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ABSTRACT 

Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-

16 have provided good support to the long-standing hypothesis that this phenomenon 

involves a nonlinear structural damping. A potential mechanism for the appearance of 

nonlinearity in the damping are the nonlinear geometric effects that arise when the 

deformations become large enough to exceed the linear regime. In this light, the focus of 

this investigation is first on extending nonlinear reduced order modeling (ROM) methods 

to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in 

the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing 

equations of motion are obtained and are found to be of a generalized van der Pol-Duffing 

form with parameters depending on the structure and the chosen basis functions. An 

identification approach of the nonlinear damping parameters is next proposed which is 

applicable to structures modeled within commercial finite element software. 

The effects of this nonlinear damping mechanism on the post-flutter response is next 

analyzed on the Goland wing through time-marching of the aeroelastic equations 

comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed 

found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead 

to finite amplitude limit cycle oscillations even when the stiffness related nonlinear 

geometric effects are neglected. The incorporation of these latter effects in the model is 

found to further decrease the amplitude of LCO even though the dominant bending motions 

do not seem to stiffen as the level of displacements is increased in static analyses. 
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1. INTRODUCTION AND FOCUS 

1.1. Post-Flutter Limit Cycle Oscillations and F-16 Investigations 

Several current fighter aircraft with external store configurations persistently encounter 

Limit Cycle Oscillation (LCO) problems. LCO is a self-excited, sustained vibration of 

limited amplitude which can impact a pilot's control authority over the aircraft, ride quality, 

and weapon aiming. It can also induce structural fatigue and, under certain circumstances, 

flutter. Denegri (2000) provided a detailed description of the aircraft/store LCO 

phenomenon. Norton (1990) gave an excellent overview of LCO for a fighter aircraft 

carrying external stores and its sensitivity to store carriage configuration and mass 

properties. Because of this sensitivity, the LCO clearance of a modern fighter aircraft 

should be addressed for all possible store/weapon configurations. Given the drastic number 

of such configurations, this effort is a major engineering task in aircraft/store weapon 

compatibility certification. It requires accurate aeroelastic predictions within a short-time 

frame as demanded by rapid military responses when facing today’s ever-changing 

international situation. Further, since there can be thousands of store/weapon combinations 

for a typical fighter aircraft, the LCO predictions must also be computationally efficient to 

rapidly identify the critical cases. A robust post-processing procedure is also needed to 

identify a wide variety of aeroelastic response characteristics including flutter, divergence 

and LCO. 

It is generally believed that LCO of an aircraft with stores is a post flutter phenomenon 

that belongs to the so-called supercritical LCO mechanism. When the flight condition of 

the aircraft is beyond its flutter boundary, the aircraft's aeroelastic system is unstable and 
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a divergent response of the structure occurs if the aeroelastic system is linear. However, if 

the aeroelastic system is nonlinear and includes a “LCO bounding mechanism” dependent 

on the amplitude of the structural response, then the growth of the divergent response due 

to flutter can be limited resulting in LCO at a particular amplitude. The source of the LCO 

bounding mechanism, which could be from the aerodynamics, structure, or both, still 

remains to be fully understood and is a long-standing research issue. Many researchers 

believe that the nonlinearity involved in the LCO bounding mechanism is solely induced 

by oscillating transonic shocks and/or shock induced flow separation. This type of 

approach for predicting LCO is defined herein as the sole nonlinear aerodynamic approach.  

If this is the correct bounding mechanism, the LCO can be predicted using high fidelity 

Computational Fluid Dynamics (CFD) tools coupled with a linear structural model.  

Using a CFD tool called the AERO-F/S Suite developed by Farhat (2003), Pasiliao (2012) 

performed an LCO study on an F-16 with stores configuration that experienced LCO during 

flight tests and first found good correlation of the onset LCO Mach number (the flutter 

boundary) between the predicted and flight test measured results. This good matching 

results from the CFD code accurately capturing the transonic shock effects that normally 

lower the predicted flutter boundary in transonic flow regions as compared to that predicted 

by the linear unsteady aerodynamic methods such as the Doublet Lattice Method (DLM) 

and ZAERO (Chen et al. 1998). 

However, even with this good transonic flutter predictive capability, Pasiliao’s 

investigation failed to predict LCO. On this basis, it appears that the nonlinear 

aerodynamics provided by the CFD methodology alone is not sufficient as a predictive 

LCO bounding mechanism. Another sole nonlinear aerodynamic approach was adopted by 
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Prananta et al. (2003) using the ENFLOW CFD system developed by the National 

Research Laboratory NLR. It predicted LCO of an F-16 configuration with stores at Mach 

number (M) = 0.9 and Angle of Attack (AoA) = 7°. However, it is known from the flight 

observation that the F-16 LCO could occur at cruise angle of attack normally in the range 

of 2° to 3°. Therefore, it is highly possible that Prananta et al. simulated the oscillating 

dynamic loads due to wing buffet, but not LCO, on the F-16 at that moderate angle of 

attack. The strongest evidences to show that the nonlinear aerodynamics cannot be the sole 

LCO bounding mechanism is the flight test data of two F-16 with store configurations 

presented by Brignac (1989). Figure 1.1 (a) depicts the flight test LCO data of an F-16 with 

tip launchers 16S200 at weapon stations 1 and 9 and AIM-7F missiles at weapon stations 

3 and 7 presented by Brignac in which the open circles represent no LCO and half solid 

circles represent the occurrence of LCO observed during flight test. The range of Mach 

numbers where LCO occurs for this F-16 configuration with stores is within M=0.9 and 

M=1.4. However, at M=1.4 the transonic shock is absent from the F-16 wing and therefore 

the LCO bounding mechanism at M=1.4 cannot be induced by the oscillating shock. 

Another flight test LCO data presented by Brignac and shown in Figure 1.1(b) is a Block 

40 F-16 with AIM-9P missiles and LAU-129 launchers at weapon stations 1 and 9, LAU-

129 launchers at weapon stations 2 and 8, MK-84 bombs at weapon stations 3 and 7, 370 

gallon tanks at weapon stations 4 and 6 and a 300 gallon tank at weapon station 5. The 

Mach number at which LCO begins for this F-16 configuration with stores is 0.6, which is 

far below the transonic Mach numbers; showing once again that the LCO bounding 

mechanism at M=0.6 cannot be the oscillating shock. Therefore, it can be stated that the 
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sole nonlinear aerodynamic approach supported by a computational methodology cannot 

adequately address the LCO phenomenon thus far. 

 
(a) 

 
(b) 

Figure 1.1. Fight Test LCO Data of an F-16 Configuration with Stores Showing LCO at 

Mach Numbers from (a) 0.9 to 1.4 and (b) 0.6 to 0.98 (Brignac 1989). 

In 1998, nonlinear structural damping was proposed as a LCO bounding mechanism 

(Chen et al. 1998). The original justification for the appearance of structural nonlinearity 

was rooted in friction. In this perspective, note first an aircraft with stores consists of many 

mechanical joints to connect panels to each other, the stores with their respective 

pylon/launcher and the pylons/launchers to the wing. Further, the dry friction in each 

mechanical joint could provide a stabilizing nonlinear structural damping to the aeroelastic 

system. Indeed, when flutter starts and the structural oscillating amplitude is small, the 

resulting forces due to the low-amplitude oscillation of the joints also are small, smaller 

than the static friction limit; thus no slip takes place and the oscillating amplitude continues 

to increase due to flutter. When the amplitude of response becomes large enough, the forces 

in the mechanical joins are sufficient to induce slip and thus dissipation takes place through 
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friction. Note that the various joints of the aircraft act in series and thus the occurrence of 

slip progresses as the amplitude of response increases. Thus, the nonlinear structural 

damping of the aeroelastic system increases gradually as the oscillating amplitude due to 

flutter increases. If the flutter mechanism is not explosive, the friction damping in the 

aeroelastic system (the LCO bounding mechanism) may equate the energy introduced into 

it through aerodynamics and a LCO may result. This scenario was assessed 

computationally and experimentally by Choi et al. (2004), Kingsbury et al. (2005) and Choi 

et al. (2005), and LCO was indeed observed, although as a sub-critical event. 

The nonlinear structural damping mechanism is not limited to friction; it can include 

other forms of damping and dissipation. In fact, Sharma and Denegri (2013) performed a 

time integration of nonlinear aeroelastic (TINA) equations that includes a prescribed, 

monotonically increasing nonlinear function of the structural acceleration g at a reference 

point. During the time-domain simulation, the generalized damping matrix is updated at 

each time step according to g. The TINA computed LCO amplitudes compared favorably 

with the flight test data of an F-16 with stores configuration; proving that the nonlinear 

structural damping mechanism is a strong contender as a LCO bounding mechanism. 

