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ABSTRACT 

Intermittent social defeat stress produces vulnerability to drugs of abuse, a phenomena 

known as cross-sensitization, which is proceeded by a corresponding upregulation of ventral 

tegmental area (VTA) mu-opioid receptors (MORs). Since VTA MORs are implicated in the 

expression of psychostimulant sensitization, they may also mediate social stress-induced 

vulnerability to drugs of abuse. Social stress and drugs of abuse increase mesolimbic brain-

derived neurotrophic factor (BDNF) signaling with its receptor, tropomyosin-related kinase B 

(TrkB). These studies examined whether VTA MOR signaling is important for the behavioral and 

cellular consequences of social stress. First, the function of VTA MORs in the behavioral 

consequences of intermittent social defeat stress was investigated. Lentivirus-mediated 

knockdown of VTA MORs prevented social stress-induced cross-sensitization, as well as stress-

induced social avoidance and weight gain deficits. Next it was examined whether VTA MOR 

expression is critical for stress-induced alterations in the mesocorticolimbic circuit. At the time 

cross-sensitization was known to occur, lentivirus-mediated knockdown of VTA MORs prevented 

stress-induced increases in VTA BDNF and its receptor, TrkB in the nucleus accumbens (NAc), 

and attenuated NAc expression of delta FosB. There was no effect of either stress or virus on 

BDNF expression in the prefrontal cortex. Since social stress-induced upregulation of VTA MORs 

is necessary for consequences of social stress, next activity dependent changes in AKT, a 

downstream target of MOR stimulation associated with sensitization to psychostimulant drugs, 

were investigated. Using fluorescent immunohistochemical double labeling for the active form of 

AKT (pAKT) and markers of either GABA or dopamine neurons in the VTA, it was determined that 

social stress significantly increased the expression of pAKT in GABA, but not dopamine neurons, 

and that this effect was dependent on VTA MOR expression. Moreover, intra-VTA inhibition of 

pAKT during stress prevented stress-induced weight gain deficits, while acute inhibition of VTA 

pAKT blocked the expression of cross-sensitization in subjects that had previously exhibited 

sensitized locomotor activity. Together these results suggest that social stress upregulates MORs 

on VTA GABA neurons, resulting in AKT phosphorylation, and that increased VTA MOR-pAKT 
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signaling may represent a novel therapeutic target for the intervention of substance abuse 

disorders. 

 



  iii 

ACKNOWLEDGMENTS  

I would like to thank the members of my dissertation committee: Dr. Ron Hammer, Dr. 

Ella Nikulina, Dr. Janet Neisewander, Dr. Jie Wu, and Dr. Foster Olive. Their insights helped to 

improve the quality of not only my scientific research, but also my critical thinking abilities. In 

particular, I cannot thank Dr. Nikulina enough for the time she spent training me in various 

laboratory techniques, or Dr. Hammer for teaching me how to better communicate my scientific 

findings. I would not be the scientist I am today without all the tremendous support provided by 

my advisers and committee members, and am incredibly grateful for all that I have learned during 

my time in Arizona State University’s Interdisciplinary Graduate Program in Neuroscience. 

Furthermore, I am also thankful for the wonderful support staff in the School of Life Sciences, 

especially Beverly McBride, Wendi Simonson, and Yvonne Delgado – without their help with 

class scheduling and aid in navigating all the defense and graduation requirements, none of this 

would have been possible. 

I would also like to thank all the laboratory volunteers who have contributed to this work, 

with everything from helping with cell counts to proofing manuscripts: Daniel Herschel, Garret 

Munoz, and Rachel Henderson. I am eternally grateful to Danny for his help in collecting all the 

data in Chapters 2 – 3, as well as his unwavering support and friendship over the years. To my 

friends of old and family, you have put up with me through three degrees worth of sleepless 

nights, missed holidays/celebrations, and intense stress. Thank you for all the supportive phone 

calls, care packages, and the enjoyable reprieves you provided from my work. To my dear friend, 

colleague and general SFN roomie, Dr. Jessica Matchynski, I cannot thank you enough for your 

long-distance help and guidance with everything from teaching to SPSS syntax. And of course, 

none of this would have been possible without the support of my parents, I am truly blessed to 

have such a wonderful support network. 

   



  iv 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES .................................................................................................................... vii  

LIST OF FIGURES ………..……………………………………………………………………….. viii 

CHAPTER 

1     INTRODUCTION AND BACKGROUND …………...…………………………………………….1  

Section 1 – Introduction  ....................................................................................................... 1  

Section 1.1 – Substance Abuse: A Role for Stress ..................................................... 2  

Section 1.2 – Basic Anatomy of the Mesocorticolimbic Dopamine Circuit  ................ 5  

Section 1.3 – A Role for Mu-Opioid Receptors in the Regulation of Ventral 

Tegmental Area Dopamine Transmission ........................................................... 7  

Section 2 – Effects of Social Stresss ...................................................................................... 9  

Section 2.1 – Behavioral Consequences of Social Stress .......................................... 9  

Section 2.2 – Stress-Induced Alterations Across the Mesocorticolimnbic Circuit .... 10  

Section 2.3 – Neurological Correlates of Substance Abuse: Similarities to the  

Effects of Stress  ................................................................................................ 16  

Section 3 – Ventral Regmental Area Mu-Opioid Receptors  ............................................... 23  

Section 3.1 – Structure and Function of Mu-Opioid Receptors ................................ 24  

Section 3.2 – Classical View of Ventral Tegmental Area Mu-Opioid Receptor 

Effects: GABAergic Disinhibition of Dopamine  ................................................. 28   

Section 3.3. – Novel Mu-Opioid Receptors: Excitatory and Dopaminergic? ............ 30 

Section 3.4. – Mu-Opioid Receptor-Mediation of VTA Dopamine Transmission: 

Implications for Substance Abuse and Cross-Sensitization  ............................ 32  

Section 4 – Ventral Tegmental Area Mu-Opioid Receptor – pAKT Signaling .................... 33 

Section 4.1 – Overview of AKT Phosphorylation ....................................................... 34  

Section 4.2 – Support for MOR – AKT/mTORC Signaling  ....................................... 39  

Section 4.3 – Implications of pAKT for Stress-Induced Psychostimulant  

Sensitization  ...................................................................................................... 41  



  v 

CHAPTER                                                                                                                                       Page 

Section 5 – Research Objectives and Organization of Dissertation ................................... 42  

2     KNOCKDOWN OF VENTRAL TEGMENTAL AREA MU-OPIOID RECEPTORS MEDIATES 

EFFECTS OF SOCIAL DEFEAT STRESS: IMPLICATIONS FOR AMPHETAMINE 

CROSS-SENSITIZATION, SOCIAL AVOIDANCE, AND WEIGHT REGULATION ……… 44  

Introduction.................................................................................................................. 44  

Methods ......... ............................................................................................................ 46 

Results ……… ............................................................................................................ 54 

Discussion …… .......................................................................................................... 59 

3    KNOCKDOWN OF VENTRAL TEGMENTAL AREA MU-OPIOID RECEPTORS: 

IMPLICATIONS FOR SOCIAL STRESS-INDUCED CHANGES ACROSS THE 

MESOCORTICOLIMBIC CIRCUIT ………………………………......…………….……….… 66 

Introduction.................................................................................................................. 67  

Methods ......... ............................................................................................................ 69 

Results ……… ............................................................................................................ 74 

Discussion …… .......................................................................................................... 80 

4     AKT IS PHOSPHORYLATED IN VTA GABA NEURONS AFTER EXPOSURE TO SOCIAL 

STRESS: IMPLICATIONS FOR AMPHETAMINE CROSS-SENSITIZATION AND WEIGHT 

REGULATION …………………………………………………………………………………... 87 

Introduction ……………………………………………………………………………... 88  

Methods ....................................................................................................................90 

Results …………………………………………………………………………………..101 

Discussion …… ........................................................................................................ 112 

5     GENERAL DISCUSSION ................................................................................................... 118  

Summary of Major Results …………………………………………………………... 118  

Expression of Excitatory and Inhibitory MORs in the VTA: Implications for Stress-

Induced Increase of VTA MOR Activity ………………………........................ 122  

 



  vi 

CHAPTER                                                                                                                                       Page 

 Indirect Mediation of VTA DA Transmission by Local GABA Neurons: A Role for 

MOR – pAKT Signaling ………………………………………………………….. 123 

  Methodological Considerations and Future Studies .............................................. 124 

 

REFERENCES ................................................................................................................................ 128 

APPENDIX  

A DATA PUBLISHED IN JOHNSTON ET AL 2015 ………...……….……………. 144 

 
  



  vii 

LIST OF TABLES 

Table Page 

1.       Details on Univariate Differences Found During Analysis of the Induction of Social Stress-

Induced Cross-Sensitization to Amphetamine ……………...................................... 109 

 2.       Comparison of the Effect of VTA MOR Knockdown Versus Intra-VTA Inhibition of AKT 

Phosphorylation During Stress ………………………………………………...……... 125 

 



  viii 

LIST OF FIGURES 

Figure Page 

1.1       Schematic of Intermittent Social Defeat Stress ……………………………….……................. 4 

1.2       Schematic of Mesocorticolimbic Projections …………………....………………...……………. 6 

1.3       Stimulation of VTA MORs Disinhibits VTA DA Neurotransmission ……………..……............ 8 

1.4       Effects of Drugs and Stress on VTA BDNF Expression and Mesolimbic Tone ………....… 22 

1.5       Inactive Versus Active MOR Structure and G-Protein Coupling …………………………..... 25 

1.6       Overview of MOR-Mediated Activation of pAKT Signaling ………………….........…………. 37 

 

2.1       Timeline of Experimental Events and Schematic of Social Approach and Avoidance Test 

Procedure …………………………………………………………………………….…………. 48 

2.2       [3H]DAMGO Autoradiography Revealed That the shMOR Construct, but Not the GFP 

Construct, Significantly Reduced MOR Expression in the VTA, but Not the SNc ...…….... 55 

2.3       Knockdown of VTA MORs Prevents Social Stress-Induced Deficit of Weight Gain ………. 57 

2.4       Knockdown of VTA MORs Prevents Social Stress-Induced Social Avoidance ...…………. 58 

2.5       Knockdown of VTA MORs Prevents Social Stress-Induced Amphetamine Cross-

Sensitization Without Affecting Baseline Activity ……………..………………..……………. 60 

 

3.1       Timeline of Experimental Events …………....…………………………………………………. 71 

3.2       Knockdown of VTA MORs Blocks Social Stress-Induced Increase of VTA BDNF   

Expression ……….………………………………………………………………………...……. 76 

3.3       There Was No Effect on BDNF Expression in the PFC 10 days After the Last Episode of 

Stress ……….……………………..…………………………………………….....……………. 77 

3.4       Knockdown of VTA MORs Blocks Social Stress-Induced Increase of TrkB Receptor in the 

NAc ….…………………………….……………………………………………………………... 78 

3.5       Knockdown of VTA MORs Attenuated the Stress-Induced Increase of Delta FosB in the  

NAc ………….…………………………………………………………………………………… 79 

 



  ix 

Figure                                                                                                                                              Page 

4.1       Schematic of Experimental Timelines ……….…….......………………………………………. 92 

4.2       Cannula Infusions Were Accurate and NVP-BEZ235 Effectively Inhibited Local AKT 

Phosphorylation ………….…………………………...……………………………………….... 95 

4.3       Intermittent Social Stress Significantly Increased AKT Phosphoryation Downstream of   

MOR Expression in VTA GABA, but Not DA Neurons ..………………………………….... 102 

4.4       VTA MOR Knockdown Prevented Induction of pAKT Labeling in VTA GABA Cells by   

Social Stress ...................………………………………………………………….……......... 103 

4.5       Social Stress Did Not Increase Co-Localization of pAKT with DA Neurons in the VTA .... 104 

4.6       Knockdown of VTA MORs Prevented the Proportional Increase of pAKT Expression            

in VTA GABA Neurons That Was Observed After Social Stress .………………………... 106 

4.7       Inhibition of VTA AKT Phosphorylation During Stress Prevented the Development of     

Long-Term Weight Gain Deficits ……………….…………………...……………………..… 107 

4.8       Inhibition of pAKT in the VTA During Stress Attenuated the Induction of Cross-   

Sensitization to Amphetamine ……………………….…………………………………….… 110 

4.9       Acute Intra-VTA Inhibition of AKT Phosphorylation Blocked the Expression of Social   

Stress-Induced Cross-Sensitization to Amphetamine …………………………………...… 111 

 

5.1       Social Stress-Induced Changes in the Mesolimbic Pathway That Have Been Related to 

Cross-Sensitization Are Prevented by VTA MOR Knockdown …………………………… 120 

5.2       Schematic Illustration of the Effects of Local MOR Knockdown or Inhibition of AKT 

Phosphorylation on Social Stress-Induced Changes in the VTA ..…………..…………… 121 

  



1 

CHAPTER 1: INTRODUCTION AND BACKGROUND 

1. INTRODUCTION 

Substance abuse represents a broad reaching societal and economic problem, with 24.6 

million Americans admitting to being ‘current drug users’ in 2013 (SAMHSA, 2014). In the 2012 

fiscal year, the United States nationally spent over $24 billion dealing with the prevention, 

treatment, and criminal consequences of substance abuse (USDOJ, 2011), and when comorbid 

disorders are taken into account, addiction has some of the highest costs of any medical disorder 

(Kreek et al., 2005). While treatment has been the focus of much research, a majority of 

recovering addicts are likely to relapse, thus there is a need for research that focuses on reducing 

the occurrence of substance abuse (Sinha, 2011, NIDA, 2012). Vulnerability to substance abuse 

and addiction are influenced by a variety of genetic and environmental factors (Kreek et al., 

2005). One environmental variable that can influence the transition from recreational drug use to 

abuse is stress, and it has been correlated with both increased substance abuse and relapse 

(Sinha, 2001, 2008, 2011, NIDA, 2012).  

The neurobiological mechanisms of stress and addiction have been widely studied in 

humans and animals. In rodents, mild or intermittent experiences of stress induce changes in the 

mesocorticolimbic circuit that are similar to those seen after exposure to drugs of abuse (Nikulina 

et al., 2014). Much research has focused on increases in dopamine (DA) transmission from the 

ventral tegmental area (VTA) to the nucleus accumbens (NAc) and the changes observed in 

those regions. While the literature generally agrees that increases in VTA DA transmission are 

necessary for many of the behaviors observed after stress or sensitization to drugs of abuse, less 

attention has been paid to the involvement of VTA gamma amino-butyric acid (GABA) 

transmission. Drugs that activate mu-opioid receptors (MORs) have been shown to induce cross-

sensitization to psychomotor stimulants, and in the VTA these receptors have been traditionally 

viewed as being localized to GABA neurons (see review of Nikulina et al., 2014). When inhibitory 

mu-opioid receptors (MORs) are activated on VTA GABA neurons, they reduce GABA 

transmission, thereby increasing VTA DA activity (Johnson and North, 1992, Margolis et al., 

2014). In the case of social stress-induced cross-sensitization to amphetamine, there is a 



2 

corresponding increase in VTA mu-opioid receptor (MOR) expression (Nikulina et al., 2005, 

Nikulina et al., 2008). Taken together, it is possible that stress-induced increases in VTA MOR 

signaling in VTA GABA neurons may indirectly mediate the changes that occur in VTA DA 

neurons, and the behaviors associated with increased DA transmission to the NAc.  

The goal of the experiments described herein is to determine whether VTA MORs play a 

functional role in the effects of social stress. The first experiment asks whether VTA MORs serve 

a functional role in social stress-induced behaviors, specifically stress-induced cross-sensitization 

to amphetamine. The second asks if VTA MORs are necessary for social stress-induced changes 

throughout the mesocorticolimbic circuit. Since MOR activation has been linked to 

phosphorylation of intracellular signaling kinase AKT (Polakiewicz et al., 1998, Iglesias et al., 

2003, Russo et al., 2007, Mazei-Robison et al., 2011), the third experiment asks whether VTA 

MORs mediate stress-induced cross-sensitization through activation of intracellular AKT signaling 

in GABA neurons. The combined results of these experiments will not only improve our 

understanding of stress-induced cross-sensitization to psychomotor stimulants, but may also aid 

in the identification of potential new therapeutic targets.  

 
1.1  Substance Abuse: A Role for Stress 

In 2012, illegal drug use by United States citizens over age 12 reached its highest point in 

ten years, and worldwide, an estimated 183,000 drug-related deaths occurred (UNODC, 2014). 

Estimates from 2012 revealed that 3.5% – 7.0% of the world population had used an illegal drug 

in the last year (UNODC, 2014), while in the United States, an estimated 22.7 million people age 

12 or older have a diagnosable substance abuse disorder (SAMHSA, 2014). Given that the 

majority of recovering addicts are likely to relapse (Sinha, 2011, NIDA, 2012), there is a need for 

research aimed at reducing the occurrence of substance abuse. Similar to the craving induced by 

drug cues, images depicting a stressor induce increases in cocaine craving and anxiety in 

recovering addicts (Sinha et al., 1999, Sinha et al., 2000), suggesting that stressful experiences 

are as potent as drug cues in potentiating relapse. While much research has targeted relapse and 

addiction treatments, the reality is that treatment can be costly and is not always readily available. 
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In fact, treatment for substance abuse was unavailable to 20.2 million of the 22.7 million people 

who were classified as having a substance abuse disorder in 2013 (SAMHSA, 2014), a problem 

which further emphasizes the importance of studying variables which confer vulnerability to drugs 

of abuse. While vulnerability to addiction likely has some genetic component, twin studies have 

shown that only 30-60% of the variance can be explained by heritability (Kreek et al., 2005), 

suggesting that environmental experiences also play a key role in determining susceptibility to 

drugs of abuse. 

Stress is one variable that influences the transition from recreational drug use to abuse. 

In humans, stress has been associated with vulnerability to substance abuse and increased risk 

of relapse (Brewer et al., 1998, Sinha, 2001, 2008, 2011, NIDA, 2012). In rodents, the intermittent 

social defeat stress paradigm (Fig. 1.1) serves as a naturalistic model of social stress-induced 

changes in the behavior and pathology of humans, in particular, this paradigm has been shown to 

augment the effect of psychomotor stimulants, a phenomena termed ‘cross-sensitization’ (see 

reviews of Miczek et al., 2008, Nikulina et al., 2014). While many laboratory stress paradigms 

exist, a basic requirement of such models of vulnerability to addiction, is that the behavioral or 

biological feature being used to classify animals as vulnerable, must be manipulated and 

characterized prior to drug exposure (Piazza and Le Moal, 1996). In addition to satisfying this 

requirement, this model of social defeat stress has high face validity when compared to stress 

responses in humans (Covington and Miczek, 2005, Sinha, 2008).  

Similar to the persistent sensitization induced by intermittent drug exposure (Paulson et 

al., 1991), this social defeat model induces persistent cross-sensitization to amphetamine lasting 

at least 2 months (Nikulina et al., 2004). The effects of stress and psychostimulant drugs are 

related, with both stimuli involving changes in stress-related hormones and trophic factors, 

specifically glucocorticoid hormones (cortisol in humans, corticosterone in rodents) and/or 

corticotropin releasing factor (Piazza and Le Moal, 1996, Sinha, 2001, Marinelli and Piazza, 

2002). The literature strongly suggests that stress and drugs of abuse both act on the 
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Figure 1.1. Schematic of Intermittent Social Defeat Stress. While models of intermittent social 

defeat stress can be daily or episodic, they all consist of a brief losing social interaction in the 

home cage of an aggressive resident. In the above schematic, the defeated intruder rat is a white 

Sprague Dawley, while the aggressive resident is a black and white Long Evans rat. To provoke 

attack by residents, for the first 5 min of stress procedures, the intruder is placed inside a 

protective cage that permits sensory contact (Top). During the physical aggressive encounter, the 

protective cage is removed, allowing the resident to attack (Bottom) until the intruder indicates 

that it has been defeated by display of the submissive supine position (Bottom far right). After 

having been defeated, the intruder is placed back inside the protective cage and exposed to 

threat of attack for an additional 20 min. In contrast to continuous social defeat models, at the 

conclusion of intermittent stress procedures, subjects are returned to home cages that are not in 

proximity to aggressive residents. 
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mesocorticolimbic brain circuit (Cleck and Blendy, 2008, Nikulina et al., 2014), thus the regions 

comprising this circuit serve as potential points of convergence for the effects of stress and drugs 

of abuse. In support of this, augmented dopamine transmission along the mesolimbic pathway 

(VTA-NAc) has been found to be associated with many of the effects of stress and drugs of 

abuse (Piazza and Le Moal, 1996, Sinha, 2001, Marinelli and Piazza, 2002, Cleck and Blendy, 

2008, Nikulina et al., 2014). 

 
1.2  Basic Anatomy of the Mesocorticolimbic Dopamine Circuit 

The mesocorticolimbic circuit (Fig. 1.2), consisting of interconnected midbrain, limbic, and 

cortical areas, has been strongly implicated in the effects of both stress and drugs of abuse 

(Sinha, 2008, Morales and Pickel, 2012, Nikulina et al., 2014). Although neuroplasticity in the 

VTA, NAc, and prefrontal cortex (PFC), as well as other structures, is important for reward, 

stress, and reinforcing behaviors, it is well accepted that increased mesolimbic (VTA-NAc) DA 

transmission is crucial for many of the effects stress and drugs of abuse (see reviews of Fields et 

al., 2007, Nikulina et al., 2014). In fact, VTA DA transmission and release in the NAc is necessary 

for the induction of sensitization to both psychomotor stimulants and opiates (Joyce and Iversen, 

1979, Vezina et al., 1987, Vezina and Stewart, 1989, Pierce and Kumaresan, 2006). The neurons 

found in the VTA are highly heterogeneous, with neuronal types differentially distributed across 

the rostocaudal and mediolateral axes of the VTA (Nair-Roberts et al., 2008, Morales and Pickel, 

2012). The entire VTA region largely consists of dopamine neurons (50-65%), followed by GABA 

neurons (30-35%; Swanson, 1982, Oades and Halliday, 1987, Yamaguchi et al., 2007, Nair-

Roberts et al., 2008), and glutamate neurons (2-3% Nair-Roberts et al., 2008). Study of this 

region has been complicated by the recent finding that a significant portion of glutamate neurons 

also express tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine  
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Figure 1.2. Schematic of Mesocorticolimbic Projections. The VTA (green), NAc (yellow), and 

PFC (blue) represent major nodes in the mesocorticolimbic circuit that are highly interconnected 

by afferent and efferent projections (Fields et al., 2007, Sesack and Grace, 2010, Morales and 

Pickel, 2012, Walsh and Han, 2014, Fields and Margolis, 2015). 
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(Fields et al., 2007, Morales and Pickel, 2012, Morales and Root, 2014). Based on this, VTA 

neurons can release GABA, DA, glutamate, or co-release glutamate and DA. 

In addition to sending/receiving VTA excitatory/inhibitory projections to/from other areas of the 

mesocorticolimbic circuit (Fig. 1.2), the VTA also contains a population of GABA interneurons 

(Fields et al., 2007, Ting and van der Kooy, 2012). Excitatory glutamate projections from the PFC 

innervate the VTA and NAc, while the NAc sends inhibitory GABA projections to the PFC and 

VTA (Morales and Pickel, 2012, Fields and Margolis, 2015). Despite receiving GABA projections 

from the NAc, the rostromedial tegmental nucleus (tail of the VTA) is one of the primary sources 

of GABA release in the VTA and its neurons preferentially synapse with VTA DA neurons (see 

reviews of Ting and van der Kooy, 2012, Nikulina et al., 2014). Projections from VTA DA, GABA, 

and glutamate neurons synapse in both the NAc and PFC (see reviews of Fields et al., 2007, 

Morales and Pickel, 2012). Although VTA DA neurons project both to the NAc (mesolimbic 

pathway) and to the PFC (mesocortical pathway), far more DA transmission is associated with 

the mesolimbic than the mesocortical DA pathway (see review of Fields et al., 2007). While 

increased DA transmission along the mesolimbic pathway is associated with many of the effects 

of stress and drugs of abuse, this increase in activity of VTA DA neurons can be mediated by 

local inputs from GABA neurons (see reviews of Ting and van der Kooy, 2012, Nikulina et al., 

2014), as well as extrinsic projections from the PFC and NAc (see reviews of Morales and Pickel, 

2012, Fields and Margolis, 2015). 

 

1.3  A Role for Mu-Opioid Receptors in the Regulation of Ventral Tegmental Area Dopamine 

Transmission 

Decreased GABA release from local interneurons is one way in which the activity of VTA 

DA neurons can be increased. In the VTA, MORs are traditionally considered to be inhibitory on 

GABA neurons that project to VTA DA neurons (Johnson and North, 1992, Sesack and Pickel, 

1995, Garzon and Pickel, 2002). When activated, these MORs inhibit GABA transmission, 

subsequently increasing release of DA in the NAc (Fig. 1.3) and facilitating response to drugs of  
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Figure 1.3. Stimulation of VTA MORs Disinhibits VTA DA Neurotransmission. (A) In the 

VTA, the majority of MOR have an inhibitory effect on VTA GABA neurons, in particular, a sub-

population of GABA interneurons. In basal conditions, where VTA MORs are largely inactive, 

tonic GABA neurotransmission serves to inhibit local DA neurotransmission. (B) When VTA MOR 

receptors are stimulated on GABA neurons, either by an endogenous or exogenous agonist, they 

generally produce an inhibitory effect. This MOR-induced inhibition of VTA GABA neurons serves 

to disinhibit local DA neurotransmission (Johnson and North, 1992). While this schematic depicts 

pre-synaptic MORs, it is important to note that MORs can also be found post-synaptically, (see 

Chapter 1, Section 3.2 for details). Red circle: GABA neurotransmitter; green circle: DA 

neurotransmitter; blue circle: MOR; fuchsia cylinder: MOR agonist; number of red or green circles 

indicate degree of neurotransmission. 
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abuse (Fig. 1.3; Johnson and North, 1992, Bergevin et al., 2002; see also review of Dacher and 

Nugent, 2011). Some MORs have also been found on VTA DA neurons (Margolis et al., 2014), 

putting MOR signaling in a position to directly mediate the neurotransmission of both VTA DA and 

GABA neurons. Recent data have shown that some VTA MORs can actually be excitatory, and 

suggest that when activated separate receptors can simultaneously exert an excitatory and 

inhibitory effect on the same cell (Margolis et al., 2014). Ultimately, this means that VTA MORs 

are capable of influencing the changes in VTA DA transmission in two ways: through direct 

activity on DA neurons, or indirectly through modulation of local GABA transmission.  

 
2. Effects of Social Stress 

2.1 Behavioral Consequences of Social Stress 

The rodent social defeat stress paradigm serves as a naturalistic model of stress-induced 

changes in the behavior and pathology of humans. While many stress paradigms serve to 

increase anxiety and depression-like behaviors, the social defeat paradigm is unique due to the 

face validity in the social nature of its stressor, as well as the lack of habituation associated with 

repeated exposure (Covington and Miczek, 2005). Social defeat stress has been shown to 

produce increases in anxiety in rodents, as evidenced by: increased acoustic startle response 

(Pulliam et al., 2010), ultrasonic vocalizations (van der Poel and Miczek, 1991, Vivian and 

Miczek, 1999), and time spent freezing (Venzala et al., 2012). Many of the changes seen after 

social defeat stress; including hyperalgesia to hot and cold temperatures (Marcinkiewcz et al., 

2009, Hayashida et al., 2010) and increased analgesia (Siegfried et al., 1990, Williams et al., 

1990, Teskey and Kavaliers, 1991, Rodgers, 1995), suggest that MOR play a critical role in social 

stress-induced long-term neuroplasticity. 

The specific outcomes observed after social defeat stress are known to be influenced by 

the temporal pattern used during the administration of defeat (Miczek et al., 2008, Miczek et al., 

2011a). In general repeated episodes of social defeat have been shown to increase social 

avoidance of a novel conspecific (Razzoli et al., 2009, Venzala et al., 2012) and to induce deficits 

in weight gain (Meerlo et al., 1996, Fanous et al., 2010, Pulliam et al., 2010, Fanous et al., 2011, 
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Venzala et al., 2012). In contrast, while continuous social defeat reduces preference for sweet 

rewards, only intermittent social defeat stress induces the behavioral sensitization that can lead to 

increased drug use (Miczek et al., 2011a). More specifically, intermittent social defeat stress 

consistently produces cross-sensitization to psychomotor stimulants (Covington and Miczek, 

2001, Nikulina et al., 2005, Nikulina et al., 2012). Rodent studies have shown that repeated, non-

continuous, social defeat stress consistently produces social avoidance (Razzoli et al., 2009, 

Fanous et al., 2011) and augments the effect of psychomotor stimulants, a phenomena known as 

‘cross-sensitization’ (Covington and Miczek, 2001, Nikulina et al., 2004, Nikulina et al., 2012). In 

addition to psychomotor stimulants, repeated social stress also induces cross-sensitization to 

opiates, but does not increase binge-like responding for morphine (Cruz et al., 2011). Such 

behavioral sensitization to drugs of abuse is thought to reflect changes in the mesocorticolimbic 

circuit (Vanderschuren and Kalivas, 2000). 

 

2.2   Stress-Induced Alterations Across the Mesocorticolimbic Circuit  

Social defeat stress is known to have a significant impact on mesocorticolimbic 

expression of delta FosB and BDNF. Delta FosB is a transcription factor and the truncated form 

of FosB, a member of the Fos family of proteins. Much attention has been given to delta FosB 

because it gradually accumulates in response to repeated stimuli, such as stressor or drug, and 

can persist for long periods of time due to its high stability (see reviews of Nestler et al., 2001, 

Nestler, 2008, 2014). Generally BDNF is associated with brain regions rich in DA neurons, and in 

the VTA BDNF is known to co-localize with TH, a reliable marker for DA neurons (Gall et al., 

1992, Seroogy et al., 1994). Interestingly, social stress not only increases BDNF and delta FosB 

in the NAc and PFC, but it also increases the co-expression of the two molecules (Nikulina et al., 

2012). Both BDNF and delta FosB are thought to play an important role in responses to stress 

and drugs of abuse. As a key mediator of DA signaling in the VTA-NAc pathway, VTA BDNF is 

thought to mediate many stress- and drug-induced changes that occur in the NAc (see review of 

Nikulina et al., 2014). Although the expression of NAc delta FosB has not been shown to mediate 

mesolimbic DA transmission, this transcription factor has been well implicated as a downstream 
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indicator of augmented VTA DA activity (see reviews of Nestler et al., 2001, Nestler, 2008). Social 

defeat stress also induces a rapid and prolonged upregulation of VTA MORs (Nikulina et al., 

2005, Nikulina et al., 2008). After repeat social defeat stress, stimulation of VTA MOR’s by a 

MOR agonist has been shown to produce sensitized locomotor activity (Nikulina et al., 2005, 

Nikulina et al., 2008) during the same time period that social stress-induced cross-sensitization to 

psychomotor stimulants has been observed (Covington and Miczek, 2001, Nikulina et al., 2004, 

Nikulina et al., 2012). While it is unknown whether the expression of VTA MORs plays a role in 

stress-induced cross-sensitization to psychomotor stimulants, given that VTA MORs have the 

ability to mediate VTA GABA and DA transmission (Johnson and North, 1992, Margolis et al., 

2014), it is very possible that they too play a role in mediating stress-induced sensitization to 

drugs. The effect of social defeat stress on the expression of these three proteins, and their 

respective relationships to the behavioral outcomes of such social stress, will next be discussed 

in turn. 

 

2.2.1  Social Stress-Induced Expression of Delta FosB 

 Delta FosB is nuclear transcription factor and a truncated splice variant of FosB, as such 

it is a member of the Fos family of genes, which include: Fos, FosB, FosL1, and FosL2 

(Dobrazanski et al., 1991, Morgan and Curran, 1995). Like other members of the Fos family, delta 

FosB heterodimerizes with proteins belonging to the Jun family, predominantly JunD, to form 

activator protein-1 (AP-1) complexes which augment gene expression by binding to AP-1 sites on 

promoter sequences. The C-terminal of the full form of FosB contains two degron domains that 

direct normal protein ubiquitination and degradated by proteasomal-dependent and -independent 

complexes (Dobrazanski et al., 1991, Carle et al., 2007). The delta FosB splice variant is a 

product of a premature stop codon, which produces the delta FosB variant that is missing the 101 

amino acid C-terminus found in the full form of FosB (Dobrazanski et al., 1991). The C-terminus 

of FosB codes for the two degron domains, as such delta FosB lacks the two degron domains 

found in the missing C-terminus, which significantly prolongs the half-life of delta FosB (Carle et 

al., 2007). Further stability is conferred to delta FosB protein by phosphorylation of Ser27, by 
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either casein kinase 2 or calcium/calmodulin-dependent protein kinase II (CaMKII; Ulery et al., 

2006, Robison et al., 2013). In contrast to the marked stability associated with delta FosB protein, 

its mRNA is fairly unstable and degrades quickly (Hope et al., 1994, Chen et al., 1995, Kelz and 

Nestler, 2000). Due to the prolonged stability of delta FosB, this transcription factor has been 

widely studied in the context of drug addiction and stress, and it is considered a prolonged marker 

of neuronal activation and plasticity in the brain (Nestler, 2008, 2014). 

Repeated social defeat stress induces a prolonged increase of delta FosB throughout the 

mesocorticolimbic circuit (Nikulina et al., 2008, Nikulina et al., 2012). The time course of social 

stress-induced delta FosB expression in the mesocorticolimbic circuit has been well characterized 

and increased delta FosB expression persists for up to two weeks after the termination of stress 

procedures (Nikulina et al., 2008). Social stress-induced increases in delta FosB expression in 

the NAc generally last for around 10 days (Nikulina et al., 2012), a time period that corresponds 

to the expression of stress-induced amphetamine sensitization. However attempts to localize 

stress-induced changes in delta FosB expression in specific NAc structures have produced mixed 

findings. In particular, one study only detected a significant increase in delta FosB expression in 

the NAc shell (Nikulina et al., 2008), while another found significant increases in both the NAc 

shell and core at 10 days (Nikulina et al., 2012). Differences in delta FosB expression in the NAc 

core and shell after stress may be attributed to natural variability in the intensity of the social 

stress experience. Similar variability in delta FosB expression has been noted in the ventral 

striatum after cocaine self-administration, and it correlates with the intensity and duration of the 

drug stimulus (Larson et al., 2010). Of particular interest, the effects of delta FosB induction in the 

NAc appear to be specific to this splice variant, as overexpression of either the full form of FosB 

or the alternative splice variant delta2 delta FosB (Δ2FΔFosB), which is missing the 78 amino 

acid N-terminus, did not alter stress- or cocaine-induced behaviors in mice (Ohnishi et al., 2015).   

Compared to the NAc, social stress seems to induce comparable changes in delta FosB 

expression across sub-regions of the PFC. Increased delta FosB expression has been detected 

for up to 7-10 days after the last episode of stress in the infralimbic, prelimbic, and anterior 

cingulate regions of the PFC (Nikulina et al., 2008, Nikulina et al., 2012). In contrast to both the 
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NAc and PFC, social stress does not seem to induce changes in delta FosB expression in the 

VTA with a recent study failing to note a significant increase in VTA delta FosB expression 10 

days after the last episode of defeat (Nikulina et al., 2012). Given that 10 days after the 

termination of stress corresponds to the onset of psychostimulant sensitization (Nikulina et al., 

2012) and that social stress increases mesolimbic DA activity (Tidey and Miczek, 1996), it is 

interesting that stress-induced increases in VTA delta FosB expression were not noted at this 

time (Nikulina et al., 2012). While delta FosB is largely unaffected in the VTA after social stress, 

the stress-induced expression of NAc delta FosB is mediated by the release of BDNF in the NAc 

(Wang et al., 2013, Wang et al., 2014), the source of which is presumably the VTA (Berton et al., 

2006, Wang et al., 2013). 

 

2.2.2  Social Stress-Induced Expression of BDNF 

Social defeat stress is known to have huge impact on the expression of VTA BDNF, and 

the expression of this protein has been associated with the effects of both stress and drugs of 

abuse (see review of Nikulina et al., 2014). In fact, BDNF signaling with its receptor, tropomyosin-

related kinase B (TrkB) in the NAc has been shown to mediate the behavioral and neurochemical 

changes associated with social defeat stress (Wang et al., 2014). In the NAc, social stress 

presumably increases the expression of TrkB receptor on medium spiny neurons, however it is 

also possible that the receptor is increased on DA projections that originate in the VTA, as their 

cell bodies express and release BDNF into the NAc. While TrkB receptor is also found in the 

VTA, and its expression on VTA GABA neurons is implicated in the effects of opioids (Vargas-

Perez et al., 2009b, Vargas-Perez et al., 2014), it is not known whether social stress alters TrkB 

receptors in the VTA.  

