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ABSTRACT 

 

 Quantum resilience is a pragmatic theory that allows systems engineers to 

formally characterize the resilience of systems. As a generalized theory, it not only 

clarifies resilience in the literature, but also can be applied to all disciplines and domains 

of discourse. Operationalizing resilience in this manner permits decision-makers to 

compare and contrast system deployment options for suitability in a variety of 

environments and allows for consistent treatment of resilience across domains. Systems 

engineers, whether planning future infrastructures or managing ecosystems, are 

increasingly asked to deliver resilient systems. Quantum resilience provides a way 

forward that allows specific resilience requirements to be specified, validated, and 

verified. 

 Quantum resilience makes two very important claims. First, resilience cannot be 

characterized without recognizing both the system and the valued function it provides. 

Second, resilience is not about disturbances, insults, threats, or perturbations. To avoid 

crippling infinities, characterization of resilience must be accomplishable without 

disturbances in mind. In light of this, quantum resilience defines resilience as the extent 

to which a system delivers its valued functions, and characterizes resilience as a function 

of system productivity and complexity. System productivity vis-à-vis specified “valued 

functions” involves (1) the quanta of the valued function delivered, and (2) the number of 

systems (within the greater system) which deliver it. System complexity is defined 

structurally and relationally and is a function of a variety of items including (1) system-

of-systems hierarchical decomposition, (2) interfaces and connections between systems, 

and (3) inter-system dependencies. 
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 Among the important features of quantum resilience is that it can be implemented 

in any system engineering tool that provides sufficient design and specification rigor (i.e., 

one that supports standards like the Lifecycle and Systems Modeling languages and 

frameworks like the DoD Architecture Framework). Further, this can be accomplished 

with minimal software development and has been demonstrated in three model-based 

system engineering tools, two of which are commercially available, well-respected, and 

widely used. This pragmatic approach assures transparency and consistency in 

characterization of resilience in any discipline. 
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PREFACE 

 

 I confess to being surprised by the definitional latitude allotted to the idea of 

resilience. The literature is filled with metaphor and analogy that permits resilience to 

serve as an umbrella for a wide variety of concepts that already had distinct and growing 

research areas. It is with an admittedly broad brush that I am painting, but if the evolution 

of the “resilience industry” had avoided this expansiveness, it might have been more 

effective. Instead, a significant amount of clarity has been sacrificed in the name of 

definitional tolerance. This has, unfortunately, resulted in stagnation when it comes to 

actually operationalizing the concept of resilience. In spite of the fact that one might 

frequently read or hear about “designing for resilience” there has been little rigor directed 

at actually achieving an ability to do that and there is certainly nothing that permits a 

measure of whether or not such a design has actually been accomplished. Even literature 

purporting to propose metrics for resilience frequently falls short because it generally 

offers long lists of “things” that must be considered when creating metrics, instead of 

actually providing a usable formulation. 

 As a veteran of many large systems engineering projects, I can also testify that the 

concept of resilience is rarely addressed by systems engineers (though I’m willing to add 

“until lately”). As to why that is (was) the case, I can only guess that it has something to 

do with an intuitive understanding among systems engineers that resilience was being 

provided by the many functional redundancies built into the systems. Whether 

telecommunications, national defense, intelligence gathering, or healthcare claims 

processing, “more” function was always better, and the challenge was always cost and 
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schedule management. It was never a question of how to make the system more 

resilient—that was a routine part of the job. 

 Still, resilience is a systems concept, so I found myself qualified to speak into this 

discourse. On occasion I found it difficult to hear my discipline misunderstood in the 

literature, but this only reinforced my desire to not only clarify the concept of resilience, 

but provide some insights into the discipline of systems engineering. Further, it was vital 

for me to provide a way forward—one that was acceptable and useful in the 

interdisciplinary future we know to expect. The result is quantum resilience. As a first 

generalized theory of resilience, it both clarifies the concept and provides a way forward 

for resilience theory. 

 My background and pragmatism drove inexorably to providing mechanisms that 

enforce transparency and consistency in resilience analysis. Importantly, it was required 

that this be accomplished with commercially available tools and scant methodological 

impact. There is no need for custom tools, just simple extensions that are easily vetted in 

the marketplace of ideas and then adopted and incorporated into commercial tools as 

needed. There is nothing particularly specialized about resilience analysis since it flows 

directly out of good systems engineering practice. Importantly, quantum resilience does 

not create a new “resilience elite” it simply operationalizes resilience for everyone. 
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INTRODUCTION 

 

 Resilience is frequently noticed to be heir-apparent to the increasingly diffuse 

sustainability discourse (e.g., Cascio, 2009). Unfortunately, this exposes it to similar risk 

of being lost as a usable engineering concept. Its popularity as a topic has ensured its 

mention in a large percentage of recent publications as researchers strive to demonstrate 

their awareness of its currency. Frequently the references to resilience are very casual and 

most merely attempt to contribute incrementally to the definition of resilience instead of 

actually demonstrating how to quantify it and use it in sustainable engineering practice. 

To ensure resilience can be operationalized, a generalized and quantifiable theory is 

required. Quantum resilience provides this. 

 Founded in general systems theory (von Bertalanffy, 1968; Rapoport, 1985), 

quantum resilience recognizes that to be a meaningful engineering concept, resilience 

requires rigorous definition and must be quantifiable and embedded in existing systems 

engineering approaches and tools. Systems engineers are uniquely aware of how the 

concept must be bounded if it is ever to be useful in engineering projects (both forward- 

and re-engineering). This resulted in a first step of clarification and distinguishing 

resilience in the discourse. Disambiguation was required because resilience is frequently 

conflated with broad and often inchoate ideas like adaptation, transformation, recovery, 

and learning. Quantum resilience specifically acknowledges the importance of such 

research areas, but holds that they do not belong in a generalized theory of resilience. 

 Importantly, quantum resilience not only clarifies resilience and makes it 

quantifiable, but it positions other scholarly work, and the common terms they use (e.g., 

“adaptation”), in the space. That is, it allows other researchers to see the merits of their 
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work and suggests where it must fit into the clarified discourse. For example, many are 

speaking of robustness and casually adding the word resilience in order to meet 

publication and grant requirements. Quantum resilience frees them to distinguish their 

work and suggest specifically how it contributes (e.g., to system “productivity” or 

“complexity”). Those who speak of resilience metrics and list items that should be 

considered in calculations will be challenged to rethink their ideas in terms of system 

productivity and valued function. Those who find resilience to be an emergent 

characteristic of their systems will be challenged to model their systems and specifically 

allocate the functions they value to specific parts of their system, forcing actual definition 

and proper system scaling. Quantum resilience also supports any forthcoming theories of 

complexity while specifically recognizing the need to analyze systems in order to 

understand them better. 

 By actually modeling the systems in question, quantum resilience removes the 

ability to mask important and frequently normative details behind euphemism and 

analogy. Quantum resilience makes the systems of interest completely transparent and 

initiates the important dialogue over what the specific valued functions of a system are, 

and how they should be quantified. It is generalized and operationalized for all systems in 

all disciplines at all scales, and is a required step in the establishment of resilience as a 

meaningful science. Quantum resilience allows resilience to be formally characterized for 

all systems at a time when no other theory is available to accomplish that. Researchers 

who speak of metrics but do not formulate them are frequently hampered by their 

inability to either identify or quantify normative concepts. Quantum resilience provides a 

mechanism by which transparency of such measurements can be guaranteed and 
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consensus garnered. The vanishingly small numbers of researchers who actually present 

calculable metrics for resilience tend to focus on system efficiency as a proxy for 

resilience which leads them into optimization campaigns and Monte Carlo explorations. 

This is not wrong, but it is not resilience theory. 

 Vitally, quantum resilience is easily instrumented in model-based system 

engineering tools that support industry standard lifecycle, unified, and system modeling 

languages (LML, UML, SysML) and fit into important frameworks like the US DoD 

Architecture Framework. Deploying the resilience characterization formulation in 

commercially available tools ensures broad adoption and maintains the goal of 

transparency and consistency. Since, for the first time, engineers will be able to compare 

homologous systems and make decisions based on alternative deployment options, it 

becomes vital they are using the same calculations. 

 Quantum resilience establishes a new measure of fitness for resilience literature, 

one that demands resilience be characterized for any system to which it is attributed. That 

is, if a so-called resilience theory cannot provide a characterization of a system’s 

resilience, it must be abandoned. Though quibbling over specific methods and 

characterization approaches is expected and applauded, scholars must force themselves to 

specifically quantify resilience in terms of valued function and system structure, or 

resilience will no longer be a useful and operational scientific concept. 
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OVERVIEW AND PRÉCIS: QUANTUM RESILIENCE IN A NUTSHELL 

 

 As a concept that has become more expansively defined over time, resilience has 

struggled to achieve operational value. Quantum resilience allows the concept to be 

operationalized while serving to clarify it in the discourse. While resilience remains a 

systems concept, quantum resilience changes the focus of resilience analysis to the 

functions and services of value and enforces proper analysis of the systems that provide 

them. Resilience is not about a system until it is first about a valued function. The system 

which provides the valued functions can be characterized for resilience, but only after the 

valued functions are acknowledged. Quantum resilience employs system function and 

structure (productivity and complexity) to properly characterize a system’s resilience. 

 Systems within all disciplines exhibit quanta of resilience which define the level 

at which resilience can be observed and (potentially) managed or engineered. A quantum 

of resilience is a unitized output of a valued system function or service. In any analysis, 

quanta of resilience must be defined and related in units that are germane to the valued 

function. Admitting to such a quantum enforces the consideration of scale and identity in 

anything that might be called “design for resilience.” Importantly, there may exist in each 

system potentially dissimilar “subsystems” which redundantly deliver the valued function 

(whether by pure redundancy or degeneracy). If specific functions are not considered, 

designing (or managing) for resilience makes no sense, since it is the functional delivery 

level at which resilience can be discussed and designed. The implication is that managers 

and engineers need expend no energy “designing for resilience” unless they are 

addressing particular functional quanta. When resilience is an important design or 

management requirement, quantum resilience permits a more appropriate focus. 
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 Quantum resilience takes a pragmatic approach to resilience theory and focuses 

on operationalization. Once characterized, resilience defines the extent to which a system 

delivers its valued function. In short, a system’s resilience can only be characterized 

when it is understood in the context of delivering its valued functions. 

 Quantum resilience asserts that resilience cannot be reduced to a universally 

absolute value but can be characterized on a per-system basis which permits comparison 

of similar systems or alternative system configurations. Further, because of the vital focus 

on function, characterization of resilience demonstrates that system resilience can be 

bolstered only in increments as quanta of each valued function are incrementally 

delivered by redundancies added to the system. In this way, resilience is a quantum 

concept. Resilience is not binary—that is, systems are not either “resilient” or “not 

resilient” because this is meaningless without reference to function and context. Further, 

resilience cannot be said to be qualitatively “higher” or “lower” unless specific reference 

is made to identified quanta of valued function. 

 Resilience is characterized by (1) identifying valued functions and the systems 

implicated in their delivery, (2) specifying the quanta of the valued functions delivered, 

(3) calculating the apparent complexity of the valued function delivery system, and (4) 

combining these in such a way that resilience of similar systems can be compared and 

contrasted in design or management decision frameworks. 

 Each of the principles of quantum resilience is discussed at length herein, but to 

briefly set the stage, quantum resilience forces analysts to acknowledge: 
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1. Valued Function. Initially, quantum resilience assumes nothing about systems but 

acknowledges that there are important functions and services provided by them—

functions that humans have decided should be enduring (frequently acting in 

proxy for Nature). Human values are expressly acknowledged because quantum 

resilience starts with the question “what functions or services are valued?” 

Ultimately, since it is a human-created concept, the meaning of resilience is 

wrapped up in observer-dependent superimposition of value. Hence, to 

operationalize it, these values must be acknowledged and it must be recognized 

how they are reflected in the functions and services provided by the systems 

humans refer to as resilient. Resilience is only observed in the delivery of valued 

functions and services. Identifying (admitting to) the valued functions is the first 

step in properly analyzing resilience. 

2. Scale. By focusing first on function, there is consequent and automatic 

acknowledgement of scale (both physical and temporal) because the answer to the 

question of value defines a scope at which the valued functions are (or can be, or 

should be) facilitated. In practice, and as witnessed in the literature, the system 

that delivers the valued function has been observed to be larger in scale than is 

initially thought. Admitting to appropriate scale often serves to temper the goals 

of engineers and managers who wish to design (or manage) for resilience. Further, 

valued functions must have a temporal extent that allows them to be valued at the 

scale on which they occur. 

3. Identity. Acknowledging the scale at which the valued function is delivered leads 

to definition of the structure of the system that delivers the valued functions. 
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Structure and function comprise system identity. If a system structure changes 

such that a valued function ceases to be provided, the system has lost its identity 

vis-à-vis the valued function and cannot be considered resilient. At such time, it is 

acceptable to carefully suggest that the system has evolved (or adapted, or 

transformed) into a new system, but this is not the same as resilience. Instead, a 

recognition of (or search for) new valued functions can begin (with the new 

system in mind), or a search for an alternative system that delivers the originally 

valued function can occur. In general, a system that adapts or evolves becomes a 

different system. It stretches credulity to suggest the system is “resilient” if it fails 

to maintain its identity. 

4. Redundancy. Once it is acknowledged that it is the valued function that matters in 

discussions of resilience and that this sets the scale and establishes system 

identity, it is easily observed that resilient systems are those which incrementally 

and redundantly deliver their valued functions or services (via pure or degenerate 

redundancy). Operationalizing resilience, therefore, will pragmatically focus on 

redundant provisioning of the quantum of resilience. Once the quantum of 

resilience is identified, a redundant and diversified portfolio of service delivery 

can be planned. Functional redundancy remains the driving design principle for 

resilient systems. 

 

 As discussed at length below, quantum resilience suggests that resilience is the 

extent to which a system delivers its valued function. Characterizing resilience requires 

both the function and the structure of the system to be quantified. Assuming system S 
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performs some function of value V, the resilience of S (Rs) must be a function of the 

system and its function: 

𝑅𝑠 = 𝑔(𝑺, 𝑽) 
 

 Quantum resilience employs the notion of nearly decomposable hierarchies 

(Simon, 1962) to characterize system structure. This implies that as systems are 

decomposed, their subsystems will have progressively less inter-system interaction and 

become effectively more isolated. This has proven to be a worthy model over many years 

of systems engineering experience and is almost universally witnessed in Nature. Further, 

quantum resilience refers to the structural and relational character of a system S as 

apparent complexity, C, and calculates it based on hierarchical decomposition (number of 

subsystems (s), interfaces and connections (c), and inter-system dependencies (d). 

Hierarchical decomposition provides a measure of structural complexity, while the 

interfaces and dependencies provide a measure of the relational complexity. Complexity 

is recursively summed over the entire system hierarchy as shown in the formulation 

below. Other complexity formulations could certainly be substituted though (in keeping 

with Gell-Mann & Lloyd, 1996) no alternatives have been discovered that better 

“measure” system identity. 

