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ABSTRACT  

   

The Volume-of-Fluid method is a popular method for interface tracking in 

Multiphase applications within Computational Fluid Dynamics. To date there exists 

several algorithms for reconstruction of a geometric interface surface. Of these are the 

Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction 

Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid Interface 

Reconstruction Algorithm, ELVIRA. Along with these geometric interface reconstruction 

algorithms, there exist several volume-of-fluid transportation algorithms. This paper will 

discuss two operator-splitting advection algorithms and an unsplit advection algorithm. 

Using these three interface reconstruction algorithms, and three advection algorithms, a 

comparison will be drawn to see how different combinations of these algorithms perform 

with respect to accuracy as well as computational expense. 
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CHAPTER 1 

INTRODUCTION 

 The Volume-of-Fluid algorithm is a popular interface-capturing method for the 

tracking of a free surface in numerical simulation of a fluid dynamics problem. Alone the 

Volume-of-Fluid algorithm calculates the transportation of a given interface geometry in 

a known velocity field. However, when coupled with a numerical flow solver like the 

discrete Navier-Stokes equations, the motion of two-phase flows can be predicted. For 

accurate prediction and understanding of interfacial flows, an accurate Volume-of-Fluid 

interface-capturing scheme is needed. Many different re-formulations of the Volume-of-

Fluid method exist.  

 In this paper, a comparison will be made of different schemes for segments of the 

Volume-of-Fluid algorithm. Firstly, the scheme for determining the interface normal 

within a given cell will be examined. Several methods exist; examples are Parker & 

Young's method (1992), the finite difference (Li, 1995), the Least-Squares Volume-of-

Fluid Interface Reconstruction Algorithm, LVIRA (Puckett, 1991), and Efficient Least-

Squares Volume of Fluid Method, ELVIRA (Pilliod & Puckett, 2004). These interface 

normal calculations have been devised as a way to best calculate the straight-line 

interface normal using only information of the volume of a geometry. Since the true 

interface in a given cell is not always straight, it is difficult to define a correct normal. 

This paper focuses on the LVIRA, and ELVIRA methods for determining the normal 

interface direction in the reconstruction step of the Volume-of-Fluid. The finite difference 

normal is also compared as a baseline as it is one of the most widely used normal 

calculations for the Volume-of-Fluid. 
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 Second, the advection scheme for transportation of the interface is compared. 

Many deviations exist for the purpose of the fastest, most accurate, and robust 

transportation of the interface. A comparison will be drawn using the following 

transportation algorithms; advection of the reconstructed interface taking the flux face 

velocity as constant over an entire cell (Scardovelli & Zaleski, 1999), advection of the 

reconstructed interface interpolating the velocity across a cell volume that allows 

stretching and compression of the interface (Gueyffier et al. 1999), and finally a second 

order conservative unsplit algorithm (Owkes & Desjardins, 2014). 

 In order to compare the different types of interface reconstruction and interface 

transportation schemes, widely used test cases will be used to determine the error 

accuracy and relative speed between the different volume-of-fluid advection and 

reconstruction schemes. The test cases used in this work are the Zalesak’s disk, the 

circular column in a deformation field test case, and a three-dimensional sphere in a 

deformation field test case. These test cases were chosen because of they are widely used 

in literature and have documented information found in Owkes & Desjardins (2014) as 

well as Pilliod & Puckett (2004).  

This motivation behind this work is to evaluate the impact of the different 

interface normal calculations and transportation algorithms on the Volume-of-Fluid 

method. The paper is organized as follows. Chapter 2 gives a detailed description of the 

processes in the Volume-of-Fluid method. Chapter 3 explains the different types of 

normal calculations that are used in this paper. Chapter 4 gives an explanation of the 

different transportation methods. Chapter 5 contains the results for the following test 

cases evaluated within this work.   
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CHAPTER 2 

BACKGROUND 

Definition of the Volume Fraction 

 Beginning with a problem of two immiscible fluids separated by a free surface 

inside a spatial domain. One can differentiate between the two fluids by defining one as a 

dark fluid, and the other as a light fluid. The spatial domain is decomposed into finite 

sized control volumes. Instead of explicitly tracking the free surface, the separation of 

fluids can be captured by tracking the ratio of the dark fluid volume to total volume 

within each cell. The ratio of dark fluid to cell volume is called the liquid volume 

fraction, C. In some literature, such as (Gueyffier et al. 1999), the ratio is called the color 

function. By storing only the liquid volume fraction, information about the exact interface 

between the dark and light fluid is lost.  

 

Figure 1 – An interface defined within a spatial domain.  The grid shows cells that have been 

discretized as finite sized control volumes. Cells are colored according to their volume fraction. A 

dark grey cell denotes a volume fraction of one, while a white cell denotes a volume fraction of zero. 

C = 1 

C = 0 
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 Since information of the exact interface is lost, the initial portion of the Volume-

of-Fluid algorithm is dedicated to using the volume fraction to approximately reconstruct 

an interface. This reconstruction is accomplished geometrically using simple elements 

that geometrically represent the volume within each individual control volume. A number 

of interface reconstruction schemes are available such as the Simple Line Interface 

Calculation, SLIC (Noh & Woodward, 1976), and the Piece-wise Line Interface 

Reconstruction, PLIC (Gueyffier et al. 1999).  An attempt has even been made for a 

Parabolic Interface Reconstruction scheme, PROST (Renardy & Renardy, 2002). 

However due to issues with robustness, the parabolic scheme is not widely used. 

Piecewise Linear Interface Calculation 

In this work, the PLIC reconstruction scheme is used for the reconstruction of the 

interface between immiscible fluids. The PLIC reconstruction scheme is the following. 

Linear elements are used to describe the volume fraction within each control volume. The 

interface between fluids is then defined using 1st order linear segments in each cell.  

          𝑥1𝑚1 + 𝑥2𝑚2 + 𝑥3𝑚3 = 𝛼          (1) 

Each cell contains its own linear segment, and therefore the linear segments across 

multiple cells are piece-wise discontinuous. In reconstruction, the linear segment defined 

by equation 1 must be identified. This requires an approximation for the interface normal, 

m, as well as the perpendicular distance from the cell origin, α. Calculations for 

determining the interface normal will be discussed in Chapter 3. 

 After the appropriate normal is calculated, the perpendicular distance from the 

cell origin must be determined. This can be accomplished by constraining equation 1 
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such that the volume, under the plane is equal the volume fraction of the cell, using 

equation 2. 

     𝐶 =
1

6𝑚1𝑚2𝑚3
[𝛼3 − ∑ 𝐻(𝛼 − 𝑚𝑖)(𝛼 − 𝑚𝑖)

3

3

𝑖=1

− ∑ 𝐻(𝛼 − 𝛼𝑚𝑎𝑥 + 𝑚𝑖)

3

𝑖=1

]     (2) 

𝛼𝑚𝑎𝑥 = 𝑚1 + 𝑚2 + 𝑚3 

The heavi-side function is made use of and is denoted by H. It should be noted that 

equation 2 assumes an equidistant cell size of 1. This is because it is the volume fraction 

that is of interest, not the dark liquid volume. The interface segment that is reconstructed 

within a cell volume is depicted in figure 2. 

 

Figure 2 – Piecewise linear interface reconstruction of one cell within the computational domain. 

Transportation of the Volume Fraction 

After reconstruction of the interface, the transportation of the dark liquid is 

required. The PLIC reconstruction of the interface makes it difficult to perform advection 

using an advection equation on the reconstructed interface since it is piecewise 

discontinuous and defined locally for each cell. Therefore transportation is accomplished 
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through the geometric fluxing of the volume fraction through cell faces. This requires that 

the velocities within the domain be defined normal to cell faces.  

The fluxes are determined at each face of the control volumes within the spatial 

domain. When the fluxes are determined, the volume fractions are updated. This is 

accomplished by subtracting the fluxed volume fraction, and placing it into the adjacent 

cell volume. Adjacent meaning, the cell that shares the fluxing face. By using this direct 

fluxing operation, the Volume-of-Fluid method is discretely conservative. Three different 

methods for the transportation of the volume fraction are examined in this work. Detailed 

instruction of the fluxing operation is given in Chapter 4. 
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CHAPTER 3 

INTERFACE NORMAL CALCULATION 

We start with the interface that passes through the center cell of a 3-by-3-cell stencil. A 

3-by-3-by-3-cell stencil is used in three-dimensions, but 2D formulations will be 

described here since they are easily extendible to 3D. Figure 3, shows an interface 

example that passes through the center cell of the stencil. 

 

Figure 3 – Left: Exact interface within a 3-by-3-cell stencil. Right: Volume fraction decomposition of 

the exact interface. 

The volume fraction, is the only known information. Figure 3b, shows the volume 

fractions, which are approximate for this example. The interface is then calculated in the 

next sections by the following; Finite Difference, LVIRA, and ELVIRA.   
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Finite Difference Formulation 

The finite difference formulation is due to Li (1995). In this formulation, the normal of 

the interface is approximated by a finite difference approximation of the non-unit normal 

following, 

          𝒎ℎ = −𝛻ℎ𝐶          (3) 

In order to define a stable normal for the interface normal reconstruction, gradients are 

calculated at cell corners and averaged back to the cell centers such that.  

          𝒎𝑖,𝑗 =
1

4
(𝒎

𝑖+
1
2

,𝑗−
1
2

+ 𝒎
𝑖−

1
2

,𝑗−
1
2

+ 𝒎
𝑖+

1
2

,𝑗+
1
2

+ 𝒎
𝑖−

1
2

,𝑗+
1
2

)          (4) 

In three-dimensions the interface normal is the average of the eight corners of a cubic 

cell. 

𝒎𝑖,𝑗,𝑘 =
1

8
(𝒎

𝑖+
1
2

,𝑗−
1
2

,𝑘+
1
2

+ 𝒎
𝑖−

1
2

,𝑗−
1
2

,𝑘+
1
2

+ 𝒎
𝑖+

1
2

,𝑗+
1
2

,𝑘+
1
2

+ 𝒎
𝑖−

1
2

,𝑗+
1
2

,𝑘+
1
2

+ 𝒎
𝑖+

1
2

,𝑗−
1
2

,𝑘−
1
2

+ 𝒎
𝑖−

1
2

,𝑗−
1
2

,𝑘−
1
2

+ 𝒎
𝑖+

1
2

,𝑗+
1
2

,𝑘−
1
2

+ 𝒎
𝑖−

1
2

,𝑗+
1
2

,𝑘−
1
2

)          (5) 

Figure 4, shows visually the calculation of the finite difference normal approximation. 

