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ABSTRACT

The electric power system is one of the largest, most complicated, and most impor-

tant cyber-physical systems in the world. The link between the cyber and physical

level is the Supervisory Control and Data Acquisition (SCADA) systems and En-

ergy Management Systems (EMS). Their functions include monitoring the real-time

system operation through state estimation (SE), controlling the system to operate

reliably, and optimizing the system operation efficiency. The SCADA acquires the

noisy measurements, such as voltage angle and magnitude, line power flows, and line

current magnitude, from the remote terminal units (RTUs). These raw data are firstly

sent to the SE, which filters all the noisy data and derives the best estimate of the

system state. Then the estimated states are used for other EMS functions, such as

contingency analysis, optimal power flow, etc.

In the existing state estimation process, there is no defense mechanism for any

malicious attacks. Once the communication channel between the SCADA and RTUs

is hijacked by the attacker, the attacker can perform a man-in-middle attack and

send data of its choice. The only step that can possibly detect the attack during the

state estimation process is the bad data detector. Unfortunately, even the bad data

detector is unable to detect a certain type of attack, known as the false data injection

(FDI) attacks.

Diagnosing the physical consequences of such attack, therefore, is very important

to understand system stability. In this thesis, theoretical general attack models for

AC and DC attacks are given and an optimization problem for the worst-case overload

attack is formulated. Furthermore, physical consequences of FDI attacks, based on

both DC and AC model, are addressed. Various scenarios with different attack targets

and system configurations are simulated. The details of the research, results obtained

and conclusions drawn are presented in this document.
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Chapter 1

INTRODUCTION

1.1 Background

Advances in sensing, communications, and computing are enabling a smart elec-

tric power system with an intelligent cyber layer that is tightly integrated with the

physical layer and is capable of real-time monitoring control, and actuation. In the

electric power system, this is enabled by an Energy Management System (EMS)

which acquires the operation status of the power system from Supervisory Control

and Data Acquisition (SCADA) data. SCADA data includes measurements of voltage

and current magnitudes and active and reactive power measurements in the physi-

cal power system. Because of the limited accuracy and quantity of measurements,

a mathematical estimation technique referred to as state estimation (SE), is applied

to estimate the physical system state (complex voltage) from the measurements with

sufficiently high fidelity. This estimate is the beginning of a process to achieve situ-

ational awareness and obtain real-time operational data about the physical electric

system so that operators can make control decisions. Lack of access to the system sta-

tus will inevitably lead to system operation inefficiency, violation, and in the worst

case, system blackout. Thus, the data acquisition, starting from SCADA data, in

conjunction with the communication and control network that overlays the physical

network, is crucial to the reliable functionality of the electric power system.

Despite the extreme importance of the cyber layer, the communication network

overlaying the physical electrical grid makes it more vulnerable to cyber attacks that

can compromise measurements, system states, and eventually the control and the

actuation system. The “air gaps” between SCADA systems and the public Internet

is being weakened and many of the devastating computer viruses have been specifi-
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cally designed to compromise SCADA system [1]. Recently, there have been specific

incidents on the electric power system, and we briefly discuss them.

• On August 14, 2003, large portions of the Midwest and Northeast United States

and Ontario, Canada, experienced an electric power blackout [2]. The outage

affected an area with an estimated 50 million people and 61,800 megawatts

(MW) of electric load and power has not been fully restored for 4 days. Esti-

mates of total costs in the United States range between 4 billion and 10 billion

dollars [2]. The U.S.-Canada Power System Outage Task Force identified “the

inadequate situational awareness” as one of the most important causes of the

blackout’s initiation and a failure on the alarm system in the EMS contributed

a lot to the black out [2].

• In 2007, researchers at the Idaho National Lab conducted the Aurora test, in

which a virus manipulated the computer network systems that controlled diesel

generators. The test intentionally switched the circuit breaker on and close

it out-of-synchronism. As a result, the connected motor and generator may

be damaged [3]. This test demonstrated the ability for a computer virus to

manipulate power systems and to cause physical damage.

• In 2010, a computer worm named ‘Stuxnet’ targeting Siemens industrial control

systems was “detected in the SCADA system of 14 plants in operation but

without any malfunction of process and production” [4]. Nevertheless, this

type of cyber attack was new and certainly introduced new threads to power

system [5, 6].

• Since 2011, electric power system infrastructure within the United States and

Europe has come under attack from a group of Russian hackers, known as

2



‘Dragonfly’. This group has been conducting various cyber attacks against

European governments, defense contractors, and U.S. health care firms. To

date, it has been conducting Stuxnet-type attacks against the industrial control

systems found with petroleum pipeline operators, grid operators, electricity

generation firms and other critical energy companies [1].

From the above discussion, it is concluded that some of the major vulnerabilities

of the power system stem directly from the cyber layer. This thesis focuses on a

specific class of attacks, introduced in [7] and refered to as false data injection (FDI)

attack. In theory, FDI attacks can bypass the existing state estimation and it cannot

be detected by bad data detector [7]. However, the modular nature of cyber data

processing in the grid can be exploited to observe attack consequences and potentially

detect the attacks.

Therefore, assessment and evaluation of possible attacks and consequences before

an actual attack happens is extremely instructive to the utilities: procedures for

potential attack incidents and activities could be important supplements to the secure

operation of the power system.

1.2 System Model

1.2.1 Temporal Nature of Processing in the Power System

Fig. 1.1 illustrates the temporal nature of processing in the power system, as

well as the attack model. Assume a system with nb buses, nbr branches, and ng

generators. Active and reactive load of each buses are represented by PL and QL,

respectively. Measurement and estimated measurement residue are denoted as z and

r , respectively. In the bad date detector, τ is the residue threshold and x = [V , θ]T

is the system state, where V is bus voltage magnitude and θ is bus voltage angle.

The function h(·) denotes the non-linear function that gives the measurements (power

3
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g jb

Figure 1.2: The Equivalent π-model of a Network Branch.

flows and injections) given the system state x. This function depends only on the

system topology. Estimated values are denoted with a hat, e.g.x̂, V̂ , θ̂.

As shown in Fig. 1.1, generation dispatch control decisions made at the control

center depend on the noisy measurements provided by the SCADA system. If these

measurements are corrupted by an attacker, then if they pass the bad data detector

they can directly influence the control decisions for the next time interval. Since the

process occurs in the same manner for each time t, we drop the functional dependence

on t for the rest of this section. Time progression attacks will be illustrated simula-

tions. The major blocks shown in Fig. 1.1 are discussed in detailed in the following

subsections.

1.2.2 Measurements

Since power flow follows the non-linear mathematical dependencies, the AC mea-

surement model is given by:

z = h(x) + e. (1.1)

where z, e and x are m × 1, m × 1 and n × 1 vectors with entries zi, ei and xk,

respectively i ∈ {1, . . . ,m} and k ∈ {1, . . . , n}. zi is the ith measurement of the

system such as line power flows, bus voltage and line current magnitude, etc. ei is the

5



ith measurement error, assuming to be independent and Gaussian distributed with 0

mean and σ2
i standard deviation.

The expressions for function h(.) below are assumed with an equivalent π circuit

for a two-port network, shown in Fig. 1.2.

Real and reactive line power flows at branch from bus k to bus i:

Pki = V 2
k (gsk + gki)− VkVi(gki cos θki + bki sin θki) (1.2)

Qki = −V 2
k (bsk + bki)− VkVi(gki sin θki − bki cos θki) (1.3)

Real and reactive power injection at bus k:

Pk = Vk
∑
i∈Nk

Vi(Gkicosθki +Bkisinθki) (1.4)

Qk = Vk
∑
i∈Nk

Vi(Gkisinθki −Bkicosθki) (1.5)

Line current flow magnitude from bus k to bus i:

Iki =

√
P 2
ki +Q2

ki

Vk
(1.6)

where θki = θk − θi, Gki + jBki is the (k, i)th entry of the bus admittance matrix, i,e.

the Ybus matrix. gsk + jbsk is the admittance of the shunt branch connected at bus k

and gki + jbki is the admittance of the series branch connecting bus k and bus i, and

Nk denotes the set of buses that are directly connected to bus k.