1.2. Focus of this Investigation and Thesis Plan 

The “larger than usual” amplitudes of response observed in connection with LCO 

suggest that nonlinear geometric effects may be taking place during these events. This 

observation provides a physical framework, finite deformation viscoelasticity, for the 

formal derivation of a nonlinear structural damping model which could generalize and/or 

replace the postulated functions of (Sharma and Denegri 2013). This effort is the focus of 
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the present thesis which aims more specifically at developing, and performing a first 

assessment of, such a nonlinear structural damping model. Given the complexity of 

dissipation mechanisms in structures, especially assembled ones such as aircraft, it is not 

expected that this model would be fully predictable using published material constants. 

Rather, the model is expected to include one or several parameters that would be identified 

from experiments, as is done in the linear case. The full validation of the proposed model 

should then be carried out with experimentally measured LCO, e.g. on the F-16, and assess 

whether it can successfully and consistently predict the observed LCO amplitudes. This 

validation effort is the subject of a parallel investigation that relies on the approach 

developed herein. Note that the nonlinear structural damping model development will be 

accomplished in the framework of nonlinear structural reduced order models (ROMs), see 

(Mignolet et al. 2013) for a review, and more specifically the approach with dual modes 

originally proposed in (Kim et al. 2013), see the works of Perez et al. (2014), Kim et al. 

(2009), Wang et al. (2013) and Perez et al. (2011) for some applications. 

The formulation of the proposed nonlinear structural damping model in the context of 

the nonlinear ROM is described in Chapter 2. Chapter 3 presents the finite element 

structural and aeroelastic model of the test application, i.e., the heavy Goland wing (Goland 

and Luke 1948) (Estap et al. 2002). The capability of the proposed nonlinear structural 

damping to bound the otherwise unstable aeroelastic response is next analyzed in Chapter 

4. 
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2. NONLINEAR STRUCTURAL REDUCED ORDER MODELING 

2.1. Chapter Overview 

The focus of this chapter is primarily on the derivation of a nonlinear structural damping 

model which is consistent with the larger than linear deformations that are expected during 

LCO events. In section 2.2, this model is developed from finite deformation viscoelasticty 

in a reduced order format consistent with mode-based aeroelasticity analyses (e.g., see 

discussion of section 3.2). The identification of the parameters of this model from a finite 

element representation of the structure performed in a commercial software, e.g., Nastran, 

Abaqus, is next considered. Identifying the stiffness parameters has been achieved in prior 

publications, e.g., see the works of Muravyov et al (2003), Mignolet et al (2013), Kim et 

al (2013) and section 2.3, but the corresponding effort for the damping parameters is novel. 

To this end, a parallel between the parameters of the nonlinear damping model and the 

nonlinear stiffness coefficients associated with the geometric nonlinearity is first 

demonstrated, see section 2.4, and the identification of the nonlinear damping model based 

on this parallel is formulated. 

2.2. Nonlinear Geometric Viscoelastic Modeling 

As stated in the introduction, the framework for the derivation of the nonlinear structural 

damping model is finite deformation viscoelasticity. To proceed, let the position vector of 

a point of the structure denoted by X in the reference configuration and as x in the deformed 

one so that the displacement vector is Xxu  , see Figure 2.1. Define next the 

deformation gradient tensor F  of components ijF  as 
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j

i
ij

j

i
ij X

u

X

x
F








             (2.1) 

where ij  denotes the Kronecker symbol. The deformations of the structure will be 

quantified by the Green strain tensor E  the components of which are 

 

Figure 2.1. Reference and Deformed Configurations (Fung and Tong 2001) 

                  ijkjkiij FFE 
2

1
.              (2.2) 

Note in the above equation and in the remainder of this thesis that summation is implied 

on all repeated indices. 

 In the reference configuration, the equation of motion of the structure are (Fung and 

Tong 2001) (Bonet and Wood 1997): 

               iijkij
k

ubSF
X

0
0

0 



 for 0X            (2.3) 

where S  denotes the second Piola-Kirchhoff stress tensor,  X0  is the density in the 

reference configuration, and 0b  is the vector of body forces, all of which may depend on 
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the coordinates iX . Finally, 0  is the domain occupied by the structure in the reference 

configuration and 0  is its boundary. 

 To complete Eq. (2.3), it remains to specify the constitutive behavior of the material, 

i.e., relate the second Piola-Kirchhoff S  to the Green strain tensor E . Since a 

damping/dissipation model is the goal of the present derivation, an elastic behavior is not 

sufficient, rather a viscoelastic constitutive model is necessary. Specifically, a Kelvin-

Voigt model will be assumed so that 

           klijklklijklij EDECS                  (2.4) 

where C  and D  the fourth order elasticity and dissipation tensors C  where the former 

satisfies the symmetry conditions 

     ijlkjiklijkl CCC    klijijkl CC                 (2.5) 

and the positive definiteness property 

               0klijklij ACA              (2.6) 

for any non zero second order tensor A . To ensure that dissipation takes place at all times 

for all possible deformation velocities, it is required that 

               0klijklij EDE            (2.7) 

that is, D  must be positive definite. 

A reduced order model of the above problem can be developed by expressing the 

displacement field  tXui ,  as an expansion over basis functions  XU n
i

)(  that do not 

change with time and automatically satisfy the geometric boundary conditions (assumed 

here to be homogenous). That is, 



10 

             XUtqtXu n
ini

)(,            (2.8) 

where  tqn  are the time dependent generalized coordinates. Introducing this 

representation in Eq. (2.1) leads to 

                  
j

n
i

nijij X

U
qF






)(

          (2.9) 

where the dependences of nq  on time and )(n
iU  on the position X  have been 

suppressed for notational simplicity. Combining Eqs (2.9) and (2.2) leads to the following 

expression for the components of the Green strain tensor 
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2

1
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Differentiating this expression with respect to time and recombining terms leads to 

                   

























































j

n
k

i

m
k

j

m
k

i

n
k

mn
i

n
j

j

n
i

nij X

U

X

U

X

U

X

U
qq

X

U

X

U
qE

)()()()()()(

2

1

2

1
 .     (2.11) 

The derivation of the corresponding ROM governing equations stems from imposing 

Eq. (2.3). Note however that this equation cannot be satisfied at every point X as the 

representation of Eq. (2.8) is finite dimensional (finite number of generalized coordinates). 

To resolve this issue, a Galerkin approach is adopted in which the residual of Eq. (2.3) after 

imposing Eq. (2.8) is required to be orthogonal to the basis functions  XU n
i

)( . That is, 

               

















0

0)(0
00 XdUbSF

X
u n

iijkij
k

i .    (2.12) 
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Next, using the divergence theorem, one finds 

      










000

)(
)(

)(
k

n
ijkij

k

n
i

jkij
n

ijkij
k

dXUSFXd
X

U
SFXdUSF

X
.  (2.13) 

Combining Eqs (2.12), (2.13), and (2.8) leads to the ROM governing equations 

                      mmnmn FqqfqM   ,                  (2.14) 

where 

           XdUUM n
i

m
imn

)()(
0

0




             (2.15) 

are the components of the mass matrix, mF  are the modal forces resulting from both body 

forces and surface tractions as 

              




00

)()(0
0 k

n
ijkij

n
iim dXUSFXdUbF       (2.16) 

and finally 

  

















000

)()()(

, Xd
X

U
EFDXd

X

U
EFCXd

X

U
SFqqf

k

m
i

rsijjkrs
k

m
i

rsijjkrs
k

m
i

jkijm
 .  

               (2.17) 

The above nonlinear term can be expressed explicitly in terms of the generalized 

coordinates nq  and their derivatives nq  by using Eqs (2.9)-(2.11). Specifically, it is 

found that 

  nplmlpnnjmjnnmnplnmnlplnmnlnmnm qqqDqqDqDqqqKqqKqKqqf  )3()2()1()3()2()1(, 

(2.18) 

where 
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



































00

)()()()()(
)1(

2

1
Xd

X

U

X

U
CXd

X

U

X

U

X

U
CK

k

m
i

s

n
r

ikrs
k

m
i

r

n
s

s

n
r

ijjkrsmn  

(2.19) 

)2()2(

)()()()()()()(
)2(

ˆˆ
2

1

2

1

2

1

00

nlmmnl

k

m
i

r

n
s

s

n
r

j

l
i

jkrs
k

m
i

s

l
p

r

n
p

ijjkrsmnl

KK

Xd
X

U

X

U

X

U

X

U
CXd

X

U

X

U

X

U
CK










































 

    

(2.20) 

where 

      Xd
X

U

X

U
C

X

U
KK

l

p
r

k

n
r

ijkl
j

m
i

mpnmnp 








 


)()()(
)2()2(

0

ˆˆ       (2.21) 


































00

)()()()()()()()(
)3(

2

1

2

1
Xd

X

U

X

U
C

X

U

X

U
Xd

X

U

X

U

X

U

X

U
CK

s

p
v

r

l
v

jkrs
k

n
i

j

m
i

k

m
i

s

p
v

r

l
v

j

n
i

jkrsmnlp

(2.22) 

in which the symmetry properties of Eq. (2.5) have been used to regroup similar terms. 