Increased VTA BDNF expression has been implicated as a long-term mediator of social 

stress-induced cross-sensitization (Nikulina et al., 2012), and in the VTA this increase persists for 

at least 2 weeks after the last social stress exposure (Fanous et al., 2010, Nikulina et al., 2012). 

Social stress also induces a rapid and transient increase of BDNF expression in the PFC, lasting 

about a week (Fanous et al., 2010, Nikulina et al., 2012). Due to the rapid and transient nature of 
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BDNF expression in the PFC, it has been difficult to determine the functional implications of its 

expression in this region. However it is likely that the PFC is one of the first mesocorticolimbic 

areas affected by social stress and that stress-induced alterations PFC neurotransmission 

mediate subsequent changes in its projection targets. By contrast, social stress-induced 

expression of VTA BDNF is better understood and VTA BDNF is known to play a critical role in 

social stress-induced cross-sensitization to amphetamine (Wang et al., 2013, Wang et al., 2014) 

and social stress-induced social avoidance (Berton et al., 2006, Fanous et al., 2011).  

However, drawing similar conclusions across different models of social defeat stress in 

rats and mice warrants caution, as species differences have been noted. In particular, continuous 

social defeat stress reduces VTA BDNF in rats, while increasing it in mice (for details, see review 

of Nikulina et al., 2014), suggesting that BDNF may play a species-specific role in stress 

responses. Despite this, the expression of social stress-induced VTA BDNF in rats has been 

consistently correlated with cross-sensitization to amphetamine (Wang et al., 2013, Wang et al., 

2014). Specifically, overexpression of VTA BDNF has been shown to exacerbate (Wang et al., 

2013), while NAc knockdown of the BDNF receptor, TrkB, prevented social stress-induced cross-

sensitization to amphetamine (Wang et al., 2014). Similarly, viral deletion of VTA BDNF 

prevented social stress-induced social avoidance (Berton et al., 2006, Fanous et al., 2011). 

Taken together, these findings suggest that increased VTA BDNF expression is one of the most 

functionally important changes induced after social stress. 

 

2.2.3  Social Stress-Induced Upregulation of VTA MORs 

A rapid and prolonged upregulation of VTA MOR can be found during the same time 

period that social defeat stress-induced increases in delta FosB, VTA BDNF and cross-

sensitization to amphetamine occur (Nikulina et al., 2005, Nikulina et al., 2008, Nikulina et al., 

2012). In the VTA, MORs are predominantly expressed by GABA neurons (Sesack and Pickel, 

1995, Garzon and Pickel, 2002), which are hyperpolarized in response to MOR stimulation. Acute 

social defeat stress rapidly upregulates MOR mRNA expression in the VTA (Nikulina et al., 1999, 
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Nikulina et al., 2008), while repeated social stress exposure increases VTA MOR mRNA 

expression for up to 14 days after the last episode (Nikulina et al., 2008).  

There is a high correlation between MOR mRNA expression and levels of protein binding 

(Mansour et al., 1994), suggesting that stress-induced increases in VTA MOR expression 

correspond to in endogenous mu-opioid peptide activity in the VTA. While it is unknown whether 

endogenous mu-opioid peptides are more abundant in the VTA after stress, rats exposed to 

repeated social defeat stress and then challenged with an intra-VTA infusion of a MOR-specific 

agonist exhibited sensitized locomotor activity (Nikulina et al., 2005, Nikulina et al., 2008). This 

VTA MOR agonist-induced sensitized locomotor activity was present during the same time period 

that social stress-induced cross-sensitization to psychomotor stimulants has been observed 

(Covington and Miczek, 2001, Nikulina et al., 2004, Nikulina et al., 2012), suggesting that the 

stress-induced upregulation of VTA MORs potentiates an increase in VTA DA activity (Fig. 1.3). 

 Expression of MORs is important for social stress-induced behavioral alterations, as 

genetic MOR knockout mice do not exhibit social avoidance following continuous social defeat 

(Komatsu et al., 2011). Taken together, these findings support the involvement of VTA MORs in 

the regulation of VTA DA transmission and suggest that MORs may play a critical role in the long-

term neuroplasticity induced by social stress. 

 

2.2.4  Interaction of Stress-Induced Expression of BDNF, MORs and Delta FosB in the 

Mesolimbic Pathway 

While VTA MOR mRNA expression rapidly increases following social stress exposure 

(Nikulina et al., 2005, Nikulina et al., 2008), VTA BDNF expression is affected more slowly 

(Fanous et al., 2010). In contrast, the rapid increase of VTA MOR expression corresponds to 

social stress-induced mesocorticolimbic FosB expression (Nikulina et al., 2008). Similar to the 

prolonged expression of stress-induced delta FosB, VTA MOR expression is increased for 

roughly two weeks after stress termination (Nikulina et al., 2008). The stress-induced expression 

of these two proteins is related, as post-stress intra-VTA agonism of MORs exacerbated stress-

induced increases in NAc delta FosB expression (Nikulina et al., 2008). In addition, 
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overexpression of VTA BDNF and knockdown of NAc TrkB receptor respectively enhance or 

attenuate social stress-induced expression of delta FosB in the NAc (Wang et al., 2013, Wang et 

al., 2014). Based on the respective relationships that exist between BDNF, delta FosB, and 

MORs in the mesolimbic pathway, it is possible that intermittent social defeat stress-induced 

increases in VTA BDNF and NAc delta FosB expression are related to upregulation of VTA 

MORs. 

 

2.3 Neurological Correlates of Substance Abuse: Similarities to the Effects of Stress 

Similar to social stress, many drugs of abuse induce changes in the mesocorticolimbic. In 

particular, increased mesolimbic DA transmission is thought to underlie many of sensitizing and 

reinforcing properties of drugs of abuse (Kalivas and Stewart, 1991, Pierce and Kumaresan, 

2006, Thomas et al., 2008), and is implicated in the effects of social stress (Tidey and Miczek, 

1996). The involvement of delta FosB, BDNF/TrkB receptor, and MORs have been studied in the 

context of both opiate and psychostimulant drugs. The drug-induced changes in the 

mesocorticolimbic expression of these proteins will be discussed next, with special emphasis on 

changes in the mesolimbic DA pathway. 

 

2.3.1  Drugs of Abuse and Delta FosB Expression 

An accumulation of delta FosB in the NAc is one of the most notable responses to 

repeated administration of drugs effecting DA transmission and in many cases disruption of delta 

FosB signaling inhibits the development of addiction-associated behaviors, including sensitized 

locomotor behaviors (see reviews of Nestler et al., 2001, Nestler, 2008). The expression of delta 

FosB is important for the effects of psychomotor stimulants, specifically, sensitization to cocaine 

increases delta FosB expression in subregions of the NAc shell in rats (Brenhouse and Stellar, 

2006). By contrast, viral-mediated induction of delta FosB in the orbitofrontal cortex potentiates 

the locomotor stimulant properties of cocaine (Winstanley et al., 2009). Further support for the 

involvement of delta FosB in the effects of psychostimulant drugs comes from genetic knockout 

mice, notably, FosB knockout mice do not sensitize to cocaine (Hiroi et al., 1997). The expression 
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of delta FosB in the NAc has been consistently associated with the effects of psychostimulant 

drugs, specifically its expression is associated with acute cocaine treatment (Larson et al., 2010), 

and also withdrawal from chronic psychostimulant treatment (Murphy et al., 2003, Larson et al., 

2010). CaMKII is also implicated in the effects of psychostimulant drugs and is of particular 

interest, as it is both upstream and downstream of delta FosB expression in the NAc. Specifically, 

CaMKII is necessary for the cocaine-induced accumulation of delta FosB in the NAc, while delta 

FosB is both necessary and sufficient for the induction of CaMKIIα gene expression in NAc D1 

receptor-containing medium spiny neurons (Robison et al., 2013). In addition to conferring 

stability to delta FosB by phosphorylation of Ser27, CaMKII also phosphorylates delta FosB on 

Thr149, which regulates its transcriptional activity to control locomotor responses to cocaine 

(Cates et al., 2014). Specifically, phosphomimetic mutation of Thr149 increased AP-1 

transcriptional activity, while viral-mediated manipulation of NAc delta FosB at Thr149 controlled 

locomotor responses to cocaine (Cates et al., 2014). 

Opiate sensitization has also been associated with increased delta FosB expression in 

multiple brain regions associated with reward, learning, and stress. In particular, morphine 

sensitization has been found to increase the expression of delta FosB in the NAc core, as well as 

the infralimbic and prelimbic regions of the PFC (Kaplan et al., 2011). Additionally, 

overexpression of delta FosB in the NAc enhances sensitivity to the rewarding properties of 

morphine and exacerbates physical dependence (Zachariou et al., 2006). It is interesting that 

opposing behavioral phenotypes of morphine dependence and withdrawal have both been 

associated with increased delta FosB expression in nuclei of the brain stress system, including 

the NAc shell (Nunez et al., 2010). Of particular relevance to stress-induced changes in delta 

FosB and MOR expression, increased expression of delta FosB in the NAc shell of opioid-

dependent rats was prevented by adrenalectomy (Garcia-Perez et al., 2012). 

Other transcription factors have also been implicated in the effects of stress and drugs of 

abuse, such as cAMP response binding element (CREB), however in the NAc, CREB and delta 

FosB are thought to act in opposition to one another. Specifically CREB expression is thought to 

regulate a negative feedback mechanism through the induction of dynorphin, while delta FosB 
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expression in D1 receptor containing medium spiny neurons suppresses dynorphin and has pro-

reward behavioral effects (see review of Nestler, 2013). Consistent with this view, in rats 

intermittent social defeat stress is known to increase delta FosB (Nikulina et al., 2008, Nikulina et 

al., 2012) and to reduce levels of phosphorylated CREB in the NAc (Yap et al., 2014). Despite 

this, it is important to note that phosphorylation of CREB at the FosB promoter is necessary for 

cocaine-induced NAc Fosb/delta FosB expression (Vialou et al., 2012), an effect which appears 

to mediated by histone H3 lysine 9 (H3K9me2), a repressive histone modification (Heller et al., 

2014). Delta FosB is thought to act as either a transcriptional activator or repressor, depending on 

the nature of the target gene (Nestler, 2008, 2014). Although the expression of delta FosB does 

not necessarily mediate withdrawal or reinstatement, its expression is closely related to 

behavioral sensitization (Nestler et al., 2001, Kalivas and O'Brien, 2008, Nestler, 2008). Through 

regulating the expression of particular genes in the mesocorticolimbic circuit, delta FosB may 

represent one mechanism underlying changes associated with substance abuse (Nestler et al., 

2001, Nestler, 2008).  

 

2.3.2  Drugs of Abuse and BDNF – TrkB Receptor Signaling  

The effects of different classes of drugs of abuse have been found to involve BDNF 

expression in the VTA. In particular, increased expression of VTA BDNF is frequently observed 

as a consequence of psychostimulant administration (Horger et al., 1999, Grimm et al., 2003, 

Bolanos and Nestler, 2004, Corominas et al., 2007, Thomas et al., 2008). Specifically, increases 

in VTA BDNF expression have been implicated in cocaine self-administration and withdrawal 

(Grimm et al., 2003), and BDNF infusion into the VTA enhances cocaine induced locomotion 

(Pierce et al., 1999). A single VTA infusion of BDNF at the end of cocaine self-administration 

enhances responding to cocaine-cues for up to 30 days after termination of cocaine use (Lu et 

al., 2004). 

While less frequently reported, research has shown that chronic treatment with the 

exogenous opiates, such as morphine, also induces the expression VTA BDNF (Vargas-Perez et 

al., 2009b) . Additionally, increases in VTA BDNF expression have also been noted 7 days after 
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forced abstinence from morphine, but not at 2 h or 24 h (Mashayekhi et al., 2012). Of particular 

interest, in the context of opiates, BDNF seems to play different roles depending on drug history. 

Specifically, in drug-naïve rats, opiate effects are DA-independent, however VTA infusion of 

BDNF resulted in a shifted rats to a DA-dependent state associated with chronic morphine or 

heroin (Vargas-Perez et al., 2009b). It should also be noted that other studies have found that 

chronic morphine treatment either had no effect on VTA BDNF expression (Numan et al., 1998), 

or decreased its expression (Chu et al., 2007). However in light of the findings from the van der 

Kooy lab (Laviolette et al., 2004; Vargas-Perez et al., 2009, see also review by Ting and van der 

Kooy, 2012), it is possible that conflicting findings on opiate-induced VTA BDNF expression may 

be attributed to differences in drug history, as well as potential differences in the underlying 

endogenous VTA opioid system.  

Expression of the BDNF TrkB receptor in the NAc is also important for the effects of 

opiate and psychostimulant drugs. In particular, over-expression of BDNF or TrkB receptor in the 

NAc has been shown to exacerbate chronic cocaine-induced psychomotor sensitization, 

conditioned place preference, and reinstatement, while these changes were inhibited by 

expression of a dominant negative form of TrkB receptor in the NAc (Bahi et al., 2008). The 

results of another study further suggest that while BDNF expression in either the VTA or NAc is 

important for the maintenance of cocaine reward, this effect is mediated by BDNF activation of 

TrkB receptors in the NAc (Graham et al., 2009). In addition to being crucial for the effects of 

chronic cocaine, activity of the BDNF’s TrkB receptor is also necessary for the behavioral 

sensitization and conditioned place preference induced by a single injection of cocaine (Crooks et 

al., 2010). Using genome-wide interference of TrkB expression, this study found that cocaine 

increased TrkB receptor phosphorylation in the NAc (Crooks et al., 2010), which is consistent with 

the role of mesolimbic BDNF – TrkB receptor signaling in the effects of chronic cocaine (Bahi et 

al., 2008, Graham et al., 2009). In addition to its involvement in drug-induced changes, VTA 

BDNF has also been implicated as a long-term mediator of social stress-induced cross-

sensitization to psychomotor stimulants (Nikulina et al., 2012). In fact, overexpression of BDNF 

exacerbates social stress-induced cross-sensitization to amphetamine (Wang et al., 2013), and 
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BDNF signaling with its receptor, TrkB, in the NAc is necessary for the induction of stress-induced 

sensitization (Wang et al., 2014).  

In the medial PFC, BDNF expression was shown to increase 24 h after the last session of 

cocaine self-administration, however this increase was not present 7 days later (Fumagalli et al., 

2013). Thus, while psychostimulants induce increases in PFC BDNF expression, these increases 

seem to be temporally and functionally different from those found in the mesolimbic pathway. For 

example, while increased mesolimbic BDNF enhances many effects of psychostimulants (see 

reviews of Ghitza et al., 2010, Nikulina et al., 2014), infusion of BDNF into the PFC actually 

reduces cocaine seeking after 1 or 6 days of withdrawal (Berglind et al., 2007). Similarly, for 

cocaine, context-induced reinstatement is attenuated by inactivation of the dorsal, rather than the 

ventral, portion of the medial PFC, while the opposite is true for heroin (Badiani et al., 2011). 

  

2.3.3  Drugs of Abuse and MOR Expression and Activity 

A role for MORs in the effects of both exogenous opiates, such as heroin and morphine, 

as well as psychomotor stimulants, such as cocaine and amphetamine, has been long supported 

been supported by the literature. In particular, systemic injections of morphine cross-sensitize 

animals to amphetamine (Vezina et al., 1989), and intra-VTA MOR agonism produce sensitization 

to cocaine and amphetamine (DuMars et al., 1988). Additionally, the expression of amphetamine 

sensitization is associated with persistent VTA MOR upregulation, and can be blocked by a 

treatment with MOR antagonist (Magendzo and Bustos, 2003, Trigo et al., 2010). Similarly MOR 

receptor interference in the VTA – substantia nigra regions blocks the rewarding and locomotor 

effects of the exogenous opiate, heroin (Zhang et al., 2009). Traditionally, VTA MORs are thought 

to be found on GABA neurons (Sesack and Pickel, 1995, Garzon and Pickel, 2002), which are 

hyperpolarized in response to MOR stimulation, thus disinhibiting local DA transmission (Fig. 1.3) 

and facilitating response to drugs of abuse (Johnson and North, 1992; see also review by Dacher 

and Nugent, 2011, Bergevin et al., 2002). Consistent with this view, MOR knockout mice exhibit 

reduced cocaine self-administration and increased VTA GABA transmission (Mathon et al., 
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2005). In rats trained to seek cocaine and put through withdrawal, injection of heroin primes 

reinstatement of cocaine-seeking (Lu and Dempsey, 2004). 

While VTA MOR activity seems to allow for an interaction between opiate and 

psychostimulant drugs, it is important to note that these drugs are not entirely interchangeable. 

For example, in rats escalated self-administration of cocaine is not predictive of heroin escalation, 

and escalated self-administration of heroin is not predictive of cocaine (Lenoir et al., 2012). Of 

particular importance, while repeated social defeat stress induces locomotor sensitization to both 

opiates and psychomotor stimulants (Miczek et al., 2008), binge-like drug consumption has only 

been associated with cocaine, and not heroin (Cruz et al., 2011). 

 

2.3.4  Interactions Between Drug and Stress-Induced Alterations in Mesolimbic BDNF, MOR 

and Delta FosB Expression 

 Many of the mesocorticolimbic changes associated with drugs of abuse are also induced 

by social defeat stress (Fig. 1.4, Nikulina et al., 2014). The changes common to social stress and 

drugs of abuse may allow for a functional interaction between stress and drugs of abuse in the 

mesocorticolimbic circuit. As discussed in the previous two sections (1.2.2 and 1.2.3), the effects 

of stress, opiates and psychostimulants have been associated with increased mesolimbic 

BDNF/TrkB expression, VTA MOR expression, and NAc delta FosB expression. Stress- and 

drug-induced changes in the mesolimbic expression of these proteins are likely related at both 

the molecular and behavioral level.  

Behaviorally, analgesia is induced after exposure to either opiate drugs (Zachariou et al., 

2006, Solecki et al., 2008) or social stress (Siegfried et al., 1990, Williams et al., 1990, Teskey 

and Kavaliers, 1991, Rodgers, 1995), and in the case of morphine, analgesic tolerance is 

reduced in FosB knockout mice (Solecki et al., 2008), an effect which appears to be specific to 

the NAc (Zachariou et al., 2006). Additionally, after repeated social stress, delta FosB and BDNF 

are known to co-localize in the NAc and PFC 10 days after cessation of stress procedures  
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Figure 1.4. Effects of Drugs and Stress on VTA BDNF Expression and Mesolimbic Tone 

(from Nikulina et al., 2014). Under normal conditions, VTA GABA neurons express low levels of 

mu-opioid receptors (MORs) and tonically inhibit VTA dopamine (DA) neurons, producing low 

levels of DA neurotransmission to NAc medium spiny neurons (MSNs). After intermittent social 

defeat stress, MORs are upregulated on VTA GABAergic neurons, resulting in disinhibition of 

VTA DA neurons and enhanced BDNF expression (Johnston et al., 2015). In general, 

psychostimulant drugs increase DA in the synaptic cleft by blocking dopamine transporter (DAT) 

or releasing DA from pre-synaptic terminals which leads to induction of VTA BDNF and its 

release in the NAc (Graham et al., 2009, Wang et al., 2013, Wang et al., 2014), while opiates act 

on VTA GABA neurons, disinhibiting VTA DA signaling and increasing BDNF expression (Vargas-

Perez et al., 2009a, Ting et al., 2013). In summary, stress, psychostimulants, and opiates all 

increase DA and BDNF signaling, albeit through different mechanisms. Size of red/green arrows 

represent strength of GABA or DA neurotransmission; large red circle: GABA neuron; large green 

circle: DA neuron; small blue trapezoids: MORs; orange diamonds: endogenous opioids; pink 

diamonds: exogenous opiates; purple diamonds: psychostimulant drugs; purple cylinders: DAT; 

small yellow crescents: TrkB receptors; small yellow circles: BDNF molecules; red heptagon: 

MSN. 
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(Nikulina et al., 2012) and stress-induced increases in NAc delta FosB are dependent on local 

BDNF/TrkB receptor activity (Wang et al., 2014). Increased VTA BDNF expression is associated 

with both opiate and psychostimulant drugs of abuse, and also social stress (see review of 

Nikulina et al., 2014), and social stress-induced cross-sensitization to amphetamine is dependent 

on VTA BDNF – NAc TrkB receptor signaling (Wang et al., 2013, Wang et al., 2014). In addition, 

social stress-induced social avoidance is prevented by viral knockdown of VTA BDNF (Fanous et 

al., 2011), as well as in genetic MOR knockout mice (Komatsu et al., 2011). Moreover, 

augmented mesolimbic DA transmission is associated with sensitization to psychomotor 

stimulants and social stress (Fig. 1.4; Piazza and Le Moal, 1996, Sinha, 2001, Marinelli and 

Piazza, 2002, Cleck and Blendy, 2008, Nikulina et al., 2014), and both social stress and 

psychomotor stimulants increase the expression of MORs in the VTA (Magendzo and Bustos, 

2003, Trigo et al., 2010). Furthermore, MORs are known to play a functional role in the behavioral 

consequences of social stress (Komatsu et al., 2011), the expression of NAc delta FosB 

(Zachariou et al., 2006), and opiate- (Mashayekhi et al., 2012) and psychomotor stimulant- 

(Magendzo and Bustos, 2003, Trigo et al., 2010) induced VTA BDNF expression. Taken together, 

it is possible that upregulation of VTA MORs may represent one mechanism underlying social 

stress-induced cross-sensitization and changes in mesocorticolimbic BDNF and delta FosB 

expression. 

 

3. Ventral Tegmental Area Mu-Opioid Receptors 

The term “opioid” is used to broadly describe any compound which binds to any of the 

known opioid receptor sub-types, while “opiates” are a subclass of natural opioids derived from 

the opium poppy plant, Papaver somniferum (Zollner and Stein, 2007, Trescot et al., 2008, 

Chartoff and Connery, 2014). Opioid receptors are found throughout both the central and 

peripheral nervous systems, with MORs being most densely located in the brainstem and medial 

thalamus (Trescot et al., 2008). As described in the previous sections, in the VTA one type of 

opioid receptor, the mu-opioid receptor (MOR) is in a position to mediate stress-induced cross-

sensitization to drugs of abuse, as well as stress-induced changes across the mesocorticolimbic 
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circuit. Given their potential involvement in the consequences of social defeat stress, it is 

important to understand how MORs work and where they are found in the VTA. First, the general 

structure and properties of opioid receptors, with an emphasis on MORs, will be discussed. Next 

the traditional theory of MOR localization and activity in the VTA, as well as recent findings on 

novel MOR functions will be described. Finally, the implications of VTA MOR activity for 

sensitization and cross-sensitization to drugs of abuse will be discussed. 

 

3.1 Structure and Function of Mu-Opioid Receptors 

Opioid receptors belong to the superfamily of seven transmembrane-spanning (7TM) G-

protein-coupled receptors (GPCRs; Connor and Christie, 1999, Law and Loh, 1999, Waldhoer et 

al., 2004, Zollner and Stein, 2007, Trescot et al., 2008, Pradhan et al., 2012). More specifically, 

opioid receptors belong to the Rhodopsin (class A) family of Gi/Go protein-coupled receptors 

(Connor and Christie, 1999, Law and Loh, 1999, Waldhoer et al., 2004, Zollner and Stein, 2007, 

Lopez and Salome, 2009). Opioid receptors consist of an extracellular N-terminal domain and 

7TM helical domains (Connor and Christie, 1999, Law and Loh, 1999, Waldhoer et al., 2004, 

Zollner and Stein, 2007, Trescot et al., 2008, Lopez and Salome, 2009). The 7TM domains 

consist of three intracellular loops, three extracellular loops, and an intracellular C-terminal tail 

that is predicted to form a fourth intracellular loop with its putative palmitoylation sites (Law and 

Loh, 1999, Waldhoer et al., 2004, Zollner and Stein, 2007, Lopez and Salome, 2009).  

There are three major sub-types of opioid receptor: mu-opioid receptor (MOR; Fig. 1.5.), 

delta opioid receptor (DOR) and kappa opioid receptor (KOR); and each type of opioid receptor is 

under the control of a different gene (Connor and Christie, 1999, Law and Loh, 1999, Zollner and 

Stein, 2007, Trescot et al., 2008, Pradhan et al., 2012). Although located on different 

chromosomes, these opioid receptors have similar genomic structures. The three types of opioid 

receptor are approximately 60% homologous, with the most similarity seen in the 7TM regions, 

they also exhibit diversity in their extracellular loops, and N and C terminals (Law and Loh, 1999, 

Waldhoer et al., 2004, Zollner and Stein, 2007, Pradhan et al., 2012). Additionally, while all opioid  
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Figure 1.5. Inactive Versus Active MOR Structure and G-Protein Coupling. MORs are 7 

transmembrane spanning GPCRs that consist of an extracellular NH2-terminus (also, N-terminal 

or tail) and an intra-cellular COOH-terminus (also, carboxyl tail or C-terminal), and couple to Gαi/o 

and Gβγ G-protein subunits. (A) In their inactive state, MORs are coupled to their Gαi/o and Gβγ 

G-protein subunits. (B) Upon ligand binding (yellow), there is an exchange of GDP for GTP on the 

Gαi/o subunit, and the G-protein sub-units disassociate from the receptor to activate numerous 

intracellular signaling cascades (Connor and Christie, 1999, Waldhoer et al., 2004, Lopez and 

Salome, 2009). Blue circles with wavy lines: cell membrane; interconnected fuchsia cylinders: 

MOR receptor; yellow shape: MOR agonist; large blue and green circles: G-protein subunits; 

dotted arrows indicate disassociation of G-protein subunits from the ligand-bound receptor. 
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receptors consist of three exons, encoding the N-terminus and the 7TM structure, MORs differ 

from other opioid receptors in that they also contain a fourth exon that codes for 12 amino acids 

located at the tip of the C-terminus (Pasternak, 2014). While the greatest differences between 

MOR and DOR amino acid sequences are found in the C-terminal, exchange of this portion of the 

receptor does not give the MOR properties associated with the DOR (Law and Loh, 1999). These 

differences in opioid receptors are thought to underlie functional differences in the effects of 

opioid ligands. In particular, MOR- and DOR-agonists are rewarding and analgesic, while 

agonists selective for the KOR tend to be dysphoric (Waldhoer et al., 2004, Zollner and Stein, 

2007).  

While many features of the opioid-binding pocket are common to all opioid receptors, 

these receptors significantly differ in selectivity and affinity for both endogenous and exogenous 

compounds. The opioid-binding pocket is thought to be located within transmembrane helices 3, 

4, 5, 6, and 7, with the cavity being partially covered by the extracellular loops (Waldhoer et al., 

2004, Lopez and Salome, 2009). Differences in receptor conformation, due to the position of 

extracellular loops, are thought to play a part in mediating opioid receptor – ligand specificity (Law 

and Loh, 1999, Waldhoer et al., 2004). Ligand selectivity for the MOR has been attributed to the 

first and third extracellular loops, by contrast the second extracellular loop confers selectivity for 

KOR, while the third extracellular loops confer selectivity for DOR (Waldhoer et al., 2004). The 

endogenous opioid peptides are predominantly derived from several precursors: pro-

opiomelanocortin, proenkephalin, and prodynorphin (Waldhoer et al., 2004, Zollner and Stein, 

2007). After cleavage of these precursors by peptidases and post-translational modification, the 

active types of endogenous opioid ligands are generated for each receptor: endorphins (pro-

opiomelanocortin), enkephalins (pro-enkephalin), and dynorphins (pro-dynorphin; Waldhoer et al., 

2004, Zollner and Stein, 2007, Trescot et al., 2008). However in the case of the highly selective 

endogenous MOR peptides endomorphins 1 and 2, which are tetrapeptides structurally unrelated 

to other endogenous opioid peptides (Zadina et al., 1997), no precursor has been identified (see 

also reviews of Waldhoer et al., 2004, Zollner and Stein, 2007). The first four amino acid positions 

are identical for all endogenous opioid peptides, with the fifth position being either methionine (in 
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the case of Met-enkephalin and β-endorphin) or leucine (Leu-enkephalin and dynorphins; 

Pasternak, 2014). Specifically, the MOR has a high affinity for endomorphin (1 and 2) and β-

endorphin, while the DOR has a high affinity for enkephalin (Leu and Met) and β-endorphin, and 

the KOR binds to dynorphin (A and B; Waldhoer et al., 2004, Pasternak, 2014). Despite 

differences in high affinity for particular endogenous opioid peptides, all three opioid receptors do 

show some affinity for non-preferred opioid peptides. 

Investigation of the mechanisms underlying ligand-induced 7TM motions has suggested 

that binding to a GPCR results in exposure of the receptor’s intracellular loops, making them 

more accessible and facilitating interactions with G-proteins (Law and Loh, 1999, Waldhoer et al., 

2004, Zollner and Stein, 2007). In particular, intracellular loop three is considered a key 

determinant of coupling specificity to different G-protein alpha subunits, while intracellular loop 

two is thought to be more involved in the efficiency of G-protein activation (Gether, 2000). In the 

case of MORs, the conformational modifications following agonist binding involve the 

displacement of transmembrane helices 3, 6, and 7, which results in exposure of the intracellular 

loop domains and permits G-protein activation. The key determinant in MOR coupling specificity 

to G-proteins is intracellular loop three, while efficiency of G-protein activation is thought to be 

due to the second intracellular loop and C-terminal tail (Lopez and Salome, 2009). Similar to 

many other GPCRs, MORs display basal signaling activity in culture (Wang et al., 1994, Burford 

et al., 2000), and display increased constitutive activity following chronic morphine exposure 

(Wang et al., 1994). 

Evidence indicates that the intracellular signaling pathways activated by MORs are 

ligand-specific (see review of Pradhan et al., 2012), and that some of this specificity may be 

attributed to differences in receptor conformation and G-protein coupling. Like other GPCRs, 

opioid receptor activation induces intracellular signaling through G-proteins consisting of an alpha 

subunit (Gα) and a beta/gamma subunit complex (Gβγ; Fig. 1.5). In particular, opioid receptors are 

predominantly coupled to pertussis toxin (PTX) sensitive, heterotrimeric Gi/Go alpha proteins, 

although coupling to pertussis toxin-insensitive Gs/Gz/Gq proteins has also been reported 

(Connor and Christie, 1999, Waldhoer et al., 2004, Lopez and Salome, 2009). While opioid 
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receptors do not vastly differ in terms of the Gα proteins that they couple with, they do exhibit 

respective differences in the degree of coupling to various Gα subunits (Connor and Christie, 

1999), resulting in different G-protein complexes and possibly different effectors (Law and Loh, 

1999). In the case of MORs, once activated by an agonist, they are thought to preferentially 

couple to Gαo2 > Gαo1, and Gαi3 > Gαi2 or Gαi1 (Connor and Christie, 1999, Law and Loh, 1999). 

However more recently, others have noted different coupling preferences, with MORs 

preferentially coupling to Gαo1, Gαo2, Gαi2, Gαi3, and to a lesser extent, Gαi1 (Saidak et al., 2006; 

see also review of Lopez and Salome, 2009). In their resting state, MORs exist as heterotrimers 

of α, β, γ G-protein subunits, and coupled to a Gα bound to GDP, βγ complex (Gα
(GDP)βγ complex; 

Lopez and Salome, 2009). Activation of MORs results in the catalytic exchange of GDP to GTP 

on Gα (Gα
(GDP) to Gα

(GTP)), and disassociation of the G-protein complex into separate Gα
(GTP) and 

Gβγ subunits (Fig 1.5). After activation, MORs have been reported to act through G-protein 

subunits to effect intracellular signaling and cell state. In particular, MORs inhibit adenylyl 

cyclases through Gαi, while Gβγ subunits stimulate some isoforms of adenylyl cyclases 

(Chakrabarti et al., 2005). Additionally, MORs activate G-protein-activated inwardly rectifying K+ 

channels (GIRKs) and voltage-gated Ca2+ channels, indirectly activating phospholipase A2 

through the Gαo subunit (Connor and Christie, 1999, Clark et al., 2003, Waldhoer et al., 2004, 

Zollner and Stein, 2007, see also review of Lopez and Salome, 2009). The cell signaling that 

results through MOR activation is complicated by the receptor’s ability to simultaneously or 

concurrently couple with different G-proteins, and by the lifetime of Gα
(GTP) complex, as return to 

receptor’s inactive state is dependent upon restoration of the Gα
(GDP)

βγ complex (Lopez and 

Salome, 2009). 

 

3.2 Classical View of Ventral Tegmental Area Mu-Opioid Receptor Effects: GABAergic 

Disinhibition of Dopamine  

In general, MORs are perisynaptic and can be found near synapses, either 

postsynaptically on dendrites and cell bodies, or presynaptically on axon terminals (Williams et 

al., 2001, Bergevin et al., 2002, Steffensen et al., 2006, see also reviews of Chartoff and 
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Connery, 2014; Zollner and Stein, 2007). While pre-synaptic MORs can be found near nerve 

terminals (Bergevin et al., 2002), plasmalemmal MORs are not typically synaptic in the VTA 

(Garzon and Pickel, 2002, Steffensen et al., 2006), suggesting that when not situated near a 

synapse, VTA MORs are activated by release of endogenous opioids into the extracellular space. 

The literature largely suggests that opioid receptor activation typically depresses neuronal firing to 

inhibit neurotransmission. When located presynaptically, opioid receptor activation inhibits Ca2+ 

influx and subsequent release of neurotransmitter and peptides from primary afferent terminals 

(Bergevin et al., 2002, Zollner and Stein, 2007).  Postsynaptic opioid receptors depress neuronal 

firing through GIRK-mediated hyperpolarization (Johnson and North, 1992, Zollner and Stein, 

2007, Margolis et al., 2014). On dendrites or cell bodies, MORs regulate neuronal excitability and 

transduce receptor activation to downstream signal transduction pathways (Williams et al., 2001, 

Chartoff and Connery, 2014). The MORs found on axon terminals serve to inhibit 

neurotransmitter release by activation of K+ conductance and/or inhibition of Ca2+ conductance 

(Williams et al., 2001, Chartoff and Connery, 2014).  

In the VTA, MORs are thought to be concentrated on GABA neurons (Sesack and Pickel, 

1995, Garzon and Pickel, 2002), where they inhibit GABA neurotransmission, consequently 

disinhibiting local DA neurons (Johnson and North, 1992). While predominantly localized to VTA 

GABA neurons, MORs can be act either pre-synaptically or post-synaptically. The original 

disinhibition hypothesis posited that MORs are post-synaptic and exert their effects through 

GIRK-mediated inhibition of VTA GABA neurons (Johnson and North, 1992). However rapidly 

inactivating K+ current (A-type) was found to be more characteristic of the action potentials in DA 

neurons than GABA neurons (Koyama and Appel, 2006), suggesting that MOR-mediated 

decreases in Ca2+ influx (Zollner and Stein, 2007) may also contribute to MOR-induced inhibition 

of GABA.  

The net result of MOR-mediated inhibition of GABA neurons is reduced GABA 

transmission at target sites, leading to disinhibition of excitatory targets, such as local DA 

neurons. Support for the role of VTA GABA neurons in the mediation of VTA DA transmission has 

been repeatedly validated. In particular, selective ablation of VTA GABA neurons increased 
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spontaneous locomotor activity (Shank et al., 2007), a sign of enhanced VTA DA transmission. 

Additionally, inhibition of VTA GABA neurons has been associated with increased basal activity of 

VTA DA neurons (Bocklisch et al., 2013). Conversely, optogenetic stimulation of VTA GABA 

neurons was shown to directly suppress the activity and excitability of neighboring DA neurons, 

and also reduced DA release in the NAc (van Zessen et al., 2012). These data show that VTA 

GABA neurons are capable of mediating the excitability of local DA neurons. Given that VTA 

MORs are concentrated on GABA neurons and have an inhibitory effect on neurotransmission, it 

is likely that MOR-mediated inhibition of VTA GABA transmission has a profound effect on VTA 

DA activity. This was demonstrated in a microdialysis study wherein VTA MOR agonism 

decreased GABA concentrations and increased DA overflow, while MOR knockout mice did not 

respond to MOR agonism, they exhibited increased levels of basal VTA GABA transmission 

(Chefer et al., 2009). This suggests that in the VTA endogenous MOR activity on GABA neurons 

may play a crucial role in the mediating tonic VTA GABA neurotransmission.  

