academic problem instances. Problem instances with 10 

activities, 2 renewable resources, 2 non-renewable resources and 3 alternative modes 

might take more than 10 hours to find and prove optimal solutions. As pointed out by 

Węglarz et al. (2011), it is still computationally intractable to solve MRCPSP instances 

with more than 20 activities. Thus, this research focus on heuristic-based algorithms with 

four categories of heuristics (Table 12) that are reviewed and discussed in the chapter.  

 

Table 12: Summary of Heuristic Methodologies  

Category Methodology 

Simple heuristics Modified priority rule-based simple heuristics 

Meta heuristics Modified random key based genetic algorithm, simulated annealing 

Exact solution-based Modified ILOG-CPLEX approach 

Decomposition Time window-based project decomposition 

 

Before discussing various heuristics approaches, solution representation and 

schedule generation schemes need to be defined. Kolisch (1999) and Alcaraz and Maroto 

(2001) summarize four different types of solution representations: activity list (AL), 

priority rule (PR), random key (RK) and shift vector (SV) and point out that the AL and 

the RK representations are the most widely used and most efficient in many situations. 
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Debels et al. (2006) illustrate that the RK representation can lead to promising result if 

the topological ordering (TO) (Valls et al., 1999) is applied. Further, the RK 

representation is relatively easy to implement in most cases and facilitates maintaining 

solution feasibility when the crossover operation is used in a genetic algorithm (Mendes 

et al., 2009). RK encoding is selected in this work such that a schedule can be coded as 

𝑆𝑂𝐿 = {𝑀𝑂𝐷, 𝑅𝐾} in which 𝑅𝐾 = {𝑅𝐾𝑗|𝑅𝐾𝑗 ∈ (0, 1), 𝑗 ∈ ℕ} is a vector of random keys 

and 𝑀𝑂𝐷 = {𝑚𝑗|𝑚𝑗 ∈ 𝑀𝑜𝑑𝑗 , 𝑗 ∈ ℕ} is a vector of mode assignments.  

A Schedule Generation Scheme (SGS) is the process of constructing a schedule 

from an algorithm or a heuristic and the most widely studied SGSs are parallel and serial 

SGSs. Parallel SGSs schedule multiple activities at a time and increment time while 

serial SGSs schedule one activity at a time. As shown in Sprecher et al. (1995) and 

Kolisch (1996a), the search space of a parallel SGS might not always include the optimal 

solution and thus the optimal solution cannot be found in some cases.  

In practice, forward SGSs are more common where activities try to be scheduled 

early in time and the objective is to finish the entire project as early as possible. On the 

contrary, to schedule a project from some pre-defined “finish time” to “start time” with 

the decrease of time is the backward SGS approach. In order to apply a backward SGS, 

the ready time and due date for each activity in the original problem instance are 

swapped and a new precedence network 𝐺′(𝑁′, 𝐴′) is created by reversing the original 

network 𝐺(𝑁, 𝐴) by setting 𝑟𝑎𝑑𝑗
′ = 𝑑𝑢𝑒𝑗 , 𝑑𝑢𝑒𝑗

′ = 𝑟𝑎𝑑𝑗, 𝑁′ = 𝑁, and replace 𝑎𝑟𝑐(𝑖, 𝑗) ∈
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𝐴 with 𝑎𝑟𝑐(𝑗, 𝑖) ∈ 𝐴′. Li and Willis (1992) propose a local search scheduling technique 

that iteratively schedules activities forwardly and backwardly in time to reduce schedule 

makespan. As shown in Hartmann and Kolisch (2000), the computational effort of one 

forward-backward run is the same with executing one SGS which is 𝑂(𝑛2𝐾) where 𝑛 

and 𝐾  represent the number of non-dummy activities and the number of renewable 

resources, respectively. As pointed out by Özdamar and Ulusoy (1996) and Valls et al. 

(2005), the forward-backward iterative scheduling technique generally terminates after 

three or four consecutive passes. For this reason and the fact that rule-based heuristics are 

fast scheduling methods, it is better to combine the iterative scheduling approach with a 

meta-heuristic such as genetic algorithm (GA), simulated annealing (SA) or Tabu search 

(TS). Successful examples of combining GA with the iterative forward-backward 

approach can be found in Özdamar (1999), Alcaraz and Maroto (2001), Alcaraz et al. 

(2003), Debels and Vanhoucke (2005), Debels et al. (2006), Lova et al. (2009), Peteghem 

and Vanhoucke (2010) and Zamani (2011).  

 

3.1 Priority Rule-Based Simple Heuristics 

In the MRCPSP literature, priority rule-based heuristics represent a type of simple 

heuristic that combine mode and activity selection rules with SGSs to generate schedules. 

Mode selection rules determine the processing mode among multiple modes for each 

activity and activity selection rules specify the relative priority for each activity when 
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being selected to process. The most commonly adopted mode selection rules include 

shortest duration mode (SDM), least total renewable resource usage (LTRU_R), and least 

total non-renewable resource usage (LTRU_N). Applications of these rules can be found 

in Boctor (1996) and Buddhakulsomsiri and Kim (2007). This research integrates 

duration and non-renewable resource to propose a shortest duration and least non-

renewable resource usage rule (SD-LTRU_N) {𝑚 ∈ 𝑀𝑜𝑑𝑗| ∑ (𝑟𝑗𝑘
𝑚 ∗ 𝑝𝑗

𝑚)𝑘∈ℝ𝑛 =

min∀𝑙∈𝑀𝑜𝑑𝑗
∑ (𝑟𝑗𝑘

𝑙 ∗ 𝑝𝑗
𝑙)𝑘∈ℝ𝑛 }. Common activity selection rules are shortest processing 

time (SPT), longest processing time (LPT), minimum slackness (MSLK), minimum 

latest start time (MLST), minimum latest finish time (MLFT), maximum total successors 

(MTS) and greatest rank positional weight (GRPW). Application of these rules can be 

found in Helgeson and Birnie (1961), Davis and Patterson (1975), Alvarez-Valdes and 

Tamarit (1989), Kolisch et al. (1995), Kolisch (1996b), Lova et al. (2006) and 

Buddhakulsomsiri and Kim (2007). This research adds earliest ready time (ERT) 

{𝑗 ∈ ℕ|𝑟𝑎𝑑𝑗 = max
𝑙∈ℕ

𝑟𝑎𝑑𝑙} , earliest due date (EDD) {𝑗 ∈ ℕ|𝑑𝑢𝑒𝑗 = min
𝑙∈ℕ

𝑑𝑢𝑒𝑙} , and a 

modified minimum slack (MMSLK) rule {𝑗 ∈ ℕ|(𝐿𝑆𝑇𝑗 − 𝐸𝑆𝑇𝑗)/𝑝𝑗
𝑚 = min

𝑙∈ℕ
((𝐿𝑆𝑇𝑙 −

𝐸𝑆𝑇𝑙)/𝑝𝑙
𝑚)} into the comparison. Cheng et al. (2014) discussed how to calculate these 

values when resources are considered. Overall there are a total of 40 priority rule-based 

simple heuristics each of which is a combination of one mode selection rule (SDM, 

LTRU_R, LTRU_N, SD-LTRU_N) and one activity priority rule (SPT, LPT, ERT, EDD, 

MSLK, MLST, MLFT, MTS, GRPW, MMSLK). The first algorithm that we propose and 
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examine – “Best Simple” algorithm combines all 40 simple heuristics and returns the 

best solution as the overall solution of the algorithm. Also, they are used as the starting 

solutions for other heuristics which are discussed in the next several subsections.  

 

3.2 Genetic Algorithm  

The genetic algorithm (GA) is a well-studied meta-heuristic first proposed by 

Holland (1975). The application of GA has later been shown to be efficient among 

various meta-heuristic solution techniques for NP-hard combinatorial optimization 

problems (see Gen and Cheng (2000); Gen et al. (2008)). GA maintains a solution 

population with a number of candidate individuals (chromosomes) over many 

generations and the fitness value of each individual chromosome is evaluated and fitter 

individuals are more likely to be selected to produce offspring for the next generation. 

Proposed by Norman and Bean (1995), the random key-based genetic algorithm (RKGA) 

has been shown to be easy to implement with powerful search capability. RKGA for 

RCPSP can be found in research by Debels and Vanhoucke (2007) and Mendes et al. 

(2009). Both of these are single mode RCPSPs and non-renewable resources are not 

included. For MRCPSP, Okada et al. (2010) consider multiple modes and applied the 

idea of using a separate random key vector to represent the processing mode for each 

activity. However, activity splitting is not allowed and renewable resources have constant 

resource profiles in Okada et al. (2010).  
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In this research, initial solutions for GA are generated from both randomly and 

uses the priority rule-based simple heuristics to define the initial population with size 

𝑃𝑜𝑝_𝑆𝑖𝑧𝑒 . Therefore, our GA can benefit from good initial starting points but also 

maintain the diversity of initial solutions through randomly generated solutions. As 

pointed out by Kolisch and Drexl (1997) and in many other research efforts, the problem 

of finding a feasible mode assignment for MRCPSP with more than one type of non-

renewable resource is NP-complete since it is essentially a knapsack problem. Thus, it is 

non-trivial to find an efficient way guaranteed to modify an infeasible mode assignment 

to a feasible one. Based on a local search procedure in Hartmann (2001), a mode repair 

operation is developed to improve an infeasible mode toward a feasible direction until it 

reaches a feasible mode assignment or remains infeasible after a certain number of 

searches. A penalty value is introduced to measure the level of infeasibility for infeasible 

solutions in GA. The penalty value 𝑃𝐸𝑖
𝑁𝑅 for a solution 𝑖 with regard to non-renewable 

resources is defined as 𝑃𝐸𝑖
𝑁𝑅 = ℂ𝑖

𝑁𝑅 ∙ 𝑁𝐹𝑁𝑅 , where ℂ𝑖
𝑁𝑅  is the per unit cost for non-

feasibility value 𝑁𝐹𝑁𝑅 for non-renewable resources. There can also be infeasibility due 

to the activity ready times and due dates. In the backward scheduling approach, each 

activity is scheduled in a backward manner from its due date. It is an infeasible solution 

if it violates the ready time. A penalty value is calculated as 𝑃𝐸𝑖
𝑅𝐷 = ℂ𝑖

𝑅𝐷 ∙ 𝑁𝐹𝑅𝐷 where 

ℂ𝑖
𝑅𝐷 represents the per unit cost for ready time and due date value 𝑁𝐹𝑅𝐷 for each activity. 

The fitness value for a solution 𝑖 in the modified RKGA is calculated through a fitness 



 

66 

function that includes the completion time of the dummy start time (𝐶0𝑖
), a penalty value 

regarding non-renewable resources (𝑃𝐸𝑖
𝑁𝑅) and a penalty value regarding ready time and 

due date (𝑃𝐸𝑖
𝑅𝐷 ) as 𝐹𝑉𝑖 = 𝐶0𝑖

+ 𝑃𝐸𝑖
𝑁𝑅 + 𝑃𝐸𝑖

𝑅𝐷 . Compared to the priority rule-based 

simple heuristics, GA can start from solutions that are still infeasible after the mode 

repair operation. With the help of the penalty function, the GA ranks these infeasible 

solutions along with the feasible solutions. Constant values ℂ𝑖
𝑁𝑅 and ℂ𝑖

𝑅𝐷 are set so that 

they are much larger than 𝐶0𝑖
 value (ℂ𝑖

𝑁𝑅 ≫ 𝑇 , ℂ𝑖
𝑅𝐷 ≫ 𝑇) to penalize and eventually 

avoid infeasible solutions.  

The elitist reproduction process is accomplished by maintaining a portion of the 

best individuals into the next generation to make sure the genetic algorithm almost 

monotonically improves solution quality. A parameter 𝑃𝐸𝑅 ∈ [0, 1]  is defined as the 

portion of the elitist solutions in the population. For the selection mechanism, two 

chromosomes are selected randomly with replacement from the previous generation’s 

population as parents for the crossover and mutation operations. The worst portion of the 

previous generation is included since these solutions may be “bad” because of 

infeasibility but still be “good” candidates in terms of project makespan. These solutions 

can potentially lead to very promising schedules. The two parent chromosomes and two 

child chromosomes are evaluated based on the fitness function. Two of the best 

chromosomes enter the next generation population. This process is repeated multiple 

times until they reach the candidate number chromosomes for the next generation 
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population (1 − 𝑃𝐸𝑅) ∗ 𝑃𝑜𝑝_𝑆𝑖𝑧𝑒 . These candidates are sorted and the last portion of 

them is replaced by randomly generated immigrants.  

Crossover is a basic GA operator that selects and combines two chromosome 

members (parents) to produce new chromosomes with the hope that new chromosomes 

can inherit good attributes from their parents and hence be better solutions for the next 

generation population. Traditional single point and two point crossovers randomly select 

one or two crossover points within a chromosome and interchange a segment of genes on 

the two parent chromosomes. Examples of those can be found in Debels and Vanhoucke 

(2005), Debels et al. (2006) and Debels and Vanhoucke (2007). Uniform crossover 

generalizes the point crossover and essentially makes every gene a potential crossover 

point so that it adds flexibility on building chromosomes on the gene level rather than 

chromosome segment. However, the additional flexibility in uniform crossover suffers 

the possibility of destroying a good solution structure (Sivanandam and Deepa, 2007). 

Norman and Bean (1995) discuss the Bernoulli crossover which is also called the 

parameterized uniform crossover in Spears et al. (1993). Bernoulli crossover has one 

parameter that controls the amount of disruption during recombination without having 

bias towards the length of the representation used (Norman and Bean, 1995). Since the 

random key representation includes both the mode assignment vector and the activity 

priority vector, both the Bernoulli crossover and the two-point crossover are adopted. 

Bernoulli crossover is applied on the mode assignment chromosome and two-point 
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crossover is applied on the activity priority chromosome. The use of the Bernoulli 

crossover for mode assignment chromosome enables parent chromosomes to contribute 

to the individual gene level, because mode assignments of activities are less dependent 

on each other (with the exception of the total available non-renewable resources). 

However, for the activity priority vector where the priority value of each activity depends 

on priority values of the other activities, it makes more sense to maintain a chromosome 

segment level by using the two-point crossover.  

The mutation operation is implemented to avoid premature convergence. After a 

gene is randomly selected for mutation, a new mode assignment (not equal to the original 

one) is randomly selected to replace the current mode assignment and the activity priority 

key is replaced by 1 minus the original value. These can improve the effectiveness of the 

mutation process since the new solution randomly generated from a new mode and 

activity key has a high probability of converging to essentially the optimal schedule. For 

instance, if an activity has 2 alternative modes and the current mode is mode 1, mode 1 

can be selected again with 50% of probability if we just randomly select a mode for this 

activity.  

The purpose of diversification in a GA is to escape from a premature convergence 

and avoid homogeneous offspring solutions. In this work, diversification is accomplished 

by introducing an immigration operator (IO). The IO randomly generates a number of 

new solutions as immigrants and replaces the worst portion of the candidate solutions 
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obtained from crossover and mutation. The IO operator can introduce new (and possibly 

better) search directions into the population at each generation. A parameter 𝑃𝐼𝑂 ∈ [0, 1] 

is defined to control the number of new immigrants. Based on the definition, the worst 

𝑃𝐼𝑂 ∗ 𝑃𝑜𝑝_𝑆𝑖𝑧𝑒 solutions of new candidate offspring are replaced by immigrants for the 

next generation population. The modified RKGA in this work stops after Num_Iter 

number of generations. Terminating the modified RKGA after a pre-determined number 

of iterations makes it easy to control the computational effort. It is very helpful to 

provide a fair computational comparison. The number of iterations Num_Iter is set by 

preliminary experiments to avoid early or late termination.   