1.2.3 State Estimation

As illustrated in Fig. 1.1, a typical state estimator includes the following functions

[8]:

6



• Topology processor: Collect the system breaker and switch status and generate

network model.

• Observability check: Ensure the availability of measurement is sufficient to

estimate the state of the whole system. If not, the several observable islands

will be identified.

• State estimation solution: Acquire the optimal estimated state of the system.

• Bad data detector: Identify and eliminated bad and noisy measurements.

1.2.4 Implementation of State Estimation

Since the errors of measurement are independent, the following assumptions are

made based on the statistical properties of e [8]:

• E(ei) = 0,∀i ∈ {1...m};

• E(eiej) = 0, thus, Cov(e) = E(e · eT ) = R = diag{σ2
1, σ

2
2, . . . , σ

2
m}, where E is

the expected value.

The standard deviation σi, thus, is a weight of the expected accuracy of the

measuring device. The state variables are then solved as a weighted least square

(WLS) problem with an objective function [8]

x̂ = arg min J(x) = (h(x)− z)TR−1(h(x)− z) (1.7)

and x̂ = [V̂ , θ̂]T is the estimated state. At the minimum, the first-order optimality

g(x̂) =
∂J(x)

∂x

∣∣∣∣
x=x̂

= H(x̂)R−1(h(x̂)− z) = 0 (1.8)

must be satisfied, where H(x) = ∂h(x)
∂x

∣∣∣
x=x̂

. Expanding (1.8) into its Taylor series and

neglecting the higher orders:

g(x) = g(xk) +
∂g(xk)

∂x
· (x− xk) = 0 (1.9)
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where a gain matrix is usually defined:

G(x) =
∂g(xk)

∂x
. (1.10)

G(x) has to be sparse, positive definite, and symmetric for an observable system

[8]. Thus, (1.8) can be rewritten as

(xk+1 − xk) = G(xk)−1HT (xk)R−1[z − h(xk)] (1.11)

where k is the iterative index and xk is the solution at iteration k. The equation

given by (1.11) is also referred as normal equation. To solve the normal equation,

the initial value x(0) = [1, 0] is typically assumed, known as the cold start. In each

iteration, the change of x is obtained and added to the previous value of x and (1.10)

and (1.11) are updated. The iteration stops when the change of x is less than or equal

to the pre-set tolerance.

In DC state estimation, the operation point is assumed to be near θ = 0 and

V = 1 and (1.1) can be approximated by

zA = HAAθ + eA (1.12)

where zA and eA denote the active power related measurements and measurement

errors, respectively. HAA is the system Jacobian matrix around θ = 0 and V = 1,

which is a function of branch reactance only. Note that, in DC state estimation,

reactive power flows are ignored since V = 1 for all buses. Therefore, expanding (1.8)

around θ = 0 we have

(HAA)T R−1(HAAθ̂ − zA) = 0 (1.13)

and

θ̂ = (HT
AAR

−1HAA)−1HT
AAR

−1zA. (1.14)
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Thus, DC state estimation essentially solves for a solution for a linear and overde-

termined system of equations. In order to simplify the notation, the subtitle of zA,

HAA, and eA are dropped in the rest of the thesis for all linear models.

1.2.5 Bad Data Detection

The bad data detector filters noisy measurement and guarantees the accuracy of

estimation. One of these methods of detection is the χ2 test. To pass a χ2 test, the

estimated measurement residue should satisfy

r =
m∑
i=1

(zi − hi(x̂))2

σ2
i

≤ χ2
(m−n),p (1.15)

where hi(x̂) is the estimated measurements, p is the detection confidence of probability

and χ2
(m−n),p denotes the value in χ2 distribution table corresponding to p and the

degree of freedom m− n. Measurements that fail to pass the test will be considered

erroneous and the measurement with the largest residue will be eliminated. Then the

state will be re-estimated.

1.2.6 DC and AC Optimal Power Flow

The AC optimal power flow (OPF) solves for the minimum generation cost and

balances the system power flow within its limit. The formulation of ACOPF is

minimize
PG,QG,V,θ

f(PG)

subject to

PGk
= Vk

∑
i∈Nk

Vi(Gkicosθki +Bkisinθki) + PLk
(1.16)

QGk
= Vk

∑
i∈Nk

Vi(Gkisinθki −Bkicosθki) +QLk
(1.17)

Fki = V 2
k (gsk + gki)− VkVi(gkicosθki + bkisinθki)

+ j[−V 2
k (bsk + bki)− VkVi(gkisinθki − bkicosθki)], (1.18)

|Fki| ≤ Fmax
ki (1.19)
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Pmin
G ≤ PG ≤ Pmax

G (1.20)

Qmin
G ≤ QG ≤ Qmax

G . (1.21)

In the above OPF problem, node balance constraints are (1.16)–(1.17), thermal

limit constraints are (1.18)–(1.19) with the line thermal limit Fmax, and generator

capacity constraints are (1.20)–(1.21) with the lower bound Pmin
G + jQmin

G and upper

bound Pmax
G + jQmax

G , respectively. The objective is to minimize the generation cost

where f(.) is the generation cost function. Similar to Section 1.2.4, DCOPF approx-

imates the non-linear constraints (1.16)–(1.19) around V = 1 and θ = 0 by their first

order Taylor expansions and neglect the real part of the admittance matrix and the

shunt elements:

minimize
PG,θ

f(PG)

subject to

PGk
=
∑
i∈Nk

Bkiθki + PLk
, k = 1, ..., nb (1.22)

Fki = bkiθki (1.23)

− Fmax
ki ≤ Fki ≤ Fmax

ki (1.24)

Pmin
G ≤ PG ≤ Pmax

G . (1.25)

To write in a more compact way, we define

• H1, the matrix of dependencies between bus power injection and variable θ, as

H1(k,i) =


∑
i∈Nk

− bki if k = i

bki if k 6= i

(1.26)

where gki + jbki is the branch admittance between bus k and bus i and Nk

denotes the set of buses that are directly connected to bus k.
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• H2, the matrix of dependencies between branch power flow and variable θ, as

H2(j,t) =


bki if t = k

−bki if t = i

0 else

(1.27)

where branch j connects from-end bus k and to-end bus i.

Thus, the DCOPF problem can be rewritten as

minimize
PG,θ

f(PG)

subject to

(1.25)

−H1θ + PG − PL = 0 (1.28)

− Pmax ≤ H2θ ≤ Pmax (1.29)

where Pmax is the thermal limits for every branch.

1.3 False Data Injection Attack

FDI attack is first introduced and studied by [7]. For state estimation using DC

power flow model, if an attacker can inject the malicious data a into the measurement

vector z such that the new measurement z(a) satisfies

z(a) = z + a = z +Hc (1.30)

where c is a non-zero attack vector, then the existing bad data detector is incapable

of detecting such an attack.

A simple proof for the state above from [7] is summarized as follow. With a χ2 test

as the bad data detector, the residue computed from the compromised measurements
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ra is

ra =
m∑
i=1

(
z
(a)
i −Hix̂

(a)
)2

σ2
i

=
m∑
i=1

(zi + ai −Hi(x̂+ c))2

σ2
i

=
m∑
i=1

(zi −Hix̂)2

σ2
i

= r. (1.31)

Thus, the false data an attacker injects in the the system will not change the

residue of χ2 test therefore can not be detected. The authors in [7] consider two

realistic scenarios, both assumed the attacker’s resource and ability are constrained,

and show how to construct attack vector a efficiently. And they also test the proba-

bility of find such an attack in respect of the attacker’s control over the system: into

which meter that the attacker can inject the false data and how many meters over

the test system that the attackers compromise. The simulation on test system shows

successful attacks are made and the attacker can manipulate the system state in a

predicted way.

1.4 Literature Review

Apart from what have been discussed in Sec. 1.3, the cyber security related topics

has recently drawn a lot of attention.

In [9, 10], the authors study how many coordinated measurements have to be

changed in order to hide a single changed power flow measurement. Then they define

the security index based on the number of the coordinated measurements. They

also propose an efficient algorithm to compute the security indices defined in and

furthermore develop algorithms to find minimum attacks.

