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 ABSTRACT 

 

An important operating aspect of all transmission systems is power system stability 

and satisfactory dynamic performance. The integration of renewable resources in general, 

and photovoltaic resources in particular into the grid has created new engineering issues.  

A particularly problematic operating scenario occurs when conventional generation is 

operated at a low level but photovoltaic solar generation is at a high level. Significant solar 

photovoltaic penetration as a renewable resource is becoming a reality in some electric 

power systems.  In this thesis, special attention is given to photovoltaic generation in an 

actual electric power system: increased solar penetration has resulted in significant strides 

towards meeting renewable portfolio standards.  The impact of solar generation integration 

on power system dynamics is studied and evaluated. 

This thesis presents the impact of high solar penetration resulting in potentially 

problematic low system damping operating conditions. This is the case because the power 

system damping provided by conventional generation may be insufficient due to reduced 

system inertia and change in power flow patterns affecting synchronizing and damping 

capability in the AC system. This typically occurs because conventional generators are 

rescheduled or shut down to allow for the increased solar production. This problematic 

case may occur at any time of the year but during the springtime months of March-May, 

when the system load is low and the ambient temperature is relatively low, there is the 

potential that over voltages may occur in the high voltage transmission system. Also, 

reduced damping in system response to disturbances may occur. An actual case study is 



 

 

ii 

 

considered in which real operating system data are used. Solutions to low damping cases 

are discussed and a solution based on the retuning of a conventional power system 

stabilizer is given in the thesis. 
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CHAPTER 1 PROJECT DESCRIPTION AND INTRODUCTION 

1.1 The scope of this thesis 

This thesis investigates the impact of solar PV generation on power system 

dynamics. Since renewable sources of energy are gaining importance over the years (solar 

generation being one of the major renewable sources), solar PV generation is integrated into 

the grid and an equal amount of conventional generation has to be rescheduled or shut down 

to accommodate PV generation. As a result, the system experiences loss of inertia which 

can result in over-voltages and slightly reduced damping of system oscillation. These are 

not beneficial for the system. This thesis studies the impact of PV generation on system 

oscillations and implements measures to improve the system damping of oscillations. Some 

of this work was summarized and reported in the North American Power Symposium [23]. 

1.2 Motivation and description 

This study is done for a large power company using actual data. The study assumes 

that significant solar penetration has occurred in their service territory. Increased solar 

penetration has resulted in significant strides towards meeting renewable portfolio standards 

(RPS).  Significant penetration of solar generation during periods of low service territory 

generation during the months of March – May when the load in the service territory is low 

has a tendency to cause overvoltages in the high voltage system and also result in slightly 

reduced damping in system response to disturbances.  One aspect which contributes to this 

reduced damping is that conventional generators have to be rescheduled or shut down to 

allow for the increased solar penetration. This results in significantly different operating 
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conditions for which power system stabilizers (PSSs) (which exist on conventional 

generators) may not have been adequately tuned. 

In this research, the following were studied: 

 Examine range of operating conditions with increased penetration of solar 

generation and low valley generation to ascertain damping achieved by existing 

settings on PSS 

 Conduct a sensitivity analysis and evaluate how damping changes with change in 

solar penetration 

 Tune PSS 

 Test the new settings of the PSS and examine performance for cases which showed 

low damping with existing PSS settings 

The following are the main research objectives: 

 Examining operating conditions with increased penetration of solar generation that 

result in reduced damping of oscillations. 

 Conducting small signal stability analysis on these cases and evaluating the damping 

performance of existing PSS settings. 

 Conducting a sensitivity analysis of damping performance with change in solar 

penetration. 

 Retuning existing PSS settings. 

 Testing the performance of the retuned PSS settings. 
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1.3 Background literature 

 Solar PV generation 

Solar and other renewable resources have gained significant importance as energy 

sources owing to the increase in population over the years and the rise in demand for energy. 

The exhaustive nature of non-renewable resources such as fossil fuels has made it 

imperative to find alternate ever-lasting sources of energy generation. Using solar PV to 

generate electricity is one of the effective means of solving problems related to exhaustion 

of energy resources, and environmental pollution. The technical problems with PV power 

generation are analyzed and suggestions for improvement are provided in [13]. Further, the 

PV power generation system is analyzed to improve design and efficiency. Methods to 

increase solar PV generation have been implemented. Maximum installation capacity of 

solar PV systems by applying active and reactive power controls increases penetration in 

power distribution systems [14].  Based on PV active power injection and the loading, the 

voltage magnitude and voltage variation ratio at each bus are obtained by applying power 

flow analysis for determining the maximum PV installation capacity. 

For effective energy extraction from a solar PV system, the I-V and P-V 

characteristics of solar PV cells and modules are studied [15]. The study considers the 

relationship between semiconductor properties of solar PV system and the external electric 

circuit requirements.  

Limitations encountered in implementing solar PV generation cannot be ignored. 

The status and needs related to optimizing the integration of electrical energy storage and 

grid-connected PV systems are assessed [16]. At high levels of PV penetration on the 
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electric grid, reliable and economical distributed energy storage eliminates the need for 

back-up utility generation capacity to offset the intermittent nature of PV generation. The 

status of various storage technologies in the context of PV system integration, addressing 

applications, benefits, costs and technology limitations is summarized. Further research and 

development needs, with emphasis on new models, systems analysis tools, and even 

business models for high penetration of PV storage systems is also discussed. 

The electric power industry will undergo a radical change as the RPS of several 

states will be implemented during the next decade. Now that over half the states in the U.S. 

have adopted aggressive RPS, the issues of reliable penetration of dispersed renewables into 

the grid have become a major topic of discussion [17]. The major challenge facing the U.S. 

electric power industry is fulfilling its obligations to be simultaneously reliable, economical 

and environmentally friendly as it grows under the RPS requirements, deregulation and 

industry restructuring.   

As per the model bill, the Electricity Freedom Act, drafted by ALEC, the states in 

the U.S.A. would be required to derive a specific percentage of their electricity needs from 

renewable energy sources [18]. The RPS of some of the states in WECC are shown in Table 

1.1. 
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Table 1.1 RPS of some states in WECC 

State Amount 

(%) 

Year 

Arizona 15 2025 

California 25, 33 2016, 2020 

Colorado 30 2020 

Montana 15 2015 

Nevada 25 2025 

New Mexico 20 2020 

 

 

 Impacts of solar PV generation on power system stability and damping 

performance 

Solar PV power generating systems are fundamentally different from conventional 

synchronous generators. Photovoltaics produce direct current and the interface with the grid 

is via an electronic inverter. Photovoltaic resources do not have inertia and their dynamic 

behavior is dominated by the characteristics of the power electronic inverters. Increased 

solar PV generation can either have beneficial or detrimental effects on small signal stability 

depending on the location and penetration level of solar PV generation and the dispatch of 

existing conventional synchronous generators. Impact of solar PV generation on small 

signal stability is studied in [19]. 

Solar PV generation can cause potential voltage and stability issues. Solar PV 

generation interconnections may cause oscillation problems following faults, high voltage 

problems in sub-transmission and distribution systems under normal conditions, and 

transient over-voltage in the grid following faults [20]. These problems may further cause 

reliability concerns such as overload of sub-transmission and distribution lines, over-voltage 
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generation tripping, and transient instability. At low levels of penetration, none of these 

issues are present, but at high levels of penetration, there is a reasonable motivation to study 

and assess the problematic issues indicated. When oscillation problems arise in the system 

due to large solar PV integration, critical synchronous generators need to be kept on-line or 

other measures such as SVC or power system stabilizer tuning, need to be taken to maintain 

sufficient damping of these low frequency oscillations [19]. 

 Voltage stability studies are carried out using PV curves and small-perturbation 

stability studies are performed (based on eigenvalue analyses of linearized system models), 

and time-domain studies are carried out to examine the overall performance of the system 

in case of contingencies. This is the general approach taken in [21]. 

1.4 Organization of this thesis 

Chapter 1 begins with the scope of the topic of research. It further introduces the 

impacts of high solar PV generation on power system stability and damping of low 

frequency oscillations. Chapter 2 explains the Larsen and Swann method of PSS tuning. 

The advantages of these methods are also discussed along with the reason for not 

implementing the Larsen and Swann method of power system stabilizer tuning. Chapter 3 

discusses the 2010 spring light load case in details. The base case scenario and the scenarios 

with changing PV penetration are analyzed. Varying levels of PV generation are considered. 

