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ABSTRACT 

An acute and crucial societal problem is the energy consumed in existing commercial 

buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being 

built each year. Hence, existing buildings need to be properly operated and maintained for 

several decades. Application of integrated centralized control systems in buildings could 

lead to more than 50% energy savings.  

This research work demonstrates an innovative adaptive integrated lighting control 

approach which could achieve significant energy savings and increase indoor comfort in 

high performance office buildings. In the first phase of the study, a predictive algorithm 

was developed and validated through experiments in an actual test room. The objective 

was to regulate daylight on a specified work plane by controlling the blind slat angles. 

Furthermore, a sensor-based integrated adaptive lighting controller was designed in 

Simulink which included an innovative sensor optimization approach based on genetic 

algorithm to minimize the number of sensors and efficiently place them in the office. The 

controller was designed based on simple integral controllers. The objective of developed 

control algorithm was to improve the illuminance situation in the office through controlling 

the daylight and electrical lighting. To evaluate the performance of the system, the 

controller was applied on experimental office model in Lee et al.’s research study in 1998. 

The result of the developed control approach indicate a significantly improvement in 

lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office 

model, compared to two static strategies when the blinds were left open and closed during 

the whole year respectively.   
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 INTRODUCTION 

1.1 Background 

A high performance green building is defined as one which is at least 50% more energy 

efficient than the current standard energy efficiency requirements in building codes and, in 

addition, meets certain other criteria regarding indoor air quality, water use, recyclable 

material and landscape design (ASHRAE Standards, 2010). These building are also known 

as sustainable buildings, green buildings or low-energy buildings.  

In addition to the use of high levels of insulation, energy efficient windows, low levels 

of air infiltration and heat recovery ventilation, the design of such buildings involves a 

number of advanced elements and sub-systems that require dynamic control during 

operation such as advanced fenestration systems, shading elements, internal lighting 

system dimming, daylight harvesting, demand ventilation control, under-floor air 

distribution, advanced HVAC system control, heat recovery systems, ground-source heat 

pumps, integration with solar thermal and photovoltaic (PV) systems and so on.  

Furthermore, various decision-making capabilities at the Energy Management and 

Control System (EMCS) level are being developed involving energy performance 

monitoring, fault detection, supervisory control, load shedding in response to real-time 

electricity pricing, indoor air quality monitoring and mitigation, electricity management 

from building integrated PV systems which greatly enhance the “value” of such buildings. 

Current methods of management and control rely on static fixed algorithmic programs 

which are expensive to deploy, maintain, re-program and do not dynamically change with 

varying physical conditions and operating criteria.  
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An acute and crucial societal problem is the energy consumed in existing commercial 

buildings. There are 114 million homes and about 1.5 million commercial buildings in the 

U.S. with only about 3% being built each year. Hence, existing buildings will have to be 

properly operated and maintained for several decades, and overlooking their larger impact 

is extremely short-sighted. Studies have indicated that 10-30% of energy use can be 

reduced by existing and cost effective equipment and operational technology available 

today, while this savings fraction can double if cutting edge research ideas and 

transformational multidisciplinary research results can be implemented in actual buildings.  

In addition, the need of light and especially daylight, is a basic need of human beings. 

It is generally known that daylight is able to affect physical, physiological and 

psychological conditions of occupants. During the last few years, architects and design 

professionals started to recognize the importance of introducing natural lighting into 

buildings and its positive impact on work environment.  

Recent studies reveal a correlation between environmental lighting and human 

performance and health, with positive results, (Kroelinger, 2005). What is known, is that 

insufficient or inappropriate light exposure can disrupt standard human rhythms which may 

result in adverse consequences for performance, safety and health, (DAURAT et al., 1993; 

Leppämäki et al., 2002; Partonen & Lönnqvist, 2000; Eastman & Martin, 1999; Knez & 

Kers, 2000; Burgess et al., 2002). 

To provide the perfect amount of daylight and increase indoor environment comfort, 

designing the proper daylighting systems and strategies, such as windows, overhangs and 

shading devises play a very important role. A coordinated control strategy which integrates 
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daylighting with electric lighting systems leads to substantial lighting energy savings in 

existing as well as new buildings. Results of one of the first studies demonstrate the impacts 

of manual control of window blinds on annual energy consumption. They confirm that a 

blind system by itself, without a proper control, will not contribute to any energy savings, 

(Newsham, 1994, Lee 1998). 

 Furthermore, application of dimmable electric lighting along with the integrated 

window-shade control strategies can lead to significant energy savings. In a typical 

building, where over 70% of its energy use is for electric lighting, heating and cooling 

(U.S. Department of Energy, 2011), significant energy cost savings may be achieved by 

reduction of electric lighting and cooling/ heating loads, as well as by lowering peak 

electric demand (Athienitis and Tzempelikos, 2002; Guillemin and Morel, 2001).  

In order to link the daylighting and artificial lighting systems in one controller, artificial 

intelligence techniques have been applied, (Guillemin et al., 2001; Guillemin, 2003; 

Chang, 2000; Bauer et al., 1996). These research studies show that soft computing 

techniques (SCTs) are a promising technology with respect to complex integrated and 

adaptive control problems encountered in building lighting management systems. A fuzzy 

logic-based control algorithm to minimize thermal and electric lighting energy demand in 

a building was first developed by the Technical University of Vienna, (Bauer et al. 1996).  

To integrate the self-adaptation property into the controller, an artificial neural network 

and genetic algorithms were employed (Guillemin & Morel, 2001), where the control 

system was capable of adapting to user behavior and the room characteristics. Such 
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research demonstrate that through application of such controllers, high amount of energy 

savings could be achieved.  

The problem with these highly complicated systems is that firstly, they all have very 

complicated structure which make them difficult to apply and maintain. Secondly, in most 

cases these energy savings are only achieved in specific climate conditions or for one 

significant building. There is still a need for more adjustments in the controller in order to 

be easier to apply, maintain and operate especially when physical changes are applied to 

the building. They also need adjustments in order to increase the level of comfort by 

controlling different/more dynamic elements as a one centralized control unit.  

This research work demonstrates an innovative control approach which could achieve 

significant energy savings and increase indoor comfort in an office building. The developed 

controller integrates daylighting and electrical lighting systems. It is adaptive, robust, low-

cost and easy to deploy. It has the capability of being applied on any building with different 

shape, size, function and climatic conditions. The control algorithm can adapt to the 

changes in the building infrastructure and component failures without the need for costly 

experts to re-program it.  

  



5 

 

1.2 Problem Statement  

Though there is ongoing research into decentralized control systems, the current 

industry solution is to develop centralized building energy information systems (C-BEIS), 

which provide some degree of automation along with intelligent assistance and decision-

making information to human decision-makers who operate and maintain these buildings. 

The current systems are statically programmed (with some manual overrides) and have to 

be customized for each building. Other difficulties being faced with C-BEIS are that these 

are proprietary, narrowly focused on one specific system of the facility, and require lengthy 

set-up times. Any changes or even troubleshooting involves the need for costly experts, 

and hence adaptation of the embedded control system is not feasible.  

Furthermore, deployment of intelligent control systems in a legacy building is often 

prohibitively expensive due to installation of wiring, sensors and digital controls. In 

addition, the building industry lacks trained professionals with the ability to modify these 

software programs and perform programming tweaks on a continual basis in tune with 

temporal changes in how these buildings are operated and with changes in equipment over 

time. Finally, the underlying analysis methods are largely manual though many of the 

functions are better achieved via data-centric and automatic heuristic-based methods. The 

cause for this gap is the reluctance as well as lack of knowledge and proper understanding 

of such adaptive intelligent learning algorithms and methods by C-BEIS developers who 

are mostly control companies. 
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Based on some cutting edge research ideas in the last decades, there has been a notable 

increase in the number of innovative building elements and systems that lead to a better 

application of solar energy inside the buildings. These elements such as dynamic shading 

devices, integrated building control algorithms, efficient electrical lighting systems and 

many others, make it possible to achieve higher rates of energy savings and comfort for the 

occupants. However, one of the crucial problems found by most of these control algorithms 

is their highly complicated mathematical structures, which leads to difficulties in system 

deployment and maintenance by building operators. Moreover, many of current control 

algorithms vary with different factors such as climatic conditions, location and adjacent 

buildings on site. Many research studies demonstrate specific saving numbers that do not 

apply for different climatic regions, different sky conditions or different shape/type of 

buildings (Tzempelikos and Athienitis, 2007; Hammad and Abu-Hijleh, 2010).  These 

control algorithms often need to be re-programmed or refined in order to be applicable on 

other buildings or in other climatic conditions. 

1.3 Objectives and Scopes 

Based on the gaps in the current stage of research, there remains a need to improve the 

current control algorithms to address the issues and problems as mentioned above. As a 

result, the developed adaptive controller should be able to apply the best settings for the 

buildings’ dynamic elements and systems based on immediate conditions of weather, 

interior settings or occupants’ needs while at the same time maintaining a simple structure 

for easy application and implementation. 
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Further, the outcome of this research should greatly reduce the adverse impacts without 

compromising the health, comfort, and productivity of building occupants, thereby leading 

to more sustainable buildings.  

Unlike most of the current systems which are customized and run on fixed control 

programs, the proposed control strategy should be adaptive, robust, low-cost and easy to 

deploy and customize. It should enable building control systems to be plugged into 

existing/legacy as well as in new buildings. Hence, the developed approach should have 

the ability to handle automatic expandability, local sensor or sub-system failures and other 

dynamic demands of the physical and operating environment. 

In order to achieve these goals, this study demonstrates an innovative approach to 

implement and dynamically control advanced building elements and systems which will 

be increasingly used in the next generation of high performance or green/sustainable 

buildings. It demonstrates four development, validation and refinement steps of the 

adaptive control algorithm which relies on information provided by an optimized number 

of sensors distributed in the building.  

This algorithm allows for the robust control of various dynamic elements in a building 

under different multi-objective minimization scenarios along with automatic adaptation 

when physical and operational changes are made to the building over time. It would result 

in minimizing manual customizations and provide a much higher level of flexibility, 

additional features and evolution of needs. The basic idea behind this concept is that the 

entire system is “generic”, expandable and not preprogrammed for a particular building.  
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1.4 Research Questions 

In order to achieve the intended objectives, some specific research questions need to 

be addressed. One of these questions is the type of building, daylight system and dynamic 

shading devices initially needed for the study. Another is, how should the process be 

optimized and automated in different design phases without sacrificing the accuracy of 

system, while simplifying the process and shorten the time. For example, what types of 

simulation software are most proper for the purpose of this study and how to minimize the 

number of simulation-runs and how to select specific days or hours. Also, in order to 

automate and optimize the whole process, the determination of the optimal number sensors 

which are responsible for delivering illuminance data to the controller and their distribution 

in the building is another question that needs to be investigated. 

Another important issue is the structure of the proper control algorithm for the control 

system. Based on previous discussion in the last sections, there are many control algorithms 

applied in high performance buildings that require complex mathematical structure which 

raises the question of what type of algorithm would be the most efficient one to overcome 

this gap in the field.  And finally, how the results of the system should be evaluated or 

validated in order to demonstrate the feasibility and applicability of the algorithm on real 

time buildings.  
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 LITERATURE REVIEW 

2.1 Energy Consumption in Buildings 

Every facet of human society is affected by the operational costs of buildings. Offices, 

businesses, data centers and homes consume power and require manual attention. There 

are 1.5 million commercial buildings (and 114 million homes) in the US with a growth rate 

of about 3% a year, (U.S. Department of Energy, 2011). Hence, existing buildings will 

have to be properly operated and maintained for several decades, and overlooking their 

larger impact is extremely short-sighted. According to the U.S. Department of Energy data 

book, (2011), 41% of the U.S. primary energy was consumed by the buildings sector, 

compared to 30% by the industrial sector and 29% by the transportation sector. 

 

Figure 2. 1. World’s energy consumption in 2009, (US Department of Energy, 2011). 

As shown in Figure 2.1, of the 41 percent consumed energy in the building sector, 

homes accounted for 22% and commercial buildings accounted for 19% of the whole 
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delivered (site) energy. This doesn’t include the lost energy during the production, 

transportation and distribution to the consumers, (U.S. Department of Energy, 2011). 

 

Figure 2. 2. Buildings’ site energy consumption by end use, (The US Department of Energy, 2011). 

Space heating with 37%, water heating with 12%, space cooling with 10% and lighting 

with 9% are the top four consumers of site energy consumption (Figure 2.2). Other end 

uses, such as consumer electronics, kitchen appliances, and ventilation, include the rest.  

In commercial building sector, space heating consumed 27% of site energy in 2010, 

more than any other end use. Next major end-uses include lighting with 14% and space 

cooling with 10% (Figure 2.3), (U.S. Department of Energy, 2011). 
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Figure 2. 3. Buildings site energy consumption by end use in commercial buildings. 

On one hand, the annual growth in building energy consumption leads to increased 

amount of carbon dioxide emission in our environment.  Again, according to U.S. 

Department of Energy data book (2011), the total amount of carbon dioxide equivalent 

emission for the U.S. commercial buildings has increased from 653 million metric tons in 

1980 to 1036 MMT in 2010. It is documented that 20% percent of these produced emission 

in commercial buildings sector is caused by lighting energy.  Clearly, the increased amount 

of CO2 in atmosphere is destroying our environment by causing extreme climate changes 

and human health and related issues. Based on this fact, the importance of decreasing 

energy consumption in building sector in order to minimize carbon footprint is an 

enormous motivation for building designers and engineers.  

On another hand, according to the U.S. office of Air and Radiation in 2009, ninety 

percent of American people spent their time indoors. As a result, designing for a thermally 
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and visually comfortable indoor environment is another challenge for building experts to 

overcome.  

All these statistical facts point to importance of designing for more efficient buildings 

with effective concepts in order to reduce energy consumption and improve the level of 

comfort for occupants. Studies have indicated that 10-30% of energy use could be reduced 

by existing and cost effective equipment and operational technology available today, while 

this savings fraction can double if cutting edge research ideas and transformational 

multidisciplinary research results can be implemented in actual buildings.  

In this context, efficient intelligent control strategies are design key elements and the 

main motivation and focus of this research study. Thus, the next sections include a 

background on intelligent buildings, their definition and some examples of control 

strategies in such buildings.  

2.2 Definition of Smart Buildings 

There are many published definitions and descriptions of smart buildings, also known 

as intelligent buildings that to some extent maintain the same meaning and vision. For 

example, some contend that a smart building is an automated building, others believe they 

are where the building automation systems are integrated, while some others content that 

a smart building is one that provides flexibility in layout and operation. Carter Myers in his 

book “intelligent buildings” defines intelligent building as an integrated and automated tool 

that increases the occupant’s productivity, efficiency and effectiveness, (Myers, 1957). We 

believe that the use of networked technology, embedded within building to monitor and 
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control elements of the building for exchange of information between users, systems and 

buildings makes a building smart.  

2.2.1 Elements of Smart Buildings 

Based on the smart building definition, the key elements of such buildings are 

optimized, energy efficient and environment friendly building automation and networking 

systems. These systems consists of sensors, controllers, actuators, software and an operator 

that interfaces with the system via central workstation or web browser to support the 

dynamic features in the building. There are different forms of control systems in a building 

to control HVAC, lighting (which is a combination of daylighting and artificial lighting), 

water/energy management, alarm and sprinkler systems. The focus of this research is on 

lighting control systems in commercial buildings. 

2.2.2 Examples of Smart Buildings 

Pressure ring facade, “KFZ Westarkade” office building in Frankfurt, Germany. One 

of the recent applications of sensors to control the indoor environment is the “Westarkade 

Tower” in Frankfurt, Germany. The building is the first building equipped with “pressure 

ring” facade and sophisticated sensorich control scheme that consumes less than 100 

kWh/m2 per year. The control system manipulates the dynamic ventilation flaps installed 

on the outer layer of building facade, to maintain a ring of positive air pressure around the 

building. With this energy consumption, the Westarkade is a world class energy miser, 

using half as much energy as a conventional office building in Europe (Fairley, 2010). 

Figures 2.4 and 2.5 display views of this building in Frankfurt.  
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Figure 2. 4. View of KFZ-Westarkade in 

Frankfurt, the office building’ facade is 

equipped with 180 flaps to control the wind 

pressure around the building and improve 

the natural ventilation in the office spaces, 

(Sobek et al., 2011). 

 

Figure 2. 5. View of the flaps on the outer facade layer, 

(Sobek et al., 2011). 

Solar Shutters, Biokatalyse Laboratory Building, Technical University of Graz, 

Austria. The outer skin of the south facade of the Biokatalyse laboratory (Figures 2.6 to 

2.8) consists of solar shutters, and a cavity of one meter width. Moving and rotating the 

shutters allows for indoor daylight distribution to be altered, for instance by having lighter 

pass through the envelope onto specific room surfaces, (Wyckmans, 2005; Graz, 2004).  
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Figure 2. 6. View of Biokatalyse building in 

Austria, (Graz, 2004). 

 

Figure 2. 7. View of the Biokatalyse laboratory 

building with adaptive solar shutter system, 

moveable and tiltable shutters, the shutters are 

located in the outer layer of a double skin facade, 

Graz, Austria, (Graz, 2004). 

 

Figure 2. 8. The inside view (left) and the view of the solar shutters as part of facade system, (Graz, 

2004). 

As mentioned before, efficient intelligent control strategies are design key elements 

and the main motivation and focus of this research study. In more details, the main goal of 
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the thesis is to design an intelligent lighting controller for smart buildings. Hence, it is 

important to have a background on daylight and its significance on occupants’ comfort, 

health, performance and productivity.  

2.3 Daylighting in Buildings 

“…the history of architecture is the history of the struggle for light”, (Le Corbusier, 

1989). 

Quality of lighting in buildings, for most part of the human civilization, was determined 

by availability of daylight. By the end of 19th-century, daylight started to be supplemented, 

or in many cases, replaced by electric light which essentially required the consideration of 

good daylight strategy, (Kroelinger, 2005). At that time, there was a belief among architects 

that there is no defenite relationship between natural light and work hygiene which was 

supported by different professional organizations such as congress of medicine 

professionals. In 1965, they officially concluded that humans do not need natural lighting 

in work environments stating that windowless work rooms, from work hygiene perspective, 

do not impair or negatively impact human health as long as the rooms provide optimal 

lighting condition (Batzel, 1989).  

However, this belief started to change during the last quarter of 20th century, when 

researchers started to recognize the positive impacts of natural light on workers. Based on 

research’ findings, daylight is not fundamentally better than electric light but it does have 

greater likelihood of maximizing visual performance than most forms of electric lighting.  

It is due to the fact that daylight has a large variation of visible spectrum, whereas electric 
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light sources cannot be constructed to closely match the daylight spectrum (Boyce et al., 

2003). 

In one of the first studies about daylight in buildings conducted by Heschong Mahone 

Group in 1999, the impacts of daylight in classrooms on students’ performance was 

investigated (Heschong, 1999). The study analyzed the test scores of more than 21,000 

students in three school districts in California, Washington, and Colorado (Heschong, 

1999). In one school district, students with the most daylighting in their classrooms 

progressed 20% faster on math tests and 26% faster on reading tests in comparison to 

students in the least daylight classrooms.  

In another research study conducted by Plympton in 2000, the impacts of daylight on 

school students was investigated. The study showed that daylighting in schools 

significantly increases students’ test scores and promotes better health and physical 

development (Plympton et al., 2000; Hathaway, 1995).  

Likewise, studies conducted on work environment had similar results; namely, that 

daylighting improves productivity and performance of the workers. Field surveys in a large 

number of offices indicate that daylighting in working spaces lead to high level of 

environmental satisfaction and self-rated productivity (Boyce et al., 2003; cuttle, 1983). 

Cuttle in 1983 conducted a questionnaire-based survey in England and New Zealand to 

explore the benefits of windows in working environments. Four hundred and seventy one 

office workers participated in his questionnaires. The survey included questions about 

having windows in their offices and why it was important to them. Ninety nine percent of 

participants answered that every office should have windows and 86% of them preferred 
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daylight as their light source in the office. They explained that working in a daylit space 

helps them feel more comfortable and have less stress. 

In addition to these studies, Heerwagen (1986) conducted a survey in Seattle over two 

summer and winter seasons. The majority of participants stated the same belief. They all 

felt that daylight is better for their health, mental comfort, visual comfort, perception and 

pleasantness of their office space its colors and furnishing. These participants rated the 

daylight availability in their office space 19 out of 20 in importance among other features. 

In another survey in Canada (Veitch et al., 1993; 1996), a mixed sample of students 

and office workers were asked about daylight and its importance and effects on 

productivity, comfort and health. Almost 80% of the participants strongly stated that 

daylight is their preferred light source. The average score of this statement was 2.94 on a 

scale from 0–4, where 4 shows a stronger belief. When we look at the questionnaire in 

more detail some interesting results stand out. For example, 52% of the mixed participants 

described that they have done their best work in places where natural light was available. 

Also a significant group of samples stated that they believe in harmfulness effects of 

fluorescent light on health including headache and eyestrain.  

In addition to the research studies about daylight and productivity, Wells (1965) 

conducted an interview-based study to investigate the importance of window and view in 

the work environment. He interviewed office workers in the U.K who were located on an 

open, deep-plan office building with glass-curtain walls. The main goal of the study was 

to identify and investigate the correlation between participants’ physical health conditions, 

view, natural lighting and artificial lighting situation in the office space. The majority of 
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the employees (89% out of 2500 participants) stated that they strongly prefer daylight as 

their light source and view in their working space.  

The study discloses very interesting details about peoples’ perception of daylight and 

electrical lighting. People overestimated the proportion of daylight that they had available 

on their working area proportionally with their distance from the windows. They perceived 

considerable amount of daylight on their desks, even when there was very little daylight 

available and most of the illumination was supplied by the electric lighting. Wells 

concluded that the amount of daylight and view that people believe they need depended on 

psychological considerations such as the judgment of apparent brightness distribution and 

the preference for a view to the outside, which were not related to the distance from the 

nearest window. Table 2.1 summarizes these studies and their results. 

Table 2. 1 Summary table of research conducted on importance of daylight in buildings. 

Study Year Research Method Results 

Heschong 

et al. 
1999 

 Impacts of daylight in 

classrooms on students’ 

performance 

 21,000 students participated 

 Schools were in California, 

Washington, and Colorado 

Students with the most daylighting in their 

classrooms in comparison to students in the least 

daylight classrooms progressed: 

 20% faster on math tests 

 26% faster on reading tests  

Plympton 

et al. 
2000 

 Impacts of daylight on school 

students 

 Promotes better health and physical 

development 
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Cuttle  1983 

 Questionnaire-based survey to 

explore the benefits of 

windows in working 

environments  

 471 workers participated 

 In England and New Zealand 

 99% of participants stated every office 

should have windows  

 86% of them preferred daylight as the main 

light source  

 They stated working in a daylit space helps 

them feel more comfortable and have less 

stress. 

Heerwagen 1986 

 Questionnaire-based survey 

with office workers 

 Seattle  

 For two summer and winter 

seasons 

 Participants felt that daylight is better for 

their health, mental comfort, and visual 

comfort. 

 They stated that the colors and furnishing in 

their office was more pleasant when daylit.  

 They rated daylight availability in their 

office space 19 out of 20. 

Veitch et al. 

