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ABSTRACT

Let G = (V,E) be a graph. A list assignment L for G is a function from V to

subsets of the natural numbers. An L-coloring is a function f with domain V such

that f(v) ∈ L(v) for all vertices v ∈ V and f(x) 6= f(y) whenever xy ∈ E. If |L(v)| = t

for all v ∈ V then L is a t-list assignment. The graph G is t-choosable if for every t-list

assignment L there is an L-coloring. The least t such that G is t-choosable is called

the list chromatic number of G, and is denoted by ch(G). The complete multipartite

graph with k parts, each of size s is denoted by Ks∗k. Erdős et al. suggested the

problem of determining ch(Ks∗k), and showed that ch(K2∗k) = k. Alon gave bounds

of the form Θ(k log s). Kierstead proved the exact bound ch(K3∗k) = d4k−1
3
e. Here it

is proved that ch(K4∗k) = d3k−1
2
e.

An online version of the list coloring problem was introduced independently by

Schauz and Zhu. It can be formulated as a game between two players, Alice and Bob.

Alice designs lists of colors for all vertices, but does not tell Bob, and is allowed to

change her mind about unrevealed colors as the game progresses. On her i-th turn

Alice reveals all vertices with i in their list. On his i-th turn Bob decides, irrevocably,

which (independent set) of these vertices to color with i. For a function l from V

to the natural numbers, Bob wins the l-game if eventually he colors every vertex v

before v has had l(v)+1 colors of its list revealed by Alice; otherwise Alice wins. The

graph G is l-online choosable or l-paintable if Bob has a strategy to win the l-game.

If l(v) = t for all v ∈ V and G is l-paintable, then G is t-paintable. The online list

chromatic number of G is the least t such that G is t-paintable, and is denoted by

chOL(G). Evidently, chOL(G) ≥ ch(G). Zhu conjectured that the gap chOL(G)−ch(G)

can be arbitrarily large. However there are only a few known examples with this gap

equal to one, and none with larger gap. This conjecture is explored in this thesis. One

of the obstacles is that there are not many graphs whose exact list coloring number is
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known. This is one of the motivations for establishing new cases of Erdős’ problem.

Here new examples of graphs with gap one are found, and related technical results

are developed as tools for attacking Zhu’s conjecture.

The square G2 of a graph G is formed by adding edges between all vertices at

distance 2. It was conjectured that every graph G satisfies χ(G2) = ch(G2). This was

recently disproved for specially constructed graphs. Here it is shown that a graph

arising naturally in the theory of cellular networks is also a counterexample.
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To my beloved family.
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Chapter 1

INTRODUCTION

1.1 Preliminary Definitions and Notation

Let G = (V,E) be a graph. A vertex coloring of the graph G is a map f : V → S

such that f(x) 6= f(y) whenever xy ∈ E. A k-coloring is a vertex coloring f : V → [k].

The smallest integer k such that G has a k-coloring is called the chromatic number

of G; it is denoted by χ(G). Similarly, we have definitions for edge coloring, edge

chromatic number by replacing the words “graph G” with the words “the line graph

of G” in the above definitions of vertex coloring and chromatic number, respectively.

A list assignment L for G is a function L : V → 2N, where N is the set of natural

numbers and 2N is the power set of N. For a pair (G,L), list size function l is defined

as a function l : V → N: l(v) := |L(v)|. If l(v) = k for all vertices v ∈ V , then L

is a k-list assignment for G. An L-coloring f from a list assignment L is a function

f : V → N such that f(v) ∈ L(v) for all vertices v ∈ V and f(x) 6= f(y) whenever

xy ∈ E. The graph G is L-colorable if there exists an L-coloring of G; it is k-choosable

if it is L-choosable for all k-list assignments L. The list chromatic number or choice

number of G, denoted ch(G), is the smallest integer k such that G is k-choosable.

The general list coloring problem may consider list assignments with uneven list sizes,

that is, for the pair (G, l) and x, y ∈ V (G), it may be that l(x) 6= l(y).

Introduced by Schauz (2009), online choosability or paintability is a coloring game

played between two players Alice and Bob on a graph G = (V,E) and a list size

function l : V → N. Let Vi denote the vertex set at the start of round i; so V1 = V .

At round i, Alice selects a nonempty set of vertices Ai ⊆ Vi, and Bob selects an
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4 4 4 4

5 4 4 4 4

6 8 8 8 8

4 4 4 4

4 8 6 4 4

8 4 5 8 8

Figure 1.1: An example graph with uneven list sizes: left is a multipartite graph with

1 part of size 2 and 4 parts of size 3. For the part of size 2, the list sizes are 5 and

6. For each part of size 3, the list sizes are 4, 4, 8, respectively. Alice presents a set

consisting of one vertex of part size 2 with list size 5, and two vertices from each part

of size 3 with list sizes 4 and 8, respectively. The right picture is identical to the left

up to isomorphism.

independent set Bi ⊆ Ai. Then Bi is deleted from the graph so that Vi+1 = Vi r Bi,

and the rounds are continued until Vn = ∅. Alice’s goal is to present some vertex v

more than l(v) times, while Bob’s goal is to choose every vertex before it has been

presented l(v) + 1 times. We say that G is on-line l-choosable if for any strategy

of Alice, Bob has a strategy such that any vertex v ∈ V is in at most l(v) sets Ai.

The graph G is on-line k choosable if G is on-line l-choosable, where l(v) = k for all

v ∈ V . The on-line choice number, denoted chOL(G), is the least k such that G is

on-line k-choosable. The general online list coloring problem may consider list size

function with uneven list sizes.

Let L be a list assignment. Let L¬α be the result of deleting color α from every

list of L. For a set of vertices S ⊆ V let L(S) = {L(x) : x ∈ S}, L(S) =
⋂
L(S),

W (S) =
⋃
L(S), and l(S) = |L(S)|. For a set S and element x we use the notation

S + x = S ∪ {x} and S − x = S r {x}.

In this thesis, lots of complete multipartite graphs with uneven list sizes will be

considered. As a consequence, figures with natural numbers are drawn to represent
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these graph with uneven list size functions. Specifically, let G = K1∗k1,2∗k2,... denote

the complete multipartite graph with ki parts of size i. Organize all the parts and let

Vi = {v1,i, . . . , vt,i} be a part of size t. For a list size function l, denote the pair (G, l)

by an 1 ∗ k1, 2 ∗ k2, . . . array, where i, j-entry is l(vi,j). For paintability, at round i,

Alice presents the set Ai that is marked with boldface. See Figure 1.1 for an example.

1.2 Choosability

The original coloring problem can be viewed as a restriction of the exact same

set of colors for each vertex in the list coloring problem. Thus ch(G) ≥ χ(G) for any

graph G. However, the chromatic number and the choice number for same graph can

be very different. The first example known is as follows:

Example 1 (Erdős et al. (1980)). K3,3 is 2-colorable but not 2-choosable: Since K3,3

is a complete bipartite graph, we can color one part with a single color and the other

part with a second color. Besides, we cannot use one color to color the whole graph

since it is not independent set. Thus χ(K3,3) = 2.

Let L be the list assignment satisfying the following conditions. Assume 1,2,3

are all the possible colors that can be assigned to v ∈ K3,3. For any v, L(v) ∈

{{1, 2}, {2, 3}, {1, 3}}. Besides, for any two different vertices in each part, their lists

are not equal.

Now for L, it can be observed that for each part, at least 2 colors need to be used,

and the colors used for each part must be distinct. Thus there are at least 4 colors

used throughout the graph. However, since there are only 3 colors total in the lists,

this is impossible. Therefore, ch(K3,3) ≥ 3.

The study of list coloring was initiated by Vizing (1976) and by Erdős et al. (1980).

It is a generalization of two well studied areas of combinatorics—graph coloring and
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transversal theory. Restricting the list assignment to a constant function, yields

ordinary graph coloring; restricting the graph to a clique yields the problem of finding

a system of distinct representatives (SDR) for the family of lists.

There are not many graphs whose exact choice number is known. However, there

are some amazingly elegant results that add to the subject’s charm. Here some other

famous results are shown.

Theorem 2 (Thomassen (1994)). Every planar graph is 5-choosable.

Voigt (1993) proved that this is tight, that is, there is a planar graph with ch(G) >

4.

Theorem 3 (Galvin (1995)). For any bipartite graph, ch(G) = ∆(G), where ∆ is the

maximum degree of the graph.

Besides, choice number grows as average degree grows, which does not hold for

chromatic number:

Theorem 4 (Alon (1993a)). Let G be a graph with average degree at least d. If s is

an integer and

d > 4

(
s4

s

)
log(2

(
s4

s

)
)

then ch(G) > s.

More results about list coloring for multipartite graph are stated in Section 1.4.

1.3 Background for Paintability

The game formulation in Section 1.1 hides the on-line nature of the problem.

Another way of thinking about it is that Alice has secretly assigned lists of colors to

all the vertices. At round i she reveals all vertices whose list contains color i, and
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Bob colors an independent set of them with color i. In this formulation it is clear

that chOL(G) ≥ ch(G) for all graphs G.

A “real-world” problem can describe the difference between choice number and

online choice number. Suppose a company has lots of jobs in various cities. There

are also some workers for these jobs, but not all workers are qualified for all jobs. A

worker can be hired to do all the jobs in one city that he is qualified for, but cannot

do jobs in two different cities. Then there are two questions:

(1) Can the workers be assigned to the jobs? This is a choice number problem for

complete multipartite graphs.

(2) Now suppose the workers apply for jobs one at a time, and at the time they

apply they must be immediately assigned to their jobs. This is the on-line choice

number problem for complete multipartite graphs.

The next example shows that choice number and online choice number of a graph

can differ. Let Θr,s,t be a graph that consists of two distinguished nodes a and b that

are joined by three disjoint paths of length r, s, t.

Example 5 (Carraher et al. (2014)).

ch(Θ2,2,4) = 2 < 3 ≤ chOL(Θ2,2,4)

The above assertion will follow from Lemma 6 and 7.

Lemma 6 (Erdős et al. (1980)).

ch(Θ2,2,2m) = 2 for all m ∈ N

Proof. Denote the vertices for the a− b path of length 2m by a = a1, a2, ..., a2m+1 = b

and the remaining two vertices by c, d. See Figure 1.2. Assume L is an arbitrary

2-list assignment. Now we have two cases:

5



a1

a2

a2m

a2m+1

dc

Figure 1.2: The Graph Θ2,2,2m

Case 1: L(ai) = {α, β} for all 1 ≤ i ≤ 2m + 1. Then choose α for all ai with i odd

and choose β for all ai with i even. Then we can complete the choice with a color in

L(c)− α, and a color in L(d)− α.

Case 2: There exists i such that L(ai) 6= L(ai+1). Then tentatively we choose αi ∈

L(ai) r L(ai+1) for ai, and then choose αi−1 ∈ L(ai−1) − αi for ai−1, ..., and finally

α1 ∈ L(a1)−α2 for a1. Now we have four subcases. (1) α1 ∈ L(a2m+1). Then we can

color c with some color β1 ∈ L(c)− α1 and d with some color β2 ∈ L(d)− α1. Color

a2m+1 with α1. Then we can continue choosing α2m ∈ L(a2m) − α1 for a2m, ..., and

finally αi+1 ∈ L(ai+1)− αi+2 for ai+1. This completes our choice. (2) α1 6∈ L(a2m+1)

and α1 6∈ L(c)∩L(d). We can assume α1 6∈ L(c). Then we color d with β1 ∈ L(d)−α1

and color a2m+1 with some color α2m+1 ∈ L(a2m+1) − β1. Then we can color c with

some color in L(c)−α1−α2m+1, since α1 6∈ L(c). Then we can continue choosing α2m ∈

L(a2m)−α1 for a2m, ..., and finally αi+1 ∈ L(ai+1)−αi+2 for ai+1. This completes our

choice. (3) (α1 6∈ L(a2m+1))∧(α1 ∈ L(c)∩L(d))∧(L(a2m+1) 6= L(c)∪L(d)−α1). Then

we can color a2m+1 with α2m+1 ∈ L(a2m+1)r (L(c)∪L(d)−α1). Then we can color c

6



with some color in L(c)− α2m+1 − α1 since α2m+1 6∈ L(c). Similarly we can continue

choosing α2m ∈ L(a2m) − α1 for a2m, ..., and finally αi+1 ∈ L(ai+1) − αi+2 for ai+1.

This completes our choice. (4) Otherwise, we have L(c) = {α1, τ}, L(d) = {α1, γ},

L(a2m+1) = {τ, γ}. In this case, we color c, d with α1. Then we can continue choosing

β1 ∈ L(a1) − α1, β2 ∈ L(a2) − β1, ..., and finally β2m+1 ∈ L(a2m+1) − β2m. As

β2m+1 6= α1 from our assumption. This completes our choice.

Lemma 7 (Carraher et al. (2014)).

chOL(Θ2,2,4) 6= 2

Proof. Figure 1.3 describes a strategy for Alice. Let G = Θ2,2,4 and f(v) = 2 for any

v ∈ V (G). The top left graph depicts the initial game position (G, f), and Alice’s first

move. The numbers inside the nodes represent the size of f(v) for the corresponding

vertex v. The nodes inside the box represent the vertices that Alice presents on here

first move.

As play progresses Bob chooses certain vertices presented by Alice and passes over

others. When a vertex is chosen its position is removed from the next graph (and the

deleted vertex is marked as a small grey square in this example). When he passes

over a vertex its list size is decreased by one. The arrows between the graphs point

to the possible new game positions that arise from Bob’s choice.

For example, after Bob’s first move there are two possible graphs, provided Bob

chooses a maximal independent set. It is shown in the second column of the first row

and the first column of the third row, along with Alice’s second move respectively.

Now Bob has one possible response that are pointed to by the arrow for the positions

of the first row.

7



Eventually, Alice forces one of two positions (G, f) such that G is not f -choosable,

and Bob, being a gentleman, resigns.