 

3.3 Dynamic T Approach 

To evaluate the performance of proposed heuristics, it would be ideal to know the 

optimal solutions for a set of test problem instances. However, due to the known NP-

hardness of the problem, exact methods for medium to large size problem instances 

might take hours or possibly even days of computational time. In this research, we rely 

on the ILOG-CPLEX solver but with a modified MIP formulation and call this method 

the Dynamic T (Dyn T) approach. The idea is as follows. In the MIP formulation, the 

number of decision variables 𝑥𝑗𝑡
𝑚 (whether activity 𝑗 is scheduled at time 𝑡 with mode 𝑚) 

and the number of constraints with 𝑥𝑗𝑡
𝑚 or time index 𝑡 depend on the project horizon 𝑇. 

The smallest value 𝑇∗ is the optimal solution which is also the shortest makespan. While 
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𝑇 ≪ 𝑇∗, the problem instance is infeasible and it is relatively faster for CPLEX to prove 

infeasibility; however when 𝑇 ≫ 𝑇∗, the problem instance is feasible but requires a long 

computational time since the number of constraints and decision variables are large. So 

the algorithm start from a relatively small lower bound value for 𝑇 that it can prove 

infeasibility of the instance and then iteratively increase the 𝑇 value with a dynamic step 

size until a feasible solutions is found. The pseudo code for this algorithm is as follows.  

 

Dyn T Algorithm 

Step 1: Solve the LP relaxation and obtain the LP relaxed solution: 𝐿𝑃𝑟𝑒𝑙𝑎𝑥 , and also 

define an upper bound for project horizon as 𝑇𝑚𝑎𝑥 . At iteration 𝑘, the 𝑇 value can be 

calculated as  

𝑇𝑘 = 𝑇𝑘−1 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑘 

Where the step size is calculated as: 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑘 = min{𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒0, (𝑇𝑚𝑎𝑥 − 𝐿𝑃𝑟𝑒𝑙𝑎𝑥) ∗
𝑠𝑖𝑧𝑒𝑓𝑎𝑐𝑡𝑜𝑟}, in which 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒0  is the minimum stepsize and 𝑠𝑖𝑧𝑒𝑓𝑎𝑐𝑡𝑜𝑟  is a value 

between 0 and 1 that determines the speed of 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒  changes. In this research, 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒0 = 2 and 𝑠𝑖𝑧𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 0.8 based on preliminary tests.  

Step 2: Solve the MIP formulation using 𝑇𝑘. If the MIP instance is infeasible, update 𝑘 =
𝑘 + 1 and go back to the previous step to update 𝑇𝑘, else return the best found value as 

the solution.  

 

The overall summary of related literature can be found in Table 13. Acronyms in 

the table include: Priority Rule-based heuristics (PR-H), Scatter search (SS), Genetic 

algorithm (GA), Bi-population GA (BP-GA), Hybrid GA (H-GA), Branch & Bound 

(B&B), Hybrid Scatter Search (H-SS), Particle Swarm Optimization / Particle Swarm 

(PS), Linear programming (LP), Branch & Cut (B&C), Random sampling (RS), Multi-

pass heuristics (MP-H), Population-based heuristics (PB-H), Critical activity reordering 

(CAR), Activity list (AL), Random key (RK). 
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R/

NR 

Mo

de 

Pre

em 

Met

hod 

Direct

ion 

Represent

ation 
SGS 

Datas

et 

Ma

x 

Siz

e 

Li and 

Willis 

(1992) 

const/

vary 

R/

NR 

sin

gle 
P1 

MP-

H 
F/B AL - Own 25 

Hartmann 

(1998) 
const R 

sin

gle 
P1 

GA 

+ 

PR-

H 

F/B RK 
seria

l 

PSPL

IB 

Patter

son 

60 

Özdamar 

(1999) 
const 

R/

NR 

mul

ti 
P1 

H-

GA 
F/B - 

paral

lel 

PSPL

IB 

Own 

90 

Alcaraz and 

Maroto 

(2001) 

const R 
sin

gle 
P1 GA F/B AL 

seria

l 

PSPL

IB 

12

0 

Tormos and 

Lova 

(2001) 

const R 
sin

gle 
P1 

Hybr

id 

MP-

H 

F/B - 

seria

l 

paral

lel 

PSPL

IB 

12

0 

Nonobe and 

Ibaraki 

(2001) 

vary 
R/

NR 

mul

ti 
P1 TS F - - 

PSPL

IB 
30 

Józefowska 

et al. (2001) 
const 

R/

NR 

mul

ti 
P1 SA F AL 

seria

l 

PSPL

IB 
30 

Hartmann 

(2001) 
const 

R/

NR 

mul

ti 
P1 GA F AL 

seria

l 

PSPL

IB 
30 

Bouleimen 

and Lecocq 

(2003) 

const 
R/

NR 

mul

ti 
P1 SA F AL 

seria

l 

PSPL

IB 

Patter

son 

30 

Alcaraz et 

al. (2003) 
const 

R/

NR 

mul

ti 
P1 GA F/B AL 

seria

l 

PSPL

IB 

Bocto

r 

10

0 

Valls et al. 

(2003) 
const R 

sin

gle 
P1 CAR F/B - 

seria

l 

PSPL

IB 

12

0 

Tormos and 

Lova 

(2003) 

const R 
sin

gle 
P1 

MP-

H + 

RS 

F/B AL 

seria

l 

paral

lel 

PSPL

IB 

12

0 
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Valls et al. 

(2004) 
const R 

sin

gle 
P1 

PB-

H 
F - 

seria

l 

paral

lel 

PSPL

IB 

12

0 

Valls et al. 

(2005) 
const R 

sin

gle 
P1 - F - 

seria

l 

paral

lel 

PSPL

IB 

12

0 

Debels and 

Vanhoucke 

(2005) 

const R 
sin

gle 
P1 

BP-

GA 
F/B AL 

seria

l 

PSPL

IB 

12

0 

Buddhakuls

omsiri and 

Kim (2006) 

vary R 
mul

ti 

P1, 

P3 

B&

B 
F - - 

PSPL

IB 
13 

Debels et 

al. (2006) 
const R 

sin

gle 
P1 SS F RK 

seria

l 

RanG

en 

PSPL

IB 

12

0 

Zhang et al. 

(2006) 
const 

R/

NR 

mul

ti 
P1 PS F Particle 

seria

l 

PSPL

IB 
20 

Zhu et al. 

(2006) 
vary 

R/

NR 

mul

ti 
P1 BC F - - 

PSPL

IB 
30 

Buddhakuls

omsiri and 

Kim (2007) 

vary R 
mul

ti 

P1, 

P3 

PR-

H 
F - 

seria

l 

PSPL

IB 
90 

Debels and 

Vanhoucke 

(2007) 

const R 
sin

gle 
P1 

BP-

GA 
F/B RK 

seria

l 

PSPL

IB 

own 

12

0 

Damay et 

al. (2007) 
const R 

sin

gle 

P1, 

P3 
LP F - - 

PSPL

IB 
60 

Jarboui et 

al. (2008) 
const 

R/

NR 

mul

ti 
P1 PS F Particle - 

PSPL

IB 
30 

Ranjbar et 

al. (2008) 
const 

R/

NR 

mul

ti 
P1 

H-

SS 
F AL 

seria

l 

PSPL

IB 
20 

Vanhoucke 

and Debels 

(2008) 

const R 
sin

gle 

P1, 

P3 

B&

B-H 
F - 

seria

l 

RanG

en 
20 

Ballestin et 

al. (2008) 
const R 

sin

gle 

P1, 

P3 
- F AL 

seria

l 

PSPL

IB 

12

0 

Mendes et 

al. (2009) 
const R 

sin

gle 
P1 GA F RK - 

PSPL

IB 

12

0 

Lova et al. 

(2009) 
const 

R/

NR 

mul

ti 
P1 

H-

GA 
F/B RK 

seria

l 

paral

lel 

PSPL

IB 

10

0 
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Peteghem 

and 

Vanhoucke 

(2010) 

const 
R/

NR 

mul

ti 

P1, 

P3 

BP-

GA 
F/B RK 

seria

l 

RanG

en 

PSPL

IB 

30 

Okada et al. 

(2010) 
const 

R/

NR 

mul

ti 
P1 GA F RK 

seria

l 
- - 

Gonçalves 

et al. (2010) 
const R 

sin

gle 
P1 GA F/B RK 

seria

l 

PSPL

IB 

12

0 

Zamani 

(2011) 
const R 

sin

gle 
P1 

H-

GA 
F/B - 

seria

l 

PSPL

IB 

12

0 

This 

research 
vary 

R/

NR 

mu

lti 
P2 

GA 

+ 

PR-

H 

B RK 
seri

al 

PSPL

IB 

own 

10

00 

 

3.4 Project Decomposition  

Besides simple heuristics and the GA that are reviewed previously, project 

decomposition is also a popular heuristic approach, especially for large size problem 

instances. Payne (1995) and Lova and Tormos (2001) show that 80% ~ 90% of real 

world projects are multi-project problems that are either constrained by some common 

sharing resources or precedence relations. This motivates resource constrained multi-

project scheduling problem (RCMPSP) as a branch of the project scheduling literature. 

Compared to RCPSP, RCMPSP is not as thoroughly studied due to the fact that generally 

RCMPSP can be solved using the single-project approach by merging all subprojects into 

a mega-project with one super-source node and one super-sink node. The single-project 

approach is easy to understand but suffers major drawbacks. One of the most obvious 

ones is that aggregating multiple projects yields very large problem instances which 

make the already difficult RCPSP even more difficult to solve (Chiu and Tsai, 1993). 
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Also, using the single-project approach may lose different emphasis (e.g. tardiness, cost) 

for each subproject and make independent analysis on each subproject difficult (Chiu and 

Tsai, 1993). In contrast, research like Serafini and Speranza (1991), Sprecher (2002) and 

Debels and Vanhoucke (2007) treat subprojects separately in RCMPSP (multi-project 

approach) or decompose a single project in RCPSP into subprojects. The multi-project 

approach is necessary in RCMPSP when each subproject has to be handled separately 

(e.g. each subproject has a different objective). Meanwhile, the decomposition approach 

for RCPSP instances is considered as a heuristic approach to break large size problem 

instances into smaller ones and then solved by exact methods, simple heuristics or meta-

heuristics. As shown by Deckro et al. (1991), decomposition methods that rely on 

problem characteristics generally offer the most promising solution.  

RCMPSP often assumes precedence constraints are defined only within jobs in 

each subproject (Krüger and Scholl, 2009) and only global linkage connects each 

subproject together (e.g. only connects to the dummy source or sink node at each project). 

Thus, it is intuitive to think for RCPSP with similar network structures such that the 

original network can be isolated into multiple sub networks and they are connected with 

some “inter-network” links can be solved using a decomposition approach with less 

impact of losing better solutions. The network complexity factor utilized in RCPSP 

benchmark problem instance generator ProGen (Kolisch et al. 1995) is measured by the 

average non-redundant arcs per node including dummy start and completion nodes. But 
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the definition does not imply the special “decomposable” network structure discussed 

before. The network decomposition approach in Sprecher (2002) determines the 

subproject first and then randomly generates precedence feasible sequences to assign 

activities into each subproject. Zamani (2004) use the simulated annealing technique to 

find a starting schedule and defines subprojects as activities in time windows which are 

defined as the time horizon between a randomly generated starting point and a time 

window length into the Gantt chart of a project. Palpant et al. (2004) combines large 

neighborhood search with project decomposition such that at each step of the algorithm, 

a sub component of the base solution is fixed while the others define a subproblem that is 

solved with a heuristic or an exact solution method. In Zamani (2011), initial solutions 

are generated by random sampling and decomposed into subprojects. Then subprojects 

are scheduled through exact methods and further refined by a genetic algorithm. It worth 

mentioning that all studies of network decomposition methods in Sprecher (2002), 

Zamani Reza (2004), Palpant et al. (2004) and Zamani (2011) are applied on single mode 

project networks without any non-renewable resources and none of these studies discuss 

what kind of network structure is better for decomposition.  

Activities in a project scheduling instance are often constrained by some 

commonly shared resources. When generating the RCPSP benchmark problem instances 

with ProGen, Kolisch et al. (1995) uses a resource factor (RS) parameter applies to both 

renewable resources (RSR) and non-renewable resources (RSN). The RS parameter 
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represents the percent of resource types that each activity utilizes on average. For 

example a project network with total 2 types of renewable resources and 2 types of non-

renewable resources. RS = 0.5 if on average each activities only requires one type of 

renewable resource and one type of non-renewable resource. Intuitively, a higher RS 

means activities are closely resource-connected and should be solved using the single-

project approach. In contrast, projects with a lower RS can be solved using a 

decomposition approach with activities that share the same types of resources in the same 

subproject. However, since RS is an average value for all activities, it is not necessary 

that two different projects can be decomposed the same way even if their RS values are 

the same. Similarly, RCMPSP often assumes some common resources among subprojects. 

Confessore et al. (2007) consider multiple projects where each subproject has its own 

resources and they share one common resource. Krüger and Scholl (2009) assumes there 

are higher resource transfer penalty costs (e.g. setup time) when resources are being 

utilized by activities in different subprojects. More (less) common resources that are 

being shared by subprojects usually lead to closer (looser) relations among subprojects 

and intuitively a single- (multi-) project approach is more preferable.   

Other than precedence and resource availability constraints, activity ready times 

and due dates also restrict when an activity can start or complete. Activities with overlap 

windows from the ready time to the due date should be scheduled at the same time since 

they are most likely to compete for limited resources. In contrast, activities with less time 
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window overlaps can be decomposed into separate subprojects without losing better 

solutions. Pritsker et al. (1969) add due dates and deadlines for the sink activities of each 

project in RCMPSP and Franck et al.  (1997) consider a network of multiple projects 

with minimal and maximal time lags. 

In summary, previous research on project decomposition in RCPSP and RCMPSP 

have focused on the project decomposition mechanisms but not on whether a project 

instance is better to be composed or not based on project characteristics such as project 

network, resources, ready time and due date and so on. Therefore, this research aims to 

propose a decomposability score (decom_score) based on project characteristics to guide 

researchers and practitioners when decomposition is recommended for a given RCPSP or 

RCMPSP instance. A Euclidean distance measurement is proposed such that the distance 

is measured from the modified earliest start time (EST) and latest finish time (LFT) 

window approach of Cheng et al. (2014). As an analogy if each activity is considered as a 

geographical location, the EST and LFT for the activity are considered as the latitude and 

longitude of that location. Then the decom_score is defined as the ratio of average 

distance among subnetworks and average distance among all activities. A detailed 

definition can be found in the algorithm description later in this paper. 

In RCPSP with decomposition, the number of subprojects needs to balance the 

optimality of projects and computational efforts. Too few subprojects will not make a 

difference compared to solving the entire problem as one single project since each 
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subproject is still difficult to solve, while too many subprojects may restrict the solution 

space to be much smaller than the original problem and optimality will likely suffer. In 

this work, we rely on the solvability of each subproject and problem characteristic to 

decide the size of subprojects. After the size of subprojects is determined, each activity 

needs to be assigned to one subproject. This work tries to create a series of subprojects 

that all inter-subproject links only go one direction (precedence feasible sequence). 

Therefore, subprojects can be scheduled serially from the one that contains the dummy 

start activity to the last subproject with the dummy complete activity. The determination 

of which activity to select is based on the distances for potential activities from existing 

activities in a subproject. Palpant et al. (2004) compare several activity selection rules 

such as higher priority for activities on the critical path, immediate predecessors, 

contiguous predecessors and found out the best performing rule is the “block” rule that 

selects contiguous or parallel activities with existing activities in the subproject. This is 

similar to the method in this work that tries to select activities with smaller “distance”, in 

other words, in the same “block”.  

Since each subproject is solved separately, the amount of non-renewable 

resources for each subproject needs to be determined. The more subprojects after 

decomposition, the more likely that non-renewable resources allocated for a subproject 

become too restrictive to keep potential better solutions. Since it is already NP-complete 

to find a feasible mode assignment for MRCPSP instances with more than one type of 
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non-renewable resource, it is not easy to determine the optimal non-renewable 

availability level for each subproject. This work proportionally allocates non-renewable 

resources to each subproject based on resources required for all activities in a subproject. 