 
Figure 4 – Visual depiction of how the finite difference normal is obtained. The four vectors at cell 

vertices are averaged to the cell center to determine the interface of the line segment.  
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Least Squares Volume-of-Fluid Interface Reconstruction Algorithm 

The Least-Squares Volume-of-Fluid Interface Reconstruction Algorithm is due to Puckett 

(1991). In this approach a minimum error metric is used to find the best normal 

approximation. Puckett approximates the best normal by drawing an interface as a 

straight line that passes through the entire 3-by-3-cell stencil, figure 5.  

 
Figure 5 – LVIRA and ELVIRA normal approximation depictions. Left: true volume fraction known 

from the exact interface. Right: approximated volume fractions of every cell in the 3-by-3-cell stencil 

when the line segment is drawn through the entire 3-by-3-cell stencil. 

The interface in figure 5, is constructed such that the volume fraction given under the 

interface reconstruction in the center cell is the true value of C. Under this constraint, an 

error metric can be defined as the straight-line interface that minimizes the difference 

between reconstructed volume fractions and true volume fractions in the surrounding 

cells. 

          ||𝑬(𝒎)|| = ( ∑ (𝐶̃𝑖+𝑘,𝑗+𝑙(𝒎) − 𝐶𝑖+𝑘,𝑗+𝑙)
2

1

𝑘,𝑙=−1

)

1/2

          (6) 
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This then becomes a non-linear least squares optimization problem. To solve the non-

linear least squares problem imposed by LVIRA, the Levenberg-Marquardt gradient 

decent algorithm was chosen to quickly and accurately find the minimum value in the 

error function, 

          [𝐉T𝐉 + 𝜆 𝒅𝒊𝒂𝒈(𝐉𝑇𝐉)]𝜹 = 𝐉T𝑬          (7) 

Where the following are defined as, 

𝐉 =
𝜕𝑬

𝜕𝒎
=

𝑬(𝜃) − 𝑬(𝜽 + 𝚫𝜽)

𝚫𝜽
 

𝜆 = 𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

𝜹 = [𝛽1, 𝛽2, … , 𝛽𝑛]T 

On the right hand side of equation 7 is the vector, E, containing the error between 

approximated volume fraction and true volume fraction in each cell. In two-dimensions, 

equation 6 is a function of two parameters, m1 and m2. To minimize the number of 

parameters affecting the error function, the non-unit normal vector is converted to an 

angle, θ. This reduces the number of parameters from m1 and m2 to a single parameter, 

θ. In three-dimensions, the number of parameters is reduced from m1, m2, m3 to θ, φ. 

The Levenberg-Marquardt method is a gradient decent algorithm for finding the 

local minima within the vicinity of an initial guess. For the comparisons of the different 

normal calculation schemes, the initial guess that was chosen was the ELVIRA normal. 

The reason ELVIRA is chosen as the initial guess is that the lowest error in equation 6 is 

of interest for this work. An initial guess using the finite difference formulation has 

shown higher errors than when using ELVIRA. This is the result of multiple local 

minima limiting the Levenberg-Marquardt from finding the global minimum.  
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Efficient Least Squares Volume-of-Fluid Interface Reconstruction Algorithm 

 The Efficient Least-Squares Volume-of-Fluid Interface Reconstruction Algorithm is due 

to Pilliod & Puckett (2004). In this method the same error metric as used in the LVIRA 

method is used.  To reduce the computational workload, instead of iterating to find a 

minimum solution, the ELVIRA method chooses between several candidates of m. The 

candidates that are selected are the forward, central, and backward differences of the 

column sums in each of the principle axis directions. In two dimensions, the total number 

of candidates is 6, and in three dimensions the number of candidates is 9. The candidates 

in two-dimensions are the following, 

𝑚𝑏
𝑥 = ∑ 𝑓𝑖,𝑗+𝑙,𝑘 − 𝑓𝑖−1,𝑗+𝑙,𝑘

1

𝑙=−1

          (8) 

𝑚𝑐
𝑥 =

1

2
∑ 𝑓𝑖+1,𝑗+𝑙,𝑘 − 𝑓𝑖−1,𝑗+𝑙,𝑘

1

𝑙=−1

        (9) 

𝑚𝑓
𝑥 = ∑ 𝑓𝑖+1,𝑗+𝑙,𝑘 − 𝑓𝑖,𝑗+𝑙,𝑘

1

𝑙=−1

          (10) 

This is similar for 𝑚𝑏
𝑦

, 𝑚𝑐
𝑦

, and 𝑚𝑓
𝑦

. From the criterion, the appropriate normal is chosen 

such that it has the smallest error in the error criterion shown in equation 6. 

          𝑚̃ = min{ 𝐸(𝑚𝑏
𝑥, 𝑚𝑐

𝑥, 𝑚𝑓
𝑥, 𝑚𝑏

𝑦
, 𝑚𝑐

𝑦
 , 𝑚𝑓

𝑦
)}         (11) 

Pilliod and Puckett (2004), claim that for straight line interfaces both the ELVIRA, and 

LVIRA method produce the exact normal regardless of the orientation. However for 

curved line interfaces the LVIRA should produce better results at a higher computational 

cost. 



  12 

CHAPTER 4 

FLUID ADVECTION 

Common in practice, the fluxing operation of the advection algorithm is broken into 

separate operator-splitting steps. This is because it significantly reduces the complexity of 

the advection algorithm. Operator-split transportation methods reduce the complexity by 

reducing the amount of fluxing that is possible during a time-step. Given the advection 

equation. 

          
𝜕𝐶

𝜕𝑡
+ 𝒖 ⋅ ∇𝐶 = 0          (12) 

The operator-split transportation scheme becomes 

          
𝜕𝐶

𝜕𝑡
+ 𝑢𝑥

𝜕𝐶

𝜕𝑥
= 0          (13) 

          
𝜕𝐶

𝜕𝑡
+ 𝑢𝑦

𝜕𝐶

𝜕𝑦
= 0          (14) 

          
𝜕𝐶

𝜕𝑡
+ 𝑢𝑧

𝜕𝐶

𝜕𝑧
= 0          (15) 

In each operator-split step, the interface is transported along each of the principle 

directions independently. By doing this the fluxes through two faces at most must 

calculated for each operator-split step. This however has the drawback of transporting the 

volume fraction during non-divergence free fluxing steps. Transportation errors due to 

these independent fluxing steps are known as splitting errors. These splitting errors lead 

to unwanted elements in the domain known as float-sum in which the volume fraction 

contained within cells can fall below 0 and in excess of 1. 
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Operator-Split Non-Rotational Advection 

The non-rotational operator-split method is due to Scardovelli & Zaleski (1999). In non-

rotational operator-split transportation, only the translation of the interface is considered. 

The translation of the interface can be described as follows. Starting with equation 1 for a 

planar interface that is defined within a cell volume, with n denoting the nth time step, 

          𝑥1
𝑛𝑚1

𝑛 + 𝑥2
𝑛𝑚2

𝑛 + 𝑥3
𝑛𝑚3

𝑛 = 𝛼𝑛          (16) 

Denoting the fluxing face velocity, Uh, the position of each point on the interface can be 

calculated from the displacement during the time-step. 

          𝑥1
𝑛+1 = 𝑥1

𝑛 + 𝑈ℎ𝜏          (17) 

Substituting (17) into (16), the equation for the interface after transportation from the 

fluid flow becomes equation 18. 

          𝑥1
𝑛+1𝑚1

𝑛 + 𝑥2
𝑛𝑚2

2 + 𝑥3
𝑛𝑚3

𝑛 = 𝛼𝑛 + (𝑈ℎ𝜏)𝑚1
𝑛          (18) 

For operator-splitting, the translation in other principal directions for this step are ignored 

and the equation for planar interface after transportation along the x1 principal direction 

becomes 

          𝑥1
⋆𝑚1

⋆ + 𝑥2
⋆𝑚2

⋆ + 𝑥3
⋆𝑚3

⋆ = 𝛼⋆          (19) 

𝛼⋆ = 𝛼𝑛 + 𝑈ℎ 𝜏 𝑚1
𝑛 

The star values denote the equation between operator-splitting steps, since this fluxing 

step must be done for each of the principal directions. Observation of equation 19 shows 

that the transportation of the interface results in a repositioning of the origin of the 

coordinate system. Fluxes are then calculated as the volume under the line that has passed 

through the flux face, figure 6. 
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Figure 6 – Operator-split non-rotational advection. Only the translation of the interface is taken into 

account. All points on the line are translated using the flux face velocity over a time-step, Δt.  

 

Operator-Split Rotational Advection 

Rotational operator-split transportation is due to Gueyffier et al. (1999). In this version of 

the operator split fluxing, a more complete method of interface transportation is 

considered. Instead of calculating fluxes through a face by taking the face velocity as 

constant over the entire cell, this scheme calculates the Lagrangian motion of the 

interface by interpolation using opposite face velocities, U0 and Uh. The interface 

equation after advection can be calculated similar to the non-rotational transportation 

scheme. By assuming a unit sized computational cell, the x1 component of the velocity 

within the cell can be interpolated across the cell. 

          𝑢1(𝑥1) = 𝑈0 (1 −
𝑥1

ℎ
) + 𝑈ℎ

𝑥1

ℎ
          (20) 

Each point on the interface at the beginning of the time-step is transported using the 

above equation assuming that the face velocities remain constant during the entire 

advection step. The x1 coordinate of each point on the initial interface is repositioned. 

         𝑥1
⋆ = 𝑥1

𝑛 + 𝑢1(𝑥1
𝑛)𝜏 = [1 + (

𝑈ℎ − 𝑈0

ℎ
) 𝜏] 𝑥1

𝑛 + 𝑈0𝜏         (21) 

Substituting equation 21 into equation 22. 

Uh Δt Uh Δt 

Φ 
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          𝑥1
𝑛 =

𝑥1
⋆ − 𝑈0𝜏

1 + (
𝑈ℎ − 𝑈0

ℎ
) 𝜏

          (22) 

The equation for the planar surface after the operator split step is calculated by 

substituting equation 22 into equation 16. 

         𝑚1
𝑛 [

𝑥1
⋆ − 𝑈0𝜏

1 + (
𝑈ℎ − 𝑈0

ℎ
) 𝜏

] + 𝑚2
𝑛𝑥2

𝑛 + 𝑚3
𝑛𝑥3

𝑛 = 𝛼𝑛          (23) 

The remaining x2 and x3 coordinates remain unchanged during this advection step along 

the x1 principle direction step, and thus for this step in the operator splitting advection, 

the new equation for the interface becomes 

          𝑚1
⋆𝑥1

⋆ + 𝑚2
⋆𝑥2

⋆ + 𝑚3
⋆𝑥3

⋆ = 𝛼⋆          (24) 

𝑚1
⋆ =

𝑚1
𝑛

1 + (
𝑈ℎ − 𝑈0

ℎ
) 𝜏

 

𝛼⋆ = 𝛼𝑛 +
𝑚1

𝑛𝑈0𝜏

1 + (
𝑈ℎ − 𝑈0

ℎ
) 𝜏

 

All other star values remain equal to their nth values during advection along the x1 

direction. Figure 7, shows the flux volume after the interface has been transported along 

the x1 direction. This is repeated for the remaining principle directions.  