 

3.3 Novel Mu-Opioid Receptors: Excitatory and Localized to Dopamine Neurons? 

While the canonical model of MOR action in the VTA proposed by Johnson and North 

(1992) is still largely upheld (Fig. 1.2), reports of conflicting findings are becoming more common. 

These recent findings disagree with the canonical model on two points, specifically: that VTA 

MOR expression is limited to GABA neurons, and that MOR activation produces an inhibitory 

effect (see review of Fields and Margolis, 2015). Together these contradictory reports highlight 

flaws in the original criteria used to classify neuronal types in the VTA. In particular, Johnson and 

North (1992) stated that neurons that were not inhibited by MOR stimulation were DA neurons. 

While these criteria have been widely used to delineate between DA and GABA neurons in the 

VTA, new evidence suggests that these criteria unreliable and produce false results.  

The canonical theory of MORs in the VTA assumes that DA and GABA are the only two 

neuronal types in the VTA, however VTA glutamate neurons have recently been identified (see 

reviews of Morales and Pickel, 2012, Morales and Root, 2014). Thus while the criteria of Johnson 

and North (1992) state that cells that are not inhibited by MOR stimulation are DA neurons, they 
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could also be glutamate neurons. Of particular concern for the canonical theory that MORs 

indirectly disinhibit DA neurons, a subset of VTA DA neurons show direct MOR-mediated post-

synaptic inhibition (Margolis et al., 2014). Moreover, in slice preparations, nearly half of all 

confirmed VTA DA neurons were inhibited by stimulation of MORs (Margolis et al., 2014). Thus, 

while the criteria of Johnson and North (1992) suggest that VTA cells inhibited by MOR 

stimulation are GABA neurons, they could also be DA neurons. It is unknown whether MORs also 

localize to the recently discovered VTA glutamate (Morales and Pickel, 2012, Morales and Root, 

2014), or if their functions differ on neurons capable of co-releasing neurotransmitters.  

The canonical model of Johnson and North (1992) also assumes that MOR activation 

always results in inhibition of neurotransmission. By contrast, a recent study beautifully illustrated 

that MORs can be either inhibitory or excitatory (Margolis et al., 2014). In fact 19% of VTA 

neurons are depolarized by bath application of the MOR agonist DAMGO, while 52% of neurons 

were inhibited by DAMGO (Margolis et al., 2014). The excitatory or inhibitory of function of VTA 

MORs is highly heterogenous, with both DA and non-DA neurons showing similar proportions of 

both types of receptor. Moreover, both excitatory and inhibitory MORs can be found on the same 

cell (Margolis et al., 2014). Thus the criteria of Johnson and North (1992), in terms of MOR-

induced inhibition, is not a reliable marker for either GABA or DA neurons. 

Taken together, these studies suggest that the traditional theory of MOR activity in the 

VTA is incomplete and more diverse than previously thought. Although the fact that MORs can 

have excitatory effects, and their presence on a small subset of VTA DA neurons, contradict the 

disinhibition hypothesis, they do not disprove it. It is important to note that tonic GABA release 

occurs in slice preparations, and that bath application of picrotoxin, a GABAA receptor antagonist, 

is sufficient to depolarize neurons (Margolis et al., 2014). Thus the machinery for disinhibition 
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exists within the VTA, and VTA MORs may act in a combination of ways, inhibitory or excitatory, 

to either directly or indirectly mediate VTA DA outputs (Fields and Margolis, 2015).  

 

3.4 Mu-Opioid Receptor – Mediation of VTA DA Transmission: Implications for Substance Abuse 

and Cross-Sensitization   

Both psychostimulants and social defeat stress upregulate the expression of VTA MORs, 

and social stress-induces cross-sensitization to psychomotor stimulants (Nikulina et al., 2014). 

Since VTA MORs can either directly or indirectly mediate DA transmission  (see review of Fields 

and Margolis, 2015), it is possible that social stress-induced expression of VTA MORs may 

mediate the induction of stress-induced cross-sensitization to psychomotor stimulants. While this 

possibility is intriguing, it is unknown whether the MORs upregulated by social defeat stress are 

excitatory or inhibitory, and what type of neuron they are localized to.  

If social stress increased the expression of inhibitory MORs on DA neurons, or excitatory 

MORs on GABA interneurons, the net effect would be reduced DA output. Decreased DA 

transmission has been associated with decreased response to psychostimulant drugs (Vezina 

and Stewart, 1989). In contrast, after social stress-induced upregulation, intra-VTA stimulation of 

MORs produces a sensitized locomotor response (Nikulina et al., 2005, Nikulina et al., 2008), 

suggesting that the upregulation of MORs potentiated VTA DA activity. Enhanced VTA DA activity 

is consistent with a potential upregulation of either inhibitory MORs on GABA interneurons, or 

excitatory MORs on DA neurons. It is important to note that while MORs are found VTA DA 

neurons, this appears to represent a small proportion of MORs (Garzon and Pickel, 2002), with 

an even smaller proportion of all VTA MORs being excitatory (< 20%; Margolis et al., 2014), 

suggesting that the net effect of VTA MOR activation is inhibitory on GABA neurons.  

Given that social stress-induced increases in VTA MOR expression are associated with 

enhanced VTA DA activity (Nikulina et al., 2005, Nikulina et al., 2008), and that excitatory MORs 

are uncommon (Margolis et al., 2014), it is probable that social stress predominantly upregulates 

inhibitory MORs on VTA GABA neurons. If the net effect of social stress-induced upregulation of 

VTA MORs is inhibitory on GABA neurons, then social stress should also increase VTA DA 
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transmission. In fact, increases in DA release in the NAc have been found after repeated social 

stress (Tidey and Miczek, 1996, Miczek et al., 2011a) and are associated with stress-induced 

cross-sensitization to psychomotor stimulants. Given their role in modulating VTA DA output, the 

VTA MORs upregulated by social stress may play a critical role in the behavioral and cellular 

consequences of stress. Moreover, it is possible that preventing social stress-induced increases 

in VTA MORs will prevent stress-induced cross-sensitization to psychomotor stimulants. As such, 

VTA MORs may represent a novel therapeutic target for treating stress-induced vulnerabilities to 

drugs of abuse. 

 

4. Ventral Tegmental Area Mu-Opioid Receptor – pAKT Signaling 

Ventral tegmental MOR activity is important for the effects of both stress and drugs of 

abuse, thus it is possible some of these effects are mediated by MOR-activated intracellular 

signaling cascades. As previously discussed, the cellular inhibition typically associated with MOR-

activation is thought to be largely mediated by GIRKs, likely through their beta/gamma G-protein 

subunit complex (Johnson and North, 1992, Margolis et al., 2014). However, in addition to their 

inhibitory effects, MOR activation likely mediates other cellular functions. MORs are GPCRs, 

which means that they are capable of activating numerous intracellular signaling cascades via 

their G-proteins. Of the intracellular signaling pathways activated by MORs, several have been 

well characterized, including: protein kinase A (PKA), protein kinase C (PKC) and mitogen-

activated protein kinase (MAPK) – extracellular signal-regulated kinase (ERK) cascades (Williams 

et al., 2001). 

While the functional implications remain to be fully elucidated, MORs also consistently 

activate the phosphoinositide 3-kinase (also, phosphatidylinositol 3-kinase; PI3K) signaling 

cascade (Polakiewicz et al., 1998, Iglesias et al., 2003). After activation of the intracellular PI3K 

signaling pathway, AKT is one of the first molecules to be phosphorylated (pAKT), and its 

phosphorylation is associated with alterations in GABA transmission (Wang et al., 2003). 

Moreover, changes in AKT phosphorylation have been implicated in stress- (Krishnan et al., 

2007, Krishnan et al., 2008), psychostimulant- (Izzo et al., 2002, Iniguez et al., 2008), and opiate-
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induced (Russo et al., 2007, Mazei-Robison et al., 2011) behavioral alterations. Since social 

defeat stress-induces an upregulation of VTA MORs at a time corresponding to the onset of 

cross-sensitization, it is possible that social defeat stress increases AKT phosphorylation 

downstream of MOR upregulation in the VTA.  

 

4.1   Overview of AKT Phosphorylation 

4.1.1 General Structure 

The evolutionarily conserved gene for the AKT kinase was first identified in the mice 

infected with the AKT8 retrovirus, and is the cellular homolog of the v-akt oncogene transduced 

by the AKT8 retrovirus (Staal et al., 1977, Staal, 1987). Independent characterization and cloning 

of the AKT kinase has revealed that it exists in three isoforms that are encoded by different 

genes: AKT1, AKT2, and AKT3 (Scheid and Woodgett, 2001, Chong et al., 2005, Franke, 2008). 

Early on, AKT was also frequently referred to as protein kinase B (PKB), due to its similarity to 

protein kinases A and C (PKA and PKC respectively; Manning and Cantley, 2007, Franke, 2008, 

Pearce et al., 2010). All three isoforms of AKT are comprised of similar structures. In particular, 

they consist of an N-terminal regulatory domain, a hinge region, and a C-terminal region (Franke, 

2008). The C-terminal is largely responsible for determining the induction and maintenance of 

AKT’s kinase activity (Chong et al., 2005, Franke, 2008). The N-terminal of AKT includes a 

pleckstrin homology (PH) domain, which is connected to the kinase domain by the hinge region 

(Chong et al., 2005, Franke, 2008). AKT shares extensive homology with protein kinases A, G, 

and C, thus it is a member of the AGC superfamily of protein kinases and requires 

phosphorylation to achieve its active state (Scheid and Woodgett, 2001, Chong et al., 2005, 

Manning and Cantley, 2007, Pearce et al., 2010). Under normal conditions, AKT1 is expressed at 

low levels in the brain, however the expression of AKT greatly increases in neuronal cells 

following cellular stress or injury (Chong et al., 2005). Since AKT1 expression is dependent on 

changes in the cellular environment and because its actions have been well documented in the 

brain, particular emphasis will be devoted to this variant and discussion of site-specific 
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phosphorylation changes will reference AKT1. The kinase domain of AKT is specific for serine 

(Ser) and threonine (Thr), as such it has two phosphorylation sites: Ser473 and Thr308 for AKT1. 

 

4.1.2. Upstream Activators of AKT - PI3K Signaling 

While the exact pathway leading to AKT activation differs slightly depending on the type 

of receptor stimulating AKT, given their homologous structures, it is not surprising that all three 

AKT isoforms utilize the same activation mechanisms. The PH domain of AKT is specific for 3’-

OH (D3) phosphorylated phosphoinositide products of PI3K, as well as 3-phosphoinositide-

dependent kinase-1 (PDK1; Chong et al., 2005, Franke, 2008, Okkenhaug, 2013). At the plasma 

membrane, PI3K phosphorylates phosphoinositides on the D3 position of the inositol ring, 

generating the second messengers phosphatidylinositol-3, 4-biphosphate (PI(3,4)P2; also PIP2) 

and phosphatidylinositol-3, 4,5-triphosphate (PIP3; Chong et al., 2005; Franke, 2008; Okkenhaug, 

2013). Although several classes of PI3K exist, Class 1A-B are most implicated in the receptor 

activation of AKT due to their generation of PIP3 and PI(3,4)P2 (Franke, 2008, Okkenhaug, 2013). 

In general, Class 1A PI3Ks are thought to mediate receptor tyrosine kinase (TRK) activation of 

AKT, while Class 1B PI3K is regulated by the βγ subunits of GPCRs (Franke, 2008, Iwanami et 

al., 2009). While p110 is the catalytic subunit of all PI3Ks, different isoforms of this subunit exist, 

with p110-α, -β, and -δ belonging to Class 1A and p110-γ belonging to Class 1B (Okkenhaug, 

2013).  

Class 1A isoforms of PI3K also consist of a Src homology (SH2)-containing regulatory 

subunit, and while there are different types, they can be collectively referred to as “p85” (Liu et al., 

2009, Okkenhaug, 2013). The p85 SH2 domains of Class 1A PI3Ks recruit the p110 subunit to 

the membrane-associated proteins that have been phosphorylated by tyrosine kinases (Liu et al., 

2009, Okkenhaug, 2013). In contrast the regulatory subunits of Class 1B PI3Ks, p101 and p84, 

bind to the βγ subunit of GPCRs and recruit p110γ to the activated receptor at the membrane 

surface (Liu et al., 2009, Okkenhaug, 2013). Like its Class 1B analog, p110β can also bind to the 

Gβγ subunits to be activated by GPCRs, especially in cells that do not express high levels of 

p110γ (Okkenhaug, 2013). Particular types of PI3K are named according to their catalytic 
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subunit, and of these variants, only PI3K-β and PI3K-γ appear capable of phosphorylating AKT, 

and they may do so through either activation of RTKs or GPCRs (Okkenhaug, 2013). Since 

p110γ is mainly limited to immune cells, while p110β is broadly expressed in most cell types and 

can be efficiently activated by GPCRs in the absence of p110γ (Liu et al., 2009, Okkenhaug, 

2013), it is likely that in the brain, AKT is phosphorylated downstream of PI3K-β.  

 

4.1.3. Phosphorylation of AKT 

While PI3K signaling is necessary, it is not sufficient for the full activation of AKT, and 

AKT does not reach full catalytic potential until it has undergone phosphorylation, locking the 

enzyme into its active conformation. Rather, increases in the phosphoinositide products of PI3K 

recruit AKT from the cytoplasm to the membrane, where it undergoes a conformational change, 

exposing its active loop and enabling phosphorylation (Fig 1.6; Stephens et al., 1998, Scheid and 

Woodgett, 2001, Chong et al., 2005, Franke, 2008, Iwanami et al., 2009). The phosphorylation 

sites of AKT are differentially located, with the residue for Thr308 being found in the kinase 

domain, while the residue for Ser473 is found in the hydrophobic motif of the C-terminal tail 

(Scheid and Woodgett, 2001, Franke, 2008).  

The phosphoinositide products of PI3K interact with AKT, relaxing its conformation and 

allowing for phosphorylation of Thr308 by PDK1 (Scheid and Woodgett, 2001, Chong et al., 2005, 

Franke, 2008, Iwanami et al., 2009). Under normal physiological conditions, PDK1 is 

constitutively active at the cell membrane, however it cannot interact with AKT unless AKT has 

been recruited to the membrane by the phosphoinositide products of PI3K (Franke, 2008). Like 

AKT, PDK1 also contains a PH domain, however rather than being located within the N-terminal, 

PDK1’s PH domain is located within its C-terminal (Franke, 2008). While the phosphoinositide 

products of PI3K can directly phosphorylate AKT at Thr308 through PIP3 and PI(3,4)P2, 

phosphorylation is more likely to occur through PDK1 (Fig. 1.6), as its PH domain, compared to 

that of AKT, has a much higher affinity for PI3K’s phosphoinositide products (Franke, 2008).  
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Figure 1.6. Overview of 

MOR-Mediated Activation 

of pAKT Signaling. In 

order for AKT to be 

activated, it must be 

phosphorylated at two 

distinct sites: Thr 308 and 

Ser 473. AKT is 

phosphorylated at Ser 473 

by mTORC2, which exists 

as a complex of five 

proteins, and whose 

upstream regulation is 

poorly understood 

(Sarbassov et al., 2005, 

Franke, 2008, Iwanami et al., 2009, Liu et al., 2009, Okkenhaug, 2013, Lipton and Sahin, 2014). 

Phosphorylation of Ser 473 is necessary for the full catalytic activation of pAKT (Bellacosa et al., 

1998, Scheid and Woodgett, 2001, Iwanami et al., 2009). AKT is phosphorylated at Thr 308 

downstream of GPCR stimulation, as in the case of agonist-bound MORs, through induction of 

PI3K by βγ G-protein subunits. G-protein recruitment of PI3K to the cell membrane generates the 

phosphoinositide product, PIP3, which binds to PDK1 to phosphorylate AKT at Thr 308 (Chong et 

al., 2005, Franke, 2008, Iwanami et al., 2009, Liu et al., 2009, Okkenhaug, 2013). While Thr 308 

of AKT is also responsive to PIP3, PIP3 has a much higher affinity to PDK1, which is considered 

the primary activator of pAKT at Thr 308 (Scheid and Woodgett, 2001, Chong et al., 2005, 

Franke, 2008, Iwanami et al., 2009). Upon phosphorylation, pAKT activates mTORC1, which 

exists as a complex of four proteins, which can indirectly inhibit PI3K through its downstream 

effectors to negatively regulate PI3K – pAKT activity (Vander Haar et al., 2007, Franke, 2008, 

Iwanami et al., 2009, Liu et al., 2009, Lipton and Sahin, 2014). Solid arrows indicate direct 

activation, while dotted lines indicate either indirect or inhibitory regulation of downstream targets; 

brackets indicate protein complexes. 
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Although PDK1 phosphorylates AKT at Thr308, it does not phosphorylate Ser473 (Chong et al., 

2005). Importantly, phosphorylation of Ser473 always parallels the full activation of AKT, and it 

has been suggested that phosphorylation of Ser473 is necessary for the full catalytic activation of 

AKT (Bellacosa et al., 1998, Scheid and Woodgett, 2001, Iwanami et al., 2009). Since Ser473 is 

situated in the C-terminal, which determines the induction and maintenance of AKT activity 

(Franke, 2008), it is important to understand the mechanism by which Ser473 is phosphorylated. 

 

4.1.4. Regulation of pAKT by Mammalian Target of Rapamycin Complexes  

Until recently, the kinase that phosphorylated Ser473 was largely unknown and simply 

referred to as “PDK2” (Scheid and Woodgett, 2001, Chong et al., 2005, Franke, 2008). The 

serine threonine kinase mammalian target of rapamycin (mTOR) can act as both an activator and 

target of AKT (Fig. 1.6), the function of mTOR is dependent upon the specific complex it forms 

(Franke, 2008, Liu et al., 2009, Okkenhaug, 2013). There are two mTOR complexes: mTOR 

complex 1 (mTORC1), which is a target of AKT signaling, and mTOR complex 2 (mTORC2), 

which is upstream of pAKT (Franke, 2008, Liu et al., 2009, Okkenhaug, 2013). The mTORC1 

complex is rapamycin-sensitive and consists of mTOR, proline-rich AKT substrate of 40 kDA 

(PRAS40), raptor, and mammalian lethal with sec12 protein 8 (mLST8, also known as GβL); 

while the mTORC2 complex is largely rapamycin-insensitive and consists of mTOR, rictor, protor, 

mammalian stress-activated mitogen activated protein kinase-interacting protein 1 (mSIN1), and 

mLST8 (Iwanami et al., 2009, Liu et al., 2009, Lipton and Sahin, 2014). While many had long 

suspected that PDK2 is really mTORC2, this theory was only recently proven (Sarbassov et al., 

2005, Iwanami et al., 2009, Liu et al., 2009, Okkenhaug, 2013). Thus not only is mTORC2 

upstream of pAKT, it directly phosphorylates AKT at Ser473 and enhances phosphorylation of 

AKT by PDK1 (Sarbassov et al., 2005; see also review of Franks, 2008). 

In contrast to mTORC2, mTORC1 is a downstream target of AKT phosphorylation (Fig. 

1.6). Activity of mTORC1 is controlled by a small GTPase, Ras homolog enriched in the brain 

(Rheb), which is under tonic inhibition by the tuberous sclerosis complex (also tuberin; TSC; 

Franke, 2008, Iwanami et al., 2009, Lipton and Sahin, 2014). Phosphorylation of AKT inhibits the 
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TSC1/TSC2 complex, disinhibiting Rheb and inducing mTORC1 activity (Franke, 2008, Iwanami 

et al., 2009, Lipton and Sahin, 2014). In addition to regulating mTORC1 activity through TSC2, 

pAKT can directly activate mTORC1 by inhibiting PRAS40 (Vander Haar et al., 2007, Liu et al., 

2009, Lipton and Sahin, 2014). While mTORC1 has many of its own downstream signaling 

targets, of particular interest is its ability to negatively regulate PI3K – pAKT signaling (Fig. 1.6; 

Franke, 2008, Iwanami et al., 2009, Liu et al., 2009, Okkenhaug, 2013). Based on this, blocking 

AKT phosphorylation through inhibition of either PI3K or PDK2 could potentially depress this 

negative mTORC1 feedback loop, resulting in increased PI3K (and subsequent PDK1) activity 

and ultimately failure to prevent AKT phosphorylation. This suggests that the most successful 

way to prevent phosphorylation of AKT is to inhibit both mTORC2, preventing phosphorylation of 

Ser473, and mTORC1, preventing increased phosphorylation of Thr308. Cross-talk between 

mTORC2 – pAKT and pAKT – mTORC1 signaling has complicated study of AKT and mTORC 

intracellular signaling cascades, and while the signaling of mTORC1 is better understood, the 

upstream activator of mTORC2 is still unknown. One of the most interesting downstream effects 

of AKT phosphorylation, is the kinase’s ability to insert GABAA receptors into the cell membrane 

(Wang et al., 2003), and to promote protein synthesis and long-term depression (LTD) through 

mTORC1 activation (see review of Lipton and Sahin, 2014). These findings are of particular 

interest, as they suggest that phosphorylated AKT is in a position to mediate neuronal excitability, 

possibly representing a mechanism by which pAKT interacts with drugs of abuse. 

 

4.2   Support for MOR – pAKT/mTOR Signaling 

As previously described in section 3, MORs belong to the Gi/Go family of GPCRs and 

activate intracellular signaling cascades through interactions with their G-protein subunits. 

Although PI3K – pAKT signaling is not a classical MOR-mediated intracellular signaling cascade, 

in recent years this pathway has been shown to be a consistent target of MOR activation 

(Polakiewicz et al., 1998, Iglesias et al., 2003, Russo et al., 2007, Mazei-Robison et al., 2011). In 

lymphocytes, morphine was found to increase phosphorylated PI3K and phosphorylated AKT, as 

well as the expression of MORs, in fact increases in MOR expression were dependent on PI3K – 
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pAKT signaling (Liu et al., 2010). That MOR stimulation increases AKT phosphorylation has also 

been demonstrated in other tissues, including cardiac cells (Xu et al., 2011) and cortical cells 

(Iglesias et al., 2003). As is the case with other GPCRs, MOR-induced pAKT is largely thought to 

occur after its βγ subunits disassociate from the G-protein complex and phosphorylate PI3K (Fig. 

1.6). Thus it appears that all MORs and GPCRs may be capable of activating AKT signaling 

through their βγ G-protein subunits. Upon activation of PI3K, AKT is recruited to the membrane 

where it undergoes phosphorylation, after phosphorylation, pAKT has the ability to translocate 

into the cytoplasm or nucleus (Andjelkovic et al., 1997, Meier et al., 1997; see also review of Du 

and Tsichlis, 2005). 

In the brain, the ability of opioid receptors to increase AKT phosphorylation has been 

most clearly demonstrated for the DOR. In the VTA DORs have been shown to upregulate 

GABAA receptor insertion into the membrane in a manner dependent on PI3K – pAKT signaling 

(Margolis et al., 2011). While this was shown with DORs and MORs have not been directly shown 

to increase AKT phosphorylation in brain tissues, given the large degree of homology between 

MORs and DORs, it is highly likely that MORs can utilize the same mechanisms to phosphorylate 

AKT and insert GABAA receptors into the membrane (Margolis et al., 2011). Although this study 

by Margolis et al. (2011), as well as the above cell culture studies, clearly indicate that opioid 

receptor activation induces AKT phosphorylation, the in vivo effects of MOR activation have not 

been as clear, likely due to differences in drug history and heterogeneity of cell types in Western 

blot measures of AKT activity. For example, using Western blot analyses, studies have suggested 

that chronic morphine downregulates AKT signaling in the VTA (Russo et al., 2007, Mazei-

Robison et al., 2011). However these findings must be interpreted with caution, as their use of 

Western blot homogenates is biased towards DA neurons, which are the prevailing VTA cell type 

(50-65%), since Western blots represent a regional average, they are unlikely to detect changes 

in a small population of neurons, such as the VTA GABA neurons (30-35%) that contain higher 

densities of MOR (see review of Nikulina et al., 2014).  

The in vivo study of MOR signaling in response to opiate drugs of abuse has been further 

complicated by differences in drug history, specifically differing histories of morphine exposure 
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produce different effects on AKT phosphorylation in the NAc (Muller and Unterwald, 2004). Given 

the work of Derek van der Kooy’s laboratory in showing that mesolimbic signaling differs in the 

drug-naïve (DA-independent) vs. drug-dependent (DA-dependent) states (see review of Ting and 

van der Kooy, 2012), it is not surprising that activity of MOR intracellular signaling cascades also 

differ with drug history. 

 

4.3   Implications of pAKT for Stress-Induced Amphetamine Sensitization 

Repeated social defeat stress upregulates MOR expression in the VTA and produces 

cross-sensitization to psychomotor stimulants (see review of Nikulina et al., 2014), suggesting 

that MORs may mediate some of the behavioral consequences of social stress. In support of this, 

MOR knockout mice do not show social defeat stress-induced social avoidance (Komatsu et al., 

2011). Since MORs appear to mediate at least some behavioral consequences of social stress, 

then it is possible that they do so through phosphorylation of AKT. In favor of this, signaling 

through pAKT – mTORC1 has been implicated in drug-induced sensitization to psychomotor 

stimulants. In particular, cocaine was associated with increases in mTORC1 activity, a 

downstream target of pAKT, in the mesocorticolimbic circuit, and systemic inhibition of mTORC1 

was sufficient to block both the induction and expression of cocaine-sensitized locomotor activity 

(Wu et al., 2011). More specific manipulations have revealed that intracerebroventricular 

inhibition of PI3K, an upstream activator of pAKT, is necessary for the expression, but not the 

induction of sensitization to cocaine (Izzo et al., 2002). Social defeat stress upregulates VTA 

MORs, which are generally situated on GABA neurons and decrease GABA transmission, 

disinhibiting DA and increasing mesolimbic DA release (Fig. 1.4; see review of Nikulina et al., 

2014). Since increases in mesolimbic DA release are also implicated in the effects of 

psychomotor stimulants, it is possible that repeated social stress-induced cross-sensitization to 

psychomotor stimulants may be due to upregulation of MOR and subsequent phosphorylation of 

its downstream kinase, AKT.  

While MORs are clearly implicated in the behavioral consequences of social defeat stress 

(Komatsu et al., 2011), and its downstream targets PI3K – pAKT signaling have been well 
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implicated in sensitization to psychomotor stimulants (Izzo et al., 2002, Iniguez et al., 2008, Wu et 

al., 2011), one study suggests that VTA AKT phosphorylation may reduce the behavioral 

consequences of social defeat stress. In particular, this study blocked AKT phosphorylation in the 

VTA, which enhanced the negative behavioral outcomes of continuous social defeat stress in 

mice (Krishnan et al., 2008). When mice were classified as “susceptible” or “resilient” according to 

their post-stress behavioral phenotypes, Western blots of the VTA revealed that levels of 

phosphorylated AKT were reduced in susceptible mice (Krishnan et al., 2008). A major limitation 

of this study is its use of homogenate samples in Western blot, which precludes identification of 

neuron-type specific changes in AKT phosphorylation after stress. As such, the results of this 

study are heavily biased towards the majority population of DA neurons in the VTA, and must be 

interpreted with caution. While differences exist between the continuous and intermittent social 

defeat models, as well as in rats and mice (see review of Nikulina et al., 2014), the findings of 

Krishnan et al. (2008) suggest that intermittent social defeat stress will not increase AKT 

phosphorylation in VTA DA neurons. Since VTA MORs are largely localized to GABA neurons 

(Sesack and Pickel, 1995, Garzon and Pickel, 2002) and typically serve to indirectly disinhibit 

VTA DA neurons (Johnson and North, 1992), then it is possible that AKT phosphorylation may be 

increased in VTA GABA neurons, downstream of the social stress-induced upregulation of VTA 

MORs. Given that VTA MORs and pAKT phosphorylation have both been implicated in 

sensitization to psychomotor stimulants, it is possible that social defeat stress-induced cross-

sensitization to psychomotor stimulants is mediated by stress-induced upregulation of MOR – 

pAKT signaling in VTA GABA neurons. 

 

5. Research Objectives and Organization of Dissertation 

Both globally and nationally, drug abuse represents a serious economic and societal 

problem. While a great deal of money is spent trying to intervene and treat substance abuse, 

treatment is not always available or affordable, and even with treatment, many addicts are likely 

to relapse. Based on these features, in addition to addiction itself, research on substance abuse 

also focuses on the variables that confer vulnerability to drugs of abuse. Most notably, stress 
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induces cross-sensitization to both opiates and psychostimulant drugs, the effects of which 

largely implicate the mesocorticolimbic circuit.  

Through studying the functional effects of stress-induced changes in the 

mesocorticolimbic circuit, it is possible to develop new targets for the therapeutic intervention of 

substance abuse. The literature reviewed in this chapter clearly implicates MORs in the mediation 

of VTA DA transmission and the effects of drugs of abuse. Thus this dissertation will investigate 

the implications of VTA MOR signaling for the behavioral and cellular consequences of social 

stress, with emphasis on those changes related to stress-induced cross-sensitization to 

psychostimulant drugs.  

The experiments described in the following chapters utilized the rat model of intermittent 

social defeat stress to investigate whether stress-induced VTA MOR upregulation is necessary 

for: 1) the behavioral effects of social stress, namely cross-sensitization to amphetamine (Chapter 

2), and 2) stress-induced alterations in the mesocorticolimbic circuit, specifically, enhanced 

mesolimbic BDNF signaling (Chapter 3). This dissertation also investigated 3) social defeat stress 

increases MOR – pAKT signaling in VTA GABA and DA neurons, and whether inhibition of VTA 

AKT phosphorylation is sufficient to prevent stress-induced cross-sensitization to amphetamine 

and deficits in weight gain (Chapter 4). The final chapter of this dissertation (Chapter 5) is a 

general discussion of the implications of the research described in Chapters 2 – 4. 
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CHAPTER 2: KNOCKDOWN OF VENTRAL TEGMENTAL AREA MU-OPIOID RECEPTORS 

MEDIATES EFFECTS OF SOCIAL DEFEAT STRESS: IMPLICATIONS FOR AMPHETAMINE 

CROSS-SENSITIZATION, SOCIAL AVOIDANCE, AND WEIGHT REGULATION 1  

 

ABSTRACT 

Social defeat stress is naturalistic model that induces social avoidance and long-lasting 

cross-sensitization to drugs of abuse, as well as a corresponding upregulation of ventral 

tegmental area (VTA) mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation is generally 

thought to inhibit a subpopulation GABA neurons thus disinhibiting VTA dopamine neurons and 

providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present 

study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the 

consequences of intermittent social defeat stress, a salient and profound stressor in humans and 

rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals 

with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR 

knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to 

amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. 

By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without 

blunting the locomotor-activating effects of amphetamine. Elucidating VTA MOR regulation of 

stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-

induced vulnerability to substance abuse. 

 

INTRODUCTION 

In humans, stress is one variable that influences the transition from recreational drug use 

to abuse, and it has been correlated with increased risk of substance abuse and relapse (Sinha, 

2001, 2008, Razzoli et al., 2009, Sinha, 2011). Rodent studies have shown that repeated social 

                                                
1 All of the data in this chapter have been published, however this chapter does not include the 
immunohistochemical data included in Johnston et al. (2015) – to see this publication in its 
entirety, please refer to Appendix A. 
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defeat stress exposure consistently produces social avoidance (Berton et al., 2006, Krishnan et 

al., 2007, Fanous et al., 2011, Komatsu et al., 2011) and augments the effect of psychomotor 

stimulants, a phenomena known as ‘cross-sensitization’ (Covington and Miczek, 2001, Nikulina et 

al., 2004, Miczek et al., 2011a, Nikulina et al., 2012). Genetic mu-opioid receptor (MOR) knockout 

mice do not exhibit social avoidance following continuous social defeat (Komatsu et al., 2011), 

suggesting that MORs play a critical role in stress-induced changes in long-term neuroplasticity. 

In fact, even acute social defeat stress has been shown to rapidly upregulate MOR mRNA 

expression in the ventral tegmental area (VTA; Nikulina et al., 1999), while repeated social stress 

exposure increases VTA MOR mRNA expression for up to 14 days after the last episode 

(Nikulina et al., 2008).  

In the VTA MORs are expressed by gamma-aminobutyric acid (GABA) neurons (Sesack 

and Pickel, 1995, Garzon and Pickel, 2002), which are hyperpolarized in response to MOR 

stimulation, thus disinhibiting local dopamine (DA) transmission and facilitating response to drugs 

of abuse (Johnson and North, 1992, Bergevin et al., 2002, Vargas-Perez et al., 2009b, Dacher 

and Nugent, 2011). Rats exposed to repeated social defeat stress, then challenged with an intra-

VTA infusion of a MOR-specific agonist exhibited sensitized locomotor activity (Nikulina et al., 

2005, Nikulina et al., 2008). This VTA opiate-induced sensitized locomotor activity was present at 

the same time point that social stress-induced cross-sensitization to psychomotor stimulants was 

observed (Covington and Miczek, 2001, Nikulina et al., 2004, Nikulina et al., 2012). Taken 

together, these findings indicate that increased VTA MOR expression might play a role in social 

stress-induced psychostimulant sensitization. Consistent with this view, MOR knockout mice 

exhibit reduced cocaine self-administration and increased VTA GABA transmission (Mathon et 

al., 2005). Furthermore, the expression of amphetamine sensitization is associated with 

persistent VTA MOR upregulation, and can be blocked by a treatment with MOR antagonist 

(Magendzo and Bustos, 2003, Trigo et al., 2010). 

Although research has implicated VTA MORs in drug sensitization and social behaviors 

(Van Ree et al., 2000, Miczek et al., 2011l, Nikulina et al., 2014, Pitchers et al., 2014), it is 

unknown whether upregulation of VTA MORs causes the behavioral and biological effects of 
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social defeat stress exposure. To address this question, the present study used lentivirus-

mediated gene transfer and RNA interference to knockdown MORs in the VTA, and then 

assessed social stress-induced cross-sensitization to amphetamine. Given that social avoidance 

is altered in MOR knockout mice after continuous social stress (Komatsu et al., 2011), the effect 

of VTA MOR knockdown on social stress-induced social avoidance was also examined. Finally, 

the effect of VTA MOR knockdown on stress-induced deficits of weight gain was investigated. 

 

METHODS 

2.1 Subjects 

Experimental animals were male Sprague-Dawley rats (N = 71; Charles River 

Laboratories, Hollister, CA) weighing 200-250 g on arrival. Three days before social stress 

exposure, subjects were individually housed in standard plastic cages (25x50x20 cm3). Twelve 

additional age-matched Sprague Dawley rats were group-housed 3 per cage and served solely 

as novel stimulus subjects during the social approach and avoidance test. Male Long-Evans rats 

(weighing 550-700 g), termed ‘residents’, were pair-housed with a tubal-ligated female in large 

plastic cages (37x50x20 cm3). All rats were maintained on a 12-12 reverse light-dark cycle (lights 

out at 0900 h) with free access to food (Purina Rodent Diet, Brentwood, MO) and water. 

Residents were previously screened for aggressive behavior and were used to induce social 

defeat stress in experimental “intruder” rats. All experimental procedures were approved by the 

Institutional Animal Care and Use Committees at the Arizona State University and the University 

of Arizona. All studies were conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals (National Research Council, 2011),  and every effort was made to minimize 

pain and suffering, as well as the number of animals used. 

 

2.2 Experimental Design 

2.2.1 General Procedure 

 Upon arrival, experimental rats were habituated to laboratory conditions for 7 days before 

surgery to manipulate regional MOR level. Rats were randomly assigned to one of four 
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experimental conditions: Non-Manipulated MOR+Handled, Non-Manipulated MOR+Stressed, 

MOR Knockdown+Handled, MOR Knockdown+Stressed. Three experiments were conducted in 

parallel (Fig. 2.1A); one group of subjects (n = 25) received an amphetamine challenge 10 days 

after the last episode of intermittent social stress or handling to study the effects of VTA MOR 

knockdown on social stress-induced cross-sensitization. Seven days later, VTA tissue from this 

group of subjects was flash frozen for radioligand binding to verify the efficacy of MOR 

knockdown. Social approach and avoidance testing was performed two days after termination of 

social stress or handling procedures in both the above rats, as well as another cohort of rats (n = 

46). A separate cohort of rats of rats (n = 25) were weighed prior to each episode of intermittent 

social stress and handling, and again 10 days later to investigate the influence of VTA MOR 

knockdown on social stress-induced deficits in weight gain. 