Assuming that similar symmetry properties hold for the dissipation tensor, i.e., 

     ijlkjiklijkl DDD    klijijkl DD               (2.23) 

one obtains 





































00

)()()()()(
)1(

2

1
Xd

X

U

X

U
DXd

X

U

X

U

X

U
DD

k

m
i

s

n
r

ikrs
k

m
i

r

n
s

s

n
r

ijjkrsmn  

  (2.24) 
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)2()2(
)()()()(

)()()()()(
)2(

ˆˆ
2

1

2

1

0

0

nlmmnl
k

m
i

r

n
s

s

n
r

j

l
i

jkrs

k

m
i

s

n
p

r

l
p

s

l
p

r

n
p

ijjkrsmln

DDXd
X

U

X

U

X

U

X

U
D

Xd
X

U

X

U

X

U

X

U

X

U
DD









































































        (2.25) 

where 

        Xd
X

U

X

U
D

X

U
DD

l

p
r

k

n
r

ijkl
j

m
i

mpnmnp 








 


)()()(
)2()2(

0

ˆˆ        (2.26) 

and 


























































0

0

)()()()(

)()()()()()(
)3(

2

1

Xd
X

U

X

U
D

X

U

X

U

Xd
X

U

X

U

X

U

X

U

X

U

X

U
DD

s

n
v

r

l
v

jkrs
k

p
i

j

m
i

k

m
i

r

l
v

s

n
v

s

l
v

r

n
v

j

p
i

jkrsmpln

    .    (2.27) 

In carrying out the final assembly of the ROM equations, it should be recognized that the 

contributions of the terms lnmnl qqK )2(  and nlm qqK )2(
ln  can be combined to each other 

and similarly for other cubic terms. This process leads to the equivalent expression 

  nplmlpnnjmjnnmnplnmnlplnmnlnmnm qqqDqqDqDqqqKqqKqKqqf  )3()2()1()3()2()1(, 

(2.28) 

where 


















nlKKKKK

nlKKK

nl

K

lnmnlmmnlmlnmnl

nnmmnnmnnmnl

for  ˆˆˆ

for                      ˆˆ
2

1
for                                                           0

)2()2()2()2()2(

)2()2()2()2(         (2.29) 
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
























nlpKKK

nlpKKK

nlpKKK

nlpK

nlp

K

mlpnmplnmnlp

mllpmlplmpll

mllnmlnlmnll

mnnn

mnlp

for        222

for        

for        

for                                 

 unless                                         0

)3()3()3(

)3()3()3(

)3()3()3(

)3(

)3(                (2.30) 

recognizing the properties  

          )3()3()3()3(
lpmnmnplnmlpmnlp KKKK         (2.31) 

resulting from Eqs (2.5) and (2.22), and 

















lpDD

lpD

lp

D

mplnmlpn

mllnmlpn

for  

for                

for                           0

)3()3(

)3()3(  .                  (2.32) 

The final resulting ROM governing equations are thus 

mnplmlpnnlmnmnplnmnlplnmnlnmnnmn FqqqDqqDqDqqqKqqKqKqM   )3()2(
ln

)1()3()2()1(

                   (2.33) 

Some properties of the tensors mnM , )1(
mnK , )2(

mnlK , )3(
mnlpK , )1(

mnD , )2(
mlnD , and 

)3(
mlpnD  that reflect those of the elasticity and dissipation tensors have already been stated 

above, e.g, Eq. (2.31). In addition, the following symmetry properties can also be 

recognized 

        nmmn MM   )1()1(
nmmn KK    )1()1(

nmmn DD        (2.34) 

and 

         )3()3()3()3(
lpmnmnplnmlpmnlp DDDD  .         (2.35) 
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With regard to positive definiteness, a property involving the tensors )1(
mnK , )2(

mnlK , 

and )3(
mnlpK  has been proved in (Mignolet et al 2008). For a similar condition relating to 

the damping terms, introduce the tangent damping matrix  qD T )(  of elements 

            
plmlpnlmlnmn

T
mn qqDqDDD )3()2()1(  .            (2.36) 

Since the tensor D  is positive definite, dissipation takes place continuously and thus one 

expects that  qD T )(  is a positive definite matrix. Indeed, note that 
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(2.37) 

where 

     
k

p
j

i

m
j

mp
k

m
i

mik X

U

X

U
qq

X

U
qW














)()()(

 .      (2.38) 
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2.3. Non-Intrusive Identification of the Stiffness Parameters 

Equations (2.19)-(2.22) provide direct expressions for all stiffness parameters of the 

reduced order model parameters in terms of the basis functions  XU m
i

)(  and the 

geometrical and material properties of the structure, e.g. 0 , ijklC , 0 , etc. While these 

equations can indeed be used efficiently (Capiez-Lernout et al 2014) (Capiez-Lernout et al 

2012), they require the details of the finite element mesh and formulation. When using a 

commercial finite element software, it is much more convenient to proceed in an indirect 

or non-intrusive manner by relating the parameters to be determined to a nonlinear static 

finite element solution, for example as proposed in (Muravyov and Rizzi 2003) with the 

modification of (Kim et al 2013). 

This approach (i) proceeds with the imposition of specific displacement fields, (ii) 

obtains from the finite element software the set of nodal forces required to achieve these 

displacements, (iii) projects these forces on the basis functions, and (iv) imposes that the 

displacements and modal forces satisfy Eq. (2.33). The first set of imposed displacements 

are proportional to one particular basis function, the nth one,  XU n
i

)( , say. Three such 

displacement fields 

      XUqXu n
ini

)()1()1(  ;    XUqXu n
ini

)()2()2(   and    XUqXu n
ini

)()3()3(    

                      (2.39) 

are imposed where )1(
nq , )2(

nq , and )3(
nq  are constants scaling factors differing from each 

other. These factors are selected so that the displacements induced are large enough to 

induce significant geometric nonlinear effects but small enough to stay within the 
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convergence limits of the finite element code. Imposing these displacements requires a set 

of nodal forces which can be outputted by many commercial finite element codes (e.g., 

Nastran, Abaqus, DYNA-3D). Projecting these nodal forces on the mth basis function  

leads to modal forces )( pn
mF , p=1, 2, or 3. Consistently with Eq. (2.33), the imposed 

displacement fields and modal forces must satisfy the equations 

 ( ) ( ) )1(n
m

3)1(
n

)3(
mnnn

2)1(
n

)2(
mnn

)1(
n

)1(
mn FqKqKqK =++       (2.40) 

( ) ( ) )2(n
m

3)2(
n

)3(
mnn

2)2(
n

)2(
mnn

)2(
n

)1(
mn FqKqKqK =++            (2.41) 

           ( ) ( ) )3(n
m

3)3(
n

)3(
mnnn

2)3(
n

)2(
mnn

)3(
n

)1(
mn FqKqKqK =++            (2.42) 

The above equations represent, for each m and n, a set of three linear equations in the 

unknown )1(
mnK , )2(

mnnK , and )3(
mnnnK  which is readily solved. 

 The next stage in the identification algorithm focuses on the determination of the 

parameters )2(
mnpK , )3(

mnnpK , and )3(
mnppK with p > n. This effort is achieved by imposing 

displacement fields which are linear combinations of the basis functions n and p, i.e. 

      XUqXUqXu p
ip

n
ini

)()4()()4()4(   ;    

     XUqXUqXu p
ip

n
ini

)()5()()5()5(   

and        XUqXUqXu p
ip

n
ini

)()6()()6()6(  .        (2.43) 

Imposing the validity of the ROM governing equation, Eq. (2.33), for these 3 displacement 

fields and their associated modal force )( pn
iF , p = 4, 5, and 6, yields a set of three 

equations for each m, n, and p which is readily solved to obtain the parameters )2(
mnpK ,
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)3(
mnnpK , and )3(

mnppK . The selection )6()5()4(
nnn qqq   and )6()5()4(

mmm qqq   is 

usually achieved as it leads to some simplifications of the equations. 

 The final step of the algorithm is the identification of the parameters )3(
mnpsK for s > 

p > n. It is carried out from the set of modal forces )7(
mF  corresponding to the 

displacement field 

               XUqXUqXUqXu s
is

p
ip

n
ini

)()7()()7()()7()7(           (2.44) 

and the previously identified stiffnesses. 