Also from the attacker’s perspective, the authors in [11, 12] show the trade-offs

that both attackers and operators have to face in practice: the attackers want to

maximize their false data injection size while minimizing their detection rate and the

operators want to maximize the detection rate while minimizing the false alarm rate,

respectively.
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Authors in [13] introduce a max-mim optimization into the defender-attacker

scheme of power system. They formulate the mathematical model to identify the

critical element of the system in respect of terroristic attacks. Then, they refine

their model in [14] by incorporating a simple DCOPF with a cascading outage anal-

ysis model, therefore the attack’s short-term effect is captured. Similarly, authors

in [15, 16] formulate a load shift attack as a multilevel optimization problem. They

model the attack as well as the system response in a time sequence: the attacker at

each time interval chooses his optimal attack based on the system response to the

attack.

In [17], the economic consequences of FDI attacks are assessed. The authors

explain the connections between the system operation and attacks then quantify the

change of local marginal price of each buses as the economic impact of the attack.

FDI attack may be cooperated with other attacks to hide topology change. Au-

thors in [18] propose an unobservable topology attack. This attack is essentially

preserving the state and change the status of the breaker on the line, therefore make

the system seems to operate under a situation with one artificial line on or off.

FDI attacks on AC state estimator is also studied. In [19], the authors analyze

the vulnerability of both DC and AC state estimator by studying the necessary infor-

mation they attacker need to construct a FDI attack and the error that the attacker

can introduce to the system.

Authors in [20, 21] discuss the how to change line power flows with local infor-

mation and detect the attack when the state information is inaccurate. Their study

show that though AC state estimator is vulnerable to FDI attack, it is more difficult

to attack because of it requires the attacker to obtain the additional and accurate

state information.
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In [22], the authors find out the state information can be abstracted from the

measurement and system configuration by the attacker and it requires as same in-

formation as DC attack. Therefore, they extend the attack to a more general way,

including on AC and DC state estimator.

The detection of FDI attacks is another well studied topic in literature. In [18, 23],

placing secure meters or placing Phasor Measurement Units (PMU) in the system is

proposed and the optimal placements of such devices are discussed.

In [24, 25], the dynamic of state evolution is used to detect malicious data injection

under the assumption that power system is inertial and the system states are almost

”steady” in a short time period. They view the detection of false data as a matrix

separation problem and solve for a sparse optimization problem.

1.5 Research Motivation and Objective

First of all, by the original definition, FDI attack only applies to DC state es-

timation, as Sec.1.3 describes. Authors in [19] analyze FDI attacks into AC state

estimator and find out that, in order to make the attack unobservable, the attacker

has to know additional information about system states. One objective of this thesis

is to give a more general definition of FDI attack by extending it to attack AC state

estimation.

Also, the consequences for FDI attacks is still unclear. Can FDI attacks actually

damage the physical AC system and is it necessary to generate any metric against

the attacks? These questions are still unsolved. Thus, another key objective of this

thesis is to develop proper attack models and applied it on a test system to actually

see the physical consequences. Therefore, the consequences of FDI attacks can be

study and evaluated.
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Finally, the worst-case attack scenario should be studied. In order to find the

worst-case, the attacker’s action as well as the system response should be modeled

properly: the result of attack should be a combination of the two sides.

1.6 Outline of Thesis

Having introduced the system operation process, state estimation, bad data detec-

tor, OPF, and FDI attacks, in Chapter 2, the definition of FDI attack and formulates

the AC and DC FDI attacks model are introduced. Scenarios for both attacks are

simulated and comparison of them is made. Also, one of the physical consequences,

generation re-dispatch, is shown. Chapter 3 gives the formulation of a two-level op-

timization problems that can solve for the worst-case line overload attacks. Chapter

4 presents the resulting attack against AC system model. Chapter 4 concludes the

thesis and enumerates the contributions of this research. The possible future work in

related topic is also discuss.
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Chapter 2

PROBLEM FORMULATION FOR FDI ATTACKS

2.1 General Attack Model

We first assume that the attacker has following capabilities:

1. The attacker has access to all measurements and topology information of a small

area S bounded by buses. The set of all measurement indices in S is denoted

as IS and the set of all state indices in S is denoted as KS .

2. The attacker can change or replace all measurements in S.

3. The attacker has computational capability.

As discussed in [22], according to (1.1), suppose the ith measurement prior to

attack is zi = hi(x) + ei, the general attack model changes the ith measurement zi to

z
(a)
i such that

z
(a)
i =


zi

z̃i

if i /∈ IS

if i ∈ IS
(2.1)

where z̃i is chosen by attacker.

2.2 Unobservable Attack – a General Definition of FDI Attack

Here a general definition of unobservable attack is presented. Recall (1.1), an

attack is unobservable for a measurement model h(·) if, in the absence of measurement

noise, there exists a c 6= 0 such that z
(a)
i = hi(x+ c) for all i.

Therefore, for the attacker to execute an unobservable attack, again assuming no

measurement noise, (1.1) becomes

z
(a)
i =


zi

hi(x+ c)

if i /∈ IS

if i ∈ IS .
(2.2)
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From (2.2), if the kth state xk is required to compute hi(x) for any i /∈ IS , then

for any unobservable attack the corresponding kth entry in attack vector must satisfy

ck = 0. Therefore, for a feasible attack, the attack region S must be chosen such that

c is a non-zero vector.

However, to the buses without loads, their states are dependent from the rest of

the system. For instance, a bus k with only a generator on is a PV bus: the voltage

magnitude Vk and real power power injection Pk is known. Recall (1.4)–(1.5), thus

the voltage angle θk at bus k is only dependent on the states of all the buses connected

to it. Similarly, a bus without any load or generator on also has a state that depends

on other neighbor buses. To identify such a collection of one or more buses in S,

we first distinguish between two types of buses based on the presence of load. We

henceforth identify buses with load as load buses. Kload denotes the bus indices of

load bus. An attacker can attack either type of bus. However, since the injections

of non-load buses are known to the control center, attacking a non-load bus implies

that the measurements at the closest load buses also need to be changed thus the

nodal power balance is maintained. In [19], a method is introduced to identify a

subgraph of the network that allows an attacker to perform an unobservable attack.

We use a similar method, as summarized as follow. Let k be a target load bus, the

corresponding single-target-bus attack subgraph Sk is constructed by following steps:

1. Include bus k in Sk.

2. Extend Sk from bus k by including all buses and branches that are connected

to bus k.

3. If there is a non-load bus on the boundary of Sk, extend Sk to include all

adjacent buses of this boundary bus.
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Figure 2.1: Examples of single-target-bus attack subgraph. Fig. 2(a) shows the
subgraph with target bus 1 and Fig. 2(b) shows the subgraph with target bus 2.

4. Repeat step 3 until all buses on the boundary are load buses or Sk can not be

extended anymore.

The steps above give an attack subgraph that includes the target load bus and

is bounded by load buses. Fig. 2.1 shows two simple examples of single-target-bus

attack subgraph. The choice of the final attack subgraph S, however, can be a union

of several single-target-bus attack subgraphs:

S =
⋃

k : ck 6=0∩k∈Kload

Sk. (2.3)

This choice of attack subgraph results in estimated load changes at all load bus

within S while no net load changes in the system.

2.3 DC Attack

Since (2.2) is nonlinear and generally hard to solve, it is reasonable for the attacker

to first consider a simplified DC attack. As [7] demonstrated, by knowing system

Jacobian matrix H, an attacker can intelligently construct an unobservable attack

vector a = Hc such that z
(a)
i = zi + a.

Thus, (2.2) becomes

z
(a)
i =


zi

zi +H(i,:)c

if i /∈ ISP

if i ∈ ISP
(2.4)
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Figure 2.2: IEEE-RTS-24-bus system

where, IP denotes the set of indices of active power measurements, ISP = IS ∩ IP ,

and H(i,:) denotes the ith row of H.