 
Figure 7 – Operator-split rotational advection. The interface segment is propagated using opposite 

face velocities interpolated across the control volume. This allows stretching and compressing.  

U0 Δt Uh Δt 

Φ 
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Unsplit Advection 

The unsplit advection scheme tested in this work is the conservative three-

dimensional unsplit geometric transport by Owkes and Desjardins (2014). This method is 

by far the most complicated method. For an in-depth understanding of the method, refer 

to Owkes and Desjardins (2014). 

 
Figure 8 – Unsplit geometric fluxing used in the 2nd order unsplit transportation method. The fluxed 

volume fraction is the volume under the PLIC surface that is contained within the flux volume 

calculated by back-tracing cell vertices in time. 

In this method the flux volume across a cell face is approximated using 3D 

fluxing polyhedra calculated by back-tracing cell vertices in time. A 3D version of this 

method is shown in figure 8. Using cell vertices to construct fluxing volumes is done to 

ensure conservation of mass during fluxing. This way flux vertices never overlap causing 

double fluxing of volumes that is seen with unsplit advection schemes that use face 

velocities such as Rider and Kothe (1998). 

In order to back-trace the cell vertices, the velocities at these positions must be 

known. However, velocities are defined at cell faces. Interpolation is used to approximate 

the cell vertices velocities using cell faces. This introduces a problem in that the 

continuity equation ensures that the velocities at cell faces are divergence free which 

Φ 
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cannot be said of the cell vertices. Thus, interpolation of velocities to cell vertices does 

not guarantee that that velocities remain divergence free. A correction to the flux volume 

is needed to ensure the conservation of mass during fluxing using this scheme of the 

geometric transport method. Refer to Owkes & Desjardins journal article for complete 

details of the unsplit geometric transport algorithm. 
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CHAPTER 5 

RESULTS: TEST CASES 

Reconstruction of a Randomly Placed Circle 

 In this test case, the PLIC normal approximation schemes are compared by testing 

the reconstruction of a simple circle that is placed randomly within a unit sized square 

domain. No transportation of the interface occurs and the exact interface is known. 

Therefore the best interface normal vector can be calculated for every cell in the 

computational domain.  For the volume-of-fluid method, the best PLIC interface normal 

is the one that can minimize the distance between the exact interface and piecewise linear 

interface segment. After calculation of the best normal, the piecewise line segment is 

reconstructed such that it satisfies the condition that the area, or volume, under the 

piecewise linear segment is equal to the volume fraction of the cell.  

  In two-dimensions, the error in the normal approximation is calculated as the 

angle difference between the best normal and the normal obtained from the various 

normal approximation schemes. An ensemble average of L1 error for 100 randomly 

placed circles of diameter 0.4 are calculated to remove any bias based on mesh 

positioning.  In order to observe the convergence of each normal approximation scheme, 

the average L1 error is obtained for various ratios of circle diameter, D, to mesh spacing, 

h. It is expected that as the circle interface is more accurately resolved using smaller cell 

volumes, the normal approximation error will decrease.  

The ensemble average of the L1 error norms are reported for each diameter, mesh 

spacing ratio on the next page.  
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Figure 9 – Convergence of error for approximating the best normal when using the finite difference, 

ELVIRA, and LVIRA normal approximations. 

D/h 
Finite 

Difference 
Convergence 

Rate ELVIRA 
Convergence 

Rate LVIRA 
Convergence 

Rate 

1.6 7.75E-02 
 

2.39E-01 
 

2.26E-01 

 3.2 4.45E-02 0.80 1.30E-01 0.88 1.44E-01 0.65 

6.4 2.55E-02 0.80 5.44E-02 1.25 6.96E-02 1.05 

12.8 1.89E-02 0.43 2.55E-02 1.09 3.27E-02 1.09 

25.6 1.90E-02 -0.01 1.25E-02 1.04 1.62E-02 1.01 

51.2 1.86E-02 0.04 5.81E-03 1.10 7.87E-03 1.04 

102.4 1.86E-02 0.00 2.84E-03 1.03 3.93E-03 1.00 

204.8 1.86E-02 0.00 1.40E-03 1.02 1.97E-03 1.00 

409.6 1.86E-02 0.00 6.92E-04 1.02 9.82E-04 1.00 
Table 1 – L1 error norms of the normal approximation error when using the best normal described 

at the beginning of this section. 

When approximating the interface normal of the randomly placed circles, the 

ELVIRA and LVIRA normal approximations schemes converge 1st order. The ELVIRA 

normal approximation scheme shows the lowest error to the best normal that was used for 

comparison calculations in this work. This is counter intuitive, since the LVIRA method 

uses an iterative process to minimize the error metric given by equation 6. This may be 
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an indication that equation 6 may not be the best metric for determining LVIRA, and 

ELVIRA.  

The finite difference normal however performs below 1st order. It is also apparent 

that above a diameter to mesh spacing ratio of 12.8 the finite difference no longer 

converges. The reason for this is that as the circle is more accurately resolved, the 

interface curvature length scale becomes much, much larger than the cell size. As the 

curvature of the circle when viewed within a given cell volume approaches infinity, the 

normal can be approximated as a straight line. Pilliod & Puckett (2004), explain that the 

finite difference normal cannot accurately reconstruct a straight line when the interface 

passes through adjacent cell corners. Therefore, even when the mesh is infinitely fine, the 

finite difference scheme still cannot predict the exact normal interface. The ELVIRA and 

LVIRA formulations can however.  

Zalesak’s Disk Test Case Definition 

The Zalesak’s disk test case has been a standard test case that is used in 

evaluating interface capturing techniques like the Level-set, Marker-and-Cell, and 

Volume-of-Fluid methods. In these types of test cases shape errors and volume 

conservation errors are used as metrics to measure how well a method performs. The 

shape error is defined as. 

𝐸𝑠ℎ𝑎𝑝𝑒 = ∑|𝐶𝑒𝑥𝑎𝑐𝑡,𝑝 − 𝐶𝑝|

𝑁𝑐𝑣

𝑝=1

 

 It has been well documented in literature that the Volume-of-Fluid method has 

the ability to conserve mass to machine precision. For the consideration of space, volume 

conservation errors are not reported. 
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The Zalesak’s Disk test case is the following: a notched disk in placed in a 

uniform sized box at a position of 0.5 units in the x-direction, and 0.75 units in the y-

direction. The geometry of the disk is a 0.15 unit radius circle, with a notch that is 0.05 

units wide, and 0.20 units high. Figure 10 below shows the Zalesak disk dimensions. 

 

Figure 10 – Dimensions of the Zalesak notched disk that is used for this test case. 

The velocity field in the unit-sized box is a prescribed rotational field that rotates 

the notched disk about the center of the box at an angular velocity of 1 radian per second.  

𝑢 = 0.5 − 𝑦 

𝑣 = 𝑥 − 0.5 

After 2𝜋 time units, the disk will have made one full rotation. The exact interface after 

one full rotation is exactly the initial condition. Thus, the shape errors and volume errors 

can be extracted using the initial values of the simulation.  

 For the Zalesak’s disk test case, each scheme for advection and normal 

approximation was used. The final interface geometries are displayed on the following 

pages. 

  

0.15 

0.05 

0.05 
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Operator-Split Advection – T=2π 

Finite Difference ELVIRA LVIRA 

   
N = 100 

   
N = 200 

   
N = 400 

   
N=800 

Figure 11 - Zalesak’s notched disk after transporting one full rotation counter-clockwise using an 

operator-split non-rotational advection scheme. 
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Zalesak’s Disk Results: Operator-Split Non-Rotational Advection 

For the case of the Zalesak’s disk the velocity vectors do not vary along their principle 

axes, that is 𝜕𝑢/𝜕𝑥 = 𝜕𝑣/𝜕𝑦 = 0. Since face velocities are equal on opposite faces of the 

cell, there is no rotation of PLIC surfaces. This leads to exactly the same fluxing 

operation for both of the operator-split advection methods tested in this work.  For the 

sake of space, the depictions of the final shape figures will not be repeated for the second 

operator splitting advection technique.  

In the Zalesak’s disk test case using operator-split advection schemes there is 

graphically no difference between the final solutions when using different normal 

approximations. When observed very closely at the sharp edges of the notch, one can see 

very slight differences; these are shown in figure 12 for the upper right notched corner. 

 

Figure 12 – Close-up view of the top right notch of Zalesak’s disk. ELVIRA and LVIRA (grey) lie on 

the same curve, while the finite difference normal scheme is offset (black). 

The shape errors for the Zalesak’s disk test case also show very little differences between 

the different normal approximations. Table 2, shows the shape errors for the operator 

split, translational only advection scheme. Again, the shape errors for the second operator 

split advection scheme are omitted since any differences are miniscule and are only a 

result of fluctuations in truncation errors.   
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Figure 13 - Convergence of final result shape error for Zalesak’s Disk test case. 

Advection Scheme: Operator-Split Non-Rotational 

N 
Finite 

Difference 
Rate ELVIRA Rate LVIRA Rate 

100 1.52E-03 
 

1.44E-03 
 

1.48E-03 
 

200 6.98E-04 1.13 6.23E-04 1.21 6.32E-04 1.23 

400 3.23E-04 1.11 2.68E-04 1.22 2.75E-04 1.20 

800 1.33E-04 1.28 1.01E-04 1.41 1.04E-04 1.41 
Table 2 - Shape Errors for the operator-split non-rotational advection scheme. 

The shape errors all show approximately first order, but at fine grid spacing this 

starts to improve as the rates become closer to 1.3 for the finite difference normal 

formulation, and closer to 1.4 for the least-squares normal approximations. Interestingly, 

the shape errors for the ELVIRA formulation are slightly lower than that of the LVIRA 

formulation observed for each grid spacing interval.  

 Next, the average computational time per time-step is shown for piece-wise linear 

interface reconstruction portion of the volume-of-fluid algorithm. Figure 14 depicts the 
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comparison between the finite difference normal, the ELVIRA normal, and LVIRA 

normal. 

 
Figure 14 - Timing comparison between the Finite Difference, ELVIRA, and LVIRA normal 

approximation schemes. 