It should be noted that the above identification procedure does not identify the 

parameters )2(
mnpK or )3(

mnpsK but rather )2(
mnpK  and )3(

mnpsK . From the standpoint of 

computing the response of the structure using the reduced order model, this is however 

fully appropriate as the latter parameters are the ones that appear in Eq. (2.33). 

2.4. Non-Intrusive Identification of the Damping Parameters – A Parallel 

The final step of the nonlinear reduced order modeling effort is the evaluation of the 

linear and nonlinear damping parameters )1(
mnD , )2(

mlnD , and )3(
mlpnD . In that regard, a 

strategy similar to the one carried out in section 2.3 for the identification of the stiffness 

parameters could be construed. It would involve imposing velocity fields and determining 

the possibly time-dependent forces necessary on a structure exhibiting a Kelvin-Voigt 

viscoelastic constitutive relation. This approach was not pursued here as it would require 

more expensive transient solutions and would require an appropriate handling (i.e,, setting 
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up the computations so that they vanish or evaluating them accurately) of the inertia and 

stiffness terms. 

Rather, an alternative approach was followed that relies on the similarities between 

damping and stiffness parameters. Indeed, comparing Eqs (2.19) and (2.24), it is seen that 

)1(
mnD  and )1(

mnK  are identically computed from the dissipation and elasticity tensors 

ijklD  and ijklC , respectively. Thus, if one was to carry out the identification effort of 

section 2.3 with the numerical values of a fictitious elasticity tensor matching those of the 

dissipation tensor (note that their units are different), one would find that the identified 

linear stiffness matrix matches the linear damping one. Since the properties assumed here 

of the dissipation tensor match those of the elasticity tensor, this computation is meaningful. 

The overall plan for the identification of the damping parameters is thus as follows: 

STEP 1: Perform the identification of the stiffness parameters )1(
mnD K , )2(

mnpD K , and 

)3(
mnpsD K  using the elasticity tensor ijklC  numerically equal to ijklD . The 

parameters )1(
mnD K , )2(

mnpD K , and )3(
mnpsD K  will be referred to as the pseudo 

stiffness parameters as their units are not consistent with stiffnesses. 

STEP 2: Determine the damping parameters )1(
mnD , )2(

mlnD , and )3(
mlpnD  from the pseudo 

stiffness parameters )1(
mnD K , )2(

mnpD K , and )3(
mnpsD K . 

While the above approach is straightforward for the linear terms and yields, as 

suggested above, 

       )1()1(
mnDmn KD  ,             (2.45) 



20 

additional discussion is necessary for the quadratic and cubic parameters )2(
mlnD   and 

)3(
mlpnD . Indeed, the connectivity between stiffness and damping parameters is not between 

)2(
mlnD  and )2(

mnpD K  but rather between )2(ˆ
mlnD  and )2(ˆ

mnpD K . Specifically, comparing 

Eqs (2.21) and (2.6) one obtains  

)2()2( ˆˆ
mnpDmnp KD  .                       (2.46) 

Similarly, one find from Eq. (2.22) and (2.27) that 

)3()3( 2 mplnDmpln KD  .                      (2.47) 

Thus, to use the above correspondences, it is necessary to first determine )2(ˆ
mnpD K  from 

)2(
mnpD K  and similarly )3(

mnpsD K  from )3(
mnpsD K  by “inverting” Eqs (2.29) and (2.30) 

(note that a direct estimation approach of )2(ˆ
mnpD K  and )3(

mnpsD K  is currently being 

assessed in a parallel investigation (Wang and Mignolet 2015). However, this inversion is, 

in general, not possible – at least not without further assumptions. 

The wing considered in this investigation (see Chapter 3 for details) is flat and 

symmetric through thickness. For such models, it has been shown (Mignolet et al 2013) 

(Mignolet and Soize 2008) that (i) the basis is composed of purely transverse (subscript 

“t”) and purely in-plane (subscript “d” for the dual modes, see (Mignolet et al 2013), (Kim 

et al 2013) and Chapter 4) functions and (ii) all parameters )2(ˆ
mnpK  are zero except when 

m denotes a dual mode (in-plane) and the basis functions n and p are both transverse (equal 

or different) modes. Then, from Eq. (2.29), one has 
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)2()2(

2112

ˆ
tdtDtdtD KK   and    )2()2(

2121

ˆ
tdtDtdtD KK   for 12 tt           (2.48) 

and 

                )2()2(
2121

2ˆ
tdtDtdtD KK   for 12 tt                 (2.49) 

Finally, propagating this result through Eqs (2.46) and (2.25) leads to 

)2()2(

2121 tdtDtdt KD      and    )2()2(

2112 tdtDtdt KD     for 12 tt         (2.50) 

and 

                )2()2(

2121
2 tdtDtdt KD    for 12 tt                  (2.51) 

but also 

)2()2(

2121 tdtDdtt KD      and    )2()2(

21212 tdtDdtt KD    for 12 tt         (2.52) 

and 

           )2()2(
2121

2 tdtDdtt KD    for 12 tt                 (2.53) 

The last remaining issue is the inversion of Eq. (2.30). No particular property arises 

from the flat and symmetric nature of the structure and thus a stronger assumption is 

necessary. To proceed, it was assumed here that  

)3()3(
mlpnDmplnD KK                         (2.54) 

According to which 
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with other values obtained from the symmetries of Eqs (2.54) and (2.31). Then, from Eq. 

(2.32) and (2.47), 
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3. THE GOLAND WING 

3.1. Structural Model 

The Goland wing will be used in the next Chapter to assess the effects of structural 

nonlinearities, from both proposed NSD and/or stiffness-related geometric nonlinearity. 

The Goland wing is a standard aeroelastic model, it is a rectangular wing of constant 

thickness, aspect ratio equal to 10, and exhibiting a tip store as shown in Figure 3.1. 

The Nastran finite element model is composed of four nodes square plate elements 

(CQUAD Nastran elements), 2 rows of 10 such elements on top of the wing and a similar 

layout on its bottom. These elements are complemented by a grid of bar elements (CROD 

Nastran elements) aligned both spanwise and chordwise to model the stiffeners. Another 

set of such bars connect the top and bottom surfaces in addition to shear panels (CSHEAR 

Nastran elements) placed both along the span and the chord at each intersection of the 

plates elements. The Young’s modulus and Poisson ratio were taken as 1.4976	x	10ଽ and 

0.3333 for all elements. The geometrical dimensions of the plate, rod, and shear elements 

are given in Table 3.1. Finally, the tip store has a mass of 22.498 slug and zero mass 

moments of inertia except the one along the span direction which equals 50.3396 slug ft2. 

The store is connected to the tip of the wing by rigid connections (RBE3 Nastran element) 

at 6 nodes of the tip. 

A linear modal analysis of the Goland wing (SOL 103 in Nastran) yielded the first 

natural frequencies given in Table 3.2 and the first five mode shapes shown in Figure 3.2-

Figure 3.6. It is seen that the first mode is a spanwise bending more while mode 2 is the 
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first spanwise torsion. Moreover, while modes 1-4 are transverse, mode 5 is in-plane, it is 

a lead-lag mode. 

Unless specified, a linear Rayleigh damping was assumed to represent the dissipation 

in the wing. The corresponding damping matrix of the full finite element model was 

expressed as 

              )1(KMClin                          (3.1) 

where M and )1(K  are the finite element mass and linear stiffness matrices. The 

coefficients and were selected as =2.565x10-1 s-1 and = 1.338x10-4 s which lead to 

damping ratios of 1.279%, 0.797%, 0.608%, 0.644% and 0.654% for the first five 

transverse modes. 

 

Figure 3.1. Goland Wing Structural Model 

A
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Figure 3.2. Linear Mode 1. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 

 

Figure 3.3. Linear Mode 2. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 
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Figure 3.4. Linear Mode 3. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 

 

Figure 3.5. Linear Mode 4. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 
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Figure 3.6. Linear Mode 5. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 

Table 3.1. Dimensions of Finite Elements 

Elements Length (ft) Width (ft) Thickness (ft) 
Plates  2 2 0.0155 
Shear 

spanwise  
(mid-wing) 

2 0.33334 0.0889 

Shear 
spanwise (edges) 

2 0.33334 6x10-4 

Shear 
chordwise 

2 0.33334 0.0347 

Rods  Length (ft) Area (ft2) 
Spanwise  

(mid-wing) 
2 0.1496 

Spanwise (edges) 2 0.0416 
Chordwise 2 0.0422 

Thicknesswise 0.33334 8x10-4 
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Table 3.2. Natural Frequencies of the Goland Wing 

Mode # Nat. Freq. (Hz) Mode # Nat. Freq. (Hz) 
1 1.690 6 16.260 
2 3.051 7 22.845 
3 9.172 8 26.318 
4 10.834 9 29.183 
5 11.258   

3.2. Aeroelastic Model 

The modeling of the aerodynamic forces acting on the Goland wing during constant 

speed level flight was achieved in the modal domain, i.e., with the structural response 

expressed as in Eq. (2.8), using the ZONA Technology code ZAERO. The first step of the 

linear modeling process assumes a harmonic motion of the structure proportional to each 

structural mode in turn and determines the ensuing harmonic pressure field on the structure. 