Though DC attack is easy to construct, it is not an unobservable attack for AC

state estimator. Without taking reactive power flow into account, a DC attack will

be detected when c is too large.
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2.4 AC Attack

From (2.2), in contrary to DC attack, it seems that the attacker must know all

the state values that appear in hi, for all i ∈ IS , to construct zi precisely. However,

this information is not available to the attacker. Thus, attacker can use the following

steps to construct z
(a)
i :

1. The attacker first chooses the non-zero entries in c only for the load buses.

These non-zero entries correspond to the center buses for the attack subgraph.

2. Use the protocol in Sec. 2.2 and choose S for the desired attack.

3. Given the measurements that are available to the attacker in S, perform local

AC state estimation to find x̂
(a)
k . The slack bus may be chosen arbitrarily among

all load buses.

4. For all load buses k, set x
(a)
k = x̂

(a)
k + ck.

5. Since the injection of non-load buses can not be changed, the states of non-

load buses are dependent on the state of all the buses that connected to them.

Therefore, according to (1.4) and (1.5), the attacker has the nodal balance

equation for each non-load bus k in S:

Pinjk = Vk
∑
i∈Nk

Vi(Gkicosθki +Bkisinθki) = PGk
(2.5)

Qinjk = Vk
∑
i∈Nk

Vi(Gkisinθki −Bkicosθki) = QGk
(2.6)

These equations can be solved by iterative methods such as Newton-Raphson

method:

(a) set the initial value x
(a)
k [0] =

 θk[0]

V k[0]

 =

 θ̂
(a)
k

V̂
(a)
k
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(b) compute the Jacobian matrix J =

 ∂Pk

∂θk

∂Qk

∂θk

∂Pk

∂Vk

∂Qk

∂Vk


(c) compute mismatch M [t] =

 Pinjk(x
(a)
k )

Qinjk(x
(a)
k )


(d) update x

(a)
k [t+ 1] = x

(a)
k [t] + J−1M [t]

(e) repeat (5b) until ‖M [t]‖∞ is less than the chosen limit.

6. With all the computed state information, the attacker can therefore compute

the false measurements z(a) such that

z
(a)
i =


zi

hi(x
(a))

if i /∈ IS

if i ∈ IS
. (2.7)

2.5 Comparison of Attacks

In this subsection, we use the IEEE-RTS-24-bus system as test system and test

both DC and AC attack on a AC state estimator. We assume that both active and

reactive power flows are measured at two ends of each line and both active and reactive

injection are measured at each load bus, which makes 186 measurements in total. All

measurements are assumed to have an error ei ∼ N(0, 10−4) and the χ2 detector

threshold is set to be 164.1 with 95% confidence of detection. In our simulation, we

use MATPOWER to generate measurements, perform state estimation, and solve for

false measurement.

In this simulation, we focus on the case ‖c‖0 = 1 and the only non-zero entry

ck corresponds to the voltage angle of bus k. Note that there are 17 load buses; we

consider an attack centered at each one. To evaluate the performance of AC and DC

attacks, we vary the value of ck and compare the residual of the AC state estimator

with χ2 threshold.
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Figure 2.3: The percentage of attacks above threshold as the single state error ci
increases

DC Attack

We summarize results for DC attack model in Table 2.1. The table gives the size

of attack subgraph for each attack scenario, as well as the value of ck at which the

mean residual crosses the χ2 threshold. In Fig. 2.3, over 100 attack simulations per

attack bus, we plot the percentage of attacks above the threshold as the function of

attack magnitude ‖c‖. Observe that the percentage above threshold increases quickly

as ‖c‖ increases; in fact, for ‖c‖ as small as 0.2 degrees, virtually all DC attacks are

detectable. Specifically, for buses 4 and 10 we plot the residual as a function of c in

Figs. 2.4 and 2.5, respectively. Target buses 4 and 10 are representative of attacks

on buses with relatively larger and smaller subgraph, respectively.

AC Attack

Also plotted in Figs. 2.4 and 2.5 are the residuals when the attacker uses a local AC

state estimation for the same values of ck. As expected, the residuals resulting from
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Figure 2.4: Residual for DC and AC attacks as the attacker increases the Voltage
angle of bus 4.
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Figure 2.5: Residual for DC and AC attacks as the attacker increases the voltage
angle of bus 10.
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Table 2.1: Summary of DC attack

Center bus k Number of Number of Post-threshold

buses in Sk branches in Sk ck (deg.)

1 4 3 0.0228

2 4 3 0.0228

3 5 4 0.0915

4 3 2 0.1145

5 3 2 0.0915

6 3 2 0.0915

7 2 1 0.1087

8 4 3 0.0743

9 10 13 0.0572

10 10 13 0.0457

14 6 5 0.0401

15 5 5 0.0228

16 7 6 0.0170

19 3 3 0.0228

20 3 4 0.0170

the AC attack model are always below the χ2 threshold irrespective of the value of

ck. More interestingly, we note that the average residual is even smaller than the

no attack case. This is due to the false data are directly constructed from the false

state x(a) = x + c with a AC system model. Therefore, the measurements in Sk are

noise-free in respect of the system model and contribute nothing in the residuals. By

comparing Figs. 2.4 and 2.5, AC attack with a large attack subgraph has smaller
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residual than the one with a small attack subgraph. DC attack, in contrary, with a

large attack subgraph has much larger residual.

2.6 A Brief Discuss of Consequences for the Unobservable Attacks

We now describe a physical consequence of the AC attack model. We assume

that the system is operating at normal state prior to the attack. After the attack is

launched, it may trick the operator into thinking that the normal state has moved

to an emergency state (some operational limits are violated) or a restorative state

(partial or total blackout). Either way, it is possible that such an attack leads to

additional control actions that changes the physical system, including topology, gen-

eration dispatch, load shedding schedule, and so forth.

For instance, suppose that the attacker injects false data such that the estimated

voltage angle at bus 7 is increased by 4.01 degrees. The absolute power flow measured

at bus 7 side of branch 7-8 is increased from 89.40 MVA to 196.19 MVA, which exceeds

its long term rating of 175 MVA. The control center observes this abnormality and

considers the system to be in emergency state in need of corrective. If the attacker

has knowledge about emergency control procedure, then it is possible for the attacker

to influence the dynamics of the physical system.

We simulate this emergency response at the control center as follows:

1. The system is modeled as operating at an optimal power flow situation and the

load of the system is constant during the attack period.

2. An ACOPF with a minimum cost objective function is applied as an emergency

or corrective control procedure to re-dispatch generation when the operator

monitors any line limit violation.

3. The system is assumed to have congestion. Long term ratings of all lines are

degraded proportionally to let one line be congested just prior to the attack,
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specifically line 6-10. This assumption is made because the IEEE-RTS system

has redundant transmission capacity.

Suppose the state estimator runs every time unit. At time t = 1, the attacker

constructs an unobservable attack vector c such that ‖c‖0 = 1 and c7 = 2.865 degree.

The absolute power flow of line 7-8 (measured at bus 7 side) increases from 89.40

MVA to 165.00 MVA, which is 101.11% of the long-term rating. This attack causes

the estimated load at bus 7 to decrease and estimated load at bus 8 to increase.

It triggers an alarm and the emergency control is involved. Then, as a result, the

control center re-dispatches the generation via ACOPF to eliminate the false line

rating violation. Following this initial attack, the attacker continues to use the same

strategy and injects the same c into the system at subsequent estimation intervals. As

shown in Fig. 2.8, at time t = 1, the generation level at bus 7 reduces and that of bus

13 increases. Fig. 2.8 also shows that after time 1, changes in active power generation

are minor and caused only by measurement errors. Thus, an unobservable attack on

a single bus led to a physical generation re-dispatch. Specifically, the generators at

bus 7 reduce generation to decrease line flow from bus 7. To ensure the power balance

generators at bus 13 increase generation. Figs. 2.6 and 2.7 show some of the real

states evolutions during the attack. Figs. 2.9 to 2.11 show a different case at bus 2

with c2 = 1.719 degree.