The impacts on frequency and damping of oscillations are observed. Results obtained by 

eigenvalue analysis are verified using time domain simulations. Corrective measures to 

improve the damping are implemented. The improvement in damping is observed 

graphically. Chapter 4 follows-up on the approach and analysis taken in Chapter 3 except 
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that the 2018 summer peak load data is considered and analyzed. Chapter 5 summarizes the 

conclusions and is followed by references. 

The tests to shut down conventional generation (Test 1 – Test 3), retune PSS (Test 

4) and carry out time domain analysis (Test 5) are given in Appendix A. Appendix B gives 

the MATLAB code for the example of PSS design (shown in Chapter 2) using the Larsen 

and Swann method of PSS tuning.  
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CHAPTER 2 THE LARSEN AND SWANN METHOD FOR PSS TUNING 

2.1 Power system damping and the role of a power system stabilizer 

An electrical power system is a network of electrical components used to generate, 

transmit, supply and use electric power. For AC power systems, power system stability is 

an important operating consideration. The performance of a power transmission system 

depends on its various components like generation and excitation units, loads, capacitors 

and reactors, power electronic devices, and protective devices [2]. While the system 

reliability is high, excitation systems with high gain and low time constants may initiate low 

frequency oscillations that may persist for long periods of time and cause limitations in 

transmitting power. Power system stabilizers are used to provide damping for these 

undesirable oscillations. 

The basic function of a PSS is to provide damping to system oscillations via 

modulation of generator excitation. The oscillations of concern typically occur in the 

frequency range of approximately 0.2 to 2.5 Hz, and insufficient damping of these 

oscillations may limit power transfer capability [2]. A PSS takes local inputs (speed, 

frequency, voltage, power) and provides an auxiliary signal to damp oscillations. For any 

input signal the transfer function of the stabilizer should compensate for the gain and phase 

characteristics of the excitation system, the generator and the power system itself. The input 

signal determines the transfer function from the control input to the excitation system to the 

component of electrical torque which can be modulated via excitation control. The exciter 

transfer function is influenced by voltage regulator gain, generator power level and the AC 

system itself. 
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2.2 The Larsen and Swann method of PSS tuning 

PSS tuning is an important concept. Tuning of PSS consists of obtaining correct 

parameters to achieve satisfactory performance of the power system. Tuning of PSS helps 

provide an auxiliary signal to damp oscillations. This is done by adjusting the lead/lag 

parameters of the PSS depending on the phase lag to be compensated. 

The steps involved in the Larsen and Swann method of PSS tuning are discussed 

below. Fig. 2.1 shows the simplified model of a single machine connected to an infinite bus 

[2]. The tuning procedure consists of the following steps: 

1. Calculate the transfer function GEP(s) as shown in Fig. 2.1. [2] 

2. Plot the phase lag of GEP(s) over the range of frequency of interest. 

3. Tune the PSS as to provide suitable phase lead at this desired frequency. 

4. Adjust the gain of the PSS (Ks) to one-third of the value that causes instability. 

Note that the generator-exciter system in state space form is given by, 

�̇� =  𝐴𝑠𝑦𝑠𝑥 +  𝐵𝑠𝑦𝑠𝑢 

𝑦 = 𝐶𝑠𝑦𝑠𝑥 + 𝐷𝑠𝑦𝑠𝑢 

𝑦 =  [𝐶𝑠𝑦𝑠(𝑠𝐼 − 𝐴𝑠𝑦𝑠)
−1

𝐵𝑠𝑦𝑠 + 𝐷𝑠𝑦𝑠] 𝑢 

𝐺𝐸𝑃(𝑠) =  [𝐶𝑠𝑦𝑠(𝑠𝐼 − 𝐴𝑠𝑦𝑠)
−1

𝐵𝑠𝑦𝑠 + 𝐷𝑠𝑦𝑠] 

where Asys, Bsys, Csys and Dsys are the system matrices.  
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Fig 2.1 Simplified model of a single machine to an infinite bus 

2.3 An example to demonstrate the Larsen and Swann method of PSS tuning 

  

An example of the Larsen and Swann method is shown for reference. This example 

is applied to a small system. The dynamics of a simple two area power system shown in Fig 

2.2 taken directly from [10] is to be improved. Each generator in the system is modeled with 

a fast response AC exciter. It is desired to add a PSS to each generator to improve the 

dynamic performance of the system.  

The base case power flow solution of the two area system has a tie line power flow 

of 300 MW. The tie line power flow is increased by 50% to the steady state stability limit 
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of 376.7 MW, to 338.4 MW.  The PSS at each generator is tuned using the Larsen and 

Swann method. The gain of all power system stabilizers is the same at all the four generators 

and is determined through eigenvalue analysis and time domain simulations. 

 

Fig 2.2 A two-area power system used as a test bed 

For the example considered, the generators are modeled as model DG0S5 which 

represent the synchronous machine as a solid rotor generator, the exciter is modeled as the 

AC exciter (EXC30) [22]. 

The design steps for PSS design using the Larsen and Swann method are as follows: 

1 Obtain System matrices Asys , Bsys , Csys , Dsys from power system simulation tools 

like DSA Tools. 

2 Remove all the rows and columns due to rotor angles and speed and obtain A’, B’, 

C’, D’ matrices. 

3 Form the overall system transfer function GEP(s), draw the phase curve of GEP(s) 

– the ideal phase lead requirement by the PSS. 
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4 Choose PSS time constants to match the ideal curve over 0.1 to 2 Hz (the frequency 

range of interest for small signal stability). The PSS is forced to under compensate 

at frequencies below 1 Hz so that it does not reduce the synchronizing torque. 

5 PSS gain is set using SSAT (complete eigenvalue analysis) and TSAT (time domain 

simulations). 

2.3.1 Obtaining system state space representation (Matrices Asys, Bsys, Csys, Dsys) 

For each dynamic device, SSAT formulates the following model and uses it in all 

computations, 

 [𝑥�̇� = 𝐴𝑑𝑥𝑑 + 𝐵𝑑𝑣𝑑 + 𝐹𝑑𝑢]                     (2.1) 

 

 

 

 

 

[𝑖�̇� = 𝐶𝑑𝑥𝑑 + 𝐷𝑑𝑣𝑑]                            (2.2) 

 

 

where xd is the n x 1 state vector for a device, vd is the 2m x 1 voltage vector of voltages at 

the device terminal bus and any remote sensing buses, and id is the 2k x 1 currents injected 

into the network at the device terminals. If response computation is required and the input 

is specified as either Vref  in an exciter or Pref  in a governor, the input is contained in the 

vector u. For the system shown in Fig 2.2, the state variables for each generator-exciter 

system is given by the following equation 

 [𝑥𝑑 = (𝜔, 𝛿, 𝜓𝑓𝑑 , 𝜓𝑘𝑑1, 𝜓𝑘𝑞1, 𝜓𝑘𝑞2, 𝑥𝑇𝐹 , 𝑥𝑇𝐵, 𝑥𝑇𝐴)
𝑇

].             (2.3)  
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In DSA Tools, the generator states are placed before the exciter states for each 

machine in the vector of states.  After running the complete eigenvalue analysis in SSAT, 

the overall system state matrix Asys is computed from Ad,  Bd, Cd, Dd and Yn as, 

 [𝐴𝑠𝑦𝑠 = 𝐴𝑑 + 𝐵𝑑(𝑌𝑛 − 𝐷𝑑)−1𝐶𝑑] (2.4) 

 where, 

𝐴𝑑 = [
𝐴𝑑1

⋱
𝐴𝑑𝑛

]        𝐵𝑑 = [
𝐵𝑑1

⋱
𝐵𝑑𝑛

] 

𝐶𝑑 = [
𝐶𝑑1

⋱
𝐶𝑑𝑛

]          𝐷𝑑 = [
𝐷𝑑1

⋱
𝐷𝑑𝑛

] 

and Yn is the reduced network admittance matrix.  

The complete system can be represented by the linearized set of Equations (2.5, 2.6) 

where input u is the exciter Vref and the output y is the electrical torque Te. The system 

matrices are obtained from SSAT. The details are as follows, 

 

[�̇� = 𝐴𝑠𝑦𝑠𝑥 + 𝐵𝑠𝑦𝑠𝑢] 

 

 (2.5) 

 

 [𝑦 = 𝐶𝑠𝑦𝑠𝑥 + 𝐷𝑠𝑦𝑠].      (2.6)  

For this system studied, the size of the Asys matrix is 36 × 36; the size of the Bsys matrix is 

36 × 4; and the size of the Csys matrix is 4 × 36. 
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2.3.2 Estimation of generator-exciter transfer function 

The rows and columns corresponding to the speed and rotor angle equations are 

removed from the Asys, Bsys, Csys, Dsys matrices to obtain the new state space representation 

A’, B’, C’, D’. 