𝑺 ≝  𝐶 =  𝑠 +  ∑(𝑐𝑖 + 𝑑𝑖)

𝑠

𝑖=1

 

 

 For clarity, quantum resilience refers to the overall system functional value V as 

system productivity and asserts that system productivity, P, is the sum of the product of 

the quanta of valued functions provided (q) and the number of subsystems that provide 

those functions (m). Multiplying the quanta of valued function by the number of systems 
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that provide it implements a sort of force multiplication factor that recognizes how more 

independent subsystems providing the function (however little of it) magnifies system 

productivity: 

𝑽 ≝  𝑃 =  ∑ (𝑚𝑖 ×  ∑ 𝑞𝑗

𝑚

𝑗=1

)

𝑓

𝑖=1

 

 

 The final resilience characterization formulation is based on the intuition that 

resilience is directly proportional to system productivity and inversely proportional to 

system complexity. Hence, resilience can be characterized as follows: 

𝑅𝑠  =  
𝑃

𝐶
 

 

 The terminology of quantum resilience can be exemplified and clarified by 

thinking of a typical boulder you might encounter while hiking in a typical mountain 

landscape. Boulders are fairly rugged entities. They have existed for millions of years, 

been stepped on by a variety of species, been subjected to wind and rain, fire and ice, and 

withstood the onslaught with aplomb. In fact, it is likely that you could airlift one and 

drop it on pretty much anything and expect it to inflict more damage than it would 

sustain. Boulders are arguably, if superficially, robust and enduring. But we do not learn 

about resilience from boulders. Why? Very simply, we do not value them because they 

do nothing for us. 

 That changes when you arrive at a particular mountain pass and need a better 

vantage point from which to view the scenery. If you climb the rock and are presented 

with a good view, the boulder has taken on value. It is no longer simply a rock but a 

“viewing system.” If the view is enrapturing enough to evoke expressions like, “Wow! I 
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could stay up here all day!” or “I really need to tell other people about this!” you might 

well start to worry about the resilience of the rock, but this is only because you have 

started to value it for the function it delivered. Now it is a “system” that you wish to be 

resilient. Importantly, however, your interest in resilience is not incited by the system (the 

rock). Instead, it is brought about by the valued function it provided. This is the way 

resilience must be addressed if we are to operationalize the concept. That is, however, not 

really the end of the rock story. 

 Recall that the rock became an important viewing system because of the treasured 

view it facilitated. But depending on your perspective it might be considered short-

sighted to see the boulder as the full extent of the system. In fact, if the view is so 

beautiful, you might want that to be enduring and resilient as well. This greatly expands 

the scope of the implicated system. If the valued function is extended beyond provision 

of a “view” to providing a “beautiful view” you must be concerned not just about the 

rock, but also about what is being viewed. Now it becomes apparent how valued function 

establishes the scale of the systems for which resilience is a goal. Further it reminds us 

that both aspects must be included in any model of the system. 

 Assuming you only cared about getting a “view” and did not care about what you 

were looking at (and recognizing that this is a conscious engineering or management 

choice) the next logical step is to agree that a rock is not the only way to get a view. In 

fact, there are many redundant and diverse ways to enable a hiker to get a view and 

express wonder. For example, you could climb a tree as easily as a rock, or you could 

walk on stilts. This obviously introduces other social aspects to the system. For example, 

to satisfy Occupational Safety and Health Administration (OSHA) regulations, a tower 
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with a safety railing might be required, and to meet accessibility requirements, an access 

ramp and elevator must be installed. Notice that while all you need is a rock, you must 

admit to certain other values that creep into the analysis. The rock might provide a view, 

but the tower provides a safe and accessible view. In every case, resilience must be 

characterized in light of the valued function in the context of the full system. 

 Note as well that the many uses of a boulder extend beyond making it possible to 

get a view. I once saw a sharp curve in a rural road adjacent to which someone had 

placed a huge boulder to ensure that overly aggressive speeding cars (presumably driven 

by resilient teenagers) did not venture too far beyond the road and come to rest in his 

living room. It is obvious that this person—perhaps from experience—valued the rock in 

a way that most do not. As with providing a view, there are many other ways to keep cars 

out of living rooms. Roads can be rerouted, guardrails can be installed, teenage driving 

can be restricted, etc. If the valued function was keeping cars out of living rooms, it must 

be seen that there are many redundant means by which this can be accomplished. The 

system need not include a rock, and it is the valued function that lends clarity and drives 

the analysis. 

 What if the boulder-with-a-view was crushed into a million small stones? 

Obviously, this is a significant insult to the system and one which might inspire some to 

lament that system’s “lack of resilience” in the face of a particular perturbation. While 

this gets more into the idea of robustness (to be addressed at length later), recall that such 

lament would only occur if you lost some valued function. In this case, the resulting 

stones could be piled and climbed in order to view the treasured landscape, but it might 

be more difficult to climb, provide unstable footing, and not enable as far a view in the 
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end—a severely degraded function. Alternatively, you could argue the boulder has 

entered a new stability regime—one in which the services offered are once again 

different than providing a view. For example, now the boulder could be used in 

xeriscaping a Phoenix yard. But it is important to recognize that the valued functions are 

entirely different for this new system. Such a transformation disallows characterization of 

resilience to proceed as it did previously. This is new function and new system identity 

requiring new characterization of resilience. 

 This simple example is used in this brief introductory overview of quantum 

resilience to elucidate the formulation of resilience characterization. Later sections go 

into intricate details, but this will serve to set the stage and demonstrate the operational 

value of quantum resilience. It illustrates the need to focus on valued function, system 

scale, system identity, and redundancy when characterizing resilience for a system. 

Perhaps we can learn about resilience from a rock. 

 Extrapolation from this hypothetical rock story suggests a simple “combined 

viewing system” based on a rock and a tower. What is shown in Figure 1 adequately 

highlights the difference in system complexity between a rock and a tower (though 

clearly the tower can be further decomposed), and shows that both provide a view. 

Additionally, it should be pointed out that for simplicity sake, only hierarchical 

complexity is shown. There is no relational complexity in this simple example though it 

should be clear that connectivity and dependencies exist in even the simplistic tower 

model. The only relational complexity counted in this simple illustration is from the 

“output” of the valued function. 
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Figure 1. Simplistic “Viewing” System 

 

 Importantly, as I alluded above, a “view” is seldom enough for a system that is to 

be used by humans, so the example will present a comparative analysis of resilience 

based on a progressively complicated, but integrated function in which the “view” is first 

expanded to a “safe view” and then ultimately to a “safe and accessible view”. Then the 

same models will be presented with differentiated functions (i.e., view, safety, 

accessibility). This will allow some discussion of the differences in the resilience 

characterizations calculated by the model. 

 Note that for the system where “view” is the sole valued function, the tower is 

configured with only stairs and a viewing deck, dramatically reducing its complexity. For 

the simple example, assume the tower holds 20 people on the viewing deck and that the 

quanta of the valued function, “view”, is therefore 20 views. Further assume the rock 

holds 10 people and therefore provides 10 views. This results in the following 

calculations (note that the output of a valued function constitutes a connection): 

Tower

Stairs

Rock

Combined viewing system

Viewing Deck

Safety 
Railing

Access Ramp

Foyer

View

View

Elevator

Motor

Cable

Car
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Tower Productivity = 20 quanta of the valued function 

Tower Complexity = 3 systems (tower, deck, stairs) + 1 connection = 4 

Rock Productivity = 10 quanta of the valued function 

Rock Complexity = 1 system + 1 connection = 2 

 

Resilience (R) = productivity/complexity 

 = (2 systems provide valued function)*(20+10)/(4+2) = 10 

 

 Table 1 summarizes the outcome of the resilience characterization for the 

combined system where “view” is the only valued function. 

 

Table 1 

R-characterization: View Only 

System (Function) Productivity 

Tower (View) 20 

Rock (View) 10 

  

Productivity 60.00 

Complexity 6 

R-characterization 10.0000 

 

 If the valued function is expanded to “safe view” the tower structure will require a 

railing, increasing tower complexity to 5. Note that the rock is not considered safe so it is 

calculated as if “view” and “safe” contribute equally to the function output. This means 

instead of 10 quanta when the function was “view” it becomes 5 because the rock can 

only provide half of a “safe view”. For this simple example, this is a fair approach, but 

recall that system experts would need to come to consensus and thereafter be consistent 

when such situations arise. It would be equally valid to determine the rock simply can no 

longer participate in providing the valued function (as, for example, is demonstrated in 

the function-differentiated example to follow). 

Tower Productivity = 20 quanta of the valued function 

Tower Complexity = 4 systems (tower, deck, stairs, railing) + 1 connection = 5 
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Rock Productivity = 5 quanta of the valued function (just “view”, not “safe”) 

Rock Complexity = 1 system + 1 connection = 2 

 

R = productivity/complexity 

 = (2 systems provide valued function)*(20+5)/(5+2) = 7.1 

 

 Table 2 summarizes the outcome and the lower resilience characterization. Note 

the increase in complexity due to adding the railing and the decrease in productivity since 

the rock can only provide a view that is not safe. 

 

Table 2 

R-characterization: Safe View 

System (Function) Productivity 

Viewing Deck (Safe View) 20 

Rock (Safe View) 5 

  

Productivity 50.00 

Complexity 7 

R-characterization 7.1429 

 

 To provide a “safe and accessible view,” all the complexity shown in Figure 1 is 

required. Here, the rock is neither accessible nor safe, so following the previous 

approach, it can only contribute one third of the valued function (10/3). Table 3 

demonstrates how the decrease in productivity and the increase in complexity further 

erode the resilience of the system. 

 

Table 3 

R-characterization: Safe Accessible View 

System (Function) Productivity 

Tower (Safe and Accessible View) 20 

Rock (Safe and Accessible View) 3.33 

  

Productivity 46.66 

Complexity 13 

R-characterization 3.5892 
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 In general, it should be obvious that as complexity increases, resilience is 

diminished. But also note that increases in productivity can often offset increases in 

complexity and maintain resilience. Importantly, when the valued function is integrated 

into one function (i.e., “safe and accessible view”), the rock has limited ability to provide 

it. Hence, it might be interesting to determine if isolating the valued functions results in a 

different outcome. 

 The same modeling can be done using differentiated valued functions: view, 

safety, accessibility. Assuming experts are happy with the way the “view” is quantified, 

decisions must be made about how to quantify safety and accessibility. OSHA may 

publish guidelines or regulations that are used by inspectors, but importantly, it matters 

only that consensus is gained among the experts and that consistency is employed if such 

models should ever be compared to others. For the purpose of this simple example, it is 

arbitrarily determined that one full unit of “safety” is provided by the railing, and the 

ramp and the elevator each provide one half a unit of “accessibility.” Table 4 shows the 

outcome of the resilience characterization. 

 

Table 4 

R-characterization: Function-differentiated Viewing System 

System (Function) Productivity 

Access Ramp (Accessibility) 0.5 

Elevator (Accessibility) 0.5 

Railing (Safety) 1 

Viewing Deck (View) 20 

Rock (View) 10 

  

Productivity 63.00 

Complexity 16 

R-characterization 3.9375 
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 Note that in all cases modeled, the rock and the tower contribute redundant 

“viewing” capacity. If safety is a paramount concern, it could be argued that the rock 

must be removed from the analysis. This can easily be done and Table 5 summarizes the 

outcome. 

 

Table 5 

R-characterization: Tower Only Viewing System 

System (Function) Productivity 

Access Ramp (Accessibility) 0.5 

Elevator (Accessibility) 0.5 

Railing (Safety) 1 

Viewing Deck (View) 20 

  

Productivity 23.00 

Complexity 13 

R-characterization 1.7692 

 

 Note the dramatic decrease in resilience due to two factors. First, the rock’s 

incremental delivery of valued function “view” has been removed. Second, there is no 

longer redundancy in the provision of “view”. 

 Though this example has all the risks associated with any oversimplification, it is 

clearly useful in demonstrating the specifics of quantum resilience characterization. 

Valued function is figured predominately and is used to establish the scale at which the 

analysis proceeds. Identity of the system (structure and function, see later discussion) is 

clearly tracked through the analysis providing adequate basis for comparative analysis of 

alternative system deployments. Finally, the contribution of redundancy is easily 

observed. 
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CLARIFYING RESILIENCE 

 

 The resilience literature has enjoyed a several-decades-long season of 

unrestrained expansion. During this period many titillating ideas have found safe haven 

under the resilience umbrella, but it is vital that resilience be understood for what it is 

without these expansions. These other ideas certainly deserve to be researched and 

pursued, but they should not be conflated with resilience. To introduce this chapter, I 

offer a simple taxonomy to position resilience in a highly confused literature. Each of the 

concepts is discussed at length in the following sections. 

 As defined herein, once properly characterized, resilience is the extent to which a 

system delivers its valued function. Resilience must take into consideration the functions 

provided by a specifically scoped system and therefore it implicates system function 

(what it does) and system structure (what does it) in its characterization. Note well that 

resilience is defined on a scale or spectrum, so it cannot be said to have opposites. 

Suggesting an opposite for resilience is like suggesting an opposite for a certain 

wavelength of light, or a temperature of 60 degrees. Since all systems are resilient to a 

degree which can be characterized, there is no antonym for resilience.  

 Robustness is the extent to which a system is protected from the environment in 

which it must operate. Jen (2005, p. 17) understands this protectionist idea, but fails to 

understand that it is not simply unanticipated disturbances from which systems must be 

protected. Robust design includes protection against threats and disturbances which are 

expected (as with evolutionary biology) as well as those that can be reasonably predicted 

(e.g., think of the Mars Lander design). Though caution must be used with this 

terminology (more below), opposites of robustness include specific vulnerabilities. 
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Robustness cannot be said to contribute to resilience unless a proper characterization of 

resilience has demonstrated that particular protections enhance resilience. That is, 

sometimes features designed (or evolved) to contribute to a system’s robustness do not 

directly contribute to valued function delivery and will only be represented as part of the 

system’s complexity (in the denominator of the quantum resilience characterization). 

 Though glaringly absent from the resilience literature, anticipatory systems 

(Rosen, 1985) are a breed of system that contains a model of the system and its 

environment. Importantly, the model operates faster than real time providing a limited 

look-ahead into possible futures. Depending on the way they are instrumented and the 

sophistication of the model, anticipatory systems can plan a future based on what is 

deemed an optimal path through a variety of projected landscapes. Humans are 

anticipatory (for example, we experience what some refer to as a “theater of the mind”) 

so systems with humans in the loop are sometimes observed to be anticipatory (but again, 

this depends on how they are instrumented). In fact, though they go unidentified as such, 

it is anticipatory systems that are most frequently confused with resilient systems. 

Sometimes such systems are referred to as adaptive, but since adaptation can only be seen 

after the fact it is best to avoid that word. Biological organisms are anticipatory to 

varying extents depending on their complexity and how they are instrumented. 

 Adaptive systems are generally anticipatory though their internal models may be 

very simple. Living organisms from the smallest bacteria are adaptive because they 

satisfy two criteria. First, adaptive systems are homeostats that can regulate themselves 

(within tolerances) for operation in a given environment. Given the definition above, this 

obviously means they are, to a specific extent, robust. Second, they also have some 
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manner in which to “remember” phenotypic “lessons-learned” in their genotype. For 

many millennia, biological life has been adaptive, but the aforementioned “remembering” 

mechanism by which the genotype was enriched was managed by completely arbitrary 

and accidental processes. If a bacterium (phenotype) happened to get the right random 

mutation in a gene that made it somehow survive longer and pass that gene on to its 

progeny, it is (retrospectively) considered adaptive. Humans are adaptive systems and, 

having mastered language and memetic evolution, are no longer at the mercy of accidents 

of nature to transfer lessons-learned to their progeny—effectively extending the genotype 

to include culture, society, and its tools. Today, humankind determines what is adaptive 

and to a great extent what is selected. Because humans are adaptive, some of the systems 

in which we participate are also adaptive, starting first as anticipatory systems and 

surviving long enough for us to look back upon and notice they have been selected. 

Adaptive systems can certainly be resilient, but that has very little to do with them being 

adaptive. In fact, a system that must be adaptive to be resilient is taking a great risk. 