Detailed pseudo code for the algorithm is as follows. 

 

Project Decomposition 

Step 1: Initialize a list of clusters 𝑐𝑙𝑘 = ∅ , 𝑘 = 1, 2, … 𝐾 , where 𝐾  is the maximum 

number of subprojects, 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = {0, 1, … , 𝑁} as the set of nodes that have not been 

assigned to any cluster yet, pick the dummy source node 0, and cluster 𝑐𝑙1 as the current 

cluster, add node 0 to cluster: 𝑐𝑙1 = 𝑐𝑙1 ∪ {0} , remove node from unassigned set: 

𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑\{0} 

Define the distance between two points 𝑖 and 𝑗 in clusters 𝑐𝑙𝑘:  

Distance(𝑖, 𝑗) = √(𝐸𝑆𝑇𝑖 − 𝐸𝑆𝑇𝑗)
2

+ (𝐿𝐹𝑇𝑖 − 𝐿𝐹𝑇𝑗)
2

, ∀𝑖, 𝑗 ∈ 𝑐𝑙𝑘 

Define the decom_score as the average distance between all clusters 𝑐𝑙𝑘 

𝑑𝑒𝑐𝑜𝑚_𝑠𝑐𝑜𝑟𝑒 =
average {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(�̅�, 𝑙)̅}

average {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)}
, ∀𝑘, 𝑙 = 1, 2, … 𝐾, ∀𝑖, 𝑗 ∈ {0, 1, … 𝑁} 

Step 2: Calculate the center of gravity point �̅� (𝑥𝑘̅̅ ̅, 𝑦𝑘̅̅ ̅) of the current cluster 𝑐𝑙𝑘  with 

coordinates:  

𝑥𝑘̅̅ ̅ = ∑ 𝑥𝑖∀𝑖∈𝑐𝑙𝑘
|𝑥𝑖|⁄ , 𝑦𝑘̅̅ ̅ = ∑ 𝑦𝑖∀𝑖∈𝑐𝑙𝑘

|𝑦𝑖|⁄   

Step 3: For any node 𝑖 ∈ 𝑐𝑙𝑘, for any predecessor  node 𝑗 ∈ 𝑝𝑟𝑒𝑑(𝑖) that is unassigned, 

add node j into the cluster 𝑐𝑙𝑘 = 𝑐𝑙𝑘 ∪ {𝑗}, ∀𝑗 ∈ 𝑝𝑟𝑒𝑑(𝑖), 𝑗 ∈ 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑. Update the 

center of gravity point. Repeat step 3 until all predecessor nodes for each node in the 

current cluster are assigned, else, go to step 4  

Step 4: When no predecessor nodes can be added to the current cluster: if ∀𝑖 ∈ 𝑐𝑙𝑘, ∀𝑗 ∈
𝑝𝑟𝑒𝑑(𝑖), then 𝑗 ∈ 𝑐𝑙𝑘, check the stopping rule to see if need to explore other activities in 

𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑. If no, stop the current cluster, add a new dummy finish node for the cluster 

and move to the next cluster 𝑘 = 𝑘 + 1, add a new dummy start node to the new cluster. 

If yes, go to step 5 

Step 5: Pick a connected node 𝑖 (∃𝑚 ∈ 𝑐𝑙𝑘, (𝑚, 𝑖) ∈ 𝐴) that belongs to unassigned set 

(𝑖 ∈ 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ) such that 𝑑𝑖𝑠𝑡(�̅�, 𝑖) ≤ 𝑑𝑖𝑠𝑡(�̅�, 𝑗), ∀𝑗 ∈ 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑, 𝑗 ≠ 𝑖  (break tie 

by using the node with the smallest node index). Add node 𝑖 into the current cluster: 

𝑐𝑙𝑘 = 𝑐𝑙𝑘 ∪ {𝑖}, update the center of gravity point with step 2, go back to step 3 
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4. Computational Experiments  

To study the performance of simple heuristics, modified RKGA, Dynamic (Dyn T) 

and the project decomposition algorithm, three computational experiments are described 

in this section. In the first experiment, the proposed modified RKGA is compared with 

simple heuristics, basic simulated annealing and Dyn T algorithms on small size 

academic problem instances where optimal solutions are known. The decomposition 

versions of these heuristics other than simple heuristics are also examined. Since simple 

heuristics are fast enough to solve large size problem instances quickly, there is no need 

to integrate them with decomposition. In the second experiment, these heuristics are 

tested on large academic size problem instances where optimal solutions are unknown. 

Problem instances for these two experiments are generated and modified from ProGen 

(Kolisch et al. 1995) which is a well-known benchmark instance generator for academic 

research. Time-varying resource constraints and resource vacations are added since 

instances generated by ProGen assume constant resource profiles for renewable resources. 

Details of this procedure can be found at the Modified ProGen in the appendix of Cheng 

et al. (2014). In the third experiment, two study cases are generated based on the size and 

parameter settings of the practical Install/Qual scheduling problem. Due to 

confidentiality agreements, the actual Install/Qual data is not used in this work. In all 

three experiments, activity ready times and due dates are considered as data input. 

Network complexity ( 𝑁𝐶 ), resource factor ( 𝑅𝐹 ) and resource strength ( 𝑅𝑆 ) are 
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parameters from ProGen while resource range (𝑅𝑅) and resource vacation (𝑅𝑉) are 

parameters adopted from Cheng et al. (2014).  

The network complexity ( 𝑁𝐶 ) factor measures the average number of non-

redundant arcs per node including the dummy start and finish nodes. Network 

complexity level is set at 1.5 for all tested instances since it is the recommended setting 

in ProGen for low network complexity and the Install/Qual process has low network 

complexity. The resource factor ( 𝑅𝐹 ) measures the average ratio of the number of 

resource types required over the total available resource types for all activities. In the 

Install/Qual process, activities require two renewable resources on average (e.g. 

mechanics and plumbers) and two non-renewable resources (e.g. floor space and budget) 

at the same time. Thus in all three experiments where there are two types of renewable 

resources and two types of non-renewable resources, a resource factor 𝑅𝐹 = 1 is selected. 

In ProGen, resource strength (𝑅𝑆) is a normalized parameter to measure the “tightness” 

of a type of resource. 𝑅𝑆 = 0 means the resource level is very tight and there are very 

few feasible schedules with that resource level. 𝑅𝑆 = 1 indicates all resources are the 

least tight and their availability levels are high enough so that all activities can be 

scheduled at the earliest start time. In all three experiments, resource strength for 

renewable resource (𝑅𝑆𝑅) varies in 10 different levels from 0 to 1. Instances are solved 

at each 𝑅𝑆𝑅  level to understand the trade-offs between resource level and project 

makespan. For non-renewable resources, 𝑅𝑆𝑁 = 0.25  represents the low level and 
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𝑅𝑆𝑁 = 0.75 the high level. These two values are selected based on standard ProGen 

settings and practical Install/Qual scheduling problems. The resource range factor (𝑅𝑅) 

in Cheng et al. (2014) aims to introduce randomness of resource limits of renewable 

resources. 𝑅𝑅 is a percentage value that measures the width of a resource limit range that 

is used to generate uniformly distributed random numbers. In all three experiments, 

𝑅𝑅 = 0.25  is selected since the practical Install/Qual scheduling has a low level of 

resource fluctuation, especially for human resources. In Cheng et al. (2014), the resource 

vacation factor (𝑅𝑉) is a binary parameter to indicate whether resource vacations (e.g. 

weekends, holidays, etc.) are considered. In this research, resource vacations are included 

so 𝑅𝑉 = 1 for all three experiments. In summary, fixed parameter values are 𝑁𝐶 = 1.5, 

𝑅𝐹 = 1, 𝑅𝑅 = 0.25 and 𝑅𝑉 = 1; while controllable parameter values are: 𝑅𝑆𝑁 = 0.25 

or 0.75 and 𝑅𝑆𝑅 varies from 0 to 1. A summary of experiment parameter settings can be 

found in Table 14.   

 

Table 14: Basic Parameter Settings for Tested Instances 

Parameter |ℝ𝑟| |ℝ𝑛| 𝑁𝐶 𝑅𝐹 𝑅𝑆𝑅 𝑅𝑆𝑁 𝑅𝑅 𝑅𝑉 

Value 2 2 1.5 1 0~1 0.25 or 0.75 0.25 1 

 

In Experiment I, each tested instance has 20 activities since that is considered a 

medium level academic size problem instance and solving it to optimality is possible 

within a reasonable amount of computational time. Experiment II studies instances with 

100 activities for large academic size problem instances. For all tested instances, there 
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are three alternative processing modes for each activity, two types of renewable resources 

and two types of non-renewable resources. In total, 200 instances each were tested for 

Experiments I and II. In Experiment III, ten instances are specifically designed based on 

the actual Install/Qual scheduling problem with half of them having a high decom_socre 

and the other half a low decom_score. Each instance has 1000 activities since the 

Install/Qual scheduling problem has about 1000 major activities, each representing a 

unique piece of capital equipment. The 𝑅𝑆𝑁 parameter is limited to 0.75 which is similar 

to the current non-renewable resource level for the practical Install/Qual process. The 

main difference between these two instances is that one has a higher decom_score and 

the other one has a lower decom_score. A comparison summary of the three experiments 

is provided in Table 15.  

 

Table 15: The Values of Basic Parameter Settings for the Three Experiments 

Parameter 𝑅𝑆𝑁 𝑅𝑆𝑅 |ℕ| |ℝ𝑟| |ℝ𝑛| |𝑀𝑜𝑑𝑗| # Tested instances 

Experiment I {0.25, 0.75} (0, 1) 20 2 2 3 200 

Experiment II {0.25, 0.75} (0, 1) 100 2 2 3 200 

Experiment III {0.75} {0.75} 1000 2 2 3 10 

 

ILOG-CPLEX is used to solve for optimal solutions. The priority rule-based 

simple heuristics, SA, Dyn T, modified RKGA and the project decomposition method are 

programmed in C++ using Microsoft Visual Studio 2010. All three experiments are 

conducted on a laptop with an Intel® Core ™ 2 Duo CPU P8400 @ 2.26GHz, 2 GB 

installed memory, and the Windows 7 Enterprise 32-bit Operating System.  
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5. Experimental Results and Discussion 

Figure 12 and Figure 13 report the percentage of instances that are returned as 

“feasible” by a mode selection rule or SA, modified RKGA, Dyn T or the exact method 

for Experiment I and II, respectively. The infeasibility of an instance can result from non-

renewable resources, the maximum project horizon or activity ready time and due date. 

In the two experiments, the feasibility levels between “RSN-high” and “RSN-low” are 

quite different. It shows that the majority of the infeasibility of tested instances come 

from processing mode selection related to non-renewable resources. Even with the mode 

repair operation, the SDM rule has the lowest percentage of feasible instances in both 

experiments. The reason is that the SDM rule, regardless of activity priority rule, selects 

the mode with the shortest duration which in most cases is the mode with highest 

resource usage. The same reason applies for the LTRU_R rule since it selects the rule 

with the least amount of renewable resources, not non-renewable resources. The 

LTRU_N rule minimizes non-renewable resources, thus, most of the cases returned 

feasible solutions. SD-LTRU_N tries to balance the activity duration and non-renewable 

resource usage, thus the feasibility level of instances sits between the SDM rule and the 

LTRU_N rule. Both SA and modified RKGA have an infeasibility penalty function to 

improve infeasible schedules towards feasibility. When decomposition is used for 

instances where non-renewable resource levels are low, the number of instances that 

cannot find a feasible solution increases. In Experiment II, when there are a larger 
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number of decomposed subprojects, the portion of instances that can find a feasible 

solution when RSN is low is even smaller than for the decomposition algorithm.  

 

 

Figure 12: The Percentage of Feasible Solutions Found by Each Heuristic in Experiment 

I (0=SDM, 1=LTRU_R, 2=LTRU_N, 3=SD-LTRU_N, 4=SA-decom, 5=SA, 6=RKGA-

decom, 7=RKGA, 8=DynT-decom, 9=DynT, 10=OPT) 
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Figure 13: The Percentage of Feasible Solutions Found by Each Heuristic in Experiment 

II (0=SDM, 1=LTRU_R, 2=LTRU_N, 3=SD-LTRU_N, 4=SA-decom, 5=SA, 6=RKGA-

decom, 7=RKGA, 8=DynT-decom, 9=DynT) 

 

Optimality gap results for Experiment I are summarized in Figure 14. The 

optimal solution (OPT) is used as the baseline in each instance and the optimality gap 

measures the solution found by each heuristic compared to the baseline.  
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Figure 14: The Comparison of Optimality Gap of Each Heuristic in Experiment I 

(0=Best Simple, 1=SA-decom, 2=SA, 3=RKGA-decom, 4=RKGA, 5=DynT-decom, 

6=DynT, 7=OPT) 
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Figure 15: The Comparison of Optimality Gap of Each Heuristic in Experiment II 

(0=Best Simple, 1=SA-decom, 2=SA, 3=RKGA-decom, 4=RKGA, 5=DynT-decom, 

6=DynT) 

 

In Experiment II, since the optimal solution for each instance is not available, the 

solution found by Dyn T is considered as the new baseline (Figure 15). The reason of 

choosing Dyn T as the baseline is because Dyn T is the heuristic with the smallest 
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of other heuristics. For both experiments with and without decomposition, modified 

RKGA outperforms the Best Simple and SA method regardless of the resource levels. 

When resource levels are low (𝑅𝑆𝑁 = low and 𝑅𝑆𝑅 = low), activities need to compete 

more for limited resources and instances tend to be more difficult to solve than instances 

with high resource levels (𝑅𝑆𝑁 = high and 𝑅𝑆𝑅 = high) where most activities can be 

scheduled at their earliest possible time. Therefore under high resource levels, the 

optimality gap in Experiment I and the gap from the Dyn T in Experiment II are smaller 

than under low resource levels for Experiment I and Experiment II. The same result is 

observed in Buddhakulsomsiri and Kim (2007).  Decomposition helps when non-

renewable resource levels are high but not for low non-renewable resource levels.  

Regression analyses are provided in Table 16 for Experiment I and Table 17 for 

Experiment II. For the mode selection rule comparison, the “Statistical Significance 

Levels” column reports the pairwise t-test and levels that are not connected by the same 

letter are significantly different.  

 

Table 16: How Different Mode Selection Rules are Regarding to Makespan in 

Experiment I (Least Sq Mean Represents Fitted Makespan by Regression and Rules 

Represented with Different Levels are Statistically Different) 

Model Selection Rule Least Sq Mean Levels 

3 (LTRU_N) 64.0 A   

1 (SDM) 58.1  B  

2 (LTRU_R) 55.4   C 

4 (SD-LTRU_N) 54.6   C 
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Table 17: How Different Mode Selection Rules are Regarding to Makespan in 

Experiment II (Least Sq Mean Represents Fitted Makespan by Regression and Rules 

Represented with Different Levels are Statistically Different) 

Mode Selection Rule Least Sq Mean Levels 

3 (LTRU_N) 224.7 A   

1 (SDM) 161.6  B  

4 (SD-LTRU_N) 151.3   C 

2 (LTRU_R) 147.9   C 

 

Even though mode selection rule 3 (LTRU_N) generates the highest percentage of 

feasible solutions (Table 16 and Table 17), it is the worst mode selection rule in both 

experiments regardless of the activity priority rules. As reported in Boctor (1996) and 

Buddhakulsomsiri and Kim (2006), the SDM rule has good performance regardless of 

the job priority rules. Our experiment shows similar results which is not surprising given 

that the SDM rule picks the shortest duration modes and tends to generate short 

schedules. However, shortest duration modes generally use the most resources when 

resource constraints limit activities to be processed in parallel. Thus, shortest duration 

modes do not necessarily result in the shortest project makespan. Furthermore, the SDM 

rule generates the lowest percent of feasible instances among all 4 mode selection rules 

(Table 18 and Table 19). In the two experiments, both the LTRU_R and SD-LTRU_N 

rules perform well. The SD-LTRU_N rule balances activity durations and non-renewable 

resource usage to achieve the shortest project makespan. The LTRU_R rule selects the 

mode with the least renewable resource usage which is calculated by the number of time 

periods each activity is processed and the resource usage at each time period. The more 
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preferable mode is selected by the LTRU_R rule when the shorter mode and less 

renewable resources are required at each time period. Both experiments show that mode 

selection rules that balance activity duration and resource usage generate the schedules 

with the shortest makespan. The difference among activity priority rules is less dramatic 

than the difference among the mode selection rules. Mode selection rules will apply on 

all activities. But with the network precedence constraint and resource constraints 

specified, activity priority rules might not impact all activities. For example, if 

precedence network and resource availability limit activity 1 is followed by activity 2 

followed by activity 3, no matter what activity priority rule is selected, the sequence of 

activities 1, 2 and 3 is the same in the resulting schedule. However, SPT, ERT and EDD 

perform consistently poorly in both Experiments I and II. A possible explanation could 

be that these heuristics do not consider the project network which could explain why 

MLFT, MLST, MMSLK, GRPW and MSLK perform relatively well. MMSLK considers 

both slackness and activity duration and slightly outperforms MSLK in both experiments.  