 

The generator-exciter transfer function is obtained as 

 [𝐺𝐸𝑃(𝑠) = 𝐶′(𝑠𝐼 − 𝐴′)−1𝐵′]. (2.7) 

 

 

2.3.3 Obtaining the generator-exciter phase plots for the two-area system in Fig 2.2  

The phase angle lag of the generator-exciter system is plotted over the range of 0 to 

2 Hz for each generator. The time constants of the PSS are found by curve fitting the PSS 

frequency response to the generator-exciter lag characteristic. The curve fitting process is 

biased to force the PSS to undercompensate at lower frequencies. The frequency responses 

for generators 1, 2, 3, and 4 in the two-area system can be seen in Fig 2.3, 2.4, 2.5, and 2.6 

respectively. 
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Fig 2.3 Generator-exciter 1 system frequency-phase plot for the two-area system in Section 2.3 

 

 

Fig 2.4 Generator-exciter 2 system frequency-phase plot for the two-area system in Section 2.3 
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Fig 2.5 Generator-exciter 3 system frequency-phase plot for the two-area system in Section 2.3 

Fig 2.6 Generator-exciter 4 system frequency-phase plot for the two-area system in 

Section 2.3 
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2.3.4 Phase lead block design for the generator-exciter system in Section 2.3 

The phase lag of the generator-exciter system in example in Section 2.3 has been 

evaluated.  The phase lead blocks within the power system stabilizer model are determined 

by fitting the PSS lead characteristic to the generator-exciter lag.  The power system 

stabilizer model (PSS1) [22] has the transfer function of the form in (2.8). The time 

constants for the PSS at each generator are listed in Table 2.1. The transfer function Gs(s) is 

given by, 

𝐺𝑠(𝑠) = (
𝐾𝑆𝑇5𝑠

1 + 𝑇5𝑠
) (

1 + 𝑇1𝑠

1 + 𝑇2𝑠
) (

1 + 𝑇3𝑠

1 + 𝑇4𝑠
) (2.8) 

where T1 – T4 are the lead/lag time constants (seconds) and T5 is the washout time constant 

(seconds). 

The MATLAB curve fitting tool is used for calculating the time constants T1-T4 of 

the PSS block. The curve fitting is modified such that the PSS undercompensates at lower 

frequency range. The function used for curve fitting to tune T1-T4 is, 

 

[𝑌(𝑋) =  (180/𝜋)( 
𝜋

2
−  𝑡𝑎𝑛−1(10𝑋) + 𝑡𝑎𝑛−1(𝑋𝑇1)

− 𝑡𝑎𝑛−1(𝑋𝑇2) + 𝑡𝑎𝑛−1(𝑋𝑇3) − 𝑡𝑎𝑛−1(𝑋𝑇4))] 

(2.9) 

 

  



18 

 

Table 2.1 PSS lead-lag parameters (seconds) 

 PSS 1 PSS 2 PSS 3 PSS 4 

T1 0.9334 0.8919 0.8950 0.8513 

T2 0.0100 0.0100 0.0100 0.0100 

T3 0.1785 0.1920 0.1817 0.1823 

T4 0.0127 0.0100 0.0107 0.0100 

T5 10 10 10 10 

 

2.3.5 Select PSS gain using eigenvalue analysis and time domain simulations 

All the time constants for the PSS are now defined. The gain of the stabilizers still 

needs to be chosen. The gain of all the stabilizers will be held the same. Time domain 

simulations of a 6-cycle-duration three-phase fault in the middle of the tie line are conducted 

for different PSS gain. A good choice of gain for the stabilizers will provide sufficient 

damping torque to each generator in the system. The value of gain Ks is varied from 0 to 15. 

For each different gain, an eigenvalue analysis is also conducted to see the effect of the 

stabilizers on the critical mode. For PSS gains of 5, the system is underdamped. For gain Ks 

of 10 and 11, the system has acceptable overshoot and settling time. For gains of 15 and 

above, the system has prolonged overshoot and increased settling time. Table 2.2 shows the 

results obtained from eigenvalue analysis for exciter model EXC30. 
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Table 2.2 Results obtained from eigenvalue analysis for the exciter EXC30 in Section 2.3 

 

No. 

 

PSS 

Gain 

Eigenvalue 

 

 

Frequency 

(Hz) 

 

Damping 

(%) 

 

Critical 

Mode Real Imaginary 

1 No PSS -0.0631 2.3904 0.3804 2.64 Speed 

Larsen and Swann Method 

2 5.0 -0.3004 2.4513 0.3901 12.16 Speed 

3 10.0 -0.5210 2.5020 0.3982 20.38 Speed 

4 11.0 -0.5628 2.5103 0.3995 21.88 Speed 

5 15.0 -0.7250 2.5385 0.4040 27.46 Speed 

6 20.0 -0.9139 2.5607 0.4076 33.61 Speed 

 

Time domain simulations of the system in the example of Section 2.3 are conducted in 

TSAT. The power flow on the tie line in the two-area power system in the example is set to 

338.46 MW. A three phase fault was applied at the middle of the tie line with a fixed clearing 

time of 6 cycles.  The machine rotor angles are plotted for different values of PSS gain. The 

results of these simulations can be seen in Fig 2.7 to Fig 2.12. The Larsen and Swann method 

of PSS tuning for the two-area system studied in the example is implemented using a code 

in Matlab. The code for the same is attached in Appendix B. 
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  Fig 2.7 Rotor angle response with no PSS for the two-area power system in 

Section 2.3 

 

 Fig 2.8 Rotor angle response with PSS Gain of 5.0 for the two-area power system in 

Section 2.3 
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                     Fig 2.9 Rotor angle response with PSS gain of 10 for the two-area power system   

in Section 2.3 

 

  Fig 2.10 Rotor angle response with PSS gain of 11 for the two-area power system 

in Section 2.3
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Fig 2.11 Rotor angle response with PSS gain of 15 for the two-area power system in Section 

2.3 

 

Fig 2.12 Rotor angle response with PSS gain of 20 for the two-area power system in Section 

2.3. 
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2.4 Software limitations of the method 

The actual power system data used as the test bed for the study is typical of the 

analysis data for a large system. Due to the large size of the system at hand and also the 

software limitations on the number of states, it is inconvenient to calculate the system 

matrices for the entire system. Hence, a method of PSS tuning different from the Larsen 

Swan algorithm is implemented. This alternative method is described in Chapter 3.  

 The SSAT DSA Tool [5] allows for eigenvalue analysis over a selected range of 

frequency and damping which gives the matrices for individual units. However, SSAT does 

not allow for complete eigenvalue analysis, since the number of states in the system exceeds 

the limit set by SSAT. As a result, the system matrices cannot be obtained. 
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CHAPTER 3 EXAMINATION OF OPERATING CONDITIONS WITH INCREASED 

SOLAR PENETRATION: SPRING 2010 LIGHT LOAD CASE 

3.1 A test bed for an illustrative study 

In order to assess the impact of high penetration of PV solar resources, operating 

data from the actual power system considered available for the spring 2010 light load case 

were used. These data exhibit the aforementioned high level of solar generation. In order to 

study this case, a commercial dynamic analysis software package was used to calculate 

power system dynamic models. In the study of small-signal power system dynamics, the 

time response of rotor angles of generators is characterized by modes.  These modes may 

be oscillatory or completely damped. The critical modes are those with reduced damping. 

Reduced damping is particularly undesirable since the oscillations require longer time to 

decay. Such problematic modes are identified. The PSSs on the generators which participate 

in these dominant modes are then retuned to account for the changed operating conditions 

and improve the damping. 

3.2 Description of the test: Spring 2010 light load case 

For the spring 2010 light load data, a base case power flow is run and the local and 

inter-area modes are observed for frequency and damping. The base case is the case with 

zero solar PV generation. As the solar penetration level is added and the PV generation is 

increased, the effects on damping show that damping is reduced and modal frequencies are 

approximately unchanged. The solar PV penetration is added in steps of 10% up to 50% in 

order to assess the impact on system dynamics. The 30%, 40% and 50% penetration levels 
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show significantly lowered damping of the critical modes. In depth analyses of the area, the 

type of plant, and the generators are conducted corresponding to the dominant modes.  

3.3 Base case scenario: Spring 2010 light load case 

     The base case (with no PV penetration) is considered and eigenvalue analysis is 

carried out using the SSAT DSA tool [5] to check the frequency and damping of the 

identified critical modes. These are standard software tools that are widely used in the 

electric power industry. For the base case, the eigenvalues associated with the dominant 

modes are shown in Table 3.1. Note that damping is represented as a percentage and as a 

positive number D. 