 Learning systems are special in that they have “solved” what scholars refer to as 

the stability-plasticity dilemma (cf. Grossberg, 1980). Not only do such systems have a 

repository of learned behavior (usually a real or artificial neural network), but such 

systems have “figured out” how to remember new things without forgetting what they 

already know (a phenomenon known as “catastrophic forgetting”). There are many 

theories on how this is best done, including those which have a filter that suggests what 

should be learned (e.g., a “resonance”) and those that implement short term memories 

that become learned once reinforced and promoted. Again, when learning systems are 

conflated with resilience, it is because humans are in the loop lending use of their neural 



18 

networks in an attempt to improve their future by not repeating negative past experiences, 

or, as is frequently the case, normatively dictating what should occur in the future. A 

system can be (and is) resilient without being a learning system. 

 Transformation beggars the idea of resilience, anticipation, adaptation, and 

learning since it resets all systems back to experimenting with accidental evolution, 

spontaneous generation, punctuated equilibria, or flashes of imagination. Transformation 

is not related to resilience because transformation necessarily results in a new system. 

Transformation is a wonderfully aggressive and revolutionary-sounding word that 

permits humans to pursue their hopes and dreams based on projected futures which may 

or may not be supported by historical trends or anticipatory models. It is also a dangerous 

word since it usually assumes facts not in evidence and relieves us of the need to do the 

hard work of properly characterizing resilience. 

 

Resilience and Robustness 

 

 As clearly indicated in the definition and characterization formulas, resilience is 

not about perturbations, disturbances, environmental threats, or other insults that might be 

suffered by our systems. This section discusses why, and proposes the resolution is the 

tried-and-true idea of robustness as a unique and independent concept. Understanding the 

environment in which our systems operate teaches engineers to expect and protect against 

perturbations, but including perturbations in characterization of resilience is not a way 

forward for resilience theory. Instead, perturbations fall under the purview of robustness, 

forcing the distinction of resilience and robustness as separate concepts. Very simply, 

robustness is environment specific, resilience is not. 
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 The rationale for excluding perturbations from resilience analysis is contained in 

the following (rather long) sentence: If systems can be said to be resilient, and such a 

moniker applies in some degree to all systems, yet individual systems are exposed to only 

a subset of all possible perturbations by virtue of their specific operating environments, 

and if this subset of perturbations is different from, or not entirely a subset of the 

expected perturbations on another system operating in another environment, then the idea 

of perturbations can neither contribute to any generalized definition of resilience nor be 

included in any generalized characterization of resilience without introducing infinities 

into the formulation. 

 Assume E is the universal set of possible environments in which systems operate. 

Assume P is the set of all possible perturbations, imaginable or unimaginable, infinite in 

scope, a universal set of perturbations collected from the universal set of environments. 

Assume system S1 operates in a target environment e1 (a subset of E) wherein some 

subset p1 of P defines the perturbations on S1. Further assume system S2 operates in a 

target environment e2 wherein some subset p2 of P defines the perturbations on S2. 

Assume that p1 is not equal to p2 and that p1 – p2 is not the null set. That is, perturbation 

sets are free to intersect but are not proper subsets of each other. 

 

E = universal set of environments, 𝐸 =  ∑ 𝑒𝑖  

e1 ⊆ E 

e2 ⊆ E 

P = universal set of perturbations, 𝑃 =  ∑ 𝑝𝑖 

p1 ⊆ P 

p2 ⊆ P 
p1 ≠ p2 

p1 - p2 ≠ ∅ 
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 If resilience characterization were to be generalized to include perturbations for 

only systems S1 and S2, such a generalized characterization can easily be seen to require 

acknowledgement of all perturbations (p1 and p2) in the union of e1 and e2. This is 

obviously larger than smaller subsets p1 and p2, but perhaps still a tenable formulation. 

Extending this, however, to all systems Si and their environments ei and associated 

perturbations, pi, in order to achieve a completely generalized resilience characterization 

approach would require acknowledgement of the entire set P, the universal set of 

perturbations, and the entire set E of environments. It is clear, then, that any 

generalization of resilience that attempts to acknowledge perturbations is intractable. 

 Instead, quantum resilience asserts that specific defenses against specific sets of 

perturbations can be considered under the concept of robustness. Robustness can be 

defined as the non-infinite set of protections required for Si to operate in ei. Since a robust 

system exists within a specific environment, there is no generalized formulation of 

robustness, just a list of specific disturbances and defenses. In fact, it is fair to say that 

systems are robust against specific insults on a case-by-case basis to a certain degree. 

Even if this list is large, it is finite. For example, a satellite might be able to operate at 

temperatures down to -50C so it is robust to that degree, but it would fail if exposed to 

any lava flow, so it is not robust against that. 

 Carpenter et al. (2001) suggest that resilience analysis must answer the question 

“of what to what?” In light of this question, they define two kinds of resilience: specified 

and generalized. They suggest specified resilience has to do with responding to 

perturbations we know and expect, and generalized resilience is about responding to 

threats we predict might occur. In fact, what these authors have proposed is exactly the 
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process employed by engineers as they prepare a system to operate in the environment for 

which it is designed. Most engineers would agree that their systems must be robust 

enough to perform their duties within their operational environment (including some 

wiggle room or, tolerances that are sometimes summarized in a system specification or 

service level agreement). If systems fail to perform in their target environment, engineers 

are willing to agree they are poorly designed. What Carpenter et al. are promoting is the 

simple concept of robustness. In fact, if resilience is about either “specified” or 

“generalized” perturbations, its characterization can never occur because as demonstrated 

above the calculations are intractable. No matter how long the list of perturbations, it is 

always possible to suggest another. Such infinities are the bane of science and must be 

eradicated, there is no “to what” in resilience analysis. Resilience is about the system, not 

possible perturbations on the system. 

 Quantum resilience asserts that resilience is the extent to which a system delivers 

its valued function. It goes on to assert that this characterization of resilience must be 

accomplished without taking perturbations into account. That is, a system is resilient to 

some degree before any perturbations strike. If we can only characterize resilience after 

perturbations strike, it is not a useful concept for forward engineering projects since an 

infinite progression of destructive testing would be required to verify a system’s 

resilience. Robustness, on the other hand, deals specifically with expected and predicted 

perturbations by employing solid engineering practice to instrument protections against 

them and to define the acceptable degree of defense against them. In this manner 

resilience is distinguished from robustness. 
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 Robustness is most helpfully thought of as a constellation concept that applies to 

specific systems and their specific environments. In keeping with Jen (2005, p. 17), 

robustness can be defined as the extent to which a system protects itself from known and 

projected threats. As a concept distinct from resilience, robustness can be validated and 

verified with solid test efforts that can be specified as needed. Robustness allows for a 

discipline-specific short-list (or, constellation) of “protections” that adds no infinities 

because each perturbation and the associated protection is largely isolatable from the 

others. Robustness in the face of specific perturbations can be managed and implemented 

on a case-by-case basis. Each threat can be evaluated for the extent of system exposure 

(vulnerability) and appropriate defenses created to protect the system from the threat, or 

to respond to the threat. This is typical engineering design. When threats are only 

postulated (as for example they were for missions like the Mars Lander where the 

environment could not be known in full), they can still be managed on a case-by-case 

basis with our best available vulnerability and failure modes analyses. 

 Robust systems are so-called because they satisfy criteria which have accreted 

around particular classes of systems (e.g., bridges, satellites, governments, mammalian 

cells, etc.). That is, there is a constellation of protections that are associated with a system 

by virtue of its inclusion in a particular class of system. If a system in that class has the 

expected protections, it might earn the moniker “robust”, but it is important to be specific 

about the specific areas of defense and the degree to which the system is protected. These 

lists of protections can be short or long, rough or detailed, depending on one’s familiarity 

with the system class. For example, most people can understand that a bridge is (or is not) 

“robust” in a way that is different from a satellite. Bridge engineers know more 
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specifically about gravity, load, erosion, and concrete strength, and that discipline 

developed a long list of standard procedures to ensure robustness of their products. 

Similarly, satellite engineers know more specifically about vacuum, zero-gravity, attitude 

and orbit maintenance, high radiation, and vibration at launch, and have evolved a 

discipline that consistently delivers robust systems for operation in space. In effect, it is 

malpractice to build a bridge without solid footings and to launch a satellite into orbit 

without taking the vacuum of space into consideration. 

 Further, the constellation of protections may specifically exclude certain 

perturbations because of the class of system under discussion. For example, no carpenter 

who produces hand-carved mahogany desks requires that they be protected against the 

onslaught of a chainsaw—he might, but if he did not he would not be accused of 

malpractice. To earn the moniker robust, a wooden desk need not be protected against 

such an insult. 

 These domain-specific lists of protections that make a specific system robust are 

well-understood in the given discipline and frequently find themselves in designs. 

Importantly, to a significant degree, the perturbations and their associated protections are 

independent. For example, a satellite engineer can adequately protect against the unique 

thermal issues of space but forget to use radiation-hardened electronic parts. It can be 

easily argued that though such a satellite might function, it is “less robust” because of 

such a failing, but note well, it is less robust in that specific defense and could be very 

robust in other areas. In general, each of the protections can be measured in isolation 

from other protections on the list. This removes the crippling infinities. 
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 In light of this, it is important to manage the vocabulary. Like resilience, 

robustness really has no antonym because it is a constellation concept. The word that 

comes closest to being an antonym is “vulnerable” but care must be taken to identify the 

specific vulnerability (e.g., a satellite that is invulnerable to vacuum, may still be 

vulnerable to mudslides). The word “resistance” is also sometimes seen in the literature. 

Resistance can be considered the outcome of a specific “protection” that is implemented 

in order to make the system robust against a specific threat or expected disturbance. In 

this regard, resistance can be viewed as defining specific operating ranges or a service 

level agreement for the system (e.g., paint that should not be applied at temperatures 

lower than 40F, or a wristwatch that is waterproof to depths of 50 feet). 

 

 Robust design 

 

 It would be ludicrous to assume a system is not resilient simply because it cannot 

accomplish something for which it was not designed, but this is the logical outcome of 

including perturbations in definitions of resilience. For example, it would be silly to 

suggest an electrical power plant is not resilient simply because it cannot serve 

sandwiches and coffee to the public. While such an extreme example easily makes the 

point, researchers sometimes fail to see the similarities of that example with demanding 

that a power plant continue to function after being submerged by a tsunami. Somehow 

recovery after a natural disaster prompts us to implicate the idea of resilience, while 

demanding silly bistro functions does not. Instead, after admitting that a power plant was 

not robust against the onslaught of sandwich demand, we can consider whether it must be 
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redesigned to support these new bistro requirements, but we cannot suggest it is not 

resilient. 

 The same argument applies when we expect pristine Nature to survive intact 

through the exigencies of human development. Instead of realizing that Nature is not 

robust against the human challenge, many argue instead that its resilience has been 

diminished—but this can only be demonstrated after valued functions are identified and 

the system is properly characterized. That Nature has been so incredibly durable 

sometimes leads us to assume it is “resilient” when in fact, human development amply 

demonstrates Nature’s inability to meet expectations for which it was not “designed.” In 

such cases, engineers must admit that we are privileging Nature as we currently know it 

(or as we think it can be), and are expecting that Nature wants to remain that way. 

Obviously this is as ludicrous as a power plant serving sandwiches. Nature has never 

remained in any particular state, and assuming a “reference condition” from which it has 

decayed merely reflects normative beliefs. 

 Simply because a system cannot meet expectations for which it was not designed 

does not make it a candidate for a resilience analysis. Instead, it is either a candidate for 

redesign, or simply a silly notion. As a less extreme example, ask whether or not a 

teenager’s wardrobe consisting of jeans and T-shirts is not resilient simply because it 

cannot deliver an appropriate outfit for a Whitehouse dinner invitation. It is not legitimate 

to discuss this deficiency in terms of resilience. Instead, it is valid to say that a 

Whitehouse dinner invitation is a “disturbance” the wardrobe was never designed to 

handle (because it was not designed for the Whitehouse environment), and to consider a 

redesign, but this does not enter the resilience space. It is better to suggest that the 
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wardrobe is insufficiently robust, or inadequately designed to be responsive to such an 

invitation. Could a wardrobe be augmented to support such an environment once the need 

arises? Absolutely, but note that such an augmentation must come from outside the 

original system. It would require expanding the wardrobe system to include, for example, 

a shopper and a nearby tuxedo store. This is valid system expansion, but it would be 

wrong to suggest the wardrobe is “adaptive” because of this system expansion. Instead, 

as a part of a human-in-the-loop larger system, one could argue that someone was able to 

upgrade the wardrobe system to be useful in yet another environment. In fact, if one was 

anticipating a Whitehouse dinner invitation, a tuxedo may have already been added to the 

wardrobe in order to make it robust enough to withstand such an environmental insult. 

But again, this is not the same as the original wardrobe system being adaptive. Similar 

thought experiments could be staged for the remaining examples in Table 6. Such 

examples serve to illustrate that frequently there is confusion over the idea of resilience. 

 

Table 6 

Systems and Their Environments 

System (function) Normal “designed-for” 

Environment 

Environment outside 

design parameters 

Wardrobe (appropriate 

outfits) 

Work, recreation, home 

outfits 

Whitehouse dinner  

Bridge (vehicle conveyance) Gravity, vehicle load, 

erosion, thermal expansion 

Zero-gravity of space 

Satellite (science, or 

telecommunications, or 

surveillance, etc.) 

Vacuum, thermal 

environment, zero-gravity, 

attitude and orbit control 

Under water 

Commercial Aircraft 

(transport people and cargo) 

Controlled civil airspace Active jamming, live 

fire 

Desk (work surface and 

locked storage) 

Level office floor, indoor 

setting, drawer use 

Chainsaw, stairwell 

Office building (office space) Desk work, meetings Automobile repair, 

junkyard 
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 Erica Jen (2005) suggests “systems that are robust often are required to maintain 

their functions while exploring new functionality” (p. 16). Taken baldly this statement is 

clearly overreaching. For example, should a bridge “explore” serving coffee or teaching 

kindergarten while it continues to convey vehicles over a ravine? What would exploration 

of new functions resemble for a bridge? Does this mean a bridge cannot be robust? 

Obviously, such a caricature is not her intent, but her specific example illustrates it is not 

far from her meaning: she suggests that the Internet must be able to be upgraded “without 

interrupting functionality.” There are several things to comment on here. First, though 

perhaps a quibble, her example is not really about “exploring new functionality.” That is, 

her example does not leave the Internet performing new functions after the change. 

Instead, she describes a protocol upgrade that alters the manner in which a current 

function is delivered. Second, and importantly, her proposed change is certainly not at the 

Internet scale, which is the scale she defined as her system. That is, it is not the Internet 

that is “exploring” the new function. She has casually expanded her sense of the system 

from protocols and data delivery between computers to include the engineers and 

organizations that build and maintain those protocols. My discomfort with this approach 

is that it is simply too casual. In the case of Jen’s Internet example, the proposed 

“robustness” of being able to upgrade while still delivering function is facilitated by the 

redundancy in the network. No network engineer would argue that the software 

implementing a protocol can change while it is operating. There must be a discrete point 

in time when one approach stops and another starts (and for protocols that generally 

involves both ends of the interface). Third, her example is not really about robustness. 
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Instead, she is suggesting that the designers and builders of the system are actually 

changing it and deploying a new system. It is tantamount to saying that a factory floor 

producing widgets is “robust” because the assembly line can be shut down, reconfigured, 

and restarted to produce a different kind of widget. While this is certainly a testament to 

good planning and engineering, it beggars the idea of robustness. A better example of 

robustness in the Internet is that you specifically cannot change a protocol while it is 

operating. This illustrates the ability to defend against a known perturbation and ensuring 

the integrity of the communications interface. 

 

 Why does it matter? 