1993 

& 

1996 

 Mixed sample of students and 

office workers 

  Questionnaire-based survey 

 They were asked about 

daylight and its importance 

and effects on productivity, 

comfort and health 

 80% of the participants strongly stated that 

daylight is their preferred light source 

 They stated that they believe in harmfulness 

effects of fluorescent light on health 

including headache and eyestrain.  

Wells  1965 

 Interview-based study  

 In UK 

 Main goal was to identify the 

correlation between 

participants’ physical health 

conditions, view, natural 

lighting and artificial lighting 

situation in the office space. 

 The amount of daylight and view that 

people believe they need depended on 

psychological considerations such as the 

judgment of apparent brightness 

distribution and the preference for a view 

out 

 These considerations were not related to the 

distance from the nearest window. 
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2.4 Daylight Systems 

One of the most important elements which provide the optimal daylight and view to 

the outside while avoid the heat gain and glare in buildings, are daylight systems including 

windows, glazing and shading devices. A proper combination of different systems could 

lead to significant amount of energy savings and at the same time it could improve the 

thermal and visual comfort situation.  

There has been many research works about proper size of the windows and different 

glazing materials for the efficient daylighting design, however since the focus of this 

research are dynamically controlled shading devices, the literature review concentrates on 

these elements, their impacts on comfort performance, different control strategies for these 

elements and the investigation of energy savings based on different control strategies.   

Roller shades and venetian blinds are the most common dynamic shading devices in 

office buildings which are simple to install, operate and maintain, but at the same time they 

need a dynamic movement control to respond to daylight situation inside the office. There 

are many research works all around the world that investigate blinds’ settings and their 

impacts on occupants’ comfort. These research work are very useful in order to understand 

the behavior of the occupants toward shading devices in long term scenarios. 

One of these research works was conducted by Rubin in 1978. The methodology he 

applied included taking several photographs of 6 different office buildings in Maryland, 

USA to study the behavior of the occupants towards the shading devises. The photographed 

offices were in the perimeter of the building and they were equipped with venetian blinds. 

The photographs indicated that the preferred blinds’ settings in the most offices had little 
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to do with the sun position or daily and seasonal climatic conditions. The researchers set 

all 700 blinds in either open or closed position during the night and observed the behavior 

of the office workers on following day when they came back to work. The experiment took 

place over 3 different time periods in February, July and October and each period lasted 10 

days. The building facade was photographed twice in the morning and twice in the 

afternoon before and after the blinds’ settings were changed by office workers.  

Rubin’s results demonstrated that 80% of the participants on south oriented offices 

closed the blinds whereas only 50% of the participants on north-oriented facade closed 

their blinds when they arrived at work. The office workers stated that they usually use their 

blinds to avoid direct sunlight penetration and overheating effects. Another interesting 

result of this study was that occupants did not change their blind position daily. They tend 

to have a preferred specific blind setting that was chosen over a long period of time.  

In another research study in 1984, Rea guided a pilot study in Ottawa, Canada, in a 16-

storey building. The goal of the study was to investigate the impacts of window orientation, 

time of the day and weather conditions on the blinds’ setting in the offices. The 

methodology included again several photos from three different orientations of building’s 

facades (southern, eastern and western side) three times a day (once in the morning, once 

at noon and once in the afternoon) on a cloudy day in April and a clear day in May.  

Results indicated that occupants change the blinds’ settings very irregularly. They 

rarely changed the setting for view or daylight, only when there was direct sunlight on their 

working area, they were most likely to change the setting by closing the blinds. Otherwise, 

there was no change in blinds’ settings for a long period of time.   
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In context to Rea’s study in 1984, she and her research group continued to observe the 

behavior of workers in 58 U.S. offices (1998).  This time, the study lasted about seven 

weeks and the results confirmed her earlier findings in 1984. She stated that as soon as 

there was direct sun penetration on the working area, participants pulled the shades down 

and it stayed down for a long time even when the glare situation ended. However, they 

changed the blinds’ setting 3 to 5 times per week more on south and west facades than on 

north and east facades. She also observed that sky conditions, sun position, type of the tasks 

done by the occupants and the location of the desk in the office actually influenced the 

blind position and the slat angle chosen by participants. 

Moreover, in another interesting research study conducted by Inoue et al. (1988), the 

relationship between solar radiation through daylight on a working plane and blinds’ 

setting was investigated. The study was done on facades of four high-rise buildings in Japan 

and included over 1000 windows with east, west, south-west and south-east orientations in 

winter, summer and fall. In this approach, research group photographed the blinds and 

surveyed over 800 occupants of the offices with a questionnaire. The researchers concluded 

that when the solar radiation exceeded 60W/m2 on the work plane, the number of blinds 

being photographed in close position was proportional to the depth of the sunlight 

penetration into the office.  

However, like results from previous research studies, this changed in different facade 

orientations and with different sky conditions. According to the photographs, on a clear 

day, when blinds on the east-facade were set to closed position in the morning, they stayed 

closed until the afternoon. The opposite situation happened for the west facade. On an 
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overcast sky, there was no change on the blinds’ settings. This suggested that change in the 

blinds’ settings was directly correlated with the sunlight penetration from the window to 

the office space. More than 60% of the blinds were not changed at all through the whole 

day, which is another confirmation of the previous studies about most people tend to 

operate the blinds based on perceptions formed over long periods of time, rather than 

primarily in response to current conditions.  

In the questionnaire provided to the participants, 70% of them specified that they 

usually don’t change the blinds’ setting unless it is too bright or too hot, which points to 

the glare and heat gain problem. Based on Inoue’s study, when the depth of sunlight 

penetration into the offices was over 2 meters, or when the solar radiation falling into the 

work area was about 250 W/m2, the blinds’ settings were changed most frequently. Similar 

conclusions to these studies were reached by many other researchers for example, Farber 

Associates in 1992 and Escuyer and Fontoynont in 2001. 

Following the research studies about the occupants’ habits in changing blinds’ settings, 

some researchers developed predictive approaches to determine the optimal blind angle 

settings for the occupants based on climate and sky conditions (Sutter et al., 2001). Sutter 

introduced a model which was operating based on a specific illuminance level (8000 lux) 

on the window frame.  If the illuminance exceeded that level, then the controller was 

activated to close the blinds in order to achieve the optimal visual and thermal comfort 

level. Sutter’s model provided a more detailed guideline to optimize the view compared to 

other research studies (Hopkinson and Bradley, 1965; Moon & Spencer 1945).  
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The illuminance level of 8000 lux as the limitation point was developed based on study 

conducted by Hopkinson and Bradley in 1965 and it was based on 22 photographs of a 

daylit office in France. The photos were taken under different sky and climate conditions 

and were analyzed based on screen luminance values and measured illuminance on the 

window plane. The prediction model indicated that the blind settings have a direct 

relationship with the geographical latitude (Sutter et al. 2001). The probability of blinds 

left in a horizontal position in northern latitudes was shown to be about 65% while this 

probability in southern latitudes was only about 40%. All these research studies are 

summarized in Table 2.2. 
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Table 2. 2 The summary table of research about daylight shading devices. 

Study Year Research Method Results 

Rubin  1978 

 Main goal was to study the 

behavior of the occupants 

towards the shading devises in 

buildings 

 Methodology included 

photographs of 6 different office 

buildings in Maryland, USA  

 The offices were in the perimeter 

of the building  

 They were equipped with 700 

venetian blinds 

 Blinds were left either open or 

closed during the night 

 Results demonstrated that 80% of the 

participants on south oriented offices 

closed the blinds  

 Only 50% of the participants on north-

oriented facade closed their blinds  

 The office workers stated that they 

usually use their blinds to avoid direct 

sunlight penetration and overheating 

effects.  

Rea 1984 

 Main goal was to investigate the 

impacts of window orientation, 

time of the day and weather 

conditions on the blinds’ setting 

in the offices 

 Methodology included 

photographs of 58 different office 

buildings in Maryland, USA  

 For 7 weeks 

 Results showed that as soon as there was 

direct sun penetration on the working 

area, participants pulled the shades down 

and they stayed down for a long time.  

 Participants changed the blinds’ setting 3 

to 5 times per week more on south and 

west facades than on north and east 

facades. 

 Sky conditions, sun position, type of the 

tasks done by the occupants influenced 

the blind position chosen by participants.  

Inoue 

et al. 
1988 

 Main goal was to investigate the 

relationship between solar 

radiation through daylight on a 

working plane and blinds’ setting 

 On 4 high-rise buildings in Japan 

 Methodology included 

photographs of over 1000 

windows with east, west, south-

west and south-east orientations 

in winter, summer and fall 

 Surveyed over 800 occupants 

 Result showed when the solar radiation 

exceeded the 60W/m2 on the work plane, 

the number of blinds being closed was 

proportional with the depth of the 

sunlight penetration into the office. 

 This changed with different facade 

orientations and sky conditions. 

 70% of participants specified that they 

usually don’t change the blinds’ setting 

unless it is too bright or too hot. 

Sutter 

et al. 
2001 

 Developed a predictive 

approaches to determine the 

optimal blind angle settings for 

the occupants based on climate 

and sky conditions 

 A model introduced which was 

based on a specific illuminance 

level, (8000 lux) on the window 

frame.   

 It provided a detailed guideline to 

optimize the view in comparison to other 

research approaches. 

 The prediction model indicated that the 

blind settings have a direct relationship 

with the geographical latitude. 

 The probability of blinds left in a 

horizontal position in northern latitudes 

was 65% 

 This probability in southern latitudes was 

only about 40%. 
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To summarize, all the above mentioned studies highlight the importance of an efficient 

daylight system and dynamic shading devises in office buildings in order to maximize the 

occupants’ comfort and minimize the energy consumption through application of daylight. 

They provide a guide line for occupants’ behavior towards shading in different conditions. 

 In most of these research studies, it has been shown that outside view is one of the 

important drives for occupants to change blind settings if the heat gain does not exceed 

their comfort level. Thus, to optimize the daylight in buildings, it is very crucial to plan for 

an optimal control of shading devices during the design process. To do so, choosing the 

proper daylight/lighting simulation tool to understand the daylight availability inside the 

space, especially in the first design steps is a key element to an optimal daylight design. 

Therefore, the next section of the literature review encloses a background about daylight 

simulation tools. 
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2.5 Daylight Simulation Tools 

In connection to the previous discussion about the importance of daylight availability 

in buildings and its relationship to occupants” productivity and health, this section is 

devoted to a background on daylight simulation tools, their calculation methods and their 

effectiveness, strength and weaknesses. 

2.5.1 Historical Overview 

The first lighting calculation program which was able to calculate lighting levels in a 

simple rectangular room was developed by Plant and Archer in 1973. During 1990s, 

through further developments, the lighting software were enhanced by improved computer 

calculation methods and were also able to provide simple graphical outputs including 

images (Nakamae and Tadamura, 1995). Next, light transparency and material properties 

became important in calculations. The output became more versatile and included more 

lighting scenarios. They could provide users with numerical data as well as different 

images rendered closer to reality (Kiss et al., 2003). However, completely realistic and 

exact calculations were complicated to define and there were many limitations in lighting 

algorithms (Wilkie et al., 2009). That is why the early lighting simulation programs were 

limited to simple geometries, no daylight or energy estimations (Svendenius and Pertola, 

1995).  

Even though the current lighting programs available in the market don’t have many of 

these limitations, there is still a need for more efficient calculation algorithms for solving 

complicated lighting problems, (Ulbricht et al. 2006; Moeck and Selkowitz, 1996; Ward 

and Shakespeare 1998). 
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2.5.2 Lighting Simulation Algorithms 

Algorithms are processes or set of rules to be followed in calculations or other problem-

solving operations, especially by a computer. They have been applied to solve lighting 

distribution problems through combination of different physical formulas in an effective 

way. According to Dutra et al. (2006), in general, most modern physical models that 

describe light transport in all types of media (such as quantum optics) are too complex for 

computer calculations and image generation. To deal with this problem, he developed and 

applied a very simple geometrical optics and energy conservation model which was able 

to solve illumination problems handling different light sources. However, his model was 

unable to adequately deal with some difficulties such as light calculation from diffusion or 

reflection in a space. Furthermore, since Dutra’s model has a very simple structure and 

assumed light distribution was constant and in a steady-state form, significant differences 

between actual measured illuminance data and simulated data were reported.  

In the next phases of lighting calculation algorithms’ development, Hurdles models 

were introduced which found a method to calculate surface reflectivity of different opaque 

materials. Hurdles models were defined based on different simplified sub-models which 

require their own bidirectional reflection distribution functions (BRDFs), (Pineda, 1988). 

This was one of the first steps towards computer graphics, although the output of Hurdles 

models was limited to few colors and hard-shadow determination. Subsequently, ray 

tracing and radiosity illumination algorithms were developed, (Pineda, 1988; Ochoa et al., 

2012). In some literature reviews, (Ochoa et al, 2012; Carroll, 1999) lighting simulation 

algorithms are classified into three main types:  
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 Direct calculation algorithms: These algorithms are used to calculate the light emitting 

from a direct lighting source such as a lamp, sun or even the daylight from an opening. 

Direct calculation algorithms contain simplified specific physical formulas. A well-known 

example of direct calculation algorithm is the lumen method calculation which is applied 

to calculate the light on a specific object or task surface. 

 View-dependent algorithms: These calculation methods are based on heat transfer 

calculation formulas and was developed and investigated by Willmott and Heckbert in 

1997. One of the application areas of this calculation method is radiosity where every scene 

is divided into smaller surfaces and the radiometric of these simple surfaces are calculated 

independently from the whole view. However, one of the limitations with the view-

dependent algorithms is that they are not suitable for scenes including specular reflecting 

objects (Willmott and Heckbert 1997; Wang et al. 1992). Based on the complicated 

calculation formulas in this method, it is mainly used for lighting calculations with 

numerical output rather than image generation (Wang et al. 2009). 

 Scene-dependent algorithms: These calculation algorithms include formulas that are 

based on direction from which rays are computed by the model in each scene. One of the 

application examples of these kind of methods is Ray-tracing where rays are usually traced 

from the light source (forward tracing) or from the observer’s eyes (backward tracing) or 

both ways (Lafortune and Willems, 1993). In some cases, both backward tracing and 

forward tracing are combined together which is defined as image-bound method. Image-

bound method is the ideal method to calculate the light from a direct light source, diffused 

light and reflected light from specular surfaces. However, like the other methods there are 
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still limitations with scene-dependent algorithms as well. For example, if there are several 

diffused reflection light sources in the scene, they are not able to calculate the light 

accurately (Ochoa et al, 2012). An illustration of the basic principles of three main 

algorithms is shown in Figure 2.9. 

 

Figure 2. 9. Schematic principles of three commonly used lighting simulation algorithms: (a) ray tracing, 

(b) radiosity and (c) photon map, (Ochoa et al., 2012). 

Although a combination of two or even three calculation methods is the best way to 

deal with complicated lighting scenes, there are however limitations with computing 

complex situations such as fog, special diffusing materials, etc. (Kniss et al. 2003; Dutre et 

al. 2006). In such cases, combinations of two or three different calculation methods are still 

the best solution approach to deal with complicated lighting scenes. One of the first 

integrative algorithms was developed by Kajiya in 1986. The radiance model developed 

by Ward and Shakespeare in 1998 also uses an integrated method of backward ray tracing 

and bidirectional distribution functions (scene-dependent).  

The photon map calculation method developed by Jensen in 1996 is another integrative, 

scene-dependent model. It works by sending packets of energy (photons) to different 

surfaces in the scene. Results of photon map calculation are saved for each simulation 
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scenario and are combined with results from ray tracing and surface radiance applied on 

the surfaces.  

Table 2. 3 Lighting simulation algorithms currently available. 

Algorithm Calculation Method 

View-dependent Forward ray tracing 

Backward ray tracing 

Bi-directional ray tracing 

Scene-dependent Radiosity 

Photon map 

Integrative approaches 

Multi-pass approaches 

Direct calculation For artificial lighting, follows national standards 

Calculation aids Deterministic methods (classical approaches) 

 

2.5.3 Current Lighting Simulation Tools  

Advanced lighting and energy simulation software could be powerful tools to predict 

the energy consumption and comfort in building environment. On average, green buildings 

use about 30% less energy than conventional buildings, although through the proper energy 

analysis software more energy savings could be achieved (Bhavani et al., 2009). The 

persistent research in daylighting and energy systems has paved the way for more 

sophisticated tools which predict the indoor conditions more accurately. In order to design 

effective and intelligent control systems which respond to user inputs and environmental 

conditions, the advanced computer simulation software need to be carefully chosen.  

Nowadays, there are numerous design tools in the market and depending on their level 

of sophistication and type of analysis engine used, the accuracy level of their results 

changes. Also, given their generic nature, not all types of shading devices and/or shading 
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control algorithms can be evaluated. Furthermore, some of these software lack the ability 

to run an annual analysis and can only generate results for a specific day and time in a year.  

The United States Department of Energy (USDOE) provides a list of simulation tools 

(USDOE 2014a), which includes a short description of their capabilities, strengths and their 

weaknesses. Some of these tools are specifically for lighting, while others integrate lighting 

calculation with the whole-building calculations. In addition, there are some extensive 

reviews which compare current lighting tools, their applications and limitations 

(Guglielmetti et al., 2010; Ochoa et al., 2012) 

Based on the online list of lighting software provided by USDOE and based on Ward’s 

and Shakespeare’s book that has recorded 294 citations in the Scopus database, 

RADIANCE is the most efficient lighting tool especially for researchers and computer 

graphics communities (USDOE, 2014a; Ward 1994; Ward and Shakespeare,1998; LBL, 

2010a). Radiance was the first software to generate calculation results for a fixed 

viewpoint, using as input data three-dimensional geometrical description of a scene and 

physical properties of its materials. It has also advanced some of the current calculation 

techniques available in most lighting simulation models (Ward et al. 1988).  

Furthermore, Radiance is the perfect tool for building research instead of only imaging, 

is flexible to solve a great majority of natural and electric lighting simulation problems, is 

freely available and is distributed under an open-source agreement (LBL, 2010a; Ward, 

2002). Also, RADIANCE is one of the very few tools that has been validated by many 

research studies (Grynberg, 1989; Mardaljevic, 1995, 2001, 2004; Reinhart and Herkel, 

2000; Ng, 2001; Reinhart and Walkenhorst, 2001; Reinhart and Andersen, 2006). In all 
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these research studies Radiance has shown consistency in results based on accuracy within 

acceptable limits, according to the test situation. 

Besides the effectiveness and accuracy of this software there are some weaknesses to 

consider as well. For example, Radiance lacks a user interface of its own and needs 

considerable expertise to manipulate its variables (Reinhart and Fitz, 2006). Nevertheless, 

it continues to be favored by the lighting research community (Reinhart and Fitz 2006). 

This can be partly explained by features such as (i): it is intended for building research 

(instead of imaging only), (ii): is flexible to solve a great majority of natural and electric 

lighting simulation problems, (iii) is freely available, and is distributed under an open 

source agreement (LBL, 2010a). The open source nature allows contributions from 

researchers themselves and model continuity (Ward, 2002). It is also one of the few models 

validated extensively (e.g. Grynberg, 1989; Mardaljevic, 1995, 2001 and 2004; Ng, 2001; 

Reinhart and Herkel, 2000; Reinhart and Walkenhorst 2001; Reinhart and Andersen 2006).  

Another extensively used product in the market is AGi32, (Lighting Analysts Inc., 

2014). AGI32 is developed for commercial uses and is able to perform electric lighting and 

daylight performance analysis, (Reinhart et al., 2006). The software uses photometric data 

files and has many standard CIE sky models. Direct calculations is applied to calculate 

lighting from the light fixtures. Radiosity calculations are applied for daylight calculations. 

Limited ray tracing analysis is used for daylight and small surfaces.  

Next widely used program especially in Germany is DIALux, (DIAL GmbH, 2014). It 

is usually applied for calculation of indoor and outdoor electric lighting systems. It follows 

different national standard lighting calculations and can import directly photometric 
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databases from manufacturers. There are some daylight calculation capabilities, using 

German standard DIN 5043 and CIE Publication 110. Geometrical input is limited to 

certain shapes. Sky choices are somewhat limited but acceptable for diverse range of 

weather conditions. There is an external radiosity and ray-tracing model, POV-Ray 

(Persistence of Vision Inc., 2014). It is used to produce images from calculation results and 

for presentation renderings. DIALux is available free of charge but is not open source. 

Some noteworthy scientific studies that used DIALux include determining criteria for 

energy-efficient lighting, (Ryckaert et al., 2010) or simulating luminaire arrangements for 

a study of patients suffering dementia, (van Hoof et al., 2009). 

Relux, (Relux Informatik, 2014) is another European lighting software which 

calculates lighting arrays, daylighting and very simple electrical energy data. Calculation 

for each aspect can be made separately or in a combined mode. Aradiosity and a modified 

Radiance ray tracing algorithm are used in Relux light calculation engine and user can 

decide if he/she would like to incorporate all these methods into calculations. The ray 

tracing module is also used for rendering. Its accuracy has been validated by Maamari et 

al. (2006a). It has been used to evaluate comfort conditions of traditional architecture 

(Ruggiero et al., 2009) and to provide an electric lighting base case for comparison with 

daylighting systems (Linhart and Scartezzini, 2010). Relux is also free but does not provide 

an open source. 

Another commercial model available is Inspirer (Integra, Inc 2014). Distributed mainly 

in Japan, it is used for architectural and industrial design analysis. It employs bidirectional 

ray tracing. Limited validation has been performed on its accuracy (Khodulev and Kopylov 
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1996; Drago and Myszkowski, 2001). These tests showed acceptable results. The program 

generates high-quality images. 

Based on the literature review, Radiance remains the “general-purpose” lighting 

simulation tool. Other packages implement similarly advanced algorithms, such as 

radiosity or the photon map. Tools dedicated to artificial lighting layouts use advanced 

algorithms only as supplement to direct calculations when diffuse daylight is involved. 

Direct calculations are needed to demonstrate compliance with local building codes, and 

daylight has limited scope within them. A summary of characteristics discussed in this 

section is given in Table 2.4. 
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Table 2. 4 Summary table of current and common lighting simulation tools (Ochoa et al., 2012). 

Tool Software Calculation Algorithms  Application 

AGi32 (paid) Direct calculation 

Radiosity 

Limited ray tracing 

Luminaire design 

Radiance* (free) Backward ray tracing 

Scene radiance 

General purpose 

Relux (free) Direct calculation 

Radiosity and modified Radiance 

ray tracing 

Luminaire design,  

daylight integration 

DIALux (free) Direct calculation 

Daylight calculation 

POV ray tracer for images 

Luminaire design, daylight 

integration 

Inspirer (paid) Bidirectional ray tracing General purpose 

Since daylight entering a building also brings heat along with it, the thermal comfort of 

the occupants cannot be compromised.  The visual comfort parameters such as illuminance, 

uniformity and glare need to be synergized with the thermal comfort parameters such as 

Solar Heat Gain Coefficient (SHGC), Predicted Mean Vote (PMV) and Predicted 

Percentage Dissatisfied (PPD) (Kreider, 1995). The energy consumption of the overall 

building should be designed in such a way that the daylight penetration does not increase 

the cooling load of the Heating, Ventilation and Air Conditioning (HVAC) systems during 

summer months and the heating load in the winter months. So the constraints for the 

integrated lighting controller are that it should contain a feedback mechanism and needs to 

be intelligent enough to adjust its parameters so as to operate in an optimal manner 

according to the environmental and user preferences (Bhavani, 2009).  