Table 3.1 Base case dominant modes: Spring 2010 light load case 

Mode 

number 

Eigenvalue  

f (Hz) 

Damping 

D (%) 

Dominant 

state 
Real Imaginary 

14 -2.4105 20.9021 3.3267 11.46 Angle 

15 -2.436 19.7426 3.1421 12.25 Angle 

90 -0.908 22.0733 3.5131 4.11 Speed 

91 -0.6759 20.4277 3.2512 3.31 Speed 

88 -0.7957 18.8228 2.9958 4.22 Speed 

88 -1.0736 21.2937 3.389 5.04 Speed 

89 -0.8275 19.152 3.0481 4.32 Speed 

89 -1.0736 21.2937 3.389 5.04 Speed 
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3.4 Solar PV penetration set at 10% and 20% 

The described test bed was also studied with PV generation added. For example, 

10% of the total name plate generation was supplied by PV and in turn, some conventional 

generators were shut down in order to account for this additional generation. Similar steps 

were carried out for the 20% case. The results are produced in Tables 3.2 and 3.3. 

It is observed that the 10% and 20% PV generation cases did not impact damping.  

Hence these cases are not considered for further analysis. Different scenarios were then 

studied where specific generators were switched off to allow for the high PV generation.   

Table 3.2 Dominant modes for the 10% PV generation case: Spring 2010 light load case 

 

  

Mode 

number 

Eigenvalue  

f (Hz) 

Damping 

D (%) 

Dominant 

state 
Real Imaginary 

14 -2.4027 20.8901 3.3248 11.43 Angle 

15 -2.4204 19.7196 3.1385 12.18 Angle 

91 -0.7527 21.2089 3.3755 3.55 Speed 

88 -0.8806 18.488 2.9425 4.76 Angle 

88 -1.1691 20.7993 3.3103 5.61 Speed 

89 -0.9133 18.7964 2.9916 4.85 Speed 

89 -1.1691 20.7993 3.3103 5.61 Angle 
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       Table 3.3 Dominant modes for the 20% PV generation case: Spring 2010 light load 

case 

Mode 

Number 

Eigenvalue f 

 (Hz) 

Damping D 

(%) 

Dominant 

State 
Real Imaginary 

14 -2.3676 19.8119 3.1532 11.87 Angle 

88 -0.9353 18.2836 2.9099 5.11 Angle 

88 -1.2322 20.509 3.2641 6 Speed 

89 -0.97 18.5842 2.9578 5.21 Speed 

89 -1.2322 20.509 3.2641 6 Speed 

 

 

3.5 Generators shut down to allow for the excess PV penetration 

 

As PV generation is added and increased from 30% to 50%, conventional generators 

are shut down to allow for the PV generation. The generators shut down for this task were 

decided depending on the type of generating units and the amount of generation. 

3.5.1 Shutting down the CT and GT units to accommodate PV generation 

A test was done to evaluate the reduction of combustion turbine (CT) and gas turbine 

(GT) generation.  This task deals with altering the economic generation scheduling. Since 

the GT and CT units have relatively high operating costs, these types of conventional 

generator units are shut down to account for the additional PV generation. The PV is added 

in varying amounts (30%, 40%, and 50%) and equal amounts of generation are backed off 
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from conventional generators. The generators that are selected to be shut down belong to 

the CT and GT type. The results are shown in Table 3.4. 

3.5.2 Shutting down an aging coal unit 

In simulation, the generating units at an aging coal generation station are shut down 

in order to account for the additional PV generation. The results are shown in Table 3.5. 

3.5.3 Shutting down alternative aging coal units 

Alternative aging coal units in the area under study are shut down in simulation in 

order to account for the additional PV generation. The results are shown in Table 3.6. 
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Table 3.4 Comparison between 30%, 40% and 50% PV penetration cases when CT and 

GT units are switched off: Spring 2010 light load case 

Dominant 

state 

Base case 30% PV 40% PV 50% PV 

Bus f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

14 3.33 11.46 3.32 11.38 3.32 11.43 3.32 11..42 

15 3.14 12.25 3.12 12.18 3.12 12.22 3.12 12.23 

90 3.51 4.11 3.51 4.12 3.51 4.43 3.50 4.45 

91 3.25 3.31 3.26 3.31 3.24 3.34 3.51 2.61 

88 3.04 4.32 2.91 5.01 2.98 4.3 3.00 4 

88 3.39 5.04 3.27 5.9 3.36 5.15 3.41 4.84 

89 2.99 4.22 2.96 5.12 3.03 4.42 3.06 4.13 

89 3.39 5.04 3.27 5.9 3.36 5.15 3.41 4.84 

 

Table 3.5 Comparison between 30%, 40% and 50% PV cases when aging coal units are 

switched off: Spring 2010 light load case 

Dominant 

state 

Base case 30% PV 40% PV 50% PV 

Bus f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

88 2.99 4.22 2.91 5.09 2.97 4.4 3.01 4 

88 3.39 5.04 3.27 5.98 3.36 5.25 3.41 4.83 

89 3.05 4.32 2.96 5.19 3.03 4.51 3.06 4.13 

89 3.9 5.04 3.27 5.98 3.36 5.25 3.41 4.83 
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Table 3.6 Comparison between 30%, 40% and 50% PV cases when alternative aging coal 

units are switched off: Spring 2010 light load case 

Dominant state Base case 30% PV 40% PV 50% PV 

Bus F 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

90 3.51 4.11 3.55 4.04 3.51 4.35 3.50 4.49 

91 3.25 3.31 3.25 3.25 3.24 3.3 3.19 2.8 

88 2.99 4.22 2.90 5.2 2.96 4.48 3.01 3.99 

88 3.39 5.04 3.25 6.1 3.34 5.34 3.41 4.83 

89 3.05 4.32 2.95 5.31 3.02 4.6 3.07 4.12 

89 3.39 5.04 3.25 6.1 3.35 5.34 3.42 4.83 

 

3.6 Time domain analysis 

 

The 50% PV penetration case with the CT and GT units turned off (Table 3.4) shows 

the lowest damping for the dominant mode at a specific system generation bus 91. This case 

is considered for further analysis. Time domain analysis is conducted using the TSAT. A 

three-phase fault is created on the bus which is electrically closest to bus 91 since such a 

fault affects the critically damped modes the most. The fault is cleared after 6 cycles. The 

behavior of the generator at bus 91 is monitored and generator speed is plotted in Fig. 3.1. 

Further, Prony analysis is conducted to validate the results and the dominant modes are 

shown in Table 3.7. 

3.7 Prony analysis 

Prony analysis is a feature of the TSAT DSA tool and is used in time-domain 

simulations. Prony analysis is a methodology that extends Fourier analysis by directly 
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estimating the frequency, damping strength and relative phase of the modal components 

present in a given signal [12]. The ability to extract such information from transient stability 

program simulations and from large scale system tests or disturbances could provide: 

 Parametric summaries for damping studies (data compression) 

 Quantified information for adjusting remedial controls (sensitivity analysis and 

performance evaluation) 

 Insight into modal interaction mechanisms (modal analysis) 

 Reduced simulation times for damping evaluation (prediction). 

A linear, time-invariant dynamic system is brought to an initial state x(t0) = x0 at 

time t0. This is done by introducing a test input or disturbance. If the input is removed 

without any subsequent inputs or disturbances, the system state will ‘ring down’ according 

to a linearized differential equation of the form 

ẋ = Ax 

where x is the state of the system and n is the order of the system. The solution to the above 

equation is expressed in terms of the eigenvalues, right eigenvectors and left eigenvectors 

of matrix A. 

The strategy for obtaining Prony solution is summarized as follows: 

1. Construct a discrete linear prediction model that fits the record. 

2. Find the roots of the characteristic polynomial associated with the linear prediction 

model. 
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3. Using the roots as the complex modal frequencies for the signal, determine the 

amplitude and initial phase for each mode. 

These steps are performed in z-domain. For power system application, the eigenvalues 

would be translated to s-domain. Prony’s main contribution is at step 1.  

 

Fig 3.1 Generator 91 speed plot with the original PSS settings: Spring 2010 light load case 

The time domain simulation are carried out as defined in test 5 (Appendix A) and 

the results are shown in Table 3.7 identify the poorly damped mode of oscillation (mode 6). 