1.4 Historical Results for Choosability of Multipartite Graph

In this section, I introduce some recent results on choice number for complete

multipartite graph.

Erdős et al. (1980) suggested determining the choice number of uniform complete

multipartite graphs. Recall that K1∗k1,2∗k2... denote the complete multipartite graph

with ki parts of size i. Since K1∗k is a clique and Ks∗1 is an independent set, these cases

are trivial. Alon (1993b) proved the general bounds c1k log s ≤ ch(Ks∗k) ≤ c2k log s

for some constants c1, c2 > 0. This was tightened by Gazit and Krivelevich (2006).

Theorem 8 (Gazit and Krivelevich (2006)). ch(Ks∗k) = (1 + o(1)) log s
log(1+1/k)

.

The next well-known example provides the best lower bounds for small values of

s by generalizing Example 1.

Example 9. ch(Ks∗k) ≥ d2(s−1)k−s+2
s

e: Let G = Ks∗k have parts {X1, . . . , Xk} with

Xi = {vi,1, . . . , vi,s}. We will construct an (l − 1)-list assignment L from which G

cannot be colored. Equitably partition C := [2k − 1] into s parts C1, . . . , Cs. Define

a list assignment L for G by L(vi,j) = C r Cj. Then each list has size at least

2k − 1−
⌈

2k − 1

s

⌉
=

⌊
2ks− s− 2k + 1

s

⌋
=

⌈
2(s− 1)k − 2s+ 2

s

⌉
= l − 1.

Consider any color α ∈ C. Then α ∈ Ci for some i ∈ [s]. So α /∈ L(xi,j) for every

j ∈ [k]. Thus any L-coloring of G uses at least two colors for every part Xj. Since

vertices in distinct parts are adjacent, they require distinct colors. As there are k

parts this would require 2k > |C| colors, which is impossible.
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Figure 1.3: The Strategy for Alice Demonstrating chOL(Θ2,2,4) ≥ 3
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Restricting the question of Erdős et al. (1980), we ask for those integers s such

that:

(∀k ∈ Z+)

[
ch(Ks∗k) = l(s, k) :=

⌈
2(s− 1)k − s+ 2

s

⌉]
. (1.1)

The cases s = 2, s = 3 and s = 4 have been solved:

Theorem 10 (Erdős et al. (1980)). All positive integers k satisfy ch(K2∗k) = k.

Proof. First notice that ch(K2∗k) ≥ χ(K2∗k) ≥ χ(Kk) = k. Thus it suffices to show

that ch(K2∗k) ≤ k.

We prove by contradiction. Let k be the least integer such that chOL(K2∗k) > k.

Let L be a list assignment. Now we claim:

(*) L(a)
⋂
L(b) = ∅ for any part X = {a, b} ⊆ K2∗k.

If (*) is not true, then there exists some part X = {a, b} such that we can choose

one color α ∈ L(a) ∩ L(b). Color a, b with α. Let L′ = L¬α. Then we have

|L′(v)| ≥ k − 1 for any vertex v ∈ K2∗k r X. As K2∗k r X has k − 1 parts and is

not L-colorable, K2∗k rX is not L′-colorable. Thus K2∗k rX is not k− 1 choosable.

This contradicts the minimality of k. So (*) holds.

Now we want to prove that |S| ≤ |L(S)| for any S ⊆ V (G). Then by Hall’s

theorem, there is a L-coloring for G. If 1 ≤ |S| ≤ k, we can find a vertex v ∈ S.

|W (S)| ≥ |L(v)| = k ≥ |S|. If |S| > k, then there exists a part X = {a, b} ⊆ S. By

(*), |W (S)| ≥ |W (X)| = |L(a)|+|L(b)|−|L(a)
⋂
L(b)| = 2k−0 = 2k ≥ |G| ≥ |S|. By

using Hall’s Theorem, we can find a L-coloring for graph G. Since L is an arbitrary

k-list assignment, G is k-choosable.

Theorem 11 (Kierstead (2000)). All positive integers k satisfy ch(K3∗k) = d4k−1
3
e.

Recently, Kozik et al. (2014) gave a very different proof of Theorem 11. The

following more general result appears in Ohba (2004).
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Theorem 12 (Ohba (2004)). ch(K1∗k1,3∗k3) = max{k, dn+k−1
3
e}, where k = k1 + k3

and n = k1 + 3k3.

The next example shows that the largest s satisfying (1.1) is at most 14.

Example 13. ch(K15∗k) ≥ l := 2k: Let G = Ks∗k have parts {X1, . . . , Xk} with

Xi = {vi,1, . . . , vi,s}. We will construct an (l − 1)-list assignment L from which G

cannot be colored. Equitably partition C := [3k − 1] into 6 parts C1, . . . , C6, and fix

a bijection f : [15]→
(
[6]
2

)
. Define a list assignment L for G by

L(vi,j) = C r
⋃
{Ch : h ∈ f(i)}.

Then each list has size at least

3k − 1− 2

⌈
3k − 1

6

⌉
= 2k − 1 = l − 1.

Consider any two colors α, β ∈ C. Then α, β ∈
⋃
{Ch : h ∈ f(i)} for some i ∈ [15].

So α, β /∈ L(xi,j) for every j ∈ [k]. Thus any L-coloring of G uses at least the colors

for every part Xj. Since 3k > |C|, this is impossible.

Yang (2003) proved d3k
2
e ≤ ch(K4∗k) ≤ d7k

4
e, and Noel et al. (2015) improved the

upper bound to d5k−1
3
e. A result we proved is that (1.1) holds for s = 4. To prove

this theorem We first extract a simple proof of Theorem 11 from Noel et al. (2014),

and then elaborate on it.

Theorem 14 (Kierstead et al. (2014)). ch(K4∗k) = l(4, k) := d3k−1
2
e.

Another result shows that when the number of vertices is near chromatic number,

the graph G is chromatic-choosable, which is defined as χ(G) = ch(G). The conjecture

was first raised by Ohba (2004) and proved by Noel et al. (2015).

Theorem 15 (Noel et al. (2015)). If |V (G)| ≤ 2χ(G) + 1, then ch(G) = χ(G).
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Actually, the same paper proved a more generalized result:

Theorem 16 (Noel et al. (2015)). For any graph G with |V (G)| = n and χ(G) = k,

ch(G) ≥ max{k, dn+k−1
3
e}

1.5 Historical Results for Paintability of Multipartite Graph

Since chOL ≥ ch, choosability can provide a natural lower bound for paintability.

It turns out that many results of paintability are same from that of choosability.

Several results are listed as follows.

Theorem 17 (Schauz (2009)). Every planar graph is 5-paintable.

Theorem 18 (Schauz (2009)). For any bipartite graph, chOL(G) = ∆(G), where ∆

is the maximum degree.

However, there is still a difference between choosability and paintability for some

graphs. One of our goals is to understand such graphs. One example is the complete

multipartite graph: not all complete multipartite graphs have chOL > ch, but there

are some with this property. Our results through this line are shown in Chapter 3.

Here we list some historical results.

Example 19 (Zhu (2009)).

ch(K2∗(k−1),3) = k < k + 1 = chOL(K2∗(k−1),3).

for any k ≥ 3.

From Thereom 15, we have ch(K2∗(k−1),3) = k, since χ(K2∗(k−1),3) = k and

|V (G)| ≤ 2k + 1. The latter part chOL(K2∗(k−1),3) = k + 1 follows from the next

three lemmas.

12



Lemma 20 (Zhu (2009)). Let G be a complete multipartite graph with each part of

size at most 2. Let A be the set of the parts of size 1, B be the set of the parts of size

2 such that V (G) =
⋃
A ∪

⋃
B. Let k1, k2 be the cardinalities of A,B, respectively.

Suppose A is ordered as A = (A1, A2, ..., Ak1). Then G is online L-choosable for any

list assignment L satisfying the following conditions:

|L(v)| ≥ k2 + i for all 1 ≤ i ≤ k1 and v ∈ A,

|L(v)| ≥ k2 for all v ∈ B ∈ B,∑
v∈B

|L(v)| ≥ 2k2 + k1 for all B ∈ B.

Proof. The proof goes by induction on |V (G)|. If |V (G)| = 1, then k1 = 1, k2 = 0.

The only vertex v has |L(v)| ≥ 1. Thus the graph is online L-choosable.

Suppose the conclusion holds when |V (G)| < n. Now |V (G)| = n. Alice chooses

a set S ⊆ V (G), Bob will choose an independent set T ⊆ S based on several different

cases. After Bob deletes the set, we call the new graph G′, the new list assignment

L′, the new set of parts as A′,B′ and their new cardinalities k′1, k
′
2.

In the following cases, each case assumes the previous cases fail.

Case 1: S contains some part B ∈ B. Then Bob chooses the part B. Now k′1 =

k1, k
′
2 = k2 − 1. We have |L′(v)| ≥ k2 − 1 + i = k′2 + i for all v ∈ Ai ∈ A. Similarly

for v ∈ B ∈ B, |L′(v)| ≥ k2 − 1 = k′2. For any B ∈ B,
∑

v∈B |L′(v)| ≥ 2k2 + k1 − 2 =

2k′2 + k′1.

Case 2: S contains some vertex v ∈
⋃
B with |L(v)| = k2. In this case Bob chooses

the vertex v. Now we have A′ = A+(B−v) with B−v placed last in A′, B′ = B−B,

k′1 = k1+1 and k′2 = k′2−1. For any part A = {w} 6= (B−v) ∈ A, |L(v)| ≥ k2+i−1 =

k′2 + i, For w ∈ B − v, we have |L(w)| ≥ 2k2 + k1 − k2 = k2 + k1 = k′2 + k′1. For any

w ∈ B ∈ B′, we have |L(w)| ≥ k2−1 = k′2. Also
∑

w∈B |L(w)| ≥ 2k2+k1−1 = 2k′2+k
′
1.

13



Case 3: S contains some vertex v ∈
⋃
A. Then Bob chooses such a part A where t

is minimum. Now A′ = A − A with order unchanged, B′ = B, k′1 = k1 − 1, k′2 = k2.

For any 1 ≤ i < t and w ∈ A′i, we have |L′(w)| = |L(w)|. For t ≤ i ≤ k′1, |L′(w)| ≥

k2 + i+ 1− 1 = k′2 + i, w ∈ A′i. Now for B, since Case 2 fails, any w ∈ B ∈ B satisfies

|L(w)| ≥ k2 + 1. Hence |L′(w)| ≥ k2 = k′2.
∑

w∈B |L′(w)| ≥ 2k2 + k1 − 1 = 2k′2 + k′1

for all w ∈ B ⊆ B.

Case 4: S contains some vertex v ∈
⋃
B. Then Bob chooses such a vertex v ∈

⋃
B.

Now we have A′ = A+(B−v) with B−v placed at the beginning of A′, B′ = B−B,

k1 = k′1 − 1 and k2 = k′2 + 1. Thus for any part A = {w} 6= (B − v) ∈ A,

|L′(w)| ≥ k2 + i = k′2 +(i+1). For w ∈ B−v, we have |L′(w)| ≥ k2 = k′2 +1. For any

other w ∈ B′ ∈ B′, we have |L(w)| ≥ k2−1 = k′2. Also
∑

w∈B′ |L(w)| ≥ 2k2+k1−1 =

2k′2 + k′1.

Since all the above cases satisfy |V (G′)| < n and all inequalities in the statement

of the Lemma. Then by induction hypothesis, we are done.

Lemma 21.

chOL(K2∗(k−1),3) ≤ k + 1

Proof. From Lemma 20, we have chOL(K2∗k) = k. To show chOL(K2∗(k−1),3) ≤ k + 1,

we observe that there is one more vertex in K2∗(k−1),3 than in Kk∗2. We call this vertex

v. Then we can use the same winning strategy for Bob, except Bob deletes the extra

vertex v immediately when Alice chooses it. Since the list size has been increased by

1, Bob can afford this round and still win. Hence chOL(K2∗(k−1),3) ≤ k + 1.

Lemma 22.

chOL(K2∗(k−1),3) ≥ k + 1
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Proof. We prove the lemma by showing chOL(K2∗(k−1),3) is not k-online choosable.

Base step: k = 3. Figure 1.4 describes the strategy for Alice. Let G = K2∗(k−1),3

and f(v) = k for any v ∈ V (G). The top left matrix depicts the initial game position

(G, f), and Alice’s first move. The positions in the matrix correspond to the vertices

of K2,2,3 arranged so that vertices in the same part correspond to positions in the

same column. The order of vertices within a column is irrelevant, as is the order of

the columns. The numbers represent the size of f(v) for the corresponding vertex v.

The sequence of numbers represents a function f . The bold positions represent the

vertices that Alice presents on first move.

As play progresses Bob chooses certain vertices presented by Alice and passes over

others. When a vertex is chosen its position is removed from the next matrix (and

the positions in its column of the remaining vertices and the order of the columns

may be rearranged). When he passes over a vertex its list size is decreased by one

(and its position in its column and the order of the columns may change). The arrows

between the matrices point to the possible new game positions that arise from Bob’s

choice, not counting equivalent positions and assuming that Bob always chooses a

maximal independent set.

For example, after Bob’s first move there are two possible game positions, provided

Bob chooses a maximal independent set. It is shown in the second column of the

first row and the second column of the third row, along with Alice’s second move

respectively. Now Bob has three possible responses that are pointed to by two arrows

for the positions of the first row.

Eventually, Alice forces one of four positions (G, f) such that G is not f -choosable,

and Bob, being a gentleman, resigns.

Induction step: k = 3. Figure 1.5 describes the strategy for Alice. The descrip-

tion is similar to that of base step. The only difference is the position at the third
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Figure 1.4: Strategy for Alice Demonstrating chOL(K2,2,3) ≥ 4

column of the first row is done by induction hypothesis as the graph is G′ = K2∗(k−2),3

and |L(v)| = k−1 for each v ∈ G. We leave out some choices for Bob in some graphs,

since these choices will lead to a graph with k-clique with list size function values in

this clique at most k − 1.