Based on this fact, one of the crucial issues for choosing the proper lighting simulation 

software for a project is its ability to simulate the energy concepts along with lighting for 
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integrated control strategies. Further, in some complicated design projects with dynamic 

facade-elements, it is very crucial to find the suitable software package to simulate the 

energy consumption of the building including heating, cooling and lighting, based on such 

advanced control systems. EnergyPlus, eQuest and TRNSYS software that have been 

applied in recent  research studies (Lee et al., 1998; Crawley et al., 2005), are all limited to 

fixed facade and shading elements and can only perform the simulation with few facade-

element-parameters that cannot be changed based on the thermal and lighting conditions 

during a single run. This issue also appears in IES Virtual Environment. The options to 

change the facade-elements or parameters in these software packages are very limited.  

2.6 Human Comfort and Control Strategies 

As discussed before, to design an efficient optimal control system for a building, many 

aspects have to be taken into consideration such as human comfort, energy efficiency of 

the system and the ease of maintenance and customization. One of the gaps in the current 

research is that many studies only focus on how control systems influence a single 

environmental condition (Galasiu & Veitch, 2006; Navai & Veitch, 2003; Veitch, 2001; 

Brager & de Dear, 1998; Nicol & Humphreys, 2002).  

In addition,  Frontczak and Wargocki (2011) conducted a literature review about the 

impacts of different environmental and non-environmental factors on human satisfaction 

and comfort, and categorized different field studies based on their procedures and 

methodologies. The paper is a great resource that describes how environmental aspects 

contribute to achieve occupants’ comfort, and how these aspects rank to have high 

importance from building users’ point of view.  
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Depending on the test environment (test chamber, school buildings, commercial or 

residential buildings) the applied methodology differs among these collected research 

studies. In all of them the basic information about comfort or discomfort level is gathered 

through interviews or surveys where building users respond to the questionnaires (Alm et 

al. 1999; Astolfi & Pellerey, 2008; Choi et al. 2009; Clausen et al. 1993; Humphreys, 2005; 

Lai et al. 2009; Lai & Yik, 2007, 2009; Wong et al. 2008).  

The results of these studies indicate that these studies are very helpful in providing 

general ideas about occupants comfort and satisfaction level while designing the control 

strategies in a building especially in the early stages of design. However, information about 

relative importance of environmental conditions on overall satisfaction with IEQ, are not 

constant and differ depending on different building types, climatic conditions, experiment 

factors, the location of the building, occupants’ cultural aspects and gender, purpose of 

stay, type and function of the building, duration of working or living in the building, 

occupants’ location within the building, (core or perimeter zones) and many other factors. 

These influence the judgment of the participants very strongly. Based on this fact, the 

human comfort study in each research should be designed individually and customized 

based on different testing/working environment conditions and standards. 

2.7 Daylight Responsive Control Strategies 

When speaking of daylight-responsive control, there are at least three key factors that 

need to be considered: the control of daylight input to the space, the control of the electric 

lighting output and control of comfort performance. The first is critical for providing 

adequate quantity and quality of natural light in interior spaces. The second saves energy 
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and improves the overall distribution of light when daylight is insufficient to fulfill all 

lighting needs and the third criteria improves user satisfaction. Annoyances caused by the 

system due to high contrast ratios resulting in glare, temporary reductions or sudden 

changes in brightness, or irritating mechanical noise, will reduce the system’s 

effectiveness. Therefore, the objectives of predictive control of dynamic envelope and 

lighting systems are different. A study by Scheatzle (1990) claims that human control of 

motorized shading devices is not reliable and causes a constant disruption to the occupants. 

Also, when a microprocessor automatically operates the shading device as an occupant 

would if he/she were to constantly monitor interior and exterior conditions, psychological 

and physiological factors affecting human comfort are ignored. Another study by Vine et 

al. (1998) investigated worker response to an automated venetian blind and electric lighting 

system. The research showed that most office workers prefer higher light levels. However 

it raises questions as to how appropriate illuminance levels should be decided for a given 

setting. It also suggests that occupants must be trained prior to the installed of controlled 

shading devices to improve their overall experience.   

An Automated Shading System is an efficient application of building shading as it 

allows the device(s) to operate independently based on a local solar clock combined with 

weather/climate sensors along with optional occupancy sensing. When shading control is 

used together with electric lighting control, it is a comprehensive solution for overall 

decrease in building energy consumption and occupant comfort (Lee et al., 1998; 

Kolokotsa et al., 2001). Consequently, integrated lighting/daylighting systems are gaining 

more popularity.   
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Control of dynamic shading devices has a twofold benefit. Firstly, as a result of actively 

controlling the device(s), solar heat gain through the facade is regulated to suit seasonal 

requirements by automatically allowing solar heat gain in the winter and cutting out the 

heat gain in the summer. This results in reduced instantaneous heating/cooling loads, thus 

reducing the peak and total energy demand for the space. A joint control strategy may also 

be designed to take advantage of thermal mass resulting in shifted peak load (Tzempelikos 

and Athienitis, 2007). Secondly, electric lighting usage can be remarkably reduced. Instead 

of using the thermal mass of the building to reduce peak loads, the operation of the dynamic 

envelope system can be coordinated with the daylighting control system to reduce envelope 

and light heat gains and to reduce the electric lighting power consumption on a short-term 

basis. 

2.8 Control Algorithms in Buildings 

2.8.1 Classical Controllers 

Originally, the goal of the development of control systems for buildings was mainly to 

minimize the energy consumption. In the early phases of controllers’ development, 

designers used Proportional– Integrate–Derivative (PID) controllers (Alm et al., 1999; 

Astolfi and Pellerey, 2008). Although these controllers improved the situation, improper 

choice of the gains in the PID controller was often a problem which was making the whole 

system unstable. This problem was the trigger for developing the optimal, predictive, or 

adaptive control techniques to solve the classical controllers’ problems. 
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2.8.2 Optimal, Predictive and Adaptive Controllers  

Important research was conducted on optimum and predictive control strategies during 

the 1980s and 1990s. However, no industrial development has followed these scientific 

studies, especially due to implementation issues. In order to use optimal control (Choi et 

al., 2009; Clausen et al., 1993; Humphreys, 2005; Lai et al., 2007; Lai and Yik, 2007, 2009; 

Wong et al., 2009; Kummert et al., 2001; Burghes and Graham, 1980; Inoue et al., 1998), 

or adaptive control, (Curtis et al., 1996) a model of the building is necessary. Predictive 

control (Chen, 2001; Kummert et al., 2001; Morel et al., 2000; Nygard, 1990; Lam, 1993) 

is very important because it includes a model for future disturbances (e.g. solar gains, 

presence of humans, etc.). It improves thermal comfort mainly by reducing overheating 

(Lute and Paassen, 2000; Paassen et al., 1990; Milanic and Karba, 1996) but especially 

through night cooling. However, mathematical analysis of the thermal behavior of a 

building generally results in nonlinear models which are very complicated and require 

control engineer experts to deal with them. In addition and even more importantly, these 

models differ from one building to another. 

Adaptive controllers have the ability to self-regulate and adapt to the climate 

conditions in the various buildings. More specifically, adaptive fuzzy controllers are 

regarded as the most promising adaptive control systems for buildings, (Clausen et al., 

1993; Curtis et al., 1996; Lute and Paassen, 2000). Nesler, (1986) developed an adaptive 

controller for thermal processes in buildings. The standard PI control algorithm is 

adequate for the control of heating, ventilating, and air-conditioning (HVAC) processes. 

The Recursive Least squares (RLS) estimator provides estimates of the gain, time 
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constant and dead time of a process. RLS estimator diverges when the control loop is 

subjected to an un-modeled load disturbance. Actuator nonlinearity is also another 

problem and limitation of self-tuning controllers. Only a few authors have directly 

applied adaptive techniques that learn the characteristics of a building and its 

environment (Nesler, 1986; Teeter and Chow, 1998). These controllers are not often 

applicable in real-time buildings, since they have various constrains such as their need 

for a building model, or to make parameter estimation in real time with the algorithms 

being used sensitive to noise. Furthermore, their reliance of elements of bioclimatic 

architecture complicates their process of minimization of their cost functions and if such 

a minimization is obtained, the results are not applicable in practice. That is why, under 

real conditions, such techniques may give inaccurate results. 

Additionally, such techniques do not deal with the problem of comfort. Nonlinear 

features that could determine some difficulties when monitoring and controlling HVAC 

equipment characterize the PMV index. The resulting control systems are not user friendly, 

since the user does not participate in the configuration of the climate of his/her environment 

(User preferences). Also, the classical control maximizes the energy conservation without 

giving priority to passive techniques (Dounis and Caraiscos, 2009). 
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2.8.3 Fuzzy Algorithms as Computational Intelligence  

Application of intelligent methods to the control systems of buildings essentially 

started in 1990s. Artificial Intelligence (AI) techniques were applied to the control of both 

conventional and bioclimatic buildings. Intelligent controllers, optimized by the use of 

evolutionary algorithms were developed for the control of the sub-systems of intelligent 

buildings (Lopez et al., 2004). The collaboration of the neural networks technology, with 

fuzzy logic, and evolutionary algorithms resulted in the Computational Intelligence (CI), 

which now has started to be applied in buildings. To overcome the nonlinear feature of 

PMV calculation (comfort evaluation), time delay, and system uncertainty, some advanced 

control algorithms have combined fuzzy adaptive control (Dounis and Manolakis, 2001; 

Calvino et al., 2004; Singh et al., 2006; Kolokotsa, 2001), optimal comfort control (Lai et 

al., 2009), and minimum-power comfort control (Federspiel and Asada, 1994).  

Neural networks have been extensively used in Japan (Asakawa and Takagi, 1994) 

where they have been applied to commercial products such as air conditioners, electric fans 

etc. A system of two neural networks has been incorporated in an air conditioner to further 

fine-tune the equipment to the users’ preferences. One of the neural networks applied in 

this controller is devoted to estimate the value of the PMV index by using sensor inputs. 

The other neural network further corrects this output. The user can train this neural 

network, however, this is not always optimal for a given user. 

The need to obtain energy savings and to guarantee comfort conditions, taking into 

consideration the users’ preferences, drove researchers to develop intelligent systems for 

energy management in buildings (Building Intelligent Energy Management Systems- 
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BIEMS), mainly for large buildings like office buildings, hotels, public and commercial 

buildings, etc. These systems are designed to monitor and control the environmental 

parameters of the building’s microclimate and to minimize the energy consumption and 

operational costs (Dounis and Caraiscos, 2009). 

The results of these intelligent controllers are superior when compared with classic 

control algorithms. The need for a complicated mathematical model to control different 

systems in high performance buildings makes it impossible to apply traditional control 

methods in buildings. But intelligent systems do not require such a model and can deal 

with different parts of a building model. This fact was the main motivation for development 

of automatic control systems. By incorporating new-type, higher-level variables that define 

comfort into the intelligent controllers (Dounis et al., 1992), it was possible to control 

comfort without going into the regulation of lower level variables like temperature, 

humidity and air speed. In such systems, users start to participate in the specification of the 

desired comfort. 

Furthermore, genetic algorithms coming from the theory of adaptive control were used 

to optimize fuzzy controllers. Fuzzy logic control has been used in a new generation of 

furnace controllers that apply adaptive heating control in order to maximize both energy 

efficiency and comfort in a private home heating system (Altrock, 1994). The development 

of fuzzy controllers to control thermal comfort, visual comfort, and natural ventilation, 

with integration control of these sub-systems has led to remarkable results (Ardehali et al., 

2004; Calvino et al., 2004; Humphreys, 2005; Dounis and Manolakis, 2001; Dounis et al., 

1992; Dounis et al., 1994; Gouda et al., 2001; Guillemin, 2003; Guillemin and Morel, 2001; 
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Guillemin and Molteni, 2002;  Kolokotsa et al., 2001, 2002, 2003, 2004, 2005;  Rutishauser 

et al., 2005;  Lah et al., 2005, 2006; Hamdi and Lachiever, 1998; Kolokotsa, 2001). 

Synergistic neuro-fuzzy techniques: Neuro-fuzzy systems originated when neural 

network techniques were used in fuzzy technology. The technology of neural networks has 

found important applications not only to the control systems of buildings (Barnard, 1993;  

Kreider, 1995; Mozer, 1998; Ben-Nakhi and Mahmoud, 2001; Liang and Du, 2005; 

Egilegor et al., 1997) but also to more general problems regarding renewable energy 

sources. Egilegor and his research group in 1997, developed and tested a fuzzy-PI 

controller adapted by a neural network. However, it did not offer significant improvement. 

Later, Yamada et al. (1999) developed an air-conditioning control algorithm that combines 

neural networks, fuzzy systems, and predictive control. This system predicts weather 

parameters and the number of occupants. These predictions are then used to estimate 

building performance in order to achieve energy savings and to maintain the indoor 

conditions in a high comfort level. 

Fuzzy P controllers: Many different methods exist to use fuzzy logic in closed-loop 

control systems. The simplest structure is to use the measurement signals from the process 

as the inputs to the fuzzy logic controller and the outputs of the fuzzy logic controller to 

drive the actuators of the process. This pure fuzzy logic system is called fuzzy P controller. 

The inputs of a global fuzzy P controller are PMV and outdoor temperature, CO2 

concentration, change of CO2 concentration, Daylight Glare Index (DGI), and illuminance. 

The outputs of the system are Artificial Lighting and window opening angle settings 

(Dounis and Manolakis, 2001; Calvino et al., 2004; Singh et al., 2006; Kolokotsa, 2001; 
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Dounis et al., 1994; Ardehali et al., 2004; Altrock et al., 1994; Shepherd and Batty, 2003; 

Huang and Nelson, 1994; Liang and Du, 2005, Kolokotsa, 2001; Shepherd and Batty, 2003;  

Liang and Du, 2005; Ardehali et al., 2004; Goudaet al., 2001; Guillemin, 2003; Kolokotsa 

et al., 2004, 2005).  

Passive techniques are one of the interesting design priorities in fuzzy P controllers. 

During moderate seasons, the fuzzy rules allow natural cooling through window openings 

in order to reach thermal comfort by using natural ventilation. During winter and summer, 

windows are kept closed to avoid thermal losses. The solar gains are controlled to allow 

passive heating during the winter and cut off unnecessary heat gain during the summer 

(Dounis & Caraiscos, 2009). 

In addition to passive technologies built into the controller, illuminance rules are also 

designed to give priority to the natural lighting. The electric lighting is on when indoor 

illuminance is zero, during nighttime and during cloudy conditions. When indoor 

illuminance is increased, the electric lighting is immediately turned off and shading 

improves the indoor visual comfort. The performance index in the building control system 

is minimization of energy consumption (Kolokotsa et al., 2001). 

Fuzzy PID controllers: Fuzzy PID controllers are classified into two major categories, 

according to their structure, (Hu et al., 2001; Xu et al., 2000). The first category of fuzzy 

PID controllers involves typical fuzzy logic controllers (FLCs) realized as a set of heuristic 

control rules. They are also called PID-like (PI-like or PD-like) FLCs. Most of the research 

on fuzzy logic control design refers to this category (Zhao Y, Collins, 2003; Pal, 2002; 

Chao and Teng, 1997; Carvajal et al., 2000; Woo et al., 2000). 
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The second category of fuzzy PID controllers is composed of the conventional PID 

controllers in conjunction with a set of fuzzy rules and a fuzzy reasoning mechanism to 

tune the PID gains online (Zhao et al., 1993). Controllers of this type can adapt to varying 

environments. The main disadvantage of PID controllers is that they are mainly model-

dependent, since they require human experience with controlling the plant in order to 

define the range of the proportional gain. 

PD-like FLCs are suitable for a limited class of systems. They are not suitable when 

measurement noise and sudden load disturbances accrue in the system. PID-like FLCs are 

rarely used because of the difficulties associated with the generation of an efficient rule 

base and the need for tuning its large number of parameters. 

  

 

Figure 2. 10. Structure of fuzzy PI controller, (Dounis and Caraiscos, 2009). 

The advantage of a fuzzy PI controller is that it does not have an operating point. The 

control strategy of rules evaluates the difference between the measured value and the set 
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point and also evaluates the change of this difference in order to decide whether to 

increment or decrement the control variables of the building. A fuzzy logic controller can 

implement nonlinear control strategies. 

Adaptive fuzzy PD and fuzzy PID controller: The structure of the adaptive fuzzy PD 

controller is the same as for the fuzzy PD controller. The difference is that the adaptive 

fuzzy PD controller uses a second-order system as a reference model for the determination 

of the scaling factors of the controller. The objective is to design an adaptive fuzzy PD 

controller such that the behavior of the controlled building remains close to the behavior 

of a desired model. In order to improve the system’s response, Calvino et al. (2004) added 

an adaptive network to a classical PID controller. Furthermore, they modified some control 

rules, aiming at determining a monotone ‘‘control surface’’ to guarantee better stability 

features of the system (Hwang and Lin, 1992). The addition of the adaptive network to the 

original model allows the users to vary the values of the parameters regarding the 

integrative and derivative blocks. Doing so, these parameters will depend on the peak of 

the ‘‘step response’’, which improves the stability of the entire system. 

Neural network controllers: In thermal comfort control (Liang and Du, 2005) and in 

the temperature control of hydronic heating systems (Kanarachos and Geramanis, 1998), 

direct neural network controllers (NNC) are used. These controllers are practical and 

contrary to the indirect neural network controllers and they do not require the identification 

model of the plant.  

Table 2.5 illustrates a summary of the mentioned controllers, their applications, their 

structure and their technical issues based on the classical and advanced control methods. 
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In the column of energy consumption, the symbol H denotes that the advanced control 

strategies can achieve significant energy savings compared to the classical control systems. 

However, these potential energy savings percentages depend on weather conditions, 

building characteristics and user preferences (Dounis and Caraiscos, 2009). 
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2.9 Integration of Daylight and Artificial Lighting Systems 

As mentioned before, integrating daylight and electrical lighting control systems in a 

building could lead to significant energy savings, improvement in performance of the 

system and level of comfort for the occupants. Studies conducted to assess the impacts of 

design and control of shading devices in buildings using exterior roller shades, clearly show 

that integrated shading and lighting control, designed to maximize daylight utilization, 

result in minimum collective lighting and cooling energy consumption (Tzempelikos and 

Athienitis, 2005, 2007; Roisin et al., 2007; Kapsis et al., 2010; Park et al., 2010).  

Many research studies confirm that lighting control alone can result in a decrease in 

cooling energy demand, but the effect of integrated shading and lighting control is 

impressive. However, they also state that the shading type and control algorithm must be 

carefully chosen depending on various factors such as fenestration orientation, location, 

etc.  In the next paragraphs, some of the significant studies in this field are reviewed. 

One of the first studies in this field was conducted by Lee et al. (1998). She studied the 

potential energy saving of automated venetian blinds operating in combination with 

daylighting controls in Oakland, California. To measure the electric lighting power 

consumption and the cooling energy called for the window and lighting systems, the full-

scale Oakland Federal Building demonstration facility was constructed. The facility 

consists of two adjacent identical rooms (4.57m (W) 3.71m (D) 2.68m (H)). For 

comparison, one room was equipped with a ‘base case’ system and the other one with a 

‘dynamic’ system. For the base case system, the venetian blind was set to one of three static 

positions throughout the day to simulate manual control: horizontal (0o), partly closed (45o) 
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and nearly closed (68o). For the dynamic system, a prototype system was developed to 

activate the blind every 30 seconds for blocking direct solar radiation and maintaining a 

daylight illuminance of 540 lux–700 lux. The range of blind motion was restricted to 8o 

(Horizontal) to –68o (partly closed) to limit sky view and glare. Data were collected for 14 

months from June 1, 1996 to August 31, 1997. Lee concluded that an integrated system (or 

prototype system) could achieve energy savings of 13%–28% for cooling and 1%–22% 

lighting energy, respectively, compared to a static blind slat angle of 45o. However, because 

the automated blind system only blocked the solar radiation, similar to Newsham, (1994) 

it can be disadvantageous in places where the heating load is dominant. 

In other words, the optimization of blind systems can only be achieved if a criterion for 

selecting control variables is performance-based (sum of cooling, heating and lighting 

energy use) rather than rule-based (threshold values of solar radiation and illuminance). 

According to Bauer et al. (1996) a fuzzy logic based control algorithm to minimize thermal 

and electric lighting energy demand in a building was first developed by the Technical 

University of Vienna. Because of the algorithm limitation, which focused only on energy 

conservation, Bauer proposed a modification of the TU-Wien controller for achieving 

energy efficiency, as well as thermal and visual comfort. The experiments were carried out 

in two south-facing facade offices with a floor area of 15.6 m2 and a window area of 3.77 

m2. Using the fuzzy logic-based smart blind controller, the experiments resulted in 11% 

lighting energy reduction, as well as 20%–50% heating/cooling energy savings. 

Later, Guillemin and Morel, (2001) proposed an automated system for the regulation 

of solar gains, daylighting and ventilation based on fuzzy logic controllers optimized with 
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genetic algorithms. They developed a fuzzy logic-based system for integrated control of 

blinds, electric lighting and heating, ventilation and air conditioning (HVAC) systems. To 

achieve self-learning, an artificial neural network and genetic algorithms were employed. 

This technique meant that the system was capable of adapting to user behavior and the 

room characteristics. The adaptive controller in this study was split into two parts based on 

user presence: Visual comfort was optimized on detection of occupancy, otherwise energy 

saving was optimized. The method was tested in two rooms (4.75m by 3.6m by 2.8m with 

a south facing window covered with textile blinds) representing the integrated and a 

conventional system. The conventional system was examined without blind or dimming 

control, while in the integrated system the blinds were lowered or retracted by fuzzy logic 

rules without slat angle control. Owing to the predictive ability of the controller, the 

integrated system reduced energy consumption by 25% over 94 days compared to the 

conventional system. However, this approach does not reflect the momentary behavior of 

the system.  

Other study by Lah et al. (2005) presented a daylight based control for automated roller 

blinds based on the fuzzy logic algorithm, designed to relate to human reasoning, while 

obtaining desired illuminance levels inside the room (Figure 2.11). A cascade type control 

algorithm consisting of a fuzzy controller and a PID auxiliary controller was developed.   



55 

 

 

Figure 2. 11. Illuminance Control Loop (Lah et al., 2005). 

The study showed that with moderate continuous movements of the blinds, the desired 

illuminance levels were maintained with an error of about 20 lux. However, it also 

restraints that results depend on the local site and weather conditions and the process of 

tuning the system may be a time consuming process based on human expertise.   

In another research study conducted in University of Ljubljana, Slovenia (Kolokotsa et 

al. 2001), a system was designed and applied on an actual office space, as a hybrid cascade 

system incorporating fuzzy logic and conventional PI controllers. Regulation was 

performed with the use of sensors which monitor the environmental conditions and 

actuators. The main control objectives of the controller were aspects of thermal, 

illuminance and ventilation control and to maintain indoor environmental conditions in the 

desired range of the set-point values. However, there are no adequate data about the overall 

total energy consumption of the building or energy savings through this integrated system. 