Operator Split Non-Rotational 

  

Finite 

Difference  
ELVIRA 

 
LVIRA 

N NPLIC Timing [ms] NPLIC Timing [ms] NPLIC Timing [ms] 

100 1352 0.11 1352 0.66 1352 1.88 

200 3198 0.36 3199 1.68 3199 3.86 

400 6685 2.26 6686 4.84 6687 9.96 

800 13446 11.43 13448 14.20 13448 30.15 

Table 3 - Average time per iteration spent during reconstruction of the PLIC interface using the 

unsplit advection scheme for the Zalesak disk test case. NPLIC represents the amount of cells that are 

reconstructed in the band structure. 

The LVIRA normal approximation shows the longest time to approximate the interface 

normal directions. A large portion of this is due to the choice of using the ELVIRA 

normal as the initial guess. From this option, the LVIRA method starts out with the 

already costly ELVIRA method, and iterates to find the best normal. Timing information 

shows that the LVIRA method takes twice as long as the ELVIRA normal. In the test 

case of the Zalesak disk where interfaces do not become thin, the final result is largely 

indifferent from the choice of a normal approximation.    
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Zalesak’s Disk Results: Unsplit Advection 

 The unsplit advection test cases are displayed on the next page. As compared to 

the operator-split advection methods, the unsplit advection scheme results from the 

Zalesak’s disk test case show little differences in shape error. The shape errors for the 

unsplit test case are shown below in Table 4. 

 
Figure 15 - Convergence of final result shape error for Zalesak’s Disk test case using the second 

order advection scheme. 

Advection Scheme: Unsplit 

N Finite Difference Rate ELVIRA Rate LVIRA Rate 

100 1.45E-03 
 

1.40E-03 
 

1.44E-03 
 

200 6.72E-04 1.11 6.07E-04 1.20 6.20E-04 1.21 

400 3.05E-04 1.14 2.56E-04 1.25 2.64E-04 1.23 

800 1.25E-04 1.28 9.68E-05 1.40 1.00E-04 1.40 

Table 4 - Shape Errors for the unsplit advection scheme applied to the Zalesak’s Disk.  
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Un-split Advection 

Finite Difference ELVIRA LVIRA 

   
N = 100 

   
N = 200 

   
N = 400 

   
N=800 

Figure 16 - Zalesak’s notched disk after transporting one full rotation counter-clockwise using an 

unsplit advection scheme. 
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The comparison of the shape errors in table 4 show very little difference when 

Zalesak’s disk is transported using the unsplit advection scheme. The ELVIRA and 

LVIRA normal approximations show a slight advantage over the finite difference normal 

formulation.  This is also apparent in the operator-split advection schemes as well. 

The average computational time spent during the piecewise linear interface 

reconstruction for the Zalesak’s disk test case with the unsplit advection scheme is 

visually depicted below in figure 17. Table 5, shows the timing values given in 

milliseconds. 

 
Figure 17 - Timing comparison of the Finite Difference, ELVIRA, and LVIRA normal schemes. 

Advection Scheme: Unsplit 

  

Finite 

Difference  
ELVIRA 

 
LVIRA 

 N NPLIC Timing [ms] NPLIC Timing [ms] NPLIC Timing [ms] 

100 1130 0.101 1130 0.554 1131 1.120 

200 2599 0.303 2599 0.917 2600 1.985 

400 5245 0.914 5245 2.064 5245 4.357 

800 10543 4.414 10542 6.004 10542 12.723 

Table 5 – Average time per iteration spent during reconstruction of the PLIC interface using the 

unsplit advection scheme for the Zalesak disk test case. NPLIC represents the amount of cells that are 

reconstructed in the band structure. 
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In the computation of the Zalesak’s disk test case using unsplit advection, the time 

spent during the piecewise linear interface reconstruction step is less than when using the 

operator-split methods. In general, the number of cells that need to be geometrically 

reconstructed was lower than in operator-split advection, which resulted in a reduction in 

interface reconstruction time per iteration. The reason for this is that only the cells in the 

transportation band need to be reconstructed. Since the unsplit method is not prone to 

float-sum like those created in an operator split advection scheme, there is no need to 

reconstruct interior cells in the fluid because there are no cells that need to be 

reconstructed.  

The general trend between the different normal schemes is still apparent. The 

finite difference method shows the lowest reconstruction times.  The ELVIRA scheme 

shows higher reconstruction timing than that of the finite difference scheme. It is 

approximately five times slower at a mesh sizing of 100x100 cells, and 1.5 times slower 

for a mesh sizing of 800x800. The LVIRA method shows the slowest reconstruction 

times which took 2 times as long as the ELVIRA scheme, and 3 times as long as the 

finite difference scheme for the mesh sizing of 800x800 cells.  

Zalesak’s Disk Results: Advection Timing Comparisons 

Lastly, for the Zalesak’s disk test case the average time per iteration of the 

advection step are of interest. The number of cells on which advection of volume-of-fluid 

volume fraction occurs is nearly constant regardless of the choice of normal 

approximation. Therefore, the advection timing displayed is the average timing over the 

three normal approximation schemes. 
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 For timing, the average advection times are shown for each advection step, for 

each mesh size. These are depicted in figure 18 and shown in table 6.  

 
Figure 18 - Comparison of average time spent during the advection step of the volume-of-fluid 

algorithm for the Zalesak’s disk test case. 

Advection Timing [ms] 

N Split Non-Rotational  Split Rotational  Unsplit 

100 0.13 0.15 25.42 

200 0.53 0.56 61.75 

400 5.19 5.05 133.76 

800 19.12 18.63 300.49 

Table 6 – Average computational time per iteration for each advection scheme tested using Zalesak’s 

Disk. 

The most obvious observation is that the 2nd order conservative unsplit advection method 

is extremely costly compared to the operator-split methods. On the finest mesh size 

tested, the average time during the transportation step using the unsplit advection scheme 

was approximately 15 times higher as compared to the operator-split methods. The 

timing comparison also shows that the cost of both operator-split methods are almost 

exactly the same for every mesh size.   
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Circle in a Deformation Field Definition 

The second test case that is used to measure the performance of the various normal and 

advection schemes is the two dimensional column that is placed inside of a deformation 

velocity field. For this test case a circle of radius 0.15 units is placed in a unit sized 

square domain with its center at 0.5 units in the x-direction and 0.75 units in the y-

direction. A velocity field is prescribed according to the following stream function over 

the course of T=8 time units. 

𝛹(𝑥, 𝑦) =
1

𝜋
sin2(𝜋𝑥) cos2(𝜋𝑦) cos (

𝜋𝑡

𝑇
) 

The velocity field is periodic in time, therefore after 𝑡 >
𝑇

2
 the flow field is reversed. The 

purpose of this time dependent deformation field is to deform the circle into a stretched 

ligament. Figure 19 below shows the deformation of the circle interface over the course 

of 4 time units. After 8 time units, the initial condition should completely reform. 

     

   
Figure 19 - Time progression of the circle placed in a deformation field test case. As time progresses, 

the interface follows from left to right until deformed to a stretched ligament. When the circle is 

completely deformed, the flow field is reversed, and follows right to left until it reforms the initial 

circle.   
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Circle in a Deformation Field Results: Non-Rotational Advection 

 The depictions of the fluid interface are shown on the next page for the 

deformation column test case at the half mark of the interface capturing simulation. 

Starting with the mesh size of 642, the finite difference approximation clearly shows the 

worst performance. The ligament is broken into many segments and starts nearly 50 

percent of the length of the stretched ligament. The ELVIRA normal approximation 

shows better stability in holding a continuous interface when the interface becomes thin. 

At the top of the circle ligament the interface is rough using the ELVIRA normal, and 

very small discontinuities in the PLIC reconstruction are visible. The LVIRA normal 

approximation scheme shows the best performance in maintaining the thin interface at the 

end of the ligament. In total there are two major ligament breakups in which the normal 

becomes rounded and the ligament becomes separated. There is a third break in the fluid 

interface, however close inspection shows the interface normal directions are still 

continuous. The reason there is a visual break across the interface is that interface falls 

below the thickness of the cell and only one PLIC interface is drawn per cell. If the 

ligament were to continue to stretch, this would be the next breaking point in the ligament 

since the ligament thickness in this region falls below one cell thickness, h.  

 In the 1282 size mesh, the length of the ligament for each of the test cases of the 

normal approximation scheme becomes longer. The finite difference normal scheme, 

again, shows the most droplets at the tail of the ligament. It has five droplets that have 

broken off from the ligament. The ELVIRA normal continues to do better than the finite 

difference normal, and the roughness in the interface reconstruction smoothens.  

 



  33 

Operator-Split Advection – Non-Rotational – T = 4 

Finite Difference ELVIRA LVIRA 

   
N = 64 

   
N = 128 

   
N = 256 

   
N=512 

Figure 20 - Resulting fluid interface after t = 4 when the circle is completely stretched into a ligament 

using the operator-split non-rotational advection scheme for transportation. 
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The LVIRA normal again shows the lowest amount of breakup, in which only one 

segment of the ligament, breaks off.  

 This trend continues as the mesh becomes finer in the 2562 mesh. Almost all 

breakups disappear in the finite difference and ELVIRA schemes, and the LVIRA 

scheme shows no breakup at all. In the finest mesh tested, when 5122, all the test cases 

using the different normal approximations are visual similar, and no differences can be 

seen. 

  

  
Figure 21 - Shape errors plotted over the entire simulation. (a) Top left: N=64, (b) top right: N=128, 

(c) bottom left: N=256, (d) bottom right: N=512. 

When the shape error of the interface is plotted over the entire simulation, as is 

shown in figure 21, it is easier to see that the LVIRA normal approximation scheme 

provides the lowest shape errors through the first half of the simulation. As the 
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transportation reverses, there is apparent error cancellation upon reformation of the circle. 

Actual shape error numbers are not given since the plots give approximate shape errors 

based on the results of a high mesh resolution test case. The curves in figure 21, are only 

to give better insight to what is happening throughout the simulation. 

  Next, the fluid interface depictions for the final resulting solution are compared. 

The depictions of the fluid interface are shown on the next page. The most notable details 

in the final fluid interfaces is the overshoot that appears in each of the test cases. It 

appears as if the simulation had run for one or two extra time-steps, however these are the 

result of the advection splitting errors. Secondly, all of the methods show a buildup of 

float-sum within the interior of the fluid region. This is also a result of the advection 

splitting errors, where the splitting of the advection operation results in the fluxing of the 

volume fraction during separate non-divergence free advection steps. As a result, some 

cells retain a volume fraction either lower than 0, or higher than 1. 