This field is then integrated to yield the aerodynamic modal forces expressed as  

           ti
Aero eqMikQqtF 

 ,                 (3.2) 

where M , V , and q  are the upstream Mach number, velocity, and dynamic 

pressure. Further,  is the frequency of structural vibrations and k is the corresponding 

reduced frequency   Vck /  where c is the half wing chord. Finally,  MikQ ,  is 

the so-called matrix of generalized aerodynamic forces which is evaluated by ZAERO for 

user specified structural modes and reduced frequencies at a given Mach number. 

The representation of the aerodynamic forces in the frequency domain as Eq. (3.2) is 

particular convenient for the steady state and flutter analyses of linear structures but 

nonlinear structural modes, such as those of Chapter 2, require a time-domain 
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representation of the aerodynamic forces. It can be obtained through a “rational function 

approximation” of the generalized aerodynamic forces as  

             ERIikDikkAikAAMikQ na
12

210, 
           (3.3) 

where 0A , 1A , 2A  are real mxm matrices. Further, na is the number of aerodynamic 

modes assumed and the real matrices D, R, and E are of respective dimensions mxna, naxna, 

and naxm. Finally, naI  denotes the naxna identity matrix. 

Once the approximation of Eq. (3.3) is carried out (as part of ZAERO), the aerodynamic 

forces can be rewritten directly in terms of the structural generalized coordinates q(t) as 

     






 DqqAqqA
V

cq
qA

V

cq
tF Aero 0122

2
               (3.4) 

where the time-dependent variables   are referred to as the aerodynamic lag modes and 

satisfy the first order differential equations  

                 0  R
c

V
qE  .                   (3.5) 

Combining Eqs (3.4) and (3.5) with the structural equations of motion provides a 

complete modeling of the aeroelastic system. The selection of the number of lag modes 

and the assessment of the approximation of Eq. (3.3) can be validated by comparing the 

flutter conditions predicted by the frequency-domain (Eq. (3.2)) and time-domain (Eqs (3.4) 

and (3.5)) aeroelastic models. 

The “k-method” was adopted in ZAERO to determine the frequency-domain flutter 

conditions. With the Mach number specified as M = 0.70, it remained to find the altitude 
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h and the flutter frequency . These quantities are determined so that the complex 

impedance matrix of the aeroelastic system 

   






 
 


 M

V

c
iQqMCiKH linAero ,2)1(                (3.6) 

has a zero eigenvalue. The corresponding eigenvector is the flutter mode. Note that Eq. 

(3.6) must be complemented with tables of atmospheric properties providing the density 

  and speed of sound a  in terms of altitude. Then,  

    aMV       and      22
2

1
  Vcq .         (3.7) 

The prediction of the flutter altitude using the time-domain aerodynamic model was 

carried out by a trial and error process in which the altitude was specified at a particular 

value, the wing perturbed from rest at t = 0, and its equations of motion subjected to the 

forces of Eq. (3.4) marched in time (using a Newmark- algorithm with a time step of 

10ିଷ s). If the response was observed to decay (resp. increase) with time, the altitude was 

decreased (resp. increased) until a nearly stable response was observed. The frequency  

could then be estimated from the structural response. 

The two methods gave close agreement with na = 13 aerodynamic lag modes leading 

to a flutter altitude of 11500 ft and a frequency of 1.972Hz. As could be expected, it was 

found that the flutter mode involved primarily the first bending and first torsion linear 

modes and, in fact, mostly the first bending as can be confirmed by the closeness of the 

flutter frequency with the natural frequency of the first mode. See Table 3.3 for the flutter 

frequencies at different altitudes. 
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Table 3.3. Flutter Frequencies at Different Altitude 

Altitude (ft) 4000 6000 8000 10000 11000 

Frequency (Hz) 1.851 1.881 1.911 1.945 1.962 

 

3.3. Dissipation Modeling 

To complete the characterization of the Goland wing, it remains to specify a dissipation 

tensor that will be used as a basis for the nonlinear structural damping model. Through the 

specification of a Young’s modulus and Poisson ratio, it has effectively been assumed that 

the material is isotropic and homogenous from the elasticity tensor standpoint. Then, the 

dissipation tensor will be assumed to exhibit the same properties. Further, since the 

identification of the nonlinear damping parameters will be accomplished through a parallel 

with stiffness properties, the dissipation will be characterized by “equivalent” Young’s 

modulus DE  and Poisson ratio D . That is, 

           jkiljlikdklijdijklD                (3.8) 

with 

     D

D
d

E




12
    and        DD

DD
d

E





211

.         (3.9) 

Note that E and DE  do not have the same units. 
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4. RESULTS 

4.1. Chapter Overview 

This chapter provides the results of the post-flutter aeroelastic analysis of the Goland 

wing of Chapter 3 subjected to nonlinear geometric effects in either damping and/or 

stiffness as modeled by the ROM of Chapter 2. The first step in this analysis, described in 

section 4.2, is the construction and validation of the ROM as a close approximation of the 

underlying full finite element, see sections 3.1 and 3.3. With this validated ROM, the post-

flutter analysis of the Goland wing proceed in steps with linear stiffness and nonlinear 

damping in section 4.3, nonlinear stiffness and linear damping in section 4.4, and finally 

nonlinear stiffness and nonlinear damping in section 4.4. 

4.2. ROM Construction and Validation 

The construction of the reduced order model involves (i) the selection of basis functions 

that permit a good representation of the response, (ii) the identification of the stiffness and 

damping parameters, and (iii) the validation of the ROM with full finite element results on 

some particular loading. These steps are described in the ensuing sections. 

4.2.1 Basis Functions - Dual modes 

The primary component of the basis functions used to represent the motion of the wing 

are the lowest frequency linear modes, see section 3.1, and the first 9 were selected here 

focusing on a frequency band of interest of [0, 30] Hz. It is however recognized (Mignolet 

et al 2013) that these modes are not sufficient as they typically do not accurately capture 
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the “membrane” (in-plane) motions that occur in large displacements. This observation has 

led to the introduction of the “dual” modes to complement the basis (Kim et al 2013). These 

modes are constructed to capture the displacements not represented by the linear modes 

when these modes are excited. To this end, a series of loadings to the full finite element 

model are first determined that would induce in the linear case displacement fields that are 

exactly linear combinations of 1 or 2 linear modes. The nodal forces, denoted as )(F m
FE  

for the loading case m, are of the form 

                   )()1()( KF j
FE

(m)
j

m
FE                     (4.1) 

and 

             )()1()()1()( KKF l
FE

(m)
l

j
FE

(m)
j

m
FE              (4.2) 

to induce displacements only along mode j only, Eq. (4.1), or modes j and l only, Eq. (4.2), 

in the linear case. In these equations, )1(K
FE

is the global stiffness matrix of the finite 

element model and )( j is the jth linear mode. 

When the forces of Eqs (4.1) and (4.2) are applied statically to the nonlinear finite 

element model, the computed displacements are no longer exactly linear combinations of 

the linear modes and the out-of-basis components, or residuals, of these displacements 

fields provide the raw data for the extension of the basis. More specifically, the dual modes 

are obtained through a proper orthogonal decomposition of the ensemble of residuals. 

In the present effort, 12 values of the scaling factors (m)
j were used for each 

combination of modes, i.e., 100, 290, 430, 520, 660, and 800. They induce tip 

transverse displacements of the wing ranging from 1% to 15% of span. 
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The combinations of modes, i.e., the values of j and l, were chosen capture a broad 

range of expected motions. Since the flutter involves primarily modes 1 and 2, the 

combinations focused on those two modes and possible contributions of the three next ones. 

That is, the combinations considered were (j,l) =(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), 

(2,4), and (2,5). The proper orthogonal decomposition approach led to 9 dominant 

eigenvectors selected as dual modes and added to the 9 linear modes to form the basis. The 

first four dual modes are plotted in Figure 4.1 to Figure 4.4. 

 

Figure 4.1. Dual Mode 1. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 
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Figure 4.2. Dual Mode 2. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 

 

Figure 4.3. Dual Mode 3. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 
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Figure 4.4. Dual Mode 4. Shown in Blue and Red Are the Deformed and Undeformed 

Wings. 

4.2.2 Identification of Stiffness and Damping Parameters 

The identification of the stiffness and damping parameters was carried out as described 

in section 2.3. For these computations, the scaling parameters ݍ௝ were selected to be 0.01 

for all linear modes and 0.001 for the duals.  

Within Nastran, the imposition of the displacement fields has usually been done using 

the DMAP Alter sequence written by A.A. Muravyov and S.A. Rizzi. This procedure is 

very efficient especially when there are a large number of load cases as it inserts the desired 

displacement field directly in the appropriate memory location at the appropriate stage of 

the computations. Although this alter sequence has worked on a large number of structures 

with a broad variety of elements, it led to incorrect linear stiffness terms for the Goland 

Wing model. This issue was identified to be linked to the CSHEAR elements in the model. 
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To resolve this issue, the displacement fields were applied to the model using single 

point displacement constraints (SPCD cards). Specifically, all nodes in the model were 

constrained except for a fictitious node whose purpose was to trigger the Nastran 

computations. Then, the constraint forces were outputted and processed as described in 

section 2.3. The linear stiffness coefficients found in this manner did indeed match those 

expected and the validation of the following section further confirmed the validity of the 

identified model. Note that the use of SPCD cards implied that Nastran proceeded through 

a full convergence analysis for each imposed displacement field. This process was 

significantly slower than using the DMAP alter but also required the selection of a 

convergence criterion selected here as 10-8 on displacements, 10-3 on forces, and 10-7 on 

energy. 

4.2.3 Static Validation 

A series of static validations were carried out to test the accuracy of the constructed 

ROM in comparison to the full finite element model. The first such validation focused on 

a uniform pressure in the transverse direction. A series of different load cases with different 

pressure magnitudes were used. Shown in Figure 4.5 to Figure 4.7 are the responses of 

node A in Figure 3.1. It is observed that the maximum difference in transverse displacement 

between the results from the ROM and the nonlinear Nastran computations (“SOL 106”) 

is about 2%. Comparing the in-plane displacements, it is seen that the maximum difference 

in the dominant, spanwise direction is 5.6% but much larger for the chordwise 

displacement which is however two orders of magnitude smaller than the spanwise one. 

Since flutter is associated with the transverse wing deflections, this matching is considered 
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appropriate. Comparing the linear and nonlinear Nastran results, it appears that the wing 

does not seem to stiffen in the transverse direction, the dominant effect of geometric 

nonlinearity is seen here as the much larger spanwise deflection well captured by the ROM. 

 

Figure 4.5. Transverse (Tz) Static Displacements at Node A under a Uniform Pressure, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 
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Figure 4.6. Spanwise (Ty) Static Displacements at Node A under a Uniform Pressure, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 

 

Figure 4.7. Chordwise (Tx) Static Displacements at Node A under a Uniform Pressure, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 

-600 -400 -200 0 200 400 600
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Pressure (psf)

T
y 

(f
t)

 

 

ROM
SOL106
SOL101

-600 -400 -200 0 200 400 600
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Pressure (psf)

T
x 

(f
t)

 

 

ROM
SOL106
SOL101



40 

A second validation was carried out with a non-uniform pressure in the transverse 

direction, defined to be zero at the root of the wing and linearly increasing until the tip. 

The comparisons of ROM and Nastran predictions for the same node are shown in Figure 

4.8 to Figure 4.10 and a very similar to those shown in Figure 4.5 to Figure 4.7: the 

maximum difference between the ROM and SOL106 is 2.5% and 7.2% in the transverse 

and spanwise directions and, as before, the chordwise displacements are not correctly 

captured by the ROM. Again, note that the nonlinear geometric effects are most significant 

in the spanwise direction. 

 

Figure 4.8. Transverse (Tz) Static Displacements at Node A under a Root-Tip Linear 

Pressure, ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 
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Figure 4.9. Spanwise (Ty) Static Displacements at Node A under a Root-Tip Linear 

Pressure, ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 

 

Figure 4.10. Chordwise (Tx) Static Displacements at Node A under a Root-Tip Linear 

Pressure, ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 

-800 -600 -400 -200 0 200 400 600 800
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Pressure (psf)

T
y 

(f
t)

 

 

ROM
SOL106
SOL101

-800 -600 -400 -200 0 200 400 600 800
-10

-8

-6

-4

-2

0

2
x 10

-4

Pressure (psf)

T
x 

(f
t)

 

 

ROM
SOL106
SOL101



42 

As flutter combines both bending and torsion motions, a third validation was 

performed with a torsional load applied to the structure. To this end, the pressure was 

defined to be zero along the mid line of the wing and varying linearly from leading to 

trailing edge, and constant along span. Shown in Figure 4.11 to Figure 4.13are the 

comparison of predicted displacements for the ROM and Nastran for the same node as 

before. It is observed that the maximum difference in the transverse direction between the 

ROM and SOL106 is around 11%. So the torsional motion is not captured as well as the 

bending ones of the previous validations. In this context, note that the stiffening of the wing 

in large displacements is now very clear and is mostly appropriately captured by the ROM. 

To perform a validation in conditions as close as possible to flutter, a combination of 

the bending and torsion type loading of cases 1 and 3 was envisioned. In this regard, it was 

noted that the ratio of the amplitudes of the bending (first) and the torsional (second) modes 

in the flutter mode is about 15.5. Thus, in the final static validation, the pressure was 

selected as a combination of a uniform one and one varying linearly from leading to trailing 

edge with a ratio of 15.5 between. The comparison of the displacements predicted by the 

ROM and by Nastran are shown Figure 4.14 to Figure 4.16 and is very similar to the one 

obtained in the first validation. 
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Figure 4.11. Transverse (Tz) Static Displacements at Node A under a Torsional Load, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 

 

Figure 4.12. Spanwise (Ty) Static Displacements at Node A under a Torsional Load, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 
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Figure 4.13. Chordwise (Tx) Static Displacements at Node A under a Torsional Load, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 

 

Figure 4.14. Transverse (Tz) Static Displacements at Node A under Combined Loading, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 
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Figure 4.15. Spanwise (Ty) Static Displacements at Node A under Combined Loading, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 

 

Figure 4.16. Chordwise (Tx) Static Displacements at Node A under Combined Loading, 

ROM and Nastran Nonlinear (“Sol 106”) and Linear (“Sol 101”) Solutions. 
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4.2.4 Dynamic Validation 

The dynamic validation was intended to complement the static validations and, ideally, 

assess the closeness of the ROM predictions in comparison to their Nastran counterparts. 

However, possibly due to the CSHEAR elements in the model, convergence problems were 

constantly encountered in the NASTRAN computations, carried out here with the solution 

SOL400. Thus, only the dynamic response of the ROM is presented. 

The loading was assumed to be a uniform pressure of magnitude varying in time as a 

zero mean Gaussian white noise in the band [0,200] Hz. The standard derivation of this 

white noise was selected to be either 100 or 1500 and the response was marched in time 

using a Newmark- algorithm and a time step of 5x10-4 for 600000 time steps. The power 

spectral density of the responses at node A for these 2 loadings are shown in Figure 4.17 

and Figure 4.18, and their means and standard derivations are given in Table 4.1 and Table 

4.2. 

The sharp peak of the power spectral density in the lower excitation case suggests that 

the response is close to linear and the observed first and third natural frequencies closely 

match those of Table 3.2. At the higher excitation level, the peaks are broader with the 

location of the first almost unchanged, consistently with the nearly linear behavior 

observed in Figure 4.5. The other modes however stiffen as can be seen from the increase 

of the peak frequencies. 
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Figure 4.17. Power Spectral Density of the Transverse Displacement (Tz) of Node A, 

Dynamic Validation, Standard Deviation of 100. 

 

Figure 4.18. Power Spectral Density of the Transverse Displacement (Tz) of Node A, 

Dynamic Validation, Standard Deviation of 1500. 
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Table 4.1. Means and Standard Deviations of the Displacements of Node A, Dynamic 

Validation, Standard Deviation of 100. 

 Chordwise (Tx) Spanwise (Ty) Transverse (Tz) 

Mean (ft) -1.602e-03 -2.588e-02 2.180e-04 

Standard derivation (ft) 9.703e-03 4.237e-02 2.102 

 

Table 4.2. Means and Standard Deviations of the Displacements of Node A, Dynamic 

Validation, Standard Deviation of 1500 

 Chordwise (Tx) Spanwise (Ty) Transverse (Tz) 

Mean (ft) -2.242e-02 -9.404e-01 1.565e-02 

Standard derivation (ft) 1.274e-01 1.134 1.260e+01 

4.3. Post-Flutter LCO – Linear Stiffness/Nonlinear Damping 

The previous section has provided a successful validation of the nonlinear reduced order 

model and in particular of its stiffness parameters. Since the parameters of the damping 

model will be obtained through a parallel with “equivalent” stiffness parameters (the 

pseudo stiffness parameters), it is expected that their identification will also be successfully 

achieved. Further, two cases were considered, one for which D = 0 and the other D = 

0.5. Since the modulus DE  scales directly all damping parameters, only one value of this 

parameter was considered. For practical reasons (scaling of displacements involved in the 

identification), the damping parameters were estimated for DE  = E and were then scaled 

for different values of DE .  
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The linear damping matrix plays a particular role in the present analysis as it is the 

matrix used in predicting the flutter point, increasing it will lead to an increase of the flutter 

speed/decrease of the flutter altitude. Thus, in varying the parameters DE  and D  to 

assess the effects of the nonlinearity in damping, its linear counterpart should be held fixed. 

This approach would be consistent with practice since standard vibration testing methods 

would likely provide a good estimate of it. Then, the dissipation parameters DE  and 

D  will be used only to obtain quadratic and cubic damping coefficients. Note that, under 

this scheme, the positive definiteness of the tangent damping matrix )(TD  is no longer 

guaranteed by Eq. (2.37). 

The nonlinear damping with D = 0 was considered first and LCO was observed for a 

broad set of values of DE  for a series of altitudes as shown in Figure 4.19 and Figure 

4.20, see Figure 4.21 for a typical time history and phase plane plot of the response of node 

A, the time history is plotted together with the flutter response at the same altitude. The 

amplitudes display the expected behavior: as the dissipation modulus DE  is increased, 

the amplitude of the response (and thus of the velocities) reduces to counteract the negative 

damping induced by the aerodynamics. Similarly, the amplitude of LCO increases with 

decreasing altitude, i.e., as this negative damping is increased. Note further that the LCO 

is seen to take place even at small fractions of the span, as seen for the F-16 and for which 

a linear stiffness assumption would seem valid. 

The plot of the LCO frequency, Figure 4.20, shows clearly that this frequency is 

increasing slightly but consistently with increasing altitude and increasing value of DE . 

Comparing these frequencies with their flutter counterparts, see Table 3.3, it appears that 
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the appearance of LCO at very value of DE  has led to a small drop in frequency, by 

about 1%-1.5%, at all altitudes. A change in frequency can be obtained by a change in the 

participation of the stiffer, second mode in the response and this is indeed what is observed, 

see Figure 4.22. This participation is increasing as a function of DE  consistently with 

the increase in frequency see in Figure 4.20. Further, the participation of the torsional mode 

at low values of DE  (around 17.5 at 8000ft) is smaller than for the flutter condition 

(about 12.5 at 8000ft) justifying the drop of frequency between flutter and LCO mentioned 

above. Note that the changes in the form of the response may, in addition to dissipation, 

affect the LCO occurrence and amplitude by altering the energy input from the 

aerodynamics. This issue will be discussed in more details in section 4.6. 

 

Figure 4.19. Amplitude of LCO as a Function of the Dissipation Modulus DE  for 

Various Altitudes, D = 0. 
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Figure 4.20. Frequency of LCO as a Function of the Dissipation Modulus DE  for 

Various Altitudes, D = 0. 
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(a) 

 

(b) 

Figure 4.21. Transient Response of Node A toward LCO at 8000ft for E/E D
 =0.05, 

D = 0. (a) Time History of Transverse Displacement of Flutter and LCO; and (b) 

Corresponding Phase Plane Plot of LCO. 
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The plot of the LCO frequency, Figure 4.20, shows clearly that this frequency is 

increasing slightly but consistently with increasing altitude and increasing value of DE . 

An increase in frequency can be obtained by an increased participation of the stiffer, second 

mode in the response and this is indeed what is observed, see Figure 4.22. This change in 

the form of the response may, in addition to dissipation, affect the LCO occurrence and 

amplitude by altering the energy input from the aerodynamics. 

 

Figure 4.22. Ratio of Amplitudes of the First and Second Modes in the LCO Response, 

Altitude of 8000ft, D = 0 

The coefficient D  was next selected equal to 0.5 and the analysis was repeated, see 

Figure 4.23 and Figure 4.24 for the LCO amplitude and frequency vs. the dissipation 
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Figure 4.23. Amplitude of LCO as a Function of the Dissipation Modulus DE  for 

Various Altitudes, D = 0.5. 

 

Figure 4.24. Frequency of LCO as a Function of the Dissipation Modulus DE  for 

Various Altitudes, D = 0.5. 
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Figure 4.25. Comparison of Amplitude of LCO as a Function of the Dissipation Modulus 

DE  for Various Altitudes, D = 0 and 0.5. 

 

Figure 4.26. Comparison of Frequency of LCO as a Function of the Dissipation Modulus 

DE  for Various Altitudes, D = 0 and 0.5. 
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The results obtained for D = 0 and 0.5 appear very similar from Figure 4.19 and 

Figure 4.23 and Figure 4.20 and Figure 4.24 and thus to obtain a better comparison, they 

are plotted together on Figure 4.25 and Figure 4.26. From these figures, it appears that 

D  has very little effect on the amplitude of the LCO. Its effects on the frequency are 

more visible, possibly because the frequency changes are small. It appears that D = 0 

leads to a larger frequency increase, thus a larger presence of the torsional mode, but a 

slightly larger amplitude of LCO. These observations suggest that a decrease of the 

torsional mode would be beneficial to LCO maybe by reducing the interaction between the 

two modes which is a feature of wing flutter, see section 4.6 for discussion. 

The above results were obtained with the 18-mode model including the first 9 linear and 9 

dual modes. The latter are known to be required in the nonlinear geometric elastic case to 

capture the membrane stretching effects but it was questioned whether they need to be 

included here as nonlinear stiffness terms are not present. To assess this issue, the 18-mode 

model was truncated to eliminate the 9 dual modes and the LCO analysis was repeated. 

Then, shown in Figure 4.27 and Figure 4.28 are the LCO amplitudes and frequencies 

obtained with the two ROMs. It is seen that the amplitudes are very close to one another 

when they are “large”, larger than 1% of span say, but become increasingly different as the 

amplitude decreases/the dissipation modulus DE  increases. Interestingly, it is seen that 

the lower amplitude is achieved with the 18-mode model. It is suggested here that this 

model permits a transfer of energy from the linear modes to the dual ones where additional 

takes place leading to a reduction of the amplitude of response. Surprisingly, the plot of 

LCO frequencies, see Figure 4.28, indicates that they change only very slightly for the 9-

mode model at the contrary of the 18-mode model. 
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Figure 4.27. Comparison of Amplitude of LCO as a Function of the Dissipation Modulus 

DE  for Various Altitudes, D = 0, 18-Mode and 9-Mode ROMs. 

 

Figure 4.28. Comparison of Frequency of LCO as a Function of the Dissipation Modulus 

DE  for Various Altitudes, D = 0, 18-Mode and 9-Mode ROMs. 
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It was stated at the beginning of this section that keeping the linear damping matrix did 

invalidate the proof of the positive definiteness of the tangent damping matrix. To assess 

this issue, an analysis of this matrix was carried over the entire cycle of response for an 

ensemble of the LCO solutions observed in Figure 4.19. Surprisingly, it was found that the 

tangent damping matrix of the 18-mode model exhibited some negative eigenvalues for 

DE  larger than typically 10-4 E, even though a finite amplitude LCO was observed. The 

eigenvectors associated with these negative eigenvalues were found to not correspond to 

physically occurring motions and thus do not lead to instability. Interestingly, the 9-mode 

model based on the linear modes only, and thus without any quadratic damping term, was 

found to have a positive definite tangent damping matrix in all solutions shown in Figure 

4.27. Thus, although beneficial in the present situation, the transfer of energy from linear 

modes to dual modes through the quadratic damping terms appears to have the potential to 

induce instabilities when the linear stiffness matrix is retained. This issue will be revisited 

in section 4.5.  

4.4. Post-Flutter LCO – Nonlinear Stiffness/Linear Damping 

Limit cycle oscillations are expected to arise due to nonlinearities and, accordingly, it is 

questioned next whether they could happen from the nonlinear stiffness terms originating 

from the geometric nonlinearity alone. To assess this potential, the 18-mode ROM of 

section 4.2.4 with linear damping and nonlinear stiffness terms was coupled to the 

aerodynamics and responses computed. Limit cycle oscillations were indeed observed, see 

Table 4.3 and Table 4.4 for the amplitudes and frequencies for different altitudes. This 

finding may not have been obvious from the validation cases of section 4.2.3 and 4.2.4 
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which indicated a lack of stiffening, a possible softening in fact, of the first mode which is 

dominant in the flutter mode. Inspecting Table 4.4, it is seen that the frequency of LCO is 

larger than the one associated with flutter suggesting again an increase of the torsional 

mode component. Moreover, this mode does stiffen, see Figure 4.11. It is suggested that 

the combinations of these factors leads to the occurrence of LCO. 

Table 4.3. Amplitude of LCO for Various Altitudes 

Altitude (ft) 4000 6000 8000 10000 11000 

Amplitude (ft) 1.3388 1.0773 0.7946 0.4502 0.1724 

 

Table 4.4. Frequency of LCO for Various Altitudes 

Altitude (ft) 4000 6000 8000 10000 11000 

Frequency (Hz) 1.918 1.928 1.939 1.954 1.963 

 

It is of interest to compare these results to those obtained with the nonlinear 

damping/linear stiffness model, see Figure 4.29 and Figure 4.30 for the results at 8000ft.  
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Figure 4.29. Comparison of Amplitude of LCO as a Function of the Dissipation Modulus 

DE  for Various Models at 8000ft. 

 

Figure 4.30. Comparison of Frequency of LCO as a Function of the Dissipation Modulus 

DE  for Various Models at 8000ft. 
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As expected, it is seen that the LCO amplitude obtained with nonlinear stiffness and 

linear damping intersects the curve of amplitude vs. dissipation modulus. For LCOs with 

larger amplitudes than this threshold, the nonlinear stiffness terms must absolutely be 

included in the analysis. For amplitudes much less than the threshold, it is likely that the 

nonlinear damping is the only significant structural nonlinearity. 

4.5. Post-Flutter LCO – Nonlinear Stiffness/Nonlinear Damping 

The results of the previous section suggest the need to include both nonlinear damping 

and nonlinear stiffness for LCO amplitudes that are of the order of 1 or a few percent of 

span. This final step of the effort requires the 18-mode model and was planned with 

nonlinear damping on all terms, i.e., with the quadratic damping terms included. However, 

the computations carried out with this model did not lead to LCO because the instability 

associated with the quadratic damping terms when the linear damping matrix is retained, 

see section 4.3 for discussion, became activated. Accordingly, the damping on the dual 

modes was eliminated but the nonlinear coupling with the quadratic stiffness terms was 

retained. This new model lead consistently to LCOs the amplitudes and frequencies of 

which are shown in Figure 4.31 and Figure 4.32. These results are also plotted on Figure 

4.33 and Figure 4.34 with their counterpart with linear stiffness which are very close to 

those from Figure 4.27 and Figure 4.28 since there is then no coupling between linear and 

dual modes. 

 



62 

 

Figure 4.31. Amplitude of LCO as a Function of DE  for Various Altitudes, D = 0, 

Nonlinear Stiffness and Nonlinear Damping (on Linear Modes). 

 

Figure 4.32. Frequency of LCO as a Function of DE  for Various Altitudes, D = 0, 

Nonlinear Stiffness and Nonlinear Damping (on Linear Modes). 
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Figure 4.33. Comparison of Amplitude vs. DE  and Altitudes, D = 0, Linear (“lstif”) 

and Nonlinear Stiffness (“nlstif”) with Nonlinear Damping (on Linear Modes Only). 

 

Figure 4.34. Comparison of Frequency vs. DE  and Altitudes, D = 0, Linear (“lstif”) 

and Nonlinear Stiffness (“nlstif”) with Nonlinear Damping (on Linear Modes Only). 
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As expected, at low values of the dissipation modulus DE , the nonlinear stiffness 

effects dominate the LCO and the results match closely those obtained with the linear 

damping matrix. As this modulus increases, dissipation becomes a more important 

bounding mechanism and the amplitude reduces to levels at which the nonlinear stiffness 

terms do not contribute significantly. 

4.6. Nonlinear Damping – Aerodynamics Interaction 

It was mentioned in Section 4.3 that the increased participation of the torsional mode 

observed with the 18-mode model, see Figure 4.22, could in turn modify the aerodynamics 

and thus have an effect on the magnitude of the resulting LCO. To assess this potential, the 

work input to the structure by the aerodynamics was evaluated for a series of conditions. 

Since the aerodynamic forces are linearly dependent on the structural deformations, it is 

expected that the work done by these forces over a cycle of motion would depend 

quadratically on the level of deformations. To this end, it is proposed here to analyze the 

normalized aerodynamic work per cycle defined as 
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       (4.3) 

in which the denominator is introduced to normalize the work. In this equation,  is the 

frequency of LCO (in rad/sec) and 0t  is an arbitrary time. Further, AeroF  are the 

aerodynamic forces of Eq. (3.4). 

To validate the normalization factor in the denominator of Eq. (4.3), the response at 
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flutter (e.g., seen in green in Figure 4.21(a) for 8000ft) was first considered and the work 

aeroW  was computed for the various altitudes and a series of consecutive cycles. Shown 

in Figure 4.35 is the evolution of aeroW  as a function of the cycle number at different 

altitudes for the 18-mode ROM. It is clearly seen that the scaling introduced in Eq. (4.3) is 

effective: even though the response is rapidly increasing the normalized work of the 

aerodynamic forces stays essentially constant. 

Having established the appropriateness of aeroW , its value during the LCO responses 

obtained with the linear stiffness/ nonlinear damping ROMs (9- and 18-modes) was next 

determined and is shown in Figure 4.36 as a function of the dissipation modulus for the 

altitudes considered. Note that the normalized aerodynamic work per cycle computed for 

the LCOs with the 18-mode ROM has a rather linearly decreasing trend (with the exception 

of the 4000 ft altitude case) consistent with the linearly increasing trend of the frequencies, 

see Figure 4.20. Moreover, for the 9-mode ROM, the work is nearly constant as the 

dissipation modulus changes, again consistently with the LCO frequency. 

These observations confirm the suggestion of Section 4.3 that the increased participation 

in the response of the torsion mode in the 18-mode LCO results affects not only the 

frequency of the LCO, see Figure 4.20, but also the aerodynamics. More specifically, it 

reduces the energy input in the system by the aerodynamics thereby providing a reduction 

of the response, and LCO amplitude. This property is likely, at least partially, responsible 

for the lower amplitude of LCO observed with this model vs. the 9-mode one which does 

not lead to change in the participation of the torsion mode. 
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Figure 4.35. Normalized Aerodynamic Work per Cycle aeroW  as a Function of the 

Cycle Number, Response at Flutter at Different Altitudes 18-Mode ROM. 

 

Figure 4.36. Normalized Aerodynamic Work per Cycle aeroW  as a Function of the 

Dissipation Modulus DE for Various Altitudes, D = 0, 18-Mode and 9-Mode ROMs 

(Curves “Altitude-18” and “Altitude-9”, Respectively). 
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5. SUMMARY 

The focus of the present investigation was on the formulation, development, and a 

preliminary assessment of a nonlinear structural damping model that is consistent with a 

linear viscoelastic material undergoing large deformations. The model was developed in a 

reduced order modeling format assuming a Kelvin-Voigt constitutive relation expressed in 

the undeformed configuration and led to governing equations for the generalized 

coordinates in the form of van der Pol – Duffing equations. These equations which 

generalize similar reduced order models obtained for elastic structures are parametric, i.e., 

involve a series of coefficients which are functions of the material properties, geometry of 

the structure, and basis functions used to represent the response. An existing identification 

strategy of the stiffness parameters in such reduced order models was next modified to 

permit the determination of the linear and nonlinear damping coefficients. 

The application that is of particular interest here for the assessment of the nonlinear 

damping model is the post-flutter response of wings and most notably the occurrence of 

some limit cycle oscillations (LCO) which are not fully understood but thought to 

potentially arise from structural damping nonlinearity. The Goland wing was selected as 

the structure of interest because of the public availability of its structural finite element 

model and of a commercially developed time-domain model of its aerodynamics. 

The development of the reduced order model started with the selection of the basis 

functions, a set of linear modes but also dual modes to capture accurately the in-plane, 

mostly spanwise, displacements which occur in nonlinear geometric conditions but not 

linear ones. Next was the identification of the stiffness coefficients and then a set of 
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validations carried out in comparison with nonlinear full finite element static solutions 

which demonstrate the applicability of the ROM for the proposed effort. 

The identification of the nonlinear damping coefficients was performed next and 

permitted the evaluation of the nonlinear structural damping model as the “bounding” 

mechanism to induce LCO from flutter. This analysis was carried out with three different 

models characterized by linear stiffness and nonlinear damping, nonlinear stiffness and 

linear damping, and finally nonlinear stiffness and nonlinear damping. It was found that 

the nonlinear damping can indeed, even with linear stiffness properties, lead to LCO of 

amplitudes that can range from below 1% of span to significant fractions of this length. 

The consideration of linear damping and nonlinear stiffness also led to LCO but at larger 

levels. These results suggested the possibility to “calibrate” the nonlinear damping model 

from experimentally observed LCO amplitudes. Finally, the frequency of the LCO 

responses was also analyzed and was observed to correlate to the relative amplitudes of the 

responses in the first bending and torsion modes present in the limit cycle oscillations. 
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