In another study by Mahdavi in 2008, a prototype daylight-responsive lighting and 

shading systems control was developed that was based on real-time sensing and lighting 
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simulations. This system was designed to control the position of window blinds and the 

status of the luminaires. At regular time intervals, the system considered a set of candidate 

control states for the subsequent time step. These alternatives were then virtually enacted 

via a lighting simulation application that receives input data from a self-updating model of 

sky (luminance distribution maps obtained via calibrated digital photography), room, and 

occupancy. The simulation results were compared and ranked according to the preferences 

(objective function) specified by the occupants and/or facility manager to identify the 

candidate control state with the most desirable performance.  

The operation of the developed control system was documented in the course of fifteen 

days (in May and June 2005). To dynamically provide the context model (sky luminance 

distribution map) to the simulation engine of the lighting control system, a method was 

developed, whereby calibrated sky luminance maps are derived based on digital 

photography. The results suggested that calibrated sky luminance maps derived based on 

digital photography can provide a reliable basis for locally representative sky descriptions 

in daylight simulation tools. However, taking digital photos to calibrate the simulation 

software might not be an automated solution when it comes to reducing the amount of 

effort in operation and maintenance of the system. Moreover, the illustrated results of this 

predictive method show that some times during the day predicted blinds’ positions are 

changing very often during only each hour. This shows that the system does not contain 

any aspects to improve the comfort level in the room. 

In another study by Park (2010) a closed-loop proportional control algorithm was 

designed and relative performance of the integrated systems and single systems was 
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investigated. The concept of the improved closed-loop proportional control algorithm for 

the integrated systems was to predict the varying correlation of photo sensor signal to 

daylight work plane illuminance according to roller shade height and sky conditions for 

improvement of the system accuracy. As a result, the average maintenance percentage and 

the average discrepancies of the target illuminance, as well as the average time under 90% 

of target illuminance for the integrated systems, significantly improved in comparison with 

the current closed-loop proportional control algorithm for daylight responsive dimming 

systems as a single system. Although the system demonstrated improvements, many 

comfort based concepts such as view preference and the number of changes in roller shade 

settings during the day were neglected in the control strategy in this study.  

Colaco et al. (2012) explored building energy savings using fuzzy-based blind and 

electric lighting control in Mangalore, South India. The position of the blinds was closed, 

opened or partially closed to reduce glare, and solar heat gain, and provide uniformity of 

daylighting (Figure 2.12). In this research, an adaptive neuro-fuzzy inference system 

(ANFIS) was applied to the daylight-electric lighting integrated scheme for adaptation to 

changing environments and room characteristics. Electric lighting was operated fully on, 

off or in between to satisfy the illuminance criteria which was 400 lux. The fuzzy-based 

blind controller was operated by three criteria: (i) visual comfort mode (user present), (ii) 

visual/thermal comfort mode (user present) and (iii) energy optimization mode (user 

absent). The integrated fuzzy blind controller with daylighting controls could achieve 

20%–80% of annual energy savings compared to the base case of manual blind systems 

without daylighting control. Colaco and his group accomplished real-time control of 



58 

 

integrated systems (electric lighting and blinds) using ANFIS, but blind control was limited 

to position control (lowered or retracted) without any variation in slat angle.  

 

Figure 2. 12. Simplified functional block diagram illustrating the control scheme of integrated ANFIS light 

and fuzzy logic (Colaco et al., 2012). 
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Table 2. 6 Summarizes the research work in the field of integrated daylight and artificial lighting control 

systems. 

Study Year Research Method Results 

Lee et al.  1998 

 Main goal was to study the potential 

energy saving through automated 

venetian blinds operating in 

combination with daylighting controls  

 In Oakland, California 

 2 full-scale southeast-facing offices 

4.57m by 3.71m by 2.68m  

 One based case and one room for 

dynamic control strategy 

 1-22% lighting energy savings, 

13-28% cooling load reductions, 

and 13-28% peak cooling load 

reductions through dynamic 

system 

 Control system met design 

objectives under all weather 

conditions to within 10% for at 

least 90% of the year. 

Bauer et 

al. 
1996 

 A fuzzy logic based control algorithm 

was developed to minimize thermal and 

electric lighting energy demand in a 

building 

 Main focus was on energy conservation 

 Two south-facing facade offices 

 Experiments resulted in 11% 

lighting energy reduction, and 

20%–50% heating/cooling 

energy savings 

Guillemin 

and Morel 
2001 

 Integrated control of blinds, electric 

lighting and heating, ventilation and air 

conditioning (HVAC) systems 

 System was based on fuzzy logic 

controllers optimized with genetic 

algorithms 

 To achieve self-learning, an artificial 

neural network and genetic algorithms 

were employed 

 Tests for integrated and a conventional 

system 

 Reduced energy consumption by 

25% over 94 days compared to 

the conventional system 

Lah et al. 2005 

 Daylight based control for automated 

roller blinds based on the fuzzy logic 

algorithm and a PID auxiliary controller 

 Results showed that with 

moderate continuous 

movements of the blinds, the 

desired illuminance levels were 

maintained with an error of 

about 20 lux. 

Kolokotsa 

et al. 
2001 

 Main controller objectives were aspects 

of thermal, illuminance and ventilation 

control and maintain indoor 

environmental conditions in the desired 

range of the set-point values. 

 No adequate data about the 

overall total energy consumption 

of the building or energy savings 

through this integrated system 

Mahdavi 2008 

 A prototype daylight-responsive lighting 

and shading systems control was 

developed 

 System was based on real-time sensing 

and lighting simulations 

 Fifteen days in May and June 2005 

 A method was developed, whereby 

calibrated sky luminance maps were 

derived based on digital photography 

 Result showed that developed 

methodology can provide a 

reliable basis for locally 

representative sky descriptions 

in daylight simulation tools 

 taking digital photos to calibrate 

the simulation software is not an 

automated solution  
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Park 2010 

 A closed-loop proportional control 

algorithm for the integrated systems was 

developed 

 Main objective was to predict the 

varying correlation of photo sensor 

signal to daylight work plane 

illuminance according to roller shade 

height  

 The integrated system 

demonstrated improvements in 

comparison to current closed-

loop proportional control 

algorithm for daylight 

responsive dimming systems as 

a single system 

 Many comfort based concepts 

were neglected in the system 

  

Colaco et 

al. 
2012 

 An adaptive neuro-fuzzy inference 

system (ANFIS) was applied to control 

blind and electric lighting control  

 Study done in Mangalore, South India 

 Main objective was to control the blinds 

to reduce glare, and solar heat gain, and 

provide uniformity of daylighting 

 Controller was operated by three 

criteria: (1) visual comfort mode (user 

present), (2) visual/thermal comfort 

mode (user present) and (3) energy 

optimization mode (user absent) 

 Result show that controller 

could achieve 20%–80% of 

annual energy savings compared 

to the base case of manual blind 

systems without daylighting 

control. 

 Blind control was limited to 

position control (lowered or 

retracted) without any variation 

in blind slat angles  

 

2.10 Summary and Gaps in Research 

Although the majority of buildings already use some sort of automated control for the 

regulation of indoor environmental parameters (e.g. regulation of heating and cooling 

systems, daylight responsive artificial illumination, etc.), these systems do not address the 

complexity of the indoor environment since they regulate mainly discrete phenomena and 

neglect the holistic nature of the problem. Moreover, in some of control approaches where 

many design aspects such as daylighting, artificial lighting and comfort are integrated 

together, the nature of the control algorithm becomes very complicated which leads to 

complexity of the control system and difficulties in application, operation and maintenance 

of such systems in buildings and requires many experts and long delays of the system. In 

addition, many of these research works display integrated systems that are not responsive 

to different changes in the building shape and size and also in different climatic conditions.  
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Based on reviewed research studies, there is a need for applying an innovative control 

methodology to achieve a higher level of comfort and overall energy savings in the 

buildings which is based on a much simpler and manageable algorithm structures and is 

applicable on real-time buildings. A methodology is neededthat combines the produced 

knowledge from past research studies, and at the same time fills the gaps in research and 

refines the current control methods.  

In this research study, an innovative automated control methodology is developed and 

demonstrated that introduces an adaptive integrated control algorithm, with a simplified 

structure which makes it easy to implement and operate in buildings. The system is able to 

improve the visual comfort in the office space and at the same time significantly reduces 

the electrical energy consumption. It is adaptive and applicable on a broad variety of 

buildings with different geometry and climatic conditions. In addition, it is automated and 

requires simple input data, (light levels read by minimal number of sensors in the room) in 

order to regulate the dynamic movements of blinds’ slat angle and electrical lights 

efficiently. 
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 PHASE I: DEVELOPMENT OF A PREDICTING ALGORITHM TO 

OPTIMALLY CONTROL VENETIAN BLINDS  

3.1 Introduction 

The reviewed research studies in the last chapter point to the need for an innovative 

lighting control approach to achieve a higher level of comfort and overall energy savings 

which is based on a much simpler algorithm structure and applicable on real-time 

buildings. A methodology is needed that combines the existing knowledge from the past 

research studies, and at the same time fills the gaps and refines the current control methods 

in order to provide an efficient lighting scenario inside the building and save more 

electrical, cooling and heating energy. More specifically, there is a need for a simplified 

control system that takes the comfort and energy efficiency aspects into account and at the 

same time is adaptable to all types of buildings and pays attention to the occupants’ needs 

at all times.  

In this research study, an innovative automated control methodology is developed and 

demonstrated that introduces an adaptive integrated lighting control algorithm, with a 

simplified structure which makes it easy to implement and operate in real-time buildings. 

The system is able to improve the visual comfort in the office space and at the same time 

significantly reduce the electrical energy consumption in the buildings. In addition, as 

mentioned before, it is automated and requires simple input data, (light levels read by 

minimal number of sensors in the room) in order to regulate the dynamic movements of 

blind’s slat angles and electrical lights efficiently. 
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The first development step of such algorithm is represented in this chapter. The chapter 

focuses on a preliminary simulation-based study to establish a control baseline to predict 

the optimal blind slat angles inside an office space. This approach will be then validated 

and applied on adaptive controller in the next design steps.  

The demonstrated prediction approach is based on using daylighting simulation 

software in the context of a small scaled test cell which represents a virtual office space. A 

startup baseline for the optimal blind slat angle settings for windows is developed with the 

objective of maintaining uniform lighting levels on a horizontal surface (work plane) inside 

the test cell. The lighting baseline simulations are limited to specific times and days of the 

year to reduce and automate the simulation process. These limited simulations are then 

applied to predict the optimal blind slat angles for other days of the year. The developed 

methodology is described, results of such approach are presented to predict the optimal 

blind slat angle setting during a year and during any chosen day.  

As mentioned in the last chapter, some researchers investigated and developed different 

prediction methods to determine the optimal blind slat angle settings for the occupants 

(Hopkinson & Bradley, 1965; Moon & Spencer 1945; Sutter et al., 2001). Sutter in 2001 

introduced a model which operated based on a specific illuminance level, (8000 lux) on 

the window frame.  If the illuminance exceeded that level then the controller was activated 

to close the blinds in order to achieve the optimal visual and thermal comfort level.  

Sutter’s model also provided a detailed guideline to optimize the view and visual 

comfort which unlike many other research works that neglected the comfort concepts, was 

one of the strength points in his research study.  
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However, most of these studies are limited to specific solar latitude and geographical 

location. Based on the literature review in integrated lighting control section, if any of these 

designed controllers are applied on other locations the accuracy of the system decreases 

significantly. Since the proposed prediction approach is based on a limited set of 

simulations and simulated data, it could be applicable on different locations with the same 

level of accuracy. 

3.2 Objective and Scope 

The prediction method is the first step of designing an adaptive integrated control 

strategy which provides a base-line for an automated start-up of blind settings with an 

optimal angle in order to provide sufficient daylight in the office space. 

The strategy is developed on a small scaled virtual test cell that represents a small office 

space. A set of daylighting simulations inside the virtual model were applied as input for 

the prediction algorithm to predict the optimal blind angle settings for three venetian blinds 

inside the model. The main objective of this step was to suggest the optimal settings in 

order to achieve a uniform daylight level on the defined work plane. 

3.3 Methodology 

The prediction approach is based on simulated data inside a small-scaled model which 

represents an office area. Then, software code was written in MATLAB in order to further 

analyze the daylight illuminance levels inside the virtual model. In the following sections, 

the simulation based approach is described in more detail. 
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3.3.1 Daylight Simulation 

The test room model was built in ArchiCAD and then imported to Relux Professional 

lighting software for further analysis (Figure 3.1). 

 

Figure 3. 1. The test cell model in Relux professional lighting software. 

ArchiCAD is an architectural BIM CAD software for Macintosh and Windows 

developed by the Hungarian company GRAPHISOFT (GRAPHISOFT, 2014). 

In addition, Relux is a European lighting software which calculates lighting arrays, 

daylighting and very simple electrical energy data. Calculation for each aspect can be made 

separately or in a combined mode (Relux Informatik, 2014). Aradiosity and a modified 

Radiance ray tracing algorithm are used in Relux light calculation engine and user can 

decide if they would like to incorporate all these methods into calculations. 
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The ray tracing module is also used for rendering. The accuracy of the software has 

been validated by Maamari et al. (2006a) and it has been used in several lighting studies 

(Ruggiero et al., 2009; Linhart & Scartezzini, 2010). Relux is also free but does not provide 

an open source. 

The small- scaled virtual test bed model is built to investigate daylighting situation and 

pertains to a 4 by 4 by 4 feet office area with three 1 by 1.3 feet windows on the North, 

West and South walls (Figure 3.2). In addition, all interior walls and ceiling are from Birch 

wood and the floor is furnished with a grey carpet.  All three windows have a clear glass 

with 80% transmittance and are equipped with matte aluminum blinds. The interior frames 

of the windows are also made of matte aluminum. The blinds slat angles are set on different 

degrees in order to control the amount of daylight penetrating to the test cell. Furthermore, 

to calculate and demonstrate the light level in virtual office, a measurement surface inside 

the test cell is defined which represents the working surface in an actual office (shown in 

red in Figure 3.3). 
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Figure 3. 2. Virtual test cell plan and sensor locations 

for phase I of the study, (Test cell size: 4×4×4 feet). 

 

 

Figure 3. 3. Perspective of the virtual test cell 

model in Relux and sensor distribution. 

The calculations were done for Phoenix, Arizona (33◦ 27‘ 0“ N, 112◦ 4‘ 0“ W) for clear 

sky according to International Commission on Illumination, (CIE), which refers to less 

than 30 % cloud cover, or none. To measure the daylight levels on the work plane, there 

are 9 virtual light sensors placed in the test cell to read the illuminance. Figure 3.3 shows 

the sensor placement in the model.  

As stated earlier, the intent of the simulated-based approach is to optimally regulate 

blind slat angles in order to achieve a unified light level on the defined work plane based 

on the desired-lux level which is 250 lux in this phase of study. At the same time, to reduce 

the simulation time and automate the approach, simulated data are limited to a minimum 

number of runs. These limited simulations include three different days that capture the 

variability of the solar movement over the year and day in summer, winter and fall, 

(summer and winter solstice and autumnal equinox days): 
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 June 21      

 September 22     

 December 21 

In addition, the simulation was done for three hours each day including 10am, 12pm 

and 2pm, which catch the daily solar path inside the virtual office. 

The daylight simulations ran with only one window open with different blinds’ slat 

angles one at a time while other two windows closed. We assumed that illuminance level 

at a specific area is additive and the total lighting for the case whereas all three windows 

are open was calculated as the sum of the solar radiation contribution from separate 

simulation cases including window north, west or south open with different slat angles. All 

three windows were equipped with interior blinds (matte aluminum) which were movable 

from 0o (fully open) to 90o (fully closed) in 15o intervals (Figure 3.4). The reason for 

applying only downward slat angles was that in most of downward settings there is view 

availability, even if it is only a view of the sky. This will improve the level of visual comfort 

in the prediction algorithm. 
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Figure 3. 4. Different blind slat angle settings applied in this study. 

3.3.2 Analysis 

To analyze the output results of Relux daylight simulations for three chosen days which 

were in text format, a MATLAB code was written to firstly combine the simulated 

daylighting data read by each sensor in order to stablish all possible combinations that 

include all three window settings which are 73=343 (seven different angle positions and 

three windows) different combinations. Secondly, another MATLAB code was 

programmed to investigate the optimal blind slat settings based on uniformed light level 

on work plane. The following section describes the calculation method for this step. 

Calculation of “Total Error” values for all blinds’ setting combinations. The control 

objective was to find the best blind slat settings for three windows that prove the most 

uniform illuminance level the work plane. A target of 250 Lux was defined to compare all 

simulated data provided by 9 sensors on the work plane for each combination. To achieve 
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this goal, a Total Error (TE) value was calculated for each setting combination as 

following: 

Mean Square Error (MSE) Calculation: 

 
𝑀𝑆𝐸 =  

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

𝑛 − 1
   

(1) 

Total Error (TE) Calculation: 

 𝑇𝐸 = √(𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − �̅�)2 + 𝑀𝑆𝐸 (2) 

 

Where: 

𝑦𝑖: measured light level in lux by 9 sensors installed on the work plane 

�̅�: average illuminance level of all sensors in lux 

n: number of sensors 

𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑: desired illuminance level in test cell model in lux 

The total error values were calculated for all possible blind setting combinations inside 

the test cell model which are 7 3 = 343 combinations, (3 windows and 7 blind stat settings 

for each window, (0o, 15o, 30o, 45o, 60o, 75o, 90o)) on June 21st, September 22nd and 

December 21st. The fitness function was set to find the optimal combination for blind 

settings with smallest total error. The results are shown in following graphs. 
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Figure 3. 5. Histogram Charts of total error values for all combinations in June 10am. 

 

Figure 3. 6. Histogram Charts of total error values for all combinations in June 12pm. 
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Figure 3. 7.  Histogram Charts of total error values for all combinations in June 2pm. 

Figure 3.5, 3.6 and 3.7 illustrates three histogram charts for June 21st, 10am, 12pm and 

2pm. These histograms show the values of calculated total errors, (TE) for 343 different 

blind combinations on June 21st based on equations 3.  Regarding the definition of TE, 

smaller values indicate to a more uniform illuminance situation on the work plane and 

larger values point to significant differences between 250 desired lux level and illuminance 

levels read by 9 sensors on the work plane. As seen in the charts about 80% of all blind 

setting combinations show a TE value in a range of 90 to 200 which indicates to a less 

uniformed illuminance situation in the test cell on June 21st. However, for each hour, there 

are a few combinations with the smallest total error value, (TE values 60 to 80) which 

represent the optimal blind setting combination for those specific hours on June 21st.  
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Figure 3. 8. Histogram Charts of total error values for all combinations in September 10am. 

 

Figure 3. 9. Histogram Charts of total error values for all combinations in September 12pm. 
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Figure 3. 10. Histogram Charts of total error values for all combinations in September 2pm. 

Similar to the last Figures, the histograms in Figures 3.8, 3.9 and 3.10 show the TE 

values for all 343 different blind combinations on September 22st.  As seen in the charts 

about 90% of all blind setting combinations show a TE value in a range of 90 to 200 which 

indicates to a less uniformed illuminance situation in the test cell. However, for each hour, 

there are a few combinations with the smallest total error value (TE values 80 to 90) which 

represent the optimal blind setting combination for those specific hours on September 22st. 

These blind slat angle combinations are then picked by the algorithm as best predicted 

optimal settings.  

Furthermore, the same graphs are presented for December 21st in Figures 3.11, 3.12 

and 3.13.  
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Figure 3. 11. Histogram Charts of total error values for all combinations in December 10am. 

 

Figure 3. 12. Histogram Charts of total error values for all combinations in December 12pm. 
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Figure 3. 13. Histogram Charts of total error values for all combinations in December 2pm. 

The TE histograms for December 21st indicate to larger values of TE among the 343 

blind combinations. The reason for this fact could be the decreased daylight availability in 

winter time, thus the lower illuminance levels in the test cell. The few combinations with 
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combination on December 21st.  
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One of the important aspects in controlling the blinds in an optimized setting is visual 

comfort. The amount of change in the blind slat angle in each setting needs to be minimized 

to avoid the distraction caused by blinds motor noise and visual discomfort. 
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factor α which defines the importance of the total error and amount of change in angles for 

the next setting. The cost function is defined as below: 

 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (1 − 𝛼)𝑇𝐸 + 𝛼√
(𝐴𝑖 − 𝐴𝑥)2 + (𝐵𝑖 − 𝐵𝑥)2 + (𝐶𝑖 − 𝐶𝑥)2

3 × 902
  (3) 

Where the variables are defined as follows: 

𝛼: Weight factor 

𝐴𝑖: Current blinds slat angle for window A (north-side) 

𝐵𝑖: Current Blinds slat angle for window B (west-side) 

𝐶𝑖: Current blinds slat angle for window C (south-side) 

𝐴𝑥: Optimal blinds slat angle for window A 

𝐵𝑥: Optimal blinds slat angle for window B 

𝐶𝑥: Optimal blinds slat angle for window C 

The cost function has to be made as small as possible in order to maintain the most 

uniform lighting situation on the work plane and to have the smallest changes from one 

blind slat setting to the next one. As mentioned before, in this equation α is defined as a 

weight factor between TE values and slat angle changes which has to be chosen properly. 

When weight factor α = 0 the cost function value equals to the smallest TE value without 

taking the slat angle changes into consideration. On the other, for α = 1, the TE value weight 

factor is ignored and the objective would be to maintain the blind slat angle settings 

constant and to keep the cost function value close to zero. In other words, if α is 1 the blinds 

will be set on their optimal predicted setting based on smallest TE values in the morning, 

but then they will stay on the same position for the rest of the day. Table 3.1 illustrates the 
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optimal blind slat setting angles based on smallest total error with α = 0 (changes in blind 

settings are ignored). 

Table 3. 1 Optimal blind slat angle settings for three simulation days based on smallest cost function when 

α=0. 

Time 
Total 

Error 
Ave. Lux 

Window A 

(North) 

Window B 

(West) 

Window C 

(South) 

Cost 

Function 

June 10am 56.28 241.25 0 90 0 56.28 

June 12pm 78.16 223.60 0 30 30 78.16 

June 2pm 68.57 239.54 60 75 0 68.57 

Sep. 10am 74.68 258.05 45 15 0 74.68 

Sep.12pm 71.03 235.15 45 0 15 71.03 

Sep. 2pm 81.47 251.19 0 15 15 81.47 

Dec. 10am 73.38 233.08 45 90 0 73.38 

Dec. 12pm 74.34 233.65 45 0 15 74.34 

Dec. 2pm 59.70 248.50 45 0 15 59.70 

 

As shown in the Table 3.1, when α=0 the algorithm operates only based on only 

smallest total error values without taking the blind slat angle changes into account. In this 

case, the cost function value is equal to the total error value. 

One of the interesting points in Table 3.1 is the average illuminance values of 9 

sensors on the work plane. The selected blind slat angle combinations for the three 

windows in all three days indicate to an average illuminance very close to the desired 

illuminance level which is 250 lux. This points out to the accuracy of the prediction 

algorithm. 
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3.3.4 Optimal Control Setting Prediction  

As explained before, the number of simulations is limited to three days: June 21st, 

September 22nd and December 21st and three times of the day namely at 10am, 12pm and 

2pm. A prediction method based on smallest (best) cost function values has been developed 

which includes two different approaches in order to predict best blind slat angle settings 

for three windows in the test cell model during a year and also during a chosen day. Thus, 

the prediction approach is divided into two different categories:  

 Yearly prediction approach 

 Daily prediction approach 

Yearly prediction approach:  For yearly predictions of the best blind settings, the weight 

factor α in the cost function equation is equal to zero, (α = 0) since the amount of changes 

in blind slat angles are not significantly important for yearly prediction. Based on this fact, 

the cost function will be just based on the best TE values. In this case, the initial condition 

of all blinds have been set to zero, (Window A=0o, Window B=0o, Window C=0o).  