 

Table 18: How Different Activity Selection Rules are Regarding to Makespan in 

Experiment I (Least Sq Mean Represents Fitted Makespan by Regression and Rules 

Represented with Different Levels are Statistically Different) 

Activity Priority Rule Least Sq Mean Level 

1 (SPT) 60.7 A     

3 (ERT) 59.9 A B    

4 (EDD) 59.4 A B C   

2 (LPT) 58.8 A B C D  

10 (MMSLK)  57.9  B C D E 

8 (MTS) 57.2   C D E 
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7 (MLFT)  56.8    D E 

5 (MSLK) 56.8    D E 

9 (GRPW)  56.8    D E 

6 (MLST)  56.1     E 

  

Table 19: How Different Activity Selection Rules are Regarding to Makespan in 

Experiment I (Least Sq Mean Represents Fitted Makespan by Regression and Rules are 

Statistically Different are Represented with Different Levels) 

Activity Priority Rule Least Sq Mean Level 

1 (SPT) 186.7 A    

4 (EDD) 179.5 A    

3 (ERT) 179.0 A B   

2 (LPT) 176.6 A B C  

10 (MMSLK) 175.3 A B C  

5 (MSLK) 168.1  B C D 

8 (MTS) 167.4   C D 

9 (GRPW) 162.1    D 

6 (MLST) 160.1    D 

7 (MLFT) 159.0    D 

 

The interaction of mode selection rules and activity selection rules are studied 

through a pair-wise student t-test in Table 20 and Table 21. Basic assumptions for the 

student t-test are checked and satisfied. Surprisingly, in the two experiments studied in 

this research, the effects of the cross term is not statistically significant when the model 

has both the mode selection rule term and activity selection rule term.  

 

Table 20: The Statistical Significance of Mode Selection Rules and Activity Selection 

Rules to Makespan in Experiment I 

Source DF Sum of Squares F Ratio Prob > F 

Mode Selection Rule 3 86589.5 89.9 <.0001 

Activity Priority Rule 9 11165.5 3.9 <.0001 

Mode Selection Rule *Activity Priority Rule 27 4286.8 0.5 0.9867 
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Table 21: The Statistical Significance of Mode Selection Rules and Activity Selection 

Rules to Makespan in Experiment II 

Source DF Sum of Squares F Ratio Prob > F 

Mode Selection Rule 3 6201795.6 261.0 <.0001 

Activity Priority Rule 9 373143.1 5.2 <.0001 

Mode Selection Rule *Activity Priority Rule 27 60565.1 0.3 0.9999 

 

To understand the impact of the decomposition algorithm, Table 22 shows the 

relationship between decomposition impact (measured by the makespan difference for 

the same algorithm with and without decomposition) with the decom_score. The linear 

regression coefficients show that with the increase of decom_score, decomposition is less 

useful for the SA, RKGA and Dyn T algorithms. This result is intuitive since the 

decomposition score is defined as the ratio of the distance for activities in the same 

subproject with the distance among subprojects. The smaller the decom_score, activities 

in subprojects are closer to each other than activities in other subprojects, so 

decomposition tends to make more sense.  

 

Table 22: The Relationship between decom_score and the Impact of Using 

Decomposition with Different Heuristics 

Impact of decomposition vs. Decomposability Fitted Equation RSquare 

(SA – SA_decom) / SA -0.1011 decom_score +0.0072 0.239 

(RKGA – RKGA_decom) / RKGA -0.1302 decom_score +0.0109 0.291 

(Dyn T – Dyn T_decom) / Dyn T -0.0864 decom_score +0.0037 0.173 

 

In Experiment III, the results for ten instances are shown in Table 23. When 

problem instance size is as large as 1000 activities, the original problem instance has to 
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be decomposed into many subprojects to be able to solve with the Dyn T algorithm, so 

the results are not very attractive. For both sets of instances, RKGA (RKGA-decom) 

performs better than SA (SA-decom), Dyn T-decom and Best Simple. For instances with 

low decom_score (instances 1-5), the decomposition version of algorithms (RKGA-

decom, SA-decom) perform better than without decomposition (RKGA, SA). The 

opposite results are observed for instances with high decom_score (instances 6-10) which 

is consistent with Experiments I and II. Compared to the Best Simple which is the 

baseline of current heuristics in practice, the proposed modified RKGA and RKGA-

decom can reduce the total project duration by 40~70 days out of total 300~400 days in 

the total project makespan.  

 

Table 23: Makespan Found by Each Heuristic for all Tested Instances in 

Experiment III with Relationship with decom_score (best values highlighted) 

Instances (days) 1 2 3 4 5 6 7 8 9 10 

decom_score 0.16 0.18 0.11 0.1 0.17 0.99 0.92 0.9 1.01 0.85 

Best Simple 380 370 394 384 385 364 391 376 386 374 

SA-decom 317 309 339 343 336 340 382 369 375 372 

SA 331 329 355 358 354 327 360 352 342 357 

RKGA-decom 296 294 324 325 322 332 361 363 353 364 

RKGA 322 315 344 341 346 314 343 336 343 342 

Dyn T-decom 352 341 352 352 358 346 361 352 359 353 

 

6. Conclusion and Future Research  

In this paper, the semiconductor capital equipment installation and qualification 

scheduling problem is modeled as a multi-mode resource-constrained project scheduling 
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problem with non-preemptive activity splitting. Due to the NP-hardness of the problem 

and practically-motivated large-sized problem instances, we deploy and compare four 

different heuristic approaches. Computational experiments show that when an instance’s 

decomposition score is low, combining decomposition with other meta-heuristics is 

recommended. Decomposition algorithms work better when availability levels for non-

renewable resources are high. Overall, the proposed modified RKGA outperforms 

simulated annealing, simple heuristics and the Dyn T approach, especially for practical-

size problem instances. Since static problems are studied in this work, possible future 

research could consider uncertain activity ready times, due dates or processing times with 

simulation. Another possible extension is to include other objectives such as time value 

of money or total amount of resource consumption in addition to project durations.   
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Supplementary material 1: mathematical formulation from Cheng et al. (2014) 

The primary decision variables are as follows: 

𝑦𝑗
𝑚 = 1 if activity 𝑗 ∈ 𝑁 is being processed in mode 𝑚 ∈ 𝑀𝑜𝑑𝑗 and 0 otherwise 

𝑥𝑗𝑡
𝑚 = 1  if activity 𝑗 ∈ 𝑁  is being processed in mode 𝑚 ∈ 𝑀𝑜𝑑𝑗  at time 𝑡 =

1, 2, … , 𝑇 and 0 otherwise 

In addition, variables 𝑆𝑗  and 𝐶𝑗  represent the start time and completion time of 

activity 𝑗 and the start time of the dummy finish activity 𝑆|𝑁|+1 is essentially the project 

makespan. Data inputs are resource profiles [0, 𝑈𝑘𝑡] for renewable resources and [0, 𝑈𝑘] 

for non-renewable resources.  

The PMRCPSP (𝑷𝟑) formulation as given by Buddhakulsomsiri and Kim (2006) can 

be represented as follows:  

min 𝑆|𝑁|+1                     (33) 

subject to 

∑ 𝑦𝑗
𝑚

𝑚∈𝑀𝑜𝑑𝑗
= 1,  1, ∀𝑗 ∈ 𝑁              (34) 

∑ 𝑥𝑗𝑡
𝑚𝑇

𝑡=1 = 𝑝𝑗
𝑚 ∙ 𝑦𝑗

𝑚,   ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗           (35) 

𝐶𝑖 ≤ 𝑆𝑗 − 1,    ∀(𝑖, 𝑗) ∈ 𝐴               (36) 

𝑆𝑗 ≤ 𝑥𝑗𝑡
𝑚 ∙ 𝑡 + 𝑀(1 − 𝑥𝑗𝑡

𝑚), 𝑡 ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇      (37) 

𝐶𝑗 ≥ 𝑥𝑗𝑡
𝑚 ∙ 𝑡,     ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇        (38) 

𝑆𝑗 ≥ 𝑟𝑎𝑑𝑗 ,    ∀𝑗 ∈ 𝑁                      (39) 

𝐶𝑗 ≤ 𝑑𝑢𝑒𝑗 ,    ∀𝑗 ∈ 𝑁                      (40) 
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∑ ∑ 𝑟𝑗𝑘
𝑚 ∙ 𝑥𝑗𝑡

𝑚
𝑚∈𝑀𝑜𝑑𝑗𝑗∈𝑁 ≤ 𝑈𝑘𝑡, 𝑡 ∀𝑘 ∈ 𝑅𝑟 , 𝑡 = 1, 2, … , 𝑇      (41) 

∑ ∑ ∑ 𝑟𝑗𝑘
𝑚 ∙ 𝑥𝑗𝑡

𝑚
𝑚∈𝑀𝑜𝑑𝑗𝑗∈𝑁

𝑇
𝑡=1 ≤ 𝑈𝑘, 𝑡𝑑∀𝑘 ∈ 𝑅𝑛       (42) 

𝑦𝑗
𝑚 ∈ {0, 1}, 1 ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗          (43) 

𝑥𝑗𝑡
𝑚 ∈ {0, 1},     ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇             (44) 

𝑆𝑗 ≥ 0, ∀𝑗 ∈ 𝑁                        (45) 

𝐶𝑗 ≥ 0, ∀𝑗 ∈ 𝑁                        (46) 

The objective function (1) minimizes the project makespan that can be represented 

by the starting time of the dummy finish activity |𝑁| + 1. Constraint set (2) ensures 

exactly one mode is selected for each activity. Constraint set (3) ensures that if mode 𝑚 

is selected for activity 𝑗, the total processing time must equal the corresponding duration. 

Constraint sets (4) – (6) are precedence constraints and a big number 𝑀 can be set as the 

maximum project planning horizon 𝑇. The “-1” in (4) removes strict inequality given 

integer time units (e.g. an arc (2, 3) and activity 3 starts on time unit 5, 𝑆3 = 5, activity 2 

has to complete before or on time unit 4 𝐶2 ≤ 5 − 1). Activity ready times and due dates 

constraints are in (7) - (8). Constraint sets (9) – (10) specify resource availability for both 

renewable resources and non-renewable resources, respectively. Constraint sets (11) – 

(14) are binary (11 and 12) and non-negativity (13 and14) constraints.  

To modify the 𝑷𝟑 formulation for 𝑷𝟏, constraint set (15) is added to ensure that the 

duration from the activity start time to the completion time equals the activity duration. 

In other words, there is no activity splitting for any activity.  
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𝐶𝑗 − 𝑆𝑗 = ∑ ∑ 𝑥𝑗𝑡
𝑚𝑇

𝑡=1𝑚∈𝑀𝑜𝑑𝑗
− 1,    ∀𝑗 ∈ 𝑁                  (47) 

To modify the 𝑷𝟑 formulation for 𝑷𝟐, an indicator function is introduced to specify 

whether an activity 𝑗 in mode 𝑚 is feasible to process at a certain time period:  

𝛾𝑗𝑘𝑡
𝑚 = 1[0,𝑈𝑘𝑡](𝑟𝑗𝑘

𝑚) ∶= {
1 if 𝑟𝑗𝑘

𝑚 ∈ [0, 𝑈𝑘𝑡], ∀𝑡 

0 otherwise
            (48) 

Additional decision variables 𝑜𝑗𝑡  and 𝑞𝑗𝑡  are defined to indicate whether a time 

period 𝑡 is between the start time 𝑆𝑗 and the completion time 𝐶𝑗 of activity 𝑗.  

𝑜𝑗𝑡 = {
1 if 𝑡 ≤ 𝐶𝑗

0 otherwise
,    ∀𝑗 ∈ 𝑁                     (49) 

𝑞𝑗𝑡 = {
1 if 𝑡 ≥ 𝑆𝑗

0 otherwise
,    ∀𝑗 ∈ 𝑁                    (50) 

Additional constraint sets (19) – (22) are included to support the new decision 

variables 𝑜𝑗𝑡  and 𝑞𝑗𝑡 . As before, a big number 𝑀 can be set as the maximum project 

planning horizon 𝑇 . Constraint sets (23) – (24) restrict that an activity 𝑗  cannot be 

preempted at time 𝑡 if it is eligible. Constraint sets (25) – (26) are additional variable 

type constraints. 

𝑀 ∙ 𝑜𝑗𝑡 ≥ 𝐶𝑗 − 𝑡 + 1,    ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇                   (51) 

𝑀 ∙ (1 − 𝑜𝑗𝑡) ≥ 𝑡 − 𝐶𝑗,    ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇            (52) 

𝑀 ∙ 𝑞𝑗𝑡 ≥ 𝑡 − 𝑆𝑗 + 1, 𝐸𝑞∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇             (53) 

𝑀 ∙ (1 − 𝑞𝑗𝑡) ≥ 𝑆𝑗 − 𝑡,    ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇              (54) 

𝑥𝑗𝑡
𝑚 ≥ 𝑦𝑗

𝑚 + 𝛾𝑗𝑘𝑡
𝑚 + 𝑜𝑗𝑡 + 𝑞𝑗𝑡 − 3,   ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑘 ∈ 𝑅𝑛, 𝑡 =

1, 2, … 𝑇   (55) 
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4 ⋅ 𝑥𝑗𝑡
𝑚 ≤ 𝑦𝑗

𝑚 + 𝛾𝑗𝑘𝑡
𝑚 + 𝑜𝑗𝑡 + 𝑞𝑗𝑡, 𝑡 ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑘 ∈ 𝑅𝑛, 𝑡 = 1, 2, … 𝑇 

(56) 

𝑜𝑗𝑡 ∈ {0, 1}, 1 ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇               (57) 

𝑞𝑗𝑡 ∈ {0, 1},    ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇               (58) 

 

Supplementary material 2: priority rule-based simple heuristics 

 

Table S-1: Mode Selection Rules 

Priority Rules Mathematical Formula Selected Reference 

SDM (shortest duration 

mode)  

{𝑚 ∈ 𝑀𝑜𝑑𝑗|𝑝𝑗
𝑚 =

𝑚𝑖𝑛∀𝑙∈𝑀𝑜𝑑𝑗
𝑝𝑗

𝑙}  

Boctor (1996), 

Buddhakulsomsiri and 

Kim (2007) 

LTRU_R (least total 

renewable resource usage) 

{𝑚 ∈ 𝑀𝑜𝑑𝑗| ∑ (𝑟𝑗𝑘
𝑚 ∙ 𝑝𝑗

𝑚)𝑘∈ℝ𝑟 =

min∀𝑙∈𝑀𝑜𝑑𝑗
∑ (𝑟𝑗𝑘

𝑙 ∙ 𝑝𝑗
𝑙)𝑘∈ℝ𝑟 }  

Boctor (1996), 

Buddhakulsomsiri and 

Kim (2007) 