 

 The distinction between resilience and robustness is vitally important because, 

first, there must be clarity in the discourse. Conflating terms will never lead us to 

quantifiable results. Second, allowing perturbations and robustness (the “solution” to 

perturbations) to be implicated in the quantification of resilience leads to infinities that 

cannot be tolerated. Third, recall that most features that protect a system (i.e., augment 

robustness) arguably exist simply to enable the system to deliver its valued function in 

the first place. The satellite in orbit may protect itself from the unique thermal 

environment presented by space, but thermal management is a critical part of the system 

without which it could not perform its mission. Similarly, a factory built at the bend of a 

frequently flooding river might have a levy to protect it from the inevitable flood, but this 

must first be considered good design that contributes to system robustness and makes it 

possible for the factory to perform its purpose. Only after taking the entire system into 
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account and characterizing resilience properly can we determine if the levy contributes to 

or detracts from the factory’s resilience. 

 The individual protectionist features may actually contribute to the complexity of 

a system without contributing to its productivity. This is why it is so vitally important to 

fully document and model the system and to appropriately allocate functions to 

subsystems. Only when the full complexity of the system and the full productivity of the 

system are calculated can we characterize the resilience of the system. 

 

Resilience and Adaptation 

 

 Among the more problematic trends in the literature is the tendency to conflate 

adaptability with resilience, even suggesting that “adaptability is part of resilience” 

(Folke et al., 2010). In the process, the words have been redefined to expand the scope of 

the resilience research project to an extent that makes such a project intractable. The 

temptation to conflate these concepts is irresistible because of the simple equation that 

emerges when it is noticed that Nature is both adaptive and resilient. While quantum 

resilience provides a testable theory about why and how these concepts are connected 

(discussed later), it also recognizes them to be separate research areas. Resilience must be 

a useful scientific concept without conflating it with adaptation. 

 Though speaking in a different context, Ahl & Allen (1996) refer to “adaptation” 

as a “weasel word,” one that “confuses law-like processes that move a system forward, 

and observer-based rules that recognize significance and purpose after the fact” (p. 190). 

They are correct. Our ability to predict the future is fairly limited, but such an effort 

generally starts with anticipating future environments for our systems based on current 
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trends established with short histories. Once these future environments are projected, 

engineers begin to focus on how systems can be protected against or adjusted to survive 

the expected future landscapes. Frequently so-called adaptation is simply an exercise in 

good planning, including brute force methods like stockpiling resources in order to meet 

future maintenance or operational demands. Future system evolution becomes simply a 

matter of humans executing their plans on a schedule that has been determined by the 

cognoscenti. References to resilience are then simply self-congratulatory because if a new 

landscape was adequately predicted and successfully navigated, we have proven our own 

resilience. This brings us no closer to understanding resilience. 

 Typically, since we can anticipate only a few things we tend to privilege the 

present state and target that (or an only slightly modified version of that) in our adaptive 

management plans. There is no consideration that a completely different future might 

actually be better. This feeling persists despite the fact that throughout history we have 

consistently proven to ourselves that radically different and unimaginable futures are 

always better. Unfortunately, since real adaptation is an extremely risky approach to 

resilience, we will tend to fall back on limited projections of incrementally alternative 

futures and revert to good planning and safety reserves to see us through. Instead, real 

adaptation requires definition of future landscapes, definition of fitness on those future 

landscapes, exploration of evolutionary pathways for the phenotypic system, feedback 

with measures of fitness, etc. Not only does this become intractable very quickly, 

ultimately our success is only observable after the fact. 

 Still, the resilience literature has begun to define resilience in terms of 

adaptability. Since resilient systems can superficially be said to demonstrate higher 
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fitness, it has proven to be an irresistible equation and the Resilience Alliance (cf. Folke 

et al., 2010) has struggled to secure resilience as an independent research area. 

Unfortunately, they extended their umbrella framework into the realm of adaptive and 

transformative behavior before resilience was even codified and operationalized as an 

individual and important scientific concept. Because of this, resilience has become 

another word like “sustainability” which is defined as needed to meet the needs of the 

moment. 

 While on the surface adaptation might occasionally be construed as a mechanism 

that prolongs the existence of some systems, it can equally well be a mechanism that 

radically changes the system enough to kill it, make it unrecognizable, or unable to 

deliver its valued function. Dramatic changes in function (and associated changes in 

structure) may make a system more fit on a particular landscape, but this does not mean 

the system is more resilient. If function and structure change, how will the system be 

recognized and how would one argue for its resilience? Even if function remains, but 

structure changes, it is a new system that is providing the function. If the old system is 

gone, how can it have been resilient? Adaptation can only be seen as an extremely risky 

effort at targeting resilience—and the outcome is only known after the fact. This term has 

introduced even more confusion into an expansive literature that continues to miss the 

opportunity to operationalize the concept of resilience. 

 Toward the end of their piece, the team from the Resilience Alliance says: 

Confusion arises when resilience is interpreted as backward looking, 

assumed to prevent novelty, innovation and transitions to new 

development pathways. This interpretation seems to be more about 

robustness to change and not about resilience for transformation (Folke et 

al., 2010, p. 25). 
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 This is troublesome, but it is not just because phrases like “transitions to new 

development pathways” are vague, unexemplified, and devoid of actionable content. 

Neither is it troubling because “resilience for transformation” sounds grandiose and 

promising, but provides no operational target. This statement is troublesome because it 

disparagingly refers to other definitions of resilience as “backward looking” (whatever 

that means) and makes the assumption that other definitions of resilience somehow seek 

to “prevent novelty” and stop innovation. Not only is there no basis for this charge, it is 

highly self-serving. In fact, “confusion arises” when researchers continue to expand their 

definitions, open doors to all manner of alternative approaches, and include them under 

their research umbrella. Note well that systems can be resilient and adaptive and 

transformative (and many other cool-sounding words whatever they may mean), but these 

are all unique and independent ideas—and must remain so. Instead, such comments 

establish their definition of resilience as a bright and shining star that pretends to guide us 

to novel, innovative, and transformative salvation, while providing no mechanism to 

instrument our safe passage. 

 The consensus work of Folke et al. (2010) leverages the definition proffered by 

Walker et al. (2004, p. 4) where resilience is suggested to include the capacity to 

“reorganize while undergoing change.” As the proverbial camel’s nose under the tent, 

this idea of “reorganization” has been intermittently employed over time and has finally 

found purchase to the extent that ideas like adaptation and transformation are cited as 

goals for “resilience thinking.” It is troubling that there is an unqualified pretense of some 

ability to track the “resilience” of a system before and after a transformation given that 
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(1) words like “transformation” suggest that entirely different systems are being 

discussed (making their resilience incomparable), and (2) absolutely no mechanism for 

quantified characterization of resilience is provided. Perhaps it is possible that some kind 

of “transformation” can occur without impacting delivery of valued function, but it is 

very risky and it is absolutely required that this caveat be mentioned. It is meaningless to 

talk about resilience in the context of changes to systems that alter the functions they 

deliver and change their interfaces to the rest of the world. Simply “defining it away” by 

including phrases like “change to maintain” (Folke et al., 2010), is not sufficient. 

 For adaptation to be a useful design goal, we must have some knowledge of the 

future landscape. Rosen (1985) points out: 

It must be emphasized that it is in fact meaningless to characterize a 

phenotype, or behavior, as adaptive apart from a postulated measure of 

fitness…. It must be stressed that, until a measure of fitness is introduced, 

no simple state can be meaningfully characterized as adaptive or 

maladaptive; and this includes all the cybernetic mechanisms which have 

been proposed as examples of adaptation. This is a subtle point, but it cannot 

be emphasized too strongly…. The concepts of adaptation, fitness, selection 

and evolution are themselves linked; none of them can be completely 

understood unless all of the others are taken into account (p. 374ff). 

 

 As a theoretical biologist and polymath, Rosen contributed the definitive work on 

anticipatory systems. While reviewing his mathematics on adaptation and selection is 

beyond the scope of this work, it should be pointed out that in most cases when 

adaptation is discussed in the resilience literature the adaptive systems referenced are 

really anticipatory systems. It behooves us to understand that adaptation is really 

something we can only discern after the fact—and that makes it difficult to sell as a 

design goal. Further, it is generally forgotten that any projection of future fitness will 
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necessarily be a normative projection. A future we pursue is always one we feel should 

be pursued. 

 Still, given our human foresight, it seems we should be able to set ourselves up 

for future success and that somehow this should become a matter of good design. To 

accomplish this, we must leave behind the idea that we can build systems that can 

“change” or transform. Recall that any system with humans in the loop qualifies as such. 

Instead, we must focus first on building systems that are robust in the environments in 

which they operate, and that have spare capacity to deliver their valued functions. Such 

spare capacity can legitimately be termed adaptive capacity, not because it does any kind 

of adapting, but because it provides extra system structure which can be repurposed 

without impacting overall system productivity. Such an idea flies in the face of human 

engineering efficiency (especially when we are being told that resources are dwindling), 

but this is the way nature works as can be easily illustrated. 

 Once upon a time there was a widget factory on the river with 100 highly 

productive widget manufacturing machines. One sad day, one of the widget machines 

broke in a way that resulted in production of defective widgets (which became 

affectionately known as wonkets). The quality control group recognized the defects, and 

because widgets are difficult to recycle, simply discarded them behind the factory, 

forming a pile. Because widgets were selling so well, management barely noticed the 1% 

decrease in manufacturing efficiency and failed to investigate the waste of energy and 

materials. Over time the pile of wonkets grew, forming a large pile and creating a barrier 

between the factory and the river. Some creative employees even created a picnic area on 

the pile and would regularly enjoy the view while eating lunch. Then, on another sad day, 
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the river flooded unexpectedly and the pile of wonkets, serving as a levy, protected the 

factory by diverting the water and saving it from a disastrous flood. Management and 

employees alike rejoiced and cheered at their good fortune. 

 This is how degeneracy works in nature (more below). This is how nature builds 

adaptive capacity. Nature is completely oblivious, extraordinarily wasteful, and 

sometimes successful. As you might expect, having been saved from the flood by their 

pile of wonkets, management immediately formed a team to investigate where they 

originated. In the course of the investigation, the team found the broken machine and 

repaired it so it once again was manufacturing quality widgets. Then, management 

invested a large sum of money to have the wonkets removed to a landfill and to design 

and install a proper levy to protect against future floods. They have yet to establish a 

serviceable picnic area. That is how purposeful and efficient humans work. The 

differences are dramatic and serve to illustrate why we struggle with the idea of 

adaptation. 

 Active functional redundancy (i.e., degeneracy) can be said to provide adaptive 

capacity in the sense that delivery of more function allows risky and potentially 

deleterious experimentation with system parts while not falling below some necessary 

service delivery level. Assuming the system continues to deliver its valued function, this 

degeneracy can be viewed as a mechanism conferring greater resilience, but it is due to 

redundancy, not because of any as yet unproven “adaptations.” In fact, adaptation, as 

illustrated by the widget factory, comes through coopted redundancy (cf. Gould, 1997; 

Gould & Vrba, 1982). The factory and its management had no idea it was setting itself up 

for success on a different (flooded) landscape. Likewise, we have no way of planning for 
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adaptation other than providing redundant capacity that might eventually be tweaked, 

coopted, and employed for new functions. 

 As nature demonstrates and as illustrated by the widget factory, adaptation seems 

to be best orchestrated as opportunistic exploitation of redundancy through cooption. 

Kauffman (1995, p. 154) outlines how evolution by natural selection cannot really 

operate on a fully optimized “program” (or, organism) since optimization means there is 

no room for error. In many respects this disqualifies engineered systems from adaptation 

since they are generally designed to minimize extra parts and cost. Hence, while the extra 

parts in Nature may be added through extravagant wastefulness, there is an inherent 

conservatism because if it expects to survive (so to speak) Nature is only free to tinker 

with extra stuff. Nature must obey what has been referred to as a (sort of) law of “interim 

viability” (cf. Page, 2011, p. 124). So while redundant systems are instilling resilience, 

they are also providing this space for experimentation. Research demonstrates that 

“leaps” in evolution tend to be traceable to accidental copies of genetic material that 

eventually mutates, gets activated, then expressed. As a clever moniker for this idea, 

Gould and Lewontin (1979) coined “spandrels” for what Gould (1997) later suggests 

“arise nonadaptively as secondary consequences… but then become available for later 

cooptation to useful function in the subsequent history of an evolutionary lineage” 

(Gould, 1997, p. 10750). This is very likely the only way evolution can “leap.” The 

conservative exploitation of (near) redundancy is a way so-called adaptation can be 

facilitated in systems that are already resilient (note well the reversal in the equation: 

adaptation is not “part of” resilience, instead resilience is necessary for adaptation). Since 
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resilience is instrumented through functional redundancy, it should not surprise us that 

“adaptive capacity” is also instrumented through redundancy. 

 Quantum resilience asserts that resilience analysis must focus on the function 

(productivity) of the system. Nature is a good teacher in this case. It is not the complexity 

of the system that augments its resilience. Instead, it is the vast amount of functional 

redundancy that is contained (sometimes hidden) within all that complexity that 

augments resilience. Recall that since there is no absolute “high mark” for resilience (it is 

only comparative among homologous systems), resilience characterization numbers need 

not be large. Instead, think of “incremental contribution” and “incremental loss” of 

function (in the numerator) as the driver of resilience. Complexity must be accurately 

modeled no matter what function it supports. 

 For example, if (among other ways) a mammalian cell manufactures adenosine 

triphosphate (ATP) from glucose molecules during glycolysis, and manufactures more 

ATP during oxidative phosphorylation, then the full output of ATP must be calculated 

and placed in the numerator, while the full complexity of the glycolysis and 

phosphorylation systems must be modeled and calculated for the denominator. 

Obviously, if the cell can “figure out” another way to manufacture ATP, those additional 

productivity and complexity values would contribute respectively to numerator and 

denominator and then resilience could be re-characterized accordingly. If the new way is 

comparatively more productive and comparatively less complex than the others, this 

would disproportionately increase resilience. Likewise if the new approach is similarly 

productive and similarly complex as the others, it would still (very likely) improve 

resilience since it adds another redundant pathway. 
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 Reiterating the above, using biological examples as teachers, I can conclude that 

opportunistic exploitation of functional redundancy is how adaptive capacity is built. For 

example, when a gene in a germline cell is accidentally duplicated and not expressed, it is 

free to mutate (or not) without damage to the organism and with little additional energetic 

cost for its survival. This clearly adds complexity without function. This reduces 

resilience but, given the vast complexity of the organism, the energetic cost of 

maintaining the extra gene is small, so the impact to resilience would likely be 

unmeasurable.
1
 As we know, eventually another mutation might cause the extra gene to 

be expressed, resulting in either deleterious functional impact (e.g., if the gene had 

mutated) which (in the extreme negative case) kills the phenotype, or (with a positive 

mutation) perhaps adds new or additional function to the phenotype. This is important 

because now the additional complexity has function that contributes to the resilience. 

 Though gaps in knowledge are closing, biology still tends to have far more 

complexity than known function (e.g., there exists a significant amount of so-called “junk 

DNA”, there are metabolic pathways that are still not understood, etc.). Again, this is 

because biology wastefully exploits all the resources at its disposal and is unconcerned 

with efficiency. As a robust theory, quantum resilience can lead us to look for function 

within complexity that is already seen, but not understood. If function cannot be found in 

the complexity, however, it still must be properly quantified in the denominator. 