In this approach, TE values for the three simulated months, (June, September and 

December) were used to predict the best blind settings for each randomly selected month. 

Graphs in Figures 3.8, 3.9 and 3.10 show that if the optimal blind situation for three 

windows in June would be applied on other 11 months of the year at the exact time, the 

applied setting is also one of the optimal settings for at least two month before and two 

months after June. This also applies for September and December values. Based on 

simulated values this approach is represented in the following graphs. 
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Figure 3. 14. Yearly prediction approach based on June 21st, 10am. The highlighted months in red show 

that by applying the optimal setting of June 21st on the same time of other 11 months the TE values for two 

months before and after June are very close to optimal setting’s TE value. 
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Figure 3. 15. Yearly prediction approach based on June 21st, 12pm. The highlighted months in red show 

that by applying the optimal setting of June 21st on the same time of other 11 months the TE values for two 

months before and after June are very close to optimal setting’s TE value. 

0

10

20

30

40

50

60

70

80

90

100
87

8.7%

91
12.5% 88

9.4%

75
3%

77
1% 78

77
1.3%

76
2.4%

93
14%

90
12%

89
11%

91
13%

Total Errors Based on Predicted Blind Slat Angles in June 21st at 12 pm, 
(Window A:0 Window B:30 Window C:30)



82 

 

 

Figure 3. 16. Yearly prediction approach based on June 21st, 2pm. The highlighted months in red show that 

by applying the optimal setting of June 21st on the same time of other 11 months the TE values for two 

months before and after June are very close to optimal setting’s TE value.  

Figures 3.14 to 3.16 illustrate the TE values, when the best setting in June 21st, 10 am, 

12 pm and 2 pm are applied to the same time of other 11 months. According to the 
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best settings for the blinds are window A=0o, Window B=90o and window C=0o. This 

blind slat angle setting has been applied on all other 11 month at 10 am to determine how 

well the best setting in June fits as an optimal set up for the rest of the year.  
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of 10% and less. This fact shows that the optimal blind settings for June 10 am, (0o 90o 0o) 

could be applied as one of the optimal setting’s combinations to predict the setting for two 

month before and two month after June.  

 

Figure 3. 17. Yearly prediction approach based on September 22nd, 10am. The highlighted months in red 

show that by applying the optimal setting of September 22nd on the same time of other 11 months the TE 

values for two months before and after September are very close to optimal setting’s TE value. 
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Figure 3. 18. Yearly prediction approach based on September 22nd, 10am, 12pm and 2pm. The highlighted 

months in red show that by applying the optimal setting of September 22nd on the same time of other 11 

months the TE values for two months before and after September are very close to optimal setting’s TE 

value. 
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Figure 3. 19. Yearly prediction approach based on September 22nd, 2pm. The highlighted months in red 

show that by applying the optimal setting of September 22nd on the same time of other 11 months the TE 

values for two months before and after September are very close to optimal setting’s TE value. 
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Figure 3. 20. Yearly prediction approach based on December 21st at 10am. The highlighted months in red 

show that by applying the optimal setting of December 21st on the same time of other 11 months the TE 

values for two months before and after September are very close to optimal setting’s TE value. 
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Figure 3. 21. Yearly prediction approach based on December 21st at 12pm. The highlighted months in red 

show that by applying the optimal setting of December 21st on the same time of other 11 months the TE 

values for two months before and after September are very close to optimal setting’s TE value. 
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Figure 3. 22. Yearly prediction approach based on December 21st at 2pm. The highlighted months in red 

show that by applying the optimal setting of December 21st on the same time of other 11 months the TE 

values for two months before and after September are very close to optimal setting’s TE value. 
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blind slat settings for January, February, October and November at 10 am, since the 

difference between TE values is not significant (smaller than 10%).  

According to this yearly prediction approach, based on a limited simulation days, the 

annual optimal settings for blind slat angles inside the test cell could be determined. This 

approach will provide a base-line for conceptual design process and help building designers 

to plan for daylight systems more accordingly. In the next section, a daily prediction 

method will be introduced to predict the optimal blind slat angles during a whole day which 

is again based on few initial simulation runs. 

Daily prediction approach: To predict the optimal blind setting during a day and based 

on initial limited simulation runs, the weight factor α plays a very important role in cost 

function, since it is responsible for changes in the blind slat angles thereby affecting visual 

comfort. Based on these criteria, the impacts of different values of α on cost function and 

optimal blind settings for three windows in June, September and December have been 

investigated and shown in Figures 3.23, 3.24 and 3.25.  
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Figure 3. 23. The blind slat angle and total error values comparison diagramms for different values of α in 

the cost function, in June. 
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Figure 3. 24. The blind slat angle and total error values comparison diagramms for different values of α in 

the cost function, in September. 
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Figure 3. 25. The blind slat angle and total error values comparison diagrams for different values of α in the 

cost function, in December. 
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Therefore, for daily prediction approach, α was chosen equal to 0.25, to have the most 

optimal TE values at the same time take the blind slat angle changes into account. In this 

case cost function will be as follows: 

 𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

= (1 − 0.25)𝑇𝐸

+ 0.25√
(𝐴𝑖 − 𝐴𝑥)2 + (𝐵𝑖 − 𝐵𝑥)2 + (𝐶𝑖 − 𝐶𝑥)2

3 × 902
 

(4) 

Based on the above cost function, the optimal blind slat angles for June, September and 

December months have been calculated and illustrated for each window as illustrated in 

Figures 3.26 to 3.28. 

The daily prediction method assumes that the start and final setting of blinds are zero 

degree which demonstrates fully open blinds. Then, by interpolating the blind slat angle 

values at start point (9am), three simulated values (10am, 12pm and 2pm) and end point at 

4pm, the blind angle values for rest of the hours are predicted. Such an interpolation is a 

line that connects the given points to each other as shown in the Figures 3.26 to 3.28. 
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Figure 3. 26. Predicted blind slat settings for the whole day, based on optimal settings in June 21, (10 am, 

12 pm and 2 pm) when α=0.25 in the cost function. 

 
  

Figure 3. 27. Predicted blind slat settings for the whole day, based on optimal settings in September 22, (10 

am, 12 pm and 2 pm) when α=0.25 in the cost function. 
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Figure 3. 28. Predicted blind slat settings for the whole day, based on optimal settings in December 21, (10 

am, 12 pm and 2 pm) when α=0.25 in the cost function. 
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from the actual simulation data for those hours as shown in Tables 3.2 and 3.3. 
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Table 3. 2 Validation of predicted blind settings for June 21st , 9am, 11am and 1pm with comparing them to 

the best optimal settings resulted from actual simulation data for June 21st , 9am, 11am and 1pm when α = 

0.25. 

June 21st Hour Total Error Ave. Lux 
Window A 

(North) 

Window B 

(West) 

Window C 

(South) 

Predicted 

Data 
9 am 56.30 241.36 0 0 0 

Simulated 

Data 
9 am 64.35 264.30 0 15 0 

Predicted 

Data 
11 am 91.30 180.10 0 60 15 

Simulated 

Data 
11 am 98.19 257.60 0 60 30 

Predicted 

Data 
13 pm 73.38 233.08 0 30 30 

Simulated 

Data 
13 pm 76.48 242.53 0 30 30 

 

Table 3. 3 Validation of predicted blind settings for December 21st  9am, 11am and 1pm with comparing 

them to the best optimal settings resulted from actual simulation data for December 21st, 9am, 11am and 

1pm when α = 0.25. 

December 

21st 
Hour Total Error Ave. Lux 

Window A 

(North) 

Window B 

(West) 

Window C 

(South) 

Predicted 

Data 
9 am 98.90 295.00 0 0 0 

Simulated 

Data 
9 am 87.54 245.58 30 30 0 

Predicted 

Data 
11 am 94.46 187.18 45 45 15 

Simulated 

Data 
11 am 90.47 189.14 45 60 15 

Predicted 

Data 
13 pm 59.69 248.49 45 0 15 

Simulated 

Data 
13 pm 59.69 248.49 45 0 15 

 

As shown in the Tables 3.2 and 3.3, the total error values and average illuminance 

levels of blind settings based on daily prediction method and actual simulations on June 
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21st and December 21st are compared. The compared values indicate to a very small 

difference in total errors, average illuminance levels and blind slat angles between 

simulated and predicted data. This difference in TE values is about 15%, in average 

illuminance levels is about 10% and is ≤ 15o in blind slat angles. 

3.4 Conclusions 

The experimental result confirm that the daily and yearly prediction approach is 

accurate when applied on randomly chosen days/month. The values suggest that the 

predicted optimal blind settings are providing the optimal average light levels and the most 

uniform lighting situation on the work plane in a virtual test cell environment.    

3.5 Future Work and Limitations 

The results of the analysis approach indicate that the predicted blind settings based on 

daily and yearly prediction methodologies are proper approaches with high accuracy to 

predict the optimal blind slat settings in similar building spaces. This methodology could 

be applied as an initial baseline setting for lighting control in buildings in conceptual design 

process. Since this approach is based on a limited set of simulations and requires a simple 

input for the control strategy, it is easily applicable to any building size and orientations in 

different geographical locations.  

However, there are some limitations with the performance of the Relux lighting 

software when the building model has a more complicated shape and includes many 

windows and blinds. There are many issues with importing the CAD model into Relux 

when the building model is more detailed and/or contains curvy walls. In this situation, the 



98 

 

only solution will be to simplify the building model by dividing it into smaller spaces and 

change the curved walls into flat type in order to be able to import and analyze it in Relux 

which requires long processing times. Moreover, in this case, the process will not be 

automated and easy to adopt.  

In addition to the building complexity limitation, there is also a limitation with the 

number of blinds in Relux. Since any type of shading devices can’t be imported to Relux, 

the venetian blinds have been chosen from the lighting software library and separately 

installed in the test cell model. Relux does have a limitation in the number of blinds in the 

model and if this limit is exceeded software crashes during the daylight simulation.  

Based on software limitations in simulating complex situations, it is important for the 

future work to investigate the availability and ability of other lighting software in the 

market when applied for the proposed prediction methodology. 
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 PHASE II: VALIDATION OF PREDICTING CONTROL ALGORITHM  

4.1 Introduction 

In chapter 3 a prediction approach was developed based on simulated data inside a 

virtual small-scale test cell. The goal of this control strategy was to regulate the slat angle 

of three venetian blinds inside the model during a day and during a whole year based on a 

very limited simulation set. The main focus of this chapter which describes phase II of 

research is to apply and validate the control approach based on real-time experiments inside 

an actual test room.  

Outdoor test cells are the best tools to evaluate the control systems before applying it 

on a full-scale building. In test cells, there is a high degree of control of the indoor 

environment, well-specified constructions and high levels of instrumentation and this can 

fill the gap between laboratory testing and full-scale building testing. In most research 

cases, the objective of test cells is to extract component performance characteristics that 

give some confidence as to how those components perform in realistic climatic conditions. 

Furthermore, the other main application of testing in outdoor test cells is the link with 

simulation modelling. The main goal here is predicting energy and environmental 

performance of buildings. However, where a new component is under development, for 

example an advanced glazing, a hybrid photovoltaic module or shading component, then 

high quality data sets from outdoor experiments can be used to ensure that the simulation 

tool is capable of modelling that component. If so, it is considered that the simulation 

program can then be applied to model the component when integrated into a full-scale 

building. 
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Based on this fact, the developed control algorithm was implemented on a bigger scaled 

test room which was built on the roof of Design Building South in Arizona State University 

Tempe campus. The virtual daylight model was then calibrated and fine-tuned based on 

actual measured data in test room.  

Furthermore, in this phase of study, based on some limitations of Relux lighting tool in 

simulation length and simulation output data, Radiance lighting simulation was 

implemented instead. As mentioned in literature review chapter, Radiance1 is the most 

efficient lighting tool especially for researchers and computer graphics communities 

(USDOE, 2014a; Ward 1994; Ward & Shakespeare, 1998; LBL, 2010a). Radiance was the 

first software to generate calculation results for a fixed viewpoint, using as input data three-

dimensional geometrical description of a scene and physical properties of its materials. It 

has also advanced some of the current calculation techniques available in most lighting 

simulation models (Ward et al., 1988).  

This chapter includes the approach to evaluate and validate the optimal blind slat setting 

prediction methodology from the last chapter, based on actual measured data in the test 

room. The simulations are done with Radiance plugin in IES virtual environment, (IES, 

2010).  We start with an overview about the test room structure, size, openings materials 

and location. 

                                                 

1 According to the online list of lighting software provided by USDOE and based on Ward’s and 

Shakespeare’s book that has recorded 294 citations in the Scopus database. 
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4.2 Test Room 

To evaluate the applicability of developed control approach, a test room was built on 

the roof of design building north at Arizona State University Tempe campus. The 

geographic location for Tempe, Arizona is 33◦ 27‘ 0“ N, 112◦ 4‘ 0“W.  

As shown in Figure 4.1, the test room pertains to an 8 by 8 by 8 feet office area with 

seven 21 by 32 inches windows on the North, East, West and South walls. Since the test 

room was built to be used for different research studies by other students at Herberger 

Institute, it has more features than needed for this research study.  

 

Figure 4. 1. The view of test room on the roof of design building north in Tempe campus. 
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Figure 4. 2. Plan and section of the test room. 

 

Figure 4. 3. Perspective of the test cell on the roof of Design Building North, at ASU Tempe campus. 
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As mentioned before, not all the features and equipment of the test room were for the 

purposes of this research. For example, as shown in Figure 4.3, the number of windows 

was limited to only two windows on north and west walls for validation phase in order to 

create a more realistic test environment and also simplify the situation. The rest of the 

windows were covered with matte grey colored sheets. In Figure 4.4 these windows are 

referred to inactive windows.   

4.2.1 Materials 

The test room has a wooden structure with plytanium Pine sheathing plywood as the 

interior layer. The window frames are made of wood and painted with white paint. A single 

glazed with clear glass is applied on all windows. The whole room was built on a metal 

structure as a base which was on four wheels to turn the whole structure to different 

directions on the roof. 

4.2.2 Blinds 

The active (in use) windows on north and west side were equipped with SmartBlind 

from Intelligent Building Envelopes Company based in Canada as shown in Figure 4.5. 

The SmartBlind system consists of the following components: 

• One 24VDC, 1 Amp, wall mount power supply 

• One Power and Interface Unit 

• One Command Unit 

• One RJ12 Adapter 

• One Sunlight Sensor 

• One or more blinds up to 6 maximum 
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Figure 4. 4. Active and inactive windows in test 

room. 

 

Figure 4. 5. View of windows inside test room. 

 

Figure 4. 6. View of SmartBlinds installed in the test 

room. 

 

Figure 4. 7. View of the SmartBlinds in test 

room. 
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Generally, it is important to decide how to best group the blinds within a system. In 

automatic mode, all of the blinds within the system will respond to the signal from a single 

sunlight sensor. Therefore, it may not make sense to group a north facing blind with west 

facing blinds, since they will experience very different daylight conditions throughout the 

day. Figure 4.8 demonstrates the blinds’ configuration system in automatic mode in case 

of 6 blinds in one orientation. 

 

Figure 4. 8. SmartBlinds configuration diagram with 6 blinds in the system as an example. 

The configuration shown in Figure 4.8 is the interface for controlling all blinds in the 

same manner with one single control unit. However, in order to operate the single blinds 

separately a local command unit is needed. This device operates in the same manner as the 

system command unit but is specific to a single blind.  It connects to the individual blind 

      

6 Blinds in the system controlled through integral 
computer, tilt sensor and motor. 

Sunlig

ht 

Senso

r 

Blind Computer 

RJ12 Cables 

Command Unit 

24VDC Power 

Supply 

Power and Interface Unit 

(Optional)  

 

Power supply wire 

6 conductor cable 

RJ12 cable 

Sensor wire 
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computer via a sub-miniature, four-pin connector and is wall mounted near the blind it will 

control. When this device is operated along with the centralized system, it will override 

any system commands and will move the individual blind to the requested position. A small 

LED (shown in Figure 4.8) indicates if the blind is currently under system control (LED is 

lit) or is in manual mode (LED is not lit). This device allows remote computer control of 

the entire SmartBlind system.  

Each blind in the system is individually addressable by the remote computer and the 

remote computer can direct individual blinds to move to a requested position at either high 

speed (immediate change) or low speed (imperceptible motion). The remote computer can 

also request all blinds to move simultaneously to a requested position (global command) 

at either high or low speed, also it can request data from the SmartBlind system including 

solar radiation intensity and system health. Each blind in the SmartBlind system has the 

potential to include the Local Command Unit option. 
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Figure 4. 9. Local command unit for 

SmartBlinds. 

 

Figure 4. 10. Female DB-9 RS-232 connector for remote 

computer interface. 

In the test room environment, there are two SmartBlinds installed as shown in Figure 

4.5 which are controlled through a computer remote system. A code in C++ was written to 

regulate and set the blind slat angles based on control algorithm commands. 

4.3 Objective and Scope 

As mentioned before, the main goal of conducting this research study is to develop an 

adaptive control method to optimally regulate and maximize daylighting in buildings of 

any size, shape and vintage. By introducing this adaptive automated algorithm, it is 

intended to enhance the capabilities of control systems by almost completely automating 

their deployment, operation and by empowering them to adapt to environmental changes.  

The objective of this phase was to firstly, calibrate the lighting software and secondly, 

validate and evaluate the reliability and accuracy of the developed control approach 

through an experimental set of tests on test room.  
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4.4 Methodology 

In order to compare the measured data with simulated data, the first step was to build 

the virtual model of test room which has a bigger scale than the first model. Since Relux 

has some limitations regarding model import and simulation lengths, for this stage 

Radiance as a plugin in IES was applied. The Test room CAD model was built in Revit 

and imported to RadianceIES. The test room models in Revit and imported model in 

RadianceIES are displayed in Figures 4.11 and 4.12.  

After the virtual model was set up, the developed blind slat control algorithm was 

implemented on the test room based on three limited day simulation method and calculation 

of total error for each blind combination. The optimal predicted blind angles have been 

implemented on the blinds on test room for a chosen day and the lighting situation inside 

the test room was investigated. 
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Figure 4. 11. Virtual test room model built in Revit. 

 

Figure 4. 12. Imported test room model in IES. 

4.5 Calibration of RadianceIES Lighting Model 

To verify the reliability of the RadianceIES lighting program, the actual daylight levels 

in test cell have been measured on April 29th from 9am to 5pm. The actual illuminance 

levels in test room have been measured and recorded by 9 MEMSIC wireless sensor motes 

distributed in the room similar to the 9 sensor locations in phase I (Figure 4.12). These 

measured data have then been compared to simulated illuminance data. 



110 

 

 

Figure 4. 13. The location of 9 light sensors in test room in 

RadianceIES software environment. 

 

Figure 4. 14. MEMSIC 

wireless sensor motes inside 

the test room. 

A MATLAB code was written to compare the results of actual experiment and lighting 

software output. Some small changes were made to the virtual model materials in order to 

fine tune the data to match the experimental measurements. The graphs in Figures 4.15 and 

4.32 show the comparison between these two data sets for two combination of blind setting, 

for all 9 sensor motes on April 29th.  
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Figure 4. 15. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 

 

Figure 4. 16. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 

 

Figure 4. 17. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 

 

Figure 4. 18. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 
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Figure 4. 19. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 

 

Figure 4. 20. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 

 

Figure 4. 21. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 

 

Figure 4. 22. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 
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Figure 4. 23. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window North’s blind is set open and window 

West’s is closed on April 29th from 9am to 5pm. 

 

 

Figure 4. 24. Comparison graphs between 

measured and simulated illuminance levels in test 

room when window West’s blind is set open and 

window North’s is closed on April 29th from 9am 

to 5pm. 

 

Figure 4. 25. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window West’s blind is set open and window 

North’s is closed on April 29th from 9am to 5pm. 

0

100

200

300

400

500

600

700

800

900

1000

9 10 11 12 13 14 15 16 17

Il
lu

m
in

a
n
c
e
 i
n
 L

u
x

Time

North Window 0 (open), West Window 90 (closed)
Mote9

Measured Data Simulated Data

0

100

200

300

400

500

600

700

800

900

1000

9 10 11 12 13 14 15 16 17

Il
lu

m
in

a
n
c
e
 i
n
 L

u
x

Time

West Window 0 (open), Northt Window 90 (closed)
Mote0

Measured Data Simulated Data

0

100

200

300

400

500

600

700

800

900

1000

9 10 11 12 13 14 15 16 17

Il
lu

m
in

a
n
c
e
 i
n
 L

u
x

Time

West Window 0 (open), Northt Window 90 (closed)
Mote1

Measured Data Simulated Data



114 

 

 

Figure 4. 26. Comparison graphs between 

measured and simulated illuminance levels in test 

room when window West’s blind is set open and 

window North’s is closed on April 29th from 9am 

to 5pm. 

 

Figure 4. 27. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window West’s blind is set open and window 

North’s is closed on April 29th from 9am to 5pm. 

 

Figure 4. 28. Comparison graphs between 

measured and simulated illuminance levels in test 

room when window West’s blind is set open and 

window North’s is closed on April 29th from 9am 

to 5pm. 

 

Figure 4. 29. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window West’s blind is set open and window 

North’s is closed on April 29th from 9am to 5pm. 
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Figure 4. 30. Comparison graphs between 

measured and simulated illuminance levels in test 

room when window West’s blind is set open and 

window North’s is closed on April 29th from 9am 

to 5pm. 

 

Figure 4. 31. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window West’s blind is set open and window 

North’s is closed on April 29th from 9am to 5pm. 

 

Figure 4. 32. Comparison graphs between measured 

and simulated illuminance levels in test room when 

window West’s blind is set open and window 

North’s is closed on April 29th from 9am to 5pm. 

 

As illustrated in Figures 4.15 and 4.32 graphs, measured and simulated illuminance 

data resulted from motes inside the test room and simulations in RadianceIES indicate that 

0

100

200

300

400

500

600

700

800

900

1000

9 10 11 12 13 14 15 16 17

Il
lu

m
in

a
n
c
e
 i
n
 L

u
x

Time

West Window 0 (open), Northt Window 90 (closed)
Mote6

Measured Data Simulated Data

0

100

200

300

400

500

600

700

800

900

1000

9 10 11 12 13 14 15 16 17

Il
lu

m
in

a
n
c
e
 i
n
 L

u
x

Time

West Window 0 (open), Northt Window 90 (closed)
Mote7

Measured Data Simulated Data

0

100

200

300

400

500

600

700

800

900

1000

9 10 11 12 13 14 15 16 17

Il
lu

m
in

a
n
c
e
 i
n
 L

u
x

Time

West Window 0 (open), Northt Window 90 (closed)
Mote8

Measured Data Simulated Data



116 

 

both data sets follow the same trend. However, measured data have greater values 

compared to simulated data. This offset value changes for different blind setting 

combinations for window North and West and for different time of the day. Thus, simulated 

and measured lighting data from fourteen tested combinations (7 blinds slat setting times 

two windows) including two active windows on north and west sides have been compared 

together. For linear approximation of the data, least squares method have been applied. In 

other words the square root of the error was minimized: 

 𝐸𝑟𝑟𝑜𝑟 =  𝑦𝑖 − 𝑓(𝑥𝑖)    𝑤ℎ𝑒𝑟𝑒     𝑓(𝑥𝑖) = 𝑎𝑥𝑖 + 𝑏 (5) 

Based on this comparison, an offset value and a gain factor have been determined as 

follows: 

 Measured lighting data

= Offset value + Gain factor × Simulated lighting data 

(6) 

Where: 

Offset value= 125 Lux 

Gain factor= 0.28 

The regression analysis found the offset value for the all fourteen combinations to be 

125 lux and the gain factor to be 0.28. The following graphs show the measured data and 

simulated data after applying the gain factor and offset values on them for certain 

combinations. 
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Figure 4. 33. Comparison graphs between measured data and simulated data when offset value and gain 

factor are applied on simulated illuminance values. 