This result is consistent with the result produced in Table 3.4 that identifies the mode 

associated with the dominant state at generation bus 91. The critical mode has a frequency 

of 3.51 Hz and damping of 2.61%. 
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Table 3.7 Time domain results: Spring 2010 light load case 

Mode number f  (Hz) D  (%) 

1 21.684 41.954 

2 13.238 52.599 

3 30.25 33.573 

4 2.97 14.357 

5 1.213 69.4 

6 3.342 2.868 

7 9.00 16.784 

 

3.8 Power system stabilizer tuning 

Due to the limitations in the implementation of the Larsen and Swann method for 

PSS tuning, this method cannot be used to retune the PSSs existing on the identified 

conventional generators. Another method of PSS retuning is adopted. The modes 

corresponding to buses 90 and 91 have to be retuned simultaneously since retuning the mode 

with the critically low damping caused the damping of the other mode to reduce. This 

method is based on the procedure described in reference [9]. The steps involved are as 

below, 

1. Using SSAT, the frequency response of the transfer function for the dominant mode 

at bus 91 without the PSS is plotted in Fig 3.2. This was done because the system 

size does not allow the direct calculation of the system matrices. 

2. At the frequency of the mode at 3.51 Hz, the corresponding phase lag of 136.4 

degrees is obtained. 
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3. The data from the SSAT is used to plot the frequency response in MATLAB. 

4. For the above phase lag, the lead / lag time constants T1, T2, T3, T4 are calculated 

using a MATLAB code for PSS design using, 

𝑓 = 3.51 

𝜔 = 2𝜋 𝑓 

𝜃 =  
−136.4𝜋

180 × 2
 

𝛼 =  
(1 + sin 𝜃)

(1 − sin 𝜃)
 

𝜏 =  
1

𝜔√𝛼
 

 

with α and τ being the lead / lag time constants, and these expressions are in Hz, r/s, radians 

and seconds. 

5. Similar steps were carried out for the dominant mode at bus 90 for a phase lag of 

96.5 degrees. 

 

Fig 3.2 Frequency response of the 91 generator-exciter transfer function: Spring 2010 light 

load case 
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3.9 Results of PSS retuning 

After the retuning process, the new values of time constants obtained are then fed 

into the dynamic data file in SSAT.  The time constants before and after retuning are shown 

in Table 3.8. 

Table 3.8 Original and new values of PSS lead/lag time constants: Spring 2010 light load 

case 

Dominant 

generator 

modes 

T1 T2 T3 T4 

(seconds) 

90 0.6 0.07 0.6 0.07 

91 0.6 0.07 0.6 0.07 

New values for PSS retuning 

90 0.0371 0.2358 0.0371 0.2358 

91 0.1454 0.1191 0.1454 0.1191 

 

The T1-T4 time constants for the standard IEEE- PSS model [11] were modified in 

the retuned PSS and the eigenvalue analysis is once again carried out using SSAT. The new 

results were compared with the original results and are shown in Table 3.9. 

Table 3.9 Improvement in damping of the identified modes on retuning the PSS: spring 

2010 light load case 

Dominant 

generator 

modes 

50% PV case 

Original PSS settings Retuned PSS 

f (Hz) D (%) f (Hz) D (%) 

90 3.50 4.45 3.4121 7.38 

91 3.51 2.61 3.1179 5.90 
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Thus, the critically low damping of 2.61% is improved to 5.9% and that of 4.45% is 

improved to 7.38%. The result is verified through time domain simulation which is 

explained in 3.6. Fig. 3.3 shows the generator speed plot with the retuned PSS. Prony 

Analysis is conducted to validate the new results obtained and the dominant modes are 

shown in Table 3.10. 

 

Fig 3.3 Generator 91 speed plot with the new PSS settings 

The time domain simulation results in Table 3.10 identify the poorly damped mode 

whose damping has improved due to PSS retuning (mode 6) from 2.868% to 6.907%. This 

result is consistent with the result produced in Table 3.9 that identifies the mode associated 

with the dominant state at bus 91.  That mode has a frequency of 3.1179 Hz and a damping 

of 5.9%. Fig. 3.4 shows the improvement in damping of the oscillations with the new PSS 

settings compared to the original settings. The transient observed in Fig 3.4 occurs due to 

Test 5 (see Appendix A). 
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Table 3.10 Time domain results: Spring 2010 light load case 

Mode number f (Hz) D (%) 

1 60.5 19.602 

2 51.339 21.703 

3 60.5 20.78 

4 42.468 24.274 

5 33.593 26.841 

6 2.966 6.907 

7 25.001 29.271 

8 11.923 45.696 

9 18.833 32.595 

10 2.140 31.058 

11 3.552 10.941 

12 5.962 7.818 

 

 

Fig 3.4 Comparison between the 91 generator speed with original and new PSS settings: Spring 

2010 light load case 
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The impact of PV penetration on selected buses is observed. Eigenvalue analysis is 

carried out and reduction in damping performance is observed. Time domain simulations 

(test 5 – Appendix A) are also performed to see the oscillations which take longer time to 

damp. The PSS existing on the generators observed are retuned to damp the oscillations 

faster. The improvement in damping is observed graphically as the generator speed is 

plotted for the case where the PSS is at the original setting and the case where the PSS is 

retuned. 
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CHAPTER 4 EXAMINATION OF OPERATING CONDITIONS WITH INCREASED 

SOLAR PENETRATION: SUMMER 2018 PEAK LOAD CASE 

 

4.1 A test bed for an illustrative study 

In order to assess the impact of high penetration of PV solar resources, operating 

data from the actual power system considered for the summer 2018 peak load case were 

used. These data exhibit the aforementioned high level of solar generation. In order to study 

this case, the commercial dynamic software package used to study summer 2018 peak load 

data was used to calculate power system dynamic models. In the study of small-signal power 

system dynamics, the time response of rotor angles of generators, characterized by modes, 

may be oscillatory or completely damped. The critical modes are those with reduced 

damping. Reduced damping is particularly undesirable since the oscillations require longer 

time to decay. Such problematic modes are identified. The PSSs on the generators which 

participate in these dominant modes are then retuned to account for the changed operating 

conditions and improve the damping. 

4.2 Description of the test: Summer 2018 peak load case 

For the summer 2018 peak load data, a base case power flow is run and the local and 

inter-area modes are observed for frequency and damping. The base has zero solar PV 

generation. As the solar penetration level is added and the PV generation is increased, the 

effects on damping show that damping is reduced and modal frequencies are approximately 

unchanged. The solar PV penetration is added in steps of 10% up to 50% in order to assess 

the impact on system dynamics. The damping of the critical modes is lowered as the 
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penetration of PV generation is increased up to 50%. In depth analyses of the area, the type 

of plant, and the generators are conducted corresponding to the dominant modes. 

4.3 Base case scenario: Summer 2018 peak load case 

The steps followed are similar to the steps followed for the assessment of the spring 

light load case. The base case (with zero PV penetration) is considered and eigenvalue 

analysis is carried out using the SSAT DSA tool to check the frequency and damping of the 

identified critical modes. For the base case, the eigenvalues associated with the dominant 

modes are shown in Table 4.1. Damping is represented as a percentage and as a positive 

number D. 

Table 4.1 Base case dominant modes: Summer 2018 peak load case 

Mode 

number   

 

Eigenvalue  

f (Hz) 

Damping 

D (%) 

Dominant 

state 
Real Imaginary 

93 -0.7971 18.7865 3.0754 1.81 Speed 

94 -1.5115 20.8487 3.4336 3.65 Speed 

95 -1.0169 18.4465 3.0625 2.37 Speed 

96 -1.4946 20.7996 3.4107 4.42 Angle 

97 -0.997 18.4594 3.0477 2.85 Speed 

98 -1.4801 20.8878 3.4424 3.46 Speed 

99 -1.5224 18.2267 3.0699 2.03 Speed 
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4.4 Generators shut down to allow for the excess PV penetration 

As PV generation is added and increased from 10% to 50%, conventional generators 

are shut down to allow for the PV generation. The generators shut down for this task were 

decided depending on the type of generating units and the amount of generation. 

 Shutting down the CT and GT units 

This is carried out on the steps of Test 1 (see Appendix A). The PV is added in 

increasing amounts (10%, 20%, 30%, 40% and 50%) and equal amounts of generation are 

backed off from conventional generators. The generators that are selected to be shut down 

belong to the CT and GT type. The results are shown in Table 4.2. 