Generally, though without planning, if Nature has allowed complexity without function, 

                                                     
1
 Though recent estimates suggest Alu exists in over 1 million copies and comprises over 10% of the human 

genome, according to Maynard Smith & Szathmary (1999, p. 97): “there is an element known as Alu, 282 

bases long, present in 300,000-500,000 copies distributed throughout the genome, and accounting for some 

5 percent of the genomic DNA…. So far as is known, these Alu elements do nothing useful for the 

organism. They are only one of many kinds of repeated elements in the human genome.” 
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it is very likely not hurting the organism (e.g., has only a slightly negative energetic 

drain, as in accidental replication of genes in DNA). Systems of human design, on the 

other hand, are seldom so wasteful since deadweight is noticed and pruned. Still, 

quantum resilience drives the analysis to identify all complexity to ensure proper 

calculation of the denominator, so if significant complexity is detected in such a system 

without a corresponding provision of function, it might drive the analyst to identify 

forgotten function, or to acknowledge an expansion in system scope. 

 Since expansion in scope leads to a much larger analysis, it provides an important 

segue to a final comment about adaptation. Frequently the literature mistakenly assigns 

the term “adaptation” to systems that are experiencing upper-directed behavior (sensu 

McShea, 2012) in Simon (1962) hierarchies. That is, so-called adaptive behavior is 

actually being facilitated by the larger “containing” system when it has something “extra” 

to contribute to a child system by way of redundant capacity. This is almost certainly the 

intent of most of the literature that conflates resilience with adaptation. For example, with 

the goal of creating “resilient infrastructure”, humans plan for exigencies and stockpile 

resources (sometimes human resources) to enable swift recovery and restoration of 

services. Typically, this will be extolled as resilient infrastructure when in reality it is 

resilient human society that has learned to expect certain things and plan ahead. As usual, 

Nature is a good example of this approach (though without the foresight). Though it is 

not usually stated this way, Nature’s adaptive capacity stems from its access to (1) 

effectively infinite resources in the environment (at least until recently!), (2) effectively 

infinite time to employ them in experimentation, and importantly, (3) effectively no 

constraints on how trial and error adaptation is implemented. That is, Nature does not 
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care if it breaks itself while trying something new because nothing in Nature whines 

about failures in service provisioning and demands amelioration. Nature simply migrates 

or dies. In general, humans have learned from Nature, and only recently have we started 

encountering constraints that force us to rethink our previously adaptive behaviors (i.e., 

over-exploiting and then moving on). In this regard, our consciences make us far less 

profligate wasters of resources than is Nature. 

 To resist the trend of merging ideas like resilience and adaptation it is helpful to 

return to the principle that suggests resilience is about a function before it is about a 

system. Remember that all our observations of valued function are value laden. This 

implies that any idea of future goals would also be value laden. Recall that value laden is 

not necessarily wrong but we must admit to it and address it. Planning or designing 

“adaptive behavior” has proven difficult not only because we do not know the shape of 

the future landscape, but also because we do not necessarily know what future 

generations may need. What we can do is develop redundant and excess capacity that 

delivers the functions we currently view as important so that in the future we might have 

some excess capacity to exploit as values change and new systems become required. 

Forays into problem solving with artificial neural networks (ANNs) have demonstrated at 

least one thing: organization, programming, and planning only go so far in problem 

solving; more neurons and more connections contribute disproportionately to resolving 

such problems. Until we quantify valued functions, we cannot hope to deploy the 

redundancy we need in order to establish real adaptive capacity. Unfortunately, when the 

literature refers to adaptive capacity it is highly euphemistic and fails to provide 

examples of how it might work. Fortunately, quantum resilience provides a way forward. 



41 

Quantum resilience suggests adaptive capacity is instrumented through functional 

redundancy. Migrating excess capacity into alternative uses is a matter for differentiated 

research, but should be maintained as a separate discipline. 

 

Resilience is Resilience 

 

 Gunderson and Holling have supervised an exceptional body of work on 

resilience (e.g., Gunderson, Holling & Light, 1995; Gunderson & Holling, 2002; 

Gunderson & Pritchard, 2002; Gunderson, Allen & Holling, 2010). In general, these 

edited volumes target ecological systems and avoid focus on systems that involve 

significant levels of human engineering. To support this differentiation, Holling has 

coined the terms “ecological resilience” and “engineering resilience” and suggested they 

are fundamentally different. In-depth discussion of what Holling (1996) originally termed 

“engineering resilience” does not generally occur since few engineers are involved in the 

production of these edited volumes and related resilience literature. Engineers, however, 

might have difficulty appreciating the “fundamental” difference expressed by Gunderson, 

Holling, Pritchard, and Peterson as “essentially between a focus on maintaining efficiency 

of function (engineering resilience) and a focus on maintaining existence of function 

(ecological resilience)” (2002, p. 5). 

 While I applaud this mention of function in a discussion of resilience (it receives 

too little), it would be difficult for an engineer to separate these and think that somehow a 

necessary function could continue to be efficient if it were to disappear. Non-existent 

functions constitute system failure. Efficiency seems to demand existence. In fact, 

engineers generally go to great lengths to instrument functions with a variety of 
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performance levels since degradation is expected over time and under a variety of 

environmental insults and operational loads. Gunderson et al. go on to describe the 

difference between ecological and engineering resilience as “so fundamental that they 

can become alternative paradigms in which subscribers dwell on received wisdom rather 

than the reality of nature” (Gunderson et al., 2002, p.5, emphasis added). 

 The implication here is that engineers operate in a rote manner, ignorantly 

following the received wisdom in their handbooks, never being required to interact with 

the exigencies of the natural world, and blindly ignoring reality while they deploy their 

solutions. It is admittedly difficult to swallow such an allegation. While “received 

wisdom” can blind engineers to important nuance required in novel designs, it more often 

allows many years of hard-won experience to be leveraged. It is cavalier to assume that 

“received wisdom” is not at least in part based on the “reality of nature.” After all, these 

ecologists are themselves documenting their observations in order that future ecologists 

can receive and benefit from their wisdom. The caricature of the ignorant engineer with 

his head down banging out products for some alternative reality is unwarranted. 

 When “engineering resilience” is used in the literature, it is generally assumed 

that the explanation given by Holling (1996) was complete and correct and needed no 

further explication or defense. It is also apparent that “engineering resilience” is viewed 

as incapable of contributing to the management of the current array of problems facing 

humankind—those that are usually associated with complex socio-ecological systems 

(SESs). With little overstatement, it is not difficult to conclude that “engineering 

resilience” has been relegated to step-child status—it is that other resilience that must be 
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“bettered” if we are to successfully deal with hard problems. This is demonstrated in the 

following passage: 

The existence, or at least the importance, of multiple or single stable states 

determines the appropriateness of an engineering or ecological approach to 

resilience. If it is assumed that only one stable state exists or can be 

designed to exist, then the only possible definition and measures for 

resilience are near-equilibrium ones—such as characteristic return time. And 

that is certainly consistent with the engineer’s desire to make things work—

and not to intentionally make things that break down or suddenly shift their 

behavior. But nature and human society are different (Gunderson, Holling, 

Pritchard & Peterson, 2002, p. 6). 

 

 Beyond the overly simplistic rule that begins the paragraph (can resilience really 

boil down to whether or not there is one or several stable states?), there are at least two 

implications in this paragraph that are worthy of comment. The first is that engineers are 

never required to manage multiple stable states in their systems. This view might simply 

reflect the scales at which ecologists think engineers work (e.g., they might think 

engineers build “bridges” but not “transportation systems,” or they think engineers 

develop “microprocessors” but not “telephony networks”, or engineers build “radios” but 

not “global military command and control infrastructures”). It also disingenuously 

implies that ecologists do seek to simultaneously manage multiple stability domains. 

However, even if ecologists recognize multiple stable states like “clear” and “turbid” in a 

lake ecosystem, they must admit they only seek to manage toward the one with higher 

social utility. This would be analogous to engineers recognizing stability domains of 

“working” and “broken” and attempting to keep the system “working”. While they 

recognize the “turbid” state, it is never the intent of ecologists to ensure a lake remains 

“turbid.” Understanding the turbid state (just as engineers want to understand the 
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“broken” state) is important, but management efforts must proceed in a certain direction 

and that is usually toward the state of higher social utility. 

 The second implication is more interesting because it hints that while employing 

the (allegedly more powerful) tools of “ecological resilience,” the SES manager’s goal is 

not to “make things work”, or to prevent sudden shifts in system behavior. Apparently, 

they want to avoid that since after all, that is what engineers do! This is also 

disingenuous. Nature and human society may well be “different” as these scholars 

suggest, but when ecologists step into SES management roles they must admit that their 

clear intent is to “make things work.” They may have normative conservationist goals, 

but they obviously have a “working” outcome in mind. Resilience practitioners should 

not lose sight of their observer-dependent and value-laden goals. 

 But the denigration of the engineering approach continues as they attempt to 

further differentiate the ecological resilience approach as a novelty: 

If there are multiple equilibria, in which direction should the finger on the 

invisible hand of Adam Smith point? If there is more than one objective 

function, where does the engineer search for optimal designs? In such a 

context, a near equilibrium approach is myopic. Attention should shift to 

determining the constructive role of instability in maintaining diversity 

and persistence and to management designs that maintain ecosystem 

function despite unexpected disturbances. Such designs maintain or 

expand the ecological resilience of those ecological “services” that 

invisibly provide the foundations for sustaining economic activity and 

human society (Gunderson et al., 2002, p. 8). 

 

 Once again, while I applaud the reference to maintaining ecosystem function (and 

lament that it is so quickly forgotten), there is much that must be rebutted in this 

paragraph. First, “myopic” engineers have long worked with multiple equilibria 

(Rapoport, 1986, p. 67ff) and multiple objective functions (Rapoport, 1986, pp. 195, 
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202ff; ReVelle, Whitlatch & Wright, 2004, pp. 121ff), and multi-criteria decision 

analysis (MCDA) is a field with its own journal (cf. Wiley InterScience Journal of Multi-

Criteria Decision Analysis), so whether or not fault can be found with their approaches, 

the complexity of conflicting goals is not new to engineers. Literature about multiple 

objective functions does not imply that the problems are easily managed, but engineers 

have a long history of wrestling with multiple objectives and finding the non-inferior 

operational “sweet spots” that can be afforded or accomplished with the limited resources 

available. 

 More importantly, what can it possibly mean to determine “the constructive role 

of instability in maintaining diversity and persistence”? Even speaking in evolutionary 

terms, the “role of instability” is not constructive. At best, such language could be 

construed to be reminiscent of Schumpeter’s (1950) “creative destruction” as long as we 

understand that even his use of that idea was as a rhetorical device. Instability neither 

maintains nor leads to diversity. Even if the authors are envisioning “random mutation” 

followed by “natural selection” as a kind of “instability” that can lead to diversity, then 

they have forgotten two things. First, it must be remembered that evolution is largely 

conservative or ecosystems and the life they support would be too fragile to be sustained. 

It is difficult to imagine a successful ecosystem that “persists” in “instability” as they 

suggest. The terms are opposing—and it is hoped these authors are attempting more than 

clever rhetoric. While it is true that some systems “flip,” the unstable period during the 

“flip” is not a desired “state” and neither is it enduring (or “flip” would not be used to 

describe it). Second, the goal of pursuing resilience at all is to manage an SES toward 

some higher social utility while balancing Nature’s needs for the long term benefit of 
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both humans and Nature (maximizing enviro-social utility). Since that is the case, it must 

not be forgotten that humans (and other species) desire stable systems that deliver their 

valued functions over appreciable timeframes. Most species cannot survive a mostly 

“broken” system while natural selection takes its time coming to a “resilient” solution. 

(See the later discussion of Holling’s adaptive cycle). 

 Gunderson et al.’s (2002) internal conflict is highlighted when one page later they 

write: “Ecosystems are resilient when ecological interactions reinforce one another and 

dampen disruptions” (p. 9, emphasis added). Here, the authors negate their previous 

statement about the “constructive role of instability in maintaining diversity” and it must 

be observed that we cannot have it both ways. Does instability lead to resilience as 

suggested on page 8? Or does resilience require such disruptions to be dampened as 

indicated on page 9? The authors know the answer, but in an attempt to define a new kind 

of resilience, they have lost sight of the value of a cohesive approach—one which 

includes so-called engineering resilience. 

 The resilience literature generally focuses on what authors imply are the more 

complex socio-ecological systems and the management problems associated with such 

systems. They suggest such systems demand treatment with ecological resilience in 

mind. While most examples are fairly tightly defined ecosystems, these volumes do 

occasionally foray into social organization, politics, governance, and economics. 

Unfortunately, they fail to acknowledge that these are all human-engineered systems 

which quite feasibly can be addressed using so-called engineering resilience. To know 

that economies and governments are engineered by humans and to not at least 

demonstrate why so-called engineering resilience does not apply seems a significant 
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oversight. Blanket and broad introductory remarks like those cited above are insufficient 

to convince practicing engineers of the need to relinquish their “received wisdom” and 

abandon engineering resilience as a viable tool. Fortunately, I will demonstrate that the 

confusion spawned by the unnecessary distinction between engineering and ecological 

resilience is quite avoidable. There is only one “resilience.” 

 Abandoning multiple kinds of resilience 

 Since humankind has only been environmentally conscious for a couple 

generations, it is only recently that we have recognized the need to manage the ecological 

systems on which we depend. It is perhaps obvious that, since they are unconscious of 

their own existence, natural systems are extravagant and wasteful, unconcerned by the 

resource cost required to maintain themselves. Before the advent of the environmental 

discourse, humans themselves tended to assume the earth was big enough to not be 

impacted by a few “wasters” and we (perhaps excusably) adopted Nature’s approach of 

using everything at our disposal with little concern for dwindling resources. Of course, 

now that population and technology have multiplied our impact, the story is changing. 

We have noticed and have started feeling the resource crunch—as many species before us 

have, only to migrate or die. We have recognized our more negative impacts and realize 

that a natural response (i.e., migrate or die) is less feasible now that we have filled all the 

easily accessed parts of the Earth. In important attempts to come to terms with these 

changes, would-be managers of socio-ecological systems are feeling constraints that 

engineers have faced for a long time. Ironically, these SES managers have lately realized 

that “efficiency”—understood as appropriate allocation and consumption of resources, 
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and thought to be a hallmark of “engineering resilience”—might actually be an important 

step beyond focusing merely on the “existence” of the functions they value. 

 Unfortunately, in isolating “ecological resilience” from “engineering resilience,” 

the literature implies that “engineering problems” are somehow simpler, better bounded, 

and better scoped, than so-called socio-ecological problems. In fact, engineers have long 

been forced to deliver reliably functioning systems in the face of significant constraints, 

and engineering managers faced economic “realities” far earlier than their ecological 

counterparts. To manage such constraints they have adopted design patterns and 

principles (“received wisdom”) that have proven to be effective over time. For example, 

redundancy and distribution are employed when system function is critical enough for it 

to be cost-effectively implemented. For this reason, it is unfortunate that “engineering 

resilience” is not being explored as part of the solution space for SES management. 

 Interestingly just a few pages after they imply that engineering resilience is 

inadequate to the task, Gunderson et al. add: 

We propose that the resilience of ecological processes, and therefore the 

ecosystems they maintain, depends upon the distribution of functional 

groups within and across sales…. Across-scale resilience is produced by 

the replication of process at different scales. The apparent redundancy of 

similar functions replicated at different scales adds resilience to an 

ecosystem (Gunderson, Holling, Pritchard & Peterson, 2002, p. 10). 

 

 Such functional redundancy at different scales has been a hallmark of robust 

engineered systems for many years—largely because engineers noticed that it was 

effective in Nature. Several years prior to this Peterson, Allen and Holling (2010 [1998]) 

had suggested: 

It is difficult to envision how ecosystems without redundancy could 

continue to persist in the face of disturbance. We assume that since no 
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species are identical, redundancy does not reside in groups of species, but 

rather it emerges from interactions of species (p. 175). 