Interestingly, it seems that in the above graphs, the choice numbers are much

harder to find than the online choice numbers.

An analogue of the choosability version of Theorem 16 was raised naturally by

Zhu (2009). The conjecture, however, has not been proved or disproved:

Conjecture 23 (Zhu (2009)). If |V (G)| ≤ 2χ(G), then chOL(G) = χ(G).

This also means that we cannot find any counterexample so that chOL(G) >

16



k

k k · · · k k

k k · · · k k

k − 1

k − 1 · · · k − 1 k

k k · · · k k

k − 1
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(Done by induction hypothesis)
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k− 1 · · · k− 1 k− 1

k k − 1 · · · k − 1 k − 1

k− 1 · · · k− 1 k− 1

k− 1 k − 1 · · · k − 1 k

k− 2 · · · k− 2 k− 2

k − 1 · · · k − 1 k − 1

Figure 1.5: Strategy for Alice Demonstrating chOL(K2∗(k−1),3) ≥ k + 1

ch(G) + 1 for all graphs G with |V (G)| ≤ 2χ(G) if Conjecture 23 is true.

It seems to be interesting to determine how large the difference can be between

choosability and paintability. The conjecture is as follows:

Conjecture 24. There is a graph G with chOL(G)− ch(G) > 1,

Much work is done towards solving Conjecture 24 in Chapter 3.

There are efforts made by other people. The following theorem shows a upper

bound for online choosability of K3∗k.

Theorem 25 (Kozik et al. (2014)).

chOL(K3∗k) ≤ b3k/2c

However, it is not known if the bound is tight or not.
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Chapter 2

CHOICE NUMBER OF MULTIPARTITE GRAPH OF PART SIZE 4

2.1 Set-up

In this chapter, we prove Theorem 14. To start a proof, we first extract the

technique used by Noel et al. (2015). From the technique, we deduce a simple proof

of Theorem 11 in Section 2.2. After generalizing the technique, we finally prove

Theorem 14 in Section 2.3.

Fix s, k ∈ Z+. Let G = (V,E) = Ks∗k, and let P be the partition of V into k

independent s-sets. Let l = l(k, s) = d (s−1)2k−s+2
s

e, and consider any l-list assignment

L for G. Put C∗ =
⋃

x∈V L(x). Let L¬α be the result of deleting α from every list of

L.

We may write x1 . . . xt for the subpart S = {x1, . . . , xt} ⊆ X ∈ P ; when we use

this notation we implicitly assume the xi are distinct. Also set S = X r S. For a

set of vertices S ⊆ V let L(S) = {L(x) : x ∈ S}, L(S) =
⋂
L(S), W (S) =

⋃
L(S),

and l(S) = |L(S)|. The operation of replacing the vertices in S by a new vertex vS

with the same neighborhood as S is called merging. The new vertex vS is said to be

merged ; vertices that are not merged are called original. When merging a set S we

also create a list L(vS) = L(S).

For a color α ∈ C∗, let |X,α| = |{x ∈ X : α ∈ L(x)}| be the number of times

α appears in the lists of vertices of X, Ni(X) = {α ∈ C∗ : |X,α| = i} be the set

of colors that appear exactly i times in the lists of vertices in X, ni(X) = |Ni(X)|,

N(X) = N2(X)∪N3(X), and n(X) = |N(X)|. Let σi(X) =
∑
{l(I) : I ⊆ X∧|I| = i}

and µi(X) = max{l(I) : I ⊆ X ∧ |I| = i}.
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For a set S and element x we use the notation S+x = S∪{x} and S−x = Sr{x}.

The range of a function f is denoted by ran(f).

The following lemma was proved independently by Kierstead (2000), and by Reed

and Sudakov (2005), Reed and Sudakov (2002), and named by Rabern.

Lemma 26 (Small Pot Lemma). If ch(G) > r then there exists a list assignment L

such that G has no L-coloring, all lists have size r, and their union has size less than

|V (G)|.

If s does not satisfy (1.1) then there is a minimum counterexample k with ch(Ks,k) >

l(s, k). By the Small Pot Lemma, this is witnessed by a list assignment L with

|
⋃
{L(x) : x ∈ V (G)}| < |V |. We always assume L has this property.

Lemma 27. If G is a minimum counterexample then every part X of G satisfies

L(X) = ∅.

Proof. Otherwise there exists a list assignment L, a color α, and a part X such that

α ∈ L(X). Color each vertex in X with α, set G′ = G−X, and put L′ = L¬α. Then

L′ witnesses that k − 1 is a smaller counterexample, a contradiction.

By Lemma 27, ns(X) = 0 for each part X ∈ P . So by the Small Pot Lemma,

|W (X)| =
∑s−1

i=1 ni(X) < sk. Also
∑s−1

i=1 i ni(X) = sl is the number of occurrences of

colors in the lists of vertices of X. Thus

s−1∑
i=1

(i− 1)ni(X) ≥ sl − |W (X)| ≥ s(l − k) + 1. (2.1)

2.2 A Short Proof of Theorem 11

Now we warm-up by giving a short proof extracted from Noel et al. (2015) of

Theorem 11.
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Proof of Theorem 11. Let s = 3, l = l(3, k) = ch(K3∗k) = d4k−1
3
e, and assume G is

a counterexample with k minimal. Then k > 1. By Lemma 27, n3(X) = 0 for all

X ∈ P . We obtain a contradiction by L-coloring G. First we use the following steps

to partition V into sets of vertices that will receive the same color. Then we merge

each set I into a single vertex vI , and assign vI the set of colors in L(I). Finally we

apply Hall’s Theorem to choose a system of distinct representatives (SDR) for these

new lists; this induces an L-coloring of G.

Step 1. Partition P into a set R of l − k reserved parts and a set U = P r R of

2k − l unreserved parts.

Step 2. Choose U1 ⊆ U to maximize ν =
∑

X∈U1 µ2(X) subject to the constraint

|U1| ≤ µ2(X) for all X ∈ U1. Set u1 = |U1|. For each X ∈ U1 choose a pair IX ⊆ X

with l(IX) ≥ u1 maximum. Put U2 = U r U1 and u2 = |U2|.

The maximality of ν implies

µ2(X) ≤ u1 for all X ∈ U2, (2.2)

as otherwise adding X to U1, and deleting one part Y ∈ U1 with µ2(Y ) = u1, if such

a part Y exists, would increase ν.

Step 3. Using (2.1), each part X ∈ P satisfies

n2(X) ≥ 3(l − k) + 1 = 3

⌈
k − 1

3

⌉
+ 1 ≥ k − 1 + 1 = k.

Form an SDR f for {L(vIX ) : X ∈ U1} ∪ {N(X) : X ∈ R} by greedily choosing

representatives for the first family and then for the second family. For each X ∈ R

choose a pair IX ⊆ X so that f(x) ∈ L(IX).

Step 4. For each X ∈ U1 ∪ R, merge IX to a new vertex vIX , let zX ∈ X r IX ,

and set X ′ = {vIX , zX}. If X ∈ U2, set X ′ = X. This yields a graph G′ with parts

P ′ = {X ′ : X ∈ P}, and list assignment L.
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Next we use Hall’s Theorem to prove that {L(x) : x ∈ V (G′)} has an SDR. For this

it suffices to prove:

|S| ≤
∣∣∣⋃{L(x) : x ∈ S}

∣∣∣ for every S ⊆ V (G′). (2.3)

To prove (2.3), let S ⊆ V (G′) be arbitrary, and set W = W (S) :=
⋃
{L(x) : x ∈ S}.

We consider several cases in order, always assuming all previous cases fail.

Case 1: There exists X ∈ P with |S ∩ X ′| = 3. Then X ′ = X ∈ U2, u2 ≥ 1, and

|S| ≤ |G′| ≤ 2k + u2. By (2.2), u1 ≥ µ2(X) ≥ σ2(X)/3. Using inclusion-exclusion,

and Lemma 27,

|W | ≥ |W (X)| ≥ σ1(X)− σ2(X) + σ3(X) ≥ 3l − 3u1 = 3l − 3(2k − l − u2)

≥ 6(l − k) + 3u2 ≥ (2k − 2) + (2 + u2) ≥ 2k + u2 ≥ |S|.

Case 2: There is X ∈ U2 with |S ∩ X ′| = 2. Since u1 = 2k − l − u2 < 2k − l, By

(2.2),

|W | ≥ |W (S∩X)| ≥ 2l−l(S∩X) ≥ 2l−u1 ≥ 2l−(2k−l−u2) ≥ 3l+1−2k ≥ 2k ≥ |S|.

Case 3: There is X ∈ U1 with |S ∩ X ′| = 2. As |S| ≤ 2k − u2 = l + u1 and

L(vIXzX) = L(X) = ∅,

|W | ≥ |W (S ∩X ′)| ≥ l(vIX ) + l(zX)− l(vIXzX) ≥ u1 + l ≥ |S|.

Case 4: S has an original vertex. Then |S| ≤ 2k − u1 − u2 = l ≤ |W |.

Case 5: All vertices of S have been merged. Then |S| ≤ |f(S)| ≤ |W |.

21



2.3 Proof of Theorem 14

In this section we prove our main result, Theorem 14. The case when k is odd

is considerably more technical. Casual or first time readers may wish to avoid these

additional details; the proof is organized so that this is possible. In particular, in

the even case Step 7(b), Step 11, Lemma 28(b), and Lemma 32 are not involved.

Furthermore, only the first conclusion of Lemma 13 that k is odd (in the bad case

covered by its hypothesis) is used. Let b ∈ {0, 1} with b ≡ k mod 2 and l = l(4, k) =

d3k−1
2
e. We often use the partition k = (2k − l) + (l − k) of the integer k, and note

that 2k − l = l − k + b.

Proof of Theorem 14. Our set-up is the same as in the proof of Theorem 11. Let

s = 4, l = l(4, k), and G = K4∗k. The theorem is trivial if k = 1. Let k > 1 be a

minimal counterexample, and let L be an l-list assignment for G with |W (V )| ≤ 4k−1

and L(X) = ∅ for all parts X ∈ P . Again we partition V into sets of vertices that

will receive the same color, and then find an SDR for the induced list assignment that

in turn induces an L-coloring of G. See Figure 2.1.

Step 1. Reserve notation for a partition P = R∪U of V with |R| = l−k, |U| = 2k−l,

R = R1 ∪R2 ∪R3, and U = U1 ∪U2 ∪U3 ∪U4, where R1,R2,R3,U1,U2,U3,U4 are to

be defined in the following steps.

Step 2. Choose U1 ⊆ P so that |U1| ≤ 2k − l, for every X ∈ U1 there is a pair

IX ⊆ X with (*) l(IX), l(IX) ≥ k, and subject to these constraints |U1| is maximum.

For each X ∈ U1 fix IX witnessing (*). Let u1 := |U1|. Then:

If u1 < 2k−l then (∀X ∈ PrU1)(∀I ⊆ X)[|I| = 2→ min{l(I), l(I)} ≤ k−1]. (2.4)

Step 3. Choose U2 ⊆ P r U1 so that |U2| ≤ 2k − l − u1 and |U2| ≤ µ3(X) for all

X ∈ U2; subject to this let ν3 =
∑

X∈U2 µ3(X) be maximum. Let u2 = |U2|. If U2 6= ∅
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we select a part Ż ∈ U2; else Ż = ∅. For each X ∈ U2 choose a triple IX ⊆ X with

l(IX) ≥ u2 maximum. Since ν3 cannot be increased:

If u1 + u2 < 2k − l then (∀X ∈ U3 ∪ U4 ∪R)[µ3(X) ≤ u2]. (2.5)

Step 4. Choose R1 ⊆ P r (U1 ∪ U2) so that |R1| ≤ l − k and there is a family of

sets {IX : X ∈ R1} such that (*) IX ⊆ X, |IX | = 3, and there is an SDR f1 of

L(M1), where M1 := {vIX : X ∈ U2 ∪R1}; subject to this constraint, choose R1 with

|R1| maximum. Fix {IX : X ∈ R1}, f1 and M1 satisfying (*). Let C1 = ran(f1) and

r1 := |R1|. Then:

If r1 < l − k then (∀X ∈ U3 ∪ U4 ∪R2 ∪R3)[N3(X) ⊆ C1]. (2.6)

Moreover, by Lemma (27), L(T ) ∩ L(T ′) = ∅ for any two triples T, T ′ ⊆ X, and so

If r1 < l − k then (∀X ∈ U3 ∪ U4 ∪R2 ∪R3)[σ3(X) ≤ u2 + r1]. (2.7)

Step 5. Choose U3 ⊆ P r (U1 ∪U2 ∪R1) so that |U3| ≤ 2k− l− u1− u2 and l− k+

u2 + |U3| ≤ µ2(X) for all X ∈ U3; subject to this constraint let ν5 =
∑

X∈U3 µ2(X) be

maximum. Let u3 = |U3|. Since ν5 cannot be increased:

If u1 + u2 + u3 < 2k − l then (∀X ∈ U4 ∪R2 ∪R3)[µ2(X) ≤ l − k + u2 + u3]. (2.8)

For all X ∈ U3 choose a pair IX = xy ⊆ X with l(IX) ≥ l − k + u2 + u3

maximum; subject to this choose IX so that ∆1(IX) := l(IX) − l(IX) is maximum.

Set ∆2(IX) := 2u2 − l(xyz)− l(xyw) , where zw = IX .