LTRU_N (least total non-

renewable resource usage) 

{𝑚 ∈ 𝑀𝑜𝑑𝑗| ∑ 𝑟𝑗𝑘
𝑚

𝑘∈ℝ𝑛 =

min∀𝑙∈𝑀𝑜𝑑𝑗
∑ 𝑟𝑗𝑘

𝑙
𝑘∈ℝ𝑛 }  

Boctor (1996), 

Buddhakulsomsiri and 

Kim (2007) 

SD-LTRU_N (shortest 

duration and least non-

renewable resource usage) 

{𝑚 ∈ 𝑀𝑜𝑑𝑗| ∑ (𝑟𝑗𝑘
𝑚 ∗ 𝑝𝑗

𝑚)𝑘∈ℝ𝑛 =

min∀𝑙∈𝑀𝑜𝑑𝑗
∑ (𝑟𝑗𝑘

𝑙 ∗ 𝑝𝑗
𝑙)𝑘∈ℝ𝑛 }  

This paper 

 

Table S-2: Activity Priority Rules 

Priority Rules Mathematical Formula Selected Reference 

SPT (shortest 

processing time) 
{𝑗 ∈ ℕ|𝑝𝑗

𝑚 = min
𝑙∈ℕ

𝑝𝑙
𝑚}  

Alvarez-Valdes and Tamarit 

(1989), Lova et al. (2006) 

LPT (longest 

processing time) 
{𝑗 ∈ ℕ|𝑝𝑗

𝑚 = max
𝑙∈ℕ

𝑝𝑙
𝑚}  

Alvarez-Valdes and Tamarit 

(1989), Lova et al. (2006) 

ERT (earliest ready 

time) 
{𝑗 ∈ ℕ|𝑟𝑎𝑑𝑗 = max

𝑙∈ℕ
𝑟𝑎𝑑𝑙}  This paper 

EDD (earliest due 

date) 
{𝑗 ∈ ℕ|𝑑𝑢𝑒𝑗 = min

𝑙∈ℕ
𝑑𝑢𝑒𝑙}  This paper 
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MSLK (minimum 

slackness) 

{𝑗 ∈ ℕ|𝐿𝑆𝑇𝑗 − 𝐸𝑆𝑇𝑗 =

min
𝑙∈ℕ

(𝐿𝑆𝑇𝑙 − 𝐸𝑆𝑇𝑙)}  

Davis and Patterson (1975) 

Buddhakulsomsiri and Kim 

(2007) 

MLST (minimum 

latest start time) 
{𝑗 ∈ ℕ|𝐿𝑆𝑇𝑗 = min

𝑙∈ℕ
𝐿𝑆𝑇𝑙}  

Alvarez-Valdes and Tamarit 

(1989), 

Kolisch (1995) 

MLFT (minimum 

latest finish time) 
{𝑗 ∈ ℕ|𝐿𝐹𝑇𝑗 = min

𝑙∈ℕ
𝐿𝐹𝑇𝑙}  Davis and Patterson (1975) 

MTS (maximum 

total successors) 

{𝑗 ∈ ℕ||𝑠𝑢𝑐𝑐(𝑗)| =

max
𝑙∈ℕ

|𝑠𝑢𝑐𝑐(𝑙)|}  

Alvarez-Valdes and Tamarit 

(1989) 

GRPW (greatest 

rank positional 

weight) 

{𝑗 ∈ ℕ|𝑝𝑗
𝑚 +

∑ 𝑝𝑗
𝑚

𝑖∈𝐴𝐿𝐿_𝑠𝑢𝑐𝑐(𝑗) =

max
𝑙∈ℕ

(𝑝𝑗
𝑚 + ∑ 𝑝𝑗

𝑚
𝑖∈𝐴𝐿𝐿_𝑠𝑢𝑐𝑐(𝑗) )}  

Helgeson and Birnie (1961), 

Buddhakulsomsiri and Kim 

(2007) 

MMSLK (modified 

minimum slack) 

{𝑗 ∈ ℕ|(𝐿𝑆𝑇𝑗 − 𝐸𝑆𝑇𝑗)/𝑝𝑗
𝑚 =

min
𝑙∈ℕ

((𝐿𝑆𝑇𝑙 − 𝐸𝑆𝑇𝑙)/𝑝𝑙
𝑚)}  

This paper 

 

Supplementary material 3: serial SGS and priority rule-based simple algorithm 

Serial SGS Algorithm 

Step 1: initialize the set of already scheduled activities 𝑆𝐽, initialize 𝑆𝐽 = ∅, the set of un-

scheduled activities 𝑈𝐽, initialize 𝑈𝐽 = ℕ ∪ {0} ∪ {|ℕ| + 1}, the set of active activities 

𝐴𝐽, calculated as follows: If 𝑗 ∈ 𝑈𝐽 and ∀𝑙 ∈ 𝑝𝑟𝑒𝑑(𝑗), 𝑙 ∈ 𝑆𝐽, then 𝑗 ∈ 𝐴𝐽. Initialize the 

dummy finish activity into the first active activities 𝐴𝐽 = {|ℕ| + 1} since the precedence 

network is reversed in backward scheduling. 𝑡 = 𝑇 (backwards)  

Step 2: select the activity 𝑗 from set 𝐴𝐽 with highest priority value, schedule the activity 

from its “earliest” schedulable time unit 𝑡:  

1) all predecessors are completed: ∀𝑙 ∈ 𝑝𝑟𝑒𝑑(𝑗), 𝑡 ≤ 𝐶𝑙 

2) the renewable resource levels are sufficient: ∀𝑡 ∈ [𝑆𝑗 , 𝐶𝑗], 𝑈𝑘𝑡𝑡𝑒𝑚𝑝
≥ 𝑟𝑗𝑘

𝑚  

3) Determine the start time 𝑆𝑗 and completion time 𝐶𝑗 based on the following constraints 

to satisfy non-preemptive activity splitting: 𝑆𝑗 ≤ 𝑟𝑎𝑑𝑗′, 𝑝𝑗
𝑚 = ∑ (1[0,𝑈𝑘𝑡])

𝐶𝑗

𝑡=𝑆𝑗
, ∀𝑡 ∈

[𝑆𝑗, 𝐶𝑗] , if 1[0,𝑈𝑘𝑡] = 1 , then 𝑥𝑗𝑡
𝑚 = 1 . Check if 𝐶𝑗 < 𝑑𝑢𝑒𝑗′ , then the solution is 

infeasible, stop. Else, update resource level: ∀𝑘 ∈ ℝ𝑟 , if 𝑥𝑗𝑡
𝑚 = 1 , 𝑈′

𝑘𝑡𝑡𝑒𝑚𝑝
=

𝑈𝑘𝑡𝑡𝑒𝑚𝑝
− 𝑟𝑗𝑘

𝑚 

Step 3: update: 𝑆𝐽′ = 𝑆𝐽 − {𝑗}, 𝑈𝐽′ = 𝑈𝐽 + {𝑗}. If 𝑈𝐽′ ≠ ∅, go to step 2, else, return 𝐶0 as 

the solution. End.  
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Priority Rule-based Simple Algorithm 

Step 1: Assign a processing mode for each activity according to Mode Selection Rule.  

Step 2: Check mode feasibility regarding non-renewable resources by Resource 

Feasibility Check, if the mode assignment is not feasible, run Mode Repair Operation.  

Step 3: Check mode feasibility again after Mode Repair Operation. If infeasible, return 

infeasible and stop; otherwise, go to step 3.  

Step 4: Assign activity selection key for each activity according to Activity Priority 

Selection Rule.  

Step 5: Perform Schedule Generation Scheme operation,  

Step 6: Apply Time Feasibility Check, if feasible, return the completion time of the 

dummy start activity and stop; if not, return infeasible and stop 

 

Mode Selection Rule  

Specify mode assignment vector 𝑀𝑂𝐷 = {𝑚𝑗|𝑚𝑗 ∈ 𝑀𝑜𝑑𝑗 , 𝑗 ∈ ℕ}  for each activity 𝑗 

according to the mode selection rule, break ties by selecting the lower index mode. 

 

Mode Repair Operation  

Step 1: Randomly select an activity 𝑗  

Step 2: Randomly assigned a new mode 𝑚𝑗
′ (𝑚𝑗

′ ≠ 𝑚𝑗) to form a new mode assignment 

𝑀𝑂𝐷′ to replace the old mode 𝑚𝑗 in 𝑀𝑂𝐷 

Step 3: Check for non-feasibility 𝑁𝐹𝑁𝑅′ for 𝑀𝑂𝐷′. If 𝑁𝐹𝑁𝑅′ ≥ 0, return 𝑀𝑂𝐷′, exit; else 

if 𝑁𝐹𝑁𝑅′ ≥ 𝑁𝐹𝑁𝑅, accept 𝑚𝑗
′ and 𝑀𝑂𝐷′, go to step 1 for ITER number of iterations; else 

if 𝑁𝐹𝑁𝑅′ < 𝑁𝐹𝑁𝑅, reject 𝑚𝑗
′ and 𝑀𝑂𝐷′, go to step 1 for ITER number of iterations  

 

Activity Priority Selection Rule  

Specify activity priority vector 𝑅𝐾 = {𝑅𝐾𝑗|𝑅𝐾𝑗 ∈ UNIF(0, 1), 𝑗 ∈ ℕ} for each activity 𝑗 

according to the activity priority selection rule, ties broken by selecting the lower index 

activity.  

 

 

Resource Feasibility Check 

Check for non-feasibility value 𝑁𝐹𝑀𝑂𝐷
𝑁𝑅  regarding to non-renewable resources for the 

mode assignment vector 𝑀𝑂𝐷:  

𝑁𝐹𝑀𝑂𝐷
𝑁𝑅 = ∑ (max(0, ∑ 𝑟𝑗𝑘

𝑚
𝑗∈ℕ − 𝑈𝑘))𝑘∈ℝ𝑛   

If 𝑁𝐹𝑀𝑂𝐷
𝑁𝑅 = 0, feasible; else if 𝑁𝐹𝑀𝑂𝐷

𝑁𝑅 > 0, infeasible.   

 

Time Feasibility Check 

Check for non-feasibility value 𝑁𝐹𝑆𝑂𝐿
𝑅𝐷  regarding to ready time* 𝑑𝑢𝑒𝑗

′ for each activity:  

𝑁𝐹𝑆𝑂𝐿
𝑅𝐷 = ∑ (max(0, −𝑆𝑗 + 𝑑𝑢𝑒𝑗

′))𝑗∈ℕ   

If 𝑁𝐹𝑆𝑂𝐿
𝑅𝐷 = 0, the current schedule is feasible regarding ready time and due date; else if 

𝑁𝐹𝑆𝑂𝐿
𝑅𝐷 > 0, the current schedule assignment is infeasible regarding ready time or due 

date.  (*It is due date 𝑑𝑢𝑒𝑗 in forward scheduling)  
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CHAPTER 4 A SCHEDULING FRAMEWORK FOR THE SEMICONDUCTOR 

EQUIPMENT INSTALLATION AND QUALIFICATION PROCESS WITH 

UNCERTAIN MARKET ENVIRONMENT 

 

1. Introduction 

As a capital intensive industry, investing and building a semiconductor wafer 

fabrication (fab) facility requires strategic decision making and careful planning. A state-

of-the-art 300mm wafer fab can cost from $3 billion USD (Chien and Zheng (2012), 

Chasey and Pindukuri (2012)) to $10 billion USD (Ibrahim, Chik and Hashim, 2014) 

with production capacity from a few thousands WSPW (wafer start per week, a 

semiconductor terminology to measure production capacity) takes about 2-3 years in 

various sequential steps. A few hundred to over a thousand pieces of production 

equipment need to be installed and qualified (Install/Qual process) during the capacity 

ramp process. The majority of these equipment cost over $10 million dollars. For 

example, a single piece of optical photolithography stepper tool for reproducing the 

reticle pattern on wafers costs over $100 million (Lapedus, 2010). Thus, the benefit of 

accurate capacity planning can be significant. On one hand, the cost for over capacity can 

result in hundreds of millions of dollars wasted on idle assets or excessive product 

inventory that leads to low inventory turns and less free cash flow. On the other hand, the 

cost for under capacity can be worse since sales will not only be lost, but also potentially 
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a loss of market share and customer loyalty. Thus, a good Install/Qual schedule ramps the 

right amount of capacity at the right time with the right ramping speed to take advantage 

of both market price and market demand.  

In practice, the entire capacity ramp process is phased into multiple steps. The 

amount of ramped capacity at each step is determined by the production capacity of all 

installed and qualified equipment during that step. Multiple types of resources (e.g. 

trades, supplier resources and company resources) with possibly different working 

calendars (5 days/week with 8 hours/day, 4 days/week with 10 hours/day or 7 days/week 

with 24 hours/day) are involved at the same time for each activity. For practical reasons, 

there are precedence relations among activities when processing them (e.g. some 

supporting equipment needs to be installed and qualified before installing other 

equipment). Figure 16 shows a Gantt chart of a sample capacity ramp process. The Y axis 

represents different pieces of capital equipment while the X axis is time and the color 

bars represent different Install/Qual activities. It is clear there are multiple ramp steps and 

activities are processed in parallel with common resources. From a project management 

point of view, it is critical to manage resources and schedule activities in the Install/Qual 

process to achieve the maximum expected overall profit which is the difference between 

product revenue from satisfying customer demand and the time value of money for 

capital equipment investment and resource consumption costs.  
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Figure 16: Fab Capacity Ramp Illustration 

 

As shown in Cheng et al. (2014), scheduling the Install/Qual process with the 

simple objective of minimizing project makespan is challenging enough. The additional 

information about market price and market demand increases the level of complexity of 

the problem. For example, it might worthwhile to ramp the Install/Qual process faster 

(slower) with extra resource consumption because of a higher (lower) forecast of market 

demand or market price. Even more, the capacity planning of the Install/Qual process 

happens 2-3 years ahead, so the realized market demand and market price can be 

dramatically different from original forecasts. In Figure 17, both uncertain market 

demand and price are illustrated by three possible trending scenarios. The uncertainties 

of market demand and price increase as the increase in time representing the natural of 

4/12/08 6/1/08 7/21/08 9/9/08 10/29/08 12/18/08 2/6/09 3/28/09 5/17/09 7/6/09 8/25/09 10/14/09 12/3/09 1/22/10
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forecast. The right capacity planning strategy needs to balance both the demand and price 

trending slope and variability. One of such capacity ramp scenario is illustrated in the 

graph. Therefore, the Install/Qual schedule needs to be evaluated under both static 

conditions and uncertain market information. 

 

 

Figure 17: Capacity Ramping under Uncertain Market Price and Market Demand 

 

Chou et al. (2007) (Table 24) categorize capacity planning problems in 

semiconductor manufacturing into three different levels. Assuming production machines 

are installed, short-term capacity planning focuses on the operational level; specifically 

on how to optimally reschedule customer orders to match production capacity with 

demand. Mid-term capacity planning deals with the tactical level machine portfolio such 

that decisions are related to when to purchase and install each piece of equipment for 
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capacity ramping. Long-term capacity planning focuses on longer horizon (e.g. 2-3 years) 

strategic level business investment related to what product lines to offer in an uncertain 

market environment. This involves not only the firm’s own capacity, but also their 

competitors’ capacity investments. The Install/Qual scheduling problem discussed in 

Cheng et al. (2014) focuses on when to install and qualify each machine is an example of 

a mid-term capacity planning problem and this work is a mid-term to long-term problem 

since we not only focus on the equipment Install/Qual schedule but also capacity 

investment decisions under an uncertain environment.  

 

Table 24: Capacity Planning Horizons and Objectives 

Horizon Objective 

short-term order fulfillment, order rescheduling, alternative routing 

mid-term machine portfolio optimization, machine purchase and decommission 

long-term business planning in technology development, product planning 

 

Since the return on investment in semiconductor capital equipment is highly 

uncertain, the financial concept of real options has become a popular approach to model 

the risk in capacity investment. The idea of real options in finance refers to an alternative 

or choice that becomes available with a business investment opportunity. In 

semiconductor capital capacity planning, each unit of capacity once invested provides the 

option to produce a certain amount of product which is referred as the operating options. 

On the other hand, the firm also has options to add more capacity which are known as 
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growth options (Argoneto et al., 2008). Investment decisions are discrete instead of 

continuous; they could be reversible or irreversible; future decisions depend on decisions 

made now (Broadie and Detemple, 2004). The Install/Qual process studied in this 

research is only focused on the capacity ramp up (capacity growth) phase of a fab facility. 

A similar focus can be found in Benavides et al. (1999) which evaluates different capital 

investment strategies to sequentially add capacity to satisfy demand growth over time. 

The expected net present value of future profits is maximized in their research using a 

cash flow model. Given the volatile environment for demand and the long planning lead 

time for capital investment, the main challenge studied in Benavides et al. (1999) is to 

balance the risk of over capacity for idle assets as well as under capacity for losing sales. 

Outsourcing is assumed as an alternative to adding capacity. The capacity deployment 

problem is modeled as an optimal stopping problem such that the optimal capacity level 

can provide the maximum expected net present value which is measured by the per wafer 

variable production cost, per wafer outsourcing cost and expected return on capacity 

investment. Assuming irreversible capital investment, Pindyck (1988) shows that the 

optimal capacity level is the level when the benefit of an incremental unit of capacity 

equals to its cost. Dangl (1999) shows the future demand uncertainty leads to an increase 

in optimal capacity and it is optimal to delay decision making to wait for further 

information even for a small amount of uncertainty. Comprehensive survey on options 

can be found in Miller and Park (2002) and Broadie and Detemple (2004).  
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Compared to previous research, this work proposes a scheduling framework to 

deal with the capacity ramp up process in the semiconductor industry with uncertain 

market demand and market price. The objective is to determine the optimal capacity 

ramp strategy supported by an Install/Qual schedule to maximize expected profit which 

includes the capital investment of equipment, resource utilization cost during the 

Install/Qual process and revenue generated by fulfilling customer demands. Practical 

challenges during this process are considered including uncertain market information, 

sharing common resources, resource vacations and calendars, multiple activity 

processing modes, precedence constraints among activities, and only allowing activity 

splitting but not resource preemption. The rest of this paper is organized as follows. 

Section 2 describes the Install/Qual scheduling problem with static and uncertain market 

information and how it is modeled as modified a multi-mode resource-constrained 

project scheduling problem (MRCPSP). Section 3 discusses the proposed scheduling 

framework and embedded algorithms. A computational study can be found in section 4 

and is followed by section 5 with conclusions and possible future studies.  

 

2. Problem Statement 

The basic MRCPSP structure is adopted to model the Install/Qual scheduling 

problem as follows. A project network 𝐺(𝑁, 𝐴) contains a set of nodes 𝑁 representing a 

set of activities {𝑗 ∈ 𝑁} in the Install/Qual process, e.g. physical installation, supplier 
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qualification and company qualification and a set of directed arcs 𝐴 representing the 

precedence relations among activities. An activity can start as soon as all of its immediate 

preceding activities are finished. For the purpose of network completeness and modeling 

convenience, a dummy start node 0 and a dummy finish node 𝑁 + 1 are usually added 

into the project network. Within the context of this paper, “activities”, “tasks” and “jobs” 

are considered interchangeable. The available units of a renewable resource 𝑘 (𝑘 ∈

𝑅𝐸𝑆𝑟) is restricted by an upper bound 𝑈𝑘𝑡  and implicit lower bound 0 at each time 

period  𝑡  which can also be considered as a “resource profile” function. For non-

renewable resource 𝑘 (𝑘 ∈ 𝑅𝐸𝑆𝑛) , 𝑈𝑘  is the upper bound for overall available units 

throughout the entire planning horizon [0, 𝑇]. Renewable resource examples include the 

number of skilled technicians available per day and the number of testing machines 

available per shift. Examples of non-renewable resources include the total available 

budget for a project, the total available factory floor space, and the total available amount 

of raw materials.  

Each activity 𝑗 may have a set of processing modes 𝑀𝑜𝑑𝑗  to select from and each 

mode 𝑚 ∈ 𝑀𝑜𝑑𝑗 specifies the activity duration 𝑝𝑗
𝑚 and the amount of resource required 

𝑟𝑗𝑘
𝑚  for resource 𝑘. Based on the difference between preemption and activity splitting 

discussed at Cheng et al. (2014), the Install/Qual scheduling problem is a MRCPSP with 

non-preemptive activity splitting such that activities can only split when renewable 

resources are not available (weekends, holidays) or at a level less than the required 
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amount. In other words, non-preemptive activity splitting is a special case between 

MRCPSP without any activity splitting and preemptive MRCPSP where activities are 

allowed for arbitrary interruptions at any integer time point. Basic modeling of the 

problem can be found at Cheng et al. (2014) but several unique aspects of the 

Install/Qual process need to be modeled differently and are discussed as follows.   

2.1 Capacity Ramp Up “Steps”  

The Install/Qual process is the semiconductor capacity ramp up process. 

Compared to ramping up capacity in other industries, a fab does not wait for the entire 

Install/Qual process to be completed (which takes 2-3 years) to start manufacturing. 

Instead, the capacity ramp is broken into multiple steps (“ramp step”) each with a certain 

increment of capacity expansion so that manufacturing can start as early as the first ramp 

step is completed. This requires at least one of each machine type. Figure 18 below 

illustrates capacity ramp step such that the height of a ramp step represents the amount of 

capacity being ramped and the width of a ramp step measures the time duration between 

two adjacent capacity ramps. All equipment can be classified into multiple ramp groups 

(𝑟𝑎 = 1, 2, … , 𝑅𝐴) based on their functionality with different levels of capacity it can 

support ( 𝐶𝑝𝑗 ). In order to ramp capacity, one or multiple pieces of each type of 

equipment are necessary. For example in Figure 18, four types of machines are needed to 

support a capacity ramp. Activity 1 represents one piece of equipment belong to ramp 

group 1 with production capacity 200 WSPW while activity 2 represents two pieces of 
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equipment belong to the same ramp group with a total of 400 WSPW. Finishing activities 

3 and 4 means ramping two piece of equipment from ramp group 2 each piece of 

equipment can support 200 WSPW production capacity. If from time 𝑡𝑠𝑡𝑎𝑟𝑡 to time 𝑡𝑒𝑛𝑑, 

activities 1, 2, 3 and 4 in the Install/Qual project are finished, the incremental capacity 

during that time period can be calculated as min{400 + 200, 200 + 200} = 400 WSPW. 

Therefore, the capacity (𝐶𝑝𝑡 ) at time 𝑡  is determined by the minimum capacity can 

support by all ramp groups.  

𝐶𝑝𝑡 = 𝑚𝑖𝑛𝑟𝑎 {∑ ∑ 𝐶𝑝𝑗𝑗∈𝑟𝑎𝐶𝑗≤𝑡 } , ∀𝑗 ∈ 𝑁, 𝑟𝑎 = 1,2, … , 𝑅𝐴                 (1) 

 

 
Figure 18: Install/Qual Ramp Step Width and Height 
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2.2 Product Market Demand and Market Price 

In practice, the market demand can be potentially influenced by many factors 

including product release date, price, quality, competition, the overall economic 

environment, etc. The Geometric Brownian Motion (GBM) process is most commonly 

and widely accepted model for the growth in stock price over time (Marathe and Ryan, 

2005). To deal with demand uncertainty, research including Whitt (1981), Pindyck 

(1988), Benavides et al (1999), Tsay (2002), Ryan (2004), Marathe and Ryan (2005), and 

Chou et al. (2007) as well as many other research effort use the GBM process to model 

demands in future time periods as a lognormal distribution. Let 𝐷𝑡 be a stochastic process 

that represents customer demand at time 𝑡 and assume the expected drift rate is 𝜇𝐷𝑡 for 

some constant parameter 𝜇 that is independent of 𝐷𝑡. This means in a short interval of 

time ∆𝑡, the expected change in 𝐷 is 𝜇𝐷𝑡∆𝑡. Let 𝜎 be the variance parameter that models 

the stochastic component of demand volatility, the rate of change of demand can be 

written as:  

𝑑𝐷𝑡

𝐷𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡                                                          (2) 

where 𝑊𝑡 is a Wiener process or Brownian motion process such that 𝑑𝑊𝑡 = 𝜀𝑡√𝑑𝑡 when 

𝜀𝑡  represents independent identically distributed normal random variables with mean 

zero and standard deviation of one. The formula above indicates that demand variability 

increases linearly as the horizon of demand forecast increases which is intuitive since the 

further away the demand forecast is, the higher the variance. Given specific values of 𝜇 
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and 𝜎, the estimated demand for future time periods can be simulated with Monte Carlo 

simulation.  

After a piece of equipment is installed and qualified, there is a fixed lead-time 

time (𝐿𝑇) to represent the period from when capacity 𝐶𝑝𝑡 is ramped at time 𝑡 to wafers 

being produced and ready for sale at time 𝑡 + 𝐿𝑇 for market price 𝑃𝑟𝑡+𝐿𝑇. If that amount 

of product can all be sold at the current market price (demand is more than capacity), the 

total expected revenue is 𝐶𝑝𝑡 ∙ 𝑃𝑟𝑡+LT. Under the assumption that demand uncertainty is 

modeled as a GBM process, the uncertainty of market price and its relationship on 

demand can be modeled using price elasticity of demand. Research including Carruth et 

al. (2000) and Chen (2012) model market price at time 𝑡 with demand function as 

𝑃𝑟 𝑡 = 𝜃𝑡𝐷 𝑡

−(
1

𝜀
)
                                                             (3) 

where 𝐷𝑡  represents demanded quantity and 𝜃𝑡  represents the uncertainty factor that 

follows a GBM process. The GBM process can be written as 
𝑑𝜃𝑡

𝜃𝑡
= 𝛼𝑑𝑡 + 𝛽𝑑𝑧𝑡 where 𝛼 

is the instantaneous growth rate of 𝜃𝑡 , 𝛽  is the volatility rate, and 𝑑𝑧𝑡  is a standard 

Brownian motion. In the previous formula, constant value 𝜀 represents the price elasticity 

of demand which is defined as the ratio of relative demand change to relative price 

change: 𝜀 =
∆𝐷𝑡/𝐷𝑡

∆𝑃𝑟 𝑡/𝑃𝑟 𝑡
. Dolan and Simon (1996) summarize empirical estimates of price 

elasticity for standard industrial products that range between 2 and 100. For Dynamic 

random-access memory (DRAM) products, Dick (1991), Flamm (1996) and Park (2001) 

estimated the price elasticity of demand is between -1.5 and -2.0 and very close to -1.8 
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for several types of products. Chien, Chen and Peng (2010) use -9.32663 as the average 

price elasticity for semiconductor products in their case study but mentioned that this 

estimation is on the high end. More discussion on price elasticity of demand can be 

found in Leachman and Ding (2007). It is worth mentioning that the approach to model 

uncertain market demand and price is mainly targeted for simulating different scenarios 

for the Install/Qual process and other reasonable approaches can be easily incorporated in 

this work in potential future research efforts.  

 

2.3 Activity Cost and Resource Cost  

In the Install/Qual process, multiple types of costs and payments exist. For capital 

equipment, it is a one-time payment (capital investment) paid when a piece of equipment 

is delivered to the company. Thus, an activity cost 𝐴𝑐𝑗 is assumed to be paid at the start 

time 𝑆𝑗  of every physical installation activity 𝑗  in the Install/Qual process which 

represents the acceptance of a piece of equipment. This assumption can be generalized in 

multiple ways to be able to apply in other project scheduling scenarios. For example, all 

activities in a project can have project costs instead of just a subset of activities; second, 

the one-time payments occur at a given time period before or after the start of the activity; 

third, there could be multiple fixed and pre-negotiated payments instead of just one, or 

capital equipment can be rented or leaded instead of purchased. In addition to activity 

cost, resources consumption also incurs costs in the Install/Qual process. To the contrary 



 

115 

of activity cost, resource cost ( 𝑡 ∙ 𝑟𝑗𝑘
𝑚 ∙ 𝑅𝑐𝑘 ) is based on both the consumption of 

resources (𝑡 ∙ 𝑟𝑗𝑘
𝑚 ) as well as fixed resource unit cost 𝑅𝑐𝑘 . The payment method of 

resource cost is time-based, e.g. salary. Thus, the cost of resource consumption is 

assumed to be paid in each period where there is resource consumption and the daily rate 

is used since the minimum time unit is days in the Install/Qual process.   

 

2.4 Mathematical Formulation  

Decision variables in this problem include 𝑦𝑗
𝑚 = 1  if activity 𝑗 ∈ 𝑁  is being 

processed in mode 𝑚 ∈ 𝑀𝑜𝑑𝑗  and 0 otherwise; 𝑥𝑗𝑡
𝑚 = 1  if activity 𝑗 ∈ 𝑁  is being 

processed in mode 𝑚 ∈ 𝑀𝑜𝑑𝑗 at time 𝑡 = 1, 2, … , 𝑇 and 0 otherwise; resultant variables 

𝑆𝑗 and 𝐶𝑗 represent the start time and completion time of activity 𝑗, respectively. The end 

date (𝐼𝑄𝑒𝑛𝑑) of the Install/Qual process determines the relative relation in time among 

the capacity ramp with market demand and market price and therefore is a decision 

variable as well. Additional decision variables include 𝑜𝑗𝑡 = 1 if 𝑡 ≤ 𝐶𝑗 and 0 otherwise, 

𝑞𝑗𝑡 = 1 if 𝑡 ≥ 𝑆𝑗 and 0 otherwise to indicate whether a time period 𝑡 is between the start 

time 𝑆𝑗 and the completion time 𝐶𝑗 of activity 𝑗. An indicator function 𝛾𝑗𝑘𝑡
𝑚 = 1 if 𝛾𝑗𝑘𝑡

𝑚 ∈

[0, 𝑈𝑘𝑡] and 0 otherwise specifies whether an activity 𝑗 in mode 𝑚 is feasible to process 

at a certain time period. The total profit (𝑇𝑃) equals the difference between total product 

market revenue (𝑅𝐸) and total activity cost (𝐴𝐶) and total resource usage cost (𝑅𝐶) 

which are defined as below.  
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𝑅𝐸 =

{

0 𝑡 < 𝐿𝑇
∑ (𝐶𝑝𝑡−𝐿𝑇) ∙ 𝑃𝑟𝑡 ∙ (1 + 𝑒)−𝑡𝑇

𝑡=1 𝑡 ≥ 𝐿𝑇, if 𝐶𝑝𝑡 ≤ 𝐷𝑑𝑡

(∑ 𝐷𝑑𝑡 ∙ 𝑃𝑟𝑡𝑇
𝑡=1 + ∑ (𝐶𝑝𝑡−𝐿𝑇 − 𝐷𝑑𝑡) ∙ 𝑃𝑟𝑡 ∙ 𝑑𝑖𝑠𝑇

𝑡=1 )(1 + 𝑒)−𝑡 𝑡 ≥ 𝑇, if 𝐶𝑝𝑡 ≥ 𝐷𝑑𝑡
     

(4) 

𝐴𝐶 = ∑ 𝐴𝑐𝑗 ∙ (1 + 𝑒)−𝑆𝑗
𝑗∈𝑁                                    (5) 

𝑅𝐶 = ∑ ∑ ∑ ∑ 𝑥𝑗𝑡
𝑚 ∙ 𝑡 ∙ 𝑟𝑗𝑘

𝑚 ∙ 𝑅𝑐𝑘 ∙ (1 + 𝑒)−𝑡
𝑚∈𝑀𝑜𝑑𝑗𝑘∈𝑅𝐸𝑆𝑛

𝑇
𝑡=1𝑗∈𝑁          (6) 

The definition for market revenue assumes excessive inventory can be sold at a 

discounted price. To appropriately include market revenue into the MIP formulation, a 

binary variable 𝑢𝑡 is introduced such that 𝑢𝑡 = 1 if 𝐶𝑝𝑡 ≥ 𝐷𝑑𝑡 , and 0 otherwise. Thus 

the total product market revenue equation can be rewritten as:   

𝑅𝐸 = ∑ (𝐶𝑝𝑡−𝐿𝑇) ∙ 𝑃𝑟𝑡 ∙ (1 + 𝑒)−𝑡𝑇
𝑡=1 ∙ 𝑢𝑡 + (∑ 𝐷𝑑𝑡 ∙ 𝑃𝑟𝑡𝑇

𝑡=1 + ∑ (𝐶𝑝𝑡−𝐿𝑇 − 𝐷𝑑𝑡) ∙𝑇
𝑡=1

𝑃𝑟𝑡 ∙ 𝑑𝑖𝑠)(1 + 𝑒)−𝑡 ∙ (1 − 𝑢𝑡),   ∀𝑡 = 1, 2, … 𝑇        (7) 

𝑀 ∙ 𝑢𝑡 ≥ 𝐶𝑝𝑡 − 𝐷𝑑𝑡 + 1,   ∀𝑡 = 1, 2, … 𝑇        (8) 

𝑀(1 − 𝑢𝑡) ≥ 𝐷𝑑𝑡 − 𝐶𝑝𝑡,  ∀𝑡 = 1, 2, … 𝑇        (9) 

With the help of decision variable 𝑜𝑗𝑡 , the MIP representation of the ramped 

capacity is defined as below. At each given time period 𝑡, the production capacity equals 

to the minimum of the ramped capacity for each ramp group 𝑟𝑎 which is the total ramped 

capacity for all machines belongs to that ramp group.  

𝐶𝑝𝑡 = min𝑟𝑎(∑ 𝐶𝑝𝑗 ∙ (1 − 𝑜𝑗𝑡)𝑗∈𝑟𝑎 ) ,  ∀𝑗 ∈ 𝑁, 𝑟𝑎 = 1,2, … , 𝑅𝐴, 𝑡 = 1, 2, … , 𝑇     (10) 

𝐶𝑝𝑡 ≤ (∑ 𝐶𝑝𝑗 ∙ (1 − 𝑜𝑗𝑡)𝑗∈𝑟𝑎 ),   ∀𝑗 ∈ 𝑁, 𝑟𝑎 = 1,2, … , 𝑅𝐴, 𝑡 = 1, 2, … , 𝑇     (11) 

Therefore, the mixed-integer programming formulation is provided below. 
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max 𝑇𝑃                                                    (12) 

Subject to:  

∑ 𝑦𝑗
𝑚

𝑚∈𝑀𝑜𝑑𝑗
= 1,  ∀𝑗 ∈ 𝑁                                  (13) 

∑ 𝑥𝑗𝑡
𝑚𝑇

𝑡=1 = 𝑝𝑗
𝑚 ∙ 𝑦𝑗

𝑚,  ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗                   (14) 

𝐶𝑖 ≤ 𝑆𝑗 − 1,  ∀𝑎𝑟𝑐(𝑖, 𝑗) ∈ 𝐴                                 (15) 

𝑆𝑗 ≤ 𝑥𝑗𝑡
𝑚 ∙ 𝑡 + 𝑀(1 − 𝑥𝑗𝑡

𝑚),   ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇        (16) 

𝐶𝑗 ≥ 𝑥𝑗𝑡
𝑚 ∙ 𝑡,   ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇        (17) 

𝑆𝑗 ≥ 𝑟𝑎𝑑𝑗 ,  ∀𝑗 ∈ 𝑁                                       (18) 

𝐶𝑗 ≤ 𝑑𝑢𝑒𝑗 ,  ∀𝑗 ∈ 𝑁                                     (19) 

∑ ∑ 𝑟𝑗𝑘
𝑚 ∙ 𝑥𝑗𝑡

𝑚
𝑚∈𝑀𝑜𝑑𝑗𝑗∈𝑁 ≤ 𝑈𝑘𝑡,   ∀𝑘 ∈ 𝑅𝐸𝑆𝑟 , 𝑡 = 1, 2, … , 𝑇           (20) 

∑ ∑ 𝑟𝑗𝑘
𝑚 ∙ 𝑦𝑗

𝑚
𝑚∈𝑀𝑜𝑑𝑗𝑗∈𝑁 ≤ 𝑈𝑘,   ∀𝑘 ∈ 𝑅𝐸𝑆𝑛                      (21) 

𝑀 ∙ 𝑜𝑗𝑡 ≥ 𝐶𝑗 − 𝑡 + 1,  ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇                      (22) 

𝑀 ∙ (1 − 𝑜𝑗𝑡) ≥ 𝑡 − 𝐶𝑗,  ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇                    (23) 

𝑀 ∙ 𝑞𝑗𝑡 ≥ 𝑡 − 𝑆𝑗 + 1,  ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇                     (24) 

𝑀 ∙ (1 − 𝑞𝑗𝑡) ≥ 𝑆𝑗 − 𝑡,  ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇                    (25) 

𝑜𝑗𝑡 + 𝑞𝑗𝑡 ≥ 1,  ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … , 𝑇                         (26) 

𝑥𝑗𝑡
𝑚 ≥ 𝑦𝑗

𝑚 + 𝛾𝑗𝑘𝑡
𝑚 + 𝑜𝑗𝑡 + 𝑞𝑗𝑡 − 3,  ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , ∀𝑘 ∈ 𝑅𝐸𝑆𝑛, 𝑡 = 1, 2, … 𝑇       (27) 

4 ⋅ 𝑥𝑗𝑡
𝑚 ≤ 𝑦𝑗

𝑚 + 𝛾𝑗𝑘𝑡
𝑚 + 𝑜𝑗𝑡 + 𝑞𝑗𝑡,  ∀𝑗 ∈ N, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , ∀𝑘 ∈ 𝑅𝐸𝑆𝑛, 𝑡 = 1, 2, … 𝑇       (28) 

𝑇𝑃 = 𝑅𝐸 − 𝐴𝐶 − 𝑅𝐶                                     (29) 

𝐶𝑗 ≤ 𝐼𝑄𝑒𝑛𝑑,  ∀𝑗 ∈ 𝑁                                      (30) 
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𝑅𝐶 = ∑ ∑ ∑ ∑ 𝑥𝑗𝑡
𝑚 ∙ 𝑡 ∙ 𝑟𝑗𝑘

𝑚 ∙ 𝑅𝑐𝑘 ∙ (1 + 𝑒)−𝑡
𝑚∈𝑀𝑜𝑑𝑗𝑘∈𝑅𝐸𝑆𝑛

𝑇
𝑡=1𝑗∈𝑁           (31) 

𝐴𝐶 = ∑ 𝐴𝑐𝑗 ∙ (1 + 𝑒)−𝑆𝑗
𝑗∈𝑁                             (32) 

𝑅𝐸 = ∑ (𝐶𝑝𝑡−𝐿𝑇) ∙ 𝑃𝑟𝑡 ∙ (1 + 𝑒)−𝑡𝑇
𝑡=1 ∙ 𝑢𝑡 + (∑ 𝐷𝑑𝑡 ∙ 𝑃𝑟𝑡𝑇

𝑡=1 + ∑ (𝐶𝑝𝑡−𝐿𝑇 − 𝐷𝑑𝑡) ∙𝑇
𝑡=1

𝑃𝑟𝑡 ∙ 𝑑𝑖𝑠)(1 + 𝑒)−𝑡 ∙ (1 − 𝑢𝑡),  ∀𝑡 = 1, 2, … 𝑇     (33) 

𝑀 ∙ 𝑢𝑡 ≥ 𝐶𝑝𝑡 − 𝐷𝑑𝑡 + 1,  ∀𝑡 = 1, 2, … 𝑇                     (34) 

𝑀(1 − 𝑢𝑡) ≥ 𝐷𝑑𝑡 − 𝐶𝑝𝑡,  ∀𝑡 = 1, 2, … 𝑇                     (35) 

𝐶𝑝𝑡 ≤ (∑ 𝐶𝑝𝑗 ∙ (1 − 𝑜𝑗𝑡)𝑗∈𝑟𝑎 ),  ∀𝑗 ∈ 𝑁,  𝑟𝑎 = 1,2, … , 𝑅𝐴,  𝑡 = 1, 2, … , 𝑇       (36) 

𝑦𝑗
𝑚 ∈ {0, 1},  ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗                          (37) 

𝑥𝑗𝑡
𝑚 ∈ {0, 1}, ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀𝑜𝑑𝑗 , 𝑡 = 1, 2, … , 𝑇           (38) 

𝑜𝑗𝑡 ∈ {0, 1},  ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇                       (39) 

𝑞𝑗𝑡 ∈ {0, 1},  ∀𝑗 ∈ 𝑁, 𝑡 = 1, 2, … 𝑇                      (40) 

𝑢𝑡 ∈ {0, 1},  ∀𝑡 = 1, 2, … 𝑇                             (41) 

The objective function (12) maximizes the total profit in the Install/Qual process. 

Constraint sets (13) – (28) are basic MRCPSP formulation for the Install/Qual scheduling 

problem discussed in Cheng et al. (2014). Constraint set (13) ensures only one mode can 

be selected for each activity. Constraint set (14) ensures that if mode 𝑚 is selected for 

activity 𝑗, the total processing time must equal the corresponding duration. Constraint 

sets (15) – (17) are precedence constraints. Constraint sets (18) – (19) ensure ready times 

and due dates are not violated. Constraint sets (20) – (21) ensure resource availability for 

both renewable resources and non-renewable resources. Constraint sets (22) – (25) are 



 

119 

included to support the new decision variables 𝑜𝑗𝑡 and 𝑞𝑗𝑡. Constraint set (26) ensures the 

activity completion time is no earlier than the start time for activity 𝑗. Constraint sets (27) 

– (28) ensure an activity 𝑗  cannot be preempted at time 𝑡  if resources are available. 

Constraint sets (29) – (36) are additional constraints for market price and demand. 

Constraint (29) sets the value of the objective function; constraint set (30) represents the 

end date of the Install/Qual process; constraint set (31) calculates the resource cost, 

constraint set (32) calculates the activity cost (capital equipment investment); constraint 

sets (33) – (35) define the product market revenue; constraint set (36) is the ramped 

capacity calculation. Constraint sets (37) – (41) are the non-negativity and binary 

constraints. A big number 𝑀 in the MIP formulation is set to be the maximum project 

planning horizon 𝑇.  

 

3. Methodology 

In this research, optimization and simulation are integrated together in a 

combined scheduling framework. A case study of an early version of this approach is 

discussed in Cheng et al. (2012). The optimization module is used to search for good 

Install/Qual schedules and capacity ramp strategies while the simulation module 

evaluates the solution quality under uncertain market price and market demand. 

Simulated Annealing (SA) with priority rule-based simple heuristics is selected as the 

optimization algorithm. SA exploits an analogy between the annealing process and the 
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search for the optimum in a more general system. Each step of the SA attempts to replace 

the current solution by a random “neighborhood” solution. The new solution may be 

accepted with a probability that depends both on the difference between the 

corresponding target values and the current “temperature”. The SA is selected over other 

meta-heuristics (e.g. GA) because the “temperature” parameter is a straightforward 

threshold parameter to decide when to start simulating candidate solutions. Cheng et al. 

(2014) also demonstrates that SA can be a good meta-heuristic candidate for the 

Install/Qual scheduling problem. Monte Carlo simulation is selected to simulate solutions 

with different market price and market demand scenarios. For a given Install/Qual 

schedule, max_sim number of different market demand and market price scenarios are 

simulated and evaluated. The expected profit is calculated as the average performance of 

a particular Install/Qual schedule under uncertain market information.  

 

3.1 Solution Encoding Scheme and Schedule Generation Scheme  

An activity loading list is defined to represent an Install/Qual schedule. A random 

key-based solution encoding scheme 𝑆𝑂𝐿 = {𝑀𝑂𝐷, 𝑅𝐾}  includes a mode assignment 

vector 𝑀𝑂𝐷 = {𝑚𝑗|𝑚𝑗 ∈ 𝑀𝑜𝑑𝑗 ,  𝑗 ∈ 𝑁}  and a random key assignment vector 𝑅𝐾 =

{𝑅𝐾𝑗|𝑅𝐾𝑗 ∈ (0, 1),  𝑗 ∈ 𝑁} . The mode assignment key 𝑚𝑗  specifies which processing 

mode is selected for activity 𝑗, while random key 𝑅𝐾𝑗 represents the relative priority of 

an activity compared to other activities when they are all available to be scheduled next. 
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A detailed discussion on this solution encoding scheme can be found in Cheng et al. 

(2014). In this research, a serial and a backward schedule generation scheme (SGS) are 

selected in which activities are selected one-by-one and loaded in backward manner from 

their due date. SGSs are mechanisms that translate an encoded solution to a schedule. By 

reversing the precedence network and activity ready and due dates, a backward schedule 

generation approach follows the same procedure of commonly studied forward schedule 

generation approaches.  

 

3.2 Initial Solution Generation  

Priority rule-based simple heuristics combine a mode selection rule and an 

activity priority rule. A mode selection rule determines which mode to choose from when 

multiple processing modes are available. Common mode selection rules such as shortest 

duration mode (SDM) and least total (renewable) resource usage (LTRU_R) are adopted 

in this work. An activity priority rule defines the relative priority sequence to select 

activities from a list of activities waiting to be scheduled. The activity priority rules 

selected for this work are: minimum slack (MSLK), minimum latest finish time (MLST), 

modified minimum slack (MMSLK), greatest rank positional weight (GRPW), shortest 

processing time (SPT) and longest processing time (LPT). Since the computational effort 

for all combinations of mode selection rules and activity priority rules is minimal, the 

initial solution generator uses all 12 combinations (2 mode rules, 6 activity rules) and 



 

122 

selects the best schedule as the initial solution for the simulated annealing algorithm.  

 

3.3 Simulated Annealing  

The neighborhood solution in simulated annealing is defined as a solution that is 

obtained by modifying the current solution key multiple (𝑁𝐵𝑠𝑒𝑎𝑟𝑐ℎ) times. At each time, 

an activity is randomly selected and its mode assignment key 𝑚𝑗 is randomly modified 

𝑚𝑗

′
, 𝑚𝑗

′
∈ 𝑀𝑜𝑑𝑗 , and two non-adjacent activities replace their activity priority key: 

𝑅𝐾𝑖

′
= 𝑅𝐾𝑗 , 𝑅𝐾𝑗

′
= 𝑅𝐾𝑖,  𝑖, 𝑗 ∈ 𝑁. Activities 𝑖 and 𝑗 are randomly selected but need to 

be non-adjacent for the reason that adjacent activities are highly likely to have a 

precedence relation and the activity priority key does not impact the scheduling sequence 

of activities that have a precedence relation. Pseudo code of the algorithm can be found 

below.  