 

 Though the second sentence is somewhat unclear (and by using the term 

“emerges” even implies some mystery) they later clarify that “overlap in ecological 

function leads to ecological redundancy” (p. 176). The “interactions of species” they 

specify is instrumented specifically by the redundant delivery of important and valued 

functions. In these passages, the authors properly notice that resilience is instrumented 

through redundancy and diversity (what biologists call “degeneracy”, or, redundancy of 

function through different structure), and in doing so, provide a strong testimony in 

support of the power of engineering resilience which employs these very tactics. 

 Ultimately, the equivalence of engineering and ecological resilience is made 

completely clear when Holling, Gunderson, and Peterson (2002) speak of “imbricated 

redundancy” (p. 85). This within-scale and between-scale (sometimes termed “across-

scale”) redundancy is exactly the kind of redundancy that system engineers use to ensure 

robust systems from telecommunications, to health care claims processing, to space-

based surveillance. In fact, redundancy that is provided by diversity or portfolio 

approaches would be done more if it were not so expensive. For example, 

telecommunications networks have more than one way to connect a call; there is not just 

one kind of surveillance satellite (and neither do they all observe the same regions in the 

electromagnetic spectrum); and health plans do not have just one way of processing 

claims, but do them with a wide-variety of rules, in batches, one-by-one, manually, etc. 

Interestingly, these three exemplar domains are particularly rich with examples of 

resilience (through redundancy) because they are deemed vitally important and are well-
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funded. It appears that what ecologists have discovered is exactly what engineers have 

known for a long time: that it requires a lot of money to solve hard problems. 

 In engineered systems, the lowest level (smallest scale) sensors like thermistors or 

current monitors are frequently redundant because they are important to system health 

and status monitoring as well as being relatively inexpensive. Larger scale systems that 

contain these redundant sensors (e.g., power supplies, processors, telecommunication 

switches) are frequently redundant because they are deemed mission-critical enough to 

invest extra resources (e.g., mass, parts, labor, development and test schedule) and 

because at this scale they are still relatively inexpensive. At the largest scales (e.g., 

computers, disk farms, satellites) the systems are frequently redundant when replacement 

or repair time would significantly impact the mission or the revenue stream. For example, 

in addition to the full constellation of 66 satellites, the Iridium global telephony network 

(iridium.com) was deployed with six on-orbit spare satellites, not to mention redundant 

ground-based tracking stations, mission control centers, and telephone network 

gateways—recall, telecommunications systems are well-funded and customers demand 

they function, so resilience is ensured through engineering redundancy. 

 Unfortunately, Gunderson et al. (2002) appear to be unaware that engineers 

frequently provide resilience through such portfolio approaches. Rightfully, they say 

“within-scale resilience complements cross-scale resilience” (p. 11), but then they 

specifically deny the existence of the engineer’s portfolio approach: 

The consequence of all that variety is that the species combine to form an 

overlapping set of reinforcing influences that are less like the redundancy 

of engineered devices and more like portfolio diversity strategies of 

investors (p. 11). 
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 It is apparent that at least part of their problem stems from thinking that engineers 

design “devices” but not systems. This is a debilitating and inexcusable oversight. By 

reinforcing the idea that resilience can be operationalized through redundancy, they have 

equated ecological resilience and engineering resilience even while denigrating the latter. 

This is an important lesson that future SES managers must learn—and can avoid learning 

the hard way. So the question is why was a resilience dichotomy ever created? 

 It is possible that some fear so-called engineering resilience because it may lead 

to “deconstructionist science,” a command-control approach to management, or simple 

reductionism. However, there is simply no need to fear that since it was Nature that 

taught engineers how redundancy is the path to resilience—and Nature did it without 

command and control hierarchies. As a particular way to implement a management plan, 

command-control can be effective and has its place. It is certainly a way to provide 

humans a sense that they are in control—often an important outcome in itself. Since the 

eco-resilience literature specifically repudiates command and control approaches (Holling 

& Meffe, 1996), ecologists call themselves “managers” of SESs, but the feint is obvious. 

Their goal is control as they decide on appropriate outcomes and shepherd the system in 

what they perceive is the right direction. But it matters very little what humans call 

themselves, as Nature has modeled, and as engineering has followed, resilience will be 

implemented through redundancy. It is in the “doing” not the “defining” that a real 

definition emerges. 

 Peterson, Allen and Holling (2010[1998]) suggest: 

Ecological and engineering resilience reflect different properties. Ecological 

resilience concentrates on the ability of a set of mutually reinforcing 

structures and processes to persist. It allows ecologists or managers to focus 
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upon transitions between definable states, defined by sets of organizing 

processes and structures, and the likelihood of such occurrence. Engineering 

resilience on the other hand concentrates on conditions near a steady state 

where transient measurements of rate of return are made following small 

disturbances. Engineering resilience focuses upon small portions of a 

system’s stability landscape, whereas ecological resilience focuses upon its 

contours. Engineering resilience does not help assess either the response of a 

system to large perturbations or when gradual changes in a system’s stability 

landscape may cause the system to move from one stability domain to 

another, for these reasons we concentrate on ecological resilience (p. 179). 

 

 Unfortunately, the comparative statements made in this passage are not mutually 

exclusive and are largely meaningless, so it is difficult to understand the launching point 

of their comparison. That one kind of resilience focuses on “stability landscape” and the 

other on “contours” seems to be arbitrary employment of metaphor. Until the poetry is 

replaced with meaningful and actionable ideas, it is unhelpful. It also seems strange that 

engineering resilience helps with neither “large perturbations” nor “gradual changes” and 

forces one to wonder how engineers have accomplished anything at all with their meager 

tools. This is odd, especially since engineers use the same terminology (systems, 

structures, states, processes, transitions, stability, etc.) and very likely used it first. 

 It is for these reasons that I find the unnecessary distinction between engineering 

resilience and ecological resilience to be confusing and harmful to the discourse. This is 

especially true when tacit denigration of engineering resilience is nearly immediately 

followed by glowing testament to the power and importance of what is easily 

demonstrated to be the tools of engineering resilience. Engineers (perhaps indirectly or 

by osmosis) have learned the power of redundancy from the natural systems they 

observe. There is no reason that “engineering resilience” cannot be a powerful 

contributor to managing the complex socio-ecological systems we face today. It would be 



53 

far better to focus on operationalizing “resilience” than to perpetuate a confusing and 

meaningless distinction. Fortunately, when arbitrary distinctions and misunderstandings 

are clarified, resilience is revealed as a unified concept. Ecosystems are resilient due to 

their many functional redundancies and engineers have learned from this. Redundancy in 

the delivery of valued functions is exactly the engineering approach. 

 

Resilience and the Adaptive Cycle 

 

 Leveraging a traditional view of ecosystems which are observed to have periods 

of exploitation followed by conservation, Holling proposed the adaptive cycle as a model 

of how natural systems continually reformulate themselves (cf. Gunderson & Holling, 

2002, p. 25ff.). His model has four phases. In their mature conservative phase (K), 

ecosystems employ the resources available to them and deliver useful functions and 

services. During this phase, Holling suggests the resilience of the system is in decline. 

Ultimately, resources dwindle and resilience wanes leading to release and system 

collapse (Ω). Thereafter, Nature recovers and experiences a reconfiguration phase (α) 

which results in a new system. This leads to an exploitation phase (r) where the system 

builds to maturity while resilience is high. The cycle, Holling suggests, repeats 

indefinitely. 

 Holling’s adaptive cycle may be an important contribution, but the way it is 

employed in SES literature is sometimes forced to the extent that Holling himself might 

quibble about the way his model has been assumed to be a proven and working theory of 

the natural world instead of being merely an analogy. It is my purpose here to 

demonstrate that it must not be uncritically employed—and certainly not for systems with 
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significant human design and involvement. In fact, while some of its tenets are 

applicable, the entire model must be employed only with extreme caution. Note well, 

resilience characterization should not start with analogy, but with system analysis. 

 As a model of how natural systems might adapt over time (or “flip”, or “enter a 

new stability regime”, or “find a new basin of attraction”, the euphemisms abound), 

Holling’s adaptive cycle has been frequently employed in the literature and mapped to 

the behavior of some ecosystems. As pointed out earlier, when an ecosystem “flips,” 

organisms in Nature do not start whining about failures in the provisioning of services or 

valued functions, they simply migrate or die. If, however, the adaptive cycle were to be 

representative of systems engineered by humans, we would call such systems “broken” 

(and there would be significant whining). In fact, human-engineered systems that 

experience “collapse” and “reorganization” are repudiated. The goal of human 

engineered systems is to arrive quickly at productive stability (Holling’s K phase) and 

remain there for as long as possible. 

 Since humans have trouble using constantly changing systems, systems of human 

engineering (including SESs) must exhibit K phase resilience. K phase systems are 

mature and conservative, but are, unfortunately, where Holling predicts resilience will be 

declining (Gunderson & Holling, 2002, p. 44). If “bouncing back” (to employ a 

frequently seen euphemism) from perturbations is important, it is to the well-understood 

stability of the K phase humans wish to return, not to the frenetic and still-coalescing 

system of the r phase. Humans cannot effectively operate in the constantly changing but 

(allegedly) highly resilient space of the α and r phases. Humans need stable systems that 

provide stable services through which work can be accomplished. Picture, for example, 
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humans trying to flourish in the face of constantly changing economic or political 

regimes—history demonstrates our inability to do this. So it appears that humans need 

high resilience in the K phase at the very time Holling suggests it is waning. Hence, the 

adaptive cycle might reflect the operation of pristine Nature, but is clearly not a model of 

the way human systems are most effectively managed. Unfortunately, overemphasis of 

the adaptive cycle analogy has frequently engendered adherence to it as if it were an 

inexorable law of the universe. 

 The conflict between this presumed law of the universe and human needs is 

recognized by Baskerville (1995): 

The important point here is that the management of a natural system 

such as a forest is an attempt to prevent the cycle of exploitation/ 

conservation/creative destruction/ mobilization from operating 

normally. Indeed, if the cycle did not operate, there would be no need 

for society to manage those systems. In general, management is invoked 

to prevent the creative destruction step… (p. 92, emphasis added). 

 

 Later, he suggests humankind is on a “treadmill” trying to prevent the impending 

creative destruction. The tendency to see the cycle as inevitable—even in the face of 

management—is clear. Walker and Salt (2006) agree with Baskerville and brace 

themselves for the inevitable: 

No system can stay in, or be kept in, a late conservation phase 

indefinitely…. A significant back loop [i.e., collapse and reorganization] 

of one form or another is inevitable (p. 85). 

 

 This self-conscious adherence to the model is odd in light of the many 

equivocations Walker and Salt (2006) make. They allow for “many variations” (p. 82) 

and draw the model in a way that suggests a system can find its way around the four 

identifiable phases in a fairly uncontrolled manner (p. 83). Engineers would conclude that 
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a model so fluid and free has lost its ability to be useful—let alone inevitable—but 

ecologists cling to this model despite its inability to model reality and make predictions. 

Unfortunately, this resignation has prevented movement toward operationalizing 

resilience and instead has put us on Baskerville’s treadmill, bracing ourselves for the 

inevitable. 

 Because of this, it is difficult to envision how the adaptive cycle can be used as a 

model for socio-ecological systems where human influence and technology is dominant. 

In these cases, perhaps the “adaptive cycle” is best employed as a non-cycle or a one-time 

process that illustrates system growth from r to K to Ω and does not attempt to suggest 

systems arise from their ashes like a mythical Phoenix. While it is an incorrect 

application of the model to suggest a system’s “resilience” is demonstrated by repeated 

passes through the α-r-K-Ω cycle (recall that according to Holling resilience waxes and 

wanes within the cycle), it is equally problematic to suggest the same system emerges 

after the Ω phase. In fact, in any collapse and reorganization, it becomes clear that a new 

system emerges. While this is hinted at by Walker and Salt (2006, p. 75), the best 

expression that it is really a new system is provided by Holling, Gunderson and Peterson 

(2002, p. 75) when they demonstrate how the adaptive cycle can be stacked and used to 

reflect up and down the hierarchy in a Panarchy of systems. The very introduction of the 

Panarchy idea exposes the deficiencies in the adaptive cycle because it demonstrates how 

a system either escapes from the cycle or is really just part of a larger system. Since 

systems-of-systems ideas are well-worn in the engineering space, a new and confusing 

concept like Panarchy is not really necessary. 
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 What is possible (and is at least implied by the Panarchy idea) is that the entity 

that is progressing from r to Ω is a subsystem of a potentially resilient larger system. This 

is vital but not particularly clear in the literature. For example, when a human-engineered 

system like a government collapses, if the residual human society creates a new 

government, it is clearly not the same government system as the one that collapsed. That 

is, it is not the “government” that is resilient, but the human society which is the parent 

system. This is vital, because the human society draws on far more resources to recreate 

the government than the previous government left behind. This cannot be effectively 

shown with the adaptive cycle and is not sufficiently clear in the presentation of the 

Panarchy concept. 

 The adaptive cycle and Panarchies are tricky things since they tend to imply the 

same system is (re)cycling. Students struggling with the concept say they want their 

business to be resilient like the adaptive cycle, but are startled when asked how 

frequently they plan to schedule a business collapse. As expected, nobody wants their 

business to ever collapse. Instead, they eventually agree that they want to have a business 

model that supports a variety of projects that come and go as necessary, redundantly 

generating income to keep the business viable as the market evolves. When we talk 

instead about specific business thrusts that come and go, they can make better application 

of a (partial) adaptive cycle analogy (specifically the r and K phases). This also drives 

home the important fact that such “rebirth” must be greatly subsidized by the parent 

system. The assumption that a “system” simply reorganizes its mass and is reborn 

trivializes the important concept of system identity. There is more to identity than mass 
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and constituent particles (or people and buildings, etc.). As Ahl and Allen (1996) put it 

“from the perspective of the old system, the new system is a mystery” (p. 183). 

 This is illustrated in the conflict between resilience and the adaptive cycle 

exhibited in Carpenter et al. (2001, pp. 770-771). The authors employ Holling’s adaptive 

cycle to discuss the resilience of a lake-agriculture system. They suggest there are two 

parts of their SES, the social (which is comprised of human activities like agricultural 

production and regulatory action) and the biophysical (which consists of the lake’s water 

quality). This particular SES is managed to maximize (1) the net social utility of the 

agricultural production and (2) the freshwater use in recreation. Carpenter et al. suggest 

that “resilience of the clear-water state [is] high during the r phase” which follows 

Holling’s suggestion, but the claim is difficult to justify since they are describing a build-

up of Phosphorous in the surrounding soil. In fact, in specifically physical system terms, 

what is occurring is the degradation of the water quality as P increasingly leaches into 

the lake. By forcing use of the analogy they have forced themselves to suggest something 

that has not yet been demonstrated. That is, they have done nothing to quantify resilience. 

There are at least two issues with this approach. First, they have not adequately defined 

the system in the r phase. In fact, it appears they want to map the increase in P with the 

upward trajectory of the adaptive cycle in the r phase. This mapping might be irresistible, 

but unfortunately it leads to the second problem of making a single variable a proxy for 

resilience. Since P is increasing (and is, to them, inversely proportional to resilience), 

they cannot conclude the resilience of the clear water state is high. In fact, what they must 

say is that water quality (their valued function) is decreasing along with resilience. For 

their mapping to work, resilience must be decreasing in the r phase. Unfortunately, the 
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adaptive cycle forces them to await the K phase to allow for decreasing resilience. So, 

either they must better define what their resilient r phase consists of, or they need to 

acknowledge they are attempting to conflate increasing P with decreasing resilience and 

force-fit an analogy. 