As displayed in Figure 4.33, the offset value and gain factor bring the two measured 

and simulated illuminance level curves closer together. However, in some cases, such as 

14 pm N0o W90o, where the measured data points to a very high illuminance values caused 

by direct solar radiation on a specific sensor mote at a specific time of the day, these two 

curves differ significantly. This is because the lighting software is not able to simulate the 

exact value of illuminance at these points which could be referred to the difference between 

actual weather data on April 29th which was partly cloudy and weather file data uploaded 

and used in the software for sky harbor international airport weather file.  

The goal of this step was to evaluate the RadianceIES lighting software in order to 

investigate the accuracy of the software. The result from the MATLAB comparison 

analysis suggests an acceptable accuracy of the simulation data. However, in order to match 

them with measured illuminance data in test room, an offset value and a gain factor had to 

be applied in order to compare these two sets of data in all possible combination for two 

windows.  
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In the next design step, the reliability and accuracy of developed control approach was 

investigated by applying it on the test room environment. This design process is 

demonstrated and discussed in the next section. 

4.6 Validation of Developed Prediction Algorithm 

In phase I, a prediction approach was developed and evaluated based on limited 

simulations. In this phase and after investigation of RadianceIES lighting software’s 

reliability, the prediction methodology has been applied on a test room virtual model in 

order to achieve optimal blind slat settings. Furthermore, the results of simulations were 

applied on the test room to investigate whether the optimal blind slat settings are also 

optimal in an actual test environment. 

The experiment was done on December 3rd from 9am to 2pm with an overcast sky 

condition. Based on the fitness function with total errors and a weight factor of 0.25, the 

optimal blind angles settings for three windows on December 3 from 9am to 2pm were 

conducted. The cost function is as follows: 

 𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

= (1 − 0.25)𝑇𝐸

+ 0.25√
(𝐴𝑖 − 𝐴𝑥)2 + (𝐵𝑖 − 𝐵𝑥)2 + (𝐶𝑖 − 𝐶𝑥)2

3 × 902
 

(7) 

As mentioned in the last section, to calibrate the lighting values read by virtual light 

sensors in RadianceIES, a gain factor and an offset value need to be applied on simulated 

values to have more accurate lighting levels and prediction.  The optimal blind slat angles 

for two windows in the test room are as assembled in Table 4.1. 
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Table 4. 1 Optimal predicted blind slat angles for December 3rd based on developed prediction algorithm. 

December 3rd Total Error 
Average 

Lux* 

Window A 

(North) 

Window B 

(West) 

9 am 211.91 135.82 60 60 

10 am 200.39 139.05 60 45 

11 am 186.74 143.04 60 45 

12 pm 182.08 144.42 60 45 

1 pm 181.58 145.19 60 60 

2 pm 194.79 140.71 

 

60 45 

  Average lux* is the value before applying the 0.28 gain factor and 125 lux offset value. 

The predicted blind slat angles for December 3rd have been applied on SmartBlinds 

inside the test room and the light levels on 9 sensor motes have been recorded. In order to 

investigate the reliability of the prediction approach, the predicted optimal blind 

combinations resulted from prediction algorithm (shown in Table 4.1) were applied on the 

actual blinds in test room. In order to find out if these settings are optimal in actual test 

environment, blind slats has been changed in steps of  ±15o in upward and downward 

directions for both windows to compare the average lighting levels with more open and 

less open blinds in each case. These results are shown in Table 4.2. 
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Table 4.2 the lighting situation inside the test room after applying the optimal blind slat setting and ±15 

degree on two windows on December 3rd. 

Degree 
December 

3rd 

Average 

Lux** 
Total Error 

Window A 

(North) 

Window B 

(West) 

-15º 9 am 44.78 206.13 75 75 

Optimal 9 am 142.33 114.00 60 60 

+15º 9 am 106 146.74 45 45 

-15º 10 am 60.22 192.10 75 60 

Optimal 10 am 116.11 155.13 60 45 

+15º 10 am 86.11 177.35 

 

45 30 

-15º 11 am 95.23 152.61 75 60 

Optimal 11 am 131.89 126.23 60 45 

+15º 11 am 120.56 148.39 45 30 

-15º 12 pm 107.67 127.56 75 60 

Optimal 12 pm 150 119.15 60 45 

+15º 12 pm 140.11 148.96 45 30 

-15º 1 pm 104.33 158.48 75 75 

Optimal 1 pm 201 97.352 60 60 

+15º 1 pm 139.89 125.50 45 45 

-15º 2 pm 126.56 

 

143.12 

 

75 60 

Optimal 2 pm 220.11 

 

103.94 60 45 

+15º 2 pm 189.11 

 

133.70 

 

45 30 

Average lux** is the value after applying the 0.28 gain factor and 125 lux offset value. 

As shown in Table 4.2, the average illuminance of 9 sensors in the test room and the 

total error values which was calculated based on 250 desired lux level have been calculated 

and displayed for December 3rd. The middle values in highlighted cells illustrate the 

optimal predicted angle setting for the blind slats. The other two values display the lighting 

situation when the slat angle changes 15o upwards and downwards which show the more 

open and less open blind situations.   
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According to the average lux levels and total error values listed in the Table 4.2, the 

optimal blind slat angle in all cases indicate a closer average lighting value to the desired 

lighting level (250 lux) and smaller TE values which indicates to an ideal uniformed 

lighting situations inside the room.  

4.7 Conclusions 

 The experimental results confirm that the prediction algorithm performance is 

accurate when applied on a randomly chosen day. The values suggest that the predicted 

optimal blind settings do provide the optimal average light levels and the most uniform 

lighting situation on the work plane (on the floor) in the test room. This experiment 

validates the accuracy of the developed prediction algorithm when applied on actual test 

room environment.  

4.8 Limitations and Future work 

One of the most crucial limitation points in this phase is the simulation of dynamic 

blinds in the test cell. Venetian blinds have a more complicated behavior in daylight 

analysis in comparison to roller shades. The blind slat angles in some settings can cause 

direct solar penetrations into the room. This becomes a problem in the lighting simulation 

process. Most current software in the market are not able to simulate the exact behavior 

and intensity of light when there is direct solar radiations in the room. This problem causes 

some uncertainties in lighting levels read by virtual sensors when it is under direct solar 

radiation. The lighting values in these situations are much smaller than the actual measured 

lighting data read by sensors in the room. 
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Additionally, regarding the dynamic shading devices the other problem was that it was 

impossible an import them from CAD model to Radiance lighting tool. They needed to be 

created separately in Radiance based on IES library elements. These built venetian blinds 

were static and were not able to change dynamically in the program environment. Thus, it 

was necessary to create different models with different blind settings manually. This fact 

prevented the whole process to be automated and required long model preparation time. 

With the progressive development in software design, hopefully in the future these lighting 

problems will have a proper solution. 

Furthermore, the other crucial problem in the lighting software was the weather data 

used in the lighting software and how it differed from actual weather data in experiment 

days. For this research study, the weather data for Tempe, AZ was uploaded directly from 

U.S. Department of Energy website. These information can slightly differ from the actual 

weather situation which can cause different lighting values in simulated and measured data. 

For example, in some specific blind slat angles some of the sensors in the actual model 

indicate to direct solar radiation with very high lux levels, but the same sensors at the same 

time do not display same lighting behavior in the virtual model in Radiance environment. 

There are significant differences between simulated data and measured data when actual 

sensors are under direct solar radiation. 

Another limitation of this phase accrued in the performance of SmartBlinds in the test 

room. It was not easy to adjust the blinds in smaller degrees, (15 degree change) when 

needed. Even though theoretically, SmartBlinds have the ability to be adjusted in 1 degree 
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steps. This limitation led to less accuracy in result when the optimal predicted blind slat 

angles were applied on the actual blinds in test room.  

Finally, to validate the control approach, the predicted optimal blind slat angles were 

applied on test cell on December 3rd. It would have been very interesting to prove the 

accuracy of the system for different days in different seasons when the solar altitude 

changes. Since the research time schedule didn’t allow us to repeat the experiment for more 

days, this could be a part of future work to investigate the control algorithm precision in 

different seasonal conditions and maybe other locations.
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 PHASE III: DEVELOPMENT OF A SENSOR-BASED ADAPTIVE 

DAYLIGHT CONTROLLER 

5.1 Introduction 

Phase III and IV (next Chapter) of the study include the development of a sensor-based 

integrated lighting control system for office buildings. The control process includes the 

optimal blind slat angle prediction approach from phase I as a start-up baseline setting, yet 

improves these initial settings based on data read by sensors distributed in the room in order 

to effectively regulate the lighting situation.  Phase III concludes the development of an 

adaptive sensor-based daylight responsive controller, which then in the next chapter 

integrates the daylighting and artificial lighting systems in order to increase the quality of 

lighting and energy efficiency in buildings. 

As discussed in chapter 2 under control algorithms in buildings, there are two different 

types of control algorithms when it comes to regulating the lighting systems in buildings; 

the classic controllers and Optimal, predictive, and adaptive controllers. The first category 

controllers with a very simple structure control algorithms were used in the early phases of 

controller development and included Integrate–Derivative (PID) controllers (Alm et al., 

1999; Astolfi and Pellerey, 2008). These controllers are able to make significant 

improvements in the lighting situation, however it is not easy to choose the proper variables 

such as gain factor in the PID controller. This fact causes some instability and complexities 

in the controller design.  

The second category of controllers is the adaptive controllers where artificial 

intelligence is applied in order to achieve the ability to self-regulate and adapt to the 
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different climatic conditions and to various building configurations. Some of these 

controllers are described in chapter 2. 

Based on complex mathematical algorithms implemented in these types of controllers, 

the Optimal, predictive, and adaptive controllers are not often applicable in real buildings, 

since they have various constraints such as their need for a detailed building model which 

includes several parameters in the system that need to be defined and estimated in actual 

buildings. Furthermore, the use of elements of bioclimatic architecture in them which 

complicates the process of minimization of their cost functions, and even if such a 

minimization is obtained, the results are not applicable in practice. That is why, under real 

conditions, such techniques may give inaccurate results.  

In this phase of the study, the design of a simple Integral controller is described which 

was applied to control the lighting situation in a small office space. The controller, which 

was further developed in the next chapter, is integrated, adaptive and has a simple 

manageable structure which makes it easy to implement and operate in buildings unlike 

other current controllers.   

Due to the investigation and evaluation of the controller performance, the system was 

designed for a virtual office model that conforms to the experimental Office model in 

Oakland California assumed by Lee et al. (1998). This way the performance of the 

controller can be compared to the published results in Lee’s research study. 
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5.2 Objective and Scopes 

In this phase of research, an adaptive controller is designed, which has a very 

straightforward and manageable structure and performs based on illuminance data read by 

sensors distributed in the room. The simple structure of the controller leads to an easy 

implementation and operation of the control system that regulates the blind slat angles for 

sufficient daylight. Subsequently in chapter 6, integration of the controller to the electrical 

lighting system is demonstrated and evaluated in order to improve the lighting situation in 

the room.  

A part of the controller is based on the prediction control approach described in chapter 

3 of the dissertation. This approach is applied to provide initial optimal blind settings for 

the controller; however for further developments, some refinements and advanced 

adjustments have been applied based on the illuminance data received from virtual sensors 

distributed in the office model. 

Additionally, to optimize the control process, an innovative approach has been 

proposed to minimize the number of sensors in the room. In real time buildings, one of the 

challenges of control systems is to choose an efficient number of sensors for the project 

and place them properly. This innovative approach suggests a methodology based on the 

genetic algorithm to find the best minimum number of sensors and their proper location of 

them which is understandable and manageable by building designers. 

Finally, as the last objective of this phase, the controller structure, performance and 

results are demonstrated and discussed. In the further development steps which are 
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explained in chapter 5, artificial lighting systems are linked into the controller and the 

energy saving potentials are discussed. 

5.3 Methodology 

5.3.1 Virtual Office Model 

As mentioned in the literature review chapter 2, one of the first studies in this field was 

conducted by Lee et al. (1998). She studied the potential energy saving of automated 

venetian blinds operating in synchronization with daylighting controls in Oakland, 

California. To measure the electric lighting power consumption and the cooling energy 

called for the window and lighting systems, the full-scale Oakland Federal Building 

demonstration facility was constructed. The facility consists of two adjacent identical 

rooms (4.57m width, 3.71m depth and 2.68m height). For comparison, each room was 

equipped with a ‘base case’ and a ‘dynamic’ control system. For the base case system, the 

venetian blind was set to one of three static positions throughout the day to simulate manual 

control: Blind slat angles in horizontal position, -30o (partly closed, downward position) 

and 68o (pushed to the limits and closed).  

For the dynamic system, a prototype system was developed to activate the blind every 

30 seconds for blocking direct solar radiation and maintaining a daylight illuminance of 

540 lux–700 lux. The range of blind motion was restricted to 0o to 68o (Horizontal blind 

slat positions to 68o downward movement to limit sky view). Data were collected for 14 

months from June 1, 1996 to August 31, 1997. Lee concluded that an integrated lighting 
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system (or prototype system) could achieve energy savings of 7%–15% for cooling and 

1%–22% lighting energy, respectively, compared to the static blind slat angle of 0o.  

However, because the automated blind system only blocked the solar radiation, it can 

be disadvantageous in places where the heating load is an important factor for the heating 

concept. Figures 5.1 to 5.3 illustrate the plans of Lee’s office which was located in Oakland 

California. 

 

Figure 5. 1. Site plan of the Lee's experimental office, (Lee at al., 1998). 
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Figure 5. 2. Schematic perspective of the automated venetian blind and lighting system, (Lee et al., 1998). 
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Figure 5. 3. Floor plan and section of Lee's experimental office, (Lee et al., 1998). 
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Based on the information in the plans provided in the Lee et al. paper, the virtual model 

of the Lee’s experimental office was built in Revit and then imported to IES Virtual 

Environment. Figure 5.4 shows the imported CAD model in IES. 

 

Figure 5. 4. The experimental office model in IES Virtual Environment based on Lee et al. study. 

5.3.2 Simulations 

After importing the CAD model to IES virtual environment, a set of simulations was 

performed through the Radiance plugin in IES which is called RadianceIES. The Radiance 

plugin uses weather data file based on different standards. In this case, the weather data 

was uploaded from Department of Energy website. A dynamic daylighting simulation was 

run for 12 months, on the 15th of each month for all blind slat angle settings from open 

(0o) to closed (90o) in steps of 15o. A work plane at the height of 85 cm was defined in the 

office which included virtual sensors that were distributed with a default setting of 50 cm 

spacing (Figure 5.5). 
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The RadianceIES produces different output formats for the illuminance data. However, 

for the MATLAB analysis the text format (.txt format) output data available after each 

simulation run were chosen for further analysis. 

 

Figure 5. 5. The RadianceIES environment and model settings for the daylighting simulation. 
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Figure 5. 6. Sensor distribution in RadianceIES for the daylighting simulations. 

5.4 Sensor Optimization 

As mentioned earlier, virtual sensors are placed on the work plane every 50 cm apart. 

This means 63 (7x9) sensors are distributed in the office model, which is a large number 

of sensors. In real projects, finding an optimized number of wireless sensors and their 

locations inside a building is a challenging design problem. Implementation of too many 

sensors in the building could cause extra installation and maintenance effort and is 

expensive, so it is necessary to choose the right number of sensors for the project.  

In the following section, an innovative automated approach is introduced and 

demonstrated to find the best optimized number and location of sensors among the 63 

default sensors in the virtual office space which could be also applied for different 

buildings.  
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In this approach, by applying genetic algorithm, many different combination of sensors 

were produced and the most effective sensor settings based on their effectiveness to read 

and record the dynamic path of solar radiation inside the office were evaluated using a 

specially purposed MATLAB program. In order to explain the steps of sensor optimization 

process, a short description of genetic algorithm structure and its basic operation is 

included in the following paragraph. 

5.4.1 Genetic Algorithm 

Genetic Algorithms are part of computational models based on natural evolution. These 

algorithms search for a potential solution to a specific problem defined by simple 

chromosome-like data structure (also called individuals) and applying recombination 

operators to these structures to preserve critical information in the data set. Genetic 

algorithms are often viewed as function optimizers and have been applied to a rather 

extensive range of different problems. The function to be optimizes is usually called fitness 

or cost function. 

An implementation of genetic algorithms begins with a population of random 

chromosomes called initial population. Then the chromosomes within the population are 

evaluated and allocated reproductive opportunities in such a way that those chromosomes 

representing a better solution to the target problem (better fitness value) are given more 

chance to reproduce than those chromosomes indicating poorer solutions (worse fitness 

value), (Whitley, 1993; Cao and Wu, 1999). 
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Generally, the term genetic algorithm has two meanings: In a strict interpretation, the 

genetic algorithm refers to a model introduced and investigated by John Holland (1975) 

and by his students (De Jong, 1975). It is still the case that most of the existing theory for 

genetic algorithms are applied either exclusively or primarily to the model introduced by 

Holland, as well as variations on what is referred as “canonical genetic algorithm” in 

literature. Recent theoretical advances in modeling genetic algorithms also apply primarily 

to the canonical genetic algorithm (Vose, 1993).  

Holland’s early designs for CGA were simple, but were reported to be effective in 

solving a number of problems considered to be difficult at the time. The field of genetic 

algorithms has since evolved, mainly as a result of innovations in the 1980s, to incorporate 

more elaborate designs aimed at solving problems in a wide range of practical settings (Cao 

and Wu, 1999). 

Characteristically, GAs are distinguished in the following features: firstly, they work 

with a coding of the parameter sets instead of the parameters themselves; secondly, they 

search with a population of points, not a single point; thirdly, they use the objective 

function information directly, rather than the derivatives or other auxiliary knowledge to 

find maxima; fourthly, they process information using probabilistic transition rules, rather 

than deterministic rules. These features make GAs robust to computation, readily 

implemented with parallel processing and powerful for global optimization (Whitley, 

1993; Cao and Wu, 1999). 

In a broader usage of the term, a genetic algorithm is any population-based model that 

uses selection and recombination operators to generate new sample points (generation of 
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chromosomes) in a search space. Many genetic algorithm models have been introduced by 

researchers largely working from an experimental perspective. Many of these research 

studies are application oriented and typically use genetic algorithms as an optimization 

tool. 

Based on the broader definition, genetic algorithms are adaptive algorithms for finding 

the global optimum solution for an optimization problem. The canonical genetic algorithm 

(CGA) developed by Holland is characterized by binary representation of individual 

solutions, simple problem-independent crossover and mutation operators, and a 

proportional selection rule. 

The population members are chromosomes, which as originally conceived are binary 

representations of solution vectors. CGA undertakes to select subsets (usually pairs) of 

solutions from a population, called parents, to combine them to produce new solutions 

called children. Rules of combination to yield children are based on the genetic notion of 

crossover, which consists of interchanging solution values of particular variables, together 

with occasional operations such as random value changes (called mutations). Children 

produced by the mating of parents, and passing a survivability test, are then available to be 

chosen as parents of the next generation. The choice of parents to be matched in each 

generation is based on a biased random sampling scheme, which in some (nonstandard) 

cases is carried out in parallel over separate subpopulations whose best members are 

periodically exchanged or shared. The individuals with better fitness values have a better 

chance to be selected as parents and survive through the next generation. The key parts of 

a CGAs are shown in Figure 5.7 and described in detail as follows: 
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Figure 5. 7. Standard procedure of a canonical genetic algorithm (Cao and Wu, 1999). 

Problem statement and fitness function: GA solves an optimization problem with a 

genetic representation. This requires a fitness function to be defined for a possible solution 

represented as an array of bits {0, 1}. These components of the chromosome are then 

labeled as genes. In other words, a chromosome or individual is a multibit array and 

represents a possible solution to the original optimization problem. It should be possible to 

calculate the fitness function for every individual. The number of bits that must be used to 

describe the parameters is problem dependent. 

Initialization: GA searches for the best solution within a given population and generates 

better children. Therefore, an initial population is required to start the process. The length 

of the chromosomes and the size of the population is problem dependent. Let m be the size 

of the population and L the length of each individual. Each solution in the population can 

be represented as xi where i = 1, 2, 3,… m, be a string of symbols {0, 1} of length L. 
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Typically, the initial population of m solutions is selected completely at random, with each 

bit of each solution having a 50% chance of taking the value 0. 

Selection: CGA uses proportional selection, the population of the next generation is 

determined by n independent random experiments; the probability that individual xi is 

selected from the tuple (x1, x2 , x3 ..., xm ) to be a member of the next generation at each 

experiment is: 

 
𝑃{𝑥𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑} =

𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)𝑚
𝑗=1

> 0    (8) 

Where f(x) is the fitness function. 

This process is also called “roulette wheel parent selection” and may be viewed as a 

roulette wheel where each member of the population is represented by a slice that is directly 

proportional to the member’s fitness values. A selection step is then a spin of the wheel, 

which in the long run tends to eliminate the least fit population members.  

Crossover: Crossover is an important random operator in CGA and the function of the 

crossover operator is to generate new or ‘child’ chromosomes from two ‘parent’ 

chromosomes by combining the information extracted from the parents. By this method, 

for a chromosome of a length L, a random number c between 1 and L is first generated 

which is called crossover point. 

The first child chromosome is formed by appending the last L−c elements of the first 

parent chromosome to the first c elements of the second parent chromosome. The second 
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child chromosome is formed by appending the last L−c elements of the second parent 

chromosome to the first c elements of the first parent chromosome. Typically, the 

probability for crossover ranges from 0.6 to 0.95. 

 

Figure 5. 8. One-point crossover operators in genetic algorithm concept. 

Mutation: Mutation is another key component in CGA, though it is usually conceived as a 

background operator. It operates independently on each individual by probabilistically 

perturbing each bit string. A usual way to mutate used in CGA is to generate a random 

number ν between 1 and L which is called mutation point and then make a random change 

in the ν th element of the string with probability  𝒑𝒎 ∈ (𝟏, 𝟎), which is shown in Figure 

5.8. Typically, the probability for bit mutation ranges from 0.001 to 0.01.  
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Figure 5. 9. One-point crossover and mutation operators. 

Based on this introduction about genetic algorithms and its application on optimization 

problem, the same CGA structure is used to optimize the problem in this case which is the 

number and location of the sensors in the controller design.  

5.4.2 Problem Statement 

As mentioned in the previous section, one of the challenging problems of controllers’ 

design in real time buildings is to reduce the number of wireless sensors in order to decrease 

the system cost, system maintenance and operation issues in the controller. Additionally, 

from the occupants’ point of view, having few wireless sensors in the working space which 

are efficiently cooperating with the controller to regulate the lighting situation in the room 

is much more convenient. So the first objective of this phase is to reduce this number, but 

at the same time try to keep the system output close to the ideal situation. 
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5.4.3 Methodology 

Figure 5.10 displays the ideal situation of the office model with 63 sensors (every 50 

cm spacing in every direction) on the work plane. Work plane is 85 cm high similar to the 

Lee office arrangement in Oakland. 

 

Figure 5. 10. The default setting of the software for number of sensor and their locations in the office 

model. 

As discussed before, to reduce the number of sensors in the room a genetic algorithm 

code in MATLAB is used to investigate the impacts of each sensor based on Total Error 

values for 12 months and different blind settings, (0o, 15o, 30o, 45o, 60o, 75o and 90o).  

The main objective of the approach is to explore the quality of the lighting in the office 

space based on fitness values. In an iteration loop process, the MATLAB code compares 
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the fitness values of two scenarios; one ideal situation with fully populated room where all 

63 sensors readings are used for Total Error calculation and the other scenario when some 

of sensors are missing. To eliminate the sensors, the illuminance data read by virtual 

sensors are removed from the TE calculation. This way the sensors with less contribution 

to the TE values are recognized. The fitness function is defined as following: 

 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  

(1 − β)

𝑇𝐸𝑒𝑟𝑟𝑜𝑟
+ β. 𝑛 (9) 

 Where  

 𝑇𝐸𝑒𝑟𝑟𝑜𝑟 =  ∑|𝑇𝐸𝑤𝑖𝑡ℎ 63 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 − 𝑇𝐸𝑤𝑖𝑡ℎ (63−𝑛)𝑠𝑒𝑛𝑠𝑜𝑟𝑠|  (10) 

And n is the number of missing sensors. 

Fitness function is a weighted combination of the inverse of TEerror and the number of 

missing sensors. By maximizing this function, the error is minimized and the number of 

missing sensors is increased. The value of weight factor β could be chosen between 0 and 

1. By changing the weight factor β the output of fitness function is changed. Decreasing β 

leads to the situation where the algorithm tends to fully populate the room with sensors. In 

the opposite situation when β is increased the algorithm starts to reduce sensors. The value 

of β depends on 2 facts: 

 How big is the value of TEerror compared to the number of sensors? TEerror is up to 

several hundred while the number of sensors is between 0 and 63. 

 Which part of the fitness function is more important to be minimized: TEerror or the 

number of sensors? 
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The goal is to set the value of β such that TEerror does not increase but the number of 

sensors decreases. For this optimization problem, the weight factor β has been chosen 0.99 

based on several trials to find out the best weight for the two parts of the equation. Only 

with this value of β, the algorithm starts to reduce the number of sensors. The fitness 

function is displayed as follows: 

 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  

0.01

𝑇𝐸𝑒𝑟𝑟𝑜𝑟
+ 0.99𝑛 (11) 

Where n is the number of missing sensors. 

In the process of genetic algorithm, the selection of best chromosomes is based on 

higher fitness function values. In order to investigate and display the sensors with less 

impact on the control process for the course of a day or a year, the error value of over 2000 

individuals’ population with different number of sensors has been calculated and 

investigated. 

Recall that these individuals are defined as a vector of zeros and ones where one means 

existence of a sensor and zero means missing sensor (no sensor). The plane of sensors has 

been mapped into a string of solution as follows: 
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Where sij can only 0 or 1 and represents the existence of the sensor in location i and j 

on the work plane. 

With mutation, one bit of the individual is flipped from 0 to 1 or 1 to 0. Through this 

part of GA as a limitation point, the number of sensors could be reduced to less than 10 if 

the probability of mutation is decreased.  

As a stopping criterion, a maximum number of iterations of 500 and a desired number 

of sensors of 9 have been applied. If any of these conditions has been met, the program 

exits the iterations and generates the results. 

Table 5.1 includes the parameters in MATLAB GA optimization algorithm process. 

Table 5. 1 The important parameters for the sensor optimization algorithm. 

Parameters Name Value 

α Weight factor from equation 3 0.25 

β Weight factor from equation 9 0.99 

Initial Starting Blind slat angle [0 0 0] 

Crossover probability 0.6 

Desired illuminance level 550 

Mutation probability  0.15 

Desired Number of Sensors 10 

Number of iterations in program 500 

Number of initial population 40 

Number of original sensors 63 
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5.4.4 Results  

As mentioned before, the objective of the GA approach is to maximize the given fitness 

function values. Figures 5.11 demonstrates the changes in fitness function values in terms 

of 268 iterations. The GA process reached the stopping criterion of finding a solution of 

less than 9 sensors after 268 iterations. Please note that in each iteration, there are 40 

individuals as possible solutions in the GA population. In Figures 5.11, 5.12 and 5.13, only 

the best solution within the current populations has been plotted. 

 

Figure 5. 11. The fitness values of the best solution in every iteration in terms of iteration numbers. 
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As one of the characteristics of GA, the fitness value of the solutions fluctuates and 

increases non-monotonically. In some iterations, GA might find an exceptionally good 

solution which is extinct in following iterations. This behavior can be seen in iteration 

number 10. GA actually promotes the whole population towards an optimized solution and 

an exception has no chance to survive.  

The other characteristic of GA is that of oscillating by continuing the process beyond 

a semi-optimal solution. This means that if the iterations continue beyond 268 in this 

application, the number of sensors do not necessarily decreases, but only will start to 

oscillate or even increase. Such an oscillating behavior can be seen around the 100th 

iteration. It should be noted that one of the methods to generate children is mutation which 

means adding or removing one sensor. Therefore, GA is not able to optimize the number 

of sensors to a very low number. As soon as it finds a good solution, mutation adds another 

sensor and the oscillation behavior takes effect.  
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Figure 5. 12. Reduction of sensors of the best solution in every iteration in terms of iteration numbers. 

Figure 5.12 represents the number of sensors of the best solutions within the current 

population in terms of iterations where the same behavior as in fitness function diagram 

can be identified. Since, the initial population has been randomly selected, most of the 

individuals have around 31 sensors on average which is half of total number of sensors, 

(63).  This is the reason why the best solution of initial population includes 24 sensors. 
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Figure 5. 13. TEerror values diagram of the best solution in every iteration in terms of iteration numbers. 

Figure 5.13 illustrates the TEerror (the difference of the TE63 and TEsolutions) values of 

the best solutions in every iteration. As expected, the total error value does not dramatically 

increase in all iterations. By comparing Figures 5.12 and 5.13 we can detect the point at 

which the number of sensors decreases while the TEerror values do not significantly change.  
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The following graphs demonstrate the results of the GA optimization approach. The 

MATLAB code is designed to plot the three best solutions with the minimum number of 

sensors in the room. These three sensor settings are shown in Figures 5.14 to 5.16. 

 

Figure 5. 14. Best optimized sensor setting with 9 sensors based on genetic algorithm optimization 

approach. 
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Figure 5. 15. Second best optimized sensor setting with 12 sensors based on genetic algorithm optimization 

approach. 
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Figure 5. 16. Third best optimized sensor setting with 13 sensors based on genetic algorithm optimization 

approach. 

The sensor locations in all three solutions in Figures 5.14 to 5.16 overlap for many of 

the sensors which confirms the similarity of all solutions. 

In order to have a comparison between three results of GA, reduced number of sensors, 

and their difference in total error values and fitness values with 63 sensor setting are listed 

in Table 5.2.  
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Table 5. 2 The comparison table between three optimized sensor setting as results of the optimization 

algorithm. 

 Optimized number of 

sensors  

TE(63 Sensor)-TE(reduced 

sensors) 

Fitness(63 Sensor)-

Fitness(reduced sensors) 

9 37.4 53.46 

12 51.8 50.50 

13 59.1 49.50 

 

As mentioned before, the objective of GA process is to maximize the fitness value. 

With decreased number of sensors the fitness value increases while preventing the TE 

values from dramatic changes. This is confirmed by values in Table 5.2; i.e. by continuous 

iteration, the number of sensors has been reduced from 13 to 9 while the TE values have 

been decreased and fitness values have been increased. 

5.4.5 Validation 

To validate the results of the optimization process, firstly, the total error values for the 

9 sensor scenario are compared to the ideal situation with 63 sensors. Figure 5.17 illustrates 

this comparison. As shown in the diagram, the total error curves for 63 sensors and 9 

sensors are very close. However, as seen in the zoomed diagram, when the TE values are 

too high or too low, the values do not exactly match and indicate a very small difference, 

(between 10 to 15) which is according to the scale of the total error values of several 

thousand very insignificant. 
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Figure 5. 17. The comparison diagram between the Total Error values of ideal situation with 63sensors and 

the optimized scenario with 9 sensors based on optimization process. 

In the second step of validation, the locations of the sensors in the optimized sensor 

setting are analyzed based on the actual renderings of work plane in the office model. A 

daylight simulation has been run for three different simulation days: 15th of January, April 

and October at 10am, 12pm and 2pm (with an intermediate sky condition with sun) to 

validate the sensor locations selected by GA optimization process based on actual lighting 

situation in the office. These images are displayed in Figure 5.18. 
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Figure 5. 18. Optimized number and location of 9 sensors on daylight simulation images of the work plane 

for three different days in January, April and October. 

The images in Figure 5.18 illustrate the seasonal and daily direct solar radiation path 

inside the office model and the optimal number of sensors and their locations based on 

genetic algorithm approach in red points. As seen in the pictures and based on an 

illuminance data for a whole year, the North-West corner of the office has the 100% direct 

solar penetration, (daily and yearly) and has a significant impact on the lighting situation 

in the room. In Figure 5.19 the most daylit situations of these three days are layered and 
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shown in one image. As seen in the Figure the location of the 9 sensors shown in red 

validate the fact that sensors are effectively situated in the room in order to read and record 

the direct solar radiation path in the office. 

 

Figure 5. 19. Path of the direct daily and yearly solar radiation in the office. 
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5.4.6 Conclusion 

The direct solar radiation analysis and the total error comparison diagram between ideal 

situation with 63 sensors and the sensor reduced situation with 9 remaining sensors indicate 

that the sensor optimization approach is a valid method to reduce the number of sensors 

and place them effectively on the work plane. 

In the next step of this phase, the design and performance of a sensor-based integrated 

controller for the office model is demonstrated which functions based on the 9 optimized 

sensor data to regulate the daylighting situation. 

5.5 Controller Design 

As mentioned in the introduction part, a simple controller is designed to regulate the 

daylight in the office. Currently, many high performance buildings’ control systems 

include complicated control algorithms based on fuzzy logic and neural network theories. 

Some of them are a combination of both and proportional integral derivative controllers 

which makes the whole system very complex. Due to this fact, one of the main design 

objectives here was to keep the system structure very modest and manageable, so the 

implementation, operation and maintenance of the system would be at ease and doable 

without the need for highly expert professionals.  

Thus a simple integral controller is applied to control the daylight situation in the office 

model. One of the advantages of integral  controllers in general is  that  they  have  the  

unique ability  to  return  the controlled variable back to the exact set-point following a 

disturbance. 
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However, a disadvantage of integral controllers is that the long respond times of the 

system are needed. In other words, they respond to error signals slowly and can initially 

allow a large deviation at the instant the error is produced.  This can lead to system 

instability and cyclic operation and this is the reason, the integral control mode is not 

normally used alone, but is combined with another control mode. To overcome this 

problem in this study, based on the prediction method in phase II, the initial conditions of 

the blind slat angles are pre-defined and pre-set in the algorithm. This has two advantages 

for the designed system; firstly, it reduces the error times since the errors are very small 

and sometimes very insignificant due to the initial optimal settings. Secondly, it avoids the 

instabilities caused by local optimums which are caused by non-linear behavior of the 

system.   

An integral controller provides an output rate of change that is determined by the scale 

of the error and the integral constant. The  controller  has  the  unique  ability  to  return  

the  process  back  to  the  exact set-point if necessary.  

The structure of the proposed controller in this study is demonstrated and explained in 

the following section. 

5.5.1 Controller Structure  

The integral controller was designed and developed in MATLAB Simulink. The inputs 

of the system are illuminance levels data read by the sensors in the office, time and the 

desired lighting level which is 550 lux based on the Lee study. The system output is then 

the blind slat angles for each given time. The simulated illuminance data are limited to 12 
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days, 15th of each month, and for 24 hours each day. The daylighting simulated data are 

then interpolated in MATLAB to be expanded to 365 days. This saves us a significant 

amount of simulation time. Figure 5.20 illustrates the basic concept of the integral 

controller’s structure. 

 

Figure 5. 20. Basic structure of the designed Integral Controller to regulate the blind slat angles. 

As demonstrated in Figure 5.20 diagram, based on a look up table which was developed 

in phase I based on predicting algorithm was built-in in the controller to provide the initial 

optimal blind settings. 

In the next diagram, (Figure 5.21) the system in MATLAB Simulink is illustrated. The 

Simulink model consists of different sections which are explained in the next paragraph. 
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5.5.2 System’s Structure in Simulink 

The control system as shown in Figure 5.21 includes four different blocks which are 

explained below. 

Time Calculator Block: in this block the value of time is calculated in minute. The 

inputs are month, day, hour and minutes. The output of this block is a numeric value which 

indicates the time in minutes elapsed from January first. This value is needed to calculate 

the predicted optimal blind slat angle values in controller as well as for interpolated sensor 

values in the office block. 

Office Block: This block simulates the illuminance levels in the office. It expands the 

simulated data of selected days and selected hours for a day throughout the whole year by 

interpolation. The interpolation process in this block consists of two steps: hourly 

interpolation and daily interpolation. The process is based on a simple linear interpolation. 

Controller Block: The controller calculates the blind slat angles based on time, desired 

lux level which is 550 lux as mentioned before and the total error values.  

Total Error Calculation Block: In this block the total and average error values are 

calculated to evaluate and validate the controller behavior. TE and average error equations 

are:  

 𝑇𝐸𝑒𝑟𝑟𝑜𝑟 =  ∑|𝑇𝐸𝑤𝑖𝑡ℎ 63 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 − 𝑇𝐸𝑤𝑖𝑡ℎ 9 𝑠𝑒𝑛𝑠𝑜𝑟𝑠| (12) 
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 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟

=
 ∑ (𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙𝑠𝑒𝑛𝑠𝑜𝑟 𝑖

𝑖=9
0 − 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑖𝑙𝑙𝑢𝑚𝑖𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟𝑠
 

(13) 

The controller block is shown in Figure 5.22 and includes four different sections as 

explained below: 

Predicted Blind Setting Calculator: Based on time, desired lux and current blind slat 

angle settings, the optimal setting for the blinds are selected within a pre-defined tolerance. 

It calculates the optimal angle based on the best TE values and selects the closest angle to 

the current angle within the pre-defined tolerance. The total error tolerance is set to 20%.  

Error Calculator: In this section, total and average errors are calculated. The average 

error values are applied as the input for Integral Controller and are added to the predicted 

optimal blind slat angle. This actually works as a correction of the ideal blind slat angle 

based on the direct measured sensor data. The integral controller is reset every time if the 

optimal angle changes more than 10 degrees in order to avoid saturation and also 

accelerates the controller response. 

Comfort Concept Block: In order to avoid continuous changes in blind slat angle 

settings which cause distraction and visual discomfort for the occupants, the blinds 

movements are activated based on several criteria:  

 Blind settings change more than a user defined threshold which is currently set 

to 15 degrees. This is due to the flexibility of the actual blinds in buildings. 
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 The user defined controller active mode is currently set to two minutes. This 

value is usually set to 30s, however to show the behavior of the controller in 

small details, it was necessary to increase the active mode to 2 minutes. 

 The user defined deactivation mode is currently set to 15 minutes which could 

be adjusted based on the occupants’ needs and comfort conditions. 

 Total error values change more than a user defined threshold which is currently 

set to 200. This value was chosen based on several trials and to prevent the 

Total Error from increasing during the deactivation time. 

This means that every time when one of these above mentioned thresholds has been 

reached two minutes is given to the controller to set the angle values and then it deactivates 

for 15 minutes.  

Simulating the Limitations: This block adds limitations to the angle output. This 

includes: saturations, rate limiter and the quantizer for 15 degree angle steps. 
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5.6 Controller Output  

Based on the discussed control structure, the results and output data which indicate how 

well controller regulates blind slat angles during a year and a day in the office are displayed 

in Figure 5.23. In the these Figures different set of diagrams are presented which compare 

the controller output for two sensor settings; the ideal situation with 63 sensors and the 

reduced optimized sensor situation with only 9 sensors to compare and validate the 

performance of the system. Additionally, these results are shown for four different months 

and two different sky conditions. 
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Figure 5. 23. Performance of the controller on January 15th. 
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Figure 5. 24. Performance of the controller on March 15th. 
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Figure 5. 25. Performance of the controller on June 15th. 
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Figure 5. 26. Performance of the controller on September 15th. 
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Figure 5. 27. Performance of the controller on December 15th. 

Graphs in Figures 5.23 to 5.27 illustrate the performance of the developed controller 

for the virtual office model on 15th of January, June, September and December, (randomly 

chosen). In each Figure, the first diagram indicates to the changes in blind slat angle during 

the day and at the same time the results from three different sets of analysis are compared: 
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The predicted blind setting values based on control approach in phase II, (chapter 3), the 

ideal situation with 63 sensors placed symmetrically on the work plane and finally the 9 

optimized sensors situation. For all four days, this diagram indicates that the results of the 

blind settings in all three different settings are very similar. Especially, the proposed blind 

slat settings by the controller for ideal situation and 9 sensor situation are matching 

perfectly and only designate to the slightly different blind settings at some hours of the day.   

The second diagrams in the Figures show the total error values for these three 

situations. As seen in the TE diagrams, in all four chosen days, the TE curves match very 

well with a few exception points when the office is under direct solar radiation in the room. 

These diagrams point out to the great system accuracy for optimized sensor situation. 

The last graphs in the Figures demonstrate the illuminance data on the work plane read 

by 63 sensors in ideal situation. In the sensor optimized case, the controller only uses the 

data from the 9 specified sensors in the office and eliminates the rest of the data. 

In case of direct solar radiation, the controller might have some difficulties to find an 

optimal angle. This can clearly be noticed at some angles in March and June when 

oscillations occur. The reason is that the sensors read an extremely high illuminance values 

which are very sensitive to any changes in blind slat angles. This effect can be reduced by 

closing the blind slats to avoid oscillation which requires some more refinement to the 

controller design. 
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5.7 Validation of the Controller Performance 

As mentioned before, in order to validate the controller performance, its performance 

on overcast days where the illuminance level in the office model is about 50% less than a 

clear day has been investigated. Figures 5.28 to 5.32 show this performances on 15th of 

January, June, September and December for 24 hours. 
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Figure 5. 28. Performance of the controller on January 15th with an overcast sky condition. 
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Figure 5. 29. Performance of the controller on March 15th with an overcast sky condition. 
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Figure 5. 30. Performance of the controller on June 15th with overcast sky condition. 
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Figure 5. 31. Performance of the controller on September 15th with overcast sky condition. 
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Figure 5. 32. Performance of the controller on December 15th with overcast sky conditions. 

As seen in the Figures 5.28 to 5.32, the performance of the designed controller is 

investigated when the illuminance values indicate to an overcast sky condition. The first 

diagram in these Figures show the hourly blind slat angle settings which are set by the 
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controller in the optimized sensor situation (when there are 9 sensors in the system) as 

compared to the predicted blind slat angles based on prediction method developed and 

introduced in phase II of the study which are chosen through total error values.  

In addition, the second diagram in these Figures display the total error values for these 

two different situations. The difference between these two situations in the blind slat angles 

indicates to the 15 minutes deactivation mode in the system based on comfort reasons. In 

the ideal situation the algorithm searches for the best settings and adjusts the angle every 

minute in order to optimize the daylight situation in the office, whereas in the optimized 

sensor setting, (with 9 sensors) the algorithm waits for 15 minutes after each blind’s 

adjustment to avoid the occupant’s disruptions. This leads to slight differences in the angle 

values and total errors in comparison to the ideal situation. 
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5.8 Conclusion 

It has been shown that the performance of the designed controller is only very slightly 

different in blind slat angles and total error values as compared to the optimized sensor 

situation (9 sensors) and ideal situation (63 sensors). The validation has also been 

reconfirmed through results of the control system performance over several days with 

different sky conditions. 

In the last phase of the study addressed in the next chapter, artificial lighting is 

integrated to the controller structure in order to improve the lighting situation in the office 

model. The electrical energy consumption of the system is then calculated and compared 

to the Lee study results. 
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 PHASE IV: INTEGRATION OF ARTIFITIAL LIGHTING INTO THE 

DEVELOPED CONTROLLER 

6.1 Introduction 

This phase of the study investigates and describes the further development of the 

adaptive lighting controller. This development process includes the integration of artificial 

lights in the system. As mentioned in the previous chapters, the applied office model is 

built based on Lee et al.’s experimental office space in Oakland California.  

The design and structure of the integrated controller is discussed in this chapter. In 

addition, a comparison in electrical energy consumption with Lee’s research study is 

included which is described in the following sections. 

Integrating daylight and electrical lighting in control systems in buildings could lead to 

significant energy savings, improvement in performance of the system and level of comfort 

for the occupants. Studies conducted to assess the impact of design and control of shading 

devices in buildings, clearly shows that integrated shading and lighting control, designed 

to maximize daylight utilization, results in minimum collective lighting and cooling energy 

consumption (Tzempelikos et al., 2005, 2007; Roisin et al., 2007; Kapsis et al., 2010; Park 

et al., 2010).  

All these research work confirm that lighting control alone could be effective in order 

to decrease the electrical energy, but the impact of integrated shading and lighting control 

systems is much greater when it comes to electrical energy savings. These studies also state 

that the shading type and control algorithm must be carefully chosen depending on various 
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factors such as fenestration orientation, location, etc.  In this chapter, integration of 

electrical lights into the developed controller structure are demonstrated. 

6.2 Objectives and Scopes 

The goal of this part as mentioned previously is to extend the daylighting controller 

explained in chapter 5, in order to include the artificial lights into the system. The control 

system was designed to work based on the daylight availability in the room as a priority 

and then to calculate and add required electrical lighting to achieve a more uniform lighting 

situation on the work plane in the room.  

An evaluation of the controller’s performance in terms of electrical lighting 

consumption of the integrated adaptive lighting controller is performed. Such a control 

system is then compered in terms of annual electrical energy consumption to Lee’s research 

results. 

6.3 Methodology 

6.3.1 Electrical Lighting Condition  

Replicating on Lee’s experimental office, two pendant fixtures with four T8 32W 

florescent lamps are installed in the virtual office model in RadianceIES. The two fixtures 

are placed along the centerline of the office window with the first fixture placed 0.61m  

from the window wall and the second fixture spaced 0.86m apart from the window wall. 

All lamps are equipped with a dimming ballast system which provides 4 dimming steps: 

0% (off), 33%, 66% and 99% electrical lighting output. Figure 6.1 illustrates the 
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distribution of four lamps in the office based on original plans from Lee et al.’s 

experimental office plans. 