Table 4.2 Comparison between 10%, 20%, 30%, 40% and 50% PV penetration cases 

when CT and GT units are switched off (test 1) 

Dominant 

state 

Base case 10% 20% 30% 40% 50% 

Bus f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

93 3.08 1.81 3.08 1.78 3.08 1.73 3.09 1.65 3.09 1.59 3.09 1.58 

94 3.43 3.65 3.44 3.61 3.44 3.54 3.44 3.42 3.44 3.33 3.44 3.32 

95 3.06 2.37 3.06 2.34 3.07 2.28 3.07 2.19 3.08 2.13 3.08 2.11 

96 3.41 4.42 3.41 4.37 3.41 4.3 3.42 4.17 3.42 4.07 3.42 4.05 

97 3.05 2.85 3.05 2.82 3.05 2.76 3.06 2.67 3.06 2.59 3.06 2.58 

98 3.44 3.46 3.44 3.42 3.45 3.35 3.45 3.23 3.45 3.14 3.45 3.12 
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From Table 4.2 it is observed that the damping consistently decreases as the PV 

generation is increased. Carrying out Tests 1, 2 and 3 (see Appendix A) showed the same 

results as obtained in Table 4.2. 

4.5 Time domain analysis 

The varying PV penetration cases with the CT and GT units turned off (Table 4.2) 

show the lowering of damping for the dominant modes at specific system generation buses. 

Buses 93 to 98 showed critically low damping as the PV generation was increased. These 

cases are considered for further analysis. Time domain analysis is conducted using the 

TSAT (see Appendix A for test 5). A three-phase fault is created on bus which is electrically 

closest to the identified buses since such a fault affects the critically damped modes the 

most. The fault is cleared after 6 cycles. The behavior of the generators at these buses is 

monitored and Prony analysis is conducted to validate the results and the dominant modes 

are shown in Tables 4.3 - 4.7. 

Table 4.3 Time domain results for 10% PV penetration case: Summer 2018 peak load case 

Mode number f  (Hz) D  (%) 

1 3.03 3.96 

2 3.44 4.61 

3 3.01 3.566 

4 3.4 5.243 

5 3.09 3.687 

6 3.48 2.374 

 



43 

 

Table 4.4 Time domain results for 20% PV penetration case: Summer 2018 peak load case 

Mode number f  (Hz) D  (%) 

1 3.03 4.517 

2 3.44 3.549 

3 3.02 3.616 

4 3.37 6.25 

5 3.08 3.257 

6 3.47 4.145 

 

 

 

Table 4.5 Time domain results for 30% PV penetration case: Summer 2018 peak load case 

Mode number f  (Hz) D  (%) 

1 3.03 3.88 

2 3.42 6.82 

3 2.88 3.572 

4 3.35 6.737 

5 3.12 4.012 

6 3.47 3.909 
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Table 4.6 Time domain results for 40% PV penetration case: Summer 2018 peak load case 

Mode number f  (Hz) D  (%) 

1 2.92 1.017 

2 3.52 4.83 

3 2.73 1.808 

4 3.47 4.145 

5 3.09 4.043 

6 3.51 5.623 

 

Table 4.7 Time domain results for 50% PV penetration case: Summer 2018 peak load case 

Mode number f  (Hz) D  (%) 

1 3.19 4.414 

2 3.45 3.31 

3 3.26 3.341 

4 3.38 4.998 

5 3.18 1.444 

6 3.49 4.248 

 

The Prony analysis results demonstrate the same trend with the reduction of the 

damping as shown by the eigenvalue analysis results 

4.6 Steps carried out in retuning the PSS 

Task 4 gives the steps to obtain the lead / lag time constants of each power system 

stabilizer depending on the phase lag to be compensated by the PSS (see Appendix A). For 
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frequency of each mode, corresponding phase lag was obtained from frequency response of 

the excitation system transfer function. Table 4.8 shows the original and the new values of 

time constants obtained. Using these new values, the PSS were retuned and improvement 

in damping performance is shown in Table 4.9. 

Table 4.8 Original and new values of PSS lead/lag time constants: Summer 2018 peak 

load case 

Dominant 

generator modes 

T1 T2 T3 T4 

(seconds) 

93 0.6 0.07 0.6 0.07 

94 0.6 0.07 0.6 0.07 

95 0.6 0.07 0.6 0.07 

96 0.6 0.07 0.6 0.07 

97 0.6 0.07 0.6 0.07 

98 0.6 0.07 0.6 0.07 

New values for PSS retuning 

93 0.1249 0.1457 0.1249 0.1457 

94 0.0278 0.2770 0.0278 0.2770 

95 0.1124 0.1539 0.1124 0.1539 

96 0.3739 0.0936 0.3739 0.0936 

97 0.1324 0.1428 0.1324 0.1428 

98 0.0266 0.2824 0.0266 0.2824 

 

The improvement in damping of the oscillations for the dominant modes at 

generators 93 to 98 is observed in TSAT. The damping of oscillations for these modes with 

original PSS settings and new PSS settings are plotted and compared. Figures 4.1 – 4.6 show 
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the improvement in the damping performance for these modes (93 – 98) after retuning each 

PSS. 

Table 4.9 Improvement in damping of the identified modes on retuning the PSS: Summer 

2018 peak load case 

Dominant 

state 

Base case 10% 20% 30% 40% 50% 

Bus f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

f 

(Hz) 

D 

(%) 

93 3.08 1.81 2.99 4.24 2.9929 4.22 2.9979 4.19 3.002 4.16 3.002 4.16 

94 3.43 3.65 3.318 7.23 3.3191 7.2 3.321 7.16 3.323 7.12 3.323 7.11 

95 3.06 2.37 2.936 5.5 2.938 5.49 2.943 5.46 2.946 5.44 2.946 5.44 

96 3.41 4.42 3.31 7.17 3.311 7.13 3.314 7.07 3.315 7.01 3.316 7.00 

97 3.05 2.85 2.938 5.39 2.94 5.38 2.945 5.34 2.948 5.32 2.948 5.31 

98 3.44 3.46 3.324 7.07 3.325 7.04 3.327 6.99 3.329 6.95 3.329 6.94 

 

 

Fig 4.1 Comparison between the 93 generator speed with original and new PSS settings: 

Summer 2018 peak load case 
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Fig 4.2 Comparison between the 94 generator speed with original and new PSS settings: 

Summer 2018 peak load case 

 

Fig 4.3 Comparison between the 95 generator speed with original and new PSS settings: 

Summer 2018 peak load case 
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Fig 4.4 Comparison between the 96 generator speed with original and new PSS settings: 

Summer 2018 peak load case 

 

 

Fig 4.5 Comparison between the 97 generator speed with original and new PSS settings: 

Summer 2018 peak load case 
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Fig 4.6 Comparison between the 98 generator speed with original and new PSS settings: 

Summer 2018 peak load case 

 

The impact of PV penetration on selected buses (93 - 98) is observed. Eigenvalue 

analysis is carried out and reduction in damping performance is observed. Time domain 

simulations (test 5 – Appendix A) are also performed to see the oscillations which take 

longer time to damp. The PSS existing on the generators observed are retuned to damp the 

oscillations faster. The improvement in damping is observed graphically as the generator 

speed is plotted for the case where the PSS is at the original setting and the case where the 

PSS is retuned. 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Summative remarks 

This thesis relates to photovoltaic generation in the electric power system under 

study. The impact of solar generation integration on power system dynamics is studied and 

evaluated. High photovoltaic solar penetration results in potentially problematic low system 

damping operating conditions. This is the case because the power system damping provided 

by conventional generation may be insufficient due to:  

 Reduced system inertia 

 Change in power flow patterns affecting synchronizing capability in the AC system  

This occurs because conventional generators are rescheduled or shut down to allow for 

the increased solar production. The effects of high solar PV generation are observed using 

eigenvalue analysis and time domain simulations. 

5.2 Conclusions 

Spring 2010 light load case: 

 The eigenvalue analysis (Table 3.4) shows poorly damped modes in the system with 

high levels of PV generation and the damping worsens as the PV generation 

increases. For the spring 2010 light load case, the dominant mode associated with 

bus 91 is the critically damped mode and the 50% PV generation case shows it’s 

damping as low as 2.61% (Table 3.4). 

 Prony analysis (time domain) identifies the poorly damped mode as mode 6 (Table 

3.7). 
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 On retuning, the PSS existing on the generator at bus 91, the damping is improved 

and is seen graphically in Fig 3.4. 

Summer 2018 peak load case: 

 The eigenvalue analysis (Table 4.2) shows the poorly damped modes in the system 

with high levels of PV generation and the damping worsens as the PV generation 

increases. For the summer 2018 peak load case, the dominant mode associated with 

buses 93 to 98 show the critically damped modes (Table 4.2). 