 There is danger in using one measurable value as a proxy for resilience of a 

system. Carpenter et al. (2001) suggest “indicators of resilience that are appropriate for 

the current regime may become useless as ecological structures and social expectations 

shift” (p. 779, emphasis added). While this is superficially true (e.g., a hypothetical new 

regime may contain no Phosphorus and this would eliminate their ability to use P level as 

a proxy for resilience) it is also problematic since it ignores the overall system (and 

contradicts any acknowledgement of its complexity). The most graphic illustration of the 

confusion is in the chart on page 773. Figure 4 indicates it is plotting the resilience of the 

clear water state. But this simply cannot be—especially if the graphical portrayal of four 

Holling cycles depicted beneath it is accurate. This would require that resilience should 

wax and wane at least four times in this figure. Instead the chart may depict the turbidity 

of the water (or a notional representation of overall water quality), but it has nothing to 

do with its resilience—and the cycles shown are largely meaningless. All we can glean 

from the discussion is that higher P levels cause water turbidity which is bad for the 

recreation business on the water. Overall system resilience has not been addressed and it 

certainly has not been quantified. 

 In discussing one of the cycles, Carpenter et al. (2001, p. 773) say “soil P levels in 

the watershed began to stabilize or decline…. This change has increased the resilience of 

the clear water state.”  But this is not completely accurate. Instead, the change may have 
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reduced the turbidity of the water, but no quantification of resilience was done. 

Obviously, their system includes more than the water and this must be acknowledged in 

the characterization of resilience. It should also be clear that we cannot change (or plot) 

the resilience of a “state” as these authors indicate. Instead we can only speak of the 

resilience of a system. Even if it is granted that one could characterize the resilience of a 

system operating in a particular state, it still requires that all the state variables be 

employed in identifying that configuration. Most systems can exist in many states and as 

a system concept resilience should apply to any and all states in which a system may 

exist. Later they conclude: 

In the case of lake eutrophication, such indicators include soil P 

concentration, animal stocking densities, and land area under construction, 

which are inversely related to the resilience of the clear water state 

(Carpenter et al., 2001, p. 774). 

 

 This belated recognition of other contributors to “resilience” indicates the 

oversimplification previously discussed (and points to other, unquantified, valued 

function). Further, as “indicators” in the system, each of these contributes to the 

definition and identity of the overall system. They are not, however, indicators of 

resilience and since there has been no formulation of resilience, they cannot be assumed 

to be “inversely related” to resilience. Instead, these must contribute to or detract from 

whatever valued function has been defined for the system. What this simple statement 

demonstrates is the need for a system-oriented analysis. No conclusions can be drawn 

until such an analysis occurs. As they allude when they mention “the clear water state”, 

the items they list are ultimately related to the clarity of the water, not the resilience of 

the system. These are very different things. 
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 Ultimately, Carpenter et al. contend that the increasing P-concentration leaves the 

lake in a turbid state, triggering the Ω phase collapse that spurs “strong regulation of 

agriculture and a tumult of confusion, debate, and evaluation of the problem” (p. 770). 

They suggest, the outcome of regulatory activities serves to clear the water sufficiently to 

restore positive net social utility. Without even getting into the way they have casually 

expanded their system to include regulatory bodies, recall that this activity only 

superficially increases resilience of the system (because water clarity is the only 

measure). Afterward, Carpenter et al. suggest, the regulatory system relaxes and the lake 

returns to the turbid state forcing another reactionary regulatory cycle. Even if 

hypothetical, this is a poorly managed system, not an example of resilience. At best, 

according to their definition of resilience, it is a reminder that the lake system is highly 

sensitive to perturbations and hence not resilient. Obviously, a more effective regulatory 

regime would not simply relax and allow the same problem to occur again. Carpenter et 

al. hint at this by closing the discussion with: 

Active adaptive management leads to low-amplitude cycles that can keep 

the system in the clear water–high utility attractor for longer than laissez-

faire management (p. 771). 

 

 In fact, their concession that “low-amplitude cycles” might be achievable, does 

not mean they are necessarily desirable. As I contend above, humans do not want obvious 

cycles in their managed socio-ecological systems. How much “tumult of confusion” can 

humans tolerate? We desire our systems to be mature and stable. Unfortunately this 

occurs (according to Holling) where resilience is waning. That cannot be said to be 

successful management. 
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 In an attempt to employ the adaptive cycle, Carpenter et al. have assumed single 

measurable variables (P) are direct indicators of resilience and they have attempted to 

force the analogy to fit the gradual increases and decreases in this single measure. At no 

time is the resilience of the system characterized. In arguing for a management plan that 

allows “low-amplitude cycles” they seem to be suggesting that Holling’s cycle can 

operate without its Ω and α phases and hover in a shallow but continuous r-K cycle. As 

previously stated, this is closer to what humans need, but it does not match the cycle they 

have tried to force. This clearly exemplifies why the adaptive cycle should not be 

overused for SES management. Holling himself warned about its adoption as a theory or 

rigid model (Gunderson & Holling, 2002, p. 399). We must heed that warning. 

 Assuming there is an adaptive cycle frequently causes us to forget about the 

system and leads us to oversimplify and analogize our system in order to fit the analogy 

of the cycle. As illustrated, this too quickly leads to finding proxies for resilience and 

leads to incomplete analysis. This is not a way forward for systems research or resilience. 

This is especially true since the adaptive cycle can only predict future collapse and 

mysterious reorganization—something that is not useful when humans require stable 

function from their systems. 

 Given that the adaptive cycle is based on Schumpeterian “creative destruction,” it 

seems strange we so quickly forget the very reason for Schumpeter’s original idea. In 

fact, the seemingly random contributions of technology are what drove Schumpeter’s 

observation of the trend to randomly experience a regime shift that changes everything 

(cf. Allenby, 2012, p. 172). Technology is based on the human contribution and humans 

are the only species to supersede genetic evolution with memetic evolution. Because of 
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this (and with a few important examples), it seems strange that we would expect any kind 

of observable cycle. In fact, most agree that the earth system is engineered and sometimes 

recursively—or ironically—refer to it as “terraformed” as inspired by science fiction 

author Williamson as early as 1942 (cf. Williamson, 1951, 2001). Hence, it seems 

disingenuous to strictly expect a Holling adaptive cycle to apply even in the situations 

where the SES is mostly natural. Given any human input (engineering, design, 

management, participation, use, harvesting, etc.) we must concede that the system is 

“human” and thus subject to our manipulations and meme-based evolution instead of a 

purely natural gene-based evolution. This would imply that at any time in the so-called 

cycle, everything could change. This is a far more realistic model—and is supported by 

history. Unfortunately, it is not very illuminating. Given that, it is better to stick to actual 

system analysis instead of analogical reasoning. 

 Enthusiasm for the adaptive cycle requires moderation. In fact, it is likely fair to 

ask if it only applies after the fact. It seems that we only notice cycles retrospectively, and 

if its explanatory power is only in its ability to either model the past or predict eventual 

collapse, it seems limited. For example, it seems unhelpful to be forced to view an 

operational SES as currently in some kind of K phase on a trajectory toward collapse, but 

have no way to measure resilience either now or at some point in the future. Hence, as an 

analogy it might work, but it cannot really approach “theory” status. 

 Fortunately, an approach like quantum resilience provides a way forward and 

allows significantly moderated use of the adaptive cycle. Metaphors and analogies can be 

helpful, but they should not substitute for system analysis. A start at a proper assessment 

of the Carpenter et al. lake-agriculture system is provided as a brief example below. 
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Resilience and the Urban Space 

 

 Vale and Campanella (2005, p. 3) remind us that throughout history few cities 

have disappeared. Even after facing ruinous natural disasters, the vast majority are 

rebuilt, returning to viability and then vitality. Does this imply cities are simply de facto 

resilient? If this is the case, then cities must be studied so humankind can learn the 

lessons of resilience. Instead, however, it seems that much scholarship is invested in 

answering the question of how we can ensure our cities are resilient. Despite 

humankind’s history of near total success in establishing resilient cities, it seems our 

approach to urbanization has come under question and can no longer be trusted. Are we 

afraid that we have reached a stage in human evolution at which cities will no longer be 

resilient? Is it because we specifically recognize that “sustainability” demands we adopt a 

new approach for which we have no practice? Has the promise of future sustainability 

clouded our judgment to the extent that we fail to look at past successes for clues about 

future potential? 

 There are at least several reasons this may have become an important research 

topic. First, it is to be expected given the pervasiveness of the sustainability discourse and 

the importance of cities. At significant cost and risk, humankind is planning for a 

sustainable future—and it seems fair that cities must be involved in contributing their 

part. Alternatively, fears have arisen as we have witnessed recent bankruptcies of long-

important cities that have left their futures uncertain. The increasing threat and incidence 

of terrorism has also caused much concern, promoting discussion of protection and 

recovery. For whatever reason, urban resilience is vigorously trumpeted in the literature.  
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 It must be considered, however, that resilience might be meaningless at the level 

of a city. Certainly the principles of quantum resilience call into question the rationality 

of such an exploration. When considering, for example, the function of a city, it taxes the 

imagination to see it as anything but a huge list, and certainly smacks of impossibility to 

collect it in a single analysis model. Instead, it seems more likely that urban resilience is 

most meaningful if targeted at smaller “urban infrastructure systems” and the functions 

they provide. 

 Specifically, the “function” of a city stands at a different level than its robustness 

against, for example, terror threats, or hurricanes can impact. A city tends to frame itself 

in cultural and symbolic terms. For example, New York is “the economic capital of the 

world” or, “a symbol of freedom for huddled masses yearning to breathe free”, or “the 

city that never sleeps”, etc. Such cultural and symbolic constructs are “protected” by their 

redundancy throughout human society, throughout the world. Such constructs are 

obviously not limited to NYC or US cities, but includes many cities which are cultural 

icons like Paris, Rome, etc. 

 Some discussions of resilience are more or less meaningful from a scientific or 

operational standpoint and the resilience of cities qua cities is among the less meaningful. 

They are, as we know, already pervasive and have long histories. In fact, cities are 

resilient because humans make them so, and will continue to be because humans live in 

and invest in them. It is a “human” thing, and, very simply, sometimes humans decide to 

perpetuate something. Since New York City’s value is wrapped up in the fact that it is a 

cultural and economic icon, of course we will ensure it persists. But we must not forget 

that everything we do there can be done somewhere else. If NYC goes away we need not 
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lose any important functions of society. If we value New Orleans similarly, then the same 

will be true. It will be made permanent by our investment in it and immigration to it. 

 Note, however, that as with anything, a city’s value is observer-dependent. This is 

highly important and it is the very reason I use the word “value” in “valued function”. 

For example, the Chinese are not likely to value New Orleans the same way American 

culture does, and if it were up to the Chinese, New Orleans (or particular iconic aspects 

of it) may cease to exist because they will neither invest in them nor move there. This 

illustrates how quantum resilience is more meaningful from an operational standpoint. 

There are functions provided by New Orleans that the Chinese may value, but that is not 

the same as valuing New Orleans for our current cultural and aesthetic reasons. And, 

since all those non-iconic functions can and are provided by other cities, the loss would 

be inconsequential when viewed through their eyes. 

 At some point we must admit to valuing NYC or New Orleans for some specific 

reason (like an environmentalist might value a salt marsh for purely aesthetic reasons). 

And the reasons can constitute a long or short list. There are many “functions” in and of a 

city that one could value or be interested in preserving. Quantum resilience can start 

wherever anyone wants in defining valued functions. If the valued function boils down to 

its status as a cultural icon (e.g., “the joy of New Orleans”), that is a perfectly acceptable 

starting point for quantum resilience. The challenge of course is finding others who agree 

with you and coming to some consensus on how to quantify that joy. 

 The fact that a “system” like a “city” makes one think of “cultural icon” as a 

valued function is a perfect example of how the quantum resilience approach 

appropriately manages the analysis. With a valued function like “city as cultural icon,” 
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many would enter the analysis thinking “the city” (e.g. NYC or New Orleans) is the 

system we want to be resilient. But quantum resilience makes it clear that is the wrong 

starting point. Instead, it becomes glaringly obvious that the city is not the system 

because the collection of systems that delivers the function of “cultural icon” is vastly 

different from common ideas about what a city is and does. Instead, quantum resilience 

makes it clear that the entire society might be the system in this case. For example, when 

disaster strikes the city, the entire society sends rebuilding teams and invests in 

reparations. The entire society donates to the National Red Cross and permits its 

government to provide disaster relief funding. The entire society tracks the progress on 

the national news and does not stop caring until viability and vitality return to the city. 

We will invest until we are reasonably assured that the iconic status has been restored. In 

this way, quantum resilience has revealed the real system. Resilience is not about a 

system until it is about a valued function. 

 It is also unclear that building resilient cities—however it is defined—actually 

saves money for a culture. For example, there is recent concern about urban resilience in 

the face of terrorist threats. First, quantum resilience reminds us that resilience is not 

disturbance-focused. Second, it is arguable that a staggeringly large investment in 

security, and a similarly staggering erosion of personal freedoms could prevent such 

attacks, but it is completely unclear that such investment would contribute to the 

resilience of a city. In fact, any willingness to invest in such a large project already attests 

to the resilience of the city because it illustrates the human interest in protecting the 

cultural icon. Some of the media-reported reactions to 9/11 and the Boston Marathon 
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bombing are informative. They have the flavor of “are you kidding me!? You want a 

piece of me!?” That attitude defines the resilience of the city. 

 As regrettable as the loss of human life is at any level and at any time, complete 

prevention of such incidents also serves to remove any measurable way of assigning 

dollars-per-lives-saved (i.e., if you never lose a life, the expression becomes infinite). 

Further it would eliminate any idea of assessing whether or not the city was actually 

resilient in the face of the threat (not that quantum resilience agrees with such 

terminology, but assuming that terminology, if there is never a test, you have no way of 

knowing). In the absence of measurable progress, investment is likely to cease. Further, it 

is abundantly clear that there is no way to stop such crime. Since the sole intent of 

terrorism is spreading terror, the only way to prevent it is to stop being terrified by it. 

American reaction to 9/11 and Boston is indicative of this posture. This leads to defining 

the system at a scale that is not city-oriented. Again, this is a cultural thing. 

 But to focus on the terrorist threat is the wrong approach when resilience is under 

consideration. Instead, there are arguably two approaches that can be taken. A robustness 

approach can start by addressing the projected impacts of a bomb and providing defenses 

(physical or otherwise). A resilience approach might consider the actual impacts to 

valued function and propose that redundancies be implemented. Recall, there is no “of 

what, to what” (sensu Carpenter et al., 2001) in resilience analysis; it must focus on 

function. Quantum resilience understands that many perturbations result in similar 

functional impact. We do not specifically care, for example, that it was a bomb, a flood, 

or an operator error that ruined, say, the communications infrastructure. What we care 

about is that the function of communication must be redundantly provisioned in order to 
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increase resilience. The same operational approach applies if we are worried about 

buildings being lost, or infrastructure damaged, or transportation disturbed, etc. Such 

impacts can only be mitigated through functional redundancy (additional buildings or 

alternative workplaces, alternative water and sewer lines, alternative transportation and 

communications infrastructure, etc.). The answer does not change. Resilience can be 

provided through expensive but purposeful redundancy. 

 In their edited volume Resilent City: How Modern Cities Recover from Disaster, 

Vale and Campanella (2005) offer an interesting look at the narratives, symbols, and 

politics of urban restoration. Though their definition of resilience differs from mine, in 

their conclusion (pp. 339-351), they suggest twelve “axioms” of resilience: 

1. narratives of resilience are a political necessity, 

2. disasters reveal the resilience of governments, 

3. narratives of resilience are always contested, 

4. local resilience is linked to national renewal, 

5. resilience is underwritten by outsiders, 

6. urban rebuilding symbolizes human resilience,  

7. remembrance drives resilience,  

8. resilience benefits from the inertia of prior investment, 

9. resilience exploits the power of place, 

10. resilience casts opportunism as opportunity,  

11. resilience, like disaster, is site-specific, and 

12. resilience entails more than rebuilding. 