 

Simulated Annealing Pseudo Code 

Step 1: Initialization   

Generate initial solution 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

Update the current solution as the initial solution  𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

Set initial temperature 𝑇𝑒𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙, freezing temperature  𝑇𝑒𝑚𝑓𝑟𝑒𝑒𝑧𝑒  

Set temperature to start simulation 𝑇𝑒𝑚𝑠𝑖𝑚 (threshold gate2)  

Set current temperature as the initial temperature 𝑇𝑒𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑒𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

Set cooling ratio 𝑐𝑜𝑜𝑙_𝑟𝑎𝑡𝑖𝑜 

Calculate the fitness value 𝑓𝑖𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 for 𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

Initial the best fitness value 𝑓𝑖𝑡𝑏𝑒𝑠𝑡 = 𝑓𝑖𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

Go to step 2  

Step 2:  

Move from the current solution 𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to a neighborhood solution 𝑖𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  

Decide whether to initiate the simulation module, if 𝑇𝑒𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝑇𝑒𝑚𝑠𝑖𝑚  

Go to step 4 

Else  
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Go to step 3  

Step 3:  

Schedule the Install/Qual process and return total profit as 𝑓𝑖𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  

If the neighborhood solution is better than the current solution, 𝑓𝑖𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≥

𝑓𝑖𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

accept the neighborhood solution as current: 𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑖𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  

update the current fitness value 𝑓𝑖𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑓𝑖𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

update the best fitness value 𝑓𝑖𝑡𝑏𝑒𝑠𝑡 = 𝑓𝑖𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  

else  

check the current temperature 𝑇𝑒𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and acceptance function  

if 𝑟𝑎𝑛𝑑𝑜𝑚 ≥ exp (
𝑓𝑖𝑡𝑛𝑒𝑖𝑔ℎℎ𝑜𝑟−𝑓𝑖𝑡𝑏𝑒𝑠𝑡

𝑇𝑒𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡
)  

accept the neighborhood solution 𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑖𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  

else  

reject the neighborhood solution 

keep the current solution  

Go to step 5  

Step 4:  

Apply Monte Carlo Simulation Module  

Go to step 5 

Step 5:  

update the current temperature 𝑇𝑒𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑒𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑐𝑜𝑜𝑙_𝑟𝑎𝑡𝑖𝑜  

Go to Step 6  

Step 6:  

check the termination rule  

If 𝑇𝑒𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑇𝑒𝑚𝑓𝑟𝑒𝑒𝑧𝑒  

stop the cooling process  

return the 𝑓𝑖𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝑓𝑖𝑡̅̅ ̅̅
𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and 𝑓𝑖𝑡𝑏𝑒𝑠𝑡 (𝑓𝑖𝑡̅̅ ̅̅

𝑏𝑒𝑠𝑡)  

else  

Go to step 2  
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Figure 19: Schedule Algorithm Logic Flow  

 

The overall Install/Qual scheduling algorithm flow can be found in Figure 19. 

There are two threshold values embedded in the algorithm. The first threshold gate1 

indicates whether the initial solution is good enough for applying simulated annealing to 

improve; the second threshold gate2 applies to the “temperature” parameter of the SA 

algorithm to determine when to simulate a solution. After one SA terminates, the 

algorithm returns the current schedule and then moves to a new Install/Qual end date. 

The number of different Install/Qual end dates depends on the length of the total decision 
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window. Based on the practical experience of the Install/Qual process, a roughly 6 month 

(day 868 to day 1049) decision window where the end date of the Install/Qual process 

falls is reasonable. This means that based on the available information for market 

prediction, the wafer fab needs to be ramped to full capacity in that 6 month period. Or in 

other words, the “optimal” date to fully ramp the fab will not fall out of that 6 month 

time window. More computational effort is required if the time window is longer. The 

second assumption of time intervals for two adjacent Install/Qual end date is 30 days. 

Operationally it makes sense to focus on granularity of one month for a project in 2-3 

years in advance. Thus, for each tested instance, there are 6 candidate solutions for the 

Install/Qual end date that will be explored and evaluated. With a shorter time interval 

between adjacent Install/Qual end dates, more computational effort is required since 

there are more candidate solutions that need to be optimized and evaluated.  

 

4. Computational Experiment 

Two computational experiments are described in this section. In the first 

experiment, the set of capital equipment that needs to go through the Install/Qual process 

is assumed to be fixed. That is, the final ramped capacity of the wafer fab is not a 

decision but is an input. Instead, only the Install/Qual schedule and when to reach the 

maximum capacity need to be decided with the objective to maximize expected profit. In 

the second experiment, we assume a baseline number of necessary equipment is given 
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and there is a subset of equipment as an “option” that we can add/remove to 

expand/reduce maximum production capacity if needed.  However, due to the long lead 

time of ordering these equipment, the decision of adding extra capacity needs to be made 

at the beginning of the planning stage. In both experiments, we compare the approach of 

scheduling based on expected market information (mean demand and mean price) with 

the proposed approach that relies on both optimization and simulation.  

Tested instances are designed to be at the same scale of the practical Install/Qual 

process but does not use actual data for confidentiality reasons. Therefore, the 

computational results can only be interpreted directionally. First, 500 pieces of major 

production equipment are assumed and each piece of equipment has 3 Install/Qual 

activities (physical installation, supplier qualification, company qualification) so that 

each problem instance has 1500 activities. Second, each piece of capital equipment 

specifies the equipment supplier, cost and arrival time and due date window. Third, there 

are a total of 5 suppliers and each piece of equipment is randomly assigned to one of the 

5 suppliers. Finally, the cost of these 500 pieces of production equipment are randomly 

generated according to a distribution so that 50% of capital equipment cost range $0.1M 

~ $5M; 45% of them cost range between $10M ~ $40M and the remaining 5% cost range 

between $60M ~ $100M. Initial demand at time 0 is assumed to be 3,000 wafers per 

week with the starting price $12,000 per wafer. Baseline demand drift is assumed to be 

25% per year and demand volatility is 20% per year. In the experiment, three levels (high, 
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baseline, low) of demand drift and volatility factors are considered. The uncertainty of 

price has the same volatility (20%) but negative drift (-25%) and price elasticity of 

demand 𝜀 = 2. Detailed parameter settings can be found in Table 25.  

 

Table 25: Computation Experiment Overview  

 Experiment I Experiment II 

The set of Install/Qual activities Fixed  Decision variable 

Final capacity (WSPW) 6,000 5000, 6000, 7000 

Install/Qual schedule Decision variable 

Market demand Uncertain  

Market price Uncertain  

|𝑁| 1500 

|𝑀𝑜𝑑𝑗| 1~3 

|𝑅𝐸𝑆𝑟| 7 (trades, 5 suppliers, company resource) 

|𝑅𝐸𝑆𝑛| 2 (budget for trades, budget for suppliers) 

Threshold gate1 & gate2 tight, baseline, loose 

Demand drift 30% (high), 25% (baseline), 20% (low) 

Demand volatility 25% (high), 20% (baseline), 15% (low) 

Price drift - 25% (baseline) 

Price volatility 20% (baseline) 

# Tested Instances 20 

 

Regarding the final fab capacity, Experiment I assumes the final capacity is 6,000 

WSPW while Experiment II considers three possible capacity investment scenarios: 

5,000, 6,000, 7,000 WSPW. As for capacity ramp, there are as many as 50 different types 

of equipment and each equipment between 4 and 20 instances of each. The number of 

equipment groups is close to the actual Install/Qual process. At least one piece of 

equipment is of each type needed to produce a wafer but additional pieces might not be 

needed extra for a ramp step. The “Ramp height” for each group of tools can be 200, 400, 
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600 or 800 WSPW: e.g. equipment group 1 has two pieces of equipment each with 200 

WSPW, equipment group 2 has one piece of equipment with 800 WSPW, and the 

remaining equipment groups all have one piece of equipment with capacity of 600 

WSPW. This ramp volume would be min{200 ∙ 2, 800, 600, … , 600}  =  400 WSPW.  

For each piece of equipment, only the physical installation process in the 

Install/Qual process has alternative processing modes, other activities only have one 

processing mode. There are total 7 renewable resource types: one type of trades resource 

that work 4 days/week and 10 hours/day, 5 types of equipment supplier resources that 

work 5 days/week and 8 hours/day, one type of company resource that work 7 days/week 

and 24 hours/day with multiple shifts. The manufacturing lead time is assumed to be 

𝐿𝑇 = 60 days and the relative time horizon we study is about 40 months. If the produced 

wafers match the market demand, all produced wafers can be sold at the current market 

price. If produced capacity is higher than the market demand, the extra product will incur 

inventory holding costs. We assume the amount of extra product can be sold with 𝑑𝑖𝑠 =

50% of the current market price. Unmet market demand is assumed to be lost. For time 

value of money consideration, a 6% annual interest rate is assumed on capital equipment 

cost, resource usage cost and product selling revenue. The SA algorithm and simulation 

are programmed in C++ (http://www.microsoft.com/visualstudio). The experiments were 

conducted on a laptop with Intel ® Core ™ i5-2520M CPU @ 2.50GHz, 4.00GB 

installed memory, the Windows 7 Enterprise 64-bit Operating System. 

http://www.microsoft.com/visualstudio
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4.1 Experiment I – Fixed Final Capacity 

In the first experiment, the final fab capacity level is fixed but when to reach to 

the maximum capacity is a decision variable. First of all, the expected profit impact of 

different threshold levels for simulation is shown in the results in Figure 20.  

 

 

Figure 20: The Impact of Different Threshold Levels on Normalized Solution Gap for 

Both Average Solution and Maximum Solution (1=Tight, 2=Baseline, 3=Loose) 

 

Threshold gate1 decides how early an Install/Qual end date can pass the initial 

optimization barrier. Gate2 determines when to stop optimizing the deterministic solution 

and start integrating simulation. Both threshold values trade off computational time with 

potential solution quality. From “Tight” to “Baseline” of gate1 and gate2, more candidate 

solutions pass the barrier of being optimized and simulated and that increases the 
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possibility of finding a better solution as well as the required computational effort. 

However, when gate1 and gate2 go from “Baseline” to “Loose”, more of the “less 

promising” solutions are allowed to be optimized and simulated but they are still not as 

good as the best solution. Thus from Figure 20, as the threshold value changes from 

“Tight” to “Loose”, the average solution and computational time always improve, but the 

best solution is only improved from “Tight” to “Baseline”, but remained almost the same 

from “Baseline” to “Loose”. If in practice only the best Install/Qual ramp process is the 

concern, the “Baseline” threshold level can achieve the target with minimal 

computational effort.  

The second portion of this result is to show the benefit of using simulation under 

different levels of uncertainty. “non-sim” results are Install/Qual solutions optimized 

with only static information (with demand drift and price drift = 0) while “sim” solutions 

are Install/Qual schedules that with both simulation and optimization. Results in Figure 

21 show that with the help of simulation, better capacity ramp strategies can be found 

than without simulation (“non-sim”). Also, the impact of simulation increases as the 

demand volatility factor increases. This is intuitive since smaller demand volatility factor 

means less uncertainty of future demand. The extreme case of zero demand volatility is 

essentially assuming demand with steady drift trend and in that case “non-sim” is the 

same as “sim”.  
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Figure 21: The Benefit of Combining Simulation with Optimization Compared to 

Without Simulation on Total Profit at Different Demand Trend and Volatility Levels 

 

4.2 Experiment II – Uncertain Final Capacity 

In the first experiment, the final capacity of the fab (6,000 WSPW) is assumed to 

be fixed so that capacity investment is not a decision variable. However in Experiment II, 

there are three levels of final capacity estimation: pessimistic (5,000 WSPW), realistic 

(6,000 WSPW) and optimistic (7,000 WSPW) that need to be decided at the beginning of 

the Install/Qual process. Results are shown in Figure 22. Assuming 6,000 WSPW is the 

baseline capacity investment strategy that roughly equals to expected projected demand 

with 𝜇 = 0.25, the pessimistic (5,000 WSPW) scenario and the optimistic (7,000 WSPW) 

scenario roughly match with 𝜇 = 0.20  and 𝜇 = 0.25 , respectively. Compared to the 

baseline case, a set of equipment supporting one ramp step with 1,000 WSPW can be 

added or removed to adjust the final capacity investment. Results are shown in Figure 22 
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with several observations. First, with given capacity investment, the expected profit 

increases as the demand drift 𝜇 increases. This is straightforward since higher demand 

indicates higher profit regardless of the amount of capacity investment when the 

opportunity cost of losing sales is not considered. Second, when demand volatility is low 

(𝜎 = 0.15), highest expected profit scenario is achieved when invested capacity matches 

with the project demand drift trend 𝜇 which is intuitive. Third, when demand volatility 𝜎 

increases to 𝜎 = 0.20  or 𝜎 = 0.25 , over investing in capacity is preferable to under 

investing in capacity. This is true since the cost of idle assets is less than the cost of 

losing sales. Therefore, higher capacity is preferred to cover the high level of demand 

variability.  
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Figure 22: The Benefit of Different Capacity Investment Scenarios Comparing to 5000 

WSPW at Different Demand Trend and Volatility Levels 

 

5. Conclusion and Future Research 

In this research, a scheduling framework is proposed to approach the 

semiconductor capital equipment Installation and Qualification process under both static 

and uncertain market information. The proposed framework integrates an optimization 

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.20, sigma=0.15

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.20, sigma=0.20

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.20, sigma=0.25

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.25, sigma=0.15

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.25, sigma=0.20

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.25, sigma=0.25

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.30, sigma=0.15

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.30, sigma=0.20

6000 7000

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

mu=0.30, sigma=0.25

Different Capacity Investment Scenarios (WSPW)

C
o
m

p
a
re

 w
ith

 5
0
0
0
 W

S
P

W



 

134 

module using Simulated Annealing with a simulation module using Monte Carlo 

simulation to search for better solutions. It is shown that with careful threshold level 

settings, good quality results can be found with reasonable computational effort. With the 

help of simulation, SA can improve the expected value of a solution instead of the 

deterministic solution and it outperforms the scheduling approach with only optimization. 

The benefit of integrating simulation increases as the demand volatility level increases. 

Further, if capacity investment becomes a decision variable, matching capacity with 

expected demand is recommended when demand volatility level is low while over 

capacity is recommended when demand volatility level is high. There are at least several 

possible future research directions beyond this work. First, the uncertainty studied in this 

research work focuses on market demand and price and can be extended to consider 

uncertain activity duration and equipment arrival times. Second, different negotiation 

strategies with equipment suppliers can be studied since when demand is highly 

uncertain, it might be beneficial to delay investment decisions until a certain time period 

to wait for better market information. Peng et al. (2012) is one example of such work.  
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CHAPTER 5 CONCLUDING REMARKS 

 

In this dissertation, mathematical-based analytical methodologies are proposed to 

approach the semiconductor capital equipment installation and qualification scheduling 

problem. Mathematical programming, a branch-and-bound algorithm, priority rule-based 

simple heuristics and meta-heuristics are proposed and discussed to analyze different 

versions of the Install/Qual scheduling problem with multiple practical considerations.   

This dissertation contains three main phases of research efforts. In phase 1, the 

Install/Qual scheduling problem is formulated as a multi-model resource-constrained 

project scheduling problem with minimizing project makespan as the objective. Multiple 

practical extensions are considered such as multiple processing modes, time-varying 

resource constraints and resource vacations. Special attention is paid to the difference 

between activity splitting, preemption and non-preemptive activity splitting. A 

precedence tree-based branch-and-bound algorithm is proposed to solve small size 

academic problem instances to optimality. Computational experiments show activity 

splitting can bring significant project makespan reduction and non-preemptive activity 

splitting instead of preemption is main reason for that. The tighter the resource limits are 

and the higher range of resource limits vary, the bigger the makespan reduction is.  

Due to the NP-hardness nature of the problem, exact methods can only solve very 

small size problem instances. The second phase of the dissertation studies both simple 
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heuristics and meta-heuristics to be able to solve larger size problem instances within a 

reasonable amount of computational time. Priority rule-based simple heuristics and a 

modified random key-based genetic algorithm are used along with project decomposition 

to solve both small and large size problem instances. Heuristic-based scheduling 

approaches can find reasonable solutions for much less computational time than the exact 

method. The modified random key-based genetic algorithm outperforms simple 

heuristics but the solution gap narrows with the increase of resource availability levels. 

Decomposition makes sense when the proposed decomposition score is low.  

In phases 3, a more comprehensive decision support framework for the 

Install/Qual scheduling problem is proposed. The framework supports decision making 

in the capacity ramp strategy to maximize profit with consideration of uncertain market 

information. Priority rule-based simple heuristics are combined with a simulated 

annealing algorithm to form an optimization module. It then integrates with a Monte 

Carlo simulation module to search for better capacity ramping process and Install/Qual 

schedule under uncertain product market price and market demand. Computational 

results demonstrate that the integration of optimization and a simulation approach 

outperforms just static approach.  
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