 Prony analysis (time domain) identifies the poorly damped modes (Tables 4.3 – 4.7) 

which correspond to the modes in Table 4.2. 

 On retuning the PSSs existing on generator at bus 94, the damping is improved and 

is seen graphically in Fig 4.1. (Similar graphs are generated for other buses in the 

summer case and the improvement in damping is observed). 

5.3 Recommendations for future work 

Future work may involve the following: 

 Steps to change the PSS settings as obtained after retuning the PSSs on the 

generators should be enumerated and identified. 

 The spring light load data and summer peak load data (data of recent years for the 

spring case) should be updated. 

 The impact of PV generation on buses outside of Arizona should be analyzed. And 

the effect of a change in PSS settings on system damping should be evaluated. 
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APPENDIX A 

TASKS CARRIED OUT FOR SHUTTING DOWN GENERATORS 
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Test 1: Shutting down the CT and GT units to accommodate PV generation 

A test was done to evaluate the reduction of combustion turbine (CT) and gas turbine 

(GT) generation.  This task deals with altering the economic generation scheduling. Since 

the GT and CT units have relatively high operating costs, these types of conventional 

generator units are shut down to account for the additional PV generation. The PV is added 

in varying amounts (30%, 40%, and 50%) and equal amounts of generation are backed off 

from conventional generators. The generators that are selected to be shut down belong to 

the CT and GT type. 

Test 2: Shutting down an aging coal unit 

The generating units at an aging coal generation station are shut down in order to 

account for the additional PV generation. The units are shut down taking into consideration 

their location, participation factor and the type of plant. 

Test 3: Shutting down alternative aging coal units 

Alternative aging coal units in the area under study are shut down in order to account 

for the additional PV generation. The units are shut down taking into consideration their 

location, participation factor and the type of plant. 

Test 4: Steps carried out for PSS tuning for the summer 2018 peak load case 

 Using SSAT, the frequency response of the transfer function for the dominant mode 

at buses 93 to 98 without the PSS is plotted. 
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 At the frequencies of the respective mode, the corresponding phase lags are 

obtained. 

 For the obtained phase lags, the lead / lag time constants T1, T2, T3, T4 are calculated 

using a MATLAB code for PSS design shown below: 

𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑚𝑜𝑑𝑒 

𝜔 = 2𝜋 𝑓 

𝜃 =  
−(𝑝ℎ𝑎𝑠𝑒 𝑙𝑎𝑔)𝜋

180 × 2
 

𝛼 =  
(1 +  sin 𝜃)

(1 −  sin 𝜃)
 

𝜏 =  
1

𝜔√𝛼
 

with α and τ being the lead / lag time constants, and these expressions are in Hz, r/s, degrees 

and seconds. 

Test 5: Time domain analysis 

Time domain analysis is conducted using the TSAT. A three-phase fault is created 

on the bus which is electrically closest to bus whose behavior is observed since such a fault 

affects the critically damped modes the most. The fault is cleared after 6 cycles. The 

behavior of the generator at the selected bus is monitored. 
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APPENDIX B 

MATLAB CODE FOR PSS TUNING – LARSEN AND SWANN METHOD 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

%% Purpose:  Draw the phase characteristic of PSS vs. phase lag between  

%%           exciter input and electrical toque.  

%% Author:   Shu Liu 

%% Date:     10/20/2003 

%% Input:    Asys.ssa - Linear analysis result from MASS. 

%% Output:   Figure. 

%% Variable:  

%%           nModeN             - The number of the total states. 

%%           nStateN            - The number of the states for every unit. 

%%           nUnitN             - The number of the units. 

%%           A, B, C, D         - System matrix A, B, C, D. 

%%           T1, T2, T3, T4, T5 - Time constants of PSS control block. 

%% Note:     This code is used for the PSS at Unit 1. For PSSs at other units, certain 

changes need to be made according to the comments in the following code. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

clc; 

clear all; 

close all; 

%%%% Begin to set the value of variable 

nModeN = 36;                        %% The number of the states 

nStateN = 9;                        %% The number of the states for every unit. 

nUnitN = 4;                         %% The number of the units. 

A = zeros(nModeN,nModeN); 

B = zeros(nModeN,1); 

C = zeros(1,nModeN); 

D = zeros(1,1); 

%% PSS tuning for nth unit: select accordingly 

PSS_ID = 1 

%% PSS lead-lag parameter tuning 

T1 =0.1;% 0.6179; 

T2 =0.1;% 0.01; 

T3 =0.1;% 0.6172; 

T4 =0.1;% 0.05182; 

T5 = 10; 

%%%% End of setting the value of variable 

  



59 

 

%%%% Begin to Read data from files. 

  

%% Read A matrix from file 

fName = strcat('Project3.sma'); 

fID = fopen(fName,'r'); 

%% skip first 21 lines 

for n=1:21 

    strTemp=fgets(fID); 

end 

% read Asys from file 

for n=1:nModeN 

    for m=1:nModeN 

        fTemp1=fscanf(fID,'%g',1); 

        A(m,n)=fTemp1; 

    end 

end 

fclose(fID); 

%%%% End of Read data from files. 

  

%%%% Begin to set B, C, D matrix 

  

%% B matrix 

for n = 1:nUnitN %4 

    for m = 1:nStateN % 9 

        B((n-1)*nStateN+m,1) = 0; 

    end 

    if (n==PSS_ID)              %% For PSS at Unit 1, (n==1) 

        B((n-1)*nStateN+8,1) = 0.1; 

        B((n-1)*nStateN+9,1) = 1.0; 

    end 

end 

  

%% C matrix 

C = (-2*6.5*9)*A((PSS_ID-1)*nStateN+1,:);          %% For PSS at Unit - under 

consideration, A(PSS_ID,:) 

for k = 1:nUnitN 

    C(1,(k-1)*nStateN+1) =  0;                 %% Set all the element about speed to 0. 

end 

%% D matrix 

D(1,1) = 0; 

%%%% End of setting B, C, D matrix 
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%%%% Begin to calculate the transform function of the system with no PSS. 

%% Set Ap, Bp, Cp, Dp 

%% remove state equations corresponding to speed and angle 

Ap = A; 

Ap([1 2 10 11 19 20 28 29],:)=[]; 

Ap(:,[1 2 10 11 19 20 28 29])=[]; 

Bp = B; 

Bp([1 2 10 11 19 20 28 29],:)=[]; 

Cp = C; 

Cp(:,[1 2 10 11 19 20 28 29])=[]; 

Dp = D; 

  

GEP = ss(Ap,Bp,Cp,Dp); 

%%%% End of calculating the transform function of the system with no PSS. 

  

%%%% Begin to draw the phase characteristic of the GEP. 

[SysMAG,SysPHASE,SysW] = bode(GEP); 

% bode(GEP); 

SysW = SysW'; 

SysW = (1/(2*pi))*SysW; 

for n = 1:length(SysW) 

    fTemp = SysPHASE(n); 

    fSysPhase(n) = -fTemp; 

end 

figure('Color',[1 1 1]) 

axes1 = axes('Parent',figure(1),'FontSize',12); 

plot(SysW,fSysPhase,'LineWidth',1.5); 

axis([0 2 0 140]); 

grid on; 

hold on; 

%%%% End of drawing the phase characteristic of the GEP. 

%% 

yy = fSysPhase(1:30); 

xx = 2*pi*SysW(1:30); 

 xx(1:25) = xx(1:25).*1.8; 

%  xx(29:32) = xx(29:32).*2.2; 

%%%% End of finding the value of the time constants and gain of PSS 

  

%%(180/pi)*(pi/2 - atan2(10*x,1) + atan2(T1*x,1) - atan2(T2*x,1) + atan2(T3*x,1) - 

atan2(T4*x,1) ) 
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%% Fit: 'untitled fit 1'. 

[xData, yData] = prepareCurveData( xx, yy ); 

  

% Set up fittype and options. 

ft = fittype( '(180/pi)*(pi/2 - atan2(10*x,1) + atan2(T1*x,1) - atan2(T2*x,1) + 

atan2(T3*x,1) - atan2(T4*x,1) )', 'independent', 'x', 'dependent', 'y' ); 

opts = fitoptions( ft ); 

opts.Display = 'Off'; 

opts.Lower = [0.01 0.01 0.01 0.01]; 

opts.Robust = 'LAR'; 

opts.StartPoint = [0.254282178971531 0.814284826068816 0.243524968724989 

0.929263623187228]; 

opts.Upper = [Inf Inf Inf Inf]; 

  

% Fit model to data. 