 

 Phrases like “political,” “governments,” “national renewal,” “human resilience,” 

“remembrance,” and “power of place” reinforce the point that cities are cultural icons 

more then they are factories of function. Urban resilience is more a matter of public will 

than anything else. Perhaps the words “narrative” and “symbol” (#3 and #6) are the best 

indicators of this because they remind us that icons are more about story than actual 

production. Though the stories and symbols may be exaggerated, they are generally based 
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in fact, so after the will is found, there is a generally a direction in which it can be 

exerted. 

 While urban resilience is far more about symbol than anything else, there are 

material aspects that must ultimately be brought to fruition in order to keep the stories 

alive. My insistence that we focus on the valued functions is because that is the only 

practical way to roll-out an icon! Consider for example a culturally rich city like New 

Orleans with no external access (transportation infrastructure), no ability to make a hotel 

reservation (communications infrastructure), and no means by which to freshen-up if you 

ever did arrive (water and sewage infrastructure). Without these “amenities”, important 

culture would be wasted and quickly fade from memory. 

 Interestingly, Vale and Campanella did not neglect to mention the power of 

investment (“underwritten” in #5 and “investment” in #8). In fact, these two axioms are 

the only ones that can be operationalized beyond promoting a cultural esprit de corps! 

Very importantly, they mention “outsiders” (#5), which further illustrates that resilience 

is very often assumed at a smaller level than it is actually instrumented and 

operationalized (neglecting the “real” system extent). Further, when the idea of “cultural 

icon” extends beyond nation-state boundaries (as it does, for example, with Paris, Rome, 

New York City, etc.), resilience and permanence are fairly guaranteed, because now there 

is significantly more redundancy in those “outsiders” who are underwriting the recovery 

and contributing to the rebuilding. 

 Though they are large, there are only two requirements for a resilient city: 

“attraction” and “infrastructure”. First, there must be some iconic status, some mythos, 

some symbol that will serve to keep a city alive, first in the hearts and minds of humans, 
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and only then in the physical dimensions. Note well that such mythos can be simple 

nostalgia or a strong media campaign. Second, there must be infrastructure. Water, 

power, transportation, waste management, communications, businesses, buildings, 

homes, etc. are “life blood” items that support any and all who find themselves in the 

urban space. Attraction draws, infrastructure keeps. If either aspect wanes, the resilience 

of the city is diminished accordingly. Quantum resilience can certainly model both 

aspects of urban resilience, but it should be obvious that consensus among experts is far 

more likely to be gained when concentrating on the specifics of smaller portions of urban 

infrastructure than when attempting to establish the relative merits of particular cultural 

items. 

 For this reason, though an important topic, urban resilience is not one of the more 

meaningful scientific analyses. Instead, because we know physical and organizational 

infrastructure contributes directly to urban resilience, it seems better to focus system 

analysis and modeling efforts in these areas. 

 

Resilience and the Safety Industry 

 

 Though this is a rather broad definition, there is a particular “angle” on resilience 

that is taken by researchers I position in the “safety” industry. Though their work is not 

particularly relevant to what is discussed herein, their literature is frequently cited and 

takes similar approaches to merging and conflating the idea of resilience with other ideas. 

I discuss this here very briefly because it presents another angle on the “time domain” 

questions (see further discussion below). The “safety” industry is a broad moniker I apply 

to systems where humans-in-the-loop and emergent events lead to active decision-making 



72 

(e.g., air traffic control, healthcare, etc.). Hollnagel, Woods and Leveson (2006) 

demonstrate how they are clearly positioned in the “emergency management planning 

and response” domain where protection of human lives is paramount (see also Hollnagel 

et al., 2011). Note well that where decision-making humans are in-the-loop at a level that 

impacts the dynamics of the valued function delivery (e.g., landing an airplane), just about 

anything can be called adaptive, or transformative, or learning, because humans can 

change their mind and “direct” the system in a different way—usually toward a safer 

outcome that prolongs the “life” of the system (so you can see why “resilience” is 

somewhat cognate). There are, however, important caveats and distinctions that must be 

discussed. 

 Transient “structures” (like decisions) cannot be considered “resilient” because 

they are ethereal and passing. There is no expectation of durability or permanence for a 

spur-of-the-moment decision no matter how well-reasoned and hard won. This does not 

mean that we want such decisions to be wrong or poorly considered, but there is no 

intention that the decision last any longer than it takes to be recorded in a log book (or 

digital equivalent)—and note that the record of the decision is distinct from the decision. 

Note that while we might legitimately want to learn from the decision-making process in 

order to improve our future success, this contributes more to the robustness of the system 

and may not contribute to its resilience. In fact, such “learning” contributes to the model 

that exists within the anticipatory system (see above), making the system with humans in-

the-loop potentially better able to anticipate a future event and plan accordingly. 

 Recall that resilience characterization requires that function be delivered over a 

time frame long enough to actually value it. So, for example, do we value and 
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characterize resilience for an airplane? Yes. Do we characterize resilience for its 

particular flight path? No, because a flight path is just an option, a choice, a transient that 

is based on many other factors that will never be repeated. Can we value and characterize 

resilience for the air traffic controllers and their organizations and equipment? Yes. Can 

we characterize resilience for the specific directions they give that are contingent on 

weather and wind and other aircraft? No. We can characterize resilience for the ATC 

system (including the operators) at a given time, but we cannot (and it makes no sense to) 

characterize resilience for the thousands of transient events that exist “in” the system at 

that specific time. Recall that the goal is a resilient decision-making system, not resilient 

decisions. This should be obvious because decisions are transient and they are not 

systems. 

 Perhaps an easy way to distinguish these is to ask “where is that flight path now?” 

Or, “where are the decisions that determined those choices now?” If the answer is that 

they are “history,” that is, at best recorded in a log along with all the rationale that 

contributed to them, then they are not in the class of items for which we can characterize 

resilience. Sure, we can characterize the resilience of the system that does the “logging” 

but that is an entirely different thing. We can certainly ensure the log is “persistent,” and 

we might do this because we want to learn from it so we can make good, repeatable 

decisions in given contexts. Repeatability, however, is not permanence. 

 As humans we find it difficult to distinguish our “agency” from our “system-

ness”. For example, humans are resilient, but it is not because they can change their 

mind. Humans are resilient because they are chock-full of redundant structures (some of 

which even comprise this idea of “mind”). Humans are resilient not because they can 
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make their human subsystems do specific things like mind-changes, but because of the 

way their systems are deployed. Consider that “changing one’s mind” is a valued function 

performed by the human system. Now that it is clear it is something the “human system” 

does, quantum resilience forces you to model the actual system that delivers that 

function. Once proper consensus has been achieved, the system can have its resilience 

characterized. 

 Woods provides a definition of resilience that demonstrates how the “safety 

industry” works and thinks: 

Resilience/brittleness is a parameter of a system that captures how well 

that system can adapt to handle events that challenge the boundary 

conditions for that system’s operation…. The capacity to respond to 

challenge events resides in the expertise, strategies, tools, and plans that 

people in various roles can deploy to prepare for and respond to specific 

classes of challenge (Woods, 2009, p. 499-500). 

 

 First, it is fair to ask why “brittleness” is inserted. Presumably, this defines a 

logical opposite for resilience and establishes a spectrum for its values. It has already 

been noted, however, that such opposites can only be notional (and should probably be 

avoided). Second, resilience is defined as a “parameter” of a system, very casually 

employing a word that has a clear meaning in the systems engineering world. Again, 

calling resilience a parameter almost makes it sound as though it is a setting that can be 

adjusted, or at least something that can be measured. Of course, Wood offers no 

measures. Third, adaptation is assumed, and is later redefined as “capacity to respond” 

(note the positioning of the repeated phrase “events that challenge” and “challenge 

events”) which conflates resilience with both robustness and simple if-then response 

protocols. Fourth, it is unclear what “boundary conditions” actually means in this context. 
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Does it mean the analysis boundary? Does it mean that a system should be able to 

perform in an environment other than that for which it was designed? Does it mean that 

its performance criteria (e.g., operating tolerances) or service level agreement must be 

expanded? Fifth, it is made obvious that humans must be in the loop since a “capacity to 

respond” specifically implicates things that “people in various roles” do. Sixth, if it 

“resides” in human activities and expertise, “resilience” has clearly become attributable 

only to systems with humans in the loop—a very narrow definition of resilience. Finally, 

it is clear that “specific classes of challenge” position this idea in the robustness space 

and that the “parameter” Woods refers to is the humans in the loop. 

 Obviously, those contributing in the domain I refer to as the “safety industry” are 

doing fine work in improving the systems in that discipline, but it is only marginally 

related to resilience and would benefit from consideration of anticipatory systems theory 

(Rosen, 1985). 
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QUANTUM RESILIENCE 

 

 Since I argue strenuously that “resilience is resilience” and call attention to 

authors who append terms to the front of the word, it may seem odd that I would do the 

same. If resilience is not general, specified, ecological or engineering, why is it 

“quantum”? First, note that quantum resilience is a title and not a “kind” of resilience. 

Second, it demonstrates what I believe to be a more fundamental idea of resilience 

around which most of the research hovers while not specifically discovering it. Instead of 

the ongoing expansion of the idea, it suggests contraction to a more focused idea is 

required. It makes resilience something that can be understood, managed, and 

characterized instead of simply talked about. Quantum is a useful word to employ in 

expressing that fundamental idea. Third, the idea of a “quantum” suggests there is a level 

at which we can productively design and operationalize resilience. If left diffuse and 

expansively defined, there is little hope the idea can actually be put into specific use. 

Fourth, this forces engineers, analysts, and managers to be less casual about the concept. 

Quantum resilience forces quantification of the concept and demands rigor in its 

characterization. Once observed at the levels we can actually impact it, resilience is easily 

seen as a quantum concept. Resilience increases or decreases by the quanta of valued 

function delivered by participating systems. 

 First and foremost, quantum resilience forces analysis of the system. Engineers 

and managers must not assume the system is understood. Instead they must focus on the 

valued functions it delivers and allow those functions to scope and scale the system. 

Second, focus on known or projected disturbances is ultimately distracting and must be 

avoided (see the section on robustness). Instead, focus must be on the parts of the system 
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that contribute to the valued function and their interfaces and dependencies. Third, 

engineers and managers must avoid creating proxies for resilience. It is frequently 

observed that poorly scoped systems have led to discussions where resilience is simply 

another word for what is perceived to be pristine Nature, or measures of something 

specific in the environment (e.g., Phosphorous). Instead, focus must be placed on 

quantifying the productivity of the system vis-à-vis the valued functions identified. 

Identifying valued functions reminds us why we care about the system in the first place. 

Finally, analogies and oversimplifications of the system must be avoided. If it is a real 

system, there is no need to analogize. Instead, the system must be faithfully documented 

through analysis in order to codify its structural and relational complexity. Only then can 

its resilience be characterized. 

 The following sections provide some philosophical underpinnings for quantum 

resilience. Throughout, the rationale for my operationalized definition is revealed and 

then the characterization formulation is discussed. The practical nature of the approach 

should be evident throughout (and has already been presaged in the précis). 

 

Valued Function – Systems “For All They’re Worth” 

 

 While quantum resilience emphasizes system function, it is important that valued 

function has been chosen as a defining phrase (note well, however, it is not “value 

function” or “values function”). Valued function is used because it directly calls attention 

to the observer-based position of all science, and reminds each analyst of their position 

within the system (Ahl & Allen, 1996, p. 71, 196; Allenby, 2012, p. 361). Varela makes 

this quite clear: 
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…the presence of the observer (of the observer-community, the tradition) 

becomes more and more tangible to the extent that we have to build upon 

a style of thinking where the description reveals the properties of the 

observer rather than obscuring them (Varela, 1979, p. xvi). 

 

 Though there is likely to be significant overlap, different observers may value 

different functions and quantum resilience forces these to be specifically identified and 

included in the analysis. Once identified, even conflicting valued functions can be 

employed in characterizing the resilience of a system. Focusing on valued functions and 

appropriate quanta is a vital first step to operationalizing resilience. 

 Scholars have suggested resilience is a scientifically defined and measurable 

quantity: “the size of the basin of attraction” (Holling, 1973, p. 20; Carpenter et al., 2001) 

or the “distance to a threshold” (Walker & Salt, 2006, p. 63) but the terminology remains 

metaphorical and has yet to be demonstrated with empirical measures. In fact, Carpenter 

et al. (2001) confess to the difficulty of empirically measuring resilience and remind us of 

the different approaches and variety of system-specific outcomes. Resilience, then, is a 

notion we find desirable, but not something we can specifically measure. Interestingly, 

Rapoport points out that “terms derived from introspection often defy operationalization” 

(Rapoport, 1986, pp. 31-32) while Gould reminds us that “metaphors can be liberating 

and enlightening, but new scientific theories must supply new statements about causality” 

(Gould, 1991, p. 339). Unfortunately, resilience research remains fairly solidly locked in 

introspection, metaphor and analogy. Resilience has defied operationalization because we 

have not properly characterized it by first recognizing and quantifying the functions we 

value. Quantum resilience resolves that by specifically requiring valued functions to be 

quantified. 
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 There are certainly hints in the literature that suggest “values” should be 

appreciated. For example, Gunderson speaks of “social benefits” and “desirable stability 

domain” (Gunderson, 2000, p. 432). This language is clearly value-laden. The Resilience 

Alliance (2010) speaks of “issues,” and issues only arise when expectations based on 

values are not being achieved. While their efforts fall short of acknowledging valued 

functions, codification of issues can be a good first step toward identifying the underlying 

values and outlining what services are important in resolving the issues. Once these 

services and functions are more clearly defined, they can be quantified. 

 Observer-dependent valuation can be illustrated by the way Carpenter et al. 

(2001) speak of a lake’s “turbid” state as having “low utility” (p. 770). Their point is that 

humans value clear lakes for recreational use and real estate assessment. Turbid lakes are 

generally thought “ugly” or less appealing. This is a clear superimposition of human 

values. Later they specifically talk about “socially preferred ecosystem state” and suggest 

“indicators of resilience that are appropriate for the current regime may become useless 

as ecological structures and social expectations shift” (p. 779, emphasis added). For this 

reason, they define “net social benefit” as a goal that establishes what they value. What is 

required next is that they quantify this “net social benefit”. 

 Interestingly, when Carpenter et al. (2001) speak of a lake’s “turbid” state as 

having “low utility” they continue by suggesting “low utility but high resilience” (p. 770, 

emphasis added). This comment requires some unpacking. How can such language be 

justified within a quantum resilience framework which suggests resilience starts with 

definition of the function or service we value? That is, when would we ever value the 

“low utility” of a turbid lake system? To answer this we must first, and perhaps 
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superficially, ask: “low utility” according to what or whom? Recall, since values are 

observer dependent, for all we know, there is some person or species which values 

turbidity and prefers the cloudy water. The overall thrust of their discussion, however, is 

to specifically identify a turbid lake as qualitatively bad. Referring to a turbid lake system 

as “resilient” reflects their (problematic) definition and is simply a way these authors 

acknowledge the difficulty that Nature and/or humans would have in recovering a clear 

system from it. The real implication of their statement is that apparently the system can 

become stuck in the turbid state. They conflate this stuck-ness with resilience because it 

seems like a permanent and enduring state. Note that this can only be superficially 

referred to as resilient—and only if dynamical “stability” is conflated with resilience (see 

discