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ABSTRACT 

Mobile applications (Apps) markets with App stores have introduced a new 

approach to define and sell software applications with access to a large body of 

heterogeneous consumer population. Several distinctive features of mobile App store 

markets including – (a) highly heterogeneous consumer preferences and values, (b) high 

consumer cognitive burden of  searching a large selection of similar Apps, and  (c) 

continuously updateable product features and price – present a unique opportunity for IS 

researchers to investigate theoretically motivated research questions in this area. The aim 

of this dissertation research is to investigate the key determinants of mobile Apps success 

in App store markets. The dissertation is organized into three distinct and related studies. 

First, using the key tenets of product portfolio management theory and theory of 

economies of scope, this study empirically investigates how sellers’ App portfolio 

strategies are associated with sales performance over time. Second, the sale performance 

impacts of App product cues, generated from App product descriptions and offered from 

market formats, are examined using the theories of market signaling and cue utilization. 

Third, the role of App updates in stimulating consumer demands in the presence of strong 

ranking effects is appraised. The findings of this dissertation work highlight the impacts 

of sellers’ App assortment, strategic product description formulation, and long-term App 

management with price/feature updates on success in App market. The dissertation 

studies make key contributions to the IS literature by highlighting three key managerially 

and theoretically important findings related to mobile Apps: (1) diversification across 

selling categories is a key driver of high survival probability in the top charts, (2) product 

cues strategically presented in the descriptions have complementary relationships with 

market cues in influencing App sales, and (3) continuous quality improvements have 

long-term effects on App success in the presence of strong ranking effects.  
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CHAPTER 1   

1. INTRODUCTION 

Mobile applications are one of the fastest growing segments of downloadable 

software applications markets. Many mobile application markets such as Amazon 

Appstore, Blackberry App World, Google Play Store, and Apple App Store have 

emerged and grown rapidly in a short amount of time. Since Apple App Store launched 

with only 500 Apps and a dozen developers in July 2008, the market has increased to 

over 1,810,000 Apps and 388,470 unique sellers in April 20151. This rapidly growing 

market has in turn led to over 600 million App consumers downloading around 75 billion 

Apps in 155 countries and the platform had paid out over 10 billion dollars to App 

developers in 20142.  

The competitive dynamics and market interactions in consumer-focused mobile 

applications (Apps) markets exhibit the key characteristics of ‘long tail market’ 

(Anderson 2006). Unlike other long-tail markets covering books, DVD and music, 

however, App developers do not have established alternate channels to position or brand 

their creations. In addition, they compete more directly with other developers since 

consumers are better able to compare product features across Apps. The intense 

competition along with the remarkable growth in the number of Apps creates “survival” 

                                                           
1 Apple’s App Store Report (April, 1st, 2015), 148Apps, available at http://148apps.biz/app-store-metrics/ 
2 iTunes App Store Now Has 1.2 Million Apps, Has Seen 75 Billion Downloads To Date (June 2nd , 2014), 

TechCrunch, available at  http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-

has-seen-75-billion-downloads-to-date/ 

 

http://148apps.biz/app-store-metrics/
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/


  

2 

 

problem for even well-established Apps. However, theoretical and managerial 

understanding of the determinants of success in this hyper-competitive market is still 

limited. As such, the theoretical underpinnings of strategic market positioning and 

impacts are as yet unclear. This research develops theoretical and empirical insights into 

the determinants of success in Mobile Apps markets. 

Several distinct characteristics of mobile Apps markets make them a theoretically 

interesting research context to examine. First, App developers can reuse features and 

codebase from one App to another, thereby enabling the creation of App portfolios across 

various App categories. Second, mobile App markets enable developers to deliver an 

array of App-related attributes and/or marketing messages through the first few lines of 

product descriptions. This strategic presentation of App product cues has the potential to 

reduce consumer cognitive burden and perceived risk related to purchase quality 

uncertainty in the search dominated purchase process. Third, unlike content creators in 

other long-tail markets, mobile App developers have opportunities to promote their 

products in the market post-release by responding to dynamic consumer demands. Hence, 

a developer can strategically utilize price-based or quality-based updates to overcome 

slow adoption rates or declining sales.  

Consequently, these key characteristics of mobile App markets require developers 

to formulate long-term sales strategies such as App product portfolio, the presentation of 

App product cues, and pricing and feature updates at multiple periods in order to compete 

with other developers.  
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1.1. Research Questions 

The overarching goal of this dissertation is to identify the key determinants of 

mobile App success. App store market structure has several key differentiating 

characteristics that set it apart from a number of previously examined long-tail market 

contexts such as books (Brynjolfsson et al. 2006), music (Elberse 2008), and movies 

(Hinz et al. 2011). I evaluate how the theories and findings drawn toward the 

conventional long-tail markets are applied in the context of mobile App markets. This 

dissertation is organized into three chapters that address three distinct yet interrelated 

research questions. 

App Portfolio Management and App Success 

Research Question 1: Are Seller’s Product Portfolio Decisions Influential in 

Determining App Survival?  

Mobile App Developers can easily create various Apps, thereby quickly building 

a portfolio of Apps across various (and often unrelated) App categories. The portfolio 

perspective, in fact, is the most distinguishing facet of mobile App markets. It is 

evidenced as developers in Apple App Store offered an average of 6.8 Apps across 2.7 

categories in 2012. More interestingly, nearly 40% of sellers offer more than 10 Apps and 

about 60% of the sellers have Apps in more than one category. While developers can 

address heterogeneous consumer preferences by offering Apps across different categories 

(Rothaermel et al. 2006), specialization within categories can allow sellers to develop 

distinct competencies and benefit from scope economies through reduced product 

development costs (Baumol et al. 1982). Using key tenets of product portfolio 
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management theory and theory of economies of scope, this study empirically investigates 

how sellers’ App portfolio strategies are associated with sales performance over time. 

App Product Description and App Success 

Research Question 2: Do App Product Descriptions Matter? 

The unique characteristics of App store markets increase consumer cognitive 

burden in evaluating an App’s value/quality prior to actual purchase as compared with 

traditional online markets. First, a large number of Apps contributes to high search costs. 

In 2014, an average of 1,339 new Apps appeared every day, and even worse many Apps 

share similar features and functionalities. Second, inherent factors in mobile App 

transactions such as a smaller screen size and constrained user-interface capabilities 

further exacerbate the cognitive load during valuation of the offerings (Ghose et al. 

2012). Third, the presence of external information (via social media and other sources) on 

an App from third-parties creates information overload and makes it difficult for users to 

accurately judge the true utility of the App. As a result, strategic representation of 

information cues has the potential to reduce a consumer’s perceived risk related to 

purchase quality uncertainty, to reduce cognitive burden, and to increase willingness to 

purchase. App developers have capabilities to strategically present App product cues in 

the descriptions to attract more consumers. This study evaluates the role of product cues 

presented in the descriptions in shaping App consumers’ purchase decisions.  

App Quality Update Decision and App Success 

Research Question 3: What is the Value of Quality in Mobile App Markets?  

In such search-intensive markets, a product’s successful prior ranking (popularity) 

has the pivotal role in stimulating new consumer demands for the already successful 
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product as evidenced in the long-tail markets selling songs (Yoo and Kim 2012) , movies 

(De Vany and Lee 2001), and digital software products (Duan et al. 2009). However, no 

superstars, bestsellers or blockbusters last forever. Strong popularity effects driven by 

consumers may not necessarily lead to lasting success in the mobile App market. While 

most digital products are not updatable in terms of their quality after their releases, the 

quality of mobile Apps can be easily modified and updated by content creators after 

observing consumers’ purchase behaviors and competitors’ strategies. Thus, the success 

of App is managed by a developer’s continuous endeavor throughout the whole life cycle 

of an App. 

The three phases of this dissertation share the common underlying theme of 

evaluating the distinctive aspects of mobile App markets and identifying key factors that 

affect the success of App sales. This dissertation aims at contributing to the extant 

literature on information goods management, and managerial insights for market 

participants. 

The remainder of this dissertation is organized as follows: In Chapter 2, extant 

literature and theories on information goods management are summarized to find the 

theoretical explanations for the three research questions. Chapter 3 investigates an 

association between an App developer product portfolio strategy and sales performance. 

Chapter 4 examines whether product cues in App descriptions significantly impact App 

sales and whether they can complement or substitute the cues offered from a market. 

Chapter 5 evaluates the value of quality improvement in stimulating dynamic App 

consumer demands. Finally, Chapter 6 concludes with a summary of key findings and 

managerial implications of this dissertation, along with a discussion of the limitations and 

future research directions.    
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CHAPTER 2 

2. RESEARCH CONTEXT AND RELATED WORK 

This chapter provides theoretical explanations for the three research questions. A 

brief summary of the relevant literature and theories is presented. The theories of product 

and scope economies are presented to explain the impact of App assortment strategies on 

App sales. Then, the key tenets of market signaling and cue utilization theories are 

adopted to evaluate the role of product cues in shaping consumer App purchase decisions. 

To answer the third research question, the theories relating to information goods 

management in the long-tail markets are presented. 

2.1. App Portfolio Management and App Success 

Product portfolio theory suggests that heterogeneous consumer tastes and scope 

economies are two important factors in determining portfolio decisions. While developers 

can address heterogeneous consumer preferences by offering Apps across different 

categories (Rothaermel et al. 2006), specialization within categories can allow sellers to 

benefit from scope economies through reduced product development costs (Baumol et al. 

1982). However, past research has found no evidence of a positive relationship between 

product concentration and sales performance (Cooper 1985).  Many studies applying 

financial portfolio theory to product portfolio management (Cardozo and Smith 1983; 

Devinney 1988) show that correlations across similar product categories lead to a higher 

risk profile for the firm. In line with this, the theory of scope economies provides a 

rationale for associating broadening product selections with sales performance (Lancaster 

1979; Panzar and Willig 1981). Bailey and Friedlaender (1982) argue that firm-level 

scope economies are crucial for multi-product industries and present that, in a 

competitive market, multi-product firms better survive as compared to single-product 
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competitors since the economies of scope bring about a significant cost advantage (e.g., 

transaction costs) to those firms. Therefore, consistent with main tenets in theory of 

product portfolio management and theory of scope economies, we predict that a large 

selection of mobile Apps (i.e., the number of products) and diversification across selling 

categories (i.e., product diversity) increase the success of App sales. Based on these 

theoretical explanations, I investigate how mobile App seller product portfolio is 

associated with sales performance. In addition, App-specific properties such as pricing, 

update, user reviews are considered for evaluating the success of App sales.  

2.2. App Product Description and App Success 

Mobile Application software is generally characterized as an experience product 

(Nelson 1970). Consumers use an array of extrinsic and intrinsic cues to assess the 

quality/value of such a product (Alba et al. 1999). In mobile App markets. The extrinsic 

and intrinsic cues that consumers can consider when they evaluate an App are offered 

through both product descriptions and product page view formatted by the market. While 

the cues in product descriptions are voluntarily selected by developers and deliver 

subjective information on Apps (i.e., low fidelity), those presented through market 

formats are mandatory and provide objective clues (i.e., high fidelity). Although a large 

volume of prior literature has examined the synthesized effects of multiple cues such as 

price and brand (Dawar and Parker 1994) and warranty and reputation (Boulding and 

Kirmani 1993) from a single source (a retailer or a market), there is still no study 

investigating complementarities among product cues from multiple sources in influencing 

a consumer’ perceived value and product sales. In line with this, this study evaluates 

whether extrinsic and intrinsic cues in App descriptions have significant impacts on the 

success of App sales and whether they can complement or substitute market cues.  
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2.3. App Quality Update Decision and App Success 

While digital product pricing has been considered as the key driver for creating a 

positive user network (Aliawadi et al. 1998; Shapiro and Varian 2013; Smith et al. 2001), 

the appraisal of product quality in shaping digital content consumer purchase decisions 

has not been identified yet. Prior studies argue that quality-based differentiation and 

versioning strategies are effective practices to create network externalities (Parker and 

Van Alstyne 2000; Jing 2003) and to accommodate heterogeneous consumer demands 

segmentations (Bhargava and Choudhary 2008; Shapiro and Varian 1998) in digital 

product markets. However, these approaches are generally made prior to the product 

launch and are considered at the market level. In addition, the versioning of a product is 

considered as a pricing scheme charging different price for the same product/service 

based on its quality, and thus it does not mean the improvement in product quality 

exerted by a content provider. For mobile App developers, product updates require 

continuous endeavor and need a strategic approach along with dynamic consumer 

demand in the market.  

The expected contributions to the extant literature from the perspective of 

strategic positioning of Apps in long-tail markets are as follows. First, I show that 

specific portfolio properties affect sales performance sustainability in high velocity 

markets. Second, this research suggests that prudent selection and presentation of App 

product cues in the descriptions has the potential to increase sales performance. Third, the 

appraisal of App update strategies will highlight the importance of strategic App quality 

management along with heterogeneous consumer demand in highly competitive mobile 

App markets. 
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CHAPTER 3 

3. APP PORTFOLIO MANAGEMENT AND APP SUCCESS 

Variety's the very spice of life, That gives it all its flavor  

- William Cowper, 1785 

 

3.1. Research Objective and Questions 

Mobile App store markets exhibit key characteristics of “long tail market” 

(Anderson 2006) such as a large selection of digital products and relatively low user 

search costs. However, App store market structure has some key differentiating 

characteristics that set it apart from a number of previously examined long-tail market 

contexts such as books (Brynjoffson and Smith 2010a), music, and DVDs (Elberse 2008). 

First, sellers in mobile App markets have a single channel for selling their product 

(especially in the case of Apple App market) and terms of access to the market are 

uniformly determined for all sellers. Second, unlike creators of music and DVDs, App 

developers/sellers have the opportunity to change not only price, but also the features and 

characteristics of the App based on user feedback and reviews. Third, sellers in mobile 

App markets compete more directly with other developers, irrespective of whether Apps 

are intended for hedonic consumption (such as crossword puzzles) or utilitarian purposes 

(e.g., teleprompters). Comparing competing Apps within a category is easier than, say, 

comparing music offerings within a genre. Fourth, while in many long-tail markets 

versioning is restricted to release times or superficial features (such as hard-cover vs. 

paperback), mobile Apps offer a greater range of flexibility to sellers in versioning 

strategies (e.g., feature based or price based differentiation, in-app purchases, 
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subscription length, etc.). Finally, sellers can reuse features and codebase from one App 

to another, thereby quickly building a portfolio of Apps across various (and often 

unrelated) App categories. The portfolio perspective, in fact, is the most distinguishing 

facet of mobile App markets that we intend to explore in this research.   

It is evident from a quick look at mobile App offerings on the AppStore that a 

portfolio approach to mobile App offerings is quite common. Sellers in AppStore offer an 

average of 6.8 Apps across 2.7 categories. More interestingly, nearly 40% of sellers offer 

more than 10 Apps and about 60% of the sellers have Apps in more than one category 

(see Table 1). 

 
Table 1. Number of Apps and Categories in Apple App Store 

 

While sellers can address heterogeneous consumer preferences by offering Apps 

across different categories (Rothaermel et al. 2006), specialization within categories can 

allow sellers to develop distinct competencies and benefit from scope economies through 

reduced product development costs (Baumol et al. 1982). Using key tenets of product 

portfolio management theory and theory of economies of scope, this study empirically 

investigates how sellers’ App portfolio strategies are associated with sales performance 

over time. Utilizing a longitudinal panel data of sales performance over 39 weeks, we 

model App survival in the weekly charts within App categories. We consider the impact 

of both seller-level and App-level properties on an App’s survival in the top charts. Our 
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main research objective is to understand how sellers’ App portfolio affects sales 

sustainability in the AppStore. We also intend to develop insights into how App specific 

decisions (such as free offerings, price changes and updates) affect sales performance and 

sustainability of individual Apps.  

3.2. Theoretical Foundation 

Product Portfolio Management: 

Day (1977) defines product portfolio as “a decision on the use of managerial 

resources for maximum long-run gains.” Extant marketing literature identifies two 

different product portfolio management strategies: product proliferation and product 

concentration. By offering highly divergent product lines, firms can satisfy consumers’ 

desire for variety seeking (Aribarg and Arora, 2008; Quelch and Kenny 1994) and meet 

customer need in a manner superior to competitor’s product offerings (Rothaermel 2006). 

However, in spite of these merits of product diversification, some firms successfully pursue 

the opposite strategy of concentrating on specific product lines. The narrower product line 

helps the firms to lower unit production costs when scale economies are present by 

lowering inventory costs, and reducing complexity in assembly. Hence, the success of 

product proliferation depends not only on the firm’s market, but also on firm specific 

properties.  

However, past research has found no evidence of a positive relationship between 

product concentration and sales performance (Cooper 1985).  Many studies applying 

financial portfolio theory to product portfolio management (Cardozo and Smith 1983; 

Devinney and Stewart 1988) show that correlations across similar product categories lead 



  

12 

 

to a higher risk profile for the firm. Therefore, diversification of Apps over selling 

categories has the potential to improve product portfolio’s risk-return profile.  

There is still lack of research in understanding the association between 

information goods portfolio management and sales performance. Extant research on long 

tail markets of information goods such as DVDs and books have not considered product 

portfolio effects, but only long tail properties and intermediation/disintermediation effects 

(Brynjofsson et al. 2010a; Oestreicher-Singer and Sundararajan 2010). Although 

Brynjolffson et al. (2010b) suggested a research agenda that studies shifts in product 

variety and concentration patterns driven by information technology, their research focus 

is still limited to an issue of shaping a long tail (broadening niche products for product 

variety) or Superstar effect (concentrating on a few popular products for product 

concentration). However, as Brynjolffson et al. (2010b) suggest, technological (changes 

in search, personalization, and online community technologies) drivers and non-

technological drivers (price premium and social interactions with other consumers) have 

shifted the consumption and production patterns of niche and popular products. In App 

store markets, technological drivers are playing an especially important role in increasing 

sellers’ incentives to create various Apps with a lower barrier to entry and a large 

network of users, while also increasing users’ incentives to purchase Apps that satisfy 

their tastes with lower search costs and a large selection of Apps.  

A key driver of portfolio decisions in App store markets will be the ability to 

create scope economies by developing and leveraging product development capabilities 

across a number of different categories of mobile App offerings. We argue that the lower 

barriers to entering different category segments enables sellers to expand their offerings 

beyond what has been considered in product portfolio literature. Additionally, the ability 
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to alter App offerings based on specific information gleaned from sales, usage patterns, 

and user feedback enables sellers to update their product offerings almost on a constant 

basis, thus setting up a high velocity market environment. We expand on the notion of 

scope economy in the following paragraphs.  

Scope Economies 

The theory of scope economies provides a rationale for associating broadening 

product selections with sales performance. Economies of scope refer to the cost and 

revenue benefits through the production of a wider variety of products across related 

settings rather than specializing in the production of a single product (Lancaster 1979; 

Panzar and Willig 1981). A firm’s ability to leverage investment experience and 

knowledge from one setting to another can confer significant performance benefits.  

Bailey and Friedlaender (1982)  argue that firm-level scope economies are crucial for 

multi-product industries and present that, in a competitive market, multi-product firms 

better survive as compared to single-product competitors since the economies of scope 

bring about a significant cost advantage (e.g., transaction costs) to those firms. In this 

context, Cottrell and Nault (2004) utilized the theory of scope economies in production 

and consumption to examine the association between product variety and scope 

economies in the microcomputer software industry in the 1980s by using firm- and 

product-level information on bundling of functionalities over application categories and 

computing platforms. The main results indicate that there are scope economies in the 

consumption of microcomputer software, and so firms with software that includes more 

application categories (e.g., database, graphics, and word processor) have better sales 

performance and product survival since a customer may prefer to purchase a variety of 
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products from the same vendor. There are several distinctive characteristics of the App 

market that warrant examination of scope economies in App markets. For example, at the 

outset, scope economies in production appear to be much stronger in App markets 

because of the predominant focus on hedonic consumption as opposed to utilitarian 

consumption (Babin et al. 1994).  On the other hand, hedonic consumption can also 

contribute to a diminished importance of scope economies in consumption since 

interoperability between Apps may not yet be of great importance to consumers (Childers 

et al. 2001; Hartman et al. 2006). App markets are also distinct from software markets of 

the 80’s in that there is a single distribution channel today for Apps and channel access is 

not constrained for any single type of sellers. Examination of App portfolio related issues 

is still nascent in IS literature. Most recently, Lee and Raghu (2011) used a cross-

sectional analysis of portfolio decisions in the App market to demonstrate that App 

portfolio diversification over multiple categories is positively correlated with success in 

App sales. In this research, we utilize data at multiple levels (seller and App properties) 

to examine longitudinal impacts on sales performance.  

3.3. Data and Research Design 

Survival Analysis 

The main empirical question in this study is the sustainability of sales over time. 

To establish the association between a seller’s App portfolio characteristic and Apps’ 

sustainability in the top charts, we utilize multiple approaches. Our definition of success is 

restricted to appearance/reappearance of Apps in the top-charts over time. Since Apps can 

frequently appear and disappear on top charts, both survival duration (between an 
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appearance and disappearance) and the total length of time spent on the top charts are 

relevant measures of success. Therefore, we use survival analysis techniques to measure 

sales performance (Cottrell and Nault 2004; Srinivasan et al. 2008). We observe survival 

(or exit) for all products and all sellers, and survival of the App in the top charts is a 

necessary condition for success. Finally, the exit of an App for extended durations from 

the top charts can indicate poor performance (Sorenson 2000). 

In our empirical model, the success of App sales is influenced by a seller’s 

decisions at two levels. At the App-level, seller decisions frame certain App-specific 

properties before launch such as category, price, and certain properties after launch such 

as quality and price updates. A seller’s effort on App development is reflected in users’ 

review scores and initial popularity (Dellarocas et al. 2007). For example, an App’s initial 

popularity (a debut rank) could be influenced by a seller’s promotion and advertising 

efforts prior to the release of App, and users’ reviews on Apps also could be affected by 

sellers’ ability to manage consumer expectations and preferences. For seller-level 

decisions, a seller having multiple Apps formulates a macro-level sales strategy. 

Determining whether to create Apps across various categories or in a few categories is 

made at the seller-level. We summarize the main aspects of our empirical approach in 

Figure 1.  

 
Figure 1. Empirical Approach 
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Data Description 

Data for our analysis were collected for the top 300 Apps provided by the 

AppStore. AppStore provides three different charts of Apps: Free, Paid, and Top 

Grossing charts. Although Apple does not release the specific way it computes the 

rankings, it reveals how ranking is usually determined. The rank is calculated based on 

downloads in the most recent window of time (typically a week, but the window itself 

creates a moving average) for free and paid Apps, overall and within the 20 offered App 

categories.3 A large portion of free Apps (80%) also includes in-app-purchase options. In 

order to complement the limitations of free and paid charts, we used the top grossing 

charts, thus combining free and paid Apps in a single chart.  

We collected the top-charts data for each week, on a specific day of the week, 

from December 2010 to September 2011. During this period of 39 weeks, a total of 

17,697 Apps offered by 8,627 unique sellers appeared on the chart (a total of 530,503 

observations). To observe an App’s and a seller’ discrete survival at a specific study 

week and survival duration in the top 300, 200 and 100 charts, we tracked an individual 

App’s (seller’s) elapsed time to list in the top 300 by using data from Apple’s iTunes. 

Every App in the dataset has its release time and the first time to hit the top 300. The 

Apps released before the starting date of data collection were censored since we are not 

able to observe key App properties in the past. Therefore, Apps that made the top 300 

chart before the study period were dropped from the dataset.  However, an App released 

after our data collection date (Week 1) has both (1) valid released date and (2) the first 

                                                           
3 Apple App Store provides 20 different categories (as of September 2011): Book, Business, Education, 

Entertainment, Finance, Games, Healthcare-fitness, Lifestyle, Medical, Music, Navigation, News, 

Photography, Productivity, Reference, Social-networking, Sports, Travel, Utilities, and Weather. 



  

17 

 

date to hit the top chart. Time (1) and time (2) could be the same when an App was 

ranked in the top 300 at its debut week.  

The iTunes store provides individual App’s rank, seller (or publisher), title, price, 

category, released date, updated date, description, user review score, and number of user 

reviews. From given information on Apps, we tracked the survival of individual App at 

each study week, calculated elapsed time of individual App to exist in the top charts, and 

obtained data on each seller’s specific properties such as total number of Apps and 

number of categories in the top 300, 200, and 100 charts. Finally, we validated our data 

by comparing the actual figures (e.g., a portion of free Apps, a seller’s number of 

Apps/categories, and a portion of (un)popular categories in AppStore) produced by 

popular mobile application tracking websites: App148.biz (information on the number of 

Apps under different categories and prices) and AppStoreHQ.com (seller’s information), 

and we confirmed our descriptive statistics were very close to those figures. 

Data for Survival Analysis 

 We created two different sets of data for analyzing App success (an App’s survival) 

at each discrete point in time and survival duration in the top charts). To record the survival 

of an App as a discrete time event, we tracked all Apps that Appeared in the top 300 charts 

during the study period, and coded an App that appeared in the chart as a survival (“1”), or 

otherwise as an exit (“0”) if the App dropped from the charts. The discrete event approach 

does not pose censoring issues. 

Survival duration relied on a continuous time scale and therefore had to censor 

some observations. When survival data is analyzed on a continuous time scale (e.g., 

hazard models), all observations in the sample may not have terminated or the exact 
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initial times of all events may not be known (Oakes 2000). This was an issue in our data 

as well. For the 300 top grossing charts, we censored 66.3% from the observed Apps as 

follows: Apps that already appeared before the study (left-censoring), were still alive at 

the end of study (right-censoring), and exited and reappeared over the study period 

(interval-censoring) were cut off. Thus, the final dataset for continuous survival time 

analysis consisted of 7,579 Apps in the top 300 charts provided by 3,882 sellers. The set 

of variables extracted from our dataset is shown in Table 2. 

Table 2. Summary Statistics of the Dataset 



  

19 

 

3.4. Empirical Approach 

 In order to investigate the association between a seller’s App portfolio management 

strategy on successful App sales (product-level) and overall sales performance (producer-

level), we have utilized three different models: a generalized hierarchical linear model 

(GHLM), a Cox hazard model with frailty, and a count regression model. Since many 

Apps move in and out of the top charts, modeling just the survival without re-entry can 

limit the analysis. Further, since sales performance is affected by variables at multiple 

levels (e.g., time, App properties and seller level properties), a hierarchical approach to 

analyzing performance would be appropriate. Thus, we mainly rely on GHLM approach. 

The other two models are used here to augment and support the main results from 

GHLM.  

Generalized Hierarchical Linear Model (GHLM) 

 Generalized hierarchical linear model is widely used in social and behavior 

research that have a hierarchical data structure, with individual observations nested 

within groups. The multilevel regression model is most appropriate for data structures 

that have many levels because it is more flexible and more parsimonious than analysis of 

variance-type models (Frees, 2004).  

Our data at the first level include the repeated measures (survival of an App in the 

top charts) over 39 weeks, the second level predictors account for the variation in mean 

of survival within Apps, and the third level accounts for variation in intercepts and slopes 

among sellers. Consequently, we set up a logistic mixed linear regression to predict the 
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survival of an App from the multilevel explanatory variables

tLevel-1(Time ): _ ln (1)
ijt

ijt

App_survival

ijt ijt

App_survival

P
logit(App survival )=

1- P


 
  
 
 

       
                                               

Equation (1) is a binomial model with a logit link function (i.e., a logit transformation 

function) providing the relationship between the linear model and the mean of the logit 

distribution function.  In other words, this transformational link connects the 

untransformed dependent variable, which is bounded by 0 and 1 and is non-normal (i.e., 

App_survivalijt), to a new transformed variable πijt. App_survivalijt indicates the survival 

of App i offered by a seller j at time t. Since for binary variables, the variance is 

determined by the mean, there is no residual term for the first-level error variance.  

One of the biggest challenges with a logistic model is that the results of this 

analysis are highly vulnerable to the assumption that observation (measures) is 

independent. Since the data involves 39 repeated measures of an App’s survival in the 

chart, there might exist correlations among the observations made from the same App. If 

the independence of observations fails to hold but a maximum likelihood logistic 

regression is used to estimate the standard errors of parameter estimates one may 

conclude that something is significant when it actually is not. Thus, we introduce a 

correlation structure among the repeated measures to account for correlations among the 

events of an App. The correlation among the repeated observations made from the same 

App (nested within an App) was assumed to be autoregressive. We assume that the 

current survival of an App at t is influenced by its survival at t-1, autoregressive (1). 

Therefore this model specification controls for whether an App is shown in the top chart 

in the last period.  
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The regression coefficient (πijt) varies across the App, and we model this variation with 

predictors at the App level. Then, model for the (πijt) becomes: 

i

5 6

Level-2 (App ) _ ) _ _

_ _ _ (2)

ijt 00j 01j ijt 02j ijt 03j ijt-1

04j ijt-1 0 j ijt 0 j ijt

0

: = + (App free_price + (App_minus initial_rank) + (App price_promotion)

+ (App quality_update) + (App popular_cate) + (App unpopular_cate)

    

  

 7 8 9 0( _ ) ( _ _ ) _ _ _j ijt-1 0 j ijt-1 0 j ijt-1 ijApp review_avr + App log review_num + (App age of app) +  

In equation (2), β00j and β0ij are the intercept and slopes for the regression equation used to 

predict (πijt). τ0ij is error term for Appi and assumed to be normally distributed (i.e., mean 

of 0 and variance of σ2
τ).  It accommodates un-modeled variability for the App-level part. 

It is also desirable to construct a time-lagged dataset through which the impacts of 

App-level explanatory variables on a subsequent survival event could be longitudinally 

assessed. Time-varying variables at t-1 were used to examine whether an Appi is listed in 

the top chart at t. It takes account of the effect of endogeneity (reverse causation) into the 

presented model. 

Similarly, equation (3) includes seller-level predictor variables and accounts for variation 

among sellers.  
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u
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Equation (3) indicates that while seller-level predictors for App portfolio management 

only influence the mean of App’s survival (β00), App-level predictors have unconditional 

random intercepts (μ) and slopes (γ) at seller-level to examine how App-specific 

properties vary under different sellers. Thus, we assume that App-specific decisions are 
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not affected by variables at the seller-level. The residual term of u00j accommodates the 

un-modeled variability at the seller-level. 

Finally, substituting (2) and (3) into (1) yield a combined multilevel model as 

follows:         

000

001 002 003

010 020 030

_

( _ _ ) ( _ _ ) ( _ _ * _ )

_ _ _

ijt

jt -1 jt-1 jt-1

ijt ijt ijt -1
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 The combined equation shows the single mixed-model equation and reveals that 

our model has 13 fixed effects (coefficients of ϒ) and 11 random effects (coefficients of μ 

and τ). Notice that there is no cross-level interaction effect, because seller-level predictors 

are allowed to affect only the intercept in Level-2.  

Hazard Model 

We measure the impact of a seller’s product portfolio strategy and App-level 

properties on Apps’ and sellers’ survival times in the charts by using a set of hazard models. 

Traditional survival analysis approaches assume homogenous populations and the same 

hazard of having an event for individuals. Consequently, they do not account for the 

problem of dependence caused by unobserved heterogeneity (Wong 2012). Thus, the 

standard errors may become too small, and may subsequently lead to misleading 

significance of estimates and high p-values (Allison 2010). Therefore, we conduct the 
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survival analysis of nested data, and use a frailty term to account for unobserved 

heterogeneity at seller level. We utilize four distinct hazard models. The first two models 

are Cox semi-parametric models, and the other two are parametric models with Weibull 

and logit functions.  

A Cox proportional hazards (PH) model assesses the relationship of predictor 

variables to survival time t of App i.  Cox PH model allows us to handle both continuous 

and categorical variables and to estimate the parameters for each covariate without 

specifying the baseline hazard (Cox 1972). 

The first model is a reference model that examines the net effect of each 

explanatory variable on the hazard function to measure the App’s survival in the chart. 

The hazard function of App in the top 300 is presented as: 

     hi(t | Xj, Zij) = exp(βXj + δZij) ∙ h0 (t)                               (5)
 

_ _

_ _ _

_ _

_ _ _ _

, _ _ _ _

_ _ * _ _ _

ij

ij

ij

j ij

j j i j ij

j j i

App free price

App minus initial rank

App price promotion

Seller num app App quality update

where X Seller num cate and Z App popular cate

Seller num app num cate App unpopular cate

 
 

  
 
 

_ _

_ _ _

_ _ _

j

ij

ij

ij

App review avr

App log review num

App age of app

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

h0(t) is a non-parametric baseline hazard, and Xj  and Zij are the vectors of the covariates 

for the seller j and App i offered by seller j, β and δ are coefficients of the covariates 

estimated from Maximum Partial Likelihood Estimates (MPLE) and it represents the 

effect of the covariates on  hazard rate.  When the parameter estimate of an explanatory 
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variable is positive (negative), we can conclude that an App i’s hazard rate (or rates of 

exiting from the top charts) increases (decreases) with the variable.  

The second model is a Cox model with a frailty term. It examines how Apps’ survivals in 

the top charts vary at the seller level. The hazard rate for Cox model with frailty is as 

follows: 

     hi(t | Xj, Zij) = exp(βXj + δZij) ∙ rj∙ h0(t)                               (6) 

rj represents the random (frailty) term for a seller j who offers individual App i. The 

frailty components of rj are assumed to be distributed as gamma with mean one and an 

unknown variance θ (Andersen et al. 1997; Fan and Li 2002; Gutierrez 2002). The 

penalized partial likelihood approach was used for fitting the frailty model (Ripatti and 

Palmgren 2000). Since the baseline hazard for the first two models is not specified (i.e., 

non-parametric baseline hazard) and the true underlying model is not given, we introduce 

two parametric hazard models (a Weibull random-effects hazard model and a discrete-

time logit random-effects hazard model) with frailty to check if the frailty term in a Cox 

frailty model (i.e., the third model) is significant. The random terms in the Weibull 

hazard model and the discrete-time logit model are assumed to follow the gamma 

distribution (Liu 2012) and the normal distribution (Allison 2010) respectively 

For a hazard model, the inclusion of time-varying variables can introduce endogeneity 

(Bennett 1999; Bennett and Stam 1996; Kalbaeisch and Prentice 2002). Endogenous 

time-varying covariates cause bias in coefficient estimates (Goodliffe 2005). Since our 

hazard models include both time-independent (e.g., App_free_price, App_popular cate, 

and App_minus_initial_rank) and time-varying (e.g., Seller_num_app, Seller_num_cate, 
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and App_review_num) covariates, the estimates from those time-dependent covariates are 

subject to the effect of endogeneity.   

Goodliffe (2005) suggested a set of approaches that fix the problem of endogenous time-

varying covariates in a hazard model based on relevant prior literature: (1) drop the 

covariate only; (2) ignore the problem (Bartels 1985); (3) jointly model the duration and 

the time varying covariate (Cox and Lewis 1972); (4) use the ideas of simultaneous 

equations to duration models (Bartels, 1991); (5) include the covariate, but drop the time-

varying portion (Goodliffe 2005). While the first four approaches have statistical 

problems of omitted variables, bias in coefficient estimates, complexity in modeling, and 

difficulty in finding a true instrument, the fifth approach works best by “taking away the 

part of the covariate that is mostly likely to be tainted by reverse causation” (Goodliffe 

2005).  In line with his suggestion, we used the time-invariant explanatory variables. In 

other words, we used the averaged values of time-dependent covariates (e.g., averaged 

review score and review number) over an App’s survival duration and introduced 

dummies for time-varying variables such as App_price_promotion and 

App_quality_update (i.e., if an App’s quality indicators / price were changed at least 

once), and ignore the changes in those covariates. This approach resulted in no major 

changes to parameter estimates and therefore we conclude that endogeneity bias is not 

likely impacting our results.  

Count Regression Model 

 In order to reexamine the main results from GHLM, we have run a pooled count 

regression model for individual sellers across 39 weeks. One-week time lag is used for 
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estimating associations between seller-level explanatory variables at t-1 (Xjt-1) and a seller’s 

number of Apps in the top chart at t, Seller_num_apps_topjt.  

                    E [Seller_num_app_topjt | Xjt-1] = βX jt-1 + εj                                                (7)            

The two supplemental models have some potential limitations for fitting the data into a 

multilevel framework. The hazard model censors Apps not having continuous durations 

over the study period (55% of the Apps were censored). Hierarchical survival analysis 

approach has not been well established due to its complex estimation procedure where 

the solutions are not usually expressed in closed form (Rodriguez and Goldman 1995). 

With GHLM, it is possible to utilize a discrete survival time approach, in which the 

survival to an event at a discrete time is a binary dependent variable, and incorporate 

hierarchical structure in the data (Allison 2010). 

 Since the dependent variable of a count regression model is numbers of Apps in the 

charts of individual seller, the model does not include App-level explanatory variables, 

and so the App-specific properties that may affect the sales performance are ignored in 

the modeling setting. In the GHLM, since the survival time of a seller in the top chart 

does not consider the presence of multiple Apps in the top chart, the seller’s exact sales 

performance in a specific period may not be taken into account. The count regression 

model allows us to examine how a seller’s assortment of Apps across various categories 

affects the total number of Apps in the top charts. 

3.5. Results 

The results from fitting a generalized hierarchical linear model appear in Table 3. 
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While we have not reported the correlation matrix, we did not find any strong 

correlations between explanatory variables; the highest correlation (ρ=-.350) among 

explanatory variables is between App_minus_initial_rank and App_price_promotion. 

Further, we tested for the presence of multicollinearity by means of Variance Influence 

Factors (VIF) of each explanatory variable. The largest VIF was below 2.0, which 

indicates that multicollinearity was not a problem in the models.   

In order to examine model explanation power due to the addition of random and 

fixed explanatory variables, we sequentially ran Model I in five iterations. Model I(0) is a 

confound logistic regression model that included all predictor variables without 

controlling cross-level interactions. As a baseline (null) model, Model I(1) includes an 

unconditional intercept only. Model I(2) and Model I(3) incorporate level-2 and level-3 

fixed and random effects respectively. Finally, Model I(4) combines all fixed and random 

effects across Level-2 and Level-3. The ability of a model to predict better than a baseline 

model was used as an index of Goodness of Fit. In hierarchical linear model, the deviance 

test is mostly used to compare the fixed and random effects of competing models (Luke 

2004). Improvements in predictability were determined by the proportional reduction of 

deviance compared with the null (baseline) model (Bryk and Raudenbush 1992). 

We also compared the resulting model with no lag effect to one with a one-week 

lag effect in explanatory variables. The model with a lag effect had a lower deviance 

(from 391687.24 to 387891.21) as compared to the model with no lag. Since larger 

sample size generally leads to increased significance, we used a more stringent p <.005 as 
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the significance limit. Additionally, we considered practical significance of the 

coefficients in interpreting the findings.  

  
Table 3. Analysis Results from Model I 

 

Overall, the deviance decreases when we incorporate the hierarchical structure 

into the baseline model. The unconstrained model, Model I(1), provides empirical and 

statistical evidence of the need for multilevel model. The intra-class correlation (ICC) 

between the App-level variability and the seller-level variability, 
2

00

2 2

00



 



 
=.53, 

represents that 53% of the variance in the presence of Apps in the top charts can be 

accounted for by sellers (Level-3).  This moderately high ICC suggests not only the 



  

29 

 

violation of the independence assumption (i.e., the observations are not independent from 

one another due to a nested data structure), but also the need for a multilevel model 

incorporating seller-level properties (Luke, 2004). 

Model I(2) explains the association between App-specific properties and an App’s 

success consistent with our expectation. When only seller level variables are considered 

(Model I(3)), coefficients of Seller_num_app and Seller_num_cate are negative, thus 

contradicting theoretical prediction. This result indicates how a mis-specified multi-level 

model can lead to erroneous conclusions (Snijders and Bosker, 1999). It also shows the 

effect of number of Apps to be insignificant. However, the deviance in this model was 

relatively high. Finally, the combined three-level Model I(4) allows us to obtain the 

correct estimates by incorporating intra-class random effects with the lowest deviance. 

The coefficient signs in Model I(4) confirm the theoretical predictions related to portfolio 

characteristics in that the number of Apps and number of categories both improve 

outcome. It clearly demonstrates the need to consider both sellers’ portfolio decisions and 

App characteristics in sales performance measurement. 

Because this model specification assumes that seller-level explanatory variables 

are not correlated with unobserved seller-level fixed properties in the error term, 

controlling for seller-level heterogeneity is important. In the context of our study, 

however, it is difficult to identify strong and valid instruments that are correlated with 

seller-level App assortment decisions. A fixed effects modeling approach might be a 

technique to correct for such omitted variables at the seller-level, but this is generally 

difficult to accomplish for a model with a nested data structure. Inclusion of seller-level 

dummies for fixed effects will introduce the incidental parameters problems (Wooldridge 

2001). We employed a conditional fixed effect logistic regression model to account for 
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seller-level fixed effects4. The estimation results showed that the signs and significance 

levels across the models are qualitatively identical. Although the estimates of App-level 

estimates are slightly different from that of GHLM, these differences are likely due to 

differing model assumptions. It leads us to confirm that our estimates from GHLM on 

seller-level Apps portfolio decisions are highly robust to an alternative model 

specification that handles seller-level endogeneity problems. The results of the other two 

supporting models are presented in Tables 4 and 5. Model II examines the impact of 

explanatory variables on survival time of an App i and a seller j using a hazard modeling 

approach. Table 4 presents the estimates of App/seller-level covariates of the six hazard 

models. 

Table 4. Analysis Results from Model II 

                                                           
4 Since the data includes 8,627 unique sellers (a total of 530,503 observations), the estimation of seller-

level fixed effects is not tractable and requires enormous computational power. As a result, we randomly 

sampled sellers from our original dataset based on unique identification numbers (AppIDs) of Apps. We 

selected sellers who have apps ending in ‘7’ in their IDs. The resulting sample for a fixed effects model 

includes 1,015 sellers (a total of 51,599 observations). Given the smaller dataset, we used the bootstrapping 

procedure to derive estimated standard errors with 500 replications of the sample. 
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Model II (0) involves only seller-level covariates to examine the main effect of 

App portfolio management on a seller’s survival in the top 300 chart, where a seller was 

considered to have survived (App_survivaljt = 1) if at least one App of a seller appeared 

in the chart at t. Other four survival models include both seller/App-level covariates as 

discussed in Section 4.2. The estimates from Model II(1) and Model II(2) present similar 

results. The random (frailty) term in Model II(2) is significant and shows the variability 

among sellers. The estimates in other two parametric random models show similar 

pattern and significant random effect at the seller-level, but inconsistent with the COX 

models. Such differences are mainly due to (1) the unspecified baseline hazards of a Cox 

model, (2) the approximation of the true parametric models (i.e., different distribution 

assumptions), and (3) the shape parameters in the two parametric models (Wong 2012). 

Moreover, the sign reversal of estimates is because of different estimation formats. While 

the estimates from a Cox regression model are in log-hazard format, the estimates from a 

parametric survival model are in log-survival time format (Allison 2010). In other words, 

a Cox model with a frailty term and the two parametric models have the same sign 

implications for hazard rates and trends. Finally, the estimates of the Cox hazard model 

with a frailty term (i.e., Model II (2)) are validated by the parametric survival models, so 

we use the estimates from Model II (2) for explaining the association between a seller’ 

App portfolio management and corresponding App survival in the top chart. Model III (a 

count regression model) only considers seller-level properties under the different rank 

charts (top 100, 200, and 300) as shown in Table 5.  
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Table 5. Analysis Results from Model III 

 

In Model III, the large ratio of deviance to degree of freedom (12.229) indicated 

the problem of overdispersion. In other words, observed variance is greater than the mean 

since the mean of Poisson distribution is equal to its variance. Although we expect the 

residual deviance / degree of freedom to be approximately 1.0, the deviance is almost 10 

times as large as the degree of freedom. In order to adjust the problem of over-dispersion, 

we used a negative binomial regression model. By allowing for more variability in the 

data, this approach accounted for over-dispersion. Overall, the deviance / degree of 

freedom value is much closer to 1.0 than that in Poisson regression model. As shown in 

Tables 4 and 5, the results from a Cox hazard model with frailty and a count regression 

model support our findings in Model I.  

Seller-level Properties (App Portfolio Management): The positive and significant 

estimates of r001 and r002 in Model I(4) indicate that there is a positive association between 

broadening App offerings over multiple categories and an App’s presence in the top 300 

chart. When it comes to the negative and significant interaction effect (r003) of these two 

predictors, there is a relatively small diminishing marginal impact. To examine the 

marginal effects of seller-level covariates, we converted the log odds (i.e., estimates) to 
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predicted probabilities. Then we computed the marginal effects of Seller_num_cate (and 

Seller_num_app) on the survival of Apps at different values of Seller_num_app (and 

Seller_num_cate) holding the App-level explanatory variables at their means.  Table 6 

summarizes how much the effect of seller_num_cate for an App’s survival changes 

according to seller_num_app, and vice versa in GHLM and Cox hazard models. 

 
 Notes: the predicted marginal probabilities in Model II (2), a Cox hazard model, are presented as 

probabilities exiting the top charts with negative signs. 

Table 6. Changes in Sales with Increases in Number of an App and a Category 

 

The predicted probabilities provide the changes in the probability of an App’s 

survival with a one-unit increase in Seller_num_app or Seller_num_cate. Overall, the 

marginal effects are largely stable at different numbers of Apps and categories. The 

marginal effects of adding a category, ijt

ijt-1

Prob(App_survival = 1)

Seller_num_cate





, are positive at different 

numbers of Apps. The marginal effects of adding an additional App, ijt

ijt-1

Prob(App_survival = 1)

Seller_num_app





, 

are much smaller than those of Sell_num_cate and practically insignificant.  

Overall, the results indicate that expanding across categories has greater practical 

significance to sellers. The scope economy argument seems to therefore apply to the 

Apps market quite significantly. The hazard model also supports the positive association 
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between broadening Apps over multiple categories and successful App sales. The 

marginal effects of seller-level App portfolio decisions in this case are expressed in terms 

of predicted probability of exiting the top charts. A one-unit increase in seller_num_cate 

decreases an App’s probability of exit by 18.77% when a seller offers the second App in 

a new category as compared to doing nothing. Thus, sellers who provide Apps in various 

categories (i.e., diversify Apps over multiple categories) and have larger variations in 

choosing categories (i.e., large selection of selling categories) survive longer on the top 

charts and as a result have better sales performance. The marginal effects remain stable as 

the number of Apps increase.  

A look at some notable sellers supports this observation as well. Table 7 

illustrates App vendors’ App portfolio management (number Apps/ categories) and their 

overall performance. While first three sellers have lower overall sales performance and 

offer multiple Apps in a few categories, other sellers have relatively higher sale 

performance with Apps diversified over various categories.  For instance, Iceberg Reader, 

an online media publisher, offers 6,049 Apps on AppStore with only 6 categories, and 

has 55 Apps in the top 300 charts. Meanwhile, Oceanhouse Media, an individual 

developer, has listed 49 of her 141 Apps in the top chart by selling Apps in 12 categories. 

 
Table 7. App Portfolio Management and Sellers’ Sales Performance   
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App-level Properties: The estimates from App- and seller-level analysis in Model I and 

Model II present the relationship between App-specific properties decided by a seller and 

an App’s survival periods in the top chart. These results highlight the main features of Apps 

that help sellers to strategize their Apps for better sales. To interpret a one-unit change in 

app-level covariates on the success of Apps, we utilized odds ratios and hazard ratios of 

the estimates. 

The estimate of App_free_price is positive in Model I(4), as expected, and 

strongly significant. It indicates that free Apps are around 1.7 (=exp(.536)) times more 

likely to survive in the top charts as compared to paid Apps. The estimate from Model II 

(2) also supports this finding. It suggests that when Apps are offered free of charge, the 

hazard ratio decreases by 17.2% (=100*[1-exp(-.1896)]) as compared to the paid Apps. 

Around 20% of top 300 Apps are free and most of them are either lite-version of paid 

Apps or require additional payments (e.g., in-app purchases) for more features (e.g., 

game money or network supports) when running Apps. Even most pure free Apps retain 

advertising proceeds. That is, free Apps do not mean the absence of revenues. From our 

observation around 8% of observed Apps in the top grossing 300 were offered for purely 

free. Thus, as with other information goods contexts, free Apps create opportunities for 

larger network of users (Bhargava and Choudhary, 2004) and increased demand in a 

complementary premium good (Parker and  Van Alstyne 2005). 

Initial popularity is an important determinant of survival. The estimate of 

App_Minus_initial_rank is positive and significant. However, the improvement due to 

initial rank lacks practical significance (one rank higher at its first week increases the 



  

36 

 

presence of an App in the charts by nearly 0.4% in the models). The positive association 

of initial rank with survival is consistent with the findings from prior studies with digital 

goods (Burt 1987; Strobl and Tucker 2000; Yamada and Kato, 2002). Thus, there is 

limited evidence for returns to efforts on App advertising and promotion before release 

(Dellarocas et al. 2007).   Quality updates appear to have a bigger impact on App survival 

than price changes. In GHLM, the estimate of App_price_promotion is not significant 

while that from the hazard model is negative and significant. Apps that had offered at 

least one quality update (or promotional price) during the study period increased the 

chance of survival in the top charts 2.9 (or 1.3) times as compared to non-updated Apps, 

and lowered hazard rate of 95.5% (or 79.6%) than when they made no updates. 

Moreover, these updates have differing impact based on seller. Even though further 

studies on this issue are required, we empirically confirm that sellers can impact the 

success of Apps by making targeted updates to price and quality in mobile App markets.  

The estimates from App_popular_cate and App_unpopular_cate in Model I (4) 

indicate that Apps offered in the popular categories have relatively lower odds of survival 

and shorter survival periods as compared to those in unpopular categories. In Model II 

(2), the estimated risk of exiting the top chart increases 1.22 times if an App is offered in 

the popular categories. Therefore, from the literature on long tail effects (Brynjolffson et 

al. 2006; Elberse 2008), we can divide categories into popular-App categories (head) and 

niche-App categories (tail) based on their popularity in the AppStore market. Even 

though the Apps offered in the popular categories may have more downloads, they could 

have shorter periods in the top charts since these Apps would compete with numerous 

popular Apps. For instance, around 716 Apps are released a day and 40% of them are 
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provided in the popular categories (i.e., Games, Books, and Entertainments). It implies 

that there exists severe competition among sellers and impacts survival in top charts.5   

Finally, Apps that gained higher volume and higher review scores have higher 

success and lower hazard ratios. Similarly, Apps offered by reputable sellers, who have 

overall higher average user review scores across their Apps in the top 300, have lower 

hazard rates, but the volume of reviews does not influence App’s survival time. These 

results reveal that existing users’ satisfaction from Apps can bring about new user 

interests to the Apps. Furthermore, we can argue that users tend to trust (purchase) Apps 

offered by reputable sellers who had good review scores associated with other Apps. 

3.6.  Robustness Analysis 

Our main results are restricted to the probability of an App’s survival in the top 

300 charts. We conducted three different post-hoc analyses with GHLM to test the 

sensitivity and validity of our model.  

First, we compared the estimates under different ranking charts. Since AppStore 

only provides Apps’ information in the top 300 ranks, we could observe neither other 

Apps ranked outside the top 300 charts nor their properties (e.g., price, review score, and 

developer). Thus, to test if sampling bias is influential to our main results, we compare 

the estimates of a seller’s App portfolio management on the successful App sales under 

different ranking charts. Table A1 in Appendix A shows that seller-level predictors are 

                                                           
5 We also tested if different combination of (un)popular categories have the same results.  The most / least 

popular categories (Game vs. Weather) and the four most/least popular ones (Game, Book, Entertainment, 

Lifestyle vs. Medical, Navigation, Weather, Finance) were selected into the analyses. The results present 

that the different selections of categories do not change the sign and significance of estimates from our 

original selection. Also, these selections do not significantly change other estimates as well.      
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more critical in the higher rank charts. Table 8 shows the impacts of a seller’s App 

portfolio plan on the probability of an App under different ranking charts. The impacts of 

category diversification strategy on the survival of an App increase in the top 100 chart as 

compared to the top 200 and 300. Moreover, App-level properties like free price, user 

review score, and initial rank are more highly associated with survival probability in the 

higher rank charts.  

 
Table 8. The Impact of App Portfolio Management under different Ranking Charts 

 

 

Second, we investigated how the association between seller’s App management 

and an App’s survival differs over time. We divided the data into two periods. The first 

period includes the first 19 weeks, and the second period last 20 weeks. During second 

period Apple released a new iOS version and a new white iPhone for AT&T and Verizon. 

In addition, the number of iPhone users significantly increased by around 44 million 

compared to the first period. Thus, we expect more severe competition among sellers (or 

developers) in the second period. The estimates are presented in Table A2 in Appendix 

A. Since we used time-varying explanatory variables in GHLM, the negative intercept 

terms indicate the overall decrease of App survival (i.e., the mean of survival when all of 
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explanatory variables take on the value zero) in the second period. Furthermore, the 

seller-level decisions play more important role in the second period.  

 
Table 9. The Impacts of Increases in Number of an App and a Category  

 

 

Finally, we also incorporated App users’ hedonic and utilitarian uses of Apps into 

the model. By adding a hedonic dummy (coded “1” if an App is offered in hedonic 

categories6 and coded “0” if an App is offered in utilitarian categories), we looked for the 

association between App’s hedonic or utilitarian uses and Apps’ survival. In the first 

model, we included a hedonic dummy instead of (un) popular dummies, and in the 

second model both category-related variables were added (see Table A3 in Appendix A). 

The results show that the estimate of a hedonic dummy is not significant in both models 

and Goodness of Fit worsened. Since App_popular_cate (games, books, and 

entertainment) and App_unpopular_cate (medical, navigation, and weather), in general, 

reflect the hedonic and utilitarian Apps, our main model incorporated competitive 

pressures adequately. Consequently, the results from sensitivity and robustness analysis 

give us more confidence in the proposed empirical models. 

                                                           
6 - Hedonic Categories: Book, Entertainment, Games, Healthcare-fitness, Lifestyle, Music, Navigation, News,  

                                       Photography,  Social-networking, Sports, and Travel  

  - Utilitarian Categories: Business, Education, Finance, Medical, Productivity, Reference, Utilities, and Weather 
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3.7. Concluding Remarks 

Our findings demonstrate how mobile App seller product portfolio is associated 

with sales performance. Specifically, diversification across selling categories is a key 

determinant of high survival probability in the top charts and contributes to sales 

performance. Furthermore, we find that offering free Apps, higher initial popularity, 

investment in less popular categories, continuous updates on App features and price, and 

higher user feedbacks on Apps are positively associated with sales performance. 

Therefore, these App-level attributes lead to further potential user demand and increase 

the longevity of Apps. 

The results of this study have several significant implications to extant literature 

on digital product management and business practice. From an academic perspective, our 

research creates new knowledge about mobile App seller’s strategic decisions on product 

portfolio management and its impact on success in mobile App markets. Our findings 

firmly establish the importance of scope economies as an ingredient for success in mobile 

App market. Survival and sales performance was greatly higher for sellers when 

participating across multiple categories than otherwise. We also find that product price 

and quality upgrades are quite important in mobile Apps market contexts. Prior studies in 

software management have been restricted to cost reduction in software upgrades: 

optimal frequency of security patch updates (Cavusolglu et al. 2006) and the expected 

time to perform major upgrade to software systems (Krishnan et al. 2004). However, 

developers in App markets can easily change price and features with lower costs and 

efforts than in traditional software markets. It appears that the opportunity for frequent 

changes should indeed be exploited. 
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CHAPTER 4 

4. APP PRODUCT DESCRIPTIONS AND APP SUCCESS 

4.1. Research Objective and Questions 

Mobile Application (App) software is an experience product where consumers are 

generally unable to assess the quality of a product at the time they make an actual 

purchase (Nelson, 1970). As such, consumer effort is needed to discover hidden 

information about an App before final download. Certain unique characteristics of App 

store markets increase consumer cognitive burden in evaluating an App’s value/quality 

prior to actual purchase as compared with traditional online markets. First, a large 

number of Apps contributes to high search costs. In January 2015, there were 1,496,939 

active Apps and 367,167 developers in the U.S. Apple App Store and an average of 1,339 

new Apps appeared every day. In particular, the most popular Games category included 

317,907 active Apps and an average of 419 Games Apps were released a day7. Searching 

through such a large number of products requires intense external costs (e.g., the 

opportunity costs of time taken up in searching) and internal costs (e.g., the mental effort 

of sorting and integrating searched information) (Smith et al. 1999). Moreover, inherent 

factors in mobile App transactions such as a smaller screen size and constrained user-

interface capabilities further exacerbate the cognitive load during valuation of the 

offerings (Nunamaker et al. 1987; Ghose et al. 2012). As an additional complexity, the 

presence of external information (via social media and other sources) on an App from 

third-parties creates information overload and makes it difficult for users to accurately 

                                                           
7 App Store Metrics (February 6,2015, PocketGamer) available at http://www.pocketgamer.biz/metrics/app-store/ 

http://www.pocketgamer.biz/metrics/app-store/
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judge the true utility of the App. Strategic representation of information cues has the 

potential to reduce a user’s perceived risk related to purchase quality uncertainty, to 

reduce cognitive burden, and to increase willingness to purchase. Therefore, strategic 

representation of multiple information cues has the potential to reduce a user’s perceived 

risk related to purchase quality uncertainty, to reduce cognitive burden, and to increase 

willingness to purchase.  

Prior studies on product cues/signals have extensively examined how either 

market intermediaries or individual sellers can mitigate a consumer’s quality uncertainty 

on an experience product. Online marketplaces have introduced preventive tools such as 

user review scores (Chen and Xie 2008; Dellarocas 2005) and escrow service (Antony et 

al. 2006; Hu et al. 2004). Individual sellers provide detailed information such as delivery 

time, money-back-guarantee, and reputation signals to convey the true quality of products 

and services (Li et al., 2008). An emerging stream of information systems (IS) literature 

has found that specific information cues, generated from early adopters, such as ranking 

information (Duan et al. 2009; Ghose et al. 2012; Yoo amd Kim 2012), accumulated user 

reviews (Dellarocas et al. 2007; Gao et al. 2006; Zhu and Zhang 2010), and the value of a 

product attributed from others (Gallaugher and Wang 2002; Kauffman et al. 2000; Zhu et 

al. 2006) are predominant in shaping a collective purchase/adoption decision among 

online consumers. However, the complementarities between the signal sources and types 

in competitive markets remain largely unexplored. 

 The dominant approach to discover interactions in cues is controlled experiments. 

However, the scope and dynamics of the relative effects among cues are typically 
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restricted due to research design in experiments (Olsen and Jacoby 1972). Since a limited 

number of potential cues can be included in one experiment, a comprehensive 

understanding and assessment of multiple product cues in competitive product market 

settings is yet to be established. Moreover, product description content as an additional 

cue is yet to be examined in this research domain. The cues from different sources can 

complement or substitute each other in determining a digital product’ quality. As such, 

the relative effects among cues from multiple sources need closer scrutiny. More 

importantly, the cues in a product description are intentionally selected and altered, and 

thus consumer evaluations are also likely to change as a result (Balboa and Marti 2007). 

To address these research gaps in the extant literature, we empirically analyze the 

dynamic impacts of cues from multiple sources over multiple periods of time in the 

mobile App market. 

There is also a paucity of research on a seller/supplier-generated product 

description and its impact on product sales. A large volume of extant literature finds a 

significant association between user-generated reviews (i.e., description of a product 

from personal experience) and positive product sales growth (Chevalier and Mayzlin 

2006; Dellarocas et al. 2007; Liu 2006; Zhu and Zhang 2010). The design of 

online/offline store with effective interfaces such as adding rich product descriptions 

(Simonson et al. 1994) and presenting detailed product features/information (Granados 

and Gupta 2013; Lohse and Spiller 1998) can influence product sales.  However, product 

description content has not been systematically examined in depth to understand the 

specific aspects of descriptions that are most effective. Recent white papers and industry 

reports highlight the important role of App description in advertising an App to potential 
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consumers. They commonly suggest a set of principles in formulating a good product 

description8: 1) List benefits, not features; 2) Let customer describe it; 3) Make your 

content unique; 4) Provide additional value. While such pragmatic suggestions emphasize 

a strategic formulation in writing an attractive product description, it is unclear as to 

whether these principles in the descriptions contribute to a successful App/product. To 

the best of our knowledge, no prior work has examined the impact of product 

descriptions on product sales, especially in a mobile App setting. This research aims to 

fill this gap in the literature. 

The main objective of this study is to evaluate the role of dominant market 

information cues (henceforth, market cues, e.g., rankings and review scores) in shaping 

mobile App users’ purchase decisions in mobile App markets, and to identify the 

alternative producer-generated product cues (henceforth, producer cues) that can also 

influence App sales performance in the presence of strong market cues. In addition, we 

seek to examine the interactive effects of market and producer cues on sales performance. 

Mobile platforms require listing of market cues that include product attributes (e.g., 

rankings, price, seller name, and update information) and user supplied information (e.g., 

user review scores/comments). Market cues deliver relatively objective information (i.e., 

high-fidelity). On the other hand, developers can supplement the market cues through 

                                                           
8  

Tips for Improving your Product Description (October 17, 2007, Palmer Web Marketing) available at 

/http://www..palmerwebmarketing.com/blog/6-tips-for-improving-your-product-descriptions/  

Smart Tips for Improving your Product Descriptions (July 25, 2012, SEO Service) available at 

http://3in1seoservices.com/tips-to-improve-product-descriptions/ 

How to Write your Apple App Store Description (March 12, 2012, Toura.com) available at 

http://support.toura.com/kb/marketing-promotion/how-to-write-your-apple-app-store-description 

http://www..palmerwebmarketing.com/blog/6-tips-for-improving-your-product-descriptions/
http://3in1seoservices.com/tips-to-improve-product-descriptions/
http://support.toura.com/kb/marketing-promotion/how-to-write-your-apple-app-store-description
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product descriptions to transmit relatively subjective quality signals to users (i.e., low-

fidelity). These two distinctive cues on an App contribute to consumer value perceptions. 

Consequently, this study answers the following key research questions: 

- Do market cues have prominent effects in influencing consumers’ purchase 

decisions in mobile App markets?   

- Do producer cues have significant impacts on App sales in the presence of strong 

market cues? If so, what types of producer cues are associated with better sales 

performance? 

- Are there complementarities between producer cues and market cues in 

influencing the success of App sales? 

 

We utilize signaling and cue utilization theories to systematically classify the cues 

(or signals) in App markets. By utilizing text-mining methods, we identify commonly 

used App product description patterns/keywords from 7,376 descriptions of Apps that 

appeared in the top 300 game charts over 20 weeks from April to August 2012. We then 

conduct panel analyses, including predictors on both description messages (i.e., producer 

cues) and App-specific properties (i.e., market cues), to investigate the impact of product 

description formulation on App sales. We find systematic patterns of intrinsic and 

extrinsic cues in product descriptions. The cues in the product descriptions are found to 

be strong predictors of App sales. More importantly, we establish the existence of 

complementarities between producer and market cues. In general, irrespective of cue 

source, we find extrinsic cues to be stronger predictors of App sales.       
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4.2. Theoretical Foundation  

Signaling 

Information asymmetries between producer and consumer lead to unfairness 

perceptions between the two parties (Connelly et al. 2011), which is evidenced as 

problems of adverse selection (Akelof 1970) and moral hazard (Hölmstrom 1979). In 

information economics, signals are regarded as mechanisms to solve information 

asymmetry among the market participants (Kirmani and Rao 2000). Earlier IS and 

Economics studies in this domain examined retailer reputation and product quality in 

offline markets. As such, signals from a retailer such as price (Caves and Greene 1996; 

Gerstner 1985; Tellis and Wernerfelt 1987; Wolinsky 1983), reputation (Chu 1992; Chu 

and Chu 1994), brand (Dawar and Parker 1994; Erdem 1998; Rao et al. 1999; Richardson 

et al. 1994; Wernerfelt 1988), warranty (Boulding and Kirmani 1993; Kelly 1988; Wiener 

1985), packaging (McDaniel and Baker, 1997; Zhu et al. 2012), and advertising 

expenditures (Archibald 1983; Basuroy et al., 2006; Kirmani 1990) have been identified 

as strong quality indicators. Recent research in online market contexts finds that 

information cues through word-of-mouth such as user review scores/comments 

(Dellarocas 2005; Forman et al. 2008; Godes and Mayzlin 2004; Li and Hitt 2010; Zhu 

and Zhang 2010), escrow services (Antony et al. 2006; Hu et al. 2004), website quality 

(Wells et al. 2011), and copyright enforcement (Takeyama 2009), are strong predictors of 

quality perceptions. Given the vast array of possible cues and cue sources, researchers 

have focused on how consumers utilize cues based on the cue sources and formats.  In 

mobile App markets, however, effective signals have not yet been studied. Since most 

transactions in mobile App markets are made through mobile devices in a platform 
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market, transaction uncertainties related to the platform tend to be low, whereas, 

transaction uncertainties related to the App under consideration tend to be high. Given the 

large number of Apps (even within App categories), consumer cognitive load for finding 

the right App from a very large selection of similar Apps can be extremely high. As such, 

product cues and their utilization can play a critical role in mobile App markets.  

Information Flow in Digital Markets 

Extant IS literature have found that a certain form of information cues such as 

popularity (e.g., rankings), reputation (e.g., user reviews), and the value of a product 

attributed from user network size (e.g., accumulated usage or total downloads) is 

prominent in influencing users’ purchase decisions on digital products (Brynjofsson and 

Smith 2000, Duan et al. 2009). In this regard, the theories of information cascades, word-

of-mouth, and network externalities have been extensively used to explain and 

understand the key drivers (cues) in shaping online users’ decision making behaviors in a 

collective way, i.e., herding behavior. In particular, the important role of ranking 

information has been identified in stimulating information cascades in digital software 

products (Duan et al. 2009) and online music (Yoo and Kim 2012), where consumers 

with noisy information make decisions based on observation of others (i.e., rank of a 

product) without considering their own private information (Banerjee 1992).  Moreover, 

online user reviews from early adopters have been considered as a strong quality 

indicator, especially for experience goods (Gao et al. 2006), and consequently reduce the 

perceived risk related to purchase ((Dellarocas 2005; Murray 1991) and promote 

followers to purchase a highly reviewed product such as movies (Dellarocas et al. 2007; 
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Chintagunta et al. 2010), books (Chevalier and Mayzlin 2006; Godes and Mayzlin 2004), 

and software products (Zhu and Zhang 2010). Imitative behavior among individuals also 

arises when a particular option become more valuable of others also choose the same 

option (Katz and Shapiro 1985). For example, many software products (Gallaughter and 

Wang 2002; Kauffman et al. 2000) and electronic systems (Zhu et al. 2006) are subject to 

network effects, and thus users’ adoption decisions are influenced by early adopters’ 

decisions. In summary, past IS and relevant literature has studied how a certain form of 

market cues, mainly generated from predecessors, influences collective behavior among 

subsequent decision makers.  

Although the role of market-generated cues from early user groups are expected 

to be important in search-intensive mobile App markets, multiple attributes of an App are 

likely to either impact sales or complement the dominant market cues in promoting sales.  

In reality, the market offers a variety of product attributes (cues) to consumers as quality 

indicators of a product besides its ranking and review score, and consumers generally use 

multiple information cues to evaluate the quality of the product (Alba et al. 1999). In 

mobile App markets, for example, producer-generated cues such as description on 

content and features of an App not only help consumers evaluate whether the App meets 

their needs, but also influences consumers’ purchase decisions even when selecting a 

popular and positively reviewed App by confirming the quality of the App. Therefore, 

strategic representation of multiple information cues has the potential to reduce a user’s 

perceived risk related to purchase quality uncertainty, to reduce cognitive burden, and to 

increase willingness to purchase. To evaluate the role of App product cues and interactive 

effects among multiple cues, we utilize theories of cue utilization and market signaling, 



  

49 

 

where product cues available in the market are classified based on a cue’s type and 

source (Valenzi and Andrew 1971), and accordingly a consumer’s perceived value from 

the cue is theoretically explained (Cox 1967) instead of characterizing the impact of a 

single cue on consumers’ decision making behaviors. This research adds to the IS 

literature by evaluating the role of multiple producer generated information cues in the 

presence of dominant market cues. 

Cue Utilization 

Product cues can be broadly understood based on the cue type and cue source. 

First, product cues can be categorized into intrinsic and extrinsic cue dimensions based 

on information content emphasizing intrinsic and extrinsic attributes of a product 

(Valenzi and Andrews 1971). Intrinsic cues are physical attributes of a product such as 

color and size of a cloth. Extrinsic cues are product-related, but not physical components 

of the product such as price and brand. As such, in App markets, intrinsic App cues 

provide inherent information on Apps such as content/functionalities and technical 

features. Extrinsic cues include explicit App attributes such as price and user review 

scores. In addition to the cue types, App markets offer two distinctive product cue 

sources: from (1) market formats, the market cue, and (2) a description, the producer cue. 

First, the market itself presents the basic App information on the App product page views 

according to specific market formats/rules (e.g., price, user review, release/updated date, 

and technical system requirements). Second, an App developer is able to include 

additional App information or marketing messages through product description (e.g., 

content, update information, promotional price and historical sales figures, and 
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downloads). While the market cues deliver objective information to users with high-

fidelity, the producer cues presented in a product description transmit relatively 

subjective information to users with low-fidelity since the cues in the description are 

strategically formulated and selectively offered by the developer. Figure 2 summarizes 

the main aspects of App product cues along the dimensions of cue types and sources.  

 
Figure 2. A Categorization of App Product Cues 

 

We hypothesize the user-perceived values from intrinsic and extrinsic cues, and 

product and market sources as follows. Cue utilization theory states that a product 

consists of an array of cues that consumers use to determine the value prior to actual 

purchase, and the cues provide utility (i.e., perceived quality) for consumers according to 

the predictive and confidence value of the cues (Cox 1962). The predictive value (PV) 

indicates “the degree to which an individual consumer associates a cue with product 

quality” and the confidence value (CV) is “the degree to which a consumer is confident 

in his/her ability to accurately perceive and judge that cue” (Olson and Jacoby 1972).  

While the PV of a cue is related to the predictive relationship between specific levels of 

the cue (e.g., high or low price) and various degrees of quality (e.g., high or low quality), 

the CV of a specific cue vary across consumers based on cue related experience, 



  

51 

 

knowledge, and familiarity.  From this classification, extant literature has examined the 

PV and CV of extrinsic and intrinsic cues, but presented conflicting results. While some 

studies (Allison and Uhl 1962; Zeithaml 1988) found high PV and CV from extrinsic 

cues such as brand, price, and store name since these are easily verified, others (Jacoby et 

al., 1971; Szybillo and Jacoby 1974) suggested intrinsic cues directly related to physical 

attributes such as product samples are more important determinants of perceived quality.  

In mobile App markets, extrinsic attributes (E) (e.g., price and user review score) 

and intrinsic attributes (I) (e.g., feature updates and size) are readily/concurrently 

available for users when they make inferences for Apps. However, unlike traditional 

products, intrinsic attributes of Apps such as functionality and content are more difficult 

to assimilate and understand prior to consumer purchase (i.e., low CV). Moreover, the 

cues offered from market formats are more likely to contribute to higher PV than those 

from App descriptions. In general, the producer cues (P) in a product description are 

selected and alterable by a developer, and thus it makes it difficult for consumers to infer 

an App’s actual quality. On the other hand, the market cues (M) are likely to help the 

users predict the value of an App by offering a set of comparative information of the App 

in the market context. For example, an App with good user reviews (scores) could be 

considered as a high-quality App and assist the users to compare it with other competitor 

Apps. Based on this discussion, we summarize the user-perceived values from intrinsic 

and extrinsic cues along with the two different product cue sources in Figure 3. 

 
Figure 3. A User-Perceived Values from App Product Cues 
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In understanding the effects of multiple cues, cue consistency theory proposes that 

multiple cues are more useful when they provide confirming information than when they 

present distinctive conclusions (Maheswaran and Chaiken 1991). In line with the theory, 

when multiple cues from one source are consistent, the signal quality among the cues are 

strengthened and are more effective in improving consumers’ perceived quality (Gao et 

al. 2008). When the cues are inconsistent, consumers put more weight on negative cues 

(Ahluwalia 2002; Campbell and Goodstein 2001). For example, Miyazaki et al., (2005) 

examined the combined effects of price and warranty on consumers’ perceived quality 

and found that when the paired cues were consistent (i.e., high price and strong warranty 

or low price and weak warranty), the effects became stronger. Further they suggested that 

when they are inconsistent (i.e., low price and strong warranty), negative cue is more 

salient to consumers. Nevertheless, the theory does not explain the synthesized effects of 

the cues from multiple sources, especially a set of cues offered by different signal senders 

(i.e., a market and a seller) for the same product. Based on the key tenets of cue 

utilization theories, we evaluate whether extrinsic and intrinsic cues in the App 

descriptions have significant impacts on the success of App sales and whether they can 

complement or substitute those in market cues. In particular, we examine 

complementarities between the cues from the different sources (i.e., producer cues and 

market cues, P*M).  
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4.3. Data and Research Design 

Data Description 

Our empirical analyses were conducted on the individual paid Games Apps in the 

Apple App Store. The Games category is the most popular among 21 categories and 

makes up 17.2 percent of the Apps on the Apple App Store (as of August 2013)9. An 

average of 129 new game Apps appeared every single day during the study period. As 

such, the growing number of Apps has led to high costs for finding and evaluating Apps, 

and therefore the cues provided by the market and developer are expected to influence a 

user’s quality perception on an App. In addition, Games Apps accounted for 40% of store 

downloads and covered 70% of App Store revenue in 201310. Such a dominant position 

of Games offers a market consisting of a large body of heterogeneous consumers. While 

Apple provides three different top Games charts: free, paid, and grossing charts, we focus 

on the top paid chart. Inclusion of free Apps in the charts11 has several limitations in 

examining the effects of App product descriptions on App sales.  First, free Apps has a 

strong zero price effect, where consumer demand for a zero-priced item is much greater 

than a price even slightly greater than zero (Shampanier et al. 2007). Therefore, free of 

charge can act as a big megaphone for advertising, creating a large user network 

regardless of other product cues. Second, free Apps are not purely free and include 

                                                           
9 148Apps.biz (August, 2013): App Store Metrics available at http://148apps.biz/app-store-metrics/?mpage=catcount 
10 App Annie  (August, 2013): App Annie Index: Market Report Q1 2013 –iOS App Store Revenue available at  

http://blog.appannie.com/app-annie-index-market-q1-2013/ 
11 Top grossing charts include around 90% of free Apps. Although supposedly an App’s rank is determined by both the 

number of downloads and price (i.e., ranked by gross generated), the actual ranks are determined by downloads solely 

like the ranks in the top free charts.  

http://148apps.biz/app-store-metrics/?mpage=catcount
http://blog.appannie.com/app-annie-index-market-q1-2013/


  

54 

 

hidden costs for consumers. A large portion (90%) of free Apps in the top 300 charts 

includes in-app-purchase (IAP) options. 

We collected Apps in the top 300 paid games chart for each week from April 

2012 to August 2012. During the period of 20 weeks, a total of 787 unique Apps (a total 

of 7,376 observations /descriptions) appeared in the top chart datasets12. App product 

descriptions for all observations were recorded in HTML formats and we used the first 

two sentences in the descriptions that users can see when they select an App (Apple 

restricts up to 120 characters (or no more than 2 sentences) in truncated descriptions). In 

general, users are not likely to click ‘More..’ to see the rest of description before deciding 

whether they are installing an App or not, and therefore sellers will need to deliver 

intended intrinsic cues in a few lines to capture consumer interest.  

For the cues delivered through market formats (i.e., market cues), we included the 

following elements in an App product page view: App’s rank, price, released date, recent 

update date, user review score, size, in-app-purchase options, and the number of 

screenshots (as a proxy for graphical information). Finally, since we were not able to 

observe an App’s information once it exits the top 300 charts, we focused on Apps listed 

in the top 100 chart at least once during the study period for longitudinal analyses. The 

final dataset includes a total of 325 Apps with 4,878 descriptions. 

                                                           
12 The Apps in the top charts were collected every Friday at 7:00 pm during the study period. To verify 

potential changes in the composition of Apps and rankings in the charts, we compared data sampled on a 

daily basis with the sample collected on a given day of a week and found the ranking patterns to be similar 

in the two samples.  
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A key first step in the analysis was to identify the groups/clusters of keywords in 

the first two sentences of App descriptions from all the Apps that appeared in the top 300 

charts by utilizing text-mining methods. This step empirically discovered common 

patterns of extrinsic and intrinsic cues about Apps. Second, a set of panel analyses 

including predictors on both keywords groups (i.e., producer cues) and App-specific 

properties (i.e., market cues) was conducted to investigate the impact of individual cues 

on App sales as well as the complementarities between the two sets of cues. 

Textual Information from Apps Product Descriptions 

Text mining methods have been widely used for investigating systematic patterns 

in unstructured texts in various research areas. Eliashberg and Zhang (2007) utilized text 

mining to explore the relationship between the presentation of keywords in a movie script 

and a movie’s return on investment. Pavlou and Dimoka (2006) examined how online 

feedback comments influence trust building by distinguishing benevolence comments 

and credible comments in eBay user feedbacks. Lee and Bradlow (2011) used a text-

mining technique for eliciting product attributes and brands’ relative positions from 

online reviews of digital cameras. We follow the key procedures of textual information 

extraction used in this line of studies13. First, unstructured textual formats in the 

descriptions were converted to structured formats by ignoring words that carry little or no 

information (e.g., articles, pronouns, and conjunctions) and discarding extra white spaces 

and punctuations (a parsing phrase), and by treating the various forms of the same words 

(e.g., update, updates, updated, updating) and synonyms (e.g., explore, examine, 

                                                           
13 TM (text mining) and NLP (natural language) packages in R 3.0 were used to retrieve textual information 

from App product descriptions.  



  

56 

 

investigate, sand search) as identical (a stemming phrase) based on WordNet database 

(Fellbaum, 1998). Additionally, a set of meaningful non-characters and symbols were 

transformed to relevant characters (e.g., #1 to NumberOne, % to Percent, $0.99 to 

NinetyNineCents). The preprocessed description of an exemplary App is presented in 

Table 10. Although the processed description reveals incomplete English words, we can 

easily recognize the meanings of the words. Second, we selected the most frequently 

appearing terms from the first two sentences of the descriptions. Figure 4 presents a word 

cloud of keywords with their frequency. The word cloud shows that “Play”, “World”, and 

“Time” are the most frequently appearing terms in the Game category. 

 
Table 10. Preprocessed App Product Description 

 

 

Figure 4. Word Cloud of Keywords 
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However, this frequency-based keywords selection approach does not account for 

the importance of words across the descriptions. Therefore, the frequency of occurrence 

of each word within and across Apps is used for evaluating the relative importance of the 

word in the descriptions.  By removing the words which have at least a 92 percentage of 

sparsity14 (i.e., these words do not appear in 92 percent or higher of app descriptions), we 

selected the most important 30 words from a total of 5,293 terms in the descriptions as 

follows: 

Table 11. Selected Keywords from App Descriptions 

 

Third, we clustered the selected words into four meaningful keywords groups 

based on relevance by utilizing a hierarchical clustering method. Hierarchical clustering 

techniques are the most commonly used approach to identify the clusters of terms/entities 

in text/data-mining (Feinerer et al. 2008). The distance between two pairs of terms was 

measured by the Euclidian distance metric and the dissimilarity between two clusters was 

computed by Ward’s minimum variance method (Milligan and Cooper 1988). That is, 

while the dissimilarity within clusters is minimized, the dissimilarity between the clusters 

is maximized. A dendrogram of the clusters produced by hierarchical clustering is shown 

in Figure 5. 

                                                           
14 We created a document-term matrix (DTM), where the frequency of terms that occur in Apps product descriptions is 

presented in a matrix format, to remove sparse terms (i.e., terms occurring only in very few descriptions). This reduces 

the number of terms dramatically without losing significant relations inherent to the term matrix (Feinerer 2008). 

Finally, 92 percent of sparse terms (i.e., terms occurring 0 times in a product description) was removed and the most 

used 30 terms across Apps’ descriptions were selected for the analysis.  
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Figure 5. Clusters of Keywords 

 

After clustering, we had the four clusters of keywords presented in App product 

descriptions: Price Promotion, Sales Performance, User Review, and Feature Updates. 

An illustration of the clusters of keywords and usages in the descriptions is presented in 

Table 12. 

In order to validate the selection of 30 keywords and four clusters from App 

descriptions, we conducted a set of additional analyses, and found that the four clusters 

from 30 key terms ensure the best identification of product-related information in App 

descriptions (see APPENDIX B for additional details). 

Finally, for an empirical analysis based on the extracted textual information from 

App descriptions, each cluster is considered as a single variable. A score for each 

keyword group of individual Apps was assigned according to the number of words used 

in the descriptions. Table 13 presents the cluster scores for each App. 
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Table 13. Cluster Scores 

 

For example, an App, ‘Infinity Blade’, has a score of 8 for the ‘Promotion’ cluster 

while other cluster scores remain zero. The cluster of ‘Uniqueness’ indicates a group of 

words that have not appeared in other four clusters but used in the head of a description. 

The terms in Uniqueness characterize an App’s key features/uniqueness of content.  For 

example, a product description of an App titled ‘Epic Astro Story’ includes 14 unique 

words which did not appear in the identified four clusters, but is used for describing the 

content/features. Moreover, most App descriptions include two or more keywords 

clusters (i.e., a mix of clusters) as presented in the last row of Table 13.  
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4.4. Empirical Approach 

Table 14 lists summary statistics for the research variables extracted from both 

product descriptions and App-specific information available at Apple App Store.  

 
Table 14. Summary Statistics of the Dataset 

  

Research Variables and Model Specification 
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An array of information cues that users can observe from App store markets was 

used for the analyses. An overview of the empirical modeling approach is presented in 

Figure 6.  

 
Figure 6. Empirical Model 

 

The cues are classified as extrinsic or intrinsic to Apps. Extrinsic cues (E) are 

App-related attributes, but are not integral to an App. For example, price and user review 

scores are external to the App but influence the user’s perceived quality. Similarly, the 

App’s age and ranking information are not related to the App’s physical specifications 

but they could signal the quality of App to the users.  Conversely, intrinsic cues (I) are 

related to physical attributes of App such as unique features/content and size. We include 

the presence of in-app-purchase (IAP) option and the notification of feature updates in 

intrinsic cues since they indicate real changes to Apps. For instance, the inclusion of IAP 

option in a paid App implies limited feature availability and extra payment for more 

functionalities; updates on components in Apps indicate changes in features.  
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For producer cues (P) presented in App product descriptions, producer-extrinsic 

cues (PE) included keywords revealing price ‘Promotion’, prior sales ‘Performance’, and 

user ‘Reviews’; producer-intrinsic cues (PI) included information on feature ‘Update’ and 

‘Content’. Similarly, market cues (M) delivered through market formats include market-

extrinsic cues (ME) of ‘Price’, ‘Review Score’, ‘Age of App’, and ‘Hit App’ and market-

intrinsic cues (MI) of ‘Feature Update’, ‘Size’, and ‘In-App-Purchase’ option. To address 

the effect of prior sales which is prevalent in App store markets, we include ‘Previous 

Rank’ as a control variable. The research framework presented in Figure 3 leads to the 

following model: 

 

,where Salesit is the sales amount of an App i at time t. Since Apple does not release 

actual sales figures to the public, our measure of the success of App sales is based on 

rank information. Thus, the negative logarithm of rank of an App at week t (i.e., - 

ln(Rankit)) was used as a proxy of App sales, as suggested in prior research for using rank 

information as a proxy for sales (e.g., Brynjofsson et al. 2010a; Chevalier and Mayzlin 

2006; Ghose et al. 2006; Ghose and Yang. 2009). Producer_Cueit indicates a set of 

cluster scores derived from an App i’s description at t. The cluster scores (i.e., the 
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number of terms in clusters) in the producer cues were log-transformed to handle the 

variation of values (e.g., predominant zero cluster scores in the sample). A vector of 

Market_Cueit is a set of App-specific attributes offered from a market. Controlit includes 

an App’s previous rank, ln(Rank)t-1, which controls for the effect of prior sales at t-1 on 

current sales at t. The interactions of Extrinsic_Cueit and Intrinsic_Cueit, and of 

Producer_Cueit and Market_Cueit are used for investigating the complementarities 

between a pair of individual cues. ΣTimeit is a time-fixed effect term. αi represents an 

App-specific fixed effects term incorporating unobserved heterogeneity among Apps. 

Finally, εit is an unobserved error term in demand.  

From this model specification, we ran multiple regression models. The first set of 

models (Model I) investigate the main effects of individual cues on App sales and the 

improvement in model predictive power by adding each group of cues to the baseline 

model. The second set of models (Model II) examines the complementary effects 

between pairs of distinctive cues (i.e., P and M & E and I).  

 Keywords Selection and Endogeneity 

It is reasonable to perceive that the keywords/messages in descriptions can be 

endogenously selected by developers, and therefore a fixed effects approach may not 

control for such a potential endogeneity problem. To address this potential confound, we 

conducted several different analyses to justify the empirical model. 

First of all, notice that the unobserved demand shock consists of the App-specific 

mean level 
i  and the time-varying deviation from the mean level 

it  in the proposed 

model. Suppose that 
i  represents the unobserved general quality of the App and the 
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sellers determine the levels of considered cues and/or control variables based on the 

general quality of the App. Then, the cues and a control variable are mainly correlated to

i but uncorrelated to
it , and the fixed effect approach can successfully handle the 

endogeneity problem. If the time-varying deviation of the demand shock (
it ) is also 

correlated with the cues and control variables, this additional endogeneity has to be 

appropriately tackled. However, we believe that this correlation is not likely in our data. 

A majority of Apps in our dataset are sold by small individual developers. As we noted, 

there are no easily accessible guideline or theory on key decisions associated with the 

cues and control variables. Therefore, it is less likely that developers react to time-

varying demand shocks on a weekly basis uniformly. We expect an insignificant link 

between the time varying demand shocks and the cues and/or control variables. As such, 

the fixed effects approach can sufficiently address any App specific endogeneity issue. 

Alternatively, if one can obtain good instrument variables, the generalized method of 

moments (GMM) approach can be used for the model estimation. The main advantage of 

GMM estimator is that the estimates are still valid when the cues and/or control variables 

are correlated with
it . However, there are several problems associated with utilizing the 

GMM estimator in our research setting. First, it is difficult to identify good instruments 

that are correlated with a developer’s keyword selection and control variables but are 

uncorrelated with sales performance (for similar arguments, see Huang et al 2012; Qian 

2007). To circumvent this problem, Arellano and Bond (1991) proposed a lagged 

instrument based estimation approach but this method also does not guarantee a valid 

estimation. In a recent study, Rossi (2013) therefore advises that “if strong and valid 

instruments are not available, then the researcher is much better off measuring the 
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variables in hand rather than using instruments (such as lagged variables) which are 

clearly invalid”. Furthermore, Arellano and Bond GMM approach is designed for small T 

(time) and large N (subjects) but our data set has a relatively long time period (20 weeks) 

and a small number of subjects (325 Apps). Keeping all these shortcomings in mind, we 

estimate the proposed model using the Arellano-Bond (AB) difference GMM estimator to 

check the robustness of our findings. The results from GMM estimator are qualitatively 

similar to those of the fixed effect approach. The signs of all estimates are the same but as 

expected the significance levels of some variables are slightly different. 

Model Validation 

We conducted several diagnostic tests to validate our model specification. First, 

we checked a potential reverse causality between updates in the description and changes 

in App sales. The sampled Apps’ descriptions were fixed at the first week of study and a 

dummy variable (i.e., Description_changeit) indicating whether an App’s description was 

changed in a given week was introduced in the models. For the estimation, we used the 

random effects for individual Apps with time-specific fixed effects.  Then, we conducted 

the Granger causality tests (Granger 1969; Hood et al. 2008) using one-to-three year lags 

for Rank and Description_update. The test results indicated a rejection of the null 

hypothesis that Description_update did not Granger cause Rank. However, the results do 

not support rejection of the null hypotheses that Rank did not Granger cause 

Description_update for one-to-three lags. Therefore, we conclude that changes in App 

sales came after the description updates.     
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Second, the presence of multicollinearity was tested with Variance Inflation 

Factors (VIF) for each explanatory variable in each regression model. None of the VIF 

values exceeded 2.43, indicating that multicollinearity was not an issue in our models. 

We did not find any strong correlations between predictors; the highest correlation (ρ= 

0.422) among predictors was between Top25it-1 and –log(Rank)it-1. Moreover, to address 

the multicollinearity problem due to the inclusion of multiple interactions between 

extrinsic and intrinsic cues from the two different sources, we estimated the interaction 

terms using a residual centering procedure (Lance 1988) to correct the partial coefficient 

distortion effects that arise from correlations between main effects and interaction terms. 

However, we did not find any significant changes in estimation outcomes after applying 

the residual centering procedure.  

Third, to check if App-specific fixed effects models provide consistent and 

efficient estimates, we conducted two formal model specification tests: Breusch and 

Pagan’s (1979) Lagrange multiplier (LM) test for heterogeneity effects specification and 

a Hausman specification test (1978) against the random effects model. The test result 

from Breusch-Pagan LM suggests the model specification should incorporate App-

specific heterogeneity (i.e., we rejected the null hypothesis that variances across Apps are 

equal to zero at 1% significance level). In addition, Hausman test indicates that a fixed 

effects specification for our models is preferred over random effects approach (i.e., we 

reject the null of using random effects models at 1% significance level). To see if time-

fixed effects are needed when running a fixed effects model, we conducted a joint test to 

check if all the time (week) dummies are equal to 0. We reject the null that all time 
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coefficients are jointly equal to zero, therefore time fixed effects are needed in the 

models.  

Fourth, we checked whether the inclusion of a lagged dependent variable in our 

fixed-effects models creates an autocorrelation, and consequently lead to a biased 

estimator. In this regard, we conducted a Wooldridge test for autocorrelation in fixed-

effects models (Drukker 2003; Wooldridge 2002), and failed to reject the null of “no 

autocorrelation”. In addition, we estimated the models by excluding the AR(1) term, -

ln(Rank)it-1, and there were no remarkable changes in the signs and significance levels as 

compared with the original model specifications. Therefore, serial correlation of residuals 

is not a concern.  

Fifth, we diagnosed a potential endogeneity problem that can arise from the 

repeated entries and exits of Apps in the top charts (this creates unbalanced panel 

structure in the dataset). We replicated the analysis with a balanced panel that included 

only Apps that were continuously listed in the top charts throughout the 20 weeks. The 

estimation outcomes from the balanced panel data present qualitatively the same 

outcomes as compared to the original analysis. As such, our unbalanced panel structure is 

robust to the entry and re-entry of an App in the charts.      

Finally, we performed a modified Wald test for heteroskedasticity in our fixed 

effects models, and rejected the null hypothesis of homoskedasticity (i.e., constant 

variance) at the 1% significance level. Therefore, we use the robust standard errors 

clustered by individual Apps (Rogers 1993) for all the models. 
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In addition, we conducted a set of post-hoc analyses to test the robustness and 

validity of our findings: 1) sales performance with full descriptions; and 2) the impact of 

App descriptions in productivity Apps. We report these additional models in a separate 

section. 

4.5. Results 

Main Effects 

First, we evaluate whether market cues have dominant effect in influencing 

consumers’ purchase decisions, and consequently lead to actual sales in the mobile App 

market setting. Then, the role of producer cues in promoting App sales is investigated. In 

this model setting, we examine the individual impacts of producer/market and 

extrinsic/intrinsic cues on App sales when individually separated cues are assumed to be 

available in the market.  

To examine model predictive power due to the addition of distinctive cues, we 

sequentially ran Model I in four iterations. As a baseline (null) model, Model I(0) 

includes only control variables. Model I(1) and Model I(2) examine the main effects of  

producer (P) and market (M) cues respectively. Finally, Model I(3) combines extrinsic 

(PE and ME) and intrinsic (PI and MI) cues from product descriptions and market 

formats. The ability of a model to predict better than a baseline model was evaluated 

based on adjusted R2 values. Overall, the model predictive power increased when we 

incorporated more cues into the baseline model. However, the inclusion of intrinsic cues 

(I) or producer cues (P) marginally increased adj. R2 values.   
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Extrinsic vs. Intrinsic Cues: In Model I(1) and Model I(2), the addition of 

extrinsic cues (PE or ME) to the null model had higher adj. R2 values than that of intrinsic 

ones (PI or MI) regardless of cue sources. Similarly, Model I(3) indicated that the 

combination of extrinsic cues (PE+ME) resulted in a 38.9% (from 0.383 to 0.532) 

increase in the model predictive power as compared to that of intrinsic cues (PI+MI). The 

findings are consistent with prior studies that have shown that consumers are more likely 

to rely on extrinsic cues than intrinsic cues (Dawar and Parker 1994). An App user is 

likely to purchase an App by evaluating its value based on extrinsic cues since extrinsic 

attributes of the App are more readily available and easily evaluated (i.e., high PV and 

CV) than intrinsic attributes such as descriptions delivering inherent features (Updateit 

and Uniquenessit) of Apps and market cues (Sizeit and In-App-Purchaseit) which are 

generally difficult for consumers to assess prior to actual purchase (Zeithaml 1988). As a 

result, a one-percent increase of price promotion-related terms (Promotionit) in the 

descriptions improved the rank by 15.9%. A one-percent lower price (Priceit)
15, a one-

unit increase in user review score, and a week newer App (Age_of_appit) improved the 

App rank by 79.3%, 12.8%, and 1.2% respectively.    

Producer vs. Market Cue: The outcomes in Model I(1:P) show that the 

availability of producer cues (P) somewhat improved the predictive power  (a 20.3% 

increase from Model I(0)). Furthermore, there was a marginal improvement in adj. R2 

when both producer and market cues are introduced in Model I (3:P+M) as compared to 

                                                           
15 The majority of Apps in the Top Paid charts were offered for $0.99 and they accounted for 65.6% of Paid 

game Apps. To evaluate the impact of this specific price on App sales, we replaced ln(priceit) with a 

dummy variable, nintynine_centit, indicating whether an App was offered for $0.99. The resulting 

coefficient estimate was 0.719*** (.0087). In other words, offering an App at the $0.99 price-point 

improves the ranking by 71.9%. 



 

72 
 

when only market cues were considered (Model I(2:M)). The inclusion of market cues 

allowed a better prediction for App sales - the adj. R2 value by 46.8% from that of Null 

Model (from 0.369 to 0.536). In addition, keywords containing ‘Promotion’ was the only 

significant predictor in producer cues, the five predictors (Priceit, Review_scoreit, 

Age_of_appit, Feature_updateit, and Sizeit) in market cues were significantly associated 

with App sales.  

There are several reasons why producer cues may not be strong quality signals in 

the context of mobile App markets. First, since the attributes in App product descriptions 

are selected/written by developers, the producer-driven cues are framed intentionally and 

thus these highly subjective cues are transmitted to users with noise (i.e., a framing 

effect: Anderson, 2011). For example, a developer can include a hyped prior sales 

information for an App (“over 100 million downloads in 20 countries…”) not easily 

available in the market format, or put only extremely positive user review comments in 

the product description (“…Best game ever played!!...”). Therefore, a user’s predictive 

value (PV) associated with producer cues is likely to be relatively low. Second, the 

intrinsic cues provide very content-specific and technical attributes of Apps such as “this 

version enhances graphic performance with an Unreal 3D engine…” and “Monsters have 

stolen your homework and now it’s payback time!..” Consequently, users may not 

accurately assess the value of Apps without knowledge of App components and 

experience of the App at the time they purchase. This confirms the dominant prior result 

of lower confidence value (CV) in intrinsic cues for consumers (Richardson et al. 1994; 

Zeithaml 1988).  Finally, some cues in the description can be easily distinguishable by 

the corresponding market cues such as price changes and update history. Thus, App users 

can reliably be expected to rely on high-fidelity and objective market cues. 
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In summary, market cues delivering extrinsic attributes of Apps have strong 

associations with App sales as past studies found in online markets and ensure a better 

model prediction when users can only see either producer cues or market cues. However, 

the key question of how the combination of producer cues and market cues can attenuate 

or amplify the signals of quality to consumers still remains. Therefore, we next 

investigate whether producer cues are complementary or substitute to market cues.  

Complementary Effects 

In the models presented in this section, we examine the complementarities 

between producer and market cues as well as between extrinsic and intrinsic cues. In 

reality, App users can inexpensively evaluate an App by simultaneously absorbing the 

cues in App product description and market formats; moreover, both cues are presented 

in a single screen regardless of mobile devices or PCs. Model II includes the five 

different combinations of the cues by introducing interactions between producer cues and 

the significant market cues: ln(Price)it, Review_scoreit, Age_of_appit, Hit_appit-1,and 

Feature_update it. A large body of literature on extrinsic cues has introduced the first 

three extrinsic attributes of a product to examine their impacts on consumers’ purchase 

decisions: price (Dodd and Monroe 1985; Erevelles et al. 1999; Miyazaki et al. 2005), 

review scores (Chen and Xie 2008; Dellarocas 2005; Godes and Mayzlin 2004), and 

ranking information (Duan et al. 2009; Yoo and Kim 2013).  The cues on feature update 

is a strong quality indicator in a mobile App market setting. Adding new features and 

fixing bugs can be regarded as the continuous effort of a developer for a quality App (Lee 

and Raghu 2014). 
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Table 16. Estimation Results of Complementary Effects 
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Table 17 summarizes the complementary effects between extrinsic and intrinsic 

cues from the difference sources. 

 

Table 17. Interactions between Producer Cues and Market Cues 

 

Producer-Extrinsic and Market Cues: When the interactions between producer-

extrinsic (PE) and market-extrinsic cues (ME) are introduced in Model II, the estimates 

of two producer cues (Promotionit and Reviewit) and three market cues (Review_scoreit,  

Age_of_appit,  Hit_appit-1) were significantly associated with App sales, and increased the 

model fit from the baseline model. The outcomes imply complementary relationships 

between PE and ME. A product description conveying price ‘promotion’ has diminishing 

marginal impacts in ‘review scores’ and ‘the age of an App’ for App sales. In other 

words, developers with low review scores could improve sales by emphasizing 

information on price promotion in the head of the product description. Similarly, the 

descriptions advertising price promotion is more effective for newly released Apps than 

for older Apps.  

Interestingly, the hit Apps that appeared in the top 25 charts did not benefit from 

the descriptions including price discount information and users’ positive feedbacks. This 

indicates that the dominant informational cascades among App users for the hit Apps 
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diminishes the role of descriptions in promoting the sale. An alternative interpretation is 

that the marketing messages delivering price discount and positive user reviews in 

descriptions can help the Apps outside the top 25 charts to improve their ranking.  

Producer-Intrinsic and Market Cues: The interactions of two producer-intrinsic 

cues (Updateit and Uniquenessit) and three market-extrinsic cues (ln(Price)it,  

Age_of_appit,  Hit_appit-1) were significantly associated with App sales. The description 

delivering ‘uniqueness’ of Apps is effective in reducing the negative effect associated 

with higher price. In other words, a developer offering a high-price App can attract more 

users by communicating the uniqueness of content and functionalities of the App. The 

negative and significant interaction between Updateit and Age_of_appit indicates that 

newer Apps benefited from feature ‘update’-related information in the description. App 

markets inform the ‘update date’ of an App only to users through the App product page 

without the detailed update information. Therefore, the enriched update specifications in 

a product description enable the users to evaluate the quality of rookie Apps better and 

help making purchase decisions on the Apps.  

The inclusion of Uniquenessit in formulating a description has a positive 

association with Hit_appit-1 in terms of sales. It implies that consumers’ purchase 

decisions for the already popular Apps highly rely on the content of an App. As we found 

in the moderating effects of producer-extrinsic in Hit_appit-1, and sales, the descriptions 

stating price ‘promotion’ and positive user ‘reviews’ do not help the hit Apps. However, 
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the outcome suggests that consumers’ willingness to buy hit Apps are further reinforced 

by descriptions of inherent content/features.  

The models with interaction effects empirically substantiate the important role of 

product descriptions in influencing App sales and suggest how App developers can 

strategically utilize their product descriptions. While the producer cues have limited 

impact on their own, they can influence App sales when coupled with market cues by 

enhancing the CV and PV of users.   

4.6. Robustness Analysis 

In the main results, we restricted text analysis to the first two sentences in the App 

descriptions. It is possible that information content in the complete description may 

improve producer cue performance. Additionally, the analyses focused solely on Game 

category may raise concerns on the generalizability of results to other categories in App 

markets. For example, while gaming Apps are generally consumed for pastime (i.e., 

hedonic use), some Apps in Productivity and Utility categories are downloaded for 

personal tasks (i.e., utilitarian use). Therefore, product cues in App descriptions are likely 

to be consumed differentially in different categories.  To address these two threats to 

robustness, we conducted a set of post-hoc analyses to test the validity of our findings by 

1) analyzing sales performance with full descriptions; and 2) replicating the impact of 

App descriptions in Productivity category.   
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First, we investigated how an entire App description (instead of the first two 

sentences) is associated with an App’s sales performance. Figure 7 presents the four 

clusters with the 30 most frequent terms appearing in the full descriptions.  

 
Note that if we exclude the first two sentences in the full description, the 30 most frequent keywords 

shown above remain unchanged. 

Figure 7. Clusters of Keywords in Full Descriptions 

 

While extrinsic cues delivering marketing messages were more frequently used in 

the first two sentences of App descriptions, intrinsic cues indicating App-specific 

content/functions were dominant in the full description model. In other words, App 

developers promote extrinsic attributes more prominently than intrinsic attributes in the 

head of App product descriptions. We present a summary comparison of estimation 

outcomes in Table 1816.   

                                                           
16 

The detailed estimation results are presented in Tables A4 in APPENDIX B, where we labeled the 

clusters as intrinsic cues (i.e., intrinsic1 to intrinsic4) instead of message-specific names due to difficulty in 
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Note that the number of † indicates the number of significant estimates (product cues) and ‘X’ indicates 

the estimates of producer-extrinsic (PE) cues not observed in the entire descriptions.   

Table 18. Estimation Results: Truncated Description vs. Full Descriptions 

 

The results show that none of producer cues (PE or PI) in the entire descriptions 

have significant main impacts on App sales. Whereas, market cues (ME and MI) remain 

significant. Lack of significance indicates that full descriptions are inherently noisy, and 

therefore the use of the first two sentences in the descriptions is able to reduce this noise.  

Second, in order to evaluate the role of descriptions in other App categories, we 

examined the impact of App descriptions on another App category, i.e., productivity 

Apps. Unlike gaming Apps, Apps in Productivity category are generally consumed for 

utilitarian purposes. Users are more likely to weight the product value based on how a 

Productivity App supports task-related requirements (i.e., practical and economic benefits 

of the App) (Babin et al. 1994; Childers et al. 2001). Hence, it can be argued that intrinsic 

cues are more likely to influence sales in utilitarian categories.  

To test for the differential importance of cues based on product category, we 

performed text mining on 6,016 descriptions of 437 Productivity Apps in the same study 

period17. As shown in Figure 7, we identified five clusters of App product cues in our 

                                                           
understanding the usage of terms in the descriptions. In addition, we do not have “Uniqueness” cluster 

since full descriptions have an average of 730 terms. 

 
17 Less number of productivity Apps appeared than gaming Apps in the study period. Since productivity 

Apps accounted for 2.8% of App store market (148Apps.biz, December 2012), the competition among 
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analysis: Extrinsic, Intrinsic1, Intrinsic2, Intrinsic 3, and Intrinsic4 (i.e., a group of terms 

not used in other four clusters). While only the first cluster includes terms related to price 

promotion information, the other clusters deliver intrinsic cues emphasizing Apps’ 

functionalities that emphasized task-related requirements dominantly appeared in the 

head of descriptions.  

 
Figure 8. Clusters of Keywords in Productivity Apps’ Description 

 

The comparisons of sales performance between Game and Productivity Apps are 

presented in Table 1918.  

 
Note that the number of † indicates the number of significant estimates (product cues) 

Table 19. Estimation Results: Game vs. Productivity Apps 

                                                           
developers seems less intense. The insignificant estimates of Age_of_appit presented in Tables A5 and A6 

in APPENDIX B support that the time of release date do not have significant impacts on App sales.  
18 The detailed estimation results are presented in APPENDIX B.  
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While producer cues (PI) in the descriptions were not significantly associated 

with sales except when only promotion-related messages appeared (i.e., PE (Extrinsicit)), 

market cues (ME and MI) and the interaction of PE and ME remain significant. 

Interestingly, we found that a cluster including App-specific function (i.e., Intrinsic1it) 

had a positive interaction effect with a market cue (i.e., Updateit) in terms of App sales 

(i.e., PI * MI). Consequently, we conclude that market cues of Apps have significant 

impacts on App sales performance regardless of App category whereas intrinsic cues may 

have differential impacts in app categories.  

4.7. Concluding Remarks 

In this research, we set out to investigate and identify producer/market cues that 

are associated with improved App sales performance. We find that extrinsic cues are 

more strongly related to App rankings than intrinsic ones regardless of the information 

source, and that consumers utilize market cues as more reliable quality indicators of Apps 

than producer cues as evidenced in online markets. While the producer cues have limited 

impact on their own, they can influence App sales when coupled with market cues.  

Extrinsic cues available in the markets such as the price of $0.99, one-point 

higher review scores, and a one-week newer Apps improve the sales ranks by 72%, 13%, 

and 1% respectively. We also identify complementarities between producer cues and 

market cues in influencing sales performance. The findings of the study highlight the 

important role of seller-generated product information in improving App users’ perceived 

quality of Apps in the search-intensive product markets. We empirically substantiate that 

cues in the descriptions are complementary to cues offered by the market. In particular, 
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the extrinsic cues of price ‘promotion’ and user ‘review’ comments in a product 

description improve the sales of low review scored, newly released, and non-hit Apps. 

The intrinsic cues delivering information on feature ‘update’ and ‘uniqueness’ of an App 

enhance the sales performance of high-priced and hit Apps. Therefore, producer cues 

have the capability of increasing user demand for Apps in search-intensive product 

markets. 

We believe that the findings bear significant implications to the extant literature 

on formulating strategic product descriptions and to business practices in the mobile 

application software industry. From an academic perspective, our research creates new 

knowledge about mobile App developers’ strategic decisions on writing product 

description and its impact on success in mobile App markets. There is a need to recognize 

the important role of producer cues in the presence of dominant market cues. This 

research is a first step to investigate evidence for the significant associations of producer 

cues and market cues in stimulating product sales.  From a business perspective, this 

research provides valuable managerial insight, not only for mobile App developers, but 

for platform providers. For developers, the intense competition along with the remarkable 

growth in the number of Apps creates ‘survival’ problem for even well-established Apps. 

For instance, more than 80% of 1.4 million Apps in Apple App Store are never 

downloaded by users19. As such, for developers, making sure that their Apps appeal to 

potential consumers and surface higher in the App store search results over rivals is 

important. Therefore, strategic App product description is critical to sales performance 

                                                           
19 The Decline of the App Millionaire (February 19, 2015, Fortune) available at 

http://fortune.com/2015/02/19/the-decline-of-the-app-millionaire/ 

http://fortune.com/2015/02/19/the-decline-of-the-app-millionaire/
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and sustainability of mobile Apps. The results of the study provide clear pointers on the 

types of keywords in App descriptions that are strongly associated with sales 

performance. The strong performance of market cues in our empirical results shows that 

platform providers have considerable influence in determining the success of Apps. 

Although most mobile App store market such as Google Play, Blackberry App World, 

and Apple App Store have large selections of Apps, they highly rely on conventional 

search algorithms that simply match user inputs from databases. Accordingly, customized 

keyword matching or personalized recommendations based on users’ preferences (or 

purchase history) do not yet seem to be the norm in mobile platforms. In this regard, the 

findings in this research can motivate platform providers to design search algorithms that 

effectively match user wants with appropriate Apps.    
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CHAPTER 5 

5. APP QUALITY UPDATE DECISION AND APP SUCCESS 

Continuous effort – not strength or intelligence – is the key to unlocking our potential 

- Winston Churchill, 1965 

 

 

5.1. Research Objective and Questions 

The theory of long-tail market posits that low search costs allow online consumers 

to meet their different tastes from various products, and thus sellers in the tail benefit 

from heterogeneous consumers (Brynjolfsson et al. 2011; Hinz et al. 2011). In the context 

of mobile markets, however, consumer costs for searching the right App are expensive 

due to inherent characteristics of products (i.e., Apps as experience goods, Lee et al. 

2015), the medium of transactions (i.e., restricted search capabilities through mobile 

devices, Ghose et al. 2012), and platforms (i.e., a highly competitive market structure, 

Lee and Raghu 2014). In such search-intensive markets, therefore, consumer purchase 

decisions are generally shaped by early adopters’ decisions in a collective manner 

(information cascades, Banerjee 1992). Specifically, a product’s successful prior ranking 

(popularity) has the pivotal role in stimulating new consumer demands for the already 

successful product as evidenced in the long-tail markets selling songs (Elberse 2010; Yoo 

and Kim 2012), books (Elberse 2008), movies (De Vany and Lee 2001), and digital 

software products (Duan et al. 2009). In line with this, a few recent studies on mobile 

Apps also find high search costs discourage mobile users to search for low-ranked Apps 

(Carare 2012; Ghose et al. 2012). However, no superstars, bestsellers or blockbusters last 

forever. We believe in the old wisdom attributed to Aristotle - “Success is never an 
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accident. It is always the result of sincere effort.” Strong popularity effects driven by 

consumers may not necessarily lead to lasting success in the mobile App market. While 

most digital products are not updatable after their releases, mobile Apps can be easily 

modified and updated by content creators after observing consumers’ purchase behaviors 

and competitors’ strategies. Thus, the success of App is managed by a developer’s 

continuous endeavor throughout the whole life cycle of an App. 

As listed in Table 20, several unique aspects of mobile App markets enable sellers 

to take advantage of updating strategy for App success over conventional digital product 

markets characterized as long-tail markets. 

 
Table 20. Product Updates in Mobile App Markets and Long-tail Markets 

 

First, while in many long-tail markets the alteration of a product is restricted to its 

release time, basic features (such as hard-cover vs. paperback) or price, mobile Apps 

markets offer a greater range of flexibility to sellers in pursuing product update strategies 

(i.e., quality updates) regardless of time and scope (Lee and Raghu 2014). In this regard, 

App developers have capabilities to alter prices and features more frequently during a life 

cycle of an App than is available for digital content creators in other markets.  
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Second, information flows among mobile App consumers are faster than any 

other forms of long-tail markets. For example, information on feature update and 

promotional events is instantly shared by potential consumers through various sources 

such as App stores, online communities, and push notifications notifying App 

price/feature changes. As a result, it stimulates the immediate impacts of update events 

on App sales by inducing a large user network in a short period of time. However, 

consumers in traditional product markets highly rely on pull-based information searching 

for a change in price/feature.  

Third, an App’s update decision can be instantly made through consumers’ 

feedbacks. While conventional software vendors selectively reflect the assessments from 

a focal user group or professionals for software updates, App developers are able to 

utilize consumers’ opinions and review comments for the next feature updates or price 

changes (i.e., crowd-sourced update ideas from App users). Therefore, the immediate 

user responses to the products can be appropriately reflected in improvements throughout 

the update process.  

Finally, App developer can strategically utilize price/feature update for 

acquisition of new customers. For instance, software product updates have been regarded 

as maintenance or extended services for the existing user groups only. Meanwhile, App 

updates allow a developer to boost the demand for new consumers by demonstrating 

continuous efforts in managing their products. As results of these merits in updating 

Apps, developers have capabilities to supplement or substitute predominant popularity 

effects to demand for their products.   
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The main objective of this study is to evaluate the role of a price discount and a 

quality update in stimulating App sales in the presence of predominant ranking effects. 

Specifically, we evaluate the value of quality in App success. While digital product 

pricing has been considered as the key driver for creating a positive user network 

(Aliawadi et al. 1998; Shapiro and Varian 2013; Smith et al. 2001), the appraisal of 

product quality in shaping digital content consumer purchase decisions has not been 

identified yet. Prior studies argue that quality-based differentiation and versioning 

strategies are effective practices to create network externalities (Parker and Van Alstyne 

2000; Jing 2003) and to accommodate heterogeneous consumer demands segmentations 

(Bhargava and Choudhary 2008; Shapiro and Varian 1998) in digital product markets. 

However, these approaches are generally made prior to the product launch and are 

considered at the market level. In addition, the versioning of a product is considered as a 

pricing scheme charging different price for the same product/service based on its quality, 

and thus it does not mean the improvement in product quality exerted by a content 

provider. For mobile App developers, product updates require continuous endeavor and 

need a strategic approach along with dynamic consumer demand in the market.  

To the best of our knowledge, the role of product quality updates exerted by 

developers have not yet been studied especially in the markets featuring strong primacy 

effects. Our goal is to fill this research gap. Consequently, this research answers the 

following key research questions: 

- What are the roles of App updates of feature and price in stimulating App success in 

the presence of strong ranking effects? 
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- In what context quality updates or price discounts affect long-term App success? 

- Does the value of quality matter? If so, under what circumstance quality updates 

outperform price discounts in App success?   

A panel vector autoregresive (PVAR) model is utilized to investigate the 

interdependencies among the rankings, price discounts, and feature updates of 1,259 

Apps appearing in the top 300 paid Games charts over 215 days from July 1, 2013 to 

January 31, 2014. To evaluate the effect of sizes and durations of price/feature changes 

on the ranks of Apps, the impulse response functions (IRFs) are introduced. To evaluate 

the dynamic consumer responses to changes in price and quality, we take account two 

distinctive consumer needs for (1) quality improvement and for (2) promotional pricing 

into the research. Furthermore, we consider the level of App success based on the 

presence of an App in the different ranking charts-expected to have distinctive ranking 

effects- to estimate the effectiveness of developers’ effort in price/feature updates. The 

findings highlight the delayed but long-term effects of quality/feature updates on App 

success in the presence of strong ranking effects while the immediate and short-term 

effects of price discounts on App sales. Furthermore, we suggest the different App 

pricing and updating strategies corresponding to dynamic App demands for App success. 

We expect the findings of the study will contribute not only to related literature 

examining the key factors in mobile App success, but also to participants in mobile App 

markets by suggesting how to manage their Apps for the long-term success in the 

presence of ranking effects. 
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5.2. Theoretical Foundation 

Information Goods and Heterogeneous Consumer Tastes 

Online consumers enjoy various flavor of products and are likely to discover 

products catering to their heterogeneous tastes in long-tail markets. Prior IS literature has 

predominantly focused on versioning and price discrimination as the key strategic 

ingredients for success and largely ignored how long-tail markets react to price and 

quality updates. For instance, Bhargava and Choudhary (2001&2008) posit the decision 

of versioning is to be made based on the consumer valuation for quality of a product and 

to offer the products with distinctive quality to maximize profits from heterogeneous 

consumers. In line with this, Parker and Van Alstyne (2000) and Jing (2003) argue that 

the quality-based versioning can create a positive network effect (from a low-quality 

version) and meet high-valued customers (from a high-quality version). Sundararajan 

(2004a) presents an optimal pricing scheduling entailing fixed-fee and usage-based 

pricing for improving profits from information goods. Furthermore, Shapiro and Varian 

(1998) emphasize the importance of differential pricing (i.e., price discrimination) in 

selling digital products to consumer having different needs. In general, most versioning 

and price discrimination studies are motivated from the inherent characteristic of digital 

products and their vulnerability to piracy (Wu and Chen 2008; Chellappa and Shivendu 

2004; Sundararajan 2004b). In mobile App market, the piracy of Apps has not been a 

major concern due to the relatively affordable price (most Apps are offered $0.99) and 

the separated free product market (i.e., free Apps). Moreover, the versioning and pricing 
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decisions are generally made before the launch of product/service releases and considered 

at the firm/market level. For App developers, quality/price-based differentiation 

strategies can be made even after release to make their Apps attractive to new user groups 

having different tastes and needs and to get favorable reviews from early adopters.  

Besides the accommodation of heterogeneous consumer needs, furthermore, a 

quality update strategy enables App developers not only to earn brand awareness for new 

consumers but also to build loyalty for existing ones. In traditional consumer product 

markets, product quality has been considered as a stimuli for a consumer’s repeat 

purchase (Kirmani and Rao 2000). By adding new features/functionalities to brand-new 

products (e.g., new ingredients for cosmetics and enhanced cutting technologies for 

shavers), sellers have capabilities to make consumers return to purchase and to attract 

new demand (Garvin 1984). However, such quality improvements are restricted to only 

newer products and it is difficult to keep backward compatibility. Unlike consumers for 

repeat-purchase products, App consumers who made a single purchase can benefit from 

repeated quality updates for the same Apps without compatibility concerns. In turn, App 

developers can build better reputation from existing consumers through continuous effort 

on quality management, and consequently such endeavors impress new consumers to 

purchase their Apps. Therefore, the quality improvement of an App is expected to have 

an important role in maintaining a positive long-term relationship with various consumers 

in the mobile App markets. In line with this, we further discuss the distinctive aspects of 

a price discount and a quality update in the following section           
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Price Discount vs. Quality Improvement 

Unlike content creators in other long-tail markets, mobile App developers have 

opportunities to promote their products in the market post-release by responding to 

dynamic consumer demands. Hence, a developer can strategically utilize price-based or 

quality-based updates to overcome slow adoption rates or declining sales (Lee and Raghu 

2014). A developer’s price-based and feature-based update decision is likely to be made 

based on several factors in the market. Moreover, a consumer’s perceived value of a 

product from these two distinctive update strategies are not expected to be equivalent, 

and therefore they will shape different consumer purchase decisions. The key differences 

of two update approaches are summarized in Table 21. 

 
Table 21. Comparisons between Quality Update and Price Discount  

 

 

First, a quality update requires higher level of effort than a price discount. While a 

price change can be instantly made by a developer, a change in quality generally needs 

significant time and cost for adding new feature/functionalities. By the virtue of low 

menu cost, a digital content creator can easily change price based on consumer demand in 

the market (Dewan et al. 2000; Kauffman et al. 2004; Hui et al. 2007; Smith et al. 2001). 

On the other hand, the update cost for improving quality is expensive. Sometimes it costs 

as much as the initial development cost. Shapiro and Varian (2013) characterize the cost 

for information goods as high fixed costs for initial development stage and low variable 
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cost in reproduction and distribution of a product, and emphasize the almost zero variable 

cost for digital goods. However, there is no study considering high variable costs taken in 

product maintenance after its release in the market (i.e., quality updates). This study 

evaluates when such an expensive quality update is important in attracting consumers and 

outperform a cheap price promotion strategy. 

Second, a consumer response to a price reduction is more immediate than a 

feature update. Researchers have highlighted the pivotal role of a promotional price in 

attracting new consumer in an instant manner (Aliawadi et al. 1998; Shapiro and Varian 

2013; Smith et al. 1999; Vincent 2007). Besides, the response of consumer demand to a 

feature update related to quality is expected to be delayed since the quality improvement 

of a product is not easily observable before experiencing it. As such, consumers are likely 

to make purchase decisions after appreciating detailed update descriptions available in 

the market or reading others review comments on the quality update. Moreover, we 

expect the long-term impact of a quality update on App sales growth over a price 

discount. In general, consumers use the price of a product as an indication of its quality, 

assuming that a higher price will have better quality (Caves and Greene 1996; Telli and 

Wernerfelt 1987). A price reduction may have consumers conceive less quality or less 

popular product (Hardie 1996). Hence, a seller can enjoy the instant benefit of a price 

discount in attracting new consumers but the impact will not last long. Regarding a 

feature update, a consumer’s perceived quality becomes higher whenever a content 

creator makes improvements in feature and functionalities, and consequently such 

continuous effort on quality has long-term impact on sales. In line with this, Lee and 

Raghu (2014) find that a feature update improves the presence of an App in the top chart 
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three times, but a price discount increases the probability by 1.2 times from weekly 

ranking information. 

Third, as noted previously a feature update encompasses both existing and new 

consumers while a price discount targets only new consumers. In conventional software 

markets, a feature update/upgrade is regarded as maintenance for the consumers who 

have already purchased (Krishnan et al. 2004). However, a quality improvement can also 

motivate additional consumer demand. Software products including mobile Apps can be 

also characterized as durable goods (Economides 2001). In general, Apps provide a 

stream of sustained consumption. In durable goods market, a seller tends to set price 

equal to marginal cost since strategic consumers have an incentive to delay purchasing if 

they anticipate that the seller of a durable good will lower prices in the future (Coase 

1972; Orbach 2004). In the App market context, however, a developer has capabilities to 

prevent such delayed consumer demand by utilizing a quality update strategy instead of 

lowering price.   

Finally, price and quality-based updates can be strategically adopted according to 

the dynamic consumer demands. Unlike other information products, hardware (e.g., 

mobile devices) and firmware (e.g., iOS and Android) running Apps influence consumer 

demands for Apps. There might be high demand for quality-based updates when a new 

firmware or hardware is introduced in the market. For example, an annual major update 

for Apple iOS and a new version of iPhones make consumers consider to download Apps 

compatible with new firmware and hardware. In this regard, it seems that there is a strong 

case for a developer to make quality-update to improve Apps sales. Meanwhile, a 
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promotional price approach can be effective when there is an increase in smartphone 

sales and consumers want to have more Apps to use on them. For instance, during 

holiday seasons most hardware retailers offer a huge discount for mobile phones and 

tablets, and it usually boosts the sales of new devices and in turn Apps for them. 

Therefore, the decision on price-/feature-based updates should be made based on 

dynamic consumer demand in the market.  

To summarize, the key aspects of a quality-based update differencing those of 

pricing strategy in mobile App markets call attention for researchers to theorize the value 

of quality in hyper-competitive long-tail markets.  

5.3.  Data and Research Design 

Data Description 

Our empirical analyses are conducted on the individual mobile Apps appearing in 

U.S. Apple App Store. Paid games Apps in the Top Paid 300 Charts were collected from 

July 1, 2013 to January 31, 2014 on a daily basis. The history of ranks, price discounts, 

and feature updates for 1,259 unique Apps over 215 days (180,445 observations) were 

recorded in the datasets. The use of paid Apps allows us to investigate the effects of both 

price discounts and feature updates on App sales. Moreover, games Apps accounted for 

over 40% of store downloads and covered 70% of App store revenue in the study period, 

so it enables us to incorporate heterogeneous consumers purchase decisions in the study. 

The definitions and summary statistics of research variables are presented in Table 22. 
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Table 22. Summary Statistics of Research Variables 

 

The first set of variables describes the dynamics of Apple’s App Store during the 

study period, but is not used for analyses. The basic statistics were calculated for 

individual Apps in a cross-sectional manner at the end day of study. In terms of the 

popularity (rankings) of Apps, the chance/duration of being listed in the top charts 

becomes significantly lower in the higher charts. For example, Apps appeared in the top 
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25 chart for an average of 3.2 days, but 38.6 days in the top 300 chart. When it comes to 

the effort-related numbers, more feature updates were made than price discounts. On 

average, Apps in the sample updated features/content 0.98 times and had price discount 

0.28 times during the study period.  

The second set of variables is our interest for the study and is used for empirical 

analyses. Since Apple does not reveal actual App sales figures, our measure for the 

success of App sales is based on ranking information. Recent studies have shown that the 

consumer demand can be estimated from publicly available ranking information 

(Brynjolffsson et al 2010; Chevalier and Mayzlin 2006). In the mobile App market 

setting, Lee and Raghu (2014) and Garg and Telang (2012) used the rank in the chart to 

measure an App’s sales performance. Since the rank of an App is made through App 

consumers’ accumulated evaluations on the App, the presence of an App in the top charts 

is a necessary condition ensuring the success of its sales. Consequently, the success of 

App sales is measured by dichotomous variables indicating whether an App was listed in 

a specific top chart (i.e., Top25it, Top100 it, Top200 it, and Top300 it). In line with this, we 

recorded Apps appearing at least once in the charts during the study period even when the 

Apps exited the charts. A few Apps that discounted to free (i.e., seven Apps) were 

dropped out of the sample since they were not available in the paid charts during the free-

priced periods. The indicator variables of Price_Dicountit and Feature_Updateit record 

the events of price/feature changes. A decrease in price at t was only considered as a 

price discount event and any changes in version numbers (e.g., 4.2.3) of an App at t were 

recorded as a feature update event. To evaluate the magnitudes of a price discount and a 

feature improvement, Price_Dicount_Sizeit and Feature_Update_sizeit are introduced. 
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The amount of price reduction was computed to a discount percentage from the original 

price to the discounted one. An average of 16.7% was discounted from the original price. 

Due to the difficulties in evaluating improvements in App features after an update, a 

change in the digits of version numbers (e.g., 4.2.3) was regarded as an update 

magnitude. In the sample, 93.7% Apps used a three-digit format for numbering version 

information. A change made in the first/second/third digit were considered as a 

major/medium/minor update with the value of 1, 2, and 3 respectively. We used the cube 

of values to weight the levels of values. The original and squared values were also used 

for analyses, but we did not find any remarkable differences in the estimation outcomes. 

Finally, Age_of_Appit indicates the number of days elapsed from a release day to time t.  

In addition, the same variables were collected for Apps in the free games charts 

(2,186 Apps) and paid productivity charts (1,261 Apps) during the study period to 

evaluate the direct effects of feature updates on App success. The estimation outcomes 

are presented in the Robustness Checks section.  

Research Design 

Next, we take account the different consumer demands driven by external events but 

relevant to the mobile App markets into the research setting in order to evaluate the 

dynamic consumers’ responses to the changes in Apps’ rankings, price, and features. The 

three distinctive periods are drawn toward the key events potentially affecting consumer 

demand in the market as depicted in Figure 9.  
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Figure 9. Dynamic Consumer Demand upon External Events 

 

Period 1 is a baseline period and we assumed that any significant events 

influencing App sales did not occur in this period. Period 2 is characterized as high (new) 

consumer demand driven by changes to the platform features. A new firmware (iOS 7 on 

September 18, 2013) was released and a new hardware (iPhone 5S on September 20, 

2013) was introduced in this period. Therefore, there might be high demands for 

improvements in features and content of Apps along with the introduction of new 

firmware and hardware. As a result, developers are likely to make more feature updates 

to resolve compatibility issues and accommodate increased consumer needs for the 

improvement in Apps. Period 3 represents high consumer demand driven by markets. 

Shopping seasons of Thanksgiving days (November 27-29, 2013), Christmas (December 

24-25, 2013), and New Year’s Day (January1, 2014) were included in the period. As 

such, consumer demand for Apps from newly purchased/activated devices are expected 

to be higher than those in any other periods. Consequently, developers are likely to 

promote Apps corresponding to holiday demand in the market. The number of new 

smartphone users during the study period is presented in Figure 10. Overall, a large 

volume of smartphone sales was observed in Periods 2 and 3 as compared with Period 1. 
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Source: Number of new US smartphone users, Asymco.com, May 8. 2014 

Figure 10. Number of New Smartphone Users 

 

In Period 2, around 3 million smartphones were sold and activated after new 

iPhone 5S releases in September 2013. In Period 3, almost 10 million new smartphones 

were purchased during the shopping season. The increases in smartphone users in both 

periods indicate growing needs for purchasing Apps and in turn require developers’ 

strategic market positioning for their Apps. To investigate the developer-side response to 

the increased App demands, we separated the datasets into the three distinctive periods 

based on the above classification. Table 23 summaries the key variables in each period. 

Overall, the probability/duration of staying in the top charts are similar across the 

periods. As expected, however, the frequencies of feature updates and price discounts are 

disparate among the periods. Slightly more price discounts were made in Period 3 (0.139 

times) than those in Period 2 (0.1 times) and Period 2 (0.114 times). Meanwhile, feature 

updates were made most frequently in Period 2 (0.536 times). To validate the differences 

in price and feature changes across the periods, a two-sample t-test was conducted for 

each pair of periods. Table 24 indicates the comparisons of feature and price changes 

between the periods.  
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Table 24. Two Sample t-Test for the Frequencies of Price Discounts and Feature Updates 

 

 

Regarding the frequency of price discounts, developers in Period 3 lowered Apps’ 

prices more often than those in Period 1 and Period 2 at 10% significance level. 

Moreover, developers made more improvements in App quality during Period 2 than 

other periods at 0.1% significance level. Consequently, the classification of sub-sample 

periods based on dynamic consumer demand and its corresponding developer efforts in 

price and feature updates is validated for further analyses.     

5.4. Empirical Approach 

To investigate the dynamic interdependencies among Apps’ rankings, price 

discounts, and feature updates, the panel vector autoregressive (PVAR) model is adopted 

for empirical analyses. PVAR is built with the same logic of traditional VAR in a time-

series manner where all variables are assumed to be influenced by each other (i.e., 

interdependency among variables) and endogenous. Additionally, PVAR allows to 

account for a cross-sectional dimension into the model specifications (Canova and 

Ciccarelli 2013). A few recent IS studies have adopted PVAR and its variations to 

evaluate the dynamic relationships among in a time-series manner such as the impacts of 

musicians’ activities in social media on music sales (Chen et al. 2014) and the effects of 

location-based mobile promotion (Luo et al. 2013). We construct the following model 

evaluating interactions between popularity shaped by consumers (i.e., Rankings) and 
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efforts exerted by developers (i.e., price discounts and feature updates) in mobile App 

markets: 
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The dependent variables of Top_Chartsit, Price_Discountit, and Feature_Updateit 

are endogenous, and therefore are influenced by their past realizations on the left hand 

side of the equation. Age_of_Appit-1 is an exogenous variable to control for unobserved 

factors that can affect the endogenous variables. αi and τt are App-specific and time 

(days)-specific fixed effects terms respectively. Finally, μit is the unobservable shocks 

assumed to be independently and identically distributed.   

To estimate the presented model, we use a standard generalized method of 

moment (GMM) where the lags of endogenous and exogenous variables are used as 

instruments. The fixed effects in the model were incorporated to the GMM estimation 

procedure by using forward mean-differencing for App-specific fixed effects (i.e., the 

Helmert procedure, Arellano and Bover 1995) and by mean-differencing the variables for 

day-specific (time) fixed effects (Love and Zicchino 2006).  

We conducted Fisher-type unit-root test for unbalanced panel data (Choi 2001) to 

check the stationarity of endogenous variables during the study period. The statistics 

from Phillip-Perron test and augmented Dickey-Fuller (ADF) test with 5-day lags of 

variables rejected the null hypothesis of a unit root at 0.1% significance level presented in 

Table 25, and thus we conclude the endogenous variables are stationary.     
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Table 25. Stationarity Checks for Research Variables 

 

 

Then, the lag order for PVAR was selected based on moment selection criteria 

(Andrews and Lu 2001; Ng and Perron 2001). The lowest statistics of Hansen’s J (1982) 

and M-AIC, M-BIC, and M-QIC across one-to-five day lags indicate the best lag order 

for model estimation. An exemplar lag selection procedure with Top100it, 

Price_Discountit, Feature_Updateit, and Age_of_Appit is presented in Table 26. A one-day 

lag of endogenous variables ensures the best model fit. We found the same outcomes 

with different combinations of variables for the three periods. The selection of one-day 

lag implies App consumers’ immediate responses to the changes in ranks, prices, and 

features of an App. 

Table 26. A Lag Selection from Moment Criteria 
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Consequently, a set of PVAR models examining relationships among rankings, 

price discounts, and feature updates are estimated under different ranking charts for each 

period.  

5.5. Results 

We examine the direct effects of rankings, price discounts, and feature updates 

made in the prior day at t-1 on the current rankings at t. Furthermore, the impulse 

response functions (IRFs) are used for evaluating the timing duration of effects of one 

variable on another. The estimation outcomes from PVAR for each period are presented 

in Table 27.  

 
Table 27. Estimation Results from Panel Vector Autoregressive Models 
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 Direct Effects of Popularity and Efforts on App Success 

 Ranking Effects: As expected, the effect of prior success in sales on current 

success is positive and significant. The estimates of prior rankings, Top_Chartit-1, indicate 

the strong rankings effects across all study periods. The estimates are over 7 times (30 

times) larger than those of Price_Discountit-1 (Feature_Update it-1) across the periods. 

Overall, the effects become stronger in the higher ranking charts. In Period 1, the effects 

of prior rank of an App (i.e., the presence of an App in the top 25 chart) on the current 

rank is 0.793 and the effects decrease to 0.745, 0.691, and 0.624 in the top 100, 200, and 

300 charts respectively. This outcome empirically confirms the presence of strong 

ranking effects in the search-intensive markets argued in prior studies (Ghose et al. 2012; 

Lee et al., 2015).  

 Price Discount Effects:  We find significant price discount effects on App sales 

throughout the periods. Overall, the effect size of Price_Discount it-1 is much smaller than 

that of Top_Chartit-1, but a reduction in App price has a significant and positive impact on 

App sales. High discount effects are presented when the market has a new consumer 

group for purchasing more Apps (i.e., Period 3) as compared with the market revealing 

increasing demand for App quality improvements corresponding to new platforms. 

Interestingly, the Apps in the Top 25 charts do not benefit from price discounts and it 

suggests dominant ranking effects for highly successful Apps. 

 Quality Update Effects: We observe the positive and significant estimates of 

Feature_Update it-1 in Period 2 when there exist surge in demand for improvement in 

App features and functionalities. However, the impact becomes smaller for Apps listed in 

the higher charts and not significant for the Apps in the 300 chart. Therefore, a feature 
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update decision seems crucial for developers who successfully listed Apps in the higher 

charts. Meanwhile, a quality update is not effective any more when consumers are more 

interested in downloading Apps for their new devices in Period 3.  

Consequently, our findings suggest strategic price- and feature-based update 

decisions corresponding to dynamic consumer demands in the market.   

Dynamic Effects of Efforts on App Success 

To observe the reaction of an App’s rank to the lagged price discount or feature 

update events while other shocks remain zero, we utilize the impulse responsive 

functions (IRFs). The coefficients estimated from PVAR were converted to a series of 

MA process and then we examined how a one-unit of price/feature update shock changes 

the ranks over time and how long the effect lasts (i.e., a decay time). Figures 11 and 12 

presents the graphs of IRFs with 5% error bounds generated from Monte Carlo 

simulation with 500 repetitions. 

 
Figure 11. Impulse Responses of App Success (t) to Price Discounts (t-1) 
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When it comes to the response of App success to the lagged price discount, a 

reduction in price instantly improves the presence of an App in the top charts and the 

impact dramatically decreases in a short period of time. Overall, smaller impact size and 

instant drops (decay time to zero) are observed from Apps appearing in the higher charts: 

on average, one day in Top25, three days in Top100, and five days in Top300 charts. The 

impact becomes even negative for Apps in the Top25. Moreover, shorter decay times are 

shown in Period 3 when many developers offered discounted Apps than in Period 2. The 

finding suggests a promotional price strategy has an immediate but short-term impact on 

App sales, and is not helpful in hitting the higher top charts due to strong ranking effects.  

 
Figure 12. Impulse Responses of App Success (t) to Feature Updates (t-1) 

 

The impulse responses of App success to one-day lagged feature updates show 

delayed but longer impacts as compared with those to price discounts. A shock of quality 
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update to the presence in the charts increases and peaks at the second day, and the impact 

gradually fades away and lasts until 14th day for the Apps in the Top25 and Top100 

charts. In the Top300 chart, meanwhile, we find a huge drop after an immediate increase 

in the presence of App in the chart as featured in the impact of a price discount on App 

success. Consequently, we find the long-lasting impact of quality updates on App 

success, and it has a higher and longer impact even for very highly ranked Apps (in 

Top25) than a price discount has. As expected, in addition, the value of quality updates 

become less significant when consumers are less concerned with quality improvements 

(i.e., Period 3). 

5.6. Robustness Analysis 

The main findings are restricted to the associations between App success and 

price/feature-based update strategies using unbalanced panel data including only paid 

games Apps listed in the top 300 charts. We conducted a set of robustness analyses with 

PVAR to test the validity and sensitivity of main findings. First of all, the magnitude of a 

price discount and a feature update is introduced in the model estimation. Besides an 

update event, the level of an update decision may be important when consumers make 

App purchase decisions. However, we do not expect a positive relationship between a 

consumer purchase decision and price/quality update size due to small variation among 

App prices and unobservable quality improvement before downloading Apps. Most Apps 

in our sample were offered the price of $0.99 (84.2%), and the discount prices converged 

to $0.99 in most cases of price promotions (92.7%). Therefore, consumer purchase 

decisions are likely to be indifferent for any Apps. Moreover, the characteristics of Apps 
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as experience goods make consumers unable to assess the value of Apps prior to actual 

use (Nelson 1970), and thus it is difficult for consumers to realize what components were 

added or updated. The estimation results from the variables of Top_Chart, 

Price_Discount_Size, and Feature_Update_Size are presented in Table 28.    

 
Table 28. Estimation Results from PVAR models on Update Level 

 

Overall, the estimation outcomes support our main findings. While more positive 

and significant estimates of Price_Discount_Size it-1 are appeared in Period 3, those of 

Feature_Update_Size it-1 are observed in Period 2. As expected, however, we find the 

minimal impacts of feature update and price discount sizes on App success. The impact 
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size (coefficients) of estimates are much smaller than those in the main model, and hence 

the level of updates does not have practical implications. As a result, we do not consider 

the magnitude of updates in the other robustness analyses. 

Next, we estimate the models including different datasets. The comparisons 

between the original outcomes (in the second column) and a new set of outcomes with 

different datasets for Apps in Top25 (higher charts) and Top300 charts (lower charts) 

over Period 2 and Period 3 are summarized in Table 29. The detailed estimation results 

are presented in APPENDIX C. 

 
Table 29. Estimation Outcomes from Robustness Checks 

 

 

We confirm positive and highly significant impacts of prior rankings on the 

current rankings across different datasets. However, we find the distinctive role of 

price/feature updates in each market context.   

First, we test a potential endogeneity concern that can arise from the repeated 

entries and exits of Apps in the top charts. The same analysis was conducted with a 
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balanced panel including only Apps that continuously appeared in the top charts over 

each period. The outcomes from the balanced panel in the second column indicate 

qualitatively the same outcomes as compared to the original analysis. We further find 

significant and positive impacts of quality updates on success in the higher top charts 

regardless of periods. This emphasizes the pivotal role of quality improvements in 

sustaining Apps’ success. 

Second, we evaluate the direct impact of quality updates using free Apps. 

Interestingly, the event of a feature update does not have an impact for free Apps. This 

outcome may be attributed to strong zero-price effects among App consumers, where free 

Apps are more likely to be consumed for hedonic reasons or trial purposes by the virtue 

of zero costs. Therefore, a consumer’s quality assessment on an App is less important. 

Moreover, severe competition among free Apps may discourage developers to make 

quality improvements. Although more Apps (double that of paid Apps) were listed in top 

charts, less number of feature updates (0.65 times per an App) was made during the same 

study period. That is, this finding suggests developers take a different approach for 

competition with many free Apps. Under this circumstance a seller’s best strategy seems 

to enlarge installed base in a short period of time and to make users consume in-app-

purchases. For example, while many free mobile Apps are being advertised through 

media as well as via other free Apps to attract more new customers, paid Apps seem to 

hardly benefit from mass media.   

Finally, we investigate how price/feature updates influence the sales of Apps 

consumed for utilitarian purposes. Paid productivity Apps were used for evaluating 
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differential role of update decisions for a consumer group who uses Apps for personal 

tasks such as a task organizer, a file manager, and PDF viewer. Overall, we have similar 

results. A feature update (price discount) has a positive relationship with App success in 

Period 2 (Period3). Even though we expected a strong impact of quality update for 

productivity Apps in the higher charts, the outcomes present a significant quality update 

impact only for the Apps in the lower charts. In addition, a price discount helps the Apps 

hit the higher chart in Period 3, which is not observed in game Apps. This is expected as 

consumers having utilitarian purposes know better about the feature and functionalities of 

Apps than those who have hedonic purposes. As a result, productivity App users are 

likely to purchase high-quality Apps, and so additional quality improvements may not be 

the main driver for a new purchase. Since the price of a productivity App (an average of 

$3.39) is generally higher than that of game Apps (an average of $2.19), moreover, a 

temporary price reduction might be attractive to new users especially when they are 

willing to download new Apps (in Period 3)   

Consequently, we conclude that price-based and quality-based updates have 

significant impacts on App success in the presence of strong ranking effects and suggest 

App developers should make strategic update decisions according to the dynamic 

consumer demand in the market.   

5.7. Concluding Remarks 

This research highlights the importance of App developer’s continuous endeavor 

in stimulating and responding to dynamic consumer demands. We empirically 

substantiate the presence of predominant ranking effects in mobile App market and 
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suggest a set of strategic update approaches under different consumer demands. 

Specifically, while a quality update has a positive impact on App success when 

consumers look for Apps compatible with new firmware and hardware, a promotional 

price is important when there is growing demand for Apps along with the increased 

device sales. We further find a positive and longer-term relationship between quality 

update and App sales. This establishes the quality of App as the key driver for success in 

hyper-competitive mobile App markets.   

We believe the findings of the study will set off theoretical insights to extant 

literature on information goods management and to managerial implications in 

understanding the key determinants of success in mobile App markets. From an academic 

perspective, this research presents a deeper understanding of content creators’ strategic 

quality update decisions and the ensuing impacts on success in the market. The outcomes 

also provide solid theoretical and empirical frameworks that allow researchers to 

investigate more interesting issues in this domain. Form a practical perspective, this 

research will provide valuable managerial implications not only for mobile App 

developers, but also for platform providers. First of all, the findings provide a set of 

guidelines helping developers respond dynamic and heterogeneous consumer needs by 

utilizing effective price/feature update strategies in a timely manner. Moreover, platform 

providers can apply the key outcomes of the study to their App management. For 

example, downloads for a new update can be reflected to decide an App’s ranks. It will 

promote developers to make better/more updates, and in turn the efforts will increase 

consumers’ satisfaction from Apps in the market. 
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CHAPTER 6  

6. CONCLUSION 

6.1. Summary of Findings and Implications 

In the three studies in this dissertation, I have examined the key characteristics of 

mobile App store markets and filled gaps in the existing literature, and finally identified 

the key determinants for the sustainability of mobile Apps. The empirical results suggest 

that long-term success is dependent on prudent approach to developing and offering Apps 

in marketplaces. Specifically, diversification across selling categories is a key 

determinant of high survival probability in the top charts and contributes to sales 

performance. Regarding App-specific attributes, the findings suggest that offering free 

Apps, investment in less popular categories, continuous updates on App features and 

price, and higher user feedbacks on Apps are positively associated with sales 

performance. Therefore, these App attributes lead to further potential user demand and 

increase App sales. Furthermore, I find that while product cues in App product 

descriptions solely do not have impacts on App sales, the extrinsic cues in the 

descriptions are complementary to product cues offered from markets and are 

significantly associated with App sales. Finally, this result establishes a positive 

relationship between quality improvement and App success in the long run. 

 The findings of the studies will have several significant implications to extant 

literature on digital product management and business practice. From an academic 

perspective, this research creates new knowledge about mobile App seller’s strategic 

decisions on product portfolio management, product description, and long-term App 
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product management, and their impacts on success in mobile App markets. This research 

is a first step to investigate evidence for the significant associations of product portfolio 

strategy, product description formulation, and price/feature update strategies with sales 

performance. From a practitioner perspective, this research will inform App sellers in 

formulating strategic App assortment across categories, successful keyword presentation 

strategies, and long-term App product management. Moreover, the findings will provide 

guidelines to new market entrants and enable them to have a better understanding of the 

strategic importance of pricing, updates, and reputation building through user reviews 

and other channels.  

6.2.Future Research Directions 

 In this section, limitations of the three dissertation studies are addressed and 

opportunities for future research are explored.  

First, the findings of the studies are based on an App’s ranking information. 

However, there may exist several alternatives to estimate actual sales amount instead of 

ranking. In addition, appearing in the top charts itself may have a potential to facilitate 

purchase decision making at the point users initially search for Apps. However, data 

availability restrictions prevent us from such App users’ potential preferential attachment 

mechanisms.  In this regard, I continue to track and monitor the Apps to examine if there 

are reasons to expect different results over a longer duration. Moreover, the analytic 

approach used in the study does not allow us to make causal predictions. Future research 

can examine the causal linkage between the presented App developer strategies and App 

performance.  
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Second, while this study only considers a developer as a decision maker for App 

portfolio management, many individual sellers provide Apps through big mobile software 

publishers such as Gameloft or Chillingo. Thus, for such big publishers, the management 

of various developers and much larger selections of mobile Apps could be crucial for 

successful sales performance. In the regard, it is important to investigate how publisher-

level properties affect App-/seller-level variables.   

Third, the results in this study are based on sellers in a single mobile App market. 

A seller’s mobile App portfolio management and its impact on sales performance can 

vary under distinct App market structures. For example, each market has a different 

number of categories (e.g., Apple: 20 categories; Blackberry: 18 categories; Google: 34 

categories), a different proportion of free Apps (Apple: 25 percent; Google: 57 percent) 

and a different presentation of product cues in the App product pages.  As a result, future 

studies exploring developers’ App positioning approaches in different mobile App 

markets and potential for platform competition among the markets are necessary.  
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Results from Different Ranking Charts 

 
Table A1. Estimation Results from Different Ranking Charts  
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Results from Different Periods 

 
Table A2. Estimation Results from Different Periods 
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Results from Hedonic Use 

 
Table A3. Estimation Results from Hedonic Use 
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B. ROBUSTNESS CHECKS OF APP PRODUCT DESCRIPTION 
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The Selection of Keywords Clusters 

We evaluated whether the four clusters with the 30 terms used in our analyses 

presents the key product-related information in the head of App descriptions. First, the 

optimal number of key terms in the descriptions was identified based on sparsity of terms 

across the descriptions. Figure A1 presents the changes in sparsity according to the 

number of key terms.  

 
Figure A1. Number of Terms and Sparsity 

 

The sparsity increased dramatically when 30 or more key terms were selected. 

Hence, the selection of 30 key terms presents the optimal number of keywords without 

losing meaningful App product information in the descriptions.  

Second, we varied the number of clusters to check if the choice of four clusters 

identifies the distinctive dimensions of App product cues from the selected keywords. 

Figures A2 and A3 illustrate the three clusters and five clusters of the 30 terms 

respectively. 
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Figure A2. Three Clusters of Keywords 

 

 
Figure A3. Five Clusters of Keywords 

 

 

While the three clusters cause an information reduction from the key terms (i.e.., 

the collapse of ‘Review’ and ‘Update’ clusters), the five clusters include redundant 
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information from the terms (i.e., the separation of ‘Update’ cluster). As such, the four 

clusters ensure the distinctive App product cues from the keywords.  

In addition, a principal component analysis (PCA) on the selected key terms was 

conducted for determining the principal components (i.e., groups/clusters of the terms) 

and appropriate number of components. We had very similar composition of keywords in 

the components to the terms in the clusters gaining from a hierarchical cluster analysis. 

The scree plot in Figure A4 shows an elbow (a big gap) between the fourth and fifth 

eigenvalues. Subsequently, this outcome supports the selection of four clusters. 

 
Figure A4. Scree Plot in a Principal Component Analysis 
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Results from Full Descriptions 

 
Table A4. Estimation Results from Full Descriptions 
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Results of Main Effects from Productivity Apps 
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Results of Complementary Effects from Productivity Apps 

 
Table A6. Estimation Results of Complementary Effects from Productivity Apps 
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APPENDIX C 

C. ROBUSTNESS CHECKS OF APP QUALITY UPDATE DECISION 
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Results from Paid Game Apps with Balanced Panel 

 

Table A7. Estimation Results from Paid Games Apps with Balanced Panel 
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Results from Free Game Apps 

 

Table A8. Estimation Results from Free Games Apps  
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Results from Effects from Paid Productivity Apps 

 

Table A9. Estimation Results from Paid Productivity Apps 

 

 