[fitresult, gof] = fit( xData, yData, ft, opts ); 

Tval = coeffvalues(fitresult); 

T1 =Tval(1); 

T2 =Tval(2); 

T3 =Tval(3); 

T4 =Tval(4); 

% Plot fit with data. 

figure( 'Name', 'untitled fit 1' ); 

h = plot( fitresult, xData, yData ); 

legend( h, 'yy vs. xx', 'untitled fit 1', 'Location', 'NorthEast' ); 

% Label axes 

xlabel( 'xx' ); 

ylabel( 'yy' ); 

grid on 

%% 

%%%% Begin to calculate the transform function of the PSS. 

[PssMAG,PssPHASE,PssW] = 

bode([T1*T3*T5,(T3*T5+T1*T5),T5,0],[T2*T4*T5,(T2*T5+T4*T5+T2*T4),(T2+T4+T

5),1]); 

% 

bode([T1*T3*T5,(T3*T5+T1*T5),T5,0],[T2*T4*T5,(T2*T5+T4*T5+T2*T4),(T2+T4+T

5),1]); 

PssW = PssW'; 

PssW = (1/(2*pi))*PssW; 

for n = 1:length(PssW) 

    fTemp = PssPHASE(n); 
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    fPssPhase(n) = fTemp; 

end 

figure(1) 

plot(PssW,fPssPhase,'r','LineWidth',1.5); 

hold all; 

axis([0 2 0 140]); 

if PSS_ID ==1 

    Ta2 = 0.138 ; 

    Ta1 = 1.2683 ; 

elseif PSS_ID ==2 

    Ta2 = 0.1446 ; 

Ta1 = 1.2102 ; 

elseif PSS_ID ==3 

    Ta2 = 0.1396 ; 

    Ta1 = 1.254 ; 

elseif PSS_ID ==4 

    Ta2 = 0.1459; 

    Ta1 = 1.1999 ; 

end 

Ta3 = Ta1; Ta4 = Ta2; Ta5 = T5; 

k1k6pss  = 

tf([Ta1*Ta3*Ta5,(Ta3*Ta5+Ta1*Ta5),Ta5,0],[Ta2*Ta4*Ta5,(Ta2*Ta5+Ta4*Ta5+Ta2*T

a4),(Ta2+Ta4+Ta5),1]); 

[PssMAG2,PssPHASE2,PssW] = bode(k1k6pss); 

PssW = PssW'; 

PssW = (1/(2*pi))*PssW; 

for n = 1:length(PssW) 

    fTemp = PssPHASE2(n); 

    fPssPhase2(n) = fTemp; 

end 

% Create axes 

plot(PssW, fPssPhase2,'k','LineWidth',1.5); 

axis([0 2 0 140]); 

xlabel('Frequency (Hz)','FontSize',14); 

  

% Create ylabel 

ylabel('Phase angle (degrees)','FontSize',14); 

  

% Create title 

ttl = ['PSS Tuning at Generator' ,' ', num2str(PSS_ID)]; 

title(ttl,'FontSize',16); 
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legend1 = legend('PHASE LAG TO BE COMPENSATED', 'PSS PHASE LEAD - Larsen 

& Swann', 'PSS PHASE LEAD - K1-K6 method') 

% Create legend 

set(legend1,... 

    'Position',[0.696629832957958 0.148427164672403 0.203891000375375 

0.0916953851010209],... 

    'FontSize',14); 

  

%%%% End of calculating the transfer function of the PSS. 

  

%%%% Begin to find the value of the time constants and gain of PSS 

Tval 

  

% figure(5) 

% 

rlocus(GEP*tf([T1*T3*T5,(T3*T5+T1*T5),T5,0],[T2*T4*T5,(T2*T5+T4*T5+T2*T4),(

T2+T4+T5),1])) 

% figure(6) 

% 

bode(GEP*tf([T1*T3*T5,(T3*T5+T1*T5),T5,0],[T2*T4*T5,(T2*T5+T4*T5+T2*T4),(T

2+T4+T5),1])) 

%% compare final results 

P1 = xlsread('LS_method_PSS.xls'); 

P2 = xlsread('K1_K6_method_PSS.xls'); 

P3 = xlsread('NoPSS.xls'); 

figure(4) 

  

subplot(3,1,1) ; 

plot(P1((8:end),1), P1((8:end),2),'k','LineWidth',1.5); 

hold all; 

grid on; 

subplot(3,1,2) ; 

plot(P1((8:end),1), P1((8:end),3),'k','LineWidth',1.5); 

hold all; 

grid on; 

subplot(3,1,3) ; 

plot(P1((8:end),1), P1((8:end),4),'k','LineWidth',1.5); 

hold all; 

grid on; 

% subplot(4,1,4) ; 
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% plot(P1((8:end),1), P1((8:end),5),'k','LineWidth',1.5); 

% hold all; 

% grid on; 

figure(4) 

subplot(3,1,1) ; 

plot(P2((8:end),1), P2((8:end),2),'r','LineWidth',1.5); 

subplot(3,1,2) ; 

plot(P2((8:end),1), P2((8:end),3),'r','LineWidth',1.5); 

subplot(3,1,3) ; 

plot(P2((8:end),1), P2((8:end),4),'r','LineWidth',1.5); 

% subplot(4,1,4) ; 

% plot(P2((8:end),1), P2((8:end),5),'r','LineWidth',1.5); 

figure(4) 

subplot(3,1,1) ; 

plot(P3((8:end),1), P3((8:end),2),'b','LineWidth',1.5); 

title('Generator at bus#1'); 

xlabel('Time (s)'); 

ylabel('Rotor angle {\delta} (deg)'); 

legend('Larsen & Swann Method PSS Design', 'K1-K6 Method PSS Design','No PSS') 

hold all; 

subplot(3,1,2) ; 

plot(P3((8:end),1), P3((8:end),3),'b','LineWidth',1.5); 

title('Generator at bus#2'); 

xlabel('Time (s)'); 

ylabel('Rotor angle {\delta} (deg)'); 

legend('Larsen & Swann Method PSS Design', 'K1-K6 Method PSS Design','No PSS') 

subplot(3,1,3) ; 

plot(P3((8:end),1), P3((8:end),4),'b','LineWidth',1.5); 

% subplot(4,1,4) ; 

% plot(P3((8:end),1), P3((8:end),5),'b','LineWidth',1.5); 

title('Generator at bus#4'); 

xlabel('Time (s)'); 

ylabel('Rotor angle {\delta} (deg)'); 

legend('Larsen & Swann Method PSS Design', 'K1-K6 Method PSS Design','No PSS') 

  

%% compARE PLOTS at SS Limit 

Pa1 = xlsread('compare at ss limit LS method.xls'); 

Pa2 = xlsread('compare at ss limit K1K6 method.xls'); 

% P3 = xlsread('NoPSS.xls'); 

figure(7) 

subplot(3,1,1) ; 
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plot(Pa1((8:end),1), Pa1((8:end),2),'k','LineWidth',1.5); 

hold all; 

grid on; 

subplot(3,1,2) ; 

plot(Pa1((8:end),1), Pa1((8:end),3),'k','LineWidth',1.5); 

hold all; 

grid on; 

subplot(3,1,3) ; 

plot(Pa1((8:end),1), Pa1((8:end),4),'k','LineWidth',1.5); 

hold all; 

grid on; 

% subplot(4,1,4) ; 

% plot(P1((8:end),1), P1((8:end),5),'k','LineWidth',1.5); 

% hold all; 

% grid on; 

figure(7) 

subplot(3,1,1) ; 

plot(Pa2((8:end),1), Pa2((8:end),2),'r','LineWidth',1.5); 

title('Generator at bus#1'); 

xlabel('Time (s)'); 

ylabel('Rotor angle {\delta} (deg)'); 

legend('Larsen & Swann Method PSS Design', 'K1-K6 Method PSS Design','No PSS') 

subplot(3,1,2) ; 

plot(Pa2((8:end),1), Pa2((8:end),3),'r','LineWidth',1.5); 

title('Generator at bus#2'); 

xlabel('Time (s)'); 

ylabel('Rotor angle {\delta} (deg)'); 

legend('Larsen & Swann Method PSS Design', 'K1-K6 Method PSS Design','No PSS') 

subplot(3,1,3) ; 

plot(Pa2((8:end),1), Pa2((8:end),4),'r','LineWidth',1.5); 

title('Generator at bus#4'); 

xlabel('Time (s)'); 

ylabel('Rotor angle {\delta} (deg)'); 

legend('Larsen & Swann Method PSS Design', 'K1-K6 Method PSS Design') 

 

 

 

 