Step 6. Choose R2 ⊆ P r (U1 ∪ U2 ∪ U3 ∪R1) so that |R2| ≤ l − k − r1 and

σ2(X)− σ3(X) ≥ 5(l − k) + 2u1 + 2u2 + u3 + r1 + |R2| for all X ∈ R2; subject to

this constraint let ν6 =
∑

X∈R2
(σ2(X)− σ3(X)) be maximum. Set r2 = |R2|. Then:

If r1 + r2 < l − k then (∀X ∈ U4 ∪R3)

[σ2(X)− σ3(X) ≤ 5(l − k) + 2u1 + 2u2 + u3 + r1 + r2]. (2.9)
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Step 7. Choose R3 ⊆ P r (U1 ∪ U2 ∪ U3 ∪ R1 ∪ R2) with |R3| = l − k − r1 − r2.

Let r3 = |R3|. If r3 = 0 then go to Step 8. Otherwise, for I ⊆ X ∈ R3, put

L1(I) = L(I) r C1, l
1(I) = |L1(I)|, and if |I| = 2, let ∆1

1(I) = l1(I) − l1(I). By

Lemma 28, all 2-sets I ⊂ X satisfy

W (I + vI) ≥ 3k − b+ ∆1
1(IX)− u2 − r1. (2.10)

Set ṙ = 0 and do one of (a) or (b) below.

(a) If b = 0 or there are X ∈ R3 and a 2-set I ⊂ X with ∆1
1(I) ≥ 1 then choose

Ẏ and a 2-set IẎ ⊂ Ẏ , so that ∆1
1(I) is maximum. By Lemma 28(a) there is a family

J ={IX : X ∈ R3 − Ẏ } such that IX ⊆ X, |IX | = 2, ∆1
1(IX) ≥ 0, and for all

X ∈ R3; and L(M2 ∪ {vIX : X ∈ R3 ∪ U3}) has an SDR f2 extending f1. Fix such

I = J + IẎ = {IX : X ∈ R3} and f2, and set M2 = M1 ∪ {vIX : X ∈ R3 ∪ U3} and

C2 = ran(f2).

(b) Otherwise b = 1 and every X ∈ R3 and every 2-set I ⊂ X satisfies ∆1
1(I) = 0.

Let Ẏ be any class in R3. By Lemma 28(b), there is a 2-set IẎ ⊂ Ẏ such that I can

be chosen so that L(M2∪{vIX : X ∈ R3∪U3}+vIẎ ) has an SDR h extending f1. Let

M2 = M1 ∪ {vIX : X ∈ R3 ∪U3}, f2 equal h restricted to M2, and C2 = ran(f2). (b*)

If u1 = 0 = r2 then Step 9 is degenerate; set f3 = h, M3 = M2 + vI ẏ , C3 = ran(f3),

and ṙ = 1.

Step 8. Put U4 := U r (R∪ U1 ∪ U2 ∪ U3), and u4 := |U4|.

Step 9. Using Lemma 30, choose a family I = {IX : X ∈ R2} such that IX ⊆ X

and |IX | = 2 for all X ∈ R2, and L(M2∪{vIX : X ∈ U1∪R2}∪{vIX : X ∈ U1∪R2})

has an SDR f3 that extends f2. Set M3 = M2 ∪ {vIX , vIX : X ∈ U1 ∪ R2} and

C3 = ran(f3).
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Step 10. Let G′ := (V ′, E ′) be the graph obtained from G by merging each IX with

X ∈ U1 ∪ U2 ∪ U3 ∪ R1 ∪ R2 ∪ R3 and each IX with X ∈ U1 ∪ R2. Note that this

does not include I Ẏ even if Step 7(b*) is executed. For a part X, let X ′ be the

corresponding part in G′, and set P ′ = {X ′ : X ∈ P}.

Step 11. Set u̇ = ü = 0. If k is odd (b = 1) then we merge one more pair of vertices

under the following special circumstances:

(a) there exists X ∈ U4 with |W (X)| < |G′|. Fix such an X = Ẋ. By Lemma 31,

u1 = 0 = r3 and there is a pair IẊ ⊆ Ẋ such that (i) f3 can be extended to

an SDR f of L(M), where M := M3 + vIẊ ; (ii) |W ({vIẊ , v})| ≥ 2k − 1, and

if equality holds then |W ({vIẊ , v} ∪ Ż
′) ∪ C4| ≥ 2k for both v ∈ IẊ ; and (iii)

W (IẊ + vIẊ ) ≥ |G′| − 1. Merge IẊ and set u̇ = 1.

(b) condition (a) fails and there exist X ∈ U4 and xyz ⊆ X with

|W (xyz ∪ Ż ′)| ≤ 2k + u4 − 1 < |W (X)|.

Fix such an X = xyzw = Ẍ. By Lemma 32 there is a pair IẌ ⊆ xyz such

that (i) f3 can be extended to an SDR f of L(M), where M := M3 + vIẌ ; (ii)

|W ({vIẌ , v})| ≥ 2k for v ∈ xyz r IẌ and |W ({vIẌ , w})| ≥ 2k − 1 + u3; and (iii)

|W (IẌ + vIẌ )| ≥ 2k + u4. Merge IẌ and set ü = 1.

Step 12. Recall that G′ is the graph obtained after the first ten steps. Let H be

the final graph obtained by this merging procedure, including I Ẏ if Step 7(b*) is

executed. (If b = 0, and possibly otherwise, H = G′). Also let M be the final set of

merged vertices, f be the final SDR of L(V (H)), and C = ran(f).

Recall that fi is an SDR for L(Mi) with ran(fi) = Ci, M is the final set of merged

vertices, f is the final SDR of L(M), and C = ran(f). Also, depending on whether
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U1 U2 U3 U4 R1 R2 R3

u1 u2 u3 u4 r1 r2 r3
2k − l l − k

Figure 2.1: The ovals indicate sets of vertices that have been merged before Step 11

to form G′.

Step 7(b*) is executed, M3 = M2 + vIẎ or M3 = M2 ∪ {vIX , vIX : X ∈ U1 ∪R2}. The

following table summarizes some of the notation from the algorithm before Step 11.

i X ∈ Ui X ∈ Ui X ∈ Ri Mi

1 |IX | = 2 l(IX), l(IX) ≥ k |IX | = 3 {vIX : X ∈ U2 ∪R1}

2 |IX | = 3 l(IX) ≥ u2 |IX | = 2 M1 ∪ {vIX : X ∈ U3 ∪R3}

3 |IX | = 2 l(IX) ≥ l − k + u2 + u3 |IX | = 2 M2 ∪ {vIX , vIX : X ∈ U1 ∪R2}+ vIẎ

Table 2.1: Notation and Facts from the Algorithm

Our next task is to state and prove the four lemmas on which the algorithm is

based. The first lemma is used for Step 7. The statement of the lemma uses the

notation from that step.

Lemma 28. Every 2-set I ⊂ X ∈ R3 satisfies

W (IX + vIX ) ≥ 3k − b+ ∆1
1(IX)− u2 − r1. (2.11)

Furthermore:
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(a) For every Y ∈ R3 and 2-set IY ⊂ Y with L1(IY ) 6= ∅ and ∆1
1(IY ) ≥ 0 there

is a family I = {IX : X ∈ R3} such that IX ⊆ X, |IX | = 2, and ∆1
1(IX) ≥ 0 for all

X ∈ R3; and L(M1 ∪ {vIX : X ∈ R3 ∪ U3}) has an SDR f2 extending f1.

(b) Furthermore, if (H) W (I ∪ L(I)) ≤ 3k − 1− u2 − r1 for all X ∈ R3 and all

2-sets I ⊂ X, then for some 2-set IY ⊂ Y , the family I and SDR f2 can be chosen

so that there is an SDR f3 of L(M1 ∪ {vIX : X ∈ R3 ∪ U3}+ vIX ) extending f2.

Proof. Consider any X = xyzw ∈ R3. For I ⊆ X, let l2(I) = |L(I) ∩ C1|. Then

l(I) = l1(I) + l2(I). First we prove (2.11) with I = xy. By (2.6), l1(wxy) = 0 =

l1(zxy), and by Lemma 27, l(X) = 0, and so l2(xy)− l2(wxy)− l2(zxy) ≥ 0. Thus

|W (wz + vxy)| = l1(w) + l1(z) + l1(xy)− l1(wz)− l1(wxy)− l1(zxy) +

l2(w) + l2(z) + l2(xy)− l2(wz)− l2(wxy)− l2(zxy)

≥ 2l + ∆1
1(xy)− l2(wz) ≥ 3k − b+ ∆1

1(xy)− u2 − r1.

Let A(X) = N1(X) r C1. By (2.6), N3(X) ⊆ C1. So A(X) is the set of colors

available for coloring a merged pair of vertices from X, and L1(I) = L(I) r C1 =

L(I)∩A(X) for all pairs I ⊆ X. Moreover {L1(I) : I ⊆ X ∧ |I| = 2} is a partition of

A(X). For each color α ∈ A(x), set I(α) = {x ∈ X : α ∈ L(x)}. As A(X) ⊆ N2(X),

|I(α)| = 2. Let B(X) = {α ∈ A(X) : ∆1
1(I(α)) ≥ 0)}. Colors β ∈ B(X), do not

conflict with f1 and can be representatives for L(I(β)), while ∆1
1(I(β)) ≥ 0.

Setting X = wx1x2x3, and using N3(X) ⊆ C1,

|A(X)| =
3∑

i=1

(l1(wxi) + l1(wxi)) ≤ 2
3∑

i=1

max(l1(wxi), l
1(wxi)) = 2|B(X)|. (2.12)

By (2.1)

n2(X) + 2n3(X) ≥ 4l − |W (X)| ≥ 4(l − k) + 1 ≥ 2k − 1. (2.13)
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As N3(X) ⊆ C1, n3(X) ≤ |C1| = u2 + r1, and

|A(X)| ≥ n2(X) + n3(X)− |C1| ≥ n2(X) + 2n3(X)− n3(X)− |C1| (2.14)

≥ 2k − 1− (2u2 + 2r1) ≥ 2r3 + 2u3 − 1.

By (2.12), |B(X)| ≥ d|A(X)|/2e ≥ r3 + u3.

For (a), we construct the family I and SDR f2 by a greedy algorithm. Start

with the special class Y ∈ R3, and its preassigned subset IY . As L1(IY ) 6= ∅, and

∆1
1(IY ) ≥ 0 there is a color α ∈ L1(IY ) ∩ B(Y ). Let f2(L(vIY )) = α. Next process

the X ∈ R3 − Y one at a time. When X is considered, at most r3 − 1 of the r3 + u3

colors of B(X) have been used. Let β be an unused color, set IX = I(β), and put

f2(L(vIX )) = β. Finally consider the Z ∈ U3. Recall that IZ has been assigned in

Step 3 so that l(IZ) ≥ l − k + u2 + u3 ≥ u2 + r1 + u3 + r3. So there is a color

γ ∈ L(IZ) r C1 that has not been used for any previous choices. Set f2(L(vIZ )) = γ.

For (b), suppose (H) holds. Then ∆1
1(I) = 0 for all X ∈ R3 and all 2-sets I ⊂ X.

Thus |A(X)| is even and A(X) = B(X) for all X ∈ R3. Again we use a greedy

procedure. First choose representatives for each L(vIZ ) with Z ∈ U3. Also, for each

representative α of L(vIZ ), Z ∈ U3, remove α from all lists L1(I), I ⊂ X ∈ R3; and for

bookkeeping also remove some additional colors so that for each set X = xyzw ∈ R3,

the new lists L−(I) satisfy

|L−(xy)| = |L−(wz)|, |L−(xz)| = |L−(wy)|, |L−(xw)| = |L−(yz)|, and

r3 = |L−(wx)|+ |L−(wy)|+ |L−(wz)|.

Finish the construction by first choosing a 2-set IY ⊂ Y with L−(IY ) 6= ∅ , and

setting f2(L(vIY )) = α ∈ L−(IY ) and f3(L(vIY )) = β ∈ L−(IY ). Then for each

X ∈ R3, greedily choose a 2-set IX ⊂ X so that L−(IX) has an unused color γ and

set f2(L(vIX )) = γ. This is possible since
∑

I⊂X,|I|=2 |L−(I)| = 2r3.
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The next lemma is used in Step 9. The statement of the lemma uses the notation

from that step. We will need the following easy claim.

Claim 29. Let P1,P2,P3 be the three partitions of a 4-set X into pairs. For all

I1 ∈ P1, I2 ∈ P2, I3 ∈ P3 there exists v ∈ X such that either (i) v ∈ I1 ∩ I2 ∩ I3 or (ii)

v /∈ I1 ∪ I2 ∪ I3.

Lemma 30. There is a family I = {IX : X ∈ R2} such that IX ⊆ X and |IX | = 2

for all X ∈ R2, and L(M3∪{vIX : X ∈ U1∪R2}∪{vIX : X ∈ U1∪R2}) has an SDR

f4 that extends f3.

Proof. Each X ∈ U1 satisfies L(IX), L(IX) ≥ k by Step 2 and L(IX) ∩ L(IX) = ∅

by Lemma 27. Thus |L(IX) r C3|, |L(IX) r C3| ≥ k − u2 − u3 − r1 − r3 ≥ u1. By

Theorem 10, {L(IX) r C3, L(IX) r C3 : X ∈ U1} has an SDR, and so f3 can be

extended to an SDR g for L(M ′
3), where M ′

3 := M3 ∪ {IX , IX : X ∈ U1}. Let

Cg = ran(g). (2.15)

Then |Cg| = 2u1 + u2 + u3 + r1 + r3.