In this chapter, it has been shown that the FDI attack with a AC attack model

has influence on the physical system. Also, in the simulation, cases with real line

overload after attack are observed. This indicates that a possible attack consequence

is overloading lines. However, since the choice of the attack vector c in this chapter

is simple and exhaustive, the overload is not guaranteed. Furthermore, the attack

has some unrealistic side effects: for instance, in some cases with large generation re-

dispatch, the load on a bus has to be changed from positive to negative at the moment
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Figure 2.6: Real voltage angle evolution at bus 2, 7, 9, and 11 for attack centered
at bus 7 (degree)
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Figure 2.7: Real voltage magnitude evolution at bus 2, 7, 9, and 11 for attack
centered at bus 7 (p.u.)

of attack, indicating a bus is suddenly generating power instead of consuming it. This

is extremely peculiar in reality since the load in power system are generally inertial

and such an huge change in load will immediately noticed by the operator. Therefore,

a more intelligent and subtle way of choosing attack vector c should be considered.
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Figure 2.8: For attack centered at bus 7, active power generation dispatch before
and after attack. Attack starts at t = 1
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Figure 2.9: For attack centered at bus 2, real state evolution at bus 2, 5, 9, and 11:
Angle (degree)
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Figure 2.10: For attack centered at bus 2, real state evolution at bus 2, 5, 9, and
11: Magnitude (p.u.)
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Figure 2.11: For attack centered at bus 2, active power generation dispatch before
and after attack. Attack starts at t = 1
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Chapter 3

OPTIMIZATION PROBLEM FOR THE WORST-CASE LINE OVERLOAD

ATTACK

In Chapter 2, the attacker’s influence over the physical system has been demon-

strated. However, the random change of the system state seems pointless to a mali-

cious attacker. A malicious and capable attacker will try to manipulate the physical

system into an operation status as she desires. In this chapter, such an intelligent

attack is discussed.

3.1 Problem Description

The aim of the unobservable attack is to maximize the physical line flow for a

chosen line in the attack subgraph. However, the attacker, in general, has limited

resources to change states; furthermore, the attacker would also like to design the

attack to avoid detection over the various computing units in EMS. This leads to a

constrained optimization problem. Specifically, we model the two conflicting goals of

the attacker as follows: the limited resource constraint is modeled by a sparsity con-

straint in which we limit the number of center buses at which states can be changed.

The detectability constraint is modeled by limiting the cyber load shifts that result

from the FDI attacks. This is because a large deviation in estimated load from nor-

mal operational values will be detected as an anomalous event by the operators. The

sparsity constraint capturing the limited resource is modeled as an l0-norm constraint.

This is, in general, intractable, and therefore, we relax it to an l1-norm constraint. In

addition to the two constraints, since the physical line flow is a consequence of the

control center re-dispatch generation, the attack optimization process has to include

the OPF subsequent to state estimation as a sub-problem. The resulting problem is

a bi-level optimization problem.
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Generally, an optimal dispatch can be the result of different load patterns. As a

result, there are numerous solutions of attack vector that lead to the same physical

line flow on the target line. Among these, the goal of the optimization is to choose

the one with the smallest l1-norm, and hence, l0-norm to satisfy the limited resources

constraint. This, in turn, requires a second entry in the objective function where

we determine the sparest attack vector among the same maximal power flow on the

target branch.

Finally, a linearized system model is used in the problem formulation. The DC

model is an appropriate approximation of the AC model and it will simplify the

problem and decrease the solving time. To test the accuracy of the solution, we

substitute the DC solution into a AC model to validate the result. Details will be

discussed in the Sec. 3.4.

3.2 Optimization Problem Formulation

The attacker’s influences over the system can be formulated as an optimization

problem (with attacker’s objective) embedded with a sub-problem (with operator’s

objective). Similar to the authors in [13, 15], we model the optimal attack problem

as a bi-level optimization problem with an objective to maximize the power flow on

branch l while to change as few states as possible:

Main Problem: maximize Pl − γ ‖c‖0 (3.1)

subject to

P = H2(θ
? − c) (3.2)

− LSP ≤ H1c ≤ LSPL (3.3)

‖c‖0 ≤ N0 (3.4)
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Sub-problem: {θ?, P ?
G, R

?} = arg

{
min
θ,PG,R

ng∑
g=1

fg(PGg) +

nbr∑
l=1

Pl(Rl)

}
(3.5)

PG −H1(θ − c)− PL = 0 (υ) (3.6)

−Pmax −R ≤ H2θ ≤ Pmax +R (λ+, λ−) (3.7)

Pmin
G ≤ PG ≤ Pmax

G (α+, α−) (3.8)

0 ≤ R (β) (3.9)

where the variables:

P is the nbr × 1 vector of branch power flow;

c is the nb × 1 attack vector;

θ, θ? are nb × 1 state variable vectors and optimal variable

solved by DCOPF, respectively;

PG, P
?
G are ng × 1 vectors of generation dispatch variable and

optimal generation dispatch solved by DCOPF,

respectively;

R,R? are nbr × 1 vectors of the line relaxation variable, and

optimal line relaxation solved by DCOPF, respectively;

υ is the nb × 1 dual variable vector for all equal

constraints in DCOPF;

λ+, λ− are nbr × 1 dual variable vectors of the upper and lower

bound of thermal limits, respectively;

α+, α− are ng × 1 dual variable vectors of the upper and lower

bound of generator capacity, respectively;

and the parameters:
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LS is the load shift factor;

PL is the nb × 1 vector of active load at each bus;

N0 is the l0-norm constraint integer;

H1 is the nb × nb matrix of dependencies between power

injection measurement and state variable;

H2 is the nnb × nb matrix of dependencies between power

flow measurement and state variable,

fg is the cost function of the gth generator,;

Pl is the penalty function of relaxing the lth line;

Pmax is the nbr × 1 vector of line thermal limit;

Pmin
G , Pmax

G are ng × 1 vectors of minimum and maximum

generator output, respectively.

γ the weight of the norm of attack vector c.

We define l0-norm as appropriate quantities summed over only the load buses.

Thus, the l0-norm, ‖c‖0, of the attack vector c is defined as

‖c‖0 =

nb∑
k∈Kload

1(ck 6= 0). (3.10)

Recall the goal of optimization is to maximize Pl while finding the sparsest attack

among all the possible attack vector. Thus, due to the trade-off between the maxi-

mum power flow and the corresponding sparest attack vector, thus the optimization

objective is Pl−γ ‖c‖0. The weight γ is chosen to be a small and positive value such it

in general contributes minimal to the objective. Note that (3.2)–(3.4) are the attack

related constraints. The constraints in (3.2) model the unobservability of the attack

and the constraints in (3.3)–(3.4) model the attacker’s limited ability: the attacker

can alter up to N0 states (not necessarily alter all of them) and the resulting change

in load shift is limited to LSPL. A standard DCOPF with a thermal limit relaxation
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penalty is modeled by (3.5)–(3.9). The penalty function in (3.5) ensures the second

level OPF converge thus the first level problem to return a solution.

Since (3.4) is a modified l0-norm constraint, it is a complex non-linear constraint

and generally non-convex. In this paper, we relax it to a corresponding l1-norm

constraint as

‖c‖1 =
∑

k∈Kload

|ck| ≤ N1 (3.11)

where N1 is non-negative. Since (3.11) is a non-linear constraint and we rewrite it as

−ck ≤ sk (3.12)

ck ≤ sk (3.13)∑
k∈Kload

sk ≤ N1 (3.14)

where s is a slack variable.

For the embedded OPF problem, the optimal solution can be found at the point

which satisfies the KKT optimality condition with zero duality gap since it is a convex

optimization problem [26]. We use this fact to further replace the embedded DCOPF

problem in (3.5) with its KKT conditions below, along with (3.6)–(3.9), as

[
λ+;λ−;α+;α−; β

]
≥ 0 (3.15)

diag
([
λ+;λ−

])
([H2;−H2] θ

? − [Pmax +R?] [I;−I]) = 0 (3.16)

diag
([
α+;α−

]) (
[I;−I]P ?

G −
[
Pmax
G ;−Pmin

G

])
= 0 (3.17)

−diag(β)R? = 0 (3.18)

∇(

ng∑
g=1

fg(P
?
Gg

) +

nbr∑
l=1

Pl(R?
l ))

+
[
λ+;λ−

]T ∇ ([H2;−H2] θ
? − [Pmax +R?] [I;−I])

+
[
α+;α−

]T ∇ ([I;−I]P ?
G −

[
Pmax
G ;−Pmin

G

])
(3.19)
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−βT∇R? + υT∇[P ?
G −H1(θ

∗ − c)− PL] = 0

where (3.16)–(3.18) are the complementary slackness condition for constraint (3.7)–

(3.9) and (3.19) is the partial gradient optimal condition. Though (3.16)–(3.18) are

non-linear, they have specially distinctive nature. For instance, the jth equation in

(3.18) can be separated into two conditions associated with a binary variable δβj
βj ≥ 0 and−R?

j = 0, if δβj = 0

βj = 0 and−R?
j < 0, if δβj = 1.

(3.20)

In [27], a procedure is proposed to write (3.20) in a mixed integer problem
δβj={1, 0}

βj≤ Cδβj

R?
j ≤ C(1− δβj)

(3.21)

If δβj = 1, substitute (3.9) and (3.15) into (3.21), we have
δβj = 0

0 ≤ βj≤0

0 ≤ R?
j ≤ Cj.

(3.22)

Thus, if Cj is large enough to not effect the solution of R?
j , (3.22) is equivalent

to the complementary slackness when the jth constraint in (3.9) is not an active

constraint.

Similarly, if δβj = 1 and substitute (3.9) and (3.15) into (3.26), we have
δβj = 1

0 ≤ βj ≤ Cj

0 ≤ R?
j ≤ 0.

(3.23)
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Again, if Cj is large enough to not effect the solution of βj, (3.23) is equivalent to

the complementary slackness when the jth constraint in (3.9) is an active constraint.

Therefore, (3.21) is equivalent to (3.18).

Thus, the whole problem becomes the mixed-integer linear program

maximize Pl − γ
∑

k∈Kload

sk

subject to

(3.2)–(3.3), (3.6)–(3.9), (3.12)–(3.15), (3.19)

δ±λl={1, 0}

λ±≤ Cδ±λ

−H2θ
? + Pmax +R? ≤ C(1− δ+λ )

+H2θ
? + Pmax +R? ≤ C(1− δ−λ )

(3.24)



δ±αl
={1, 0}

α±≤ Cδ±α

−P ?
G + Pmax

G ≤ C(1− δ+α )

P ?
G − Pmin

G ≤ C(1− δ−α )

(3.25)


δβj={1, 0}

β ≤ Cδβ

R? ≤ C(1− δβ)

(3.26)

where δ±λ , δ±αl
and δβl are binary variables and C is a large constant.

3.3 Solutions of Optimization Problem

In this section, we run the optimization problem defined in Sec. 3.2 on the IEEE

RTS-24-bus system to find an optimal attack vector c. Subsequently, we use this

attack vector c to simulate an AC attack described in Sec. 2.4 and given by (2.7)
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Figure 3.1: Statistic summary of 38 attack scenarios for the omnipotent attacker
for a non-congested system.

against a non-linear system model involving AC state estimation and ACOPF. AC

power flow, AC state estimation, and ACOPF are implemented with MATPOWER

toolbox in MATLAB. For the optimization problem, we use CPLEX as the solver.

We highlight results of two scenarios for the RTS-24-bus system: one with orig-

inal rating and one with reduced rating. The one with original rating represents a
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Figure 3.2: Statistic summary of 38 attack scenarios for the omnipotent attacker
for a congested system with rating decreased by 50%.

system without congestion prior to attack and the one with reduced rating represent

a congested system.

Second, we define an attack as feasible if the resulting change in power flow is

more than 1% of the power flow value prior to the attack. This is to distinguish the

cases with no or minor changes on target branch power flow Pl after attack from those

with large changes. We furthermore define a feasible attack to be successful if the
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target branch is overloaded after attack. We choose γ to be 1% of the original power

flow value of the target branch.

Figs. 3.1 and 3.2 illustrate relevant statistics for the non-congested and congested

systems, respectively, when the N1 constraint is set to be infinite. That is, the

attacker has control over all measurements of the system and can change as many

measurements as it wishes. The congested system is modeled with all branch ratings

decreased by 50%. There are three subplots in both Figs. 3.1 and 3.2. Subplot (a)

shows the maximal power flow on branch 10 (based on our observation, this is the

attack with the maximal power flow, i.e., the worst-case attack); subplot (b) shows

the average l0-norm of attack vector c over all feasible cases; and subplot (c) shows

the percentage of feasible and successful attacks.

For both non-congested and congested scenarios, we observe that the maximal

power flow increases as LS constraint relaxes in Figs. 3.1(a) and 3.2(a). In Fig.

3.2(a), we observe a plateau after LS > 50%. It is due to the generator location and

capacity limitation and the fact that the line flow on branch 10 cannot be increased

anymore. From Figs. 3.1(b) and 3.2(b), as LS constraint relaxes, it is easier to attack

the system since the average l0-norm decreases and the attacker needs to change fewer

bus states. It is due to the fact, for some cases, that the maximal power is saturated

when the LS constraint relaxes. The attacker effectively concentrates the change

of loads on fewer buses with heavy loads therefore changes fewer bus states. From

Figs. 3.1(c) and 3.2(c), we observe that the attacker can find more feasible cases as

LS constraint relaxes. Even if the attacker has full control over the system meters,

its influence over the system is extremely limited by the load shift constraint. For

instance, from Fig. 3.1(c), when LS = 20%, the attacker cannot find any feasible

attacks while the attacker can find 12 feasible attacks when LS = 30%.

39



Comparing Figs. 3.1 and 3.2, the congested system is more vulnerable to our

FDI attack. For a non-congested system, from Fig. 3.1(c), the attacker cannot

generate any successful attack. On the other hand, in Fig. 3.2(c), the feasible and

successful attack percentage increases as LS constraint increases for the congested

system. This is expected because the RTS-24-bus system has redundant transmission

capacity for reliability reasons and reducing all the line ratings proportionally will

create a more stressed system. In conclusion, a congested system is naturally favored

by the attacker. Thus, for the rest of the simulation, we only consider the congested

system to illustrate the attack consequences.
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Figure 3.3: The maximal power flow v.s. the l1-norm constraint (N1) for different
value of load shift (LS) at target branch 17 (bus 10–bus 12 ).

Now we discuss the l1-norm constraint. To understand the effect of the sparsity

constraint, we fix the LS constraint, and we solve the proposed optimization problem

for different l1-norm constraint (N1) and for all target branches. Figs. 3.3 and

3.4 show two of the successful attacks with target branches 17 and 23, respectively.

Figs. 3.3 and 3.4 show that, as N1 relax, the attacker can increase the power flow

in some degree while the LS constraint restricts the maximal power flow on the

target branches. And in fact that these two branches are congested (branch 23) or
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Figure 3.4: The maximal power flow v.s. the l1 -norm constraints with different
load shift tolerance at target branch 23 (bus 14–bus 16).

nearly congested (branch 17 with 89% of its transmission capacity occupied) prior

to attack is mainly the result why the attacks are successful. Moreover, the kink in

Fig. 3.3 represents point of which the attack is large enough to cause a different set

of generators to be dispatched.

In Figs. 3.5 and 3.6, we illustrate the l1-norm constraint on the maximal power

flow for the chosen branches, the l0-norm and the l1-norm of the attack vector for

target branches 17 and branch 23, respectively. In each sub-plot, we plot the two

solutions: one with γ (black solid line )and one without γ (blue dashed line) in the

objective function. Recall, as detailed in Sec. 3.2, the l0-norm and l1-norm computed

in (3.10) and (3.11) are only for the load buses and γ is the coefficient of the objective

function. In Fig. 3.5a, the two solutions overlaps, thus highlighting the choice of γ

does not effect the maximal power flow on target branch. Fig. 3.5b illustrates that γ

entry effectively chooses the minimal l1-norm attack vector: with γ, l1-norm of attack

vector c stops increasing when the solution of maximal power flow stops increasing;

however, when γ = 0 when the l1-norm of attack vector c keeps increasing even though

the power flow on branch 17 cannot be increased anymore. As a result, the minimal
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Figure 3.5: The l1-norm and l0-norm of solved attack vector c v.s. the l1 -norm
constraint (N1) when load shift (LS) is limited to 30 %; target branch 17 (bus 10–
bus 12).

l0-norm attack vector is obtained, as shown Fig. 3.5c. Comparing Figs. 3.5b and

3.5c, it is shown that the l1-norm can not perfectly track l0-norm. This is due to a

radial branch 11 (bus 7–bus 8) in the attack subgraph. For branch 11, a voltage angle

decrease on bus 7 and a voltage angle increase on bus 8 can lead to a same power flow

change on branch 11. The corresponding attack vectors have the same l1-norm and

in fact result in same load shift on buses 7 and 8. Fig. 3.6 show another successful

attack with branch 23 (bus14 –bus16). In this scenario, the l1-norm constraint tracks

l0-norm constraint well and the sparsity patterns of c are exactly the same not matter

γ entry is in objective function or not.
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Figure 3.6: The l1-norm and l0-norm of solved attack vector c v.s. the l1-norm
constraint (N1) when load shift (LS) is limited by 20%; target branch 23 (bus 14–bus
16).

3.4 Simulation of Consequences of Non-linear Model

We now use the attack vector from the optimization problem to perform the AC

attack described in Sec. 2.4. If the attacker keeps injecting false data, the attack as

well as the overload on the branches will be sustained until the system configuration

changes.

In this subsection, we assume a system with a complete set of measurements,

i.e., both active and reactive power flows are measured at two ends of each branch

and both active and reactive injection are measured at each load bus, which makes

186 measurements in total. All measurements are assumed to have an error ei ∼
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Figure 3.7: Comparison of DC optimization solution and AC maximal ac-
tive/absolute power flow on target branch 23
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Figure 3.8: Power flow on branch 28

N(0, 10−4) and the χ2 detector threshold τ is set to be 167.52 with 95% confidence

of detection rate. During the simulation, we assume the physical load is static. Note

that, to make the system congested, all ratings of the branches has been decreased

by 50%. Since there is no reactive power in DCOPF, the decrease of rating can not

guarantee ACOPF converge. Thus, in order to compare AC and DC attack, certain

ratings of branches in ACOPF have to be relaxed manually. Similar to what we did in

Sec. 3.3, we solve the optimization problem with target branch 23, for LS = 20%. The
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Figure 3.9: Comparison of DC Optimization Solution and AC Maximal Ac-
tive/Absolute Power Flow on Target Branch 17

detail solutions from the DC optimization problem are summarized in Table A.1. Fig.

3.7 compares the maximal power flow on target branch 23 solved by the optimization

problem and the physical power flow after attack with the AC attack and system

model. In this scenario, the rating of branch 10 (bus 6 – bus 10) has been relaxed to

150 MVA. Note that in the absent of the attack, i.e., N1 = 0, the power flow for AC

and DC OPFs result in sightly different power flow, however, as the attacker size is

increased, the power flows closely track each other. Since branch 23 mainly delivers

active power, the absolute power flow curve on it is almost overlapping with the

curve of active power flow. Another interesting observation is that branch 28 is also

overload even the attacker does not target on it, as shown in Fig. 3.8. Since branch

28 is connected with branch 23 and is also congested prior attack, the optimization

problem tends to include it in the attack subgraph; therefore, once the line flow on

the cyber level seems less than the actual line power, the OPF will dispatch branch

28 to deliver more power.

Fig. 3.9 shows other attack scenarios with target branch 17 and LS = 30%. The

detail solutions from the DC optimization problem are summarized in Table A.2. In
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Figure 3.10: Power flow on branch 12, 23, and 28

this scenario, the rating of branch 10 (bus 6–bus 10) has been relaxed to 145 MVA. In

this case, the power flow for AC and DC power flows still track each other closely. In

particularly, this attack scenario generates three extra overloaded branches, branch

12, 23, and 28, as shown in Fig. 3.10. Branch 23 and 28 are overloaded because of the

prior-to-attack congestion; a little generation dispatch change may cause the power

flow fluctuates on these branches. Branch 12, however, is caused by the generation

decrease on bus 7, as shown in Fig, 3.11. Therefore, in order to meet load demand on
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Figure 3.11: Generation dispatch v.s l1-norm constraint

bus 7 and 8, branch 12 and 13 are dispatched to deliver a lot of power which finally

result in a overload on branch 12.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

The topics of this thesis are two-fold. First, an attack framework was introduced

in which the attacker matches the non-linear AC system characteristics by imple-

menting local AC state estimation to a small number of measurements. Secondly, a

linear optimization problem was formulated for the worst-case line overload attack.

Numerical simulation was performed to test the attack on IEEE-RTS-24-bus system.

It is showed that, with limited resources and changes, the attacker is able to

create branch overload by manipulating the generation dispatch. By exhaustively

searching for all worst-case attack scenarios with different target branches, we found

that, aside from the size of the attack subgraph, the constraint that an attack not

cause significant observed load shift at the control center significantly impacts the

attacker’s ability to overload a branch. Still, there exists attacks with mild load shift

that cause overloads.

Also, we find out the congested or nearly congested lines are most vulnerable to

this type of attack. In reality, operating with congestion is desired: it represents

the system is operating efficiently and transmission capacity is fully used. These

lines deliver a large a mount of power prior to attack, suggesting these lines are the

critical for the system and they are the most efficient path to deliver power. Thus,

the attackers will favor congested lines and target on them.

4.2 Future Work

As discussed in the last part of the simulation result, this work can be extended

by modifying the optimization problem. For instance, the attacker can change the

objective correspondingly to fit her desire like maximize the system operation cost,

etc. Another possible modification is to use false system configuration. Similar to
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[18], the (2.2) becomes:

z
(a)
i =


zi

h
(a)
i (x+ c)

if i /∈ IS

if i ∈ IS
(4.1)

where ha(.) is a false measurement model of the attacker’s choice. In [18], the state-

preserving attack is in fact following (4.1) with c = 0:

z
(a)
i =


zi

h
(a)
i (x)

if i /∈ IS

if i ∈ IS .
(4.2)

Extensions also include attacks targeted to overload multiple lines; this was an

inadvertent side effect of our attacks, but a more targeted effort may cause more

extreme damage or even cascading outages.

Additionally, the linear optimization problem may be extended to a more accurate

non-linear problem.

Finally, using accurate load statistics to detect abnormal load patterns caused by

FDI attacks could further restrict the space of undetectable attacks.
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Table A.1: Table of Attack Vector c: Target Branch 23, LS = 20% (rad), γ = 0.038

@
@
@

@
@

c

N1
0.01 0.02 0.03 0.04 0.05 0.06 0.07

c1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011

c10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016

c11 0.0033 0.0025 0.0019 0.0013 0.0008 0.0003 0.0005

c12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006

c13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c14 0.0095 0.0071 0.0053 0.0038 0.0023 0.0008 0.0000

c15 -0.0004 -0.0092 -0.0114 -0.0147 -0.0179 -0.0211 -0.0234

c16 0.0001 -0.0036 -0.0065 -0.0090 -0.0114 -0.0139 -0.0155

c17 0.0000 -0.0014 -0.0035 -0.0081 -0.0127 -0.0174 -0.0206
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c18 0.0000 0.0000 -0.0016 -0.0075 -0.0133 -0.0192 -0.0232

c19 0.0000 -0.0001 -0.0051 -0.0051 -0.0051 -0.0051 -0.0052

c20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c21 -0.0001 -0.0031 -0.0050 -0.0099 -0.0148 -0.0197 -0.0231

c22 -0.0001 -0.0024 -0.0044 -0.0092 -0.0140 -0.0188 -0.0221

c23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

c24 -0.0002 -0.0057 -0.0071 -0.0091 -0.0111 -0.0131 -0.0144

@
@
@

@
@

c

N1
0.08 0.09 0.1 0.11 0.12 0.13 0.14

c1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c9 0.0065 0.0085 0.0081 0.0083 0.0082 0.0080 0.0079

c10 0.0017 0.0044 0.0018 0.0044 0.0045 0.0046 0.0046

c11 0.0014 0.0022 0.0010 0.0013 0.0009 0.0005 0.0001

c12 0.0018 0.0028 0.0022 0.0027 0.0025 0.0024 0.0022
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c13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c14 0.0000 -0.0002 -0.0020 -0.0025 -0.0036 -0.0047 -0.0059

c15 -0.0246 -0.0260 -0.0291 -0.0307 -0.0326 -0.0346 -0.0365

c16 -0.0164 -0.0174 -0.0199 -0.0212 -0.0230 -0.0247 -0.0265

c17 -0.0224 -0.0244 -0.0289 -0.0310 -0.0335 -0.0359 -0.0383

c18 -0.0254 -0.0280 -0.0337 -0.0362 -0.0390 -0.0418 -0.0446

c19 -0.0054 -0.0055 -0.0054 -0.0062 -0.0076 -0.0090 -0.0104

c20 0.0000 0.0000 0.0000 -0.0005 -0.0015 -0.0026 -0.0037

c21 -0.0250 -0.0272 -0.0320 -0.0342 -0.0367 -0.0392 -0.0417

c22 -0.0240 -0.0261 -0.0308 -0.0329 -0.0354 -0.0379 -0.0404

c23 0.0002 0.0003 0.0002 -0.0001 -0.0010 -0.0019 -0.0028

c24 -0.0152 -0.0160 -0.0180 -0.0190 -0.0202 -0.0214 -0.0225

@
@
@

@
@

c

N1
0.15 0.16 0.17 0.18 0.19 0.2

c1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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c8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c9 0.0077 0.0075 0.0073 0.0072 0.0070 0.0068

c10 0.0046 0.0047 0.0047 0.0047 0.0048 0.0048

c11 -0.0003 -0.0007 -0.0011 -0.0015 -0.0019 -0.0023

c12 0.0019 0.0016 0.0013 0.0009 0.0006 0.0003

c13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c14 -0.0070 -0.0080 -0.0091 -0.0102 -0.0113 -0.0124

c15 -0.0380 -0.0396 -0.0412 -0.0427 -0.0443 -0.0458

c16 -0.0283 -0.0300 -0.0317 -0.0334 -0.0351 -0.0368

c17 -0.0400 -0.0417 -0.0433 -0.0450 -0.0466 -0.0483

c18 -0.0463 -0.0479 -0.0495 -0.0512 -0.0528 -0.0544

c19 -0.0127 -0.0151 -0.0174 -0.0198 -0.0222 -0.0245

c20 -0.0054 -0.0072 -0.0090 -0.0108 -0.0126 -0.0144

c21 -0.0433 -0.0449 -0.0465 -0.0481 -0.0497 -0.0513

c22 -0.0420 -0.0436 -0.0452 -0.0469 -0.0485 -0.0501

c23 -0.0042 -0.0057 -0.0072 -0.0086 -0.0101 -0.0116

c24 -0.0235 -0.0245 -0.0254 -0.0264 -0.0274 -0.0283
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Table A.2: Table of Attack Vector c: Target Branch 17, LS = 30% (rad), γ = 0.016

@
@
@

@
@

c

N1
0.01 0.02 0.03 0.04 0.05 0.06 0.07

c1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

c7 0.0000 0.0000 0.0000 0.0066 0.0136 0.0199 0.0259

c8 0.0013 0.0128 0.0169 0.0207 0.0248 0.0286 0.0322

c9 0.0000 0.0000 -0.0085 -0.0089 -0.0083 -0.0077 -0.0072

c10 0.0027 0.0029 0.0032 0.0032 0.0033 0.0034 0.0037

c11 -0.0012 -0.0005 -0.0009 -0.0010 -0.0009 -0.0006 -0.0003

c12 0.0006 0.0006 -0.0012 -0.0012 -0.0011 -0.0010 -0.0008

c13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c14 -0.0049 -0.0028 0.0000 0.0000 0.0000 0.0004 0.0008

c15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c16 0.0011 0.0015 0.0014 0.0006 0.0000 0.0000 0.0000

c17 0.0004 0.0005 0.0005 0.0002 0.0000 0.0000 0.0000
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c18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c22 0.0002 0.0002 0.0002 0.0001 0.0000 0.0000 0.0000

c23 0.0001 0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

c24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

@
@
@

@
@

c

N1
0.08 0.09 0.1 0.11 0.12 0.13 0.14

c1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c6 0.0012 0.0020 0.0028 0.0035 0.0040 0.0040 0.0040

c7 0.0311 0.0363 0.0416 0.0469 0.0494 0.0494 0.0494

c8 0.0355 0.0388 0.0421 0.0454 0.0470 0.0470 0.0470

c9 -0.0066 -0.0060 -0.0054 -0.0048 -0.0045 -0.0045 -0.0045

c10 0.0046 0.0055 0.0063 0.0071 0.0076 0.0076 0.0076

c11 0.0000 0.0004 0.0008 0.0012 0.0015 0.0015 0.0015

c12 -0.0004 -0.0001 0.0002 0.0005 0.0007 0.0007 0.0007
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c13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c14 0.0010 0.0013 0.0018 0.0023 0.0027 0.0027 0.0027

c15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c17 0.0000 0.0000 0.0000 0.0000 -0.0031 -0.0032 -0.0032

c18 0.0000 0.0000 0.0000 0.0000 -0.0048 -0.0049 -0.0049

c19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c21 0.0000 0.0000 0.0000 0.0000 -0.0032 -0.0032 -0.0032

c22 0.0000 0.0000 0.0000 0.0000 -0.0031 -0.0032 -0.0032

c23 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001

c24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

@
@
@

@
@

c

N1
0.15 0.16 0.17 0.18 0.19 0.2

c1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c6 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040

c7 0.0494 0.0494 0.0494 0.0494 0.0494 0.0494
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c8 0.0470 0.0470 0.0470 0.0470 0.0470 0.0470

c9 -0.0045 -0.0045 -0.0045 -0.0045 -0.0045 -0.0045

c10 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076

c11 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015

c12 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007

c13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c14 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

c15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c17 -0.0032 -0.0032 -0.0032 -0.0032 -0.0032 -0.0032

c18 -0.0049 -0.0049 -0.0049 -0.0049 -0.0049 -0.0049

c19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c21 -0.0032 -0.0032 -0.0032 -0.0032 -0.0032 -0.0032

c22 -0.0032 -0.0032 -0.0032 -0.0032 -0.0032 -0.0032

c23 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

c24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

60


	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	1 INTRODUCTION
	1.1 Background
	1.2 System Model
	1.2.1 Temporal Nature of Processing in the Power System
	1.2.2 Measurements
	1.2.3 State Estimation 
	1.2.4 Implementation of State Estimation 
	1.2.5 Bad Data Detection
	1.2.6 DC and AC Optimal Power Flow

	1.3 False Data Injection Attack
	1.4 Literature Review
	1.5 Research Motivation and Objective
	1.6 Outline of Thesis

	2 PROBLEM FORMULATION FOR FDI ATTACKS
	2.1 General Attack Model
	2.2 Unobservable Attack – a General Definition of FDI Attack 
	2.3 DC Attack 
	2.4 AC Attack 
	2.5 Comparison of Attacks
	2.6 A Brief Discuss of Consequences for the Unobservable Attacks

	3 OPTIMIZATION PROBLEM FOR THE WORST-CASE LINE OVERLOAD ATTACK
	3.1 Problem Description
	3.2 Optimization Problem Formulation
	3.3 Solutions of Optimization Problem
	3.4 Simulation of Consequences of Non-linear Model 

	4 CONCLUSIONS AND FUTURE WORK
	4.1 Conclusions
	4.2 Future Work


	REFERENCE
	A SOLUTION TABLES FOR THE OPTIMIZARIONB PROBLEM