 

Figure 6. 1. The lamp fixtures’ situation in the virtual office model based on Lee et al.’s experimental model, 

(1998). 

6.3.2 Simulations 

After setting and installing the four florescent lamps in RadianceIES virtual 

environment as shown in Figure 6.2, the artificial lighting simulation without the effects of 

daylight (during the night) was done to investigate the electrical lighting impacts on 9 

sensors distributed in the office model. Figure 6.2 illustrates the model including the light 

fixtures in RadiandeIES.  
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Figure 6. 2. The office model with light fixtures used for artificial lighting simulations in RadianceIES 

environment. 

6.3.3 Integrated Controller Structure 

The structure of the lighting controller in MATLAB Simulink is shown in Figure 6.3. 

The daylighting part of the controller is exactly the same as explained in chapter 5 under 

controller design section. The integrated electrical lighting part is demonstrated and 

explained in this section. 
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As shown in Figure 6.3, the structure of the controller is very similar to the daylight 

controller introduced in the last chapter. However, an extra simple integral controller is 

added into the system which includes the artificial lights based on the data from the lighting 

simulation. The structure of the integrated controller consists of five main blocks as 

mentioned before:  

 Time calculator block 

 Office block 

 Controller block and  

 Total error calculation block 

 Light controller block 

The artificial lighting block has been integrated to the controller block and to the office 

block in Simulink model. Figure 6.3 displays the integrated controller in more detail. 
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As shown in Figure 6.4, the Integral controller has the same structure as explained in 

chapter 5, however in order to add the artificial lights into the concept, an additional 

integral controller (as marked in red in the image) has been added into the control loop. 

The illuminance level of the artificial lighting is set according to the following criteria: 

Integral Controller: The average error values are applied as the input to the integral 

controller. The controller is designed to regulate the lighting situation inside the office 

model based on daylight illuminance levels. To do so, whenever the daylight illuminance 

levels are high enough, the controller decides to increase the blind slat angle in order to 

close it (recall that 0 degree is open and 90 degree is defined as closed blind slat angle). 

Thus, the integral controller is reset to zero when the blind slat angle is greater than 60 

degrees.  

Comfort Concept Block: In order to avoid continuous changes in turning lamps on and 

off in the office, which causes distraction and visual discomfort for the occupants, the 

artificial lighting mode is activated based on several criteria:  

 The user defined controller active mode is currently set to one minute.  

 The user defined deactivation mode is currently set to 15 minutes which could be 

adjusted based on the occupants’ needs and comfort conditions. 

 This means that after each time the blind slat angle control block completes the 

regulation of the slat angles (currently every 15 minutes), one minute is given to 

the controller to set the artificial lighting.  
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Simulating the Limitation Block: This block adds limitations to the angle output. This 

includes saturations and the quantizer for 20% dimming steps.  

6.3.4 Controller Outputs 

The output of the system is shown in the Figures 6.5 to 6.9. In order to have a 

convenient comparison between two design steps, the days the controller output are shown 

for the same days displayed in chapter 5 under controller output. 



189 

 

 

Figure 6. 5. The integrated controller output for January 15th. The predicted blind slat angle settings are 

based on only daylight illuminance data read by 63 sensors, (ideal situation) in the office model. In the 

predicted values, the blind angles are set based on the last optimal setting ±15o. 
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Figure 6. 6. The integrated controller output for March 15th. The predicted blind slat angle settings are 

based on only daylight illuminance data read by 63 sensors, (ideal situation) in the office model. In the 

predicted values, the blind angles are set based on the last optimal setting ±15o. 
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Figure 6. 7. The integrated controller output for June 15th. The predicted blind slat angle settings are based 

on only daylight illuminance data read by 63 sensors, (ideal situation) in the office model. In the predicted 

values, the blind angles are set based on the last optimal setting ±15o. 
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Figure 6. 8. The integrated controller output for September 15th. The predicted blind slat angle settings are 

based on only daylight illuminance data read by 63 sensors, (ideal situation) in the office model. In the 

predicted values, the blind angles are set based on the last optimal setting ±15o. 
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Figure 6. 9. The integrated controller output for December 15th. The predicted blind slat angle settings are 

based on only daylight illuminance data read by 63 sensors, (ideal situation) in the office model. In the 

predicted values, the blind angles are set based on the last optimal setting ±15o. 
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Graphs in Figures 6.5 to 6.9 demonstrate different outputs of the integrated lighting 

controller. Similar to the output graphs for the daylighting controller in chapter 5, the first 

diagrams in the figures show the blind slat angle settings in January, March, June, 

September and December 15th from 7am to 6pm. These values are compared to the 

predicted optimal blind settings without the artificial lighting and only based on total errors 

calculated through daylight illuminance levels in the office every 15 minutes. The 

controller then sets the new blind settings based on the last applied setting. This is why the 

predicted values from this section are slightly different than the predicted blind slat angle 

values in Figures 5.24 to 5.27. It should be also noted that in each activation step, the blind 

slat angle is set according to the values read by sensors which takes the artificial lighting 

into account. Hence, it is possible that the artificial lighting and blind slat angle controllers 

work slightly against each other. In extreme cases, the blind slat angle might block the 

daylight while the artificial lighting compensates for the lack of light in the office model.  

The second diagram in Figures 6.5 to 6.9 display the total error values calculated based 

on artificial light and daylight in the office model which are shown in comparison to the 

total error values based on predicted optimal blind angle setting without artificial lighting 

and based on 63 sensor data. It is clearly seen that artificial lighting significantly reduces 

the TE values leading to a much more uniformed illuminance situation on the work plane. 

Finally, the third diagrams illustrate the intensity of the electrical lights based on 

integrated controller settings for each day.  
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In order to calculate the potential energy savings for developed integrated lighting 

controller, its performance is compared to two different static control strategies where the 

slats are fixed at 0o (open) and 90o (closed). 

Figure 6.10 shows the daily performance of the system on January 15th compared to 

two different static control strategies. Although the dynamic and static control with 0o blind 

slat angles (open) indicate to the same percentage of lights being on during January 15th, 

the TE diagram clearly indicates to the more uniform lighting situation in dynamic control 

approach which leads to more comfort in the office. 

Figure 6.11 illustrates the daily performances of three different control strategies on 

September 15th. The artificial lighting diagram shows a significant decrease in percentage 

of lights being on in dynamic control strategy in comparison to the two static approaches 

which leads to much less electrical energy consumptions and higher energy savings of the 

dynamic control strategy in this day. 
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Figure 6. 10. The performance of the dynamic controller in comparison to static control strategies in 

January 15th from 7am to 6pm. 
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Figure 6. 11. The performance of the dynamic controller in comparison to static control strategies in 

September 15th from 7am to 6pm. 
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6.4 Energy Performance  

In this section, the amount of lighting energy consumptions for the integrated lighting 

controller is compared to the energy performance of Lee et al.’s controller. The yearly 

electrical energy performance of the controller is shown in Figure 6.12. Three different 

control strategies were compared: two static blind settings where the slats are fixed at 0o 

(open) and 90o (closed) for the whole year (only from 7am to 6pm) and the dynamic control 

of blind setting based on developed integrated controller outputs. 

The diagram reveals significant difference between consumed electrical energy in static 

control (when blinds are fixed at 90o (closed)) and the dynamic control of blinds. However, 

this difference decreases when the blind slat angles are fixed at 0o (open). This is due to 

the fact that by completely opening the blind slats the artificial lighting controller turns off 

the lights for most of the day. 
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Figure 6. 12. Electrical power consumption of the system compared to the two static control strategies of 

blinds in the office model. 

Figure 6.13 displays the average illuminance on the work plane in the office for these 

three different control strategies. The diagram shows the illuminance values for the whole 

year (only from 7am to 6pm). The desired illuminance level of 550 lux is shown as a dashed 

line in the diagram. Although the open static blind slat setting does not lead to much higher 

electrical energy consumptions in comparison to the dynamic control approach (Figure 

6.10), the average illuminance is significantly higher than 550 lux line. This means that 
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dynamic control approach provides a much more uniform illuminance distribution in the 

model close to the desired illuminance level of 550 lux.  

 

Figure 6. 13. Yearly average illuminance levels on work plane. A comparison between three different 

control strategies. 

Table 6.1 shows the potential yearly energy savings that could be achieved by 

application of integrated lighting controller in comparison to two static blind control 

strategies. In the static control, as mentioned before, blind slat angles are fixed at 0o and 

90o which represents open and close blinds. Additionally, the monthly potential energy 



201 

 

savings are shown in the table. Table values indicate to the highest energy savings for the 

months with less daylight availability which are mostly September through December. 

Despite shorter daylight times from January to March, direct sunlight penetrates through 

the open blinds leading to smaller energy saving values in comparison to the dynamic blind 

settings.  

In Lee et al. research study, compared to the static blind strategy with horizontal blind 

setting, the developed dynamic control strategy could reduce the daily lighting energy use 

by 1-22% for clear sky and overcast sky conditions over the course of a year for the 

southeast-facing office in Oakland, California. The developed integrated controller for the 

same office space in this study indicated potential electrical energy savings of 1-23% 

compared to the static control strategy with horizontal blinds and 50-78% compared to the 

static control strategy with closed blinds. It should be noted that the developed controller 

in this study has a much simpler structure compared to the one designed in Lee et al.’s 

research, but it indicated to the same electrical energy savings. 
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Table 6. 1 Electrical energy performance table for dynamic integrated lighting control strategy and the 

potential energy savings in comparison to two static blind setting (static control strategy). 

Dynamic Integrated Controller in Comparison to Static Control Strategies 

Month Elec. Power (Wh) Compared to 90o  Compared to 0o  

January  19652 50% 3% 

February  15549 56% 7% 

March  15663 58% 9% 

April  11230 68% 11% 

May  8876 76% 16% 

June 10639 71% 23% 

July 7126 78% 2% 

August  9935 73% 9% 

September 11980 67% 7% 

October 16673 56% 8% 

November  17673 54% 3% 

December 19446 51% 1% 

Average Yearly  164442 63% 8% 
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6.5 Conclusions 

In this design step, the artificial lights have been added to the controller structure in 

order to improve the lighting situation in the office model. The outputs of the integrated 

adaptive lighting controller indicated 1-23% savings in yearly electrical energy 

consumption in comparison to the base case static control strategy when blind slat angles 

were horizontal (open) and 50-78% yearly electrical energy savings compared to the static 

strategy when blinds were closed (90o). The results included the controller operation for a 

whole year from 7am to 6pm. 

Although the amount of electrical energy saved through dynamic system in comparison 

to static open blind control approach were insignificant for some months, the total error 

values point out that the lighting situation in the office model were more uniform with the 

dynamic controller which leads to the higher comfort levels and less glare problems. 
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 SUMMARY AND CONCLUSIONS 

7.1 Research Contributions to Existing Field 

This research study explored the impacts of an innovative adaptive controller on annual 

energy consumption and occupants’ comfort. The outcome of the study should provide a 

simplified automated approach for architects, building designers and engineers to improve 

the energy efficiency of systems in buildings.  

The developed methodology was able to predict optimized control settings of dynamic 

facade elements and electrical lights which optimizes daylight, minimizes electric energy 

consumption, and of course increased the comfort level in buildings. The algorithm could 

be easily applied and maintained and also requires simple input in order to operate.  

One of the first steps in designing a building is to build an architectural model to 

investigate different design concepts. This 3D model of the building could be imported to 

the lighting simulation software and the input of limited lighting simulations is the main 

input for the controller. 

In addition, unlike some current controllers applied in high performance buildings 

which are based on algorithms such as fuzzy logic and neural network and are rather 

complicated in nature, the designed controller has a simplified structure and arrangements, 

does not include any complicated mathematical formulas and is easy to understand.  

The control strategy involves integrating daylight and artificial lighting systems and is 

applicable in the conceptual design process as well as more detailed stages of design.  
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Moreover, to increase the degree of visual comfort, some useful effective comfort 

measures were built in the structure of the controller which are often neglected by other 

integrated control systems. There are several constraints in the allowable movements of 

blinds and specific slat angle settings in order to avoid glare and to increase view for the 

occupants.  

Finally, the developed controller has the potential to be further developed and refined 

to respond to other buildings’ systems and dynamic elements. It could be integrated with 

the thermal concepts or different kind of openings (side-lighting, top-lighting), different 

type of shading devices/overhangs or different buildings’ shape and types, since it is 

adaptive and its operation is based on information provided by sensors placed in the 

building. 

7.2 Summary of Methodology 

To achieve the design goal, a set of design phases have been identified to develop, 

validate and refine the control approach. These phases were as following: 

Phase I: Development of a predicting algorithm to control the venetian blinds. 

Phase II: Validation of developed control strategy through experimental studies. 

Phase III: Development of a sensor-based adaptive daylight controller. 

Phase IV: Integration of artificial lighting to the controller and investigation of 

potential energy savings. 

 In the first design step (phase I) and based on defined limited set of simulations 

applicable to a virtual test cell model, a method was proposed to identify a base line for 



206 

 

predicting optimal settings of blind slats’ angle. These settings which were meant to 

achieve daylight uniformity on a defined work plane should be applicable for the whole 

year. The main goals of this phase were to: 

 Achieve a unified light level on defined work plane based on a desired-lux level. 

 Reduce the simulation time by limiting the simulation sets to a few days only. 

 Find the optimal predicted blind angle slats for the whole year based on total errors 

as a measure of validation. 

Simulations were limited to only three days: June 21st, September 23rd and December 

21st, at 10 am, 12 pm and 2 pm. 

Since the upwards blinds’ angles do not provide view for the office occupants, all 

upward angles have been limited in the simulations. Simulated blind’s slat angles include: 

0° (fully open), 15°, 30°, 45°, 60°,  75 °, 90°(fully closed).  

Additionally, simulations ran with only one window open with different blinds’ slat 

angles at the time and then results were combined together. In other words, by adding the 

illuminance levels based on only one window being open with different slat angles, the 

illuminance levels for three windows open with different possible blind’s slat angles were 

calculated. The optimization process was defined as follows: 

 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

= (1 − 𝛼)𝑇𝐸 + 𝛼(
((𝐴𝑖 − 𝐴𝑥)2 +  (𝐵𝑖 − 𝐵𝑥)2 +  (𝐶𝑖 − 𝐶𝑥)2

(3 × 902)
 

(14) 
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Whereas: 

α: Weight factor 

Ai : Current blind slat’s angle for window A (North) 

Bi : Current blind slat’s angle for window B (West) 

Ci : Current blind slat’s angle for window C (South) 

Ax : Optimal blind slat’s angle for window A (North) 

Bx : Optimal blind slat’s angle for window B (West) 

Cx : Optimal blind slat’s angle for window C (South) 

TE: Total error 
 

In this equation α was defined as the weight factor between Total Error (TE) values 

and slat angle changes which needed to be chosen properly. When weight factor α=0 then 

cost function value equals to the best TE values without taking the slat angle changes into 

consideration. For α=1, the TE values were ignored and the objective of the function would 

be to maintain minimum changes in blind slat angle settings to keep the cost function value 

close to zero. 

The prediction method demonstrated an approach to find the best blind slat angles 

settings for the three windows based on cost function values and based on limited 

simulation days. The prediction phase was divided into two different sections:  

 Yearly prediction of best blind slat angles 

 Daily prediction of best blind slat angles 

The results of simulation based validation process indicated that predicted blind 

settings based on daily and yearly prediction methodologies were reliable and could be 

applied as initial baseline settings in the next step where it was validated and refined in an 

experimental test environment.  
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In the second phase of the study, the result of the small scaled test cell study from phase 

I was applied on a bigger scaled virtual test space. In order to validate the accuracy of the 

prediction method, the algorithm was evaluated on an actual test environment.  

To validate the prediction approach, an actual test room was built on top of the design 

building north on ASU Tempe campus and used for the research. The main steps of this 

phase were: 

 Calibration of the lighting software by comparing the simulated and measured 

daylight data.  

 Application of the developed control strategy on the virtual model built based on 

actual test room.  

 Application of best predicted blinds’ settings based on developed algorithm on 

blinds inside the test room to investigate and validate the reliability of the 

algorithm.  

Before starting the whole experiment, a calibration process was done to verify the 

reliability of the lighting simulation software IES. To do so, the actual daylight levels in 

test cell have been measured for several days. The data were then compared to the 

simulated data on the same days. Some small changes needed to be made on the virtual 

models’ materials in order to calibrate the simulation software.  

In the second verification step, the developed control algorithm was applied on the 

virtual model. Based on 3 days simulations method, the best blind angles sets for December 
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3rd from 9am to 2pm have been conducted through the prediction algorithm and applied on 

actual test room to validate the reliability of the algorithm.  

The measured daylight levels with the given blind settings on December 3rd indicated 

that the applied angles from the prediction approach were reliable enough when applied on 

actual test room environment.  

In the third and fourth design phases, based on the predicting strategy developed in 

Phases I, a sensor-based adaptive integrated control algorithm was developed, 

demonstrated and evaluated. In this stage, a virtual office space similar to an experimental 

office model (Lee at el., 1998) was developed in Revit and imported to IES. Hence, the 

impacts of the innovative controller was investigated and evaluated by comparing the 

achieved electrical lighting energy savings with the results in Lee’s study. The controller 

was designed in Simulink MATLAB and works based on best TE values in the office 

model. The main goals of the controller in phase III were: 

 Simplicity in structure for an easy application, operation and maintenance. 

 Reducing electrical energy consumption. 

 Increasing comfort levels. 

 Easy integration of daylight and artificial lighting systems with the potential of 

thermal concept integration 

An innovative approach has been developed to reduce the number of sensors and 

optimize their distribution in the room which were responsible for providing illuminance 

data to the control system. This problem has been formulated into a Genetic Algorithm 
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(GA) optimization problem which reduced the number of sensors for the controller from 

63 to 9. The results with the 9 sensor solution have been validated through different 

strategies including total error comparison and image analysis of daylight distribution 

throughout the whole year. The daylight controller operated based on the illuminance data 

provided by optimized solution by GA using only 9 sensors. The results indicated a higher 

level of comfort in the room through the dynamic blind slat angle control. 

In Phase IV, artificial lighting has been integrated to the control system and results have 

been analyzed for the purpose of energy savings and comfort. The outputs of the integrated 

adaptive lighting controller indicated 1-23% savings in yearly electrical energy 

consumption in comparison to the base case static control strategy when blind slat angles 

were horizontal (open) and 50-78% yearly electrical energy savings compared to the static 

strategy when blinds were closed (90o).  

Although the amount of electrical energy saved through dynamic system compared to 

static open blind control approach were insignificant for some months, the total error values 

point out that the lighting situation in the office model were more uniform which leads to 

the higher comfort levels and less glare problems in the office space. 
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 RESEARCH LIMITATIONS AND FUTURE WORK 

This research study introduces an innovative integrated adaptive approach to regulate 

the blind slat angles for an efficient lighting situation in buildings. The control algorithm 

is automated and performed based on limited data input provided by a reduced optimized 

number of sensors situated in the room. It has the potential to be adapted to any form and 

size of buildings in different geographical locations. The only required data for the 

controller is data from lighting simulation software which is based on a CAD model of the 

building.  

Phase I of the study (chapter 3) explained the first development steps of a prediction 

approach to determine optimal blind slat angles inside a virtual test cell based on uniform 

lighting levels on the defined work plane. In phase II, this approach was validated based 

on experimental data from an actual test room. In phase III and IV, a sensor-based 

controller was designed which partly works on the baseline strategy and algorithm 

developed in phase I. Although, the proposed control strategy was automated and adaptive, 

there are some limitations in the process that need to be acknowledged. 

Firstly, the most important problem is caused by performance of lighting software in 

the process. The current lighting tools in the market including Relux and Radiance have 

limitations with importing complex CAD models. The occurrence of curves elements and 

walls, unjointed elements, , complex materials, curtain walls, shading devices and furniture 

in the CAD model, does prevent a smooth successful import to the lighting software 

environment.  
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In this situation, the only solution is to simplify the building model by dividing it into 

smaller spaces and to change or delete complex elements in the model in order to be able 

to import and analyze it in lighting software which requires long processing times and 

much effort. Moreover, in this case, the process may not be easy to automat and adopt 

anymore. Based on this fact, this research study is limited to simplified building geometries 

and elements. 

In addition, both simulation software have a limitation in number of blinds in virtual 

model which is again due to lighting software limitations. Since any type of complex 

shading devices such as venetian blinds can’t be imported to Relux or Radiance model 

environment, these elements needed to be built and installed in the Model builder of 

lighting tool in both cases for the purposes of this research. Both software seem to have a 

very sensitive reaction to any changes in venetian blind materials, size and slat angles. In 

addition, they have a limit in the number of blinds in the model and if this limit is exceeded 

software crashes during the daylight simulation.  

Based on software limitations for complex situations, it is important to explore the 

availability and abilities of other lighting software in the market and improve the control 

approach by eliminating the software limitation in the future work.  

Secondly, the other important limitation to this study was the size of the office spaces 

used as model in this work. This was limited to a small office space and there may be some 

limitations while exploring the optimal number and location of sensors and/or in optimal 

blind slat angle prediction approach in larger spaces where the core zone and perimeter 

zones have different lighting properties. In this case, the large space model needs to be 
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divided to similar smaller spaces (zones) which are much easier to deal with when the 

control algorithm is implemented.  

In the future, applicability of the predicting approach and the proposed adaptive 

controller should be investigated in two steps; first on medium sized buildings to explore 

the potential limitations and problems in the process and in the second step on larger 

buildings with different floor plans and windows in more directions.  

Thirdly, the proposed controller in phase III is a simulated based design which works 

based on data provided by limited number of virtual sensors in the room. The controller is 

designed to work based on sensor data; however it has not been applied on a real time 

building in this research study. In the virtual model environment, unlike real time building 

models there is no sensor noise. The real sensor signal is noisy and needs to be filtered. In 

the developed Simulink model, the ideal sensor signal has been evaluated.  Also, the effects 

of sensor failure or malfunctioning, sensor gain and offset are important real time issues 

that can’t be investigated in the virtual model. In real time test environment, every sensor 

has its own gain and offset, however in this simulation, we assumed that all sensors are 

tuned. 

Another crucial point about the system is the delay. In real time systems, several delays 

in controller, actuators and sensors accrue which are not taken into account in the virtual 

simulation model. In addition, in controller design phase there are some mis-matches 

between reality and simulation. The developed controller uses simulation data to set the 

initial value of the window, in the next step it adjusts this angle based on initial settings. In 

reality, the simulation values used for the initial condition in the room might not show an 
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acceptable level of accuracy based on several reasons as discussed before as limitations in 

the lighting software. This may lead to unreliable initial blind setting and thus uncertainties 

in the next steps of controller performance.  

Due to the limitations with the controller, as a future work, it would be essential and 

very interesting to explore the behavior of the innovative controller in a more controlled 

test environment such as FLEXLAB testing facility run by Lawrence Berkeley National 

Laboratory’s which is equipped with high performance and energy efficient building 

systems. 

Finally, the control approach developed in this study is limited to lighting regulation 

with respect to visual and thermal effects of daylight. However, it has the potential of 

integration of thermal concepts in order to control the heating, cooling and ventilation 

systems along with lighting. Only in this case, very significant amount of energy savings 

could be achieved. Thus, the integration of thermal systems to the structure of the controller 

is another research topic for the future work. 
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