Next consider any X ∈ R2. Let A(X) = N2(X) r Cg. Again by Theorem 10 it

suffices to show:

(∃IX ⊆ X)[|IX | = 2 ∧ |L(IX) ∩ A(X)| ≥ r2 ∧ |L(IX) ∩ A(X)| ≥ r2]. (2.16)

Observe σ2(X) = n2(X) + 3n3(X) and σ3(X) = n3(X). So n(X) = n2(X) +n3(X) =

σ2(X)− 2σ3(X). By (2.6), N3(X) ⊆ Cg and σ3(X) ≤ u2 + r1. So by (2.9),

n(X) = σ2(X)− 2σ3(X) ≥ 5(l − k) + 2u1 + 2u2 + u3 + r1 + r2 − (u2 + r1)

≥ 5(l − k) + 2u1 + u2 + u3 + r2 (2.17)
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and

|A(X)| = |N2(X) r Cg| = |N2(X) ∪N3(X) r Cg| ≥ n(X)− |Cg|

≥ 5(l − k) + 2u1 + u2 + u3 + r2 − (2u1 + u2 + u3 + r1 + r3)

≥ 5(l − k)− r1 + r2 − r3 ≥ 4(l − k) + 2r2. (2.18)

Suppose (2.16) fails. Then for each of the three partitions of X into pairs, there is

a pair uv with |L(uv)∩A(X)| ≤ r2−1. Using Claim 29, there exists w ∈ X such that

either (i) |L(vw) ∩ A(X)| ≤ r2 − 1 for all v ∈ X − w or (ii) |L(uv) ∩ A(X)| ≤ r2 − 1

for all u, v ∈ X − w.

If (i) holds then

|L(w) ∩N(X)| ≤ |Cg|+
∑

v∈X−w

|L(vw) ∩ A(X)| ≤ |Cg|+ 3r2 − 3. (2.19)

For all v ∈ X − w,

(a) |L(v) ∩N(X)| ≤ l and (b) |L(v) ∩N(X)| ≤
∑

u∈X−v

l(uv) ≤ 3(l − k). (2.20)

Using (2.19) and (2.20a),

2n(X) ≤ |L(w) ∩N(X)|+
∑

v∈X−w

|L(v) ∩N(X)| ≤ (|Cg|+ 3r2 − 3) + 3l. (2.21)

By (2.17), (2.15) and (2.21) we have

10(l − k) + 4u1 + 2u2 + 2u3 + 2r2 ≤ 3l + 2u1 + u2 + u3 + r1 + r3 + 3r2 − 3(2.22)

(6l − 9k + 3) + 2u1 + u2 + u3 ≤ k − l + r1 + r2 + r3 = 0.

Since 6l − 9k = −3b, both b = 1 and 0 = u1 = u2 = u3. By (2.8),

µ2(X) ≤ l − ku2 + u3 = l − k.
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Using this with (2.20b) in (2.21) to strengthens the estimate in (2.22) yields the

contradiction:

10(l − k) + 2r2 ≤ 9(l − k) + (|Cg|+ 3r2 − 3)

l − k ≤ r1 + r2 + r3 − 3 < l − k.

Thus (ii) holds. So

|A(X)| ≤ l(w) +
∑

uv⊆X−w

|L(uv) ∩ A(X)| ≤ l + 3(r2 − 1). (2.23)

Using (2.18) and (2.23),

4(l − k) + 2r2 ≤ |A(X)| ≤ l + 3(r2 − 1)

3l − 4k + 3 ≤ r2.

As 2l − 3k = −b, this yields the contradiction l − k + 2 ≤ r2 ≤ l − k.

The next Lemma is used in Step 11(a). Recall that Ż is defined in Step 3, and

∆1 and ∆2 are defined in Step 5.

Lemma 31. Suppose X = xyzw ∈ U4 and |W (X)| < |G′|. Then b = 1, u1 = 0 = r3,

u2 + u3 ≥ 1, and there exists a pair J ⊆ X such that:

1. L(J) * C3;

2. for both v ∈ J , both |W ({vJ , v})| ≥ 2k − 1, and if |W ({vJ , v})| = 2k − 1 then

|W ({vJ , v} ∪ Ż ′) ∪ C3| ≥ 2k;

3. |W (J + vJ)| ≥ |G′| − 1; in particular |W (X)| ≥ |G′| − 1.

Proof. Now |G′| = 3k − u1 − u2 + u4 − r1 − r2. Observe that

σ2(X)− σ3(X) ≥ 5(l − k) + 2u1 + 2u2 + u3 + r1 + r2 + 1, (2.24)
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since otherwise inclusion-exclusion yields the contradiction:

|W (X)| = σ1(X)− σ2(X) + σ3(X)

≥ 4l − 5(l − k)− 2u1 − 2u2 − u3 − r1 − r2

≥ 3k + (2k − l − u1 − u2 − u3)− u1 − u2 − r1 − r2

≥ 3k + u4 − u1 − u2 − r1 − r2 = |G′| > |W (X)|.

By (2.24) and (2.9), r1 + r2 = l − k and r3 = 0. Consider any pair I = xy ⊆ X.

Then

|W (I + vI)| ≥ l(xy) + l(z) + l(w)− l(xyz)− l(xyw)− l(zw)

= 2l − 2u2 + ∆1(I) + ∆2(I)

|G′| − |W (I + vI)| ≤ b− 2u1 + (u1 + u2 + u4 − l + k)−∆1(I)−∆2(I)

1 ≤ 2b− 2u1 − u3 −∆1(I)−∆2(I). (2.25)

By (2.25), ∆1(I) + ∆2(I) ≤ 1. As ∆1(I) = −∆1(I), and ∆2(I),∆2(I) ≥ 0 by (2.5),

we could choose I with ∆1(I) + ∆2(I) ≥ 0. So b = 1, u1 = 0, u3 ≤ 1, and

1 ≤ |G| − |W (I + vI)| ≤ 2− u3 −∆1(I)−∆2(I) ≤ 2. (2.26)

Furthermore, using ∆1(I) = −∆1(I) and (2.5) again,

0 ≤ 4u2 − σ3(X) = ∆2(I) + ∆2(I) = ∆1(I) + ∆2(I) + ∆1(I) + ∆2(I) ≤ 2. (2.27)

By (2.24), r1 + r2 = l− k, σ2(X) ≤ 6µ2(X), (2.8), and σ3 = 4u2−∆2(I)−∆2(I),

1 + 6(l − k) + 2u2 + u3 + σ3(X) ≤ σ2(X) ≤ 6(l − k + u2 + u3) (2.28)

1 + u3 + 6(l − k + u2)−∆2(I)−∆2(I) ≤ σ2(X) ≤ 6(l − k + u2 + u3).(2.29)

By (2.28) u2 + u3 ≥ 1. So the first three assertions of the lemma have been proved.

It remains to find a pair J ⊆ X satisfying (1–3).
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First suppose u3 = 1. By (2.26), ∆1(I) + ∆2(I) = 0 for all pairs I ⊆ X. So

∆1(I) ≤ 0 and ∆1(I) ≤ 0. As ∆1(I) = −∆1(I), this implies ∆1(I) = 0 = ∆1(I).

So ∆2(I) = 0 = ∆2(I). By (2.29) and (2.8), there exists a pair I ⊆ X with l(I) ≥

l − k + u2 + u3. As ∆1(I) = 0, l(I) ≥ l − k + u2 + u3. Thus, using Lemma 27 and

(2.5),

|W ({vI , vI})| = l(I) + l(I) ≥ 2(l − k + u2 + u3) > 2(l − k) + u2 + u3 ≥ |C3|.

Pick J ∈ {I, I} such that L(J) * C3. Then (1) holds. For (2), let v′ ∈ J . Using

(2.5),

|W ({vJ , v′})| = l(J) + l(v′)− l(J + v′) ≥ 2l − k + u2 + u3 − u2 ≥ 2k.

Thus (2) holds. As u3 = 1, (2.26) implies (3).

Otherwise u3 = 0. Then u2 ≥ 1, and so Ż 6= ∅. Put C0 := C3 ∪ W (Ż ′).

By Step 3 and Lemma 27, |C0| ≥ |W (Ż ′)| ≥ l + u2. Call a vertex x ∈ X bad if

|L(x)∪C0| ≤ 2k−1; otherwise x is good. If x is bad then |C0rL(x)| ≤ 2k−1−l = l−k.

If another vertex y is also bad, then using (2.8) and (2.26),

l − k + u2 ≥ l(xy) ≥ |L(xy) ∩ C0| ≥ |C0| − |C0 r L(x)| − |C0 r L(y)|

≥ l + u2 − 2(l − k) ≥ l − k + u2 + 1,

a contradiction. So at most one vertex of X is bad.

Call a pair I ⊆ X bad if L(I) ⊆ C3; otherwise I is good. Note that a good pair

satisfies (1). Using (2.27), (2.29) and u3 = 0 yields

6(l − k + u2)− 1 ≤ σ2 ≤ 6(l − k + u2) (2.30)

so by (2.8), every pair I ⊆ X satisfies

l − k + u2 − 1 ≤ l(I) ≤ l − k + u2.
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If the upper bound is sharp then call I normal ; otherwise call I abnormal. By (2.30)

there is at most one abnormal pair. If I is normal then l(I) ≤ l(I); so ∆1(I) ≥ 0.

By (2.5), every triple T ⊆ X satisfies l(T ) ≤ u2. If equality holds then call T

normal ; otherwise call T abnormal ; if l(T ) ≤ u2 − 2 then call T very abnormal.

Suppose two pairs I, J ⊆ T are both bad. At least one, say I, is normal. As

u1 = 0 = u3,

2(l − k) + u2 ≥ |C3| ≥ |L(I) ∪ L(J)| ≥ l − k + u2 + l(J)− l(I ∪ J) (2.31)

l(T ) = l(I ∪ J) ≥ l(J)− l + k =


u2 if J is normal

u2 − 1 if J is abnormal

.

So an abnormal triple contains at most one bad, normal pair, and a very abnormal

triple contains at most one bad pair.

A pair I contained in an abnormal triple satisfies ∆2(I) ≥ 1. Suppose J is

a good, normal pair contained in an abnormal triple T with w ∈ X r T . Then

∆1(J) + ∆2(J) ≥ 1. So J satisfies (3) by (2.26). Also, for both v ∈ X r J ,

|W (vJ , v)| = l(J) + l(v)− l(J + v) ≥


2l − k + u2 − (u2 − 1) = 2k if v ∈ T r J

2l − k + u2 − u2 = 2k − 1 if v = w

.

We have proved the following observation.

Observation 1. If J ⊆ T ⊆ X and w ∈ X r T , where J is a good, normal pair and

T is an abnormal triple, then J satisfies (1–3) provided w is good or C0 * W (vJ , w).

By (2.29) and (2.27), 1 ≤ ∆2(I) + ∆2(I) ≤ 2. As σ3 = 4u2 − ∆2(I) − ∆2(I),

we have σ3(X) = 4u2 − 2 or σ3(X) = 4u2 − 1. In the first case either there are two

abnormal triples or there is a very abnormal triple. In the second case, there is one

abnormal triple, and there are no abnormal pairs since equality holds in (2.28).
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First suppose there are two abnormal triples. Choose an abnormal triple T so

that if there is a bad vertex then it is in T . As T contains three pairs, of which at

most one is abnormal, and at most one is bad and normal, T contains a good, normal

pair J . Say J = yz, T = xyz, and w ∈ X r T . Then w is good, and thus J satisfies

(1–3) by Observation 1.

Otherwise, let T = xyz be the only abnormal triple and w ∈ X r T . There is at

most one abnormal pair, and only if T is very abnormal. So T contains at most one

bad pair.

Now suppose T has two good, normal pairs xy and yz. By Observation 1, some

J ∈ P := {xy, yz} satisfies (1–3), unless C0 ⊆ L(J) ∪ L(w) for both J ∈ P .

C0 ⊆ (L(xy) ∪ L(w)) ∩ (L(yz) ∪ L(w)) = L(T ) ∪ L(w).

As T is abnormal, and using u1 = u3 = r3 = 0, this yields the contradiction

l + u2 ≤ |C0| ≤ |L(T ) ∪ L(w)| = u2 − 1 + l.

Otherwise, T does not contain two good, normal pairs. So T is very abnormal. As

T has at least two normal pairs and at most one bad pair, it has a bad normal pair

(say) xz and a good normal pair (say) J = yz is normal. Since xz is bad, L(xz) ⊆ C0.

Now

|C0 rW ({vJ , w})| ≥ |L(xz) r (L(w) ∪ L(J))| ≥ l(xz)− l(xzw)− l(xzy)

≥ l − k + u2 − u2 − (u2 − 2) ≥ 2,

and so C0 * W (vJ , w). So J satisfies (1–3) by Observation 1.

The next Lemma is needed for Step 11(c).

Lemma 32. Suppose b = 1 and X = xyzw ∈ U4. If

|W (xyz)| ≤ 2k + u4 − 1 < |W (X)| (2.32)
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then u1 = 0 and there exists a pair J ⊆ X such that:

1. L(J) * C3;

2. |W ({vJ , v})| ≥ 2k for v ∈ xyz r J and |W ({vJ , w})| ≥ 2k − 1 + u3; and

3. |W (J + vJ)| ≥ 2k + u4.

Proof. Consider a pair vv′ ⊆ xyz. By (2.8) and (2.32),

2k + u4 − 1 ≥ |W (xyz)| ≥ |W (vv′)| ≥ l(v) + l(v′)− l(vv′)

≥ 2l − (l − k + u2 + u3) ≥ 3k − 1− k + u1 + u4

≥ 2k + u1 + u4 − 1.

So u1 = 0, l(vv′) = l − k + u2 + u3, and W (xyz) = W (vv′). Since vv′ is arbitrary,

every color in W (xyz) appears in at least two of the lists L(x), L(y), L(z). So

W ({vJ , v}) = W (xyz) and |W ({vJ , v})| ≥ 2k for every pair J ⊆ xyz and vertex

v ∈ xyz r J . As |C3| < 2k ≤ |W (xyz)|, there is a pair J ⊆ xyz with L(J) * C4.

Furthermore, by (2.5),

|W ({vJ , w})| ≥ l(J) + l(w)− l(J + w) ≥ l − k + u2 + u3 + l − u2 = 2k − 1 + u3.

Finally, as W ({vJ , v}) = W (xyz) for v ∈ xyz r J , and using (2.32),

|W (J + vJ)| = |W ({vJ , v}) ∪W (w)| = |W (xyzw)| ≥ 2k + u4.

The next lemma completes the proof of our main theorem. The reader should

keep Figure 2.1 and Table 2.1 in mind.

Lemma 33. G′ is L-choosable.
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Proof. First observe that if k is even then b = u̇ = ü = ṙ = 0 and H = G′. In this

case the following argument is much simpler.

We will prove L(V (H)) has an SDR. Using Hall’s Theorem it suffices to show

|S| ≤ |W | :=
∣∣⋃

x∈S L(x)
∣∣ for every S ⊆ V (H). Suppose for a contradiction that

|S| > |W | for some S ⊆ V (H). We consider several cases. Each case assumes the

previous cases fail.

Case 1: There is X ∈ U4 with |S∩X| = 4. Since |W | < |S| ≤ |H| ≤ |G′|, Lemma 31

yields b = 1 and |G′|−1 = |W (X)| < |S| ≤ |H|. Furthermore, Step 11(a) is executed,

and so |H| ≤ |G′| − 1, a contradiction.

Case 2: There exists X = xyzw ∈ U3 with |S ∩X ′| = 3. Since Case 1 fails,

|S| ≤ |H| ≤ 3k − u1 − u2 − r1 − r2 − ṙ. (2.33)

Say IX = xy. By Step 5, ∆1(xy) ≥ 0 and l(xyz) + l(xyw) = 2u2 − ∆2(xy). By

(2.7), l(xyz) + l(xyw) ≤ u2 + r1 if r1 < l − k; and it also holds if r1 = l − k since

u2 ≤ 2k − l − 1 ≤ l − k and l(xyz) + l(xyw) ≤ 2u2. Thus

|W | ≥ |W (X ′)| ≥ l(xy) + l(z) + l(w)− l(xyz)− l(xyw)− l(zw) (2.34)

= 2l + ∆1(xy)− 2u2 + ∆2(xy) = 3k − b+ ∆1(xy)− 2u2 + ∆2(xy)

≥ 3k − b+ ∆1(xy)− u2 − r1 ≥ |S| − b ≥ |W |.

So equality holds throughout. Thus (2.33) is sharp, b = 1, u1 = r2 = ṙ = ∆1(xy) = 0,

|W | = 3k − 1− u2 − r1,

and r1 ≤ u2 since ∆2 ≥ 0. So Step 7(a) is not executed. Since ṙ = 0, Step 7(b*) is

not executed. As u2 = 0 = r1, r3 = 0 and Step 7 is degenerate. As X ∈ U3,

l − k = r1 ≤ u2 ≤ 2k − l − u3 − u4 ≤ l − k − u4.

37



So u4 = 0, and by Step 5,

k = l − k + u2 + u3 ≤ l(xy) = l(xy) + ∆1(xy) = l(xy).

By (2.4) this contradicts u1 = 0.

Case 3: There exists X = wxyz ∈ R3 with |S ∩ X ′| = 3. Say IX = xy. As the

previous cases fail, |S| ≤ 3k− u1− u2− u3− r1− r2− ṙ. By Step 7, ∆1
1(xy) ≥ 0, and

by Lemma 28,

|W | ≥ |W (X ′)| ≥ 3k − b+ ∆1
1(xy)− u2 − r1 ≥ |S| − b ≥ |W |.

Thus b = 1, 0 = r2 = u1 = ṙ, |S| = 3k − 1 − u2 − r1, and Ẏ ′ ⊆ S. As ṙ = 0, Step

7(b*) is not executed. Thus, as 0 = r2 = u1 and r3 6= 0, Step 7(a) is executed. So

∆1
1(IẎ ) ≥ 1. This yields the contradiction

|W | ≥ |W (Ẏ ′)| ≥ 3k − 1 + ∆1
1(IẎ )− u2 − r1 ≥ 3k − u2 − r1.

Case 4: There exists X ∈ U4 with |S ∩X ′| = 3. As the previous cases fail,

|S| ≤ 2k + u4 − u̇− ü

Let xy ⊆ (S ∩X ′) rM . By (2.8),

|W | ≥ l(x) + l(y)− l(xy) ≥ 3k − b− (l − k + u2 + u3)

= 2k + (2k − l)− (u2 + u3)− b ≥ 2k + u1 + u4 − b ≥ |S| − b ≥ |W |.

So b = 1, 0 = u1 = u̇ = ü, |W | = 2k + u4 − 1, and |S| = 2k + u4. Thus S has exactly

two vertices in every class of P ′ r U ′4 and exactly three vertices in every class of U ′4.

In particular, Ż ′ ⊆ S. Since u̇ = ü = 0, we have X = X ′. As Step 11(a) is not

executed, |W (X)| ≥ |G′| ≥ |S| = 2k + u4. Thus, as Step 11(b) is not executed, we

have the contradiction

|W | ≥ |W ((S ∩X) ∪ Ż ′)| ≥ 2k + u4 = |S|.
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Case 5: There exists X ∈ U1 with |S ∩X ′| = 2. Then vIX , vIX ∈ S. As the previous

cases fail, |S| ≤ 2k. Now

|W | ≥ L(vIX ) + L(vIX ) ≥ 2k ≥ |S|.

Case 6: There exists X ∈ U3 with |S ∩X ′| = 2. Say S ∩X ′ = vv′. As the previous

cases fail, |S| ≤ 2k − u1. If (say) v, v′ /∈ M then IX = vv′. By (2.4), l(IX) ≤ k − 1.

So

|W (vv′)| ≥ l(v) + l(v′)− l(vv′) ≥ 2l − (k − 1) ≥ 2k ≥ |S|.

Otherwise (say) v = vxy; so IX = xy and v′ = z /∈ M . By Step 5, l(vxy) ≥ l − k +

u2 + u3, and l(xyz) ≤ u2 by (2.5). So

|W (vv′)| ≥ l(vxy) + l(z)− l(xyz)

≥ l − k + u2 + u3 + l − u2 ≥ 2k − b+ u3 ≥ 2k ≥ |S|.

Case 7: There exists X ∈ U4 with |S∩X ′| = 2. Say S∩X ′ = vv′. If possible, choose

X so that S ∩X ′∩M = ∅. As the previous cases fail, |S| ≤ 2k−u1−u3. If v, v′ /∈M

then, using (2.5),

|W (vv′)| = l(v) + l(v′)− l(vv′) ≥ 2l − (l − k + u2 + u3)

= 2k − b+ u1 + u4 ≥ 2k ≥ |S|. (2.35)

Otherwise b = 1, and (say) v ∈ M . By Step 11, either v = vIẊ or v = vIẌ . By

Lemmas 31 and 32, u1 = 0.

If v = vIẊ then Step 11(a) was executed. So (i) u1 = 0 = r3, (ii) |W (vv′)| ≥ 2k−1,

and (iii) if |W (vv′)| = 2k − 1 then |W (vv′ ∪ Ż ′) ∪ C3| ≥ 2k. Since

2k ≥ |S| > |W | ≥ |W (vv′)| ≥ 2k − 1,
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we have |S| = 2k and u3 = 0. Thus S contains exactly two vertices of each part

Y ′ ∈ P ′. As at most one class of U4 has merged vertices, the choice of X implies

u4 = 1; thus u2 = l − k. Also, Ż ′ ⊆ S. Since u3 = 0 = r3, M3 ⊆ S. So |W | ≥

|W (vv′ ∪ Ż ′) ∪ C4| ≥ 2k, a contradiction.

Otherwise v = vIẌ . Then Step 11(c) was executed. As only one part in U4 can

have contracted vertices, X = Ẍ = xyzw ∈ U4 with (say) IẌ = xy and v′ = vxy.

Then

|W (xyz ∪ Ż ′)| ≤ 2k + u4 − 1 < |W (Ẍ)|,

|W ({vxy, w})| ≥ 2k − 1 + u3, and |W ({vxy, z})| ≥ 2k. So we are done, unless v′ = w

and

2k ≥ |S| > |W ({vxy, w})| ≥ 2k − 1 + u3.

Thus u1 = 0 = u3 and |S| = 2k. Again S contains exactly two vertices of each

class Y ′ ∈ P ′, and the choice of X implies u4 = 1. So u2 = l − k. Also, Ż ′ ⊆ S.

As |W (Ẍ)| > |W (xyz ∪ Ż ′)|, we have |L(w) rW (xyz ∪ Ż ′)| ≥ 1. So we have the

contradiction

|W | ≥ |W ({vxy, w} ∪ Ż ′)| ≥ W (Ż ′) + 1 = l + u2 + 1 = 2l − k + 1 = 2k.

Case 8: There exists X = xyzw ∈ U2 with |S ∩X ′| = 2. Say S ∩X ′ = {vI , w}. As

the previous cases fail, |S| ≤ 2k − u1 − u3 − u4 = l + u2. Since L(xyz) ∩ L(w) = ∅,

we have

|W | ≥ |W (X ′)| ≥ l(xyz) + l(w) ≥ u2 + l ≥ |S|.

Case 9: Otherwise. As the previous cases fail,

|S| ≤ u1 + u2 + u3 + u4 + 2|R| = l.

As L(M) has an SDR, there is a vertex x ∈ S rM . Thus |W | ≥ l(x) = l ≥ |S|.
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This completes the proof of Theorem 14.
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Chapter 3

ONLINE CHOICE NUMBER

3.1 Introduction

From Theorem 8, ch(Ks∗k) = (1+o(1)) log s
log(1+1/k)

. Thus for a complete multipartite

graph Ks∗k with large s, we have ch(Ks∗k) � χ(Ks∗k). Then it is natural to ask if

there exists a graph G with chOL(G)� ch(G). However, this problem seems hard to

solve. Now it is even unknown if there exists a graph G with chOL(G) − ch(G) > 1.

Therefore, We mainly explore the following open problems in this chapter:

Problem 34. (1) Is there a graph G, a vertex v ∈ V (G) and the list size functions

l, l′ where l′(v) = l(v) + 1 and l′(u) = l(u) for any u ∈ V (G) − v, such that G is

l-choosable, but G is not l′-paintable?

(2) Is there a graph that is k-choosable but not k + 1-paintable?

(3) Is there a graph G = (V,E) and the list size functions l, l′ where l′(v) = l(v)+1

for any v ∈ V (G), such that G is l-choosable, but G is not l′-paintable?

The chapter is organized as follows. We show that c1k log s < chOL(G) < c2k log s

for some constant c1, c2 for any complete multipartite graph G = Ks∗k in Section 3.2.

Then we prove that solving Problem 34(2) is equivalent to solving Problem 34(3)

in Section 3.3. Then we show that for G = K4∗3, chOL(G) > ch(G) > χ(G) in Sec-

tion 3.4. At last, we show a class of examples for solving Problem 34(1) in Section 3.5.

A computer program was written to calculate the paintability of different complete

multipartite graphs. Through the program, we can specify a complete multipartite

graph G and its list size function l. It works by exhaustively presenting and choosing
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sets to check if G is l-paintable or not. The program itself can only verify a graph

with 15 nodes and list sizes 7 in reasonable time. However, it still provides some

useful information.

3.2 Probabilistic Method

Theorem 35. Let s, k > 0. There exists c1, c2 > 0 such that for any complete

multipartite graph Ks∗k, c1k log s ≤ chOL(Ks∗k) ≤ c2k log s.

Proof. The lower bound follows from the fact that chOL(Ks∗k) ≥ ch(Ks∗k) ≥ c1k log s,

where the first part is trivial and the second part follows from Alon (1993b). Here

we prove chOL(Ks∗k) ≤ c2k log s for some c2.

Let c2 be some constant to be decided later. Set a list function f : V → N to

be f(v) = r = dc2k log se. Let V1, V2, . . . , Vk be the parts of G = Ks∗k. For each

1 ≤ i ≤ k, ni = |Vi| and Vi = {v1i, v2i, . . . , vsi}.

The idea is to prove that for each strategy Alice presents, Bob has a strategy

to win. As Bob can choose at least one vertex for each round, there are at most

V (G) = sk rounds. Thus probability argument works as we have finite number of

rounds. Therefore we are done if we can design a strategy for Bob such that with

a positive probability, all the vertices in K3∗k are chosen by him before it has been

presented r + 1 times.

We design a strategy for Bob: whatever Alice presents a vertex set S ⊆ V (G), Bob

chooses an maximum independent set Si = Vi
⋂
S where i is chosen with probability

1/k independently. Now we define an event Aij for each 1 ≤ i ≤ s, 1 ≤ j ≤ k:

Aij : vij is presented r + 1 times before it is chosen by Bob.

Aij happens when Bob does not choose the Vi for each time vij ∈ S. However, since
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the probability of choosing Vi is fixed as pi, we have

P (Aij) ≤ (1− 1

k
)c2k log s ≤ 1

sc2

Therefore

P (
⋃

Aij) ≤
∑
i,j

P (Aij) ≤
sk

sc2

Case 1: if s ≥ k, then we can choose c2 > 2, then P (
⋃
Aij) ≤ s2−c2 < 1. Thus G is

r-online choosable.

Case 2: if k > s, then we divide the set of all parts into 2 classes {C1, C2} so that

each class includes k/2 parts. Now for each round Alice presents a set, Bob chooses

a number j ∈ {1, 2} from a uniform distribution with probability 1/2. Then Bob will

only choose a maximum independent set from Cj. Now we prove at last, any vertex

v ∈ V (G) receives roughly one half of original chance that can be chosen by Bob.

Let the original list size function be f 0 where f 0(v) = r0 := f(v) for any v ∈ V

and the new function be f 1 where f(v) represents the possible number of rounds

Bob can choose i whenever v ∈ Si ⊂ V (G). Then since Bob chooses for each

round randomly and independently, thus f 1(v) is a Binomial variable. By Cher-

noff bound,P (
∑n

i=1Xi < pn − pn2/3) ≤ e−n
1/3/2 for n Binomial variable Xi where

P (Xi = 1) = p(1 ≤ i ≤ n) we have

P (f 1(v) <
r0
2
− r

2/3
0

2
) ≤ e−

1
2
r
1/3
0

Therefore, the probability that there exists v ∈ V , such that f 1(v) ≤ r0
2
− r

2/3
0

2
is

smaller than kse−
1
2
r
1/3
0 ≤ k2e−

1
2
c
1
3
2 k

1
3 (log s)

1
3 � 1 (The last inequality follows form the

fact that with any constant c, en � nc as n→∞). Thus let r1 = min f 1(v), then we

can ensure with almost probability 1, we have

r1 ≥
1

2
r0 −

1

2
r
2/3
0 .
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We then can repeatly use the technique for j iterations until

r0
2j
≥ k.

Now we prove after j iterations, we don’t lose too many choices for any vertex.

Since for any i, we have

ri+1 ≥
ri
2
− r

2
3
i

2

Let zi = r
1
3
i , then

z3i+1 ≥
1

2
(z3i − z2i ) ≥ 1

2
(z2i (zi − 1)) ≥ (zi − 1)3

2

since zi ≥ 1. This implies

zi+1 ≥
zi − 1

2
1
3

Let ti = zi + x where x = 1+x

2
1
3

. By solving the euqation we can get x = 1

2
1
3−1

< 4. As

ti+1 − x ≥
ti − x− 1

2
1
3

,

it follows that

ti+1 ≥
ti

2
1
3

which implies

tj ≥
t0

2
j
3

=
z0 + x

2
j
3

≥ z0

2
j
3

= (
r0
2j

)1/3

Thus

sj = (tj − x)3 ≥ (tj − 4)3 = ((
r0
2j

)
1
3 − 4)3 =

r0
2j
−O((

r0
2j

)
2
3 )

Thus

rj ≥
r0

2j+1
=
c2
2

k

2j
log s

If we choose c2 big enough, then we can apply Case 1 to online color each of the smaller

subgraphs Ks∗( k

2j
). And since we predetermine the subgraph we want to choose from

for each round, we have a proper online coloring of the whole graph. We are done.
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3.3 An Idea of Solving Problem 34(2)

In this section we prove that solving Problem 34(2) is equivalent to solving Prob-

lem 34(3). Since (2) → (3) is trivial, we only prove (3) → (2) here.

Lemma 36. Let G = (V,E) be a graph and f, g : V → N. Suppose G is f -choosable

but not g-paintable such that g(v)− f(v) = c for any v ∈ V (G) where c is a constant

greater than 0. Let m = maxv∈V (G) f(v) and m′ = m+ c. Then we can find a G′ that

is m-choosable but not m′-paintable.

Proof. First we introduce notation as follows. Let n = |G|. Let l = minv∈V (G) f(v),

l′ = minv∈V (G) g(v), and S = {v ∈ V (G) : f(v) = l}. Denote H(v,G) as a graph

whose vertex set is V (G) + v and whose edge set is every possible edge vw where

w ∈ V (G). Now we prove the conclusion by induction on t = m− l.

Base step: If t = 0, then f(v) = m for any v ∈ V (G). Therefore G is already a

m-choosable but not m′-paintable graph.

Induction step: t > 0. In this case, we want to construct a new graph G∗ from

G such that G∗ is f ∗-choosable but not g∗-paintable with t∗ = m∗ − l∗ < t. The

construction is as follows: for G, we define f+ : V → N as

f+(v) =

 f(v) + 1 if v ∈ S

f(v) otherwise

We define g+ : V → N as g+(v) = f+(v) + c for any v ∈ V ,

Now let G∗ = (m(c + 1))G + Km + E where E is an edge set defined as follows:

for each copy Gi of G, there is one and only one vertex v ∈ V (Km) so that E ∩

E(H(v,Gi)) 6= ∅ and E ∩ E(H(v,Gi)) = {e = vw ∈ E(H(v,Gi)) : w ∈ S}. For

each v ∈ V (Km), it connects to c + 1 copies of G with edges in E. Now we define

f ∗, g∗ : V → N as:

46



f ∗(v) =

 f+(v) if v ∈ (m(c+ 1))G

m if v ∈ V (Km)

and g∗(v) = f ∗(v) + c for any v ∈ G.

Now we show that G∗ is f ∗-choosable, but not g∗-choosable.

First we prove G∗ is f ∗-choosable. Since f ∗(v) = m for any v ∈ V (Km), we can

obtain a proper coloring for Km. Now from our construction, any copy of G satisfies

the property that for any w ∈ V (G), |E(w,Km)| = 1 when w ∈ S and |E(w,Km)| = 0

otherwise. Therefore, after deleting possible color c that is used in Km, we still have

enough choices in L(w), i.e. |L(w)\c| ≥ f(w). Thus the copy G is f ∗-choosable

by assuming Km is already colored. Thus is true for each copy of G. Hence G∗ is

f ∗-choosable.

To prove G∗ is not g∗-paintable, Alice presents the following strategy. She picks a

copy of G. Then she presents S ⊂ G and the vertex v ∈ Km so that E(S, v) 6= ∅. Now

Bob is forced to choose a subset of the set S, since otherwise, Alice can present her

winning strategy for the copy since g∗(v) = g(v) for any v ∈ G\S and g∗(v)−1 = g(v)

for any v ∈ S. Now for each round, Alice repeats by picking one copy and the set S

until all copies of G have been picked once. Since each time Bob is forced to choose

S, there are only g∗(v)− (c+ 1) = m− 1 choices remaining in any v ∈ Km. However

Km is m− 1 colorable and thus not paintable. Then Alice finds a winning strategy:

G∗ is not g∗-paintable.

Now from our construction, we have minv∈G∗ f
∗(v) = l + 1. Therefore t∗ =

m∗ − l∗ = m− (l − 1) = t− 1 < t. We are done by induction hypothesis.
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3.4 Another Graph where Paintability Differs from Its Choosability

By Theorem 14, ch(K4∗3) = 4. Using a computer we have checked that chOL(K4∗3) =

5, but do not have a readable argument to verify the upper bound. Here we prove

the lower bound. Notice that this is a graph with chOL > ch > χ.

Theorem 37. chOL(K4∗3) ≥ 5.

Proof. Figure 3.1 describes a strategy for Alice. The top left matrix depicts the initial

game position, and Alice’s first move. The positions in the matrix correspond to the

vertices of K4∗3 arranged so that vertices in the same part correspond to positions in

the same column. The order of vertices within a column is irrelevant, as is the order of

the columns. The numbers represent the size of the list of each corresponding vertex.

The sequence of numbers represents a function f . The shaded positions represent the

vertices that Alice presents on here first move.

As play progresses Bob chooses certain vertices presented by Alice and passes over

others. When a vertex is chosen its position is removed from the next matrix (and

the positions in its column of the remaining vertices and the order of the columns

may be rearranged). When he passes over a vertex its list size is decreased by one

(and its position in its column and the order of the columns may change). The arrows

between the matrices point to the possible new game positions that arise from Bob’s

choice, not counting equivalent positions and omitting clearly inferior positions for

Bob. In particular we assume Bob always chooses a maximal independent set.

For example, after Bob’s first move there is only one possible game position,

provided Bob chooses a maximal independent set. It is shown in the second column

of the first row, along with Alice’s second move. Now Bob has two possible responses

that are pointed to by two arrows. Also consider the matrix in the third row and

third column. There are three nonequivalent responses for Bob, but choosing the
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Figure 3.1: Strategy for Alice Demonstrating chOL(K4∗3) ≥ 5.

offered vertex in the second column of the matrix results in a position that is inferior

to choosing the offered vertex in the first column. So this option is not shown.

Eventually, Alice forces one of five positions (G, f) such that G is not f -choosable,

and Bob, being a gentleman, resigns.

3.5 Towards Larger Gap between Paintability and Choosability

The following theorem comes from Kozik et al. (2014). Here we restate the theo-

rem since it will lead to our new result.
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Theorem 38 (Kozik et al. (2014)). Let G be a complete multipartite graph with part

size 1 and 3. Let A,S, C be a partition of the set of parts of G such that A and S

contain only classes of size 1, C only contains classes of size 3. Let k1, s, k3 denote

the cardinalities of classes A,S, C, respectively, Suppose that A,S are ordered, i.e.

A = (A1, · · · , Ak1) and S = (S1, · · · , Ss). If f : V (G) → N is a function for which

the following conditions hold:

f(v) ≥ k3 + i for all 1 ≤ i ≤ k1 and v ∈ Ai

f(v) ≥ 2k3 + k1 + i for all 1 ≤ i ≤ s and v ∈ Si

f(v) ≥ k3 for all v ∈ C ∈ C

f(u) + f(v) ≥ 2k3 + k1 for all u, v ∈ C ∈ C∑
v∈C

≥ 4k3 + 2k1 + s− 1 for all C ∈ C

then G is f -choosable.

From the above theorem 38, we can derive Theorem 11 easily by setting list size

function f(v) = d4k−1
3
e for any v ∈ V (K3∗k). Then every inequality is satisfied within

Theorem 38. For the same reason, we can prove the following corollary.

Corollary 39. Let G = K3∗k. Represent K3∗k with a 3 × k array with (i, j)-entry

vi,j. If f : V (G)→ N is a list size function such that f(v1,i) = k, f(v2,i) = k, f(v3,i) =

2k − 1 for any i, then G is f -choosable.

In Example 19 we already stated that chOL(K2∗(k−1),3) > k for any k ≥ 3. Here

we prove a simple corollary of the example:

Corollary 40. Let G = K3∗k. If k ≥ 3 and f : V (G)→ N is a list size function such

that f(v1,i) = k, f(v2,i) = k, f(v3,i) = 2k − 1, then G is not f -paintable.
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Proof. Alice first choose A1 = {v3,1, v3,2, . . . , v3,k}. No matter what Bob chooses, we

end up with isomorphic graphs with same list sizes. Without losing generality, we

can assume B1 = {v3,k}. Then G1 = K2,3∗(k−1) with f(v1,i) = k, f(v2,i) = k, f(v3,i) =

2k−2. Now continue the process, that is, A2 = {v3,1, · · · , v3,k−1}, B2 = {v3,k−1}, G2 =

K2∗2,3∗(k−1) with f(v1,i) = k, f(v2,i) = k, f(v3,i) = 2k − 3,..., Ak−1 = {v3,1, v3,2},

Bk−1 = {v3,2}, Gk−1 = K2∗(k−1),3 with f(v) = k for any v ∈ Gk−1. From Lemma 22,

Gk−1 is not k-paintable. As Bob exhaustively chooses all independent sets for any

Ai (1 ≤ i ≤ k − 1), G is not paintable.

Now we state another improvement of Corollary 40. This improvement, along

with Corollary 40, provides a graph G and two list size functions f ≤ g, such that G

is f -choosable but not g-paintable and there exists v ∈ V (G) with g(v)− f(v) > 1 .

This solves Problem 34(1).

Theorem 41. Let G = K3∗k. Represent K3∗k with a 3×k array with (i, j)-entry vi,j.

If k ≥ 4 and f : V (G) → N is a function that f(v1,i) = k, f(v2,i) = k, f(v3,i) = 2k,

then G in not f -paintable.

Proof. Here we use a similar figure as in Theorem 37 proof to describe a winning

strategy for Alice. The description then is the same. Here I omit the description and

only show the figures.

Base step: k = 4. See Figure 3.2. There are graphs with some choices omitted

for Bob, since these choices will lead to a clique such that the maximum list size

function value is less than k,

Induction step: k > 4. See Figure 3.3. We do not show the choices of choosing

an independent set for the parts of size 3 in the second graph of the first row, since

it leads to a situation with k-clique and list size function value at most k − 1 which

is obviously not choosable.
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Figure 3.2: Strategy for Alice Demonstrating K3∗4 is not f -paintable

We define critical paintable graph as follows:

Definition 42. Let G be a graph and g : V (G)→ N. G is g-critical paintable if and

only if G is g-paintable and for any v ∈ V (G), G is not gv-paintable for any v ∈ V (G)

where gv is defined as

gv(u) =

 g(u)− 1 if u = v

g(u) if u 6= v

Proposition 43. Let G = K2∗k. Let f(v) = k for any v ∈ V (G), then G is f -critical

paintable.

Proof. By definition, we just need to show that the leftmost graph in Figure 3.4 is

not paintable. We prove it by induction. The base step k = 1 is trivial, since there
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k − 1 k − 1 · · · k − 1
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k − 1 k − 1 · · · k − 1

k − 1 k − 1 · · · k − 1

2k − 2 2k − 2 · · · 2k − 2

(k − 1 parts

Done by induction hypothesis)

Figure 3.3: Strategy for Alice Demonstrating K3∗k (k ≥ 4) is not f -paintable.

k − 1 k k · · · k

k k k · · · k

(k parts)

k − 1 k − 1 · · · k − 1

k k− 1 k · · · k

(k parts *)

k − 2 k − 1 · · · k − 1

k − 1 k − 1 · · · k − 1

(k − 1 parts

Done by induction hypothesis)

Figure 3.4: Strategy for Alice Demonstrating K2∗k (k ≥ 2) is g-critical paintable.

53



is one vertex with list size 0. The figure shows the induction step when k > 1. The

description of the proof is as same as it is in the proof of Theorem 41.

Proposition 44. Let G = K2∗k. Fix u ∈ V (G). Let f(v) = k for any v ∈ V (G)− u

and f(u) = k − 1. Then, when k = 2, G is not f -choosable; when k > 2, G is

f -choosable.

Proof. First suppose k = 2. Without losing generality, we can assume V (G) = V1∪V2

with V1 = {v11, v21}, V2 = {v21, v22} where v11 = u. Now we assign a f -list assignment

L as follows: L(v11) = {1}, L(v21) = {2, 3}, L(v12) = {1, 2}, L(v22) = {1, 3}. We prove

G has no L-coloring. We try to obtain a coloring c. Since there is only one color in

L(v11), c(v11) = 1. Since v12, v22 are adjacent to v11, c(v12) = 2, c(v22) = 3. But as

L(v21) = {2, 3}, we cannot finish the coloring.

Now suppose k > 2. Let the ith part of G be Vi = {v1i, v2i}. Again, without

losing generality, we assume v11 = u. Suppose there is a list assignment L such that

we cannot obtain a coloring from L. We claim that (*) L(v11) ∩ L(v21) = ∅. If not,

there exists α ∈ L(v11)∩L(v21). Then we color v11, v21 with α and set L′(v) = L(v)−α

for v ∈ V (G)\V1. Then as ch(K2∗(k−1)) is (k − 1)-choosable from Theorem 10, we

obtain L-coloring. Contradiction. Thus L(v11) ∩ L(v21) = ∅.

Also from Lemma 26, we have for any Vi = {v1i, v2i}, |L(v1i)∪L(v2i)| ≤ 2k− 1 <

|V (G)|. Then from inclusion-exclusion, L(v1i) ∩ L(v2i) 6= ∅ for any i ≥ 2. Assume

α ∈ L(v12) ∩ L(v22). If α ∈ L(v21), from claim (*) we have α 6∈ L(v11). Then we can

color v12, v22 with α such that for any v ∈ V (G)\V2, |L(v)− α| ≥ k − 1. Again from

Theorem 10, we obtain L-coloring. Thus α ∈ L(v11). In this case we still color v12, v22

with α. Now by deleting possible α from L(v) for any v ∈ V (G), we obtain a new

list assignment L′ for G′ = G[V \V2] where |L′(v11)| = k − 2, |L′(v21)| = k, |L′(v1i)| =

|L′(v2i)| = k − 1 for any i ≥ 2.
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Now we continue this process for t ≤ k − 2 steps by coloring the vertices in parts

with a common color and deleting the color from the list of all the other vertices. At

last, we end up with a pair (G∗, L∗) with k− t parts. By reordering the parts, we can

write |L∗(v11)| = k−t−1, |L∗(v21)| = k, |L∗(v)| = k−t for any other v ∈ V (G∗). Now

there are two cases: (1) There exist Vi(i ≥ 2) such that L(v1i) ∩ L(v2i) 6= ∅. Then

t = k−2. Thus there are only two parts left in G∗. In this case, we color v11 by using

β ∈ L∗(v11), color v12 with the color in γ ∈ L∗(v12) − β and color v22 with the color

in τ ∈ L∗(v22)− β. And then we can finish coloring v21 by using ρ ∈ L∗(v21)− γ − τ

as k ≥ 3. (2) Otherwise we have for each part Vi(i ≥ 2), L∗(v1i) ∩ L∗(v2i) = ∅.

In this case we color v11 with some color β ∈ L∗(v11) and delete β from other lists.

Then we end up with a pair (G∗∗, L∗∗) such that V (G∗∗) = V (G∗)− v11, |L∗∗(v21)| =

k, |L∗∗(V1i)| ≥ k − t− 1, |L∗∗(V2i)| ≥ k − t. Then G∗∗ is L∗∗-colorable by Lemma 20.

Thus G is L-colorable.

The following theorem comes from Kozik et al. (2014).

Theorem 45 (Kozik et al. (2014)). Let G be a complete multipartite graph with

each part of size at most 3. Let A,B, C,S be a partition of the set of parts of G

such that A contains parts of size 1, B contains parts of size 2, C contains parts of

size 3, S contains parts of size 1 or 2. Let k1, k2, k3, s denote the cardinalities of

A,B, C,S respectively. Suppose A,S are ordered i.e. A = (A1, A2, . . . , Ak1) and S =

(S1, S2, . . . , Ss). For 1 ≤ i ≤ s, let vs(i) =
∑

1≤j<i |Si|+ 1. Suppose f : V (G)→ N is
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a function for which the following conditions hold:

f(v) ≥ k3 + k2 + i for any 1 ≤ 1 ≤ k1 and v ∈ Ai

f(v) ≥ 2k3 + k2 + k1 + vs(i) for any 1 ≤ i ≤ s and v ∈ Si

f(v) ≥ k3 + k2 for any v ∈ B ∈ B∑
v∈B

f(v) ≥ |V (G)| for any V ∈ B

f(v) ≥ k3 + k2 for any v ∈ C ∈ C

f(u) + f(v) ≥ |V (G)| − 1 for any u, v ∈ C ∈ C and u 6= v∑
v∈C

f(v) ≥ |V (G)| − 1 + k3 + k2 + k1 for any C ∈ C

Then G is f -choosable.

Combining with the above theorem we have:

Proposition 46. Let k ≥ 3 and G = K1,2∗(k−2),3. Let X = {v1, v2, v3} be the only

part of size 3. Let g : V (G)→ N be as follows:

g(v) =

 k if v 6= v1

k − 1 if v = v1

Then G is g-critical paintable.

Proof. Again we use a similar figure as in the proof of Theorem 37 to describe a

winning strategy for Alice. The description then is mostly the same. Here I omit the

description and add some more details.

From Theorem 45, we have G is g-paintable. Therefore, to prove that G is g-

critical paintable, it suffices to show that all the cases in Figure 3.5 are not paintable:

56



k − 1

k · · · k k

k − 1 k · · · k k
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k − 1

k − 1 · · · k k

k k · · · k k
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k − 1

k · · · k k − 1

k k · · · k k

(k parts)

k − 2

k · · · k k

k k · · · k k

(k parts)

Figure 3.5: All the Cases Need to be Shown not Paintable for Proposition 46

Base step: k = 3. See Figure 3.6. In the figure, the four leftmost figures are all

the cases we need to prove G is g-critical paintable for k = 3. To keep the simplicity

of the figure, we leave out some of Bob’s choices that leads to a graph containing a

k-clique with maximum list size function value not exceeding k−1 in the clique, since

Kk is not k − 1 choosable. In the figure, one example is the graph in the first row

and first column. If Bob chooses two boldfaced vertices from last part, the resulting

graph has a 3-clique such that the maximum list size 2. In this case, we don’t draw

this graph.

Induction step: k > 3. See Figure 3.7. Similarly, in this figure, the four leftmost

figures are all the cases we need to prove G is g-critical paintable for k > 3. To keep

the simplicity of the figure, we leave out some of Bob’s choices that leads to a graph

containing a k-clique with maximum list size function value not exceeding k − 1 in

the clique, since Kk is not k− 1 choosable. In the figure, one example is the graph in

the first row and first column. If Bob chooses two boldfaced vertices from last part,

the resulting graph has a k-clique such that the maximum list size k−1. In this case,

we don’t draw this graph. All these graphs are marked with *.
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Figure 3.6: Base Step Strategy for Alice in Proposition 46
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Figure 3.7: Induction Step Strategy for Alice in Proposition 46
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Chapter 4

CHOICE NUMBER OF A SQUARE GRAPH

4.1 Notation and Background

Let G = (V,E) be a graph. Let d : V × V → G be defined so that for each pair

(u, v) ∈ V×V , d(u, v) is the distance between vertex u and vertex v. Then the distance

k-graph Gk is defined as Gk = (V,Ek) with Ek := {(u, v)|(u 6= v∧d(u, v) ≤ k}. Thus

from the definition G1 = G. G2 is also called square graph of G. Let χk, chk be the

chromatic number and choice number for distance-k graph, respectively. Kostochka

and Woodall (2001) conjectured that distance 2-graph is chromatic choosable.

Conjecture 47 (Kostochka and Woodall (2001)). For every graph G, ch2(G) =

χ2(G).

Kim and Park (2015) disproved the conjecture.

Theorem 48 (Kim and Park (2015)). For each prime n ≥ 3, there exists a graph G

such that ch2(G)− χ(G) ≥ n− 1

The construction for the graph G is the above theorem involves Latin squares,

which enables large independent sets. Kosar et al. (2014) generalizes the technique

and prove the following theorem:

Theorem 49 (Kosar et al. (2014)). There is a constant c such that for every k ∈ N,

there is an infinite family of graphs G such that chk(G) ≥ cχk(G) log(χk(G)).

Here we consider a graph G that arises in the study of cellular networks. We were

asked by computer scientists to prove that ch2(G) = χ2(G). To our surprise it turns

out to be false. So it provides a more natural counterexample for the conjecture.
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A cellular graph is a graph G such that each node of the graph represents a

hexagonal cell, and two nodes have an edge between them if the corresponding cells

have a boundary. See Figure 4.1 for visualization. A straight line is a subgraph

of a cellular graph such that it consists of vertices and edges within a same line.

A triangular grid is defined as a cellular network that is bounded by exactly three

straight lines. In the next section, we prove that ch2(G) 6= χ2(G).

Here is the background of cellular graph. In computer science, a 2-band buffering

system is modeled as the interference does not extend beyond two cells away from

the original cell. Then the channel assignment problem is described as follows. Each

node has a fixed set of frequency channels where only a subset can be available at the

given time for communication. Assume that only a subset of frequency channels are

available for communication at each node. Now we try to determine the size of the

smallest set of free channels in all the nodes such that each node can be assigned a

channel.

The practical question above can be described as determining choices number of

G2. Thus, instead of the artificial graph found by Kim and Park (2015), we find

another real-world example that contradicts Conjecture 47.

4.2 The Square Graph of Cellular Network is not List-chromatic Choosable

Let G2 be the square graph of a cellular network. Then G2 is 7-colorable by Sen

et al. (1999). Here we prove:

Theorem 50 (Wang et al. (2015)). Let G be a subgraph of a triangular grid. Then

G2 is not 7-choosable when G is sufficiently large.

Proof. To prove the theorem, we need the following lemma first:

Lemma 51. Any proper 7 coloring c of a sufficiently large G2 satisfies the following
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Figure 4.1: Blue hexagons are original cells which are represented by red nodes. Black

segments are edges.

property: For any straight line l ⊂ G , if v, w ∈ l with c(v) = c(w) and v, w are not

endpoints, then d(v, w) ≥ 7.

Proof. We first claim the following facts for c:

Claim 52. Either c(A) = c(C) or c(A) = c(D) where A,C,D are as in Figure 4.2a.

Denote the closed 1-neighborhood of B in G2 as N [B]. Since N [B] includes 7

vertices that forms a clique in G2, all 7 colors must be used. Thus there exists

some vertex v ∈ N [B] such that c(v) = c(A). However, for any v ∈ N [B]\{C,D},

vA ∈ E(G2). Therefore the only possibilities are c(A) = c(C) or c(A) = c(D).

Claim 53. When A and B colored with the same color α, then C is also colored with

α where A,B,C are as in Figure 4.2b.

We apply Claim 52 to A,D and conclude that one of C and E receives the same

color as A. Then we apply the same claim to B,E and conclude that one of C and
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(a) Diagram for Proving Claim 52 (b) Diagram for Proving Claim 53

(c) Distribution of c(A) in G2 (d) Distribution of c(A) in G2

Figure 4.2: Diagram for Proving Claims in Theorem 50

F receives the same color as A. However, since EF ∈ E(G2), the only possibility is

that C receives the same color as A.

Now we can prove the lemma. We want to see how c(A) is distributed in G2 under

the two possibilities above. First, suppose the vertex at D’s position in Figure 4.2a is

colored with c(A). Then we are in the case of Figure 4.2c. Once we color A,B with

the same color, then C receives the same color as A and B by Claim 2. Then we can

consecutively apply Claim 2 to color D,E. Now each square-marked node cannot be

colored with c(A) since it is either within distance 2 of B or E. Similarly, suppose the

vertex at C’s position in Figure 4.2a is colored with c(A). We will have the similar
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case as Figure 4.2d.

Notice from the lemma above, we can easily conclude that 7 different colors have

to be used in any 7 consecutive nodes in a straight line in G2.

Now we construct a such counterexample G2 with 7-list-assignment L such that

G2 is not L-choosable. The graph G is a subgraph of a triangular grid that consists

of 3 parts: a horizontal below T with length 7
(
7
4

)2
+ 7, the part Ga above T , and the

part Gb below T . Now for each v ∈ Ga, we assign L(v) = {1, 2, 3, 4, 5, 6, 7}. For each

v ∈ Gb, we assign L(v) = {8, 9, 10, 11, 12, 13, 14}. Now we choose a subset M ⊂ T of

size
(
7
4

)2
such that for any a, b ∈ C, we have 7 | d(a, b): assign lists to the vertices of

M so that for every S1 ∈
(
[7]
4

)
and S2 ∈

(
[7]
3

)
there is v ∈ M with L(v) = S1 ∪ S2.

Then for any w ∈ M − v, L(v) 6= L(w). We can assign this since there are only(
7
4

)(
7
3

)
=
(
7
4

)2
= |M | possibilities.

Now we prove that there is no proper coloring from this list assignment. Suppose

not. We now see what a proper coloring from L looks like. First we find a proper

coloring from Ga, Gb, then from Lemma 51, we have a repeated permutation of 7

colors from {1, 2, 3, 4, 5, 6, 7} on the bottom line of Ga. Similarly, we have another

repeated permutation of 7 colors from {8, 9, 10, 11, 12, 13, 14} on the top line of Gb.

Consider the first v ∈ M . Say it has four neighbors on the bottom line of Ga have

colors α, β, γ, δ. Put S1 = {α, β, γ, δ}. Then every vertex in M is is adjacent to

vertices with all colors in S1. Similarly v has three neighbors in the top line of Gb.

Say their neighbors have colors ρ, σ, τ . Set S2 = {ρ, σ, τ}. Then every vertex of M is

adjacent to vertices with all colors in S2. Also S1 ∩ S2 = ∅. So |S1 ∪ S2| = 7. Since

there exists w ∈ M with L(w) = S1 ∪ S2, w cannot be colored. Thus G2 cannot be

colored.
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Figure 4.3: The Counterexample G2 with the List Assignment L
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