 
2.2.2 Bilateral VTA Infusion of Lentiviral Constructs 

Rats assigned to control viral groups received infusions of lentivirus that expresses green 

fluorescent protein (GFP) and a short hairpin RNA (shRNA) that does not target any known rat 

gene, while rats assigned to VTA MOR knockdown groups received a lentivirus that expresses 

GFP and a shRNA that targets MOR (shMOR) for RNA interference. Lentiviral constructs were 

prepared as previously described (Lasek et al., 2007). The shMOR lentivirus reduces VTA MOR 

expression by 88-97% (Lasek et al., 2007). Therefore, the viral titre was diluted by 50% with cold 

sterile saline to reduce the efficacy. After random assignment to GFP or shMOR knockdown 

conditions, rats were anesthetized using isoflurane and positioned in a stereotaxic frame (Leica 

Angle Two; Richmond, IL). The appropriate lentiviral construct (1.0 µl each) was infused 

bilaterally into the VTA (AP -5.15, ML ±2.15, DV -8.7, Tilt 10°; Paxinos and Watson, 2007) at a 

flow rate of 0.1 µl/min, and allowed to diffuse for 10 min before withdrawal of the syringe 

(Hamilton; Model 7105 KH; 24 gauge tip; Reno, NV) . The accuracy of each infusion was later  
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Figure 2.1. Timeline of Experimental Events and Schematic of Social Approach and 

Avoidance Test Procedure. (A) Two cohorts of rats were given 7 days to recover from surgery, 

and were then exposed to intermittent (4x in 10 days) social defeat or handling procedures. Two 

days after the last episode of defeat, all rats were given the social approach and avoidance test. 

Ten days after the last episode of defeat, one cohort of subjects was administered an 

amphetamine challenge. Five days after receiving the challenge, brains from these rats were 

removed and processed for in vitro [3H]DAMGO autoradiography to verify the location and 

efficacy of MOR knockdown. (B) Subjects were assessed for social approach and avoidance 

using a procedure adapted from Berton et al. (2006). Left: Virtual arena dividing the chamber into 

2 virtual zones: Interaction Zone (IZ), comprising of the 1019.35 cm2 area immediately 

surrounding the containment cage, and Avoidance Zone (AZ), which comprised the two corners, 

combined 52.2 cm2, opposite the containment cage. Right: Schematic of the timeline for the 

social approach and avoidance procedure. 
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verified using localization of GFP expression. Subjects were given 7 days to recover before the 

start of intermittent social stress or handling procedures (Fig. 2.1A). 

 

2.2.3 Intermittent Social Defeat Stress and Handling Procedures 

Social defeat stress was induced by a short confrontation between an aggressive 

resident and an experimental intruder rat, as previously described (Tidey and Miczek, 1996, 

Nikulina et al., 2004, Nikulina et al., 2012). After removing the female from the resident’s home 

cage, an experimental rat was placed inside the resident’s home cage for 5 min within the 

confines of a protective metal cage (15x25x15 cm3). The protective cage was then removed, 

allowing the resident to attack the experimental intruder rat until it displayed supine posture for at 

least 4 sec (see Chapter 1, Fig. 1.1). Once submissive posture was exhibited, the experimental 

rat was placed back in the protective cage and exposed to threat from the resident for an 

additional 20 min before being returned to its own home cage. Intermittent social stress 

procedures were administered every third day for 10 days (Fig. 2.1A). At each corresponding time 

point, rats in the control groups were handled for approximately 2.5 min and then returned to their 

home cages.  

 

2.3 Behavioral Assessments 

2.3.1 Social Interaction 

The social approach and avoidance test was conducted in a large plastic container 

(58x38x41 cm3) equipped with a lightweight containment cage. Experimental rats were habituated 

to the empty test chamber for 5 min, then reintroduced when a novel stimulus rat was within the 

containment cage (Fig. 2.1B). The behavior of experimental rat was recorded for 5 min using 

TopScan (Clever Systems Inc.; Reston, VA). The software divided the chamber into virtual zones: 

Interaction, which comprised the area surrounding the containment cage, and Avoidance, which 

comprised the two corners opposite the containment cage (Fig. 2.1B; arena adapted from Berton 



50 

et al., 2006). The number of respective entries into the avoidance and interaction zones was 

recorded, as was the distance (cm) moved in each zone. 

 

2.3.2 Amphetamine Challenge 

A low dose d-amphetamine challenge was administered to test for social stress-induced 

cross-sensitization (Nikulina et al., 2004, Nikulina et al., 2012). For two days prior to the 

challenge, rats were injected with vehicle (0.9% sterile saline; 1.0 ml/kg, i.p.), and were 

acclimated in their home cage to the procedure room for 1 h. On the day of the challenge, rats 

were moved in their home cage to the procedure room, and locomotor activity was recorded at 10 

min intervals using video tracking software (Videotrack, Viewpoint Life Sciences; Montreal, 

Canada). Locomotor activity was detected as the number of and distance travelled during 

movements (>10 cm) across 170 min consisting of 3 phases: Baseline, Saline, and 

Amphetamine. Baseline data were recorded for 30 min, after which a saline injection (1.0 ml/kg, 

i.p.) was given and locomotor activity was recorded for 60 min. Finally, rats received an injection 

of d-amphetamine sulfate (1.0 mg/kg, i.p.; Sigma-Aldrich; St. Louis, MO), and locomotor data 

were recorded for 80 min. Video tracking and data collection were paused during the 

administration of saline and amphetamine injections. Rather than stereotypical behaviors, this 

dose of amphetamine has been shown to primarily induce large ambulatory movements (Geyer et 

al., 1987). In order to quantify amphetamine sensitization, ambulatory movements (> 10 cm) were 

measured in terms of the number of movements initiated and the distance travelled (cm) during 

such movements. 

 

2.4 Tissue Harvesting 

2.4.1 Fresh Frozen VTA Tissue for Radioligand Binding 

Rats were anesthetized with isoflurane, and their brains were rapidly removed and frozen 

in -35°C 2-methylbutane for 15 sec, then stored at -80°C prior to sectioning. On a cryostat, serial 

20 μm sections through the VTA were collected (from AP -4.8 to -5.5; Paxinos and Watson, 2007) 

for radioligand binding and localization of GFP expression. Sections were thaw-mounted onto 
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glass microslides (Superfrost Plus; Fisher Scientific; Waltham, MA), dried in a vacuum chamber 

at 4°C, and stored at -80°C prior to processing. Separate slides were used to verify the accuracy 

and distribution of lentiviral infusions based on fluorescent detection of GFP expression. 

 

2.5 [3H]DAMGO Autoradiography 

2.5.1 Radioligand Binding 

Fresh frozen brain sections were used to verify shMOR knockdown in the VTA using 

tritiated [D-Ala2,N-MePhe4,Gly-ol5] enkephalin ([3H]DAMGO; NIDA Drug Supply Program; 

Bethesda, MD), as described by Zhou and Hammer (1995). Briefly, slides were placed in pre-

incubation solution (15 mM Tris HCl, 150 mM NaCl, 1.0 mg/ml BSA) for 30 min at 4°C, then were 

incubated in 10 nM [3H]DAMGO solution (50 mM Tris buffer, 3.0 mM Mn acetate, 1.0 mg/ml BSA) 

with or without the addition of naloxone (10 μM; NIDA Drug Supply Program) for 60 min at 22°C. 

Slides were washed with a 50 mM Tris buffer at 4°C, then dried and exposed on Kodak BIO Max 

MR X-ray film (Carestream; Sigma-Aldrich; St. Louis, MO) for 10 weeks at room temperature. 

Sections incubated in 1000-fold excess unlabeled naloxone were utilized to determine non-

specific binding in subsequent autoradiography.  

 

2.5.2 Autoradiography Analysis 

Autoradiograpy film was developed and scanned at high resolution. In order to determine 

whether the shMOR viral construct infected regions outside of the VTA, the substantia nigra pars 

compacta (SNc) was chosen as a control region due to its close proximity to the VTA, and 

because social stress does not affect MOR expression in substantia nigra regions (Nikulina et al., 

1999, Nikulina et al., 2005). The SNc, not to be confused with the medial terminal nucleus 

accessory optic tract (MT),  contains a higher density of MOR labeling than either the substantia 

nigra pars reticulata (SNr) or VTA (Herkenham and Pert, 1982). Using this difference in 

expression, the SNc could be clearly demarcated on scans of autoradiographs by measuring the 

area directly above the SNr, lateral to the MT, and ventrolateral to the medial lemniscus. Optical 

densities for these regions were measured bilaterally in 2-3 sections using ImageJ (National 
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Institutes of Health, USA, http://imagej.nih.gov/ij), and then converted to μCi/g using calibrated 

[3H] radiostandards (ART-123, ARC Inc.; St. Louis, MO) co-exposed with sections. For each 

subject, bilateral measurements were averaged across sections to yield total ligand binding in the 

VTA and SNc, respectively. 

 

2.6 Statistical Analyses 

The results of each measure are expressed as mean ± standard error (SEM) and a p 

value ≤ 0.05 was considered to be significant. All statistical analyses were run using SPSS 

software, version 18 (SPSS Inc., Chicago, IL), and Tukey’s HSD was considered the preferred 

post hoc test across experiments. An exception was made in the case of the amphetamine 

challenge, where Fisher’s LSD was used because violations of sphericity necessitated the use of 

a more conservative test of the main effects. Data from subjects were excluded only in the case 

of error during video tracking or loss of data due to damaged tissue sections: no statistical outliers 

were excluded. The locomotor and social approach and avoidance assays relied on automated 

video tracking systems, requiring that the animals be housed in black bedding to block light from 

reflecting off the cage bottom. However in some instances, rats exposed the cage floor while 

moving, causing illumination artifacts that necessitated the removal of individual bin data due to 

inaccurate tracking. More specifically in the locomotor and social approach and avoidance 

assays, which relied on automated video tracking systems, individual bin data were removed in 

those instances where reflection artifacts prevented accurate tracking. For analyses of mounted 

tissue sections, the sample size of each group was also reduced in cases where tissue was 

damaged in the course of processing.  

 

2.7.1 Weight Gain Data 

The initial weight obtained at the start of social stress procedures was used to normalize 

all subsequent data (n = 25) to weight gained from that time onward; no subjects were excluded 

from the analysis. A one-way analysis of variance (ANOVA) was performed to assess differences 
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in weight at each time point, and all significant main effects were analyzed using Tukey’s test for 

post hoc comparisons among the means.  

 

2.7.2 Social Interaction 

Social approach and avoidance data were analyzed in terms of the number of entries to, 

and the distance travelled (cm) within the interaction and avoidance zones (Fig. 2.1B). Where 

illumination artifacts interfered with tracking, data were lost in a zone-specific manner. For 

example, avoidance zone entry data were analyzed from 40 subjects because illumination 

artifacts resulted in the exclusion of subjects from the following groups: GFP-Handled: 1; GFP-

Stressed: 3; shMOR-Handled: 2. For distance travelled in the avoidance zone, an additional 

tracking error which occurred after a subject entered the zone further reduced the number of 

analyzed subjects to 35; subjects were excluded from the following groups: GFP-Handled: 2; 

GFP-Stressed: 1; shMOR-Handled: 5; shMOR-Stressed: 3. Illumination artifacts and tracking 

error reduced the number of subjects in the interaction zone to 37;  subjects were excluded from 

the following groups: GFP-Stressed: 3; shMOR-Handled: 4; shMOR-Stressed: 2. A one-way 

ANOVA was run on data pertaining to each zone and any significant main effects were followed 

by an analysis of post hoc comparisons with Tukey’s test.  

 

2.7.3 Locomotor Activity 

 Locomotor data were analyzed using separate multivariate analysis of variance (MANOVA) 

for the mean number and distance (cm) travelled during ambulatory movements. In order to 

overcome violations of sphericity in the output of repeated measures ANOVA, MANOVA was 

used to analyze the number and distance of ambulatory movements exhibited throughout the 

amphetamine challenge. Significant multivariate effects were followed by univariate analyses to 

determine which time points produced significant group differences. Significant univariate effects 

were further analyzed for post hoc comparisons using Fisher’s Least Significant Difference (LSD) 

test. Data were analyzed from 21 subjects for both dependent measures of ambulatory 
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movements. Some subjects’ data were excluded from analysis due to the presence of illumination 

artifacts that interfered with tracking: GFP-Stressed: 2; shMOR-Handled: 1; shMOR-Stressed: 1. 

 

2.7.4 MOR Binding 

The results of radioligand binding with [3H]DAMGO in the VTA and SNc were analyzed 

using separate one-way ANOVAs, and where necessary, significant main effects were followed 

by post hoc comparisons with Tukey’s test. In the case of VTA [3H]DAMGO results, a violation of 

homogeneity was corrected for with Welch’s F test.  Sample sizes were reduced after the target 

region was damaged during processing during [3H]DAMGO binding for 1 shMOR treated subject. 

Consequently, receptor autoradiography was analyzed from 25 subjects in the VTA and 24 

subjects in the SNc.  

  

RESULTS 

Verification of MOR Knockdown Using [3H]DAMGO Autoradiography 

Fluorescent detection of virally expressed GFP revealed that lentiviral infusions were 

specific to the VTA (Fig. 2.2A), and GFP was not detected in either SN region (data not shown). 

While lentiviral constructs were infused at AP -5.15, GFP expression indicated infusions to the 

target site varied by ±0.1 mm, and that the average spread of GFP was within AP -4.8 to -5.5 and 

Lateral 0.4 mm to 1.4 mm (Fig. 2.2B). Quantitative in vitro autoradiography with [3H]DAMGO was 

used to determine the functionality of VTA MORs after lentivirus-mediated knockdown. Compared 

to the control GFP lentiviral construct, the subjects infused with the shMOR construct showed 

reduced [3H]DAMGO binding (Fig. 2.2C). One-way ANOVA revealed that this effect was 

significant in the VTA (n = 25, F1,20.13 = 102.46, p < 0.0001), but not the SNc  (n = 24, F1,22 = 1.63, 

p > 0.22; Fig. 2.2D). Thus, surgeries were accurate and bilateral shMOR knockdown selectively 

reduced VTA MOR binding density. 

  



55 

 

Figure 2.2. [3H]DAMGO Autoradiography Revealed That the shMOR Construct, but Not the 

Scrambled GFP Construct, Significantly Reduced MOR Binding in the VTA, but Not the 

SNc. (A) Left: Representative image of reporter GFP expression in infected VTA cells (fr: 

fasciculus retroflexus; scale bar = 100 µm). Right: Plate 37, modified from Paxinos and Watson 

(2007). (B) Parasagittal illustrations showing the extent of GFP expression across the VTA drawn 

in green (lateral plates 0.40 - 1.4, modified from Paxinos and Watson, 2007). (C) Representative 

autoradiographs of [3H]DAMGO binding in the VTA after infusion of either scrambled-GFP or 

shMOR lentiviral constructs (MT: medial terminal nucleus of the accessory optic system; scale 

bar = 500 µm). (D) The shMOR lentiviral construct (n = 14) significantly (* - p < 0.0001) reduced 

MOR binding in the VTA compared to the scrambled-GFP construct (n = 11), without affecting 

MOR binding of either the GFP (n = 11) or shMOR (n = 14) groups in the adjacent SNc (p > 

0.22). 
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Effect of VTA MOR Knockdown on Intermittent Social Stress-Induced Deficit of Weight Gain 

Weight gain data (n = 25) revealed a significant main effect during social stress exposure 

(F3,21 = 10.15, p < 0.0003), and 10 days after the last stress episode (F3,21 = 9.46, p < 0.0004; Fig. 

2.3). Post hoc comparisons at this time point show that the GFP-Stressed group experienced less 

weight gain than either the GFP-Handled or shMOR-Handled groups (p < 0.006), while the 

shMOR-Stressed group only differed from the shMOR-Handled group (p < 0.02). Ten days after 

the final episode of social stress, the GFP-Stressed group showed significantly lower body 

weights compared not only to GFP-Handled and shMOR-Handled  groups (p ≤ 0.006), but also 

the shMOR-Stressed group (p < 0.05). These data suggest that social stress significantly reduces 

body weight, and that while VTA MOR knockdown attenuated this effect during social stress 

exposure, it rescued this effect 10 days after termination of stress. 

 

Effect of VTA MOR Knockdown on Intermittent Social Stress-Induced Social Avoidance 

The social approach and avoidance test revealed a main effect of experimental group on 

number of entries to the avoidance zone (n = 40, F3,36 = 5.89, p = 0.002), with significantly more 

entries by GFP-Stressed rats compared to both GFP-Handled (p < 0.005) and shMOR-Stressed 

(p < 0.004) groups (Fig. 2.4A). Similarly, there was a significant main effect of experimental group 

on the distance traveled in the avoidance zone (n = 35, F3,31 = 4.77, p = 0.008; Fig. 2.4B), with 

significantly more activity in the GFP-Stressed group than the GFP-Handled (p = 0.011), shMOR-

Handled (p < 0.05), or shMOR-Stressed (p < 0.05) groups. There was no main effect of 

experimental group on the number of entries to the interaction zone (n = 37, F3,26 = 1.14, p = 

0.351; Fig. 2.4C). These data suggest that prior social stress exposure significantly increases 

social avoidance, and local VTA depletion of MOR prevents social stress-induced social 

avoidance without significantly altering social interaction.  
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Figure 2.3. Knockdown of VTA MORs Prevents Social Stress-Induced Deficit of Weight 

Gain. While undergoing social stress or handling, GFP-Stressed rats (n = 5) exhibited 

significantly (** - p < 0.05) less weight gain than did GFP-Handled (n = 6) or shMOR-Handled (n = 

7) rats. By contrast, shMOR-Stressed rats (n = 7) did not differ from GFP-Handled or -Stressed 

rats, showing significantly (α - p < 0.05) less weight gain than shMOR-Handled rats. Ten days 

after the last episode of exposure, GFP-Stressed rats had gained significantly (*** - p < 0.05) less 

weight than all other groups. 
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Figure 2.4. Knockdown of VTA MORs Prevents Social Stress-Induced Social Avoidance. 

(A) GFP-Stressed rats (n = 7) made significantly (** - p < 0.005) more entries to the avoidance 

zones than did GFP-Handled (n = 7) or shMOR-Stressed rats (n = 14). (B) GFP-Stressed rats (n 

= 9) were significantly (*** - p < 0.05) more active in the avoidance zones than GFP-Handled (n = 

7), shMOR-Handled (n = 8), or shMOR-Stressed (n = 11) rats. (C) GFP-Stressed rats (n = 7) 

showed a slight tendency to spend less time in the interaction zone, but there was no significant 

(p > 0.3) main effect compared to GFP-Handled (n = 9), shMOR-Handled (n = 9), or shMOR-

Stressed (n = 12) groups. 
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Effect of VTA MOR Knockdown on Intermittent Social Stress-Induced Cross-Sensitization 

There were significant main effects of experimental group on the number of ambulatory 

movements (n = 21, Wilks’ λ = 3.78x10-7, F51.0,17 = 10.57, p = 0.019, η2 = 0.993, observed power = 

0.87) and distance travelled during ambulatory movements(n = 21, Wilks’ λ = 1.26x10-6, F51.0,17 = 

7.03, p = 0.039, η2 = 0.989, observed power = 0.87) across all time points. The number of 

movements differed significantly only, at 30 (F 3,17 = 3.66, p = 0.034), 40 (F3,17 = 3.36, p = 0.043), 

and 50 (F3,17 = 4.46, p = 0.017) min after amphetamine injection, but there were no differences 

across groups before or after saline injection (p > 0.05 at all other time points). Post hoc testing 

(Fig. 2.5A) showed that the GFP-Stressed group exhibited significantly greater number of 

movements compared to GFP-Handled (p < 0.005) and both shMOR-Handled and -Stressed 

groups (p < 0.05) at 30 min after amphetamine injection, compared to GFP-Handled (p < 0.01) 40 

min post-amphetamine, and compared to GFP-Handled (p < 0.002) and both shMOR-Handled 

and -Stressed groups (p < 0.03) 50 min after amphetamine.  

Similarly, distance travelled exhibited significant main effects only 20 (F3,17 = 3.51, p = 

0.038), 30 (F3,17 = 6.83, p = 0.003), and 40 (F3,17 = 4.86, p = 0.013) min after amphetamine 

injection. Post hoc analyses (Fig. 2.5B) showed that the GFP-Stressed group moved a 

significantly greater distance compared to the GFP-Handled, shMOR-Handled, and shMOR-

Stressed groups (p < 0.02)  20 min after amphetamine injection, compared to GFP-Handled and 

both shMOR groups (p < 0.002) 30 min post-injection, and compared to the GFP-Handled and 

both shMOR groups (p < 0.03) groups 40 min post-amphetamine. Thus, the GFP-Stressed group 

showed social stress-induced cross-sensitization following amphetamine challenge, but the 

shMOR-Stressed group did not. 

 

DISCUSSION 

These data show that lentivirus-mediated overexpression of shMOR successfully 

reduced MOR binding activity in the VTA, and that the affected region was limited to the VTA. 

Furthermore, the results of this study indicate that intermittent social stress induction of VTA  
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Figure 2.5. 

Knockdown of 

VTA MORs 

Prevents Social 

Stress-Induced 

Amphetamine 

Cross-

Sensitization 

Without 

Affecting 

Baseline 

Activity. 

Multivariate 

analyses revealed 

that the only 

significant main 

effects occurred 

during the 

amphetamine 

phase of the 

assay. Data 

collection and 

video tracking 

were paused to 

administer saline 

and 

amphetamine, 

vertical arrows 

denote the time point when injection occurred. (A) GFP-Stressed rats (n = 4) exhibited 

significantly (*** - p < 0.05) more movements at 120 and 140 min compared to GFP-Handled (n = 

5), shMOR-Handled (n = 6), and shMOR-Stressed (n = 6) rats, and differed significantly (* - p < 

0.02) from GFP-Handled rats at 130 min. (B) GFP-Stressed rats travelled a significantly (*** - p < 

0.03) greater distance at 110, 120, and 130 min compared to all other groups. 
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MORs is required for various stress-induced changes. For example, lentivirus-mediated 

knockdown of VTA MORs blocks intermittent social stress-induced social avoidance, cross-

sensitization to amphetamine, and deficit of weight gain.  

 

VTA MOR Upregulation is Necessary for Intermittent Social Stress-Induced Weight Gain Deficits  

Exposure to social stress attenuated weight gain both during and 10 days after social 

stress exposure, which is consistent with previous findings (Meerlo et al., 1996, Pulliam et al., 

2010, Fanous et al., 2011, Venzala et al., 2012). VTA MOR knockdown rescued the deficit of 

weight gain 10 days after the last episode of stress, but not during stress exposure. That 

knockdown of VTA MORs attenuated and promoted recovery from social stress-induced weight 

gain deficit is consistent with a report of increased body weight in MOR knockout mice (Han et al., 

2006). Another study using the same lentiviral construct in the VTA (Lasek et al., 2007) also 

showed no significant effect on weight, indicating that VTA MOR knockdown is not sufficient to 

alter weight gain in the absence of social stress. 

The role of MORs in the regulation of food intake and weight gain is complex, making it 

difficult to separate MOR effects on food palatability, food intake, and a more general increase of 

hedonic value. Pharmacological stimulation of MORs has frequently been associated with 

increased hedonic value of food and drug stimuli (Badiani et al., 1995, Nathan and Bullmore, 

2009), while MOR antagonism has been associated with decreased consumption of highly 

palatable food (Segall and Margules, 1989), as well as decreased sensitivity to natural reward 

(Pitchers et al., 2014). Stimulation of VTA MORs has been found to facilitate food consumption in 

a dopamine D1 receptor-dependent manner (Badiani et al., 1995, MacDonald et al., 2004), while 

antagonism reduced consumption of palatable foods (Segall and Margules, 1989). Based on this, 

one might expect that VTA MOR knockdown would further reduce weight gain by altering feeding 

behaviors. By contrast, the present data show that VTA MOR knockdown rescues the stress-

induced deficit in weight gain without affecting normal weight gain.  

If knockdown of VTA MORs rescued the stress-induced reduction of weight gain by 

attenuating the psychological effects of stress, one might expect to see signs of increased reward 
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or hedonic value in the amphetamine challenge or social approach and avoidance test. However, 

compared to GFP-Handled rats, subjects in the shMOR-Handled group did not show increased, 

or impaired response to amphetamine, or differ in social interaction. That subjects with VTA MOR 

knockdown, regardless of stress treatment, did not exhibit significant differences in weight gain 

compared to control GFP-Handled subjects, suggests that the rescue of weight gain is likely due 

to the prevention of downstream stress-induced changes in the mesolimbic circuit. For example, 

social stress also increases VTA brain-derived neurotrophic factor (BDNF) expression, however 

this begins at after upregulation of VTA MORs (Nikulina et al., 2008, Fanous et al., 2010, Nikulina 

et al., 2012). Since VTA BDNF expression is also necessary for the stress-induced weight gain 

deficit (Fanous et al., 2011), it is possible that knockdown of VTA MORs rescued the stress-

induced weight gain deficit by augmenting VTA BDNF expression.  

The current study did not measure food consumption, so it is not possible to ascertain 

whether altered food intake contributed to the weight gained after stress, with or without VTA 

MOR knockdown. However, if the stress-induced deficit of weight gain were related to VTA MOR-

mediated changes in food intake, one would expect both Handled- and Stressed-shMOR 

knockdown groups to show significant differences in weight gain compared to GFP-Handled rats, 

which was not the case. There is some evidence to suggest that that MOR activity can alter 

weight gain without producing deficits in food consumption. In particular, daily morphine injection 

for 8 days had no effect on weight gain or food intake, while a parallel group of subjects that 

received escalating doses of morphine exhibited reduced weight gain without significant any 

significant effect on food consumption (Ren et al., 2013). In the same study, injections of 

escalating doses of morphine led to activation of cAMP responsive binding element protein 

(pCREB) in the VTA, implicating this region in MOR-mediated reduction of weight gain, but not 

food intake. Based on this, it is possible that escalating endogenous mu-opioid activity in the VTA 

underlies the weight gain deficit seen after social stress. 
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Upregulation of VTA MORs is Necessary for Intermittent Social Stress-Induced Social Avoidance 

Rodents with non-manipulated VTA MORs and a history of social stress engaged in 

significantly more social avoidance (Berton et al., 2006, Fanous et al., 2010, Komatsu et al., 

2011). However, MOR knockout mice do not show social avoidance after continuous social stress 

(Komatsu et al., 2011), just as knockdown of VTA MORs prevented intermittent social stress-

induced social avoidance in the current study. MORs have been implicated in the rewarding 

components of social behavior, while MOR antagonists are associated with reduced social play 

(Vanderschuren et al., 1997) and experience-induced facilitation of sexual behavior (Pitchers et 

al., 2014), allowing for the possibility that VTA MOR knockdown might alter normal social 

interaction. However, the current results showed that VTA MOR knockdown in handled rats did 

not alter any measures of social interaction, suggesting that VTA MORs affect social behavior 

only upon the impact of stress exposure. 

Previous research has also indicated that social history alone (isolation vs. social 

housing) or in conjunction with a social interaction test has a profound effect on MOR expression 

(Vanderschuren et al., 1995). Specifically, long-term social isolation increased MOR binding 

density in the VTA, while an acute social interaction reduced VTA MOR binding. Taken together, 

it is possible that positive and negative social situations alter VTA MOR expression, respectively 

decreasing or increasing VTA MOR activity.  

 

Knockdown of VTA MORs Prevents Intermittent Social Stress-Induced Cross-Sensitization 

Stressed rats with non-manipulated VTA MORs exhibited significantly greater locomotor 

activity after a low dose amphetamine challenge, confirming prior reports that intermittent social 

stress induces amphetamine cross-sensitization 10 days after the last stress episode (Covington 

and Miczek, 2001, Nikulina et al., 2012). By contrast, knockdown of VTA MORs prevented social 

stress-induced cross-sensitization without blocking amphetamine-induced locomotion. VTA 

MORs are presynaptically expressed by GABA neurons (Sesack and Pickel, 1995, Garzon and 

Pickel, 2002), and when activated, reduce GABAergic inhibition of VTA DA neurons (Johnson 

and North, 1992, Bergevin et al., 2002, Vargas-Perez et al., 2009b, Trigo et al., 2010, Dacher and 
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Nugent, 2011) and facilitate response to psychomotor stimulants. Thus, if stimulation of MORs in 

the VTA indirectly increases VTA DA activity by reducing GABA transmission, then it is likely that 

knockdown of VTA MORs increases GABA release. In fact, MOR knockout mice showed 

enhanced VTA GABA release onto local DA neurons, resulting in reduced cocaine self-

administration (Mathon et al., 2005).  

While this theory of inhibitory MOR activation is well accepted, it was recently 

demonstrated that MORs can also be found on VTA DA neurons, and can even have excitatory 

functions (Margolis et al., 2014). Given that intra-VTA agonism of MORs, after stress-induced 

upregulation, produces a sensitized locomotor response (Nikulina et al., 2005, Nikulina et al., 

2008) that is associated with increased VTA DA activity, thus it is unlikely that social stress 

upregulates inhibitory MORs on DA, or excitatory MORs on GABA. However if stress increased 

the expression of excitatory MORs on VTA DA neurons, it would produce a direct increase in DA 

activity, similar to the indirect increase associated with inhibitory MORs on VTA GABA neurons. 

Thus it is possible that knockdown of VTA MORs mediated VTA DA output in two ways: either 

through direct excitation of DA neurons, or classical disinhibition of DA via inhibitory MORs on 

GABA neurons.  

Although treatment with a MOR antagonist has been shown to abolish amphetamine 

responses (Magendzo and Bustos, 2003), this study showed that knockdown of VTA MORs did 

not block psychomotor activation following amphetamine challenge. This suggests that 

knockdown of VTA MORs does not produce unnatural alterations of mesolimbic tone. The results 

of this study reveal that VTA MOR upregulation is necessary for intermittent social stress-induced 

cross-sensitization to amphetamine. As such, in the VTA social stressors may function to 

increase endogenous MOR activity on GABA neurons, thus reducing the GABAergic inhibition of 

local DA neurons and facilitating behavioral sensitization to psychostimulant drugs. 

 

Concluding Remarks 

  Since increased mesolimbic BDNF – TrkB receptor activity has been associated with the 

behavioral consequences of social stress, as well as stress- and drug-induced sensitization (see 
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review of Nikulina et al., 2014), it is possible that VTA MOR knockdown prevented the behavioral 

effects of social stress by augmented stress-induced changes in mesolimbic BDNF – TrkB 

receptor signaling. Given that in the present study, VTA MOR knockdown likely functioned to 

block stress-induced increase of dopaminergic tone, this manipulation also might prevent stress-

induced changes in the NAc, such as increases in TrkB receptor expression. Future studies are 

needed to determine whether VTA MOR knockdown alters stress-induced increase of mesolimbic 

BDNF – TrkB receptor activity.  

In conclusion, the results of this study indicate that social stress exposure increases VTA 

MOR activity, potentially disinhibiting VTA dopaminergic tone to facilitate response to drugs of 

abuse. The present data suggest that upregulation of VTA MORs following social stress exposure 

may underlie vulnerability to psychostimulant drugs in some individuals, thereby providing a 

potential target for therapeutic intervention during abuse of these drugs. 
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CHAPTER 3: KNOCKDOWN OF VENTRAL TEGMENTAL AREA MU-OPIOID RECEPTORS: 

IMPLICATIONS FOR SOCIAL STRESS-INDUCED CHANGES ACROSS THE 

MESOCORTICOLIMBIC CIRCUIT 2 

 

ABSTRACT 

Social defeat stress induces prolonged cross-sensitization to drugs of abuse, as well as a 

corresponding upregulation of ventral tegmental area (VTA) mu-opioid receptor (MOR) mRNA. 

Previously lentivirus-mediated knockdown of VTA MORs was found to prevent the behavioral 

consequences of social stress. The present study used lentivirus-mediated interference to 

investigate whether intermittent social stress-induced upregulation of VTA MORs mediates 

stress-induced changes throughout the mesocorticolimbic circuit. At the time point corresponding 

to amphetamine challenge, immunohistochemical analyses were performed to examine the effect 

of VTA MOR knockdown on stress-induced brain-derived neurotrophic factor (BDNF) expression 

in the VTA and prefrontal cortex (PFC), as well as delta FosB and tropomyosin-related kinase B 

(TrkB) receptor expression in the nucleus accumbens (NAc), all of which have been implicated in 

stress-induced drug sensitization. Prior stress exposure increased the expression of BDNF in the 

VTA and its receptor TrkB in the NAc of rats with non-manipulated VTA MOR expression, while 

VTA MOR knockdown prevented stress-induced expression of VTA BDNF and NAc TrkB 

receptor. Although social stress alone significantly increased the expression of delta FosB in the 

NAc core, this effect was only somewhat attenuated by VTA MOR knockdown. By contrast, there 

was no effect of either stress or VTA MOR knockdown on BDNF expression in the PFC. Taken 

together, these results suggest that upregulation of VTA MOR is necessary for increased 

mesolimbic expression of BDNF and its TrkB receptor. These data extend what is known about 

                                                
2 The BDNF immunohistochemistry performed in this chapter was published in Johnston et al. 
(2015), to see this manuscript in its entirety, please refer to Appendix A. In-text references to 
Johnston et al. (2015) refer to the behavioral data presented in Chapter 2. 
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the directionality of stress-induced signaling in the VTA, and suggest that VTA MORs may serve 

as the starting point for the effects of stress in the mesolimbic pathway.  

 

INTRODUCTION 

Stress is one variable that influences the transition from recreational drug use to abuse in 

humans, and it has been correlated with both increased risk of substance abuse and relapse 

(Sinha, 2001, 2008, 2011). Rodent studies have shown that intermittent social defeat stress 

consistently confers vulnerability to drugs of abuse, a phenomena known as stress-induced 

cross-sensitization (Covington and Miczek, 2001, Nikulina et al., 2004, Nikulina et al., 2012). 

Moreover social stress-induced upregulation of ventral tegmental area (VTA) mu-opioid receptors 

(MORs) was recently shown to be necessary for the development of cross-sensitization to 

amphetamine (Johnston et al., 2015). In the VTA, MORs are generally expressed by gamma-

aminobutyric acid (GABA) neurons (Sesack and Pickel, 1995, Garzon and Pickel, 2002), which 

are hyperpolarized in response to MOR stimulation, and disinhibit local dopamine (DA) 

transmission to facilitate response to drugs of abuse (Johnson and North, 1992, Bergevin et al., 

2002, Dacher and Nugent, 2011). However it was recently shown that MORs can have either 

inhibitory or excitatory functions in both VTA GABA and DA neurons (Margolis et al., 2014). 

Despite this, rats exposed to repeated social defeat stress and then challenged with an intra-VTA 

infusion of a MOR-specific agonist, exhibit sensitized locomotor activity (Nikulina et al., 2005, 

Nikulina et al., 2008), which is typically thought to reflect increased VTA DA transmission. This 

suggests that net effect of social stress-induced MOR upregulation is to enhance VTA DA 

transmission, and given that only a small proportion of MORs are excitatory on VTA DA neurons 

(Sesack and Pickel, 1995, Garzon and Pickel, 2002, Margolis et al., 2014), implies that the VTA 

MORs upregulated after stress are predominantly inhibitory on GABA interneurons. 

Delta FosB is a nuclear transcription factor that gradually accumulates with repeated 

exposure to stimuli, such as stress or drugs of abuse (Nestler et al., 2001, Nestler, 2008, 2014).  

Generally speaking, delta FosB is thought to act as either a transcriptional activator or repressor, 

depending on the nature of the target gene, and an accumulation of delta FosB in the nucleus 
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accumbens (NAc) is one of the most common responses to drugs that effect VTA DA 

transmission (Nestler et al., 2001, Nestler, 2008). In particular, NAc delta FosB expression is 

increased following acute cocaine treatment (Larson et al., 2010), as well as during withdrawal 

from chronic psychostimulant administration (Murphy et al., 2003, Larson et al., 2010). Similar to 

drugs of abuse, social stress also significantly increases the expression of delta FosB in the NAc 

(Nikulina et al., 2008, Nikulina et al., 2012), and the expression of this protein seems to be related 

to mesolimbic brain-derived neurotrophic factor (BDNF) – tropomyosin-related kinase B (TrkB) 

receptor signaling. In fact, viral-mediated overexpression of VTA BDNF exacerbates social 

stress-induced NAc delta FosB expression (Wang et al., 2013), while viral-mediated depletion of 

NAC TrkB, the BDNF receptor, prevents delta FosB induction (Wang et al., 2014). 

Consistent with its effects on NAc delta FosB expression, social stress-induced cross-

sensitization to psychomotor stimulants has also been shown to involve increased mesolimbic 

BDNF – TrkB receptor signaling (Wang et al., 2013, Wang et al., 2014). Specifically, viral-

mediated overexpression of VTA BDNF exacerbated (Wang et al., 2013), while knockdown of 

TrkB receptor in the NAc prevented stress-induced amphetamine cross-sensitization (Wang et 

al., 2014). In addition to increasing VTA BDNF, social stress also rapidly induces BDNF 

expression in the prefrontal cortex (PFC; Fanous et al., 2010), however it is unknown whether 

PFC BDNF expression is effected by manipulations of the mesolimbic circuit. Increased VTA 

BDNF expression has been implicated as a long-term mediator of social stress-induced cross-

sensitization (Nikulina et al., 2012), and in the VTA this increase persists for at least 2 weeks after 

the last social stress exposure (Berton et al., 2006, Fanous et al., 2010, Nikulina et al., 2012).  

Although VTA MOR mRNA expression rapidly increases following social stress exposure, 

VTA BDNF expression is affected more slowly and its expression persists beyond that of VTA 

MORs (Nikulina et al., 2005, Nikulina et al., 2008, Fanous et al., 2010). Since both VTA BDNF 

and MOR expression have been implicated in social stress-induced cross-sensitization to 

amphetamine (Wang et al., 2013, Wang et al., 2014, Johnston et al., 2015), and since increases 

in VTA MOR expression occur prior to increases in VTA BDNF expression, it is possible that 

knockdown of VTA MORs may respectively prevent social stress-induced increases in VTA 
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BDNF and NAc TrkB receptor expression. Given that increased mesolimbic BDNF – TrkB 

signaling is associated with the induction of delta FosB expression in the NAc after stress, it is 

possible that VTA MORs may also mediate this effect, either through indirect augmentation of 

mesolimbic BDNF – TrkB signaling, or through direct mediation of GABA and DA projections to 

the NAc. In addition to sending direct GABA projections to the NAc, the VTA also innervates the 

PFC (Sesack and Grace, 2010, Morales and Pickel, 2012, Walsh and Han, 2014), thus it is 

possible that knockdown of VTA MORs may also have reciprocal effects in the PFC.  

While it has been established that social stress-induced increases in VTA MORs are 

critical for the behavioral consequences of social defeat stress (Johnston et al., 2015), it unknown 

whether upregulation of VTA MORs mediates the effects of social stress on the mesocorticolimbic 

circuit. To address this question, the present study used lentivirus-mediated gene transfer and 

RNA interference to knockdown MORs in the VTA, and then at the time point that stress-induced 

cross-sensitization to amphetamine is known to be present, assessed for social stress-induced 

expression of BDNF in the VTA and PFC, as well as for its TrkB receptor and delta FosB in the 

NAc.  

 

METHODS 

3.1 Subjects 

Subjects were male Sprague-Dawley rats (N = 21; Charles River Laboratories, Hollister, 

CA) weighing 200-250 g on arrival. Three days before social stress exposure, subjects were 

individually housed in standard plastic cages (25x50x20 cm3). Male Long-Evans rats (weighing 

550-700 g), termed ‘residents’, were pair-housed with a tubal-ligated female in large plastic cages 

(37x50x20 cm3). All rats were maintained on a 12-12 reverse light-dark cycle (lights out at 0900 

h) with free access to food (Purina Rodent Diet, Brentwood, MO) and water. Residents had 

previously been screened for aggressive behavior and were used to induce social defeat stress in 

experimental subjects. All experimental procedures were approved by the Institutional Animal 

Care and Use Committees at the Arizona State University and the University of Arizona. All 

studies were conducted in accordance with the Guide for the Care and Use of Laboratory 
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Animals (National Research Council, 2011),  and every effort was made to minimize pain and 

suffering, as well as the number of animals used. 

 

3.2 Experimental Design 

3.2.1 General Procedure 

Before to surgery to manipulate VTA MOR levels, subjects were habituated to laboratory 

conditions for 7 days and randomly assigned to one of four experimental conditions: Non-

Manipulated MOR+Handled, Non-Manipulated MOR+Stressed, MOR Knockdown+Handled, 

MOR Knockdown+Stressed. All subjects were perfused 10 days after the last episode of 

intermittent social stress (Fig. 3.1) to study the effects of Stress and MOR knockdown on stress-

induced changes in the mesocorticolimbic circuit during the time that cross-sensitization to 

amphetamine is known to be occur. 

 

3.2.2 Bilateral VTA Infusion of Lentiviral Constructs 

Rats assigned to control viral groups received infusions of lentivirus that expresses green 

fluorescent protein (GFP) and a short hairpin RNA (shRNA) that does not target any known rat 

gene, while rats assigned to VTA MOR knockdown groups received a lentivirus that expresses 

GFP and a shRNA that targets MOR (shMOR) for RNA interference. The spread and efficacy of 

these lentivirus constructs was  previously established in the rat VTA (Johnston et al., 2015) and 

were prepared as described in (Lasek et al., 2007). After random assignment to GFP or shMOR 

knockdown conditions, rats were anesthetized using isoflurane and positioned in a stereotaxic 

frame (Leica Angle Two; Richmond, IL). The appropriate lentiviral construct (1.0 µl each) was 

infused bilaterally into the VTA (AP -5.15, ML ±2.15, DV -8.7, Tilt 10°; Paxinos and Watson, 2007) 

at a flow rate of 0.1 µl/min (Hamilton syringe; Model 7105 KH; 24 gauge tip; Reno, NV), and 

allowed to diffuse for 10 min. The accuracy of each infusion was later verified using localization of 

GFP expression (data not shown). Subjects were given 7 days to recover before the start of 

intermittent social stress or handling procedures (Fig. 3.1). 
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Figure 3.1. Timeline of Experimental Events. Rats were given 7 days to recover from surgery, 

and then were exposed to intermittent (4x in 10 days) social defeat stress or handling procedures. 

Ten days after the last episode of defeat, subjects were perfused to for immunohistochemical 

analyses of the effect of VTA MOR knockdown on stress-induced changes throughout the 

mesocorticolimbic circuit. 
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3.2.3 Intermittent Social Defeat Stress and Handling Procedures 

Social defeat stress was induced by a short confrontation between an aggressive 

resident and an experimental intruder rat, every third day for 10 days (Fig. 3.1), as previously 

described (Tidey and Miczek, 1996, Nikulina et al., 2004, Nikulina et al., 2012, Johnston et al., 

2015; see also Chapter 1, Fig. 1.1). Briefly, females were removed and an experimental rat was 

placed inside the resident’s home cage for 5 min within the confines of a protective metal cage 

(15x25x15 cm3). Then the protective cage was removed, allowing the resident to attack until the 

subject displayed supine posture for a minimum of 4 sec. After which, the experimental rat was 

placed back in the protective cage and exposed to threat from the resident for an additional 20 

min. During this time, rats in the control groups were handled (~2.5 min), at the end of defeat or 

handling procedures, all subjects were returned to their home cages. 

  

3.3 Perfusion for Immunohistochemistry 

As previously described (Fanous et al., 2010), rats were anesthetized with sodium 

pentobarbital (100 mg/kg, i.p.; Euthasol, Virbac Co., St. Louis, MO) and perfused transcardially 

with 4% paraformaldehyde 10 days after the last episode of stress or handling (Fig. 3.1). Brains 

were then removed, post-fixed for 1.5 hours at 4°C, and placed in graded sucrose solutions. 

Frozen brain tissue was sectioned on a sliding microtome (20 μm) and serial VTA sections were 

mounted onto slides from 0.05 M phosphate buffer (pH = 7.4). Adjacent slides from each brain 

were processed for chromogen immunohistochemistry. 

 

3.4 Immunohistochemistry and Quantification 

3.4.1 Chromogen Immunohistochemistry 

Immunohistochemistry was performed using polyclonal BDNF, FosB, and TrkB receptor 

antisera as described previously (Fanous et al., 2010, Wang et al., 2013, Wang et al., 2014). 

Briefly, blocking solution (10% normal goat serum/0.5M KPBS/0.4% Triton X-100) was applied to 

sections for 1 h at room temperature, then the respective primary antibody diluted in blocking 

solution was applied for 48 hr at 4°C (BDNF 1:1000 dilution, SP1779, Millipore/Chemicon, 
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Temecula, CA; FosB 1:7000 dilution, SC-48, Santa Cruz Biotechnology Inc., Santa Cruz, CA; 

TrkB receptor 1:7000 dilution, Biosensis, 23-36, Thebarton, S. Australia). Sections were then 

incubated for 1 h with a biotinylated rabbit secondary antibody, treated with avidin/biotin complex 

solution for 45 min (Vectastain Elite ABC Kit; Vector Laboratories; Burlingame, CA), and 

developed using a diaminobenzidine (DAB) peroxidase substrate kit with nickel intensification 

(Vector Laboratories). Tissue sections cover slipped and imaged using a Zeiss Axioskop 

microscope with a 20x objective, and digitalized using a color digital camera. It should be noted 

that the FosB antibody used here targets both FosB and delta FosB proteins, due to the similarity 

in their N-terminal. However given the transient nature of FosB vs. delta FosB’s propensity to 

accumulate (Perrotti et al., 2004), and the timeline of prolonged absence from stress used in the 

current study (Fig. 3.1), the FosB labeling seen in this study predominantly reflects delta FosB 

expression and will be discussed as throughout. 

 

3.4.2 Modified Stereological Cell Counts 

Immunolabeled cells were quantified using Stereo Investigator software (MBF 

Biosciences; Williston, VT) and ImageJ (National Institutes of Health, USA, 

http://imagej.nih.gov/ij), and the analysis was conducted using the modified stereology counting 

procedure described in Nikulina et al. (2012). Briefly, a grid of squares (0.0075 mm2) was overlaid 

on each of 2-3 sections from each subject. Immunolabelled cells were counted in half the grid 

squares, the precise squares being randomly determined. Immunolabelled cells had a blue-black 

reaction product and were counted such that cells crossing the bottom or right lines of each 

square were included, while cells crossing the top or left lines of the square were excluded from 

analysis. For each subject, estimates of total labeling density (mm2) were calculated by averaging 

the bilateral counts of labeled cell profiles across sections, and then dividing the total number of 

cell profiles by the total area assessed.  
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3.5 Statistical Analyses 

The results of each measure are expressed as mean ± standard error (SEM) and a p 

value ≤ 0.05 was considered to be significant. All statistical analyses were run using SPSS 

software, version 18 (SPSS Inc., Chicago, IL). No statistical outliers were excluded, sample sizes 

were only reduced when the site of interest was damaged during the course of processing. Since 

a previous study reported no significant differences between GFP-Handled and shMOR-Handled 

rats (Johnston et al., 2015), a t-test was run for each data set and confirmed that there were no 

significant differences between groups (p > 0.05). Based on this, GFP-Handled and shMOR-

Handled groups were combined into one Control Handled group for subsequent statistical 

analyses of immunohistochemical data. Immunohistochemistical cell counts were analyzed using 

separate univariate ANOVA’s, and where necessary, significant main effects were followed by 

post hoc comparisons with Tukey’s test.  

Due to tissue damage during mounting and processing for immunohistochemical 

processing, sample sizes were reduced by 2-3 subjects in the VTA and NAc. Specifically, in the 

case of TrkB staining in the NAc, tissue resulted in the analysis of data from 18 subjects in both 

the NAc core and shell. For FosB staining in the NAc shell, data were analyzed from 19 subjects, 

while additional damage in the NAc core limited analysis to 18 subjects. In the VTA, BDNF 

expression was analyzed in 19 subjects, while PFC cortex sections did not have significant 

damage and consequently data were analyzed from all subjects (N = 21). In the analysis of FosB 

in the NAc core, a violation of homogeneity required a correction, and so Welch’s test was 

employed to adjust the degrees of freedom and F-value.  

  

RESULTS 

Effect of VTA MOR Knockdown on BDNF Expression After Intermittent Social Stress Exposure 

There was a significant main effect of stress on VTA BDNF expression (n = 19, F2,16 = 

33.87, p < 0.0001). Specifically, the GFP-Stressed group had significantly greater VTA BDNF  
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expression compared to Control Handled and shMOR-Stressed groups (p < 0.0001, Fig. 3.2), 

while there were no differences between the shMOR-Stressed and the Control Handled groups (p 

> 0.74). In contrast, there was no significant main effect on BDNF expression in either the 

prelimibic (PL; n = 21, F2,18 = 1.12, p = 0.348) or infralimbic (IL; n = 21, F2,18 = 0.235, p = 0.793) 

areas of the PFC (Fig. 3.3). Taken together, VTA MORs are necessary for the social stress-

induced increases in VTA, but not PFC BDNF expression 10 days after the last episode of stress 

or handling.  

 

Effect of VTA MOR Knockdown on NAc TrkB Receptor and Delta FosB Expression After 

Intermittent Social Stress Exposure 

There was a significant main effect of stress on TrkB receptor expression in both the NAc 

core (n = 18, F2,15 = 9.95, p = 0.002) and shell (n = 18, F2,15 = 9.95, p < 0.0001, Fig. 3.4). 

Specifically, in both the NAc core and shell, GFP-Stressed rats had significantly higher levels of 

TrkB receptor (p < 0.003) than either Control Handled, or shMOR-Stressed rats. By contrast, 

TrkB receptor expression in shMOR-Stressed rats did not significantly differ from Control Handled 

subjects (p > 0.23). Taken together, this is evidence that VTA MORs are necessary for the social 

stress-induced increase of TrkB receptor expression in the NAc.  

 There was also a significant main effect of stress on delta FosB expression in the NAc 

core (corrected with Welch’s test; n = 18, F2,8.98 = 22.64, p < 0.001), but not the NAc shell (n = 19, 

F2,16 = .77, p > 0.47). In the NAc core, GFP-Stressed rats expressed significantly more delta FosB 

than Control Handled subjects (p = 0.01; Fig. 3.5). By contrast, although the difference between 

shMOR-Stressed rats and GFP-Stressed rats approached significance (p = 0.071), the difference 

between the shMOR-Stressed and Control Handled groups was highly non-significant (p > 0.58). 

These data show that VTA MORs attenuate, but do not significantly prevent the effect of social 

stress on delta FosB expression in the NAc core.  
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Figure 3.2. Knockdown of VTA MORs Blocks Social Stress-Induced Increase of VTA BDNF 

Expression. (A) The GFP-Stressed group (n = 5) exhibited significantly (*** - p < 0.0001) more 

VTA BDNF immunolabeling than either Control Handled (n = 8) or shMOR-Stressed (n = 6) 

groups. Numbers of labeled cells did not significantly differ between Control Handled and 

shMOR-Stressed rats (p > 0.74). (B) Representative images of BDNF labeling in the anterior 

VTA. More BDNF labeled cells (identified by arrows) are visible in the GFP-Stressed group than 

in any others. (Scale bar = 100 μm). 
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Figure 3.3. There Was No Effect on BDNF Expression in the PFC Ten Days After the Last 

Episode of Stress. (A) Neither social stress nor VTA MOR knockdown (N = 21) had an effect on 

BDNF expression in the prelimbic or infralimbic areas of PFC (p > 0.34). (B) Representative 

images of BDNF labeling in prelimbic and infralimbic regions, labeled cells are indicated by 

arrows (Scale bar = 100 μm). 
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Figure 3.4. Knockdown of VTA MORs Blocks Social Stress-Induced Increase of TrkB 

Receptor in the NAc. (A) In both the NAc core and shell, the GFP-Stressed group (n = 5) 

exhibited significantly (* - p < 0.003) more immunolabeling for TrkB receptor than either Control 

Handled (n = 8) or shMOR-Stressed (n = 5) groups. Numbers of labeled cells did not significantly 

differ between Control Handled and shMOR-Stressed rats (p > 0.23). (B) Representative images 

of TrkB receptor labeling in the NAc core and shell. More TrkB receptor labeled cells (identified by 

arrows) are visible in the GFP-Stressed group than in any other (Scale bar = 50 μm). 
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Figure 3.5. Knockdown of VTA MORs Attenuated the Stress-Induced Increase of Delta 

FosB in the NAc Core. (A) The GFP-Stressed group (n = 4) exhibited significantly more delta 

FosB labeling than Control Handled rats (n = 9) in the NAc core (* - p < 0.04). Although shMOR-

Stressed rats (n = 6) did not differ from the Control Handled group (p > 0.58), they did tend to 

have lower levels of delta FosB compared to the GFP-Stressed group, however this effect was 

not significant (p > 0.06). In contrast, there was no effect of either stress of VTA MOR knockdown 

on delta FosB expression in the NAc shell (p > 0.47). (B) Representative images of delta FosB 

labeling in the NAc core and shell. In the NAc core, more delta FosB labeled cells (identified by 

arrows) are visible in the GFP-Stressed group than in any others (Scale bar = 100 μm). 
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DISCUSSION 

These data show that induction of VTA MORs by intermittent social defeat stress is 

necessary for social stress-induced increases in mesolimbic BDNF and TrkB receptor, but not for 

social stress-induced increases in delta FosB in the NAc. In particular, lentivirus-mediated 

knockdown of VTA MORs blocked the stress-induced induction of VTA BDNF and NAc TrkB 

receptor expression, but only attenuated the stress-induced increase of NAc delta FosB. There 

was no effect of either stress or VTA MOR knockdown on BDNF expression in the PFC. 

 

Knockdown of VTA MORs Attenuates Intermittent Social Stress-Induced Delta FosB Expression 

in the NAc 

 Social stress-induced increases in NAc delta FosB expression have been well 

documented (Nikulina et al., 2008, Nikulina et al., 2012), consistent with these reports, the current 

study found social stress significantly increased the expression of delta FosB in the NAc core. By 

contrast, the present finding that social stress did not significantly increase delta FosB expression 

in the NAc shell is inconsistent with the significant increase reported in Nikulina et al. (2012). In 

the context of drugs of abuse, such increases in NAc delta FosB are thought to reflect changes in 

VTA DA transmission, as they are associated with enhanced locomotor activity (see reviews of 

Nestler et al., 2001, Nestler, 2008). The social stress-induced increase of NAc delta FosB was 

attenuated, but not prevent by knockdown of VTA MORs. More specifically, shMOR-Stressed rats 

did not significantly differ from rats in either the Control Handled or GFP-Stressed groups. Thus 

VTA MOR only attenuated stress-induced delta FosB expression in the NAc core, which is 

interesting, since knockdown significantly prevented stress-induced changes in mesolimbic BDNF 

– TrkB receptor expression. Moreover, previous studies have shown that expression of VTA 

BDNF and NAc TrkB receptor mediate delta FosB expression in the NAc (Wang et al., 2013, 

Wang et al., 2014). Since VTA MOR knockdown blocked stress-induced increases in mesolimbic 

BDNF – TrkB receptor expression, which are associated with delta FosB expression in the NAc 

(Wang et al., 2013, Wang et al., 2014), it is surprising that knockdown of VTA MORs did not 

produce a statistically significant effect on NAc delta FosB expression. The VTA contains both 
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local GABA interneurons, as well as primary GABA neurons that innervate medium spiny neurons 

in the NAc (Sesack and Grace, 2010), and while MORs are largely localized to VTA GABA 

neurons (Sesack and Pickel, 1995, Garzon and Pickel, 2002), a subpopulation of VTA MORs 

have been localized to DA neurons (Margolis et al., 2014). Thus it is possible that the MORs 

upregulated by stress are localized to both GABA inter- and primary neurons, as well as 

potentially some DA neurons. Based on this, VTA MORs may have differential effects in the NAc, 

depending on whether they indirectly or directly mediate DA transmission, and whether they are 

on primary GABA neurons that directly project to and influence neuronal activity in the NAc. Thus 

VTA MOR knockdown may have had differential effects on NAc delta FosB expression, partially 

cancelling one another out, such that net effect was attenuation, rather than prevention.  

 Of particular interest, when mice were classified as “susceptible” or “resilient” according 

to their post-social stress behavioral phenotypes, resilient mice exhibited increased delta FosB 

labeling in only D1 receptor-containing medium spiny neurons, while susceptible mice showed 

increased delta FosB labeling in only D2 receptor-containing medium spiny neurons (Lobo et al., 

2013). Such differential induction of delta FosB in subtypes of medium spiny neurons in 

susceptible and resilient rodents may help to explain conflicting reports of stress-induced delta 

FosB expression in the NAc. When VTA neurons were phasically stimulated, delta FosB was 

increased in both types of medium spiny neurons in the NAc core, but only increased the 

expression of delta FosB in D1 receptor-containing neurons of the NAc shell (Lobo et al., 2013). 

Moreover, stimulation of D2 receptor-containing medium spiny neurons promotes susceptibility to 

subthreshold social defeat stress in mice, and these neurons show enhanced excitatory inputs 

after stress (Francis et al., 2015). A subset of medium spiny neurons were shown to form 

functions synapses on non-dopamine neurons in the VTA, and the terminals of these medium 

spiny neurons are sensitive to mu-opioids and act via GABAA receptors (Xia et al., 2011) (Xia et 

al., 2011). Taken together, this finding and the finding that activity of D2 receptor-containing 

medium spiny neurons confers susceptibility to social stress (Francis et al., 2015), it is possible 
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the NAc is a potential source of the endogenous mu-opioids that activate, and potentially 

underlie, social stress-induced MOR expression in the VTA. 

 

There Is No Effect of Either Stress or VTA MOR Knockdown on BDNF Expression in the PFC 

 Although a previous study noted a significant increase in PFC BDNF expression that 

persisted for up to 10 days (Nikulina et al., 2012), the present study failed to note a significant 

effect of stress on BDNF in these areas of PFC at the same time point. In addition to being 

transiently expressed in the PFC, BDNF is rapidly upregulated within 2 h of social stress, and 

levels are known to return to normal at most 23 days after the last episode of social stress 

(Fanous et al., 2010). In light of this, the present finding that social stress did not increase BDNF 

expression in the PFC suggests that 10 days may be near the upper limit of this transient stress-

induced increase of PFC BDNF expression. This theory is consistent with reports that intra-BDNF 

infusion to the medial PFC attenuates cocaine seeking (Berglind et al., 2007) and cocaine-

induced neuroadaptations in the NAc (Berglind et al., 2009). Additionally, another study showed 

that chronic unpredictable stress attenuates cocaine-induced increase of PFC BDNF expression, 

and also noted that in repeatedly stressed rats given saline, PFC BDNF levels did not differ from 

saline treated controls (Fumagalli et al., 2009). Taken together, these studies suggest that 

increased BDNF expression in the PFC might not be expected to accompany, and may even 

attenuate, stress-induced cross-sensitization to psychomotor stimulants. In which case, given that 

the present study collected tissue samples at the time that cross-sensitization is known to be 

present (Johnston et al., 2015; see also review of Nikulina et al., 2014), it is not surprising that 

there was no effect of stress on BDNF expression in the PFC.  

The VTA receives dense innervation from PFC glutamate projections, a role for which 

has been well established in behavioral sensitization to drugs of abuse (Vanderschuren and 

Kalivas, 2000), additionally the PFC also receives VTA GABA projections that contain MORs 

(Morales and Pickel, 2012). Taken together, these features of the mesocortical pathway allowed 

for the possibility that VTA MOR knockdown may have altered BDFN expression in the PFC by 

either direct projections or indirect feedback mechanisms, regardless of stress treatment. In 
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contrast, data from this study show that VTA MOR knockdown had no effect on BDNF expression 

in either the infralimbic or prelimbic areas of the PFC. While the VTA receives glutamate 

projections from the PFC, it has efferent DA and GABA projections that innervate the PFC 

(Sesack and Grace, 2010, Morales and Pickel, 2012, Walsh and Han, 2014). The present finding 

that VTA MOR knockdown does not alter PFC BDNF expression suggests that social stress does 

not upregulate MOR expression on VTA neurons that project to the PFC, and that knockdown of 

VTA MORs does not activate a feedback loop to this region. However given the rapid stress-

induced upregulation of BDNF in the PFC (Fanous et al., 2010) and that the present study did not 

note an effect of stress in the PFC at this time point, it is possible that knockdown of VTA MORs 

may have augmented stress-induced changes in PFC BDNF expression at an earlier time point 

than was analyzed in this current study. Namely, it is possible that knockdown of VTA MORs 

augmented DA and/or GABA transmission in the PFC and induced transient changes that were 

not detectable 10 days after the last episode of stress. Thus the possibility that the PFC is 

involved in VTA MOR-mediated effects of stress in the mesocorticolimbic circuit cannot be ruled 

out, and future studies will need to be conducted to determine if the effects VTA MOR knockdown 

vary at different time points after stress.  

 

VTA MORs Are Necessary for Induction of VTA BDNF by Intermittent Social Stress 

The two-fold increase of VTA BDNF expression which was observed in the VTA is 

consistent with previous reports (Berton et al., 2006, Fanous et al., 2010, Nikulina et al., 2012). 

More importantly, these results show that knockdown of VTA MORs prevented social stress-

induced VTA BDNF expression. That knockdown of VTA MORs blocks social stress-induced 

increase of BDNF labeling suggests that VTA BDNF induction after social stress exposure is 

dependent on local MOR upregulation. In fact, increased MOR activity in hippocampus also 

induces local BDNF mRNA (Zhang et al., 2006). While others have suggested that VTA BDNF 

modulates the function of local MORs (Vargas-Perez et al., 2009b, Koo et al., 2012), the current 

study shows that VTA MORs can regulate the local expression of BDNF. These reciprocal 

findings may be attributed to differences between exogenous opiate and endogenous opioid 
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functions, as well by differences in the VTA input systems recruited by exposure to morphine and 

social stress. 

Although VTA BDNF is predominantly thought to be found in DA neurons (Gall et al., 

1992, Seroogy et al., 1994), it is possible that MORs may control the transmission of VTA GABA 

neurons to indirectly produce subsequent changes in local DA neurons. Specifically, if MOR 

activity on GABA neurons increases the excitability of local DA neurons (Mathon et al., 2005), 

then the subsequent reduction in VTA GABAergic tone allows for MORs to affect BDNF 

expression in VTA DA neurons. A recent study showed that a subset of VTA MORs are actually 

excitatory and found on VTA DA neurons (Margolis et al., 2014). Thus it is also possible that 

social stress may upregulate excitatory MORs on VTA DA neurons, to directly increase VTA DA 

transmission and BDNF expression. Additional research using electrophysiology will be needed 

to determine whether social stress differentially increases the expression of excitatory vs. 

inhibitory MORs in the VTA.  

 

VTA MORs Are Necessary for Intermittent Social Stress-Induced Increases in Mesolimbic BDNF-

TrkB Receptor 

Previous studies have indicated that social stress increases the release of VTA BDNF in 

the NAc (Krishnan et al., 2007, Wang et al., 2013, Walsh et al., 2014), and have further 

implicated it’s receptor TrkB in the behavioral consequences of social stress (Wang et al., 2014). 

Taken together, these studies suggest that social stress increases the expression of TrkB 

receptor in the NAc in response to increased release of VTA BDNF. In support of this, the present 

study found that intermittent social stress-significantly increased TrkB receptor expression in both 

the NAc core and shell of subjects that also exhibited stress-induced expression of VTA BDNF. 

Similar to the preventative effect of VTA MOR knockdown on VTA BDNF, the present study also 

found that VTA MOR knockdown blocked social stress-induced TrkB receptor expression in both 

regions of the NAc. Taken together, these data extend on previous findings, suggesting that not 
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only does social stress increase mesolimbic BDNF-TrkB receptor expression, but that this effect 

is mediated by MORs in the VTA. 

 

Implications of VTA-MOR Augmentation of Social Stress-Induced Increases in Mesolimbic BDNF 

– TrkB Receptor Signaling  

 Recently it was reported that social stress-induced upregulation of VTA MORs is critical 

for the behavioral consequences of intermittent social defeat stress (Chapter 2; see also 

Johnston et al., 2015). In particular, knockdown of VTA MORs prevented stress-induced cross-

sensitization to amphetamine (Johnston et al., 2015), a phenomena that has been linked to 

mesolimbic BDNF – TrkB receptor signaling (Wang et al., 2013, Wang et al., 2014). Additionally, 

upregulation of VTA MOR occurs early in the cross-sensitization process (Nikulina et al., 1999, 

Nikulina et al., 2005, Nikulina et al., 2008), prior to a persistent increase of VTA BDNF expression 

(Fanous et al., 2010). In light of these findings, it is not surprising that the present results 

demonstrated that VTA MORs are necessary for social stress-induced increases in VTA BDNF 

and its TrkB receptor in the NAc. Prevention of social stress-induced expression in BDNF by VTA 

MOR knockdown suggests that stress-induced increases in VTA BDNF are a consequence of 

MOR-dependent increases in VTA GABAergic tone. In support of this, and consistent with the 

preventative behavioral effects VTA MOR knockdown (Johnston et al., 2015), is the study by 

Mathon et al. (2005), in which genetic MOR knockout mice showed increased GABAergic input 

onto local VTA DA neurons and decreased cocaine reinforcement. Thus it is likely that social 

stress upregulates MOR expression on VTA GABA neurons to facilitate BDNF expression in local 

DA neurons, while VTA MOR knockdown may increase VTA GABAergic tone, preventing 

alterations in the mesolimbic expression of BDNF and its receptor TrkB.  

 

Concluding Remarks 

 In summary, knockdown of VTA MORs prevented social stress-induced increases in VTA 

BDNF and TrkB receptor in the NAc. By contrast, knockdown of VTA MORs only attenuated the 

effect of stress on NAc delta FosB expression, while there was no effect of either stress or MOR 
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knockdown on BDNF expression in areas of PFC. In rats, continuous social stress suppresses 

cocaine reward and decreases VTA BDNF expression (Miczek et al., 2011a), however it is 

unknown whether continuous social stress alters VTA MOR expression. It is possible that 

continuous social stress reduces cocaine reward and VTA BDNF expression as a function of 

downregulated VTA MOR expression, which would suggest that VTA MORs may mediate a 

switch between the sensitizing effects seen with intermittent social stress and the suppressed 

cocaine reward observed after continuous social stress.  

  In conclusion, the present results indicate that social stress-induced upregulation of VTA 

MORs mediates subsequent increases in mesolimbic BDNF – TrkB receptor signaling, all of 

which have been functionally implicated in stress-induced cross-sensitization to amphetamine 

(Wang et al., 2013, Wang et al., 2014, Johnston et al., 2015). Knockdown of VTA MORs alone 

did not significantly alter the expression of BDNF, TrkB receptor, or delta FosB in the 

mesocorticolimbic circuit, yet significantly prevented stress-induced alterations in their 

expression, and is known to prevent stress-induced cross-sensitization. Taken together, these 

findings suggest that VTA MORs may represent a potentially specific target for the therapeutic 

intervention of stress-related substance abuse. 
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CHAPTER 4: LOCALIZATION OF PHOSPHORYLATED AKT IN VTA GABA NEURONS 

AFTER SOCIAL STRESS EXPOSURE: IMPLICATIONS FOR AMPHETAMINE CROSS-

SENSITIZATION AND WEIGHT REGULATION 3 

 

ABSTRACT 

Intermittent social defeat stress produces long-lasting cross-sensitization to psychomotor 

stimulants, an effect that is known to depend on the expression of mu-opioid receptors (MORs) in 

the ventral tegmental area (VTA). Stimulation of MORs is known to activate a variety of 

intracellular signaling cascades, including phosphorylation of AKT (pAKT) by phosphoinositide 3-

kinase (PI3K). Additionally, AKT phosphorylation is critical for drug-induced sensitization to 

psychomotor stimulants. It is unknown whether social stress increases pAKT downstream of 

MOR upregulation, or whether AKT phosphorylation is related to the behavioral outcomes of 

social stress. To address these questions, two experiments were conducted. In the first, to 

determine whether social stress increases MOR – pAKT signaling, after lentivirus-mediated 

manipulation of VTA MORs and intermittent social defeat stress, fluorescent 

immunohistochemical double labeling of pAKT with markers for DA or GABA neurons was 

conducted in the VTA. The results show that social stress significantly increased pAKT co-

localization with GABA, but not DA neurons in the VTA. Knockdown of VTA MORs prevented this 

effect, suggesting that social stress-induced increases in AKT phosphorylation are dependent 

upregulation of VTA MORs. In experiment 2, intra-VTA inhibition of pAKT during to stress was 

used to assess whether stress-induced AKT phosphorylation mediates the behavioral 

consequences of social defeat stress. When administered an amphetamine challenge (1.0 mg/kg, 

i.p.), rats assigned to Saline-Stressed conditions exhibited significant induction of cross-

sensitization compared to Control Handled subjects, this induction was attenuated in rats who 

received intra-VTA infusions of inhibitor during stress. To determine whether AKT 

                                                
3 None of the data in presented in this chapter have been published, in-text references to 
Johnston et al. (2015) are referring to the behavioral data presented in Chapter 1 or the results of 
VTA BDNF immunohistochemistry presented in Chapter 2 of this dissertation. To see the 
published manuscript in its entirety, please refer to Appendix A. 
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phosphorylation is necessary for the expression of cross-sensitization, a reversal was conducted 

using Saline-Stressed rats that previously exhibited cross-sensitization. Prior to a second 

amphetamine challenge, these rats were given intra-VTA infusions of pAKT inhibitor. Acute 

inhibition of VTA pAKT was sufficient to block the expression of stress-induced cross-

sensitization, without blunting the locomotor-activating effects of amphetamine. Taken together, 

these data suggest that AKT phosphorylation represents a novel target for the treatment of 

substance abuse disorders. 

 

INTRODUCTION 

Stress has been correlated with increased risk of substance abuse and relapse in 

humans (Sinha, 2001, 2008, 2011). In rats, intermittent social defeat stress procedures in rats 

consistently result in enhanced response to psychomotor stimulants, a phenomena known as 

“cross-sensitization” (Covington and Miczek, 2001, Nikulina et al., 2004, Nikulina et al., 2012). 

Additionally, social defeat stress rapidly upregulates mu-opioid receptors (MORs) in the ventral 

tegmental area (VTA), an effect which persists for up to 14 days (Nikulina et al., 2008). Of 

particular importance, a recent study showed that social stress-induced upregulation of VTA 

MORs is necessary for stress-induced weight gain deficits, cross-sensitization to amphetamine, 

and BDNF expression in the VTA (Johnston et al., 2015). Given that increases in VTA MORs are 

necessary for both the behavioral and cellular consequences of social stress, it is important to 

look at activity dependent changes in VTA MOR-mediated intracellular signaling cascades. MORs 

activate numerous intracellular pathways, including the pathway that phosphorylates AKT (pAKT; 

Iglesias et al., 2003, Mazei-Robison et al., 2011).  

Of particular interest, MOR activation has been shown to directly increase 

phosphoinositide 3-kinase (PI3K) – pAKT signaling, an effect that can be disrupted with a 

PI3K/AKT inhibitor, but not an inhibitor of mitogen-activated protein kinase/extracellular signal-

regulated kinase (MAPK/ERK), another MOR-induced intracellular signaling cascade (Iglesias et 

al., 2003). This suggests that MOR-induced AKT phosphorylation is unrelated to MAPK/ERK 

signaling and suggests that it might have distinct functional effects in neurons. In fact, AKT 
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phosphorylation has been implicated in the mediation of GABA transmission through insertion of 

GABAA receptor in the cell membrane (Wang et al., 2003). A functional role for pAKT has also 

been demonstrated in drug-induced sensitization to cocaine, wherein systemic or 

intracerebroventricular inhibition of AKT phosphorylation prevented sensitized responses (Izzo et 

al., 2002, Wu et al., 2011)  

While phosphorylation of AKT is crucial for drug-induced sensitization to cocaine (Izzo et 

al., 2002, Wu et al., 2011), it is unknown whether AKT phosphorylation is important for stress-

induced cross-sensitization to drugs of abuse. Although one study found a regional decrease of 

VTA pAKT after continuous social defeat stress (Krishnan et al., 2008), MORs are only expressed 

in a subpopulation of VTA cells (Sesack and Pickel, 1995, Garzon and Pickel, 2002). Thus if 

stress-induced MOR activity increased pAKT phosphorylation in a subset of VTA cells, it is not 

likely to be detected by the Western blot analyses employed by Krishnan et al. (2008). Moreover, 

in rats continuous and intermittent social defeat stress are known to produce opposite effects on 

response to psychostimulant drugs and VTA BDNF expression (Miczek et al., 2011a), therefore 

while pAKT may be reduced after continuous social stress, it is possible that it increased by 

intermittent social stress. 

Although research has implicated AKT phosphorylation in sensitization to 

psychostimulant drugs (Izzo et al., 2002, Wu et al., 2011), it is unclear whether the VTA is the site 

action and whether AKT phosphorylation is relevant to stress-induced cross-sensitization. To 

address these questions, two separate experiments were conducted. In the first experiment, 

lentivirus constructs were infused to the VTA to manipulate MOR expression, after recovery, 

subjects were put through intermittent social defeat stress procedures. In order to investigate the 

effects of social stress and VTA MOR knockdown on local pAKT expression, subjects were 

sacrificed to quantify pAKT expression in VTA DA and GABA neurons using fluorescent 

immunohistochemical double labeling. The second experiment was conducted to investigate 

whether VTA AKT phosphorylation mediates social stress-induced weight gain deficits and cross-

sensitization. Subjects were bilaterally implanted with intra-VTA cannula and a pAKT inhibitor was 

delivered prior to each episode of stress, 10 days later an amphetamine challenge was 
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administered to assess for the induction of cross-sensitization. To determine whether AKT 

phosphorylation is necessary for the expression of stress-induced cross-sensitization, one week 

later a reversal was conducted wherein intra-VTA infusions of pAKT inhibitor were administered 

prior to a second amphetamine challenge. Finally, the functional role of VTA AKT phosphorylation 

in social stress-induced long-term weight gain deficits was investigated. 

 

METHODS 

4.1 Subjects 

Experimental subjects were male Sprague-Dawley rats (N = 41; Charles River 

Laboratories, Hollister, CA) weighing 200-250 g on arrival. Three days before social stress 

exposure, subjects were individually housed in standard plastic cages (25x50x20 cm3). Male 

Long-Evans rats (weighing 550-700 g), termed ‘residents’, were pair-housed with a tubal-ligated 

female in large plastic cages (37x50x20 cm3). All rats were maintained on a 12-12 reverse light-

dark cycle (lights out at 0900 h) with free access to food (Purina Rodent Diet, Brentwood, MO) 

and water. Residents were retired breeders, previously screened for aggressive behaviors, and 

were used to induce social defeat stress in experimental subjects. All experimental procedures 

were approved by the Institutional Animal Care and Use Committees at the University of Arizona. 

All studies were conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals (National Research Council, 2011), and every effort was made to minimize pain, 

suffering and the number of subjects. 

 

4.2 Experimental Design 

Two experiments were conducted in parallel, the first investigated whether increased 

AKT phosphorylation is a downstream target of social stress-induced MOR upregulation in the 

VTA. Next the second experiment investigated the involvement of AKT phosphorylation in the 

induction and expression of social stress-induced cross-sensitization to amphetamine. In both 
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experiments, after arrival, experimental rats were habituated to laboratory conditions for 7 days 

before surgery to either knockdown VTA MORs or to implant cannulas above the VTA.  

In the first experiment (Fig. 4.1), subjects were randomly assigned to one of four 

conditions: Non-Manipulated MOR+Handled, Non-Manipulated MOR+Stressed, MOR 

Knockdown+Handled, MOR Knockdown+Stressed. At the time that amphetamine cross-

sensitization is known to be present, 10 days after the last episode of stress or handling, all 

subjects (N = 21) were perfused to study the effects of Stress and MOR knockdown on the co-

localization of pAKT with DA and GABA neurons of the VTA. 

In the second experiment (Fig. 4.1), rats (N = 28) were randomly assigned to one of four 

experimental conditions: Saline+Handled, Saline+Stressed, pAKT Inhibitor+Handled, pAKT 

Inhibitor+Stressed. In order to study the effect of VTA AKT phosphorylation on the induction of 

social stress effects, subjects (N = 28) received an amphetamine challenge 10 days after the last 

episode of stress or handling. Additionally, to study the effect of pAKT on the expression of 

amphetamine cross-sensitization, a reversal was conducted 8 days later, wherein 

Handled+Inhibitor and Saline+Stressed rats were given a second amphetamine challenge (N = 

15). All subjects were perfused 23 days after the last episode of defeat or handling for verification 

of infusion sites with Nissl stain. To investigate the influence of VTA pAKT inhibition on social 

stress-induced deficits in weight gain, all subjects were weighed prior to each episode of 

defeat/handling, and again prior to perfusion. 

 

4.3 Surgical Procedures and Infusions 

4.3.1 Bilateral VTA Infusion of Lentiviral Constructs 

The control lentiviral construct induced expression of green fluorescent protein (GFP) and 

a short hairpin RNA (shRNA) that does not target any known rat gene, while the lentiviral 

construct used to induce MOR knockdown expressed GFP and a shRNA that targets MOR 

(shMOR) for RNA interference. Lentiviral constructs were have been previously validated 

(Johnston et al., 2015) and were prepared as previously described (Lasek et al., 2007). After 

random assignment to either GFP or shMOR knockdown conditions, rats were anesthetized with  
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Figure 4.1. Schematic of Experimental Timelines. In experiment 1, rats were given 7 days to 

recover from surgery to manipulate VTA MOR levels, and were then exposed to intermittent (4x in 

10 days) social defeat stress or handling procedures. Ten days after the last episode of stress, at 

a time when stress-induced cross-sensitization is observed (Nikulina et al., 2012, Johnston et al., 

2015), subjects were perfused for fluorescent immunohistochemical double labeling of pAKT 

expression in VTA GABA and DA neurons. In experiment 2, subjects were bilaterally implanted 

with intra-VTA cannula and then a pAKT inhibitor was infused prior to each episode of stress or 

handling. Ten days after the conclusion of stress and handling procedures, subjects were given 

an amphetamine challenge to test for the induction of stress-induced cross-sensitization. To test 

whether acute inhibition of VTA pAKT blocks the expression of stress-induced cross-sensitization, 

eight days later subjects that had previously showed cross-sensitization, intra-VTA infusions of 

pAKT inhibitor were delivered prior to a second amphetamine challenge. Five days later, all 

subjects were perfused to verify locations of cannula. 
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isoflurane and positioned in a stereotaxic frame (Leica Angle Two; Richmond, IL). Bilateral VTA 

(AP -5.15, ML ±2.15, DV -8.7, Tilt 10°; Paxinos and Watson, 2007) infusions of the appropriate 

lentiviral construct (1.0 µl each) were administered at a flow rate of 0.1 µl/min, and allowed to 

diffuse for 10 min before withdrawal of the syringe (Hamilton; Model 7105 KH; 24 gauge tip; 

Reno, NV) . The accuracy of each infusion was later verified using localization of GFP expression 

(data not shown). Subjects were given 7 days to recover before the start of intermittent social 

stress or handling procedures (Fig. 1A). 

 

4.3.2  Bilateral VTA Implantation of Cannulas and Infusions of pAKT Inhibitor 

Rats were anesthetized using isoflurane and positioned in a stereotaxic frame (Leica 

Angle Two; Richmond, IL). Two small stainless steel screws (Tx2-4, Small Parts Inc., Miami 

Lakes, FL) were inserted near bregma to stabilize the skull, and then guide cannulas (24 gauge, 

6 mm long, C316G, Plastics One, Roanoke, VA) were implanted above the VTA (AP -5.15, ML 

+/-2.15, Tilt 10 degrees; Paxinos and Watson, 2007). Everything was cemented into place 

(Duralay, MD-1300, Reliance Dental Mfg. Co., Worth, IL) and then guide cannula were fitted with 

a dummy cannula (6.7 mm long, C316DC, Plastics One) to prevent clogging and contamination. 

During each set of infusions, dummy cannula were removed and infusion cannula (31 gauge, 7.7 

mm long, C316I, Plastics One) were inserted through the guide cannula, directly above the VTA.  

To prevent phosphorylation of AKT, this study utilized a dual AKT/mTORC (mammalian 

target of rapamycin complex) inhibitor (10 µM; NVP-BEZ235, #10565, Cayman Chemicals, Ann 

Arbor, MI). Although this particular AKT inhibitor has not been previously used in the brain, its 

effects have been well validated in other tissue cultures and with systemic administration (Maira 

et al., 2008, Serra et al., 2008, Chapuis et al., 2010, Mukherjee et al., 2012). Additionally, this 

drug is currently undergoing clinical trials at the Novartis Pharmaceutical Corporation. While more 

traditional pAKT inhibitors act to block phosphorylation at Thr308 phosphorylation site, AKT is 

also phosphorylated at Ser473, and it is this site that has been implicated in the full catalytic 

activity of pAKT (Bellacosa et al., 1998, Scheid and Woodgett, 2001, Iwanami et al., 2009). By 

contrast, the inhibitor used in this study blocks the induction of pAKT by preventing both PI3K-
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induced phosphorylation at Thr308, and mTORC2-mediated phosphorylation at Ser473 (Maira et 

al., 2008). Unlike traditional inhibitors, such as LY294002, which interacts with various classes of 

PI3Ks and other unrelated targets (Gharbi et al., 2007), NVP-BEZ235 is specific for Class 1 

PI3Ks and mTOR signaling, but does not does not target other protein kinases (Maira et al., 

2008).  

Using sonification at 4⁰C, the AKT inhibitor (NVP-BEZ235) was dissolved in saline to 

make a 20 µM stock that was aliquoted and stored at -20⁰C. Prior to each set of infusions, a fresh 

solution of 10 µM inhibitor was prepared from stock and kept on ice. Intra-VTA infusions of either 

1µl inhibitor or 0.5 µl saline were administered at a rate of 0.175 µl/min, after which subjects were 

returned to their home cages for 1 h to allow the inhibitor to take full effect (Maira et al., 2008). In 

pilot testing, when given concurrently with systemic amphetamine (2.0 mg/kp, i.p.), chromogen 

immunohistochemistry showed that this intra-VTA dose of inhibitor significantly reduced AKT 

phosphorylation 24 h later (Fig. 4.2B-D). Subjects were given 7 days to recover before the start of 

intermittent social stress or handling procedures (Fig. 4.1B). At the conclusions of the study, 

subjects were perfused and the accuracy of infusions was verified with nissl stain (Fig. 4.2A). 

 

4.4 Behavioral assessments 

4.4.1  Intermittent social defeat stress and handling procedures 

In both experiments, social defeat stress was induced by a short confrontation between 

an aggressive resident and an experimental intruder rat (see Chapter 1, Fig. 1.1), as described 

previously (Tidey and Miczek, 1996, Nikulina et al., 2004, Nikulina et al., 2012). After the female 

was removed, an experimental subject was placed inside the resident’s home cage within the 

confines of a protective metal mesh cage (15x25x15 cm3). After 5 min the protective cage was 

removed, allowing for the resident to attack. Attacks persisted until subjects engaged in 

submissive supine posture for at least 4 sec, after which the experimental rat was placed back in 

the protective cage and exposed to threat from the resident for an additional 20 min. Intermittent 

social stress procedures were administered every third day for 10 days (Fig. 4.1). At each  
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Figure 4.2. Cannula Infusions Were Accurate to the VTA and NVP-BEZ235 Effectively 

Inhibited Local AKT Phosphorylation. (A) Representative black and white image of nissl 

stained tissue showing cannula placement above the left VTA (fr: fasciculus retroflexus; scale bar 

= 500 µm). (B) Compared to saline infusions, a lower intra-VTA dose of 1,000 nM of NVP-

BEZ235, a dual PI3K/mTORC inhibitor of pAKT, produced a small but significant decrease in 

pAKT expression (* indicates p < 0.04). By contrast a higher dose of 10,000 nM was far more 

effective, significantly reducing the number of pAKT labeled cells compared to both saline (p < 

0.001) and 1,000 nM of inhibitor conditions (* indicates p < 0.03). (C and D) Representative 

images of pAKT expression in the VTA 24 h after either infusion of saline (C) or 10,000 nM of 

NVP-BEZ235 pAKT inhibitor (D), arrows indicated labeled cells (Scale bar = 100 µm). Given how 

effectively intra-VTA infusion of 10,000 nM of NVP-BEZ235 inhibited local pAKT expression, this 

dose was used throughout subsequent studies. 
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corresponding time point, rats in the control groups were handled for approximately 2.5 min. 

Defeat or handling procedures were carried out 4x in 10 days (every 3rd day), and at the end of 

each episode of defeat or handling, all rats were returned to their home cages. 

 

4.4.2 Amphetamine challenge 

Using a low dose of d-amphetamine, two separate challenges were administered as 

described in (Nikulina et al., 2004, Nikulina et al., 2012) to respectively test for the induction and 

expression of social stress-induced cross-sensitization to amphetamine (Fig. 4.1B). To test 

whether inhibition of pAKT during social stress prevented the induction of cross-sensitization to 

amphetamine, the first challenge was conducted without intra-VTA infusions of pAKT inhibitor. To 

determine whether inhibition of pAKT is sufficient to prevent the expression of social stress-

induced cross-sensitization to amphetamine, before the start of the second challenge, stressed 

subjects that previously showed cross-sensitization were given intra-VTA infusions of pAKT 

inhibitor. 

For two days prior to the first amphetamine challenge, rats were injected with vehicle 

(0.9% sterile saline; 1.0 ml/kg, i.p.), and were acclimated to the procedure room for 1 h in their 

home cages. On the day of the challenge locomotor activity was recorded at 10 min intervals 

using video tracking software (Videotrack, Viewpoint Life Sciences; Montreal, Canada). 

Locomotor activity was detected as the number of and distance travelled during locomotion (>10 

cm) across 170 min consisting of 3 phases: Baseline, Saline, and Amphetamine. Baseline data 

were recorded for 30 min, after which a saline injection (1.0 ml/kg, i.p.) was given and locomotor 

activity was recorded for 60 min. Finally, rats received an injection of d-amphetamine sulfate (1.0 

mg/kg, i.p.; Sigma-Aldrich; St. Louis, MO), and locomotor data were recorded for 80 min. Video 

tracking and data collection were paused during the administration of saline and amphetamine 

injections. Rather than stereotypical behaviors, this dose of amphetamine has been shown to 

primarily induce large ambulatory movements (Geyer et al., 1987). In order to quantify 
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amphetamine sensitization, ambulatory movements (> 10 cm) were measured in terms of the 

number of movements initiated and the distance travelled (cm) during such movements. 

 

4.5  Tissue Preparation and Immunohistochemistry 

4.5.1 Perfusion 

Rats from both experiments were anesthetized with sodium pentobarbital (100 mg/kg, 

i.p.; Euthasol, Virbac Co., St. Louis, MO) and perfused transcardially with 4% paraformaldehyde 

as described in (Fanous et al., 2010, Johnston et al., 2015). Brains were then removed, post-fixed 

for 1.5 hours at 4°C, and then placed in graded sucrose solutions. Frozen brain tissue was 

sectioned (20 μm) and serial VTA sections were mounted onto slides. 

  

4.5.2 Verification of Infusion Sites 

In experiment 1, one analogous set of slides were used to verify the infusions of lentiviral 

constructs according to viral expression of GFP (data not shown). This efficacy of these lentiviral 

constructs has been previously validated and are known to produce a persistent depletion of 

MORs that is specific to the VTA (Johnston et al., 2015). In experiment 2, slides were processed 

for histology using Nissl stain, and then cannula placement was verified with light microscopy 

(Fig. 4.2A). In general, both lentiviral infusions and cannula placement were accurate and limited 

to the VTA. 

 

4.5.3  Fluorescent Immunohistochemistry 

Fluorescent immunohistochemistry was performed to quantify pAKT double labeling with 

either glutamic acid decarboxylase 65/67 (GAD 65/67) or tyrosine hydroxylase (TH) monoclonal 

antisera. Immunohistochemistry for pAKT and GAD 65/67 were done in the absence of detergent 

to prevent GAD 65/67 from leaving cells. Briefly, blocking solution (10% normal goat serum/0.5M 

KPBS, with 0.4% Triton X-100 for pAKT/TH labeling) was applied to sections for 1 h at room 

temperature, then the respective pair of primary antibodies were diluted in appropriate blocking 

solution and simultaneously applied for 48 h at 4°C (pAKT Ser473 1:500 dilution, #4060, Cell 
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Signaling Technology, Beverly, MA; GAD 65/67 1:250 dilution, M018-3, MBL International 

Corporation, Woburn, MA; TH 1:500 dilution, SC-7837, Santa Cruz). Sections were then 

incubated at room temperature for 2.5 h with fluorescent labelled secondary antibodies diluted to 

1:1000. Specifically, pAKT was labeled with an Alexa 350 secondary rabbit antibody, while GAD 

65/67 and TH were respectively labeled with an Alexa 660 secondary mouse antibody (Alexa 

350-R, A-21068; Alexa 660-M, A-21055; Life Technologies, Grand Island, NY). To prolong 

fluorescent labeling, slides were cover slipped with Prolong® Gold Antifade Mountant (#P36934, 

Life Technologies). 

Tissue sections were imaged using a Zeiss Axiophot microscope and digitalized using a 

black and white digital camera. Black and white images of each channel were then re-colored and 

merged together using ImageJ (National Institutes of Health, USA, http://imagej.nih.gov/ij). 

Although pAKT was labeled with a fluorescent Alexa 350 secondary (blue), it was pseudo-colored 

green in order to better visualize cases of double labeling with cells also stained with Alexa 660 

secondary (pseudo-colored red). In order to maintain high resolution while conducting modified 

stereological counts of single and double labeled cells, 4 separate images of each coronal VTA 

section were taken at 40x magnification and then merged into one image showing 

immunolabeling throughout that entire section. 

 

4.6  Modified Stereological Cell Counts 

Immunolabeled cells were quantified using ImageJ (National Institutes of Health, USA, 

http://imagej.nih.gov/ij) and analyses were conducted using the modified stereology counting 

procedure described in Nikulina et al. (2012), and Johnston et al. (2015). Briefly, a grid of squares 

(0.0075 mm2) was overlaid on both hemispheres of 2 sections from each subject. Immunolabelled 

cells were counted in half the grid squares, the precise squares being randomly determined. Cells 

positive for immunolabeling were counted such that cells crossing the bottom or right lines of 

each square were included, while cells crossing the top or left lines of the square were excluded 

from analysis. For each subject, estimates of total labeling density (mm2) were calculated by 

averaging the bilateral counts of labeled cell profiles across sections, and then dividing the total 
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number of cell profiles by the total area assessed. In pilot analyses of chromogen staining, 

immunolabeling was performed as described in Johnston et al. (2015). For fluorescent analyses, 

both single and double labelled cells were counted. Single labeled labelled cells were indicated 

by either a green (pAKT) or red (GAD 65/67 or TH) color, while double labelled cells (green + red) 

were indicated by an orange/yellow color product. 

 

4.7  Statistical Analyses 

The results of each measure are expressed as mean ± standard error (SEM) and a p 

value ≤ 0.05 was considered to be significant. All statistical analyses were run using SPSS 

software, version 18 (SPSS Inc., Chicago, IL), and Tukey’s HSD was used for all post hoc 

comparison. Data from subjects were excluded only in the case of error during video tracking: no 

statistical outliers were excluded. Due to issues with cannula integrity over time, some additional 

subjects were excluded from the amphetamine challenge(s) and maintained under normal 

housing conditions to collect long-term weight data and for verification of cannula sites. 

 

4.7.1  Immunohistochemical Analyses 

In experiment 1, the results of immunohistochemical cell counts were analyzed using 

separate Oneway ANOVAs of single and double labeled cells, significant main effects were 

followed by post hoc comparisons. No subjects were excluded and both pAKT/TH and 

pAKT/GAD 65/67 data were analyzed from 21 subjects. A violation of homogeneity was corrected 

for with Welch’s test in both analyses of single labeled pAKT expression. In order to compare the 

results of pAKT co-localization with GAD 65/67 and TH, the total number of pAKT double labeled 

cells was calculated (Total = # of pAKT/GAD 65/67 + # of pAKT/TH cells) and then the proportion 

of pAKT in GAD 65/67 and TH cells were respectively calculated (proportion pAKT in TH or GAD 

65/67 = # double labeled cells / Total), the resulting estimates of co-localization.  
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4.7.2  Weight Gain Data 

In experiment 2, the initial weight obtained at the start of social stress procedures was 

used to normalize all subsequent data (n = 28) to weight gained from that time onward; no 

subjects were excluded from this analysis. Oneway ANOVA were run to assess for differences in 

weight at each time point, and significant main effects were analyzed for post hoc comparisons.  

 

4.7.3  Locomotor Activity  

   In the second experiment, two amphetamine challenges were administered and 

amphetamine-induced changes in locomotor activity were analyzed using separate multivariate 

analysis of variance (MANOVA) for the mean number and distance (cm) travelled during 

ambulatory movements. In order to overcome violations of sphericity in the output of repeated 

measures ANOVA, MANOVA was used to analyze the number and distance of ambulatory 

movements exhibited throughout the amphetamine challenge. Significant multivariate effects 

were followed by univariate analyses to determine which time points produced significant group 

differences, significant univariate effects were further analyzed for post hoc comparisons. Given 

that immunohistochemical analyses of social stress-induced AKT phosphorylation in the VTA 

demonstrated that AKT is only phosphorylated after stress (Fig. 4.3 and 4.6), and because there 

were no differences in weight gain of Saline-Handled and Inhibitor-Handled rats (Fig. 4.7), these 

groups were pooled into one Control Handled group. In the first challenge to test for the induction 

of stress-induced amphetamine sensitization, data were analyzed from 23 subjects for both 

dependent measures: Control Handled = 10, Saline-Stressed = 5, Inhibitor-Stressed = 8. Since 

the second challenge was administered to investigate whether intra-VTA inhibition of AKT 

phosphorylation is sufficient to block the expression of stress-induced cross-sensitization, the 

Inhibitor-Stressed group was excluded (n = 8).  
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RESULTS 

Experiment 1: Effects of Social Stress and MOR Knockdown on pAKT Expression in the VTA 

There was a significant main effect of experimental group on the number of VTA cells in 

which pAKT co-localization with GAD 65/67 (n = 21, F3,17 = 44.02, p < 0.001). Specifically, GFP-

Stressed rats had significantly more VTA cells double labeled with both pAKT and GAD 65/67 

than either GFP-Handled, shMOR-Handled, or shMOR-Stressed rats (p < 0.001, Fig. 4.3A and 

4.4). Co-localization of pAKT with GAD 65/67 did not significantly differ between GFP-Handled, 

shMOR-Handled or shMOR-Stressed groups (p > 0.98). In terms of single labeling, there was no 

significant main effect was detected for the number of cells positive for only pAKT (corrected with 

Welch’s test; n = 21, F3,8.69 = 2.57, p > 0.12). By contrast, there was a significant main effect for 

the numbers of single labeled GAD 65/67 cells (n = 21, F3,17 = 23.13, p < 0.001). While this main 

effect was significant, post hoc tests revealed that it was limited to the GFP-Stressed group, 

which had significantly fewer single labeled GAD 65/67 cells (p < 0.001). Although GFP-Stressed 

rats had fewer single labeled GABA neurons, this difference is consistent with and proportional to 

the increased number of double labeled GAD 65/67 cells. Therefore while statistically significant, 

this decrease in single labeled GAD 65/67 cells does not reflect any methodological or functional 

significance and will not be discussed further. 

The results of pAKT double labeling with TH were opposite to that observed with GAD 

65/67. Specifically, sections processed for pAKT and TH labeling showed a significant main effect 

in the number of cells single labeled pAKT (corrected with Welch’s test; n = 21, F3,9.29 = 30.08, p < 

0.001, Fig. 4.3B and 4.5), and pAKT double labeled with TH (n = 21, F3,17 = 7.097, p = 0.003). 

There were no differences in the number of single labeled TH detected in the VTA (n = 21, F3,17 = 

0.97, p > 0.42). In terms of pAKT that did not double label with TH, the GFP-Stressed group had 

significantly higher levels of single labeled pAKT compared to all other experimental groups (p < 

0.001). There was also a tendency for GFP-Stressed rats to have lower levels of pAKT that co-

localized with TH, with this effect being significant compared to shMOR-Stressed rats (p = 0.001).  
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Figure 4.3. 

Intermittent Social 

Stress Significantly 

Increased AKT 

Phosphorylation 

Downstream of 

MOR Expression in 

VTA GABA, but Not 

DA Neurons. (A) 

Compared to all 

other groups, GFP-

Stressed rats 

exhibited 

significantly more co-

localization of pAKT 

in GAD 65/67 

positive cells (* 

indicates p < 0.001). 

Co-localization of 

pAKT with GAD 

65/67 did not 

significantly differ 

between GFP-

Handled, shMOR-

Handled or shMOR-

Stressed groups (p > 0.98), and there was no effect of single labeled pAKT (p > 0.12). (B) 

Compared to all other groups, GFP-Stressed rats had significantly more VTA cells that were 

single labeled for pAKT (* indicates p < 0.001). GFP-Stressed rats also tended to have fewer 

cells double labeled for pAKT and TH, with this effect being significant compared to shMOR-

Stressed rats (* indicates p = 0.001), but not GFP-Handled (p = 0.09) or shMOR-Handled 

subjects (p = 0.144). The shMOR-Stressed group did not significantly differ from either Handled 

groups in terms of either single labeled pAKT (p > 0.87) or pAKT co-localized with TH cells (p > 

0.19).  
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Figure 4.4. VTA MOR Knockdown Prevented the Induction of pAKT Labeling in VTA GABA 

Cells by Social Stress. (A) Representative images of pAKT (green) and GAD 65/67 (red) 

labeling in anterior VTA sections. Single labeled cells are indicated by white arrows, while yellow 

arrows indicate double labelled cells colored with an orange-yellow color product (Scale bar = 

100 µm). (B) Colored single channel images of the immuno-labeling seen in the above 

representative GFP-Stressed image (close up of bottom center of image). 
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Figure 4.5. Social stress did not increase co-localization of pAKT with DA neurons in the 

VTA. (A) Representative images of pAKT (green) and TH (red) labeling in the anterior VTA. 

Single labeled cells are indicated by white arrows, while yellow arrows indicate double labelled 

cells colored with an orange-yellow color product (Scale bar = 100 µm). (B) Colored single 

channel images of the immuno-labeling seen in the above representative GFP-Stressed image 

(close up of center of image). 

  



105 

GFP-Handled, shMOR-Handled and shMOR-Stressed rats had no significant differences in either 

single labeled pAKT (p > 0.87) or pAKT co-localization with TH cells (p > 0.19).  

When the proportion of double labeled pAKT that co-localized with either TH or GAD 

65/67 are compared side by side (Fig. 4.6), it is clear that these analyses show that social stress 

increases the proportion of VTA AKT phosphorylation that occurs in GABA cells, but not DA cells, 

and that this change in expression is mediated by VTA MORs.  

 

Experiment 2: Effect of Intra-VTA Inhibition of pAKT on Intermittent Social Stress-Induced Deficit 

of Weight gain 

Weight gain data (n = 28) revealed a significant main effect both during social stress 

exposure (F3,27 = 3.73, p < 0.03), and 23 days after the last episode of stress (F3,27 = 7.87, p = 

0.001). Post hoc comparisons from weight data collected during stress and handling procedures 

showed that the Saline-Stressed group had a tendency to gain less weight than Saline-Handled 

(p = 0.048) or Inhibitor-Handled (p = 0.053; Fig. 4.7). By contrast, rats in the Inhibitor-Stressed 

group did not significantly differ from Saline-Handled, Saline-Stressed, or Inhibitor-Handled rats 

(p > 0.20). Twenty-three days after the final episode of stress or handling, the Saline-Stressed 

group had significantly lower weights than both Saline- and Inhibitor-Handled groups, but also 

rats in the Inhibitor-Stressed group (p < 0.03). Conversely, no significant differences existed 

between the Inhibitor-Stressed group and either Saline- or Inhibitor-Handled groups (p > 0.60). 

These data show that the long-term social stress-induced weight gain deficits are mediated by 

AKT phosphorylation in the VTA, and that inhibition of AKT phosphorylation is not sufficient to 

alter weight gain in the absence of stress. 
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Figure 4.6. Knockdown of VTA MORs Prevented the Proportional Increase of pAKT 

Expression in VTA GABA Neurons That Was Observed After Social Stress. While in control 

conditions pAKT co-localization was generally evenly distributed between VTA GAD 65/67 and 

TH positive cells in the VTA, much more double labeled pAKT was found in VTA GAD 65/67 

neurons after stress (88% in GFP-Stressed rats). Knockdown of VTA MORs prevent this shift in 

the expression of double labeled pAKT, maintain a roughly even distribution of double labeled 

pAKT cells. 
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Figure 4.7. Inhibition of VTA AKT Phosphorylation During Stress Prevented the 

Development of Long-Term Weight Gain Deficits. During stress and handling procedures, 

Saline-Stressed rats (n = 9) began to exhibit a weight gain deficit, showing significantly less 

weight gain than Saline-Handled rats (n = 4; * indicates p < 0.05), however this effect was not 

significant compared to Inhibitor-Handled (n = 7, p = 0.053) or Inhibitor-Stressed groups (n = 8, p 

> .20). Twenty-three days after the last infusion of inhibitor and episode of stress, Saline-Stressed 

rats exhibited a significant reduction in weight gain compared to all other groups (* indicates p < 

0.03). Neither Inhibitor-Handled or Inhibitor-Stressed rats differed from Saline-Handled rats at 

either time point (p > 0.60). 
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Effect of Intra-VTA pAKT Inhibition on the Induction of Intermittent Social Stress-Induced Cross-

Sensitization 

 There were significant main effects of experimental group on the number of ambulatory 

movements (n = 23, Wilks’ λ = 0.196, F16,26 = 2.05, p = 0.05, η2 = 0.56, observed power = 0.85) 

and distance travelled during ambulatory movements(n = 23, Wilks’ λ = 0.114, F16,26 = 3.20, p = 

0.004, η2 = 0.663, observed power = 0.98) across all time points. After amphetamine injection, 

both the number and distance of movements significantly differed at all but the last time point (p ≤ 

0.05, see Table 1 for details). Post hoc tests showed that compared to Control Handled rats, the 

Saline-Stressed group made significantly more movements from 100 – 160 min (p < 0.04; Fig. 

4.8A), and also significantly differed from Inhibitor-Stressed rats at 160 min (p < 0.005). Inhibitor-

Stressed rats did not significantly differ from Handled Controls at any time point (p > 0.05). 

Additionally, immediately after amphetamine injection, subjects in the Saline-Stressed group 

travelled significantly farther than either Handled Controls (p < 0.001) or Inhibitor-Stressed rats (p 

< 0.005) at 100 min. during 100 – 150 min (Fig. 4.8B). In contrast, from 110 – 150 min, the 

Saline-Stressed group only traveled significantly further than Handled Controls (p < 0.05), the 

Inhibitor-Stressed group did not differ from Control Handled or Saline-Stressed rats during this 

time period (p > 0.05). Combined, these data suggest that inhibition of VTA AKT phosphorylation 

during intermittent social stress is not sufficient to prevent the induction of social stress-induced 

cross-sensitization to amphetamine. 

 

Effect of acute intra-VTA pAKT inhibition on the expression of intermittent social stress-induced 

cross-sensitization 

 To test whether inhibition of VTA AKT phosphorylation is sufficient to block the 

expression of stress-induced amphetamine sensitization. One week later Saline-Stressed rats 

that had previously exhibited cross-sensitization (Fig. 4.8) were given intra-VTA infusions of 

inhibitor (Saline-Stressed+Inhibitor), and then a second amphetamine challenge was  
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Figure 4.8. Inhibition of 

pAKT in the VTA During 

Stress Attenuated the 

Induction of Cross-

Sensitization to 

Amphetamine. Vertical 

arrows denote when saline 

or amphetamine injections 

were administered, during 

which data collection and 

video tracking were paused. 

(A) After amphetamine 

injection, Saline-Stressed 

rats (n = 5) made 

significantly more locomotor 

movements from 100 – 150 

min (p < 03) than subjects in 

the Control Handled (n = 10) 

but not Inhibitor-Stressed (n 

= 8) group. At 160 min, the 

Saline-Stressed group 

exhibited significantly more 

locomotor activity than either 

Control Handled or Inhibitor-Stressed groups (* indicates p < 0.04). Inhibitor-Stressed rats did not 

significantly differ from Saline-Stressed rats at any time point (p > 0.05). (B) Immediately after 

amphetamine injection, at 100 min, Saline-Stressed rats traveled significantly further than 

subjects in either Control Handled or Inhibitor-Stressed groups (** indicates p < 0.005). From 110 

– 150 min, Saline-Stressed rats traveled significantly farther than Control Handled rats (* 

indicates p < 0.05), but not Inhibitor-Stressed rats (p > 0.05). Inhibitor-Stressed rats did not 

significantly differ from Control Handled rats at any time point (p > 0.05). 
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Figure 4.9. Acute 

Intra-VTA 

Inhibition of AKT 

Phosphorylation 

Blocked the 

Expression of 

Social Stress-

Induced Cross-

Sensitization to 

Amphetamine. 

(A) Number of 

locomotor 

movements made 

throughout the 

amphetamine 

challenge. (B) 

Average number 

of movements 

made during each 

phase of the 

amphetamine 

challenge. Vertical 

arrows indicate 

infusion of 

inhibitor, as well 

as injections of 

saline and 

amphetamine. Compared to Control Handled rats (n = 8), an effect of stress was no longer 

observed on amphetamine-induced locomotion in Saline-Stressed rats that received intra-VTA 

infusions of pAKT inhibitor (Saline-Stressed+Inhibitor; n = 7, p > 0.10). 
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administered to these and Control Handled rats. In general, there was no overall effect of group 

on either number of (n = 15, Wilks’ λ = 0.203, F13,1 = 2.94, p > 0.10; Fig 4.9) or distance travelled 

during (data not shown; n = 15, Wilks’ λ = 0.223, F13,1 = 2.62, p > 0.12) amphetamine-induced 

ambulatory movements. Given that rats in the Saline-Stressed+Inhibitor group had previously 

exhibited significant stress-induced cross-sensitization (Fig. 4.8), these data suggest that acute 

intra-VTA inhibition of AKT phosphorylation is sufficient to block the expression of amphetamine 

cross-sensitization.  

 
DISCUSSION 

Taken together, experiments 1 and 2 show that intermittent social defeat stress increases 

AKT phosphorylation in VTA GABA cells, and that this increase in pAKT is involved in the 

expression of stress-induced cross-sensitization to amphetamine and long-term weight gain 

deficits. Specifically, in experiment 1, VTA pAKT double labeled significantly more with GAD 

65/67 than TH positive cells after social stress, and this effect was dependent on the expression 

of VTA MORs. In experiment 2, inhibition of VTA AKT phosphorylation during stress was 

sufficient to prevent the development of a long-term social stress-induced weight gain deficit, as 

well as the expression of amphetamine cross-sensitization. 

 

Intermittent Social Stress Increases AKT Phosphorylation in VTA GABA Cells, but Not DA 

While previous studies have reported a regional decrease in VTA expression of pAKT 

after continuous social stress (Krishnan et al., 2008), the present study found that intermittent 

social stress significantly increased AKT phosphorylation in a subset of VTA neurons. 

Specifically, analysis of pAKT expression revealed a three-fold stress-induced increase of AKT 

phosphorylation in cells that also expressed GAD 65/67, an immunohistochemical marker for 

GABA neurons. Correspondingly, social stress significantly reduced the co-expression of pAKT in 

DA, or TH positive cells, and increased the expression of single labeled pAKT. Although Krishnan 

et al. (2008) previously used Western blots to show that pAKT expression is reduced in the VTA 

after social continuous stress, by using homogenates, this finding is heavily biased towards DA 
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neurons, which make up the majority of cells in the VTA (see review of Nikulina et al., 2014). 

Thus the significant decrease in pAKT co-localization with TH that was observed in this study is 

consistent with the Western blot findings of Krishnan et al. (2008), which showed that continuous 

social stress reduced the expression of pAKT in the VTA. While at face value the current finding 

of increased expression of pAKT in VTA GABA neurons appears inconsistent with the results of 

(Krishnan et al., 2008), it important to note that GABA neurons comprise a small percentage of 

VTA cells, therefore it is unlikely that the regional Western blots used in their study were capable 

of detecting changes in this subset of neurons. However by using a fluorescent 

immunohistochemistry, a more sensitive technique to determine cell-type specific effects, the 

present study was able to detect a significant increase of pAKT in VTA GABA cells.  

Taken together, these data suggest that intermittent social stress-induced increases in 

AKT phosphorylation do not occur in DA, and are instead limited to VTA GABA neurons. 

Moreover, while Western blots are an accurate measure of degree of protein expression at a 

regional level, it is important to remember that they are not capable of detecting cell-type specific 

changes. In the case of intracellular signaling cascades that are activity-dependent, such as 

phosphorylation of AKT, and also likely dependent on cell type, Western blots may not be the 

best measure of changes at the cellular level, due to their regional limitations. Thus the present 

finding that social stress increased AKT phosphorylation in VTA GABA cells, is not likely to be 

detected by a Western blot. Moreover, given that the current study did not detect an increase in 

pAKT expression in DA neurons, the present findings do not directly conflict with the results of 

Western blot analyses showing decreased pAKT in the VTA after stress. 

 

Knockdown of VTA MORs Prevents Social Stress-Induced Increases in AKT Phosphorylation in 

VTA GABA Cells 

In addition to finding that intermittent social stress increases the co-localization of pAKT 

with GAD 65/67, this study also determined that this effect is dependent on the expression of 

MORs in the VTA. Specifically, lentiviral-mediated knockdown of VTA MORs prevented increases 

in AKT phosphorylation in GABA cells, without altering pAKT co-expression in TH-positive cells. 
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That phosphorylation of AKT in the VTA is dependent on the local expression of MORs is 

consistent with a study showing that delta-opioid receptors activate pAKT (Margolis et al., 2011), 

which given the high degree of homology among opioid receptor types (Waldhoer et al., 2004, 

Zollner and Stein, 2007, Pradhan et al., 2012), suggests that pAKT may be a common 

downstream target of all opioid receptors. Stress significantly increased the proportion of pAKT 

found in GABA cells, such that 88% of double labeled pAKT was found in GABA cells, while only 

22% of double labeled pAKT co-localized with DA. By contrast subjects in either GFP-Handled, 

shMOR-Handled, and shMOR-Stressed groups exhibited similar levels of pAKT co-localization in 

cells positive for markers of either GABA (53-57%) or DA (43-47%). There was no effect of 

shMOR lentivirus alone on pAKT expression in the VTA, shMOR-Handled rats did not 

significantly differ from GFP-Handled controls. Taken together, these data suggest that 

intermittent social stress increases AKT phosphorylation in VTA GABA cells downstream of 

stress-induced upregulation of VTA MORs. However, it is important to note that AKT 

phosphorylation can be induced by receptors other than MORs, in particular pAKT is a 

downstream target of BDNF’s receptor, tropomyosin-related kinase B (TrkB) (TrkB; see reviews 

of Park and Poo, 2013, Nikulina et al., 2014). Although it is possible that for AKT to be 

phosphorylated independent of MOR activity, and while it was recently reported that a small 

percentage of VTA MORs are also found on VTA DA neurons (Margolis et al., 2014), the current 

study demonstrated that the effect of stress on pAKT expression is limited to GABA neurons and 

preventable by knockdown of MORs. Taken together, these results provide evidence that social 

stress predominantly acts to increase MOR expression in VTA GABA cells, the upregulation of 

which mediates increased phosphorylation of AKT.  

 

Intra-VTA Inhibition of AKT Phosphorylation Prevents Social Stress-Induced Weight Gain Deficits 

Consistent with previous reports (Meerlo et al., 1996, Pulliam et al., 2010, Fanous et al., 

2011, Venzala et al., 2012, Johnston et al., 2015), intermittent social stress reduced weight gain 

both during and 23 days after social stress exposure. Intra-VTA inhibition of pAKT during stress 

attenuated this stress-induced weight gain deficit during stress, and fully rescued the long-term 
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deficit observed 23 days later. This finding is particularly interesting, as the effect of VTA 

inhibition of pAKT was greatest 23 days after stress and infusions of inhibitor, suggesting that 

inhibition of pAKT alone does not acutely alter weight gain. However it was previously shown that 

knockdown of VTA MORs also rescues this stress-induced weight gain deficit (Johnston et al., 

2015), so is possible that AKT phosphorylation converges with other MOR-activated intracellular 

signaling cascades, such as MAPK/ERK, to help mediate stress-induced weight gain deficits. 

Given that stress-induced increase of pAKT is limited to GABA neurons and dependent on local 

MOR expression, the present finding that inhibition of VTA AKT phosphorylation during stress 

attenuated and promoted recovery from the social stress-induced deficit in weight gain is 

consistent with the crucial function of VTA MOR activity in this deficit (Johnston et al., 2015). 

Taken together, these studies suggest that social stress-induced decreases in weight gain are 

mediated by MOR – pAKT signaling in VTA GABA neurons. 

 

The Induction of Stress-Induced Amphetamine Cross-Sensitization is Attenuated by Intra-VTA 

Inhibition of pAKT 

 Compared to the Control Handled group, subjects that received infusions of saline during 

stress exhibited significantly more locomotor activity in a low dose amphetamine challenge, 

confirming prior reports that intermittent social stress induces amphetamine cross-sensitization 10 

days after the last stress episode (Covington and Miczek, 2001, Nikulina et al., 2012, Johnston et 

al., 2015). In contrast, compared to Control Handled and Saline-Stressed groups, subjects that 

had received intra-VTA infusions of pAKT inhibitor during stress did not significantly differ in their 

response to amphetamine. Thus, while inhibition of pAKT in the VTA during stress is not sufficient 

to prevent the induction of social stress-induced cross-sensitization, it did attenuate this effect. 

That inhibition of pAKT did not fully prevent the induction of stress-induced cross-sensitization to 

amphetamine is consistent with a previous study in which intracerebroventricular inhibition of 

pAKT, via its activator PI3K, blocked the expression, but not the induction of sensitization to 

cocaine (Izzo et al., 2002). Despite this, it was previously reported that lentivirus-mediated 

knockdown of VTA MORs is sufficient to prevent cross-sensitization to amphetamine (Johnston et 
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al., 2015). Since AKT phosphorylation occurs in VTA GABA neurons downstream of MOR 

upregulation (Fig. 4.3 – 4.6), intra-VTA inhibition of pAKT was expected to mirror the effect of 

VTA MOR knockdown and prevent the induction of cross-sensitization. It is surprising that 

inhibition of VTA AKT phosphorylation replicated the rescue of VTA MOR knockdown on weight 

gain, but not the induction of the induction of cross-sensitization.  

This discrepancy may be attributed to differences in the methods employed in this study 

and that of Johnston et al. (2015). Specifically, Johnston et al. (2015) used a lentiviral construct to 

induced persistent depletion of VTA MORs, meaning that this viral effect was continuous 

throughout the experiment. By contrast, in the current study, AKT phosphorylation was only 

inhibited on days where subjects were stressed or handled, and since this happened every third 

day and the inhibitor is metabolized within 24 h, this means that AKT phosphorylation may have 

increased in-between episodes of social stress. Although this could not be verified, due to having 

conducted a reversal that altered pAKT expression in previously Saline-Stressed rats, this theory 

fits with the attenuation of cross-sensitization observed in Inhibitor-Stressed rats. Thus, it is 

possible that intra-VTA inhibition of pAKT would have significantly prevented stress-induced 

cross-sensitization if the drug had been administered daily, rather than intermittently, during 

social stress or handling procedures.  

 

The Expression of Social Stress-Induced Cross-Sensitization to Amphetamine is Prevented by 

Co-Administration of Intra-VTA pAKT Inhibitor 

 After the first amphetamine challenge verified the induction of social stress-induced 

cross-sensitization in previously Saline-Stressed rats, these rats were given infusions of pAKT 

inhibitor (Saline-Stressed+Inhibitor) and put through a second amphetamine challenge to access 

for the expression of cross-sensitization. The results showed that intra-VTA inhibition of AKT 

phosphorylation was sufficient to block the expression of social stress-induced cross-

sensitization. Specifically, after intra-VTA infusion of pAKT inhibitor, and compared to Control 

Handled subjects, rats that had previously showed cross-sensitization no longer displayed 

significant differences in amphetamine-induced locomotor activity. This finding is consistent with 
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previous reports that inhibition of pAKT signaling, either systemic or intracerebroventricular, is 

sufficient to block the expression of cocaine sensitization (Izzo et al., 2002, Wu et al., 2011), and 

extends upon them in suggesting that the VTA is a crucial site of action for pAKT-mediated 

expression of psychostimulant sensitization.  

 

Concluding Remarks 

  In summary, experiment 1 found that intermittent social stress significantly increased the 

expression of pAKT in VTA GABA, but not DA neurons. Experiment 2 demonstrated that 

inhibition of VTA AKT phosphorylation is sufficient to prevent social stress-induced deficits in 

weight gain, as well as the expression of amphetamine cross-sensitization. That intra-VTA 

inhibition of pAKT failed to prevent the induction of amphetamine cross-sensitization may reflect 

specificity in the functional role of VTA AKT phosphorylation, or may have been due to the 

temporal pattern of inhibitor administration. Thus while VTA pAKT is crucial for vulnerability to 

psychomotor stimulant drugs, future studies will be necessary to clarify the role of VTA pAKT in 

the induction of stress-induced cross-sensitization.  

In conclusion, social stress increased MOR – pAKT signaling in VTA GABA cells, and 

this increase of pAKT is necessary for the expression of stress-induced cross-sensitization to 

amphetamine and weight gain deficits. Given that inhibition of VTA AKT phosphorylation alone 

did not affect normal amphetamine-induced locomotor activity and that the effect on weight gain 

persisted in the absence of inhibitor, VTA pAKT may represent a novel target for the therapeutic 

intervention of substance abuse and stress disorders. 
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CHAPTER 5: GENERAL DISCUSSION 

Summary of Major Results 

The aim of the current study was to investigate whether VTA MOR signaling serves a 

functional role in social stress-induced vulnerability to psychomotor stimulant drugs. These 

experiments utilized the intermittent model of social defeat stress, which is well known to induce 

cross-sensitization to psychostimulant and opioid drugs (see reviews of Miczek et al., 2008, 

Miczek et al., 2011l, Nikulina et al., 2014). To investigate the role of social stress-induced MOR 

upregulation in the VTA, lentiviral constructs were used to manipulate local MOR levels, either 

non-manipulated or knocked-down, and then subjects put through social defeat stress 

procedures. The experiment in chapter 1 determined whether VTA MORs are necessary for the 

behavioral consequences of social stress. In chapter 2, immunohistochemical analyses of the 

mesocorticolimbic circuit were conducted at a time when cross-sensitization is known to be 

present. Finally, separate experiments were conducted in chapter 3 to investigate whether social 

stress induces AKT phosphorylation downstream of MOR upregulation in the VTA, and whether 

intra-VTA inhibition of AKT phosphorylation is sufficient to mimic the behavioral effects of VTA 

MOR knockdown.  

In chapter 2, VTA MOR expression was knocked down prior to stress, and after stress or 

control handling procedures, subjects were assessed for social stress-induced cross-sensitization 

to amphetamine, as well as for social avoidance and deficits in weight gain. Knockdown of VTA 

MORs was sufficient to prevent social stress-induced social avoidance and long-term deficits in 

weight gain, without effecting normal weight gain or social interaction. Moreover, knockdown of 

VTA MORs prevented social stress-induced cross-sensitization, without affecting normal 

amphetamine-induced locomotion. Mesolimbic BDNF – TrkB receptor expression is also 

enhanced after social stress and also serves to mediate social stress-induced cross-sensitization 

(Fanous et al., 2010, Nikulina et al., 2012, Wang et al., 2013, Wang et al., 2014). Given that 

social stress-induced upregulation of VTA MORs occurs prior to increases in VTA BDNF 
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expression, it was hypothesized that knockdown of VTA MORs would prevent social stress-

induced changes related to mesolimbic BDNF signaling. 

In chapter 3, at the time that cross-sensitization was studied in chapter 2, knockdown of 

VTA MOR was found to attenuate social stress-induced changes in protein expression in the 

mesolimbic pathway. Specifically, VTA MOR expression was necessary for social stress-induced 

increases of VTA BDNF and its receptor TrkB in the NAc, additionally, expression of delta FosB 

was attenuated in the NAc. Thus, while mesolimbic BDNF – TrkB expression mediates social 

stress-induced cross-sensitization to amphetamine and the expression of delta FosB in the NAc 

(Wang et al., 2013, Wang et al., 2014), these effects are mediated by upstream increases in VTA 

MOR activity. A schematic representation of the mesolimbic and behavioral effects of stress and 

VTA MOR knockdown can be seen in Figure 5.1. Given that in the VTA, MORs predominantly 

have inhibitory effects on GABA neurons, it is possible that social stress-induced MOR 

upregulation increases activity of the receptors intracellular signaling cascades. Specifically, it 

was hypothesized that social stress would increase the phosphorylation of AKT, a downstream 

target of MORs, in VTA GABA neurons, and this increase would have functional implications for 

social stress-induced behaviors. 

In chapter 4, fluorescent immunohistochemical analyses were conducted to examine 

social stress-induced changes in pAKT co-localization with VTA GABA and DA neurons, and 

whether these changes are a result of VTA MOR expression. Although GABA neurons represent 

a minor sub-population of VTA neurons, social stress significantly increased the co-localization of 

pAKT in GABA neurons, an effect which was prevented by knockdown of VTA MORs. 

Correspondingly, social stress significantly reduced the co-localization of pAKT with VTA DA 

neurons. Moreover, in these sections processed for pAKT and a marker of DA, social stress 

increased the expression of single labeled pAKT, which is consistent with its co-expression in 

VTA GABA cells. Taken together, these data are evidence that social stress augments pAKT  
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Figure 5.1. Social Stress-Induced Changes in the Mesolimbic Pathway That Have Been 

Related to Cross-Sensitization are Prevented by VTA MOR Knockdown. (A) Social stress 

increases VTA BDNF expression and signaling with its TrkB receptor and expression of delta 

FosB in the NAc (Fanous et al., 2010, Nikulina et al., 2012, Wang et al., 2013, Wang et al., 2014). 

Additionally, intermittent social stress increases VTA DA activity (Tidey and Miczek, 1996, Miczek 

et al., 2011a) and the expression of VTA MORs (Nikulina et al., 1999, Nikulina et al., 2005, 

Nikulina et al., 2008), which are implicated in the control of VTA DA neurotransmission (Johnson 

and North, 1992). These changes have all been related to social stress-induced weight gain 

deficits, social avoidance, and cross-sensitization to psychostimulants (Fanous et al., 2010, 

Fanous et al., 2011, Wang et al., 2013, Wang et al., 2014, Johnston et al., 2015). (B) Stimulation 

of MORs on a sub-population of VTA GABA neurons results in disinhibition of local DA neurons 

(Johnson and North, 1992). Consistent with this, knockdown of VTA MORs prevents social 

stress-induced increase of mesolimbic BDNF – TrkB receptor expression, and attenuates the 

expression of NAc delta FosB (see Chapter 3). Similar to the role of mesolimbic BDNF – TrkB 

receptor expression, VTA MOR expression is also necessary for the behavioral consequences of 

social stress (Chapter 2; see also Johnston et al., 2015). Red circle: GABA neurotransmitter; 

green circle: DA neurotransmitter; yellow circle: BDNF; blue circle: MOR; number of red or green 

circles indicate degree of neurotransmission. 
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Figure 5.2. Schematic Illustration of the Effects of Local MOR Knockdown or Inhibition of 

AKT Phosphorylation on Social Stress-Induced Changes in the VTA. While the effects of 

MOR knockdown on the mesolimbic pathway have been largely confirmed (Chapters 2-4; see 

also Johnston et al., 2015), the mediation by AKT phosphorylation is theoretical and based on 

pAKT’s being a downstream target of MORs and its involvement in the behavioral outcomes of 

stress. Large green circle: DA neuron; large red circle GABA neuron; size of projecting arrows 

indicate respective degrees of DA and GABA neurotransmission; small yellow circles: BDNF; 

small blue circles: MORs; purple circles: AKT; pairs of smallest orange circles: phospho-groups 

on AKT (pAKT). Manipulations of the VTA (bottom row) are indicated by red text. 
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expression in the VTA, such that AKT phosphorylation is increased downstream of VTA MOR 

upregulation (Fig. 5.2).  

Given that AKT phosphorylation is limited to GABA neurons and requires the expression 

of VTA MORs, it was investigated whether inhibition of AKT phosphorylation during stress is 

sufficient to the induction of amphetamine cross-sensitization and weight gain deficits. In fact, 

intra-VTA inhibition of pAKT during stress, prevented the development a long-term weight gain 

deficit, well after the last episode of stress or inhibitor infusion. In contrast, inhibition of AKT 

phosphorylation during stress only attenuated the induction of cross-sensitization to 

amphetamine. Since a previous study had indicated that inhibition of pAKT is sufficient to block 

the expression, but not the induction of drug-induced psychostimulant sensitization (Izzo et al., 

2002), a reversal was conducted to determine whether acute intra-VTA inhibition of pAKT was 

sufficient to block the expression of stress-induced cross-sensitization. In rats that had previously 

showed a sensitized response to amphetamine, acute inhibition of VTA AKT phosphorylation 

blocked the expression of cross-sensitization. Although intra-VTA inhibition of pAKT rescued the 

stress-induced vulnerability to amphetamine, it did not augment the normal locomotor-activating 

effect of amphetamine, suggesting that inhibition of VTA AKT phosphorylation does not produce 

unnatural augmentation of VTA DA transmission. Taken together, these results suggest that 

inhibition of AKT phosphorylation may represent a novel therapeutic target for the intervention 

stress-induced disorders and the treatment of substance abuse.  

 
Expression of Excitatory and Inhibitory MORs in the VTA: Implications for Stress-Iinduced 

Increase of VTA MOR Activity 

While stimulation of MORs is generally thought to have an inhibitory effect, a recent study 

illustrated that MORs can be either inhibitory or excitatory, and that either receptor sub-type can 

be found on both VTA GABA and DA neurons (Margolis et al., 2014). Given that the current 

experiments were conducted prior to this report, the overlying assumption throughout these 

studies was that social stress upregulates VTA MORs on GABA neurons. Although VTA MOR 

activation can have a variety of effects, depending on inhibitory vs. excitatory function and 
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neuronal type, it is possible to parse out the net effect of social stress-induced increases in MOR 

expression. While some VTA MORs are excitatory, the majority are inhibitory, thus at any time 

there is a greater likelihood that MOR stimulation will produce an inhibitory effect, regardless of 

neuronal type (Margolis et al., 2014). Social defeat stress is known to increase mesolimbic DA 

transmission (Tidey and Miczek, 1996, Miczek et al., 2011a) and produce cross-sensitization to 

both opioid and psychostimulant drugs that affect mesolimbic DA transmission (see reviews of 

Miczek et al., 2008, Miczek et al., 2011l, Nikulina et al., 2014). If the majority of VTA MORs 

upregulated by social stress were either inhibitory on DA neurons, or excitatory on GABA 

interneurons, then the net effect should be decreased VTA DA transmission, which is inconsistent 

with social defeat stress-induced increase of DA transmission. In contrast, the increased net 

effect of increased excitatory MORs on DA neurons, or inhibitory MORs on GABA neurons would 

be consistent with increased VTA DA transmission. While it is possible that social stress 

increases the expression of excitatory MORs on VTA DA neurons, the effect of such upregulation 

is likely to be minimal, as excitatory MORs on DA comprise a very small proportion of VTA MORs 

(Margolis et al., 2014). This is supported by the data in chapter 4, which illustrate that AKT 

phosphorylation is increased in VTA GABA neurons downstream of MOR upregulation. Although 

any MOR is capable of phosphorylating AKT, since there was no effect of VTA MOR knockdown 

on pAKT expression in DA neurons, it is likely that social stress predominantly upregulates 

inhibitory MORs on VTA GABA neurons. 

 

Indirect Mediation of VTA DA Transmission by Local GABA Neurons: A Role for MOR – pAKT 

Signaling 

 The inhibitory effects of VTA MORs are generally associated with increased GIRK 

activity, which functions to increase K+ conductance to reduce neurotransmission (Johnson and 

North, 1992, Bergevin et al., 2002). When MORs are stimulated on a sub-population of VTA 

GABA neurons, they have been shown to inhibit GABA release, thereby disinhibiting local DA 

neurons (Johnson and North, 1992). Given that social defeat stress is associated with increased 

VTA DA release (Tidey and Miczek, 1996, Miczek et al., 2011a), it is likely that social stress 
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decreases local GABA release in the VTA to disinhibit neighboring DA neurons and increase DA 

release in the NAc (Fig. 5.2). While future studies utilizing electrophysiology will be necessary to 

verify this, this theory is supported by a report of increased VTA GABA release onto local DA 

neurons and reduced cocaine self-administration in MOR knockout mice (Mathon et al., 2005). 

Based on this finding, it is likely that knockdown of VTA MORs prevented cross-sensitization to 

amphetamine by either increasing or maintaining tonic levels of local GABA release in the VTA. 

Although GIRKS are one downstream target of MORs that result in inhibition, phosphorylation of 

AKT has been shown to increase the insertion of GABAAR into the cell membrane (Wang et al., 

2003). Given that the data in chapter 4 show that social stress increases pAKT in VTA GABA 

neurons, and that VTA AKT phosphorylation serves a functional role in the behavioral outcomes 

of social stress, it is possible that GABAAR expression is increased in GABA neurons 

downstream social stress-induced increase of MOR – pAKT signaling. If social stress increases 

the expression of GABAARs on VTA GABA neurons, one would expect this to further inhibit 

GABA release and disinhibit local DA neurons.  

 

Methodological Considerations and Future Studies 

 Although knockdown of VTA MORs prevented the social stress-induced cross-

sensitization to amphetamine, intra-VTA inhibition of pAKT during stress did not, even though it 

acutely blocked the expression of cross-sensitization (Table 2). While this effect of pAKT 

inhibition on the expression, but not the induction of cross-sensitization has also been observed 

with drug-induced cocaine-sensitization and may in fact be valid, there are several 

methodological considerations that must be noted. First, knockdown of VTA MORs was 

accomplished using lentivirus-mediated interference, which means that the effect of knockdown 

persisted throughout the entire study. Given that the effect of VTA MOR knockdown persisted 

through testing, it is difficult to say whether knockdown of VTA MORs prevented the induction or 

the expression of cross-sensitization. In contrast to the persistent effect of lentivirus-mediated 

knockdown, inhibition of AKT phosphorylation was accomplished with a drug that was 

administered prior to each episode of stress. As a drug, the pAKT inhibitor is metabolized within                                   
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24 h, meaning that while stress-induced AKT phosphorylation was inhibited each day that stress 

procedures were administered, VTA AKT phosphorylation may have increased on subsequent 

days. Based on these considerations, it is possible that if the experiment in chapter 2 were 

repeated using intra-VTA infusions of a MOR antagonist, it would mimic the differential effect of 

intra-VTA inhibition of pAKT on the induction, versus the expression of cross-sensitization. 

Conversely, it is also possible that if VTA pAKT inhibition were accomplished using a viral 

construct, it would replicated the effect of VTA MOR knockdown on the expression of cross-

sensitization. While both VTA MOR expression and AKT phosphorylation are critical for the 

behavioral effects of social defeat stress, additional studies will be needed to determine whether 

MOR – pAKT signaling plays a differential role in the induction, rather than the expression, of 

stress-induced cross-sensitization to psychomotor stimulant drugs.  

 The finding that inhibition of AKT phosphorylation in the VTA during stress is sufficient to 

prevent stress-induced weight gain deficits 23 days after the last infusion of inhibitor, suggests 

that VTA AKT phosphorylation confers susceptibility to intermittent social defeat stress in rats. By 

contrast, a previous study showed there is a regional decrease of VTA pAKT after continuous 

social defeat stress in mice (Krishnan et al., 2008). Additionally, when mice were classified as 

susceptible or resilient after defeat, they found that resilient mice exhibited greater regional levels 

of pAKT in the VTA. Although this seems to contradict the current findings regarding stress and 

VTA AKT phosphorylation, it important to note several distinctions between these studies. The 

study by Krishnan et al. (2008) used regional Western blot analyses which are not sensitive to 
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changes in specific sub-populations of cells, such as MOR containing GABA neurons. Thus it is 

possible that despite their finding of a regional decrease of VTA pAKT after continuous social 

stress, that the mice in the study of Krishnan et al. (2008) may have also exhibited an increase of 

pAKT in a sub-population of VTA GABA neurons. In support of this, the current fluorescent 

immunohistochemical results showed that intermittent social stress tended to decrease pAKT 

expression in VTA DA neurons, and given that DA makes up the majority of VTA neurons, it is 

possible that Western blot analyses of the VTA after intermittent social defeat stress would also 

show a regional decrease of pAKT.  

It is also important to note that the study of Krishnan et al. (2008) utilized mice, while the 

present studies utilized rats. In rats, continuous and intermittent social defeat stress produce 

opposite effects on responses to psychomotor stimulants and DA release in the NAc (Miczek et 

al., 2011a). Moreover, in mice continuous social defeat stress produces an increase in VTA 

BDNF (Berton et al., 2006, Krishnan et al., 2008), while in rats, VTA BDNF is increased after 

intermittent, but decreased after continuous social defeat stress (Miczek et al., 2011a). Given that 

social stress has different effects on VTA BDNF expression in rats and mice, it also possible that 

the continuous social stress-induced decrease in VTA pAKT is specific to mouse models of social 

stress. Future studies will be needed to directly compare whether intermittent social stress-

induced increase of VTA MOR – pAKT signaling also mediates the effects of continuous social 

defeat stress in rats.   

 

Concluding Remarks 

 The studies described in chapters 2-4 show that intermittent social stress increases MOR 

– pAKT signaling in the VTA, and that the expression of VTA MORs and pAKT are crucial for 

stress-induced cross-sensitization to psychostimulant drugs of abuse. In addition to mediating the 

behavioral consequences of social stress, knockdown of VTA MORs prevented social stress-

induced increases in mesolimbic BDNF – TrkB signaling, as well as attenuating the expression of 

delta FosB in the NAc. While the behavioral effects of intra-VTA inhibition of pAKT were similar to 

the preventative effects of MOR knockdown, future studies will be necessary to determine 
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whether inhibition of VTA pAKT also mediates social stress-induced changes in the mesolimbic 

pathway. Taken together, these studies suggest that increased MOR – pAKT signaling in the VTA 

may underlie susceptibility to psychomotor stimulants, and that interruption of this signaling may 

have beneficial effects for the therapeutic intervention of stress-induced disorders and substance 

abuse. 
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Abstract: 

Social defeat stress causes social avoidance and long-lasting cross-sensitization to 

psychostimulants, both of which are associated with increased brain-derived neurotrophic factor 

(BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA 

mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit 

VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant 

sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in 

the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor 

in humans and rodents. Social stress exposure induced social avoidance and attenuated weight 

gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA 

MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization 

to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of 

locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization 

without blunting the locomotor-activating effects of amphetamine. At the time point corresponding 

to amphetamine challenge, immunohistochemical analysis was performed to examine the effect 

of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in 

rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-

induced expression of VTA BDNF. Taken together, these results suggest that upregulation of 

VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat 

stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide 

new therapeutic targets for treating stress-induced vulnerability to substance abuse. 

 

Key Words: 

mu-opioid receptor, social defeat stress, ventral tegmental area, cross-sensitization, brain-derived 

neurotrophic factor, amphetamine 
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Highlights: 

• VTA MORs are necessary for social stress-induced weight gain and behavior deficits 

• VTA MOR knockdown prevented cross-sensitization to amphetamine after social defeat 

• VTA MOR knockdown prevented social stress-induced increase of VTA BDNF 

 

Abbreviations: 

• [3H]DAMGO - tritiated [D-Ala2,N-MePhe4,Gly-ol5] enkephalin 

• BDNF – brain-derived neurotrophic factor 

• CREB – cAMP responsive binding element protein 

• DA – dopamine 

• fr – fasciculus retroflexus 

• GABA – gamma-aminobutyric acid 

• GFP – green fluorescent protein 

• MOR – mu-opioid receptor 

• ml – medial lemniscus 

• MT – medial terminal nucleus of the accessory optic system 

• pCREB – phosphorylated cAMP responsive binding element protein 

• shMOR – short hairpin mu-opioid receptor lentiviral construct 

• SNc – substantia nigra pars compacta 

• SNr – substantia nigra pars reticulata  

• VTA – ventral tegmental area  
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1. Introduction 

In humans, stress is one variable that influences the transition from recreational drug use 

to abuse, and it has been correlated with increased risk of substance abuse and relapse (Sinha, 

2001, 2008, 2011). Rodent studies have shown that repeated social defeat stress exposure 

consistently produces social avoidance (Berton et al., 2006, Krishnan et al., 2007, Razzoli et al., 

2009, Fanous et al., 2011b, Komatsu et al., 2011) and augments the effect of psychomotor 

stimulants, a phenomena known as ‘cross-sensitization’ (Covington and Miczek, 2001, Nikulina et 

al., 2004, Nikulina et al., 2012). Genetic mu-opioid receptor (MOR) knockout mice do not exhibit 

social avoidance following continuous social defeat (Komatsu et al., 2011), suggesting that MORs 

play a critical role in stress-induced changes in long-term neuroplasticity. In fact, even acute 

social defeat stress has been shown to rapidly upregulate MOR mRNA expression in the ventral 

tegmental area (VTA; Nikulina et al., 1999), while repeated social stress exposure increases VTA 

MOR mRNA expression for up to 14 days after the last episode (Nikulina et al., 2008). In the VTA 

MORs are expressed by gamma-aminobutyric acid (GABA) neurons (Sesack and Pickel, 1995, 

Garzon and Pickel, 2002), which are hyperpolarized in response to MOR stimulation, thus 

disinhibiting local dopamine (DA) transmission and facilitating response to drugs of abuse 

(Johnson and North, 1992, Bergevin et al., 2002, Vargas-Perez et al., 2009b, Dacher and 

Nugent, 2011). Rats exposed to repeated social defeat stress, then challenged with an intra-VTA 

infusion of a MOR-specific agonist exhibited sensitized locomotor activity (Nikulina et al., 2005, 

Nikulina et al., 2008). This VTA opiate-induced sensitized locomotor activity was present at the 

same time point that social stress-induced cross-sensitization to psychomotor stimulants was 

observed (Covington and Miczek, 2001, Nikulina et al., 2004, Nikulina et al., 2012). Taken 

together, these findings indicate that increased VTA MOR expression might play a role in social 

stress-induced psychostimulant sensitization. Consistent with this view, MOR knockout mice 

exhibit reduced cocaine self-administration and increased VTA GABA transmission (Mathon et 

al., 2005). Furthermore, the expression of amphetamine sensitization is associated with 

persistent VTA MOR upregulation, and can be blocked by a treatment with MOR antagonist 

(Magendzo and Bustos, 2003, Trigo et al., 2010). 
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Increased expression of brain-derived neurotrophic factor (BDNF) in the VTA  is 

frequently observed as a consequence of psychostimulant administration (Horger et al., 1999, 

Grimm et al., 2003, Bolanos and Nestler, 2004, Corominas et al., 2007, Thomas et al., 2008). 

Studies with morphine have shown that an interaction exists between VTA BDNF and MORs 

(Chu et al., 2007, Vargas-Perez et al., 2009b, Koo et al., 2012). Additionally, increased VTA 

BDNF expression has been implicated as a long-term mediator of social stress-induced cross-

sensitization (Nikulina et al., 2012), and in the VTA this increase persists for at least 2 weeks after 

the last social stress exposure (Berton et al., 2006, Fanous et al., 2010, Nikulina et al., 2012). In 

particular, overexpression of VTA BDNF was observed to exacerbate social stress-induced cross-

sensitization to amphetamine (Wang et al., 2013), while viral deletion of VTA BDNF prevented 

social stress-induced social avoidance (Berton et al., 2006, Krishnan et al., 2007, Fanous et al., 

2011b). Although VTA MOR mRNA expression rapidly increases following social stress exposure 

(Nikulina et al., 2005, Nikulina et al., 2008), VTA BDNF expression is affected more slowly 

(Fanous et al., 2010). Based on the modulatory relationship that exists between VTA MORs and 

BDNF (Chu et al., 2007, Vargas-Perez et al., 2009b, Koo et al., 2012), it is possible that 

intermittent social defeat stress-induced increases of VTA BDNF are related to MOR upregulation 

in this brain region.  

Although research has implicated VTA MORs in drug sensitization and social behaviors 

(Van Ree et al., 2000, Miczek et al., 2011b, Lutz and Kieffer, 2013a, b, Pitchers et al., 2014), it is 

unknown whether upregulation of VTA MORs causes the behavioral and biological effects of 

social defeat stress exposure. To address this question, the present study used lentivirus-

mediated gene transfer and RNA interference to knockdown MORs in the VTA, and then 

assessed social stress-induced cross-sensitization to amphetamine and BDNF expression in the 

VTA. Given that social avoidance is altered in MOR knockout mice after continuous social stress 

(Komatsu et al., 2011), we also examined the effect of VTA MOR knockdown on social avoidance 

after stress exposure. Finally, the effect of VTA MOR knockdown on stress-induced deficits of 

weight gain was examined.  
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2. Experimental Methods 

2.1 Subjects 

Experimental animals were male Sprague-Dawley rats (N = 71; Charles River 

Laboratories, Hollister, CA) weighing 200-250 g on arrival. Three days before social stress 

exposure, subjects were individually housed in standard plastic cages (25x50x20 cm3). Twelve 

additional age-matched Sprague Dawley rats were group-housed 3 per cage and served solely 

as novel stimulus subjects during the social approach and avoidance test. Male Long-Evans rats 

(weighing 550-700 g), termed ‘residents’, were pair-housed with a tubal-ligated female in large 

plastic cages (37x50x20 cm3). All rats were maintained on a 12-12 reverse light-dark cycle (lights 

out at 0900 h) with free access to food (Purina Rodent Diet, Brentwood, MO) and water. 

Residents were previously screened for aggressive behavior and were used to induce social 

defeat stress in experimental “intruder” rats. All experimental procedures were approved by the 

Institutional Animal Care and Use Committees at the Arizona State University and the University 

of Arizona. All studies were conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals (National Research Council, 2011),  and every effort was made to minimize 

pain and suffering, as well as the number of animals used. 

 

2.2 Experimental Design 

2.2.1 General Procedure 

 Upon arrival, experimental rats were habituated to laboratory conditions for 7 days before 

surgery to manipulate regional MOR level. Rats were randomly assigned to one of four 

experimental conditions: Non-Manipulated MOR+Handled, Non-Manipulated MOR+Stressed, 

MOR Knockdown+Handled, MOR Knockdown+Stressed. Three experiments were conducted in 

parallel (Fig 1A); one group of subjects (n = 25) received an amphetamine challenge 10 days 

after the last episode of intermittent social stress or handling to study the effects of VTA MOR 

knockdown on social stress-induced cross-sensitization. Seven days later, VTA tissue from this 

group of subjects was flash frozen for radioligand binding to verify the efficacy of MOR 

knockdown. A second group of drug-naïve subjects (n = 21) were perfused at the same time point 
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after stress or handling to quantify VTA BDNF expression. Social approach and avoidance testing 

was performed two days after termination of social stress or handling procedures in both these 

groups. The third group of rats (n = 25) were weighed prior to each episode of intermittent social 

stress and handling, and again 10 days later to investigate the influence of VTA MOR knockdown 

on social stress-induced deficits in weight gain. 

 

2.2.2 Bilateral VTA infusion of lentiviral constructs 

Rats assigned to control viral groups received infusions of lentivirus that expresses green 

fluorescent protein (GFP) and a short hairpin RNA (shRNA) that does not target any known rat 

gene, while rats assigned to VTA MOR knockdown groups received a lentivirus that expresses 

GFP and a shRNA that targets MOR (shMOR) for RNA interference. Lentiviral constructs were 

prepared as previously described (Lasek et al., 2007). The shMOR lentivirus reduces VTA MOR 

expression by 88-97% (Lasek et al., 2007). Therefore, the viral titre was diluted by 50% with cold 

sterile saline to reduce the efficacy. After random assignment to GFP or shMOR knockdown 

conditions, rats were anesthetized using isoflurane and positioned in a stereotaxic frame (Leica 

Angle Two; Richmond, IL). The appropriate lentiviral construct (1.0 µl each) was infused 

bilaterally into the VTA (AP -5.15, ML ±2.15, DV -8.7, Tilt 10°; Paxinos and Watson, 2007) at a 

flow rate of 0.1 µl/min, and allowed to diffuse for 10 min before withdrawal of the syringe 

(Hamilton; Model 7105 KH; 24 gauge tip; Reno, NV) . The accuracy of each infusion was later 

verified using localization of GFP expression. Subjects were given 7 days to recover before the 

start of intermittent social stress or handling procedures (Fig. 1A). 

 

2.2.3 Intermittent social defeat stress and handling procedures 

Social defeat stress was induced by a short confrontation between an aggressive 

resident and an experimental intruder rat, as previously described (Tidey and Miczek, 1996, 

Nikulina et al., 2004, Nikulina et al., 2012). After removing the female from the resident’s home 

cage, an experimental rat was placed inside the resident’s home cage for 5 min within the 

confines of a protective metal cage (15x25x15 cm3). The protective cage was then removed, 
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allowing the resident to attack the experimental intruder rat until it displayed supine posture for at 

least 4 sec. Once submissive posture was exhibited, the experimental rat was placed back in the 

protective cage and exposed to threat from the resident for an additional 20 min before being 

returned to its own home cage. Intermittent social stress procedures were administered every 

third day for 10 days (Fig. 1A). At each corresponding time point, rats in the control groups were 

handled for approximately 2.5 min and then returned to their home cages.  

 

2.3 Behavioral assessments 

2.3.1 Social interaction 

The social approach and avoidance test was conducted in a large plastic container 

(58x38x41 cm3) equipped with a lightweight containment cage. Experimental rats were habituated 

to the empty test chamber for 5 min, then reintroduced when a novel stimulus rat was within the 

containment cage (Fig. 1B). The behavior of experimental rat was recorded for 5 min using 

TopScan (Clever Systems Inc.; Reston, VA). The software divided the chamber into virtual zones: 

Interaction, which comprised the area surrounding the containment cage, and Avoidance, which 

comprised the two corners opposite the containment cage (Fig. 1B; arena adapted from Berton et 

al., 2006). The number of respective entries into the avoidance and interaction zones was 

recorded, as was the distance (cm) moved in each zone. 

 

2.3.2 Amphetamine challenge 

A low dose d-amphetamine challenge was administered to test for social stress-induced 

cross-sensitization (Nikulina et al., 2004, Nikulina et al., 2012). For two days prior to the 

challenge, rats were injected with vehicle (0.9% sterile saline; 1.0 ml/kg, i.p.), and were 

acclimated in their home cage to the procedure room for 1 h. On the day of the challenge, rats 

were moved in their home cage to the procedure room, and locomotor activity was recorded at 10 

min intervals using video tracking software (Videotrack, Viewpoint Life Sciences; Montreal, 

Canada). Locomotor activity was detected as the number of and distance travelled during 

movements (>10 cm) across 170 min consisting of 3 phases: Baseline, Saline, and 
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Amphetamine. Baseline data were recorded for 30 min, after which a saline injection (1.0 ml/kg, 

i.p.) was given and locomotor activity was recorded for 60 min. Finally, rats received an injection 

of d-amphetamine sulfate (1.0 mg/kg, i.p.; Sigma-Aldrich; St. Louis, MO), and locomotor data 

were recorded for 80 min. Video tracking and data collection were paused during the 

administration of saline and amphetamine injections. Rather than stereotypical behaviors, this 

dose of amphetamine has been shown to primarily induce large ambulatory movements (Geyer et 

al., 1987). In order to quantify amphetamine sensitization, ambulatory movements (> 10 cm) were 

measured in terms of the number of movements initiated and the distance travelled (cm) during 

such movements. 

 

2.4 Tissue harvesting 

2.4.1 Fresh frozen VTA tissue for radioligand binding 

Rats were anesthetized with isoflurane, and their brains were rapidly removed and frozen 

in -35°C 2-methylbutane for 15 sec, then stored at -80°C prior to sectioning. On a cryostat, serial 

20 μm sections through the VTA were collected (from AP -4.8 to -5.5; Paxinos and Watson, 2007) 

for radioligand binding and localization of GFP expression. Sections were thaw-mounted onto 

glass microslides (Superfrost Plus; Fisher Scientific; Waltham, MA), dried in a vacuum chamber 

at 4°C, and stored at -80°C prior to processing. Separate slides were used to verify the accuracy 

and distribution of lentiviral infusions based on fluorescent detection of GFP expression. 

 

2.4.2 Perfused VTA tissue for BDNF immunohistochemistry  

As previously described (Fanous et al., 2010, Fanous et al., 2011a, Fanous et al., 

2011b), rats were anesthetized with sodium pentobarbital (100 mg/kg, i.p.; Euthasol, Virbac Co., 

St. Louis, MO) and perfused transcardially with 4% paraformaldehyde. Brains were then 

removed, post-fixed for 1.5 hours at 4°C, and placed in graded sucrose solutions. Frozen brain 

tissue was sectioned on a sliding microtome (20 μm) and serial VTA sections were mounted onto 

slides from 0.05 M phosphate buffer (pH = 7.4). Adjacent slides from each brain were processed 

for either BDNF immunohistochemistry or fluorescent localization of GFP expression. 
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2.5 [3H]DAMGO autoradiography 

2.5.1 Radioligand binding 

Fresh frozen brain sections were used to verify shMOR knockdown in the VTA using 

tritiated [D-Ala2,N-MePhe4,Gly-ol5] enkephalin ([3H]DAMGO; NIDA Drug Supply Program; 

Bethesda, MD), as described by Zhou and Hammer (1995). Briefly, slides were placed in pre-

incubation solution (15 mM Tris HCl, 150 mM NaCl, 1.0 mg/ml BSA) for 30 min at 4°C, then were 

incubated in 10 nM [3H]DAMGO solution (50 mM Tris buffer, 3.0 mM Mn acetate, 1.0 mg/ml BSA) 

with or without the addition of naloxone (10 μM; NIDA Drug Supply Program) for 60 min at 22°C. 

Slides were washed with a 50 mM Tris buffer at 4°C, then dried and exposed on Kodak BIO Max 

MR X-ray film (Carestream; Sigma-Aldrich; St. Louis, MO) for 10 weeks at room temperature. 

Sections incubated in 1000-fold excess unlabeled naloxone were utilized to determine non-

specific binding in subsequent autoradiography.  

 

2.5.2 Autoradiography analysis 

Autoradiograpy film was developed and scanned at high resolution. In order to determine 

whether the shMOR viral construct infected regions outside of the VTA, the substantia nigra pars 

compacta (SNc) was chosen as a control region due to its close proximity to the VTA, and 

because social stress does not affect MOR expression in substantia nigra regions (Nikulina et al., 

1999, Nikulina et al., 2005). The SNc, not to be confused with the medial terminal nucleus 

accessory optic tract (MT),  contains a higher density of MOR labeling than either the substantia 

nigra pars reticulata (SNr) or VTA (Herkenham and Pert, 1982). Using this difference in 

expression, the SNc could be clearly demarcated on scans of autoradiographs by measuring the 

area directly above the SNr, lateral to the MT, and ventrolateral to the medial lemniscus. Optical 

densities for these regions were measured bilaterally in 2-3 sections using ImageJ (National 

Institutes of Health, USA, http://imagej.nih.gov/ij), and then converted to μCi/g using calibrated 

[3H] radiostandards (ART-123, ARC Inc.; St. Louis, MO) co-exposed with sections. For each 

subject, bilateral measurements were averaged across sections to yield total ligand binding in the 

VTA and SNc, respectively. 
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2.6 BDNF immunohistochemistry and quantification 

2.6.1 Immunohistochemistry 

Immunohistochemistry was performed using BDNF polyclonal antisera as described 

previously (Fanous et al., 2010). Briefly, blocking solution (10% normal goat serum/0.5M 

KPBS/0.4% Triton X-100) was applied to sections for 1 h at room temperature, then the primary 

antibody diluted in blocking solution (1:1000 dilution; SP1779, Millipore/Chemicon; Temecula, 

CA) was applied for 48 hr at 4°C. Sections were then incubated for 1 h with a biotinylated rabbit 

secondary antibody, treated with avidin/biotin complex solution for 45 min (Vectastain Elite ABC 

Kit; Vector Laboratories; Burlingame, CA), and developed using a diaminobenzidine (DAB) 

peroxidase substrate kit with nickel intensification (Vector Laboratories). 

 

2.6.2 Modified stereological cell counts 

Tissue sections were imaged using a Zeiss Axioskop with a 20x objective, and digitalized 

using a color digital camera. Immunolabeled cells were quantified using Stereo Investigator 

software (MBF Biosciences; Williston, VT), and the analysis was conducted using the modified 

stereology counting procedure described in Fanous et al. (2011a) and Nikulina et al. (2012). 

Briefly, a grid of 48 squares (0.0075 mm2) was overlaid on each of 2-3 VTA sections from each 

subject. Immunolabeled cells were counted in half the grid squares, the precise squares being 

randomly determined. Cells exhibiting a black-blue reaction product indicative of immunolabeling 

were counted such that cells crossing the bottom or right lines of each square were included, 

while cells crossing the top or left lines of the square were excluded from analysis. For each 

subject, estimates of total labeling density (mm2) were calculated by averaging the bilateral 

counts of labeled cell profiles across sections, and then dividing the total number of cell profiles 

by the total area assessed (0.18 mm2). 

 

2.7 Statistical analyses 

The results of each measure are expressed as mean ± standard error (SEM) and a p 

value ≤ 0.05 was considered to be significant. All statistical analyses were run using SPSS 
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software, version 18 (SPSS Inc., Chicago, IL), and Tukey’s HSD was considered the preferred 

post hoc test across experiments. An exception was made in the case of the amphetamine 

challenge, where Fisher’s LSD was used because violations of sphericity necessitated our use of 

a more conservative test of the main effects. Data from subjects were excluded only in the case 

of error during video tracking or loss of data due to damaged tissue sections: no statistical outliers 

were excluded. The locomotor and social approach and avoidance assays relied on automated 

video tracking systems, requiring that the animals be housed in black bedding to block light from 

reflecting off the cage bottom. However in some instances, rats exposed the cage floor while 

moving, causing illumination artifacts that necessitated the removal of individual bin data due to 

inaccurate tracking. In addition, damage to tissue sections during processing sometimes 

precluded data collection from brain regions. More specifically in the locomotor and social 

approach and avoidance assays, which relied on automated video tracking systems, individual 

bin data were removed in those instances where reflection artifacts prevented accurate tracking. 

For analyses of mounted tissue sections, the sample size of each group was also reduced in 

cases where tissue was damaged in the course of processing.  

 

2.7.1 Weight gain data 

The initial weight obtained at the start of social stress procedures was used to normalize 

all subsequent data (n = 25) to weight gained from that time onward; no subjects were excluded 

from the analysis. A one-way analysis of variance (ANOVA) was performed to assess differences 

in weight at each time point, and all significant main effects were analyzed using Tukey’s test for 

post hoc comparisons among the means.  

 

2.7.2 Social interaction 

Social approach and avoidance data were analyzed in terms of the number of entries to, 

and the distance travelled (cm) within the interaction and avoidance zones (Fig. 1B). Where 

illumination artifacts interfered with tracking, data were lost in a zone-specific manner. For 

example, avoidance zone entry data were analyzed from 40 subjects because illumination 
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artifacts resulted in the exclusion of subjects from the following groups: GFP-Handled: 1; GFP-

Stressed: 3; shMOR-Handled: 2. For distance travelled in the avoidance zone, an additional 

tracking error which occurred after a subject entered the zone further reduced the number of 

analyzed subjects to 35; subjects were excluded from the following groups: GFP-Handled: 2; 

GFP-Stressed: 1; shMOR-Handled: 5; shMOR-Stressed: 3. Illumination artifacts and tracking 

error reduced the number of subjects in the interaction zone to 37;  subjects were excluded from 

the following groups: GFP-Stressed: 3; shMOR-Handled: 4; shMOR-Stressed: 2. A one-way 

ANOVA was run on data pertaining to each zone and any significant main effects were followed 

by an analysis of post hoc comparisons with Tukey’s test.  

 

2.7.3 Locomotor activity 

 Locomotor data were analyzed using separate multivariate analysis of variance (MANOVA) 

for the mean number and distance (cm) travelled during ambulatory movements. In order to 

overcome violations of sphericity in the output of repeated measures ANOVA, MANOVA was 

used to analyze the number and distance of ambulatory movements exhibited throughout the 

amphetamine challenge. Significant multivariate effects were followed by univariate analyses to 

determine which time points produced significant group differences. Significant univariate effects 

were further analyzed for post hoc comparisons using Fisher’s Least Significant Difference (LSD) 

test. Data were analyzed from 21 subjects for both dependent measures of ambulatory 

movements. Some subjects’ data were excluded from analysis due to the presence of illumination 

artifacts that interfered with tracking: GFP-Stressed: 2; shMOR-Handled: 1; shMOR-Stressed: 1. 

 

2.7.4 MOR binding and BDNF expression 

The results of radioligand binding with [3H]DAMGO in the VTA and SNc, as well as the 

results of BDNF immunohistochemistry in the VTA were analyzed using separate one-way 

ANOVAs, and where necessary, significant main effects were followed by post hoc comparisons 

with Tukey’s test. In the case of VTA [3H]DAMGO results, a violation of homogeneity was 

corrected for with Welch’s F test.  Sample sizes were reduced after the target region was 
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damaged during processing for BDNF immunohistochemistry in 2 subjects from the shMOR-

Handled group, and during [3H]DAMGO binding for 1 shMOR treated subject. Consequently, 

BDNF data were analyzed from 19 subjects, while receptor autoradiography was analyzed from 

25 subjects in the VTA and 24 subjects in the SNc.  

 

3. Results 

3.1 Verification of MOR Knockdown Using [3H]DAMGO Autoradiography 

Fluorescent detection of virally expressed GFP revealed that lentiviral infusions were 

specific to the VTA (Fig. 2A), and GFP was not detected in either SN region (data not shown). 

While lentiviral constructs were infused at AP -5.15, GFP expression indicated infusions to the 

target site varied by ±0.1 mm, and that the average spread of GFP was within AP -4.8 to -5.5 and 

Lateral 0.4 mm to 1.4 mm (Fig. 2B). Quantitative in vitro autoradiography with [3H]DAMGO was 

used to determine the functionality of VTA MORs after lentivirus-mediated knockdown. Compared 

to the control GFP lentiviral construct, the subjects infused with the shMOR construct showed 

reduced [3H]DAMGO binding (Fig. 2C). One-way ANOVA revealed that this effect was significant 

in the VTA (n = 25, F1,20.13 = 102.46, p < 0.0001), but not the SNc  (n = 24, F1,22 = 1.63, p > 0.22; 

Fig. 2D). Thus, our surgeries were accurate and bilateral shMOR knockdown selectively reduced 

VTA MOR binding density. 

 

3.2 Effect of VTA MOR knockdown on intermittent social stress-induced deficit of weight gain 

Weight gain data (n = 25) revealed a significant main effect during social stress exposure 

(F3,21 = 10.15, p < 0.0003; Fig. 3), and 10 days after the last stress episode (F3,21 = 9.46, p < 

0.0004). Post hoc comparisons at this time point show that the GFP-Stressed group experienced 

less weight gain than either the GFP-Handled or shMOR-Handled groups (p < 0.006), while the 

shMOR-Stressed group only differed from the shMOR-Handled group (p < 0.02). Ten days after 

the final episode of social stress, the GFP-Stressed group showed significantly lower body 

weights compared not only to GFP-Handled and shMOR-Handled groups (p ≤ 0.006), but also 

the shMOR-Stressed group (p < 0.05). These data suggest that social stress significantly reduces 
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body weight, and that while VTA MOR knockdown attenuated this effect during social stress 

exposure, it rescued this effect 10 days after termination of stress. 

 

3.3 Effect of VTA MOR knockdown on intermittent social stress-induced social avoidance 

The social approach and avoidance test revealed a main effect of experimental group on 

number of entries to the avoidance zone (n = 40, F3,36 = 5.89, p = 0.002), with significantly more 

entries by GFP-Stressed rats compared to both GFP-Handled (p < 0.005) and shMOR-Stressed 

(p < 0.004) groups (Fig. 4A). Similarly, there was a significant main effect of experimental group 

on the distance traveled in the avoidance zone (n = 35, F3,31 = 4.77, p = 0.008), with significantly 

more activity in the GFP-Stressed group than the GFP-Handled (p = 0.011), shMOR-Handled (p 

< 0.05), or shMOR-Stressed (p < 0.05) groups. There was no main effect of experimental group 

on the number of entries to the interaction zone (n = 37, F3,26 = 1.14, p = 0.351; Fig. 4C). These 

data suggest that prior social stress exposure significantly increases social avoidance, and local 

VTA depletion of MOR prevents social stress-induced social avoidance without significantly 

altering social interaction.  

 

3.4 Effect of VTA MOR knockdown on intermittent social stress-induced cross-sensitization 

There were significant main effects of experimental group on the number of ambulatory 

movements (n = 21, Wilks’ λ = 3.78x10-7, F51.0,17 = 10.57, p = 0.019, η2 = 0.993, observed power = 

0.87) and distance travelled during ambulatory movements(n = 21, Wilks’ λ = 1.26x10-6, F51.0,17 = 

7.03, p = 0.039, η2 = 0.989, observed power = 0.87) across all time points. The number of 

movements differed significantly only, at 30 (F 3,17 = 3.66, p = 0.034), 40 (F3,17 = 3.36, p = 0.043), 

and 50 (F3,17 = 4.46, p = 0.017) min after amphetamine injection, but there were no differences 

across groups before or after saline injection (p > 0.05 at all other time points). Post hoc testing 

(Fig. 5A) showed that the GFP-Stressed group exhibited significantly greater number of 

movements compared to GFP-Handled (p < 0.005) and both shMOR-Handled and -Stressed 

groups (p < 0.05) at 30 min after amphetamine injection, compared to GFP-Handled (p < 0.01) 40 
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min post-amphetamine, and compared to GFP-Handled (p < 0.002) and both shMOR-Handled 

and -Stressed groups (p < 0.03) 50 min after amphetamine.  

Similarly, distance travelled exhibited significant main effects only 20 (F3,17 = 3.51, p = 

0.038), 30 (F3,17 = 6.83, p = 0.003), and 40 (F3,17 = 4.86, p = 0.013) min after amphetamine 

injection. Post hoc analyses (Fig. 5B) showed that the GFP-Stressed group moved a significantly 

greater distance compared to the GFP-Handled, shMOR-Handled, and shMOR-Stressed groups 

(p < 0.02)  20 min after amphetamine injection, compared to GFP-Handled and both shMOR 

groups (p < 0.002) 30 min post-injection, and compared to the GFP-Handled and both shMOR 

groups (p < 0.03) groups 40 min post-amphetamine. Thus, the GFP-Stressed group showed 

social stress-induced cross-sensitization following amphetamine challenge, but the shMOR-

Stressed group did not. 

 

3.5 Effect of VTA MOR knockdown on VTA BDNF after intermittent social stress exposure 

There was a significant main effect of experimental group on VTA BDNF expression (n = 

19, F3,15 = 30.17, p < 0.0001), such that the GFP-Stressed group had significantly greater VTA 

BDNF expression compared to GFP-Handled, shMOR-Handled, and shMOR-Stressed groups (p 

< 0.0001, Fig. 6). There were no significant differences between GFP-Handled and either of the 

shMOR groups, regardless of stress treatment (p > 0.15). Thus, social stress-induced increase of 

VTA BDNF expression is blocked by knockdown of MORs in the VTA.  

 

4. Discussion 

Our data show that lentivirus-mediated overexpression of shMOR successfully reduced 

MOR binding activity in the VTA, and that the affected region was limited to the VTA. 

Furthermore, we show that intermittent social stress induction of VTA MORs is required for 

various behavioral and biological changes. For example, we observed that lentivirus-mediated 

knockdown of VTA MORs blocks intermittent social stress-induced social avoidance, cross-

sensitization to amphetamine, and deficit of weight gain, as well as the augmented VTA BDNF 

expression which normally persists 1-4 weeks after stress exposure.  
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4.1 VTA MOR upregulation is necessary for intermittent social stress-induced weight gain deficits  

Exposure to social stress attenuated weight gain both during and 10 days after social 

stress exposure, which is consistent with previous findings (Meerlo et al., 1996, Pulliam et al., 

2010, Fanous et al., 2011b, Venzala et al., 2012). VTA MOR knockdown rescued the deficit of 

weight gain 10 days after the last episode of stress, but not during stress exposure. That 

knockdown of VTA MORs attenuated and promoted recovery from social stress-induced weight 

gain deficit is consistent with a report of increased body weight in MOR knockout mice (Han et al., 

2006). Another study using the same lentiviral construct in the VTA (Lasek et al., 2007) also 

showed no significant effect on weight, indicating that VTA MOR knockdown is not sufficient to 

alter weight gain in the absence of social stress. 

The role of MORs in the regulation of food intake and weight gain is complex, making it 

difficult to separate MOR effects on food palatability, food intake, and a more general increase of 

hedonic value. Pharmacological stimulation of MORs has frequently been associated with 

increased hedonic value of food and drug stimuli (Badiani et al., 1995, Nathan and Bullmore, 

2009), while MOR antagonism has been associated with decreased consumption of highly 

palatable food (Segall and Margules, 1989), as well as decreased sensitivity to natural reward 

(Pitchers et al., 2014). Stimulation of VTA MORs has been found to facilitate food consumption in 

a dopamine D1 receptor-dependent manner (Badiani et al., 1995, MacDonald et al., 2004), while 

antagonism reduced consumption of palatable foods (Segall and Margules, 1989). Based on this, 

one might expect that VTA MOR knockdown would further reduce weight gain by altering feeding 

behaviors. By contrast, our data show that VTA MOR knockdown rescues the stress-induced 

deficit in weight gain without affecting normal weight gain.  

If knockdown of VTA MORs rescued the stress-induced reduction of weight gain by 

attenuating the psychological effects of stress, one might expect to see signs of increased reward 

or hedonic value in the amphetamine challenge or social approach and avoidance test. However, 

compared to GFP-Handled rats, subjects in the shMOR-Handled group did not show increased, 

or impaired response to amphetamine, or differ in social interaction. That subjects with VTA MOR 

knockdown, regardless of stress treatment, did not exhibit significant differences in weight gain 
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compared to control GFP-Handled subjects, suggests that the rescue of weight gain is likely due 

to the prevention of downstream stress-induced changes in the mesolimbic circuit. In support of 

this idea, stress-induced increase of VTA BDNF expression was prevented by VTA MOR 

knockdown, and BDNF expression in the VTA is necessary for the stress-induced deficit of weight 

gain (Fanous et al., 2011b).  

The current study did not measure food consumption, so we cannot ascertain whether 

altered food intake contributed to the weight gained after stress with or without VTA MOR 

knockdown. However, if the stress-induced deficit of weight gain were related to VTA MOR-

mediated changes in food intake, one would expect both Handled- and Stressed-shMOR 

knockdown groups to show significant differences in weight gain compared to GFP-Handled rats, 

which was not the case. There is some evidence to suggest that that MOR activity can alter 

weight gain without producing deficits in food consumption. In particular, daily morphine injection 

for 8 days had no effect on weight gain or food intake, while a parallel group of subjects that 

received escalating doses of morphine exhibited reduced weight gain without significant any 

significant effect on food consumption (Ren et al., 2013). In the same study, injections of 

escalating doses of morphine led to activation of cAMP responsive binding element protein 

(pCREB) in the VTA, implicating this region in MOR-mediated reduction of weight gain, but not 

food intake. Based on this, it is possible that escalating endogenous mu-opioid activity in the VTA 

underlies the weight gain deficit seen after social stress. 

 

4.2 Upregulation of VTA MORs is necessary for intermittent social stress-induced social 

avoidance 

Rodents with non-manipulated VTA MORs and a history of social stress engaged in 

significantly more social avoidance (Berton et al., 2006, Fanous et al., 2010, Komatsu et al., 

2011). However, MOR knockout mice do not show social avoidance after continuous social stress 

(Komatsu et al., 2011), just as our knockdown of VTA MORs prevented intermittent social stress-

induced social avoidance. MORs have been implicated in the rewarding components of social 

behavior, while MOR antagonists are associated with reduced social play (Vanderschuren et al., 
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1997) and experience-induced facilitation of sexual behavior (Pitchers et al., 2014), allowing for 

the possibility that VTA MOR knockdown might alter normal social interaction. However, our data 

reveal that VTA MOR knockdown in handled rats did not alter any measures of social interaction, 

suggesting that VTA MORs affect social behavior only upon the impact of stress exposure. 

Previous research has also indicated that social history alone (isolation vs. social 

housing) or in conjunction with a social interaction test has a profound effect on MOR expression 

(Vanderschuren et al., 1995). Specifically, long-term social isolation increased MOR binding 

density in the VTA, while an acute social interaction reduced VTA MOR binding. Taken together, 

it is possible that positive and negative social situations alter VTA MOR expression, respectively 

decreasing or increasing VTA MOR activity.  

 

4.3 Knockdown of VTA MORs prevents intermittent social stress-induced cross-sensitization 

Stressed rats with non-manipulated VTA MORs exhibited significantly greater locomotor 

activity after a low dose amphetamine challenge, confirming prior reports that intermittent social 

stress induces amphetamine cross-sensitization 10 days after the last stress episode (Covington 

and Miczek, 2001, Nikulina et al., 2012). By contrast, knockdown of VTA MORs prevented social 

stress-induced cross-sensitization without blocking amphetamine-induced locomotion. VTA 

MORs are presynaptically expressed by GABA neurons (Sesack and Pickel, 1995, Garzon and 

Pickel, 2002), and when activated, reduce GABAergic inhibition of VTA DA neurons (Johnson 

and North, 1992, Bergevin et al., 2002, Vargas-Perez et al., 2009b, Trigo et al., 2010, Dacher and 

Nugent, 2011) and facilitate response to psychomotor stimulants . Thus, if stimulation of MORs in 

the VTA indirectly increases VTA DA activity by reducing GABA transmission, then it is likely that 

knockdown of VTA MORs increases GABA release. In fact, MOR knockout mice showed 

enhanced VTA GABA release onto local DA neurons, resulting in reduced cocaine self-

administration (Mathon et al., 2005). 

We observed that knockdown of VTA MORs did not block psychomotor activation 

following amphetamine challenge, even though treatment with a MOR antagonist has been 

shown to abolish amphetamine responses (Magendzo and Bustos, 2003). This suggests that 
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knockdown of VTA MORs does not produce unnatural alterations of mesolimbic tone. Our results 

reveal that VTA MOR upregulation is necessary for intermittent social stress-induced cross-

sensitization to amphetamine. As such, in the VTA social stressors may function to increase 

endogenous MOR activity on GABA neurons, thus reducing the GABAergic inhibition of local DA 

neurons and facilitating behavioral sensitization to psychostimulant drugs. 

 

4.4 VTA MORs are necessary for induction of VTA BDNF by intermittent social stress 

The two-fold increase of VTA BDNF expression which we observed in the VTA is 

consistent with previous reports (Berton et al., 2006, Fanous et al., 2010, Nikulina et al., 2012). 

More importantly, we found that knockdown of VTA MORs prevents induction of VTA BDNF by 

social stress exposure. That knockdown of VTA MORs blocks social stress-induced increase of 

BDNF labeling suggests that VTA BDNF induction after social stress exposure is dependent on 

local MOR upregulation. In fact, increased MOR activity in hippocampus also induces local BDNF 

mRNA (Zhang et al., 2006). While others have suggested that VTA BDNF modulates the function 

of local MORs (Vargas-Perez et al., 2009b, Koo et al., 2012), we show herein that VTA MORs 

can regulate the local expression of BDNF. These reciprocal findings may be attributed to 

differences between exogenous opiate and endogenous opioid functions, as well by differences 

in the VTA input systems recruited by exposure to morphine and social stress. 

Although VTA BDNF is predominantly thought to be found in DA neurons (Gall et al., 

1992, Seroogy et al., 1994), it is possible that MORs may control the transmission of VTA GABA 

neurons to indirectly produce subsequent changes in local DA neurons. Specifically, if MOR 

activity on GABA neurons increases the excitability of local DA neurons (Mathon et al., 2005), 

then the subsequent reduction in VTA GABAergic tone allows for MORs to affect BDNF 

expression in VTA DA neurons, potentially by altering the intracellular signaling that regulates 

BDNF expression in DA, for example mitogen-activated protein kinase/extracellular regulated 

kinase (MAPK/ERK) or cAMP responsive binding element protein (CREB; Shieh and Ghosh, 

1999, Lu et al., 2006, Covington et al., 2011, Russo and Nestler, 2013).  
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Previous studies have indicated that VTA BDNF is crucial for social stress-induced social 

avoidance (Berton et al., 2006, Fanous et al., 2011b) and cross-sensitization to amphetamine 

(Wang et al., 2013), and have shown that VTA MOR upregulation occurs early in the cross-

sensitization process (Nikulina et al., 1999, Nikulina et al., 2005, Nikulina et al., 2008), prior to a 

persistent increase of VTA BDNF expression (Fanous et al., 2010). Thus it is likely that our VTA 

MOR knockdown prevented social stress-induced alterations of behavior by preventing increased 

BDNF expression as a consequence of MOR-dependent increases in VTA GABAergic tone. In 

support of this, and consistent with the preventative behavioral effects of our VTA MOR 

knockdown, is the study by Mathon et al. (2005), in which genetic MOR knockout mice showed 

increased GABAergic input onto local VTA DA neurons and decreased cocaine reinforcement. 

Thus it is likely that social stress upregulates MOR expression on VTA GABA neurons to facilitate 

BDNF expression in local DA neurons, while VTA MOR knockdown may increase VTA 

GABAergic tone, preventing subsequent social stressor-induced changes in the region. 

 

4.5 Concluding remarks 

  In summary, knockdown of MORs in the VTA prevents intermittent social stress-induced 

cross-sensitization to amphetamine, social avoidance, deficit of weight gain, and increase of VTA 

BDNF expression. In rats, continuous social stress suppresses cocaine reward and decreases 

VTA BDNF expression (Miczek et al., 2011a), however it is unknown whether continuous social 

stress alters VTA MOR expression. It is possible that continuous social stress reduces cocaine 

reward and VTA BDNF expression as a function of downregulated VTA MOR expression, which 

would suggest that VTA MORs may mediate a switch between the sensitizing effects seen with 

intermittent social stress and the suppressed cocaine reward observed after continuous social 

stress. 

  The nucleus accumbens (NAc), with reciprocal projections to the VTA, has also been 

identified as a brain region crucial for the effects of stress, drugs of abuse, and food 

intake/palatability. Since VTA MOR knockdown likely functioned in the present study to block 

stress-induced increase of dopaminergic tone, this manipulation also might prevent stress-
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induced changes in the NAc. Future studies are needed to determine whether VTA MOR 

knockdown alters stress-induced changes in the NAc, and the importance of NAc 

neurotransmission for stress-induced effects associated with the VTA.  

  In conclusion, our results indicate that social stress exposure increases VTA MOR 

activity, potentially disinhibiting VTA dopaminergic tone to facilitate response to drugs of abuse. 

The present data suggest that upregulation of VTA MORs following social stress exposure may 

underlie vulnerability to psychostimulant drugs in some individuals, thereby providing a potential 

target for therapeutic intervention during abuse of these drugs. 
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Figure Captions 

Figure 1. Timeline of experimental events and schematic of social approach and avoidance test 

procedure. (A) Rats were given 7 days to recover from surgery, and were then exposed to 

intermittent (4x in 10 days) social defeat or handling procedures. Two days after the last episode 

of defeat, all rats were given the social approach and avoidance test. Ten days after the last 

episode of defeat, one group received amphetamine challenge while a separate group was 

perfused to examine immunohistochemical changes at the time cross-sensitization is observed. 

Five days after receiving the amphetamine challenge, brains from the remaining rats were 

removed and processed for in vitro [3H]DAMGO autoradiography to verify the location and 

efficacy of MOR knockdown. (B) All experimental subjects were assessed for social approach 

and avoidance using a procedure adapted from Berton et al. (2006). Left: Virtual arena dividing 

the chamber into 2 virtual zones: Interaction Zone (IZ), comprising of the 1019.35 cm2 area 

immediately surrounding the containment cage, and Avoidance Zone (AZ), which comprised the 

two corners, combined 52.2 cm2, opposite the containment cage. Right: Schematic of the timeline 

for the social approach and avoidance procedure. 

 

Figure 2. [3H]DAMGO autoradiography revealed that the shMOR construct, but not the 

scrambled GFP construct, significantly reduced MOR binding in the VTA, but not the SNc. (A) 

Left: Representative image of reporter GFP expression in infected VTA cells (fr: fasciculus 

retroflexus; scale bar = 100 µm). Right: Plate 37, modified from Paxinos and Watson (2007). (B) 

Parasagittal illustrations showing the extent of GFP expression across the VTA, drawn in green 

(lateral plates 0.40 - 1.4, modified from Paxinos and Watson, 2007). (C) Representative 

autoradiographs of [3H]DAMGO binding in the VTA after infusion of either scrambled-GFP or 

shMOR lentiviral constructs (MT: medial terminal nucleus of the accessory optic system; scale 

bar = 500 µm). (D) shMOR lentiviral construct (n = 14) significantly (* - p < 0.0001) reduced MOR 

binding in the VTA compared to the scrambled-GFP construct (n = 11), without affecting MOR 

binding of either the GFP (n = 11) or shMOR (n = 14) groups in the adjacent SNc (p > 0.22). 
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Figure 3. Knockdown of VTA MORs prevents social stress-induced deficit of weight gain. While 

undergoing social stress or handling, GFP-Stressed rats (n = 5) exhibited significantly (** - p < 

0.05) less weight gain than did GFP-Handled (n = 6) or shMOR-Handled (n = 7) rats. By contrast, 

shMOR-Stressed rats (n = 7) did not differ from GFP-Handled or -Stressed rats, showing 

significantly (α - p < 0.05) less weight gain than shMOR-Handled rats. Ten days after the last 

episode of exposure, GFP-Stressed rats had gained significantly (* - p < 0.05) less weight than all 

other groups. 

 

Figure 4. Knockdown of VTA MORs prevents social stress-induced social avoidance. (A) GFP-

Stressed rats (n = 7) made significantly (* - p < 0.005) more entries to the avoidance zones than 

did GFP-Handled (n = 7) or shMOR-Stressed rats (n = 14). (B) GFP-Stressed rats (n = 9) were 

significantly (*** - p < 0.05) more active in the avoidance zones than GFP-Handled (n = 7), 

shMOR-Handled (n = 8), or shMOR-Stressed (n = 11) rats. (C) GFP-Stressed rats (n = 7) showed 

a slight tendency to spend less time in the interaction zone, but there was no significant (p > 0.3) 

main effect compared to GFP-Handled (n = 9), shMOR-Handled (n = 9), or shMOR-Stressed (n = 

12) groups. 

 

Figure 5. Knockdown of VTA MORs prevents social stress-induced amphetamine cross-

sensitization without affecting baseline activity. Multivariate analyses revealed that the only 

significant main effects occurred during the amphetamine phase of the assay. Data collection and 

video tracking were paused to administer saline and amphetamine, vertical arrows denote the 

time point when injection occurred. (A) GFP-Stressed rats (n = 4) exhibited significantly (*** - p < 

0.05) more movements at 120 and 140 min compared to GFP-Handled (n = 5), shMOR-Handled 

(n = 6), and shMOR-Stressed (n = 6) rats, and differed significantly (* - p < 0.02) from GFP-

Handled rats at 130 min. (B) GFP-Stressed rats travelled a significantly (*** - p < 0.03) greater 

distance at 110, 120, and 130 min compared to all other groups. 
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Figure 6. Knockdown of VTA MORs blocks social stress-induced increase of VTA BDNF 

expression. (A) Representative images of BDNF labeling in the VTA approximately AP -5.1 from 

bregma. More BDNF labeled cells (identified by arrows) are visible in the GFP-Stressed group 

than in any others. (Scale bar = 100 μm) (B) The GFP-Stressed group (n = 5) exhibited 

significantly (* - p < 0.0001) more VTA BDNF immunolabeling than GFP-Handled (n = 4), 

shMOR-Handled (n = 4), or shMOR-Stressed (n = 6) groups. Numbers of labelled cells did not 

significantly differ between GFP-Handled rats and either shMOR group (p > 0.15). 
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