 Starting at the top, N=64, the final results for each of the normal approximation 

schemes show high amounts of error. It is difficult to judge visually which method 

performs the best. When the mesh is refined, the ELVIRA and LVIRA start to show the 

more volume retained within the initial circle. At 2562, the LVIRA method nearly fully 

covers the entire initial condition, while the ELVIRA and finite difference methods still 

have slight lumps. Again at 5122, the differences are unapparent and the solution is nearly 

exact disregarding the errors due to float-sum.  
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Operator-Split Advection – Non-Rotational – T = 8 

Finite Difference ELVIRA LVIRA 

   
N = 64 

   
N = 128 

   
N = 256 

   
N=512 

Figure 22 - Final solution fluid interface when t = 8 after the circle is completely deformed and 

reformed using the operator-split non-rotational advection scheme for transportation. 
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The performances of the individual methods are more easily observed through the 

calculation of the final result shape error. The convergence of the shape errors is shown 

in figure 23 below. Following the convergence plot is table 7 containing the values of the 

final shape errors. 

 
Figure 23 - Convergence history of the shape error in the deformation circle test case using the 

operator-split non-rotational advection scheme. 

Advection Scheme: Operator-Split Non-Rotational 

N Finite Difference 
Convergence 

Rate ELVIRA 
Convergence 

Rate LVIRA 
Convergence 

Rate 

64 2.362E-02 - 2.030E-02 - 1.982E-02 - 

128 6.167E-03 1.94 6.038E-03 1.75 5.752E-03 1.78 

256 2.329E-03 1.40 2.567E-03 1.23 2.252E-03 1.35 

512 1.027E-03 1.18 1.106E-03 1.21 1.041E-03 1.11 

Table 7 - Shape errors for the operator-split non-rotational advection scheme applied to the circle in 

a deformation field test case.  

On the coarsest mesh tested, the LVIRA method showed the lowest shape errors. This 

remained the same for the 1282 and 2562 sized cell meshes. However for this comparison 

using the operator split non-rotational advection scheme, the finest mesh shape errors 
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showed that the finite difference had the lowest shape errors. The LVIRA method showed 

the second lowest shape errors on the finest cell mesh, and finally the ELVIRA method 

showed the highest errors. However, the shape errors between the comparisons are 

largely the same on the finest mesh, and the stacking of the shape error comparisons 

could be due to the amount of float-sum in the models. The ELVIRA method showed the 

highest shape error, but the final result using ELVIRA also had the highest amount of 

float-sum. 

 
Figure 24 - Timing comparison of the Finite Difference, ELVIRA, and LVIRA normal schemes using 

the operator-split non-rotational advection scheme for the circle in a deformation field test case. 

Advection Scheme: Operator-Split Non-Rotational 

  

Finite 

Difference  
ELVIRA 

 
LVIRA 

N NPLIC Timing [ms] NPLIC Timing [ms] NPLIC Timing [ms] 

64 1784 0.147 1776 0.974 1775 2.610 

128 4344 0.629 4340 2.521 4329 6.489 

256 10742 4.040 10829 8.834 10689 22.038 

512 27274 15.425 28127 25.539 27094 56.658 

Table 8 - Average time per iteration spent during reconstruction of the PLIC interface using the 

operator-split non-rotational advection scheme. NPLIC represents the amount of cells that are 

reconstructed in the band structure. 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

64 128 256 512

A
v
e
r
a

g
e
 T

im
e
 P

e
r
 I

te
r
a

ti
o

n
 [

m
s]

N

Finite Difference

ELVIRA

LVIRA



  39 

 The average timing for the PLIC operations is compared next. Figure 24 shows a 

bar graph comparison for the timing between the individual normal approximation 

schemes. Table 8 shows the expected trend that finite difference normal scheme requires 

the lowest computational time. The ELVIRA follows, generally taking twice as long to 

reconstruct the interface. Finally the LVIRA method clearly takes the longest to 

reconstruct the fluid interface. If one were to compare the shape error per computational 

time, the finite difference method would clearly win, since the shape errors are generally 

of the same order, while the computational time difference is much larger. 

Circle in a Deformation Field Results: Rotational Advection 

 The operator-split rotational advection scheme is tested next. On the next page are 

the visuals of the fluid interface at the half mark of the simulation when the circle is 

completely deformed into the ligament. The deformed ligament is visually very similar to 

that of when using the non-rotational advection scheme. Throughout the study for this 

advection scheme, the finite difference and ELVIRA normal approximation schemes are 

very similar to the non-rotational advection counter-parts. However, the results from the 

LVIRA method show some differences. Firstly, in the 642 mesh, the tail of the circle 

ligament breaks into four small droplets. The length of the ligament when using LVIRA 

is still clearly the longest. In the 1282 mesh, the ligament also shows no breakup at the 

tail when using LVIRA. This is slightly better than the operator-split non-rotational 

advection scheme where using LVIRA had one small droplet pinch off. This is also much 

better than the two other normal approximations shown on the next page for mesh sizes 

1282 for finite difference and ELVIRA. At the last stage, the mesh is fine enough that 

there are no visible differences.  



  40 

Operator-Split Advection – Rotational – T = 4 

Finite Difference ELVIRA LVIRA 
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N = 128 

   
N = 256 

   
N=512 

Figure 25 - Resulting fluid interface after t = 4 when the circle is completely stretched into a 

ligament using the operator-split rotational advection scheme for transportation. 
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Figure 26 - Approximate shape errors plotted over the entire simulation. (a) Top left: N=64, (b) top 

right: N=128, (c) bottom left: N=256, (d) bottom right: N=512. 

Similarly to the operator-split non-rotational method study, the approximate shape 

errors can be plotted over the entire simulation. The curves in figure 26 show similarity to 

the operator-split non-rotational shape error curves in that the LVIRA scheme achieves 

lower shape error through the majority of the simulation. Toward the end of the 

simulation, upon reformation of the circle, error cancellation occurs. In the 642 test case, 

the ELVIRA normal actually dips below the LVIRA method in the final seconds of the 

simulation. One can approximate when the ligaments experience break up by when there 

is a sudden jump in shape error. This is most apparent in the 1282 mesh shortly after 2 

time units. 
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The visuals for the final results from the deformation circle using the three normal 

comparisons are shown on the next page. The first observation is the amount of float-sum 

that is apparent in each of the final results. The ELVIRA method shows the highest 

amount of float-sum, compared to the results using the finite difference and LVIRA 

approximations. Still, the amount of float-sum that is apparent in the results is 

unsatisfactory. This is because the amount of float-sum increases the number of cells that 

the algorithm perceives that must be geometrically reconstructed. In doing so, this 

increases the number of cells that are in the transportation band. Overall it increases the 

number of cells on which the volume-of-fluid algorithm is used for transportation of the 

interface, leading to an increase in computational cost. Secondly, the overshoot is still 

apparent due to the operator splitting errors.  

Observing figure 27, and starting with the 642 mesh the finite difference method 

has a large amount of area that is outside of the original circle. Between the ELVIRA and 

LVIRA, it is harder to tell what has the better performance. Moving to 1282, the circle is 

better reformed going from left to right along finite difference, ELVIRA, and LVIRA. 

Continuing to 2562, the LVIRA method is nearly the initial condition, while finite 

difference and ELVIRA still have traces of lumps on the upper edge of the circle. Finally, 

at 5122, the differences in the final formation are indistinguishable. 
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Operator-Split Advection – Rotational – T = 8 

Finite Difference ELVIRA LVIRA 

   
N = 64 

   
N = 128 

   
N = 256 

   
N=512 

Figure 27 - Final solution fluid interface when t = 8 after the circle is completely deformed and 

reformed using the operator-split rotational advection scheme for transportation. 
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 Final shape errors for the rotational operator split advection scheme are displayed 

next. Figure 28 shows the convergence plot for every mesh tested. Table 9, contains the 

information for shape errors at the final time-step. 

 
Figure 28 - Convergence history of the shape error in the deformation circle test case using the 

operator-split rotational advection scheme. 

Advection Scheme: Operator-Split Rotational 

N Finite Difference 
Convergence 

Rate ELVIRA 
Convergence 

Rate LVIRA 
Convergence 

Rate 

64 2.349E-02 - 2.107E-02 - 2.150E-02 - 
128 6.125E-03 1.94 6.233E-03 1.76 5.725E-03 1.91 
256 2.304E-03 1.41 2.566E-03 1.28 2.252E-03 1.35 
512 1.012E-03 1.19 1.105E-03 1.22 1.044E-03 1.11 

Table 9 - Shape errors for the operator-split non-rotational advection scheme applied to the circle in 

a deformation field test case. 

In figure 28, there is hardly any difference in the convergence rates using the different 

normal schemes. Initially every method converges close to second order. As the mesh 

becomes finer the convergence rates slow to near first order. The LVIRA method usually 

shows the lowest shape error values until the finest mesh tested where the finite 
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difference normal achieves the lowest shape error. Referring back to figure 26, this is due 

to the error cancelation that occurs near the end of the simulation. For a majority of the 

simulations, the finite difference method shows the highest shape errors.  

 
Figure 29 - Timing comparison of the Finite Difference, ELVIRA, and LVIRA normal schemes using 

the operator-split rotational advection scheme for the circle in a deformation field test case. 

Advection Scheme: Operator-Split Rotational 

    
Finite 

Difference 
  ELVIRA   LVIRA 

N NPLIC Timing [ms] NPLIC Timing [ms] NPLIC Timing [ms] 

64 2038 0.150 2027 1.098 2011 3.059 

128 6380 0.617 6339 2.885 6319 7.078 

256 20987 5.591 20958 9.849 20616 25.195 

512 67931 18.722 68538 29.397 67721 64.847 
Table 10 - Average time per iteration spent during reconstruction of the PLIC interface using the 

operator-split rotational advection scheme. NPLIC represents the amount of cells that are 

reconstructed in the band structure. 

 Timing information for the operator-split rotational advection scheme is shown 

above.  Observing table 10, the finite difference scheme performs the fastest. The 

ELVIRA method is second fastest, and the LVIRA method shows the highest cost. The 

order of magnitude in the number of float-sun can be perceived from table 10 in the 

number of PLIC elements column. The ELVIRA method is confirmed to have the most 
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amount of float-sum since the NPLIC elements indicate the number of elements that are 

geometrically reconstructed.  

Circle in a Deformation Field Results: Unsplit Advection 

 The unsplit advection scheme is the last advection scheme tested for this test case. 

Figure 30 on the next page shows the fluid interfaces at the half mark of the test case 

simulation. Overall when compared to both of the operator-split advection schemes, 

many of the features, such as interface shape, remain prevalent.  

On the 642 mesh, the ligament tail breakup is largely unchanged, despite using the 

unsplit advection scheme. The finite difference normal scheme still exhibits large 

amounts of artificial fluid breakup that is present in half of the length of the ligament. 

This is due to the sensitivity of the finite difference normal scheme to the thickness of the 

interface. When the interface thickness becomes small enough that there are two 

interfaces present in the 3x3 cell stencil, the finite difference normal approximation 

becomes inaccurate. This directly affects the fluxing operation. In the ELVIRA normal 

approximation, the ligament is preserved longer, much like in the test cases using the 

operator split advection schemes. The LVIRA normal scheme still shows the highest 

performance when it comes to preserving the thin interface.  

 In the 1282 mesh the ligaments are longer, and LVIRA shows no signs of breakup. 

ELVIRA shows breakup, and the finite difference scheme shows the most breakup of all 

the normal schemes.  

 Continuing to 2562, most of the ligament breakup has disappeared, however there 

are still two small pinch offs at the tip of the tail. At the final 5122, the mesh resolution is 

fine enough that each method performs nearly the same.  
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Unsplit Advection – T = 4 
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N=512 

Figure 30 - Resulting fluid interface after t = 4 when the circle is completely stretched into a ligament 

using the unsplit advection scheme for transportation. 
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Figure 31 - Approximate shape errors plotted over the entire simulation. (a) Top left: N=64, (b) top 

right: N=128, (c) bottom left: N=256, (d) bottom right: N=512. 

 The shape errors throughout the simulation, figure 31, show much more spread 

between the different normal approximation schemes. It can be seen that the finite 

difference shows much higher shape errors over the simulation. In figure 31a, it is clearly 

seen that the error cancelation properties of the time reversal field cause the finite 

difference and ELVIRA normal approximation shape errors to have significant error 

reduction when the ligament reforms into a circle. The latter results in a final shape error 

that is lower than seen using LVIRA.  

 The fluid interfaces at the final time-step are shown on the next page in figure 32 

for the unsplit advection scheme in the deformation circle test case. The first most 

obvious observation is the absence of float-sum in the final solution.  



  49 

Unsplit Advection – T = 8 
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N=512 

Figure 32 - Final solution fluid interface when t = 8 after the circle is completely deformed and 

reformed using the unsplit advection scheme for transportation. 
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The removal of float-sum creates fluid interfaces that are much cleaner visually and the 

result looks much cleaner. The absence of float-sum also will provide more accuracy 

when coupled to a Navier-Stokes solver. Any types of float-sum will cause problems and 

inaccuracies for the calculation of surface tension. The float-sum will begin to cause 

artificial bubbles within the fluid geometry.  

 The next observation is the absence of the overshoot that was apparent in the 

operator split advection schemes. At the lowest mesh resolution, there is a large perimeter 

of the circle that lies on the initial condition. The removal of the operator-splitting step 

removed the splitting errors that cause the overshoot. 

 Comparing the results from the different normal schemes, and starting at N=64, 

the finite difference method shows the largest area outside of the initial condition circle. 

The ELVIRA and LVIRA methods are similar, but the ELVIRA method has the smaller 

area on the outside of the circle. Continuing to N=128, it can be seen when moving from 

left to right, that the LVIRA method performs the best. The ELVIRA method is second, 

and the finite difference scheme is last. This trend continues on into the N=256 mesh. By 

this mesh refinement level, the LVIRA method shows nearly no error. The ELVIRA 

method has small lumps in the upper portion of the circle. The finite difference method 

shows large bumps in the same region as the ELVIRA method.  
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Figure 33 - Convergence history of the shape error in the deformation circle test case using the 

unsplit advection scheme. 

Advection Scheme: Unsplit 

N Finite Difference 
Convergence 

Rate ELVIRA 
Convergence 

Rate LVIRA 
Convergence 

Rate 

64 1.073E-02 - 7.772E-03 - 9.700E-03 - 

128 2.031E-03 2.40 1.850E-03 2.07 1.053E-03 3.20 

256 7.136E-04 1.51 3.835E-04 2.27 2.746E-04 1.94 

512 2.118E-04 1.75 8.063E-05 2.25 8.377E-05 1.71 
Table 11 - Shape errors for the unsplit advection scheme applied to the circle in a deformation field 

test case. 

On the coarsest mesh tested the ELVIRA method performs the best. LVIRA has the 

second highest error, and finite difference performs the worst, with the highest error. On 

the 1282 and 2562 meshes, LVIRA performs the best. At the 5122 mesh size, the ELVIRA 

method preforms the best. It can be seen that the convergence rate when using unsplit 

advection was near second order as compared to the operator-split advection schemes that 

showed near first order convergence. Secondly, the unsplit advection scheme showed 

much more deviance using the different normal schemes. Interestingly, the ELVIRA 
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method maintains above 2nd order convergence. It is likely for higher mesh resolutions 

than 5122, the shape errors for ELVIRA and LVIRA will converge to the same solution. 

This is because as the relative curvature of the interface approaches infinity, ELVIRA 

and LVIRA approach the same approximation. Ideally, when the curvature reaches 

infinity, the interface becomes a straight line locally for each 3x3 cell stencil where the 

normal is approximated. For straight lines both ELVIRA and LVIRA produce the exact 

normal (Pilliod & Puckett, 2004).  

 The PLIC reconstruction timing is next to be analyzed. Figure 34 contains a graph 

on how the average reconstruction timing compares between the normal comparisons. 

 
Figure 34 - Timing comparison of the Finite Difference, ELVIRA, and LVIRA normal schemes using 

the unsplit advection scheme for the circle in a deformation field test case. 

Advection Scheme: Unsplit 

    
Finite 

Difference 
  ELVIRA   LVIRA 

N NPLIC Timing [ms] NPLIC Timing [ms] NPLIC Timing [ms] 

64 1520 0.162 1512 0.447 1511 1.325 

128 3577 0.441 3576 1.068 3567 2.853 

256 8644 2.070 8641 3.936 8634 6.013 

512 19257 6.913 19206 8.658 19224 17.406 
Table 12 - Average time per iteration spent during reconstruction of the PLIC interface using the 

unsplit advection scheme. NPLIC represents the amount of cells that are reconstructed in the band 

structure. 
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The comparison in figure 34 shows the expected trend. The LVIRA method is the most 

costly, taking anywhere from 8 times as long as the finite difference in the coarsest mesh 

and 2.5 times as long seen in the finest mesh used. The ELVIRA method is the second 

most costly. It takes 2.75 times as long as the finite difference method on the coarsest 

mesh and 1.25 times as long as the finite difference method on the finest mesh. When the 

shape errors are taken into consideration, the shape error when using the finite difference 

method at the finest mesh is 2.6 times larger than the ELVIRA method. So for the 

ELVIRA method the computational cost is worth the reduction in error.  

Circle in a Deformation Field Results: Advection Timing Comparison  

 
Figure 35 - Comparison of average time spent during the advection step of the volume-of-fluid 

algorithm for the circle in a deformation field test case. 

Advection Timing [ms] 

N Split Non-Rotational Split Rotational Unsplit 

64 0.199 0.214 27.773 

128 1.225 1.445 63.509 

256 8.087 8.623 164.620 

512 29.199 32.786 423.080 
Table 13 – Average computational time per iteration for each advection scheme tested in the circle in 

a deformation field test case. 
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For the circle in a deformation field test case it is useful to know how the advection 

schemes compare. This comparison is given in figure 35. The unsplit advection scheme 

by far takes the longest to complete. It takes anywhere from 100 times as long on the 

coarsest mesh to 20 times as long on the finest mesh. The two operator split advection 

schemes took nearly the same time to compute the advection step.  

Sphere in a Deformation Field Test Case Definition 

 The last test case used in this work is the sphere placed in a deformation field test 

case. The test case is three-dimensional and is the following. A sphere of radius 0.15 

units is places inside of a unit-sized box. The center of the sphere is placed at coordinates, 

x = 0.35, y = 0.35, and z = 0.35. The deformation field prescribed is the following, 

𝑢 = 2 sin2(𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧) cos(𝜋𝑡/3) 

𝑣 = − sin(2𝜋𝑥) sin2(𝜋𝑦) sin(2𝜋𝑧) cos(𝜋𝑡/3) 

𝑤 = − sin(2𝜋𝑥) sin(2𝜋𝑦) sin2(𝜋𝑧) cos(𝜋𝑡/3) 

The test case is similar to the circle in a deformation field in that the deformation field is 

periodic. Halfway through the simulation, the flow field is reversed and the sphere will 

reform into the initial condition. At the end of the simulation shape errors can be judged 

by comparing the solution with the initial condition. Figure 36 below shows the fluid 

interface as it progresses though the simulation. 

 

Figure 36 - Depiction of how the 3D sphere in a deformation field test case progresses though out the 

simulation. Starting most left, the sphere deforms from left to right. Halfway through the simulation, 

the flow field is reversed and the interface reforms into the initial condition going right to left. 
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Sphere in a Deformation Field Results: Non-Rotational Advection 

 A view of the fluid interface from the bottom of the deformation sphere at the half 

mark of the simulation is displayed in figure 37. The test case was tested on the following 

meshes: N3 = 643, 1283, and 2563. A mesh sizing above 2563 becomes very costly 

computationally.  

 When looking at figure 37, it can be seen that the expected trend is apparent when 

comparing finite difference, ELVIRA, and LVIRA. Firstly, the LVIRA method preserves 

the interface more completely than the finite difference and ELVIRA normal schemes. In 

the 643 mesh, the LVIRA method has the lowest amount of empty space at the bottom 

layer of the thinned sphere. Observing the mesh for 1283, it is also apparent that the 

LVIRA method provides the smoothest interface. The finite difference normal provides a 

wavy interface, and the ELVIRA normal also creates small ridges. This is compared to 

the LVIRA that provides the smoothest interface. When the mesh is refined to 2563, all 

the normal approximations are visually similar and are all smooth as expected. 

 When the shape error is plotted over the course of the simulation time a 

comparison between the different normal schemes can be quantified. Figure 38 on page 

57, shows the plot of the shape error over the course of the simulation. From the figure 38 

it is seen that generally the shape error for the LVIRA normal is the lowest.  On the 

smallest mesh tested, figure 38a, after the half mark of the simulation, the ELVIRA 

normal error stops growing and begins to decrease along the same order as the LVIRA 

method. At the half mark, t=1.5, the LVIRA method performs the best, with the ELVIRA 

normal second and the finite difference normal showing the highest error of the three 

configurations tested.    
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Operator-Split Advection – Non-Rotational – T = 1.5 
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Figure 37 - Fluid interface halfway through the test case, when t = 1.5, after the sphere is initially 

deformed using the operator-split non-rotational advection scheme for transportation. 

As the mesh becomes finer, N=128 and N=256, the ELVIRA method always shows the 

lowest shape error throughout the simulation. A general trend is that after the sphere 

starts to reform, the errors generally decrease. This is believed to be the cancellation of 

advection errors as was seen in the circle in a deformation field test case.  
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Figure 38 - Approximate shape errors plotted over the entire simulation. (a) Top left: N=64, (b) top 

right: N=128, (c) bottom: N=256.  

 The fluid interfaces at the end of the simulation are depicted on the next page in 

figure 39. From viewing the fluid interfaces some things are apparent. Firstly, in the 

coarser meshes there are apparent bubbles that have built up within the fluid interface. 

These bubbles are not a result of float-sum that has built up within the sphere. Instead 

they are a result of the breakdown in the thin interface when the sphere is completely 

stretched out. There is some visible float-sum that is visible within the sphere. These 

float-sum elements are harder to see, and are the small-disoriented planes that are spread 

throughout the domain, inside and outside of the sphere. One of the other observations 

that can be drawn is amount of float-sum that is created when using the ELVIRA normal   



  58 

Figure 39 - Fluid interface at the end of the test case, when t = 3, after the sphere is initially deformed 

and reformed using the operator-split non-rotational advection scheme for transportation. 

scheme. ELVIRA has a considerable amount when compared to the LVIRA and finite 

difference normal schemes. 
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The final shape errors for the operator split non-rotational advection scheme are 

displayed below in table 14. Figure 40 shows the convergence plot. 

 
Figure 40 - Convergence history of the shape error in the deformation sphere test case using the 

operator-split non-rotational advection scheme. 

Advection Scheme: Operator-Split Non-Rotational 

N 
Finite 

Difference 
Convergence 

Rate ELVIRA 
Convergence 

Rate LVIRA 
Convergence 

Rate 

64 2.964E-03 - 2.559E-03 - 2.784E-03 - 
128 8.150E-04 1.86 6.996E-04 1.87 7.237E-04 1.94 
256 2.692E-04 1.60 1.543E-04 2.18 1.686E-04 2.10 

Table 14 - Shape errors for the operator-split non-rotation advection scheme applied to the sphere in 

a deformation field test case. 

The final shape errors show that the ELVIRA method shows the best convergence. When 

using the ELVIRA and LVIRA methods the operator split non-rotational advection 

scheme performs 2nd order in terms of shape error. The finite difference normal scheme 

performs near second order on the coarser meshes, but as the mesh is refined, the 
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convergence rate starts to drop below second order. At a mesh resolution of N=256, the 

ELIRA and LVIRA methods perform very similar. 

 The timing of the PLIC operation is compared next. Figure 41 shows the 

comparison of the three normal geometric reconstruction schemes.  

 
Figure 41 - Timing comparison of the Finite Difference, ELVIRA, and LVIRA normal schemes using 

the operator-split non-rotational advection scheme for the sphere in a deformation field test case. 

Advection Scheme: Operator-Split Non-Rotational 

  

Finite 

Difference  
ELVIRA 

 
LVIRA 

N NPLIC Timing [ms] NPLIC 
Timing 

[ms] 
NPLIC 

Timing 

[ms] 

64 30472 3.00 35418 65.34 50889 252.66 

128 115756 17.19 123999 211.33 243573 951.22 

256 513231 82.75 524347 837.85 1177519 4253.26 
Table 15 - Average time per iteration spent during reconstruction of the PLIC interface using the 

operator-split non-rotational advection scheme. NPLIC represents the amount of cells that are 

reconstructed in the band structure. 

In terms of computational time spent per time-step to reconstruct the fluid interface, the 

finite difference was by far the fastest. Even on the coarsest mesh tested the PLIC 

reconstruction time was less than one-tenth of a second. While the ELVIRA took nearly a 

second to reconstruct per time-step on the finest mesh tested. The LVIRA method took 
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the longest to reconstruct on every mesh size tested. It should be noted that on the 

operator-split non-rotational advection scheme, there was an oddity that increased the 

number of cells that were reconstructed, NPLIC. Nearly twice as many cells were triggered 

for reconstruction. This added to the overall time for LVIRA to reconstruct the interface. 

Sphere in a Deformation Field Results: Rotational Advection 

 Since the flow field has a gradient along each principle axis direction, the split 

rotational scheme is also tested. Figure 42 shows the fluid interface from the bottom view 

at the half mark of the simulation when T=1.5. The interfaces are largely unchanged 

between the two operator splitting schemes. For the N=64 mesh, the finite difference 

method has the largest void for the stretched interface. The ELVIRA does better at 

maintaining the interface, and the LVIRA scheme shows the smallest void. There is still 

breakup however due to how thin the interface becomes with respect to the mesh size. 

 For the finer mesh of N=128, the finite difference shows wave like ripples in the 

surface, much like in the non-rotational operator split advection scheme. The ELVIRA 

method also shows the ridges that are also apparent in the non-rotational operator split 

advection scheme. And finally the LVIRA method is mostly smooth since it handles the 

thin interface the best. At the finest mesh, the visual differences are negligible. 

 The shape errors plotted as a function of simulation time are displayed on page 

63, in figure 43.   The plots are nearly identical to the operator split non-rotational 

scheme as well. In the N=64 mesh, the LVIRA shape error is the lowest until the sphere 

starts to reform, at which point the ELVIRA method dips below the LVIRA shape error. 

After the coarsest mesh, the advection scheme performs best when using the ELVIRA 

normal scheme. The LVIRA and ELVIRA normal schemes are very close to each other.  
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Operator Split Advection – Rotational – T = 1.5 

Finite Difference ELVIRA LVIRA 

   
N = 64 

   
N = 128 

   
N = 256 

Figure 42 - Fluid interface halfway through the test case, when t = 1.5, after the sphere is initially 

deformed using the operator-split rotational advection scheme for transportation. 
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Figure 43 - Approximate shape errors plotted over the entire simulation. (a) Top left: N=64, (b) top 

right: N=128, (c) bottom: N=256.  

The depictions of the fluid interface at the end of the simulation are showed in figure 44 

on the next page. Again, many of the results are nearly identical to the operator split non-

rotational advection scheme. The bubble within the sphere is still apparent. The amount 

of float-sum that is in the final results is much more than that when using the operator 

split non-rotational advection scheme. This is especially true for the ELVIRA normal 

scheme. The second column of figure 44 shows the results when using the ELVIRA 

normal scheme. The amount of float-sum is very high in the region right above the 

sphere.   
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Operator-Split Advection – Rotational – T = 3 

Finite Difference ELVIRA LVIRA 

   
N = 64 

   
N = 128 

   
N = 256 

Figure 44 - Fluid interface at the end of the test case, when t = 3, after the sphere is initially deformed 

and reformed using the operator-split rotational advection scheme for transportation. 
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The final result shape errors are displayed next for the sphere in a deformation 

field test case when using the operator split rotational advection scheme.  

 
Figure 45 - Convergence history of the shape error in the deformation sphere test case using the 

operator-split rotational advection scheme. 

Advection Scheme: Operator-Split Rotational 

N 
Finite 

Difference 
Convergence 

Rate 
ELVIRA 

Convergence 

Rate 
LVIRA 

Convergence 

Rate 

64 2.963E-03 
 

2.660E-03 
 

2.735E-03 
 

128 8.144E-04 1.86 6.998E-04 1.93 7.244E-04 1.92 

256 2.691E-04 1.60 1.543E-04 2.18 1.684E-04 2.10 
Table 16 - Shape errors for the operator-split rotational advection scheme applied to the sphere in a 

deformation field test case. 

Inspection of the final shaper error also confirms that the added rotational component 

when transporting the PLIC interface does very little to affect the solution for the three-

dimensional sphere in a deformation field test case. The convergence rate for the 

ELVIRA and LVIRA methods remains second order, and the finite difference method 

starts close to second order but loses this property on the finest mesh.   
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Timing data for the operator split rotational advection scheme is shown below. Figure 46 

shows the comparison between the different normal schemes. 

 
Figure 46 - Timing comparison of the Finite Difference, ELVIRA, and LVIRA normal schemes using 

the operator-split rotational advection scheme for the sphere in a deformation field test case. 

Advection Scheme: Operator-Split Rotational 

    
Finite 

Difference 
  ELVIRA   LVIRA 

N NPLIC Timing [ms] NPLIC 
Timing 

[ms] 
NPLIC 

Timing 

[ms] 

64 35022 2.90 42453 70.61 39781 238.30 

128 162643 20.44 171630 250.61 214731 826.30 

256 912064 97.58 925779 1123.53 960990 3359.02 
Table 17 - Average time per iteration spent during reconstruction of the PLIC interface using the 

operator-split non-rotational advection scheme. NPLIC represents the amount of cells that are 

reconstructed in the band structure. 

Table 17, shows the removal of the oddity seen in the operator split non-rotational 

advection scheme where the LVIRA normal had nearly twice the cells that were being 

geometrically reconstructed. Looking at the NPLIC columns, all the reconstructed elements 

are of the same order. This does not help the LVIRA method much as the LVIRA method 

still performs extremely slowly when compared to the other normal reconstruction 

schemes.   
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Sphere in a Deformation Field Results: Unsplit Advection 

The geometric unsplit advection scheme is the last advection scheme that was 

applied to the test case of the sphere in a deformation field test case. The fluid interface is 

displayed at t=1.5 for each of the mesh refinement levels in figure 47. At each mesh 

sizing, both of the operator-split advection schemes were comparable to the unsplit 

advection scheme. Overall, the sizing of the void within the thin surface of the fluid 

interface remains constant in the coarsest mesh, N=64, despite using the different 

advection schemes. The largest differences can be seen by using better normal 

approximation schemes. By using the LVIRA normal scheme, the PLIC interface is better 

maintained for accurately calculating fluxes.  

In the N=64 test case, the LVIRA normal as expected preserves the interface the 

most when compared to the EVIRA and finite difference normal schemes. The ELVIRA 

is next best at preserving the interface, but has more regions where the PLIC normal 

artificially breaks apart. The finite difference performs the worst.  

In the N=128 mesh sizing, the interfaces show nearly identical to the operator-

split advection schemes.  The finite difference method has least smooth interface. Many 

of the wave features are in the same positions as the operator-split advection schemes. 

The EVLIRA fluid interface also contains the small ridges that were seen when using the 

operator split advection schemes. The ridges are less pronounced than the wave features 

seen in the finite difference normal interface. Lastly, the LVIRA method continues to 

show its ability to preserve a smooth interface.  

 

 



  68 

Unsplit Advection – T = 1.5 
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Figure 47 - Fluid interface halfway through the test case, when t = 1.5, after the sphere is initially 

deformed using the unsplit advection scheme for transportation. 

Lastly, in the finest mesh, N=256, all surfaces are smoothed out and no differences are 

apparent. It is nearly impossible to distinguish any differences from the choice of 

advection scheme.  
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Figure 48 - Approximate shape errors plotted over the entire simulation. (a) Top left: N=64, (b) top 

right: N=128, (c) bottom: N=256.  

The approximate shape errors plotted during simulation give better insight to how the 

unsplit method and each of the normal comparisons perform. First, the curves in figure 48 

follow the same trend as seen in the operator-split advection methods. For N=64, LVIRA 

generally shows the lowest shape error until the sphere starts to reform at which point the 

shape error using the ELVIRA normal drops below the LVIRA shape error. For N=128 

and 256 meshes, the curves are the same shape as the operator-split methods, but the 

scales are different. In the case of the finest mesh tested, the shape errors for the ELVIRA 

and LVIRA normal are close to 1e-04 at a time of 1.5. This is more than half the value of 

the shape error when using either of the operator split advection schemes. 



  70 

Unsplit Advection – T = 3 
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Figure 49 - Fluid interface at the end of the test case, when t = 3, after the sphere is initially deformed 

and reformed using the unsplit advection scheme for transportation. 

The final shapes of the fluid interface are shown above in figure 49 when the unsplit 

advection scheme is used for transportation in the sphere in a deformation field test case. 

The shapes are generally the same as before in the operator-split test cases. On the 

coarsest mesh tested the bubble within the reformed sphere is visible. This confirms the 
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bubble is an artifact of the shape error and not due to float-sum formation. However, on 

the finest mesh that was tested, 2563, there is float-sum that has formed. Multiple times 

during the course of this work, when the mesh was sufficiently refined float-sum would 

begin to from despite using the conservative unsplit geometric transportation scheme. 

This is believed to be due to round-off error when transporting fluid volumes. When one 

examines a fully immersed cell that is far enough from the interface (such that it remains 

fully immersed after one transportation step), the divergence free flow field requires that 

the net flux through every face of the cell be equal to zero. Due to round-off errors, this 

requirement cannot be exactly met. After transportation, instead of having a volume 

fraction of 1 (fully immersed), round-off errors cause the volume fraction to be 

0.99999999 or 1.0000001. When round-off errors allow the volume fraction to fall below 

a reconstruction threshold, Cfull, float-sum forms. This leads to an argument that for the 

volume fraction to remain a physical value, the volume fraction field must be cleaned up 

after transportation. This is done by setting any volume fraction that is above, Cfull to a 

volume fraction of exactly one. The same is done for the opposite end of the volume 

fraction, but instead of a Cfull value, a Cempty threshold is defined. Any volume fraction 

below Cempty is set to exactly zero. Unfortunately, this affects the conservation of volume 

properties of the volume-of-fluid method. If Cfull is set close enough to one (say 1 - 1e-

12) then these added volume fractions do not greatly affect the solution and are of the 

same order as the round-off error.  
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Figure 50 - Convergence history of the shape error in the deformation sphere test case using the 

operator-split rotational advection scheme. 

Advection Scheme: Unsplit 

N 
Finite 

Difference 
Convergence 

Rate ELVIRA 
Convergence 

Rate LVIRA 
Convergence 

Rate 

64 2.813E-03 
 

2.333E-03 
 

2.348E-03 
 

128 7.238E-04 1.96 5.958E-04 1.97 6.224E-04 1.92 

256 2.319E-04 1.64 1.109E-04 2.43 1.199E-04 2.38 
Table 18 - Shape errors for the operator-split rotational advection scheme applied to the sphere in a 

deformation field test case. 

The final shape errors in table 18 show slight decreases in shape error from using the 

unsplit advection scheme. The percentage drop from switching from the operator-split 

advection scheme to the unsplit scheme yields 13.79%, 28.11%, and 28.82% for the finite 

difference, ELVIRA, and LVIRA normal schemes respectively, on the finest mesh tested. 

Generally, the highest drops were seen from using the ELVIRA or LIVRA normal 

approximation scheme. The convergence rates were also slightly higher for the unsplit 
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schemes as the convergence rates for the N=256 mesh were close to 2.4 for the ELVIRA 

and LVIRA normal approximations.  

  
Figure 51 - Timing comparison of the Finite Difference, ELVIRA, and LVIRA normal schemes using 

the unsplit advection scheme for the sphere in a deformation field test case. 

Advection Scheme: Unsplit 

    
Finite 

Difference 
  ELVIRA   LVIRA 

N NPLIC Timing [ms] NPLIC 
Timing 

[ms] 
NPLIC 

Timing 

[ms] 

64 24177 1.04 25459 16.31 27138 59.95 

128 93687 5.05 93858 48.41 111309 145.17 

256 417861 25.33 429167 188.57 440527 512.86 
Table 19 - Average time per iteration spent during reconstruction of the PLIC interface using the 

operator-split non-rotational advection scheme. NPLIC represents the amount of cells that are 

reconstructed in the band structure. 

The comparison of the average PLIC reconstruction timing per time-step is shown in 

figure 51. The time spent in PLIC reconstruction is significantly reduced when using the 

unsplit geometric advection scheme due to the removal of float-sum in the domain. The 

removal of float-sum reduces the number of cells that the reconstruction algorithm targets 

for reconstruction. In comparison to the finite difference and ELVIRA normal 
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approximation schemes, the LVIRA method is the highest costing. The finite difference 

scheme produces the fastest result due to its simplicity. 

Sphere in a Deformation Field Results: Advection Timing Comparisons 

 
Figure 52 – Comparison of average time spent during the advection step of the volume-of-fluid 

algorithm for the sphere in a deformation field test case. 

Advection Timing [ms] 

N Split Non-Rotational Split Rotational Unsplit 

64 2.78 2.57 400.31 
128 21.90 22.49 1566.75 
256 156.16 137.53 6437.04 

Table 20 – Average computational time per iteration for each advection scheme tested in the sphere 

in a deformation field test case. 

In three-dimensions, the unsplit method becomes extremely costly. The time spent in the 

transportation of the volume fraction is anywhere from 40 to 150 times as high when 

using the geometric unsplit advection method.  This would be acceptable if the errors 

were 40 times smaller, but this was not the case for the sphere in a deformation field test 

case. 
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CHAPTER 6 

CONCLUSION 

In conclusion, three different advection algorithms and three difference 

transportation algorithms have been compared to see the effect on errors and 

computational timing.  

In the first test case of observing the convergence of the three normal 

approximations, it was found that the Efficient Least-Squares Volume-of-Fluid Interface 

Reconstruction Algorithm and Least-Squares Volume-of-Fluid Interface Reconstruction 

Algorithm both produced a normal that was 1st order accurate. While this is acceptable, a 

2nd order approximation of the interface normal would be preferable since the best 

geometric fluxing approximation is 2nd order accurate. In contrast, the finite difference 

normal approximation was found to be 0th order accurate since it would converge 

asymptotically and eventually be unable to approximate the normal direction sufficiently.  

In the second test case of the Zalesak disk, the normal comparisons showed nearly 

no differences. ELVIRA and LVIRA had a slight advantage, but no large difference were 

apparent. This was also the case when using the three different types of transportation 

algorithms. All methods converged better than 1st order, except the finite difference 

which was only slightly better than 1st order.  

In the third test case of the circle in the deformation field test case, there were 

many differences when using the three different normal approximation schemes and three 

different transportation algorithms. When using the three different normal approximation 

schemes, the LVIRA normal calculation showed the best at preserving a thin interface, 

while the ELVIRA normal calculation showed the second best at this trait, and the finite 
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difference approximation showed the worst ability to maintain a thin interface. 

Unfortunately these differences in preserving the interface were only slightly apparent in 

the final shape error calculation of the interface. This was believed to be due to the time 

reversal of the flow field, where there is error that cancels out when the ligament is 

reformed. The geometric unsplit method also showed improvements in the transportation 

of the interface. These were more apparent in the shape error calculations. The geometric 

unsplit method eliminated float-sum which is desirable for accurate interface capturing, 

since it maintains the volume fraction to physically meaningful values of 0 ≤ 𝐶 ≤ 1. In 

terms of timing, it was shown that the LVIRA method took the longest time to 

approximate the normal since it uses an iterative procedure to determine the appropriate 

normal. The Efficient-LVIRA method took less time to compute the normal, but in terms 

of shape error the ELVIRA and LVIRA methods performed the same (keep in mind that 

LVIRA still maintained the interface better). It was also shown that the unsplit geometric 

algorithm took the longest time to compute fluxes, while both operator-split fluxing 

operations took significantly less time. It is this test case that best demonstrates the 

differences between the normal and advection schemes in this work. Figure 53, on the 

next page, shows a plot of how the shape error varies as a function of computational cost 

for the methods tested in this work. A line connects each of the combinations of normal 

calculation and advection scheme for the various mesh sizes tested. From figure 53, it can 

be seen that the unsplit advection uses the most computational time, but shows the lowest 

shape error. It can also be seen that when using the unsplit advection scheme, the shape 

error has a steeper slope as compared to the operator-split advection schemes. The 

increase in slope shows the unsplit advection scheme is advantageous for shape errors 
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below 1e-03. The most apparent reason for this is the removal of float-sum when using an 

unsplit advection scheme. The addition of float-sum that is a result of the operator-split 

advection scheme increases the cost due to an increased number of elements that must be 

reconstructed and transported. When the problem size becomes large enough, the number 

float-sum elements become so large that the unsplit method performs faster as compared 

to the operator-split methods.  

 

Figure 53 – Log-Log plot of Shape Error vs Average Computation Time per Timestep for all 

combinations of advection and normal calculation schemes used in the Deformation Column test 

case. 
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Finally, in the last test case, the sphere in a deformation field test case, we saw 

differences similar to those seen in the circle in a deformation field test case. The LVIRA 

normal was by far the best at maintaining a smooth, thin interface. The ELVIRA method 

was second in this ability, and the finite difference method was last. Final shape errors 

showed little differences in the LVIRA and ELVIRA normal approximations, but more 

apparent differences when compared to the finite difference normal approximation. 

Transportations methods showed little differences in this test case and both ELVIRA and 

LVIRA maintained higher than 2nd order accuracy regardless of chosen transportation 

algorithm. Timing also showed similarity to the circle in a deformation field test case in 

that the finite difference method was the lowest costing, the ELVIRA was second, and 

LVIRA was most costly. In terms of advection both operator-split methods took 

approximately the same time, while the unsplit advection algorithm was the most costly. 

It is still difficult to tell clearly which method is the best, the LVIRA normal is 

best at maintaining thin interfaces on course meshes. However on very refined mesh 

sizes, the ELVIRA and LVIRA method perform the same, while the LVIRA normal costs 

much more than the ELVIRA method computationally. One would have to anticipate 

how important the interactions of small scale structures, like thin interfaces, are when 

modeling a given problem. If thin ligaments between fluid interfaces become important, 

the LVIRA method will be preferable, but if interfaces remain thick, the ELVIRA is more 

preferable due to the decrease in computational cost.  

In terms of transportation algorithm, the 2nd order unsplit advection scheme shows 

the most stability in maintaining 2nd order accuracy. While the operator-split advection 
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methods should be 2nd order accurate (Pilliod & Puckett, 2004), they showed fluctuation, 

jumping between 1st and 2nd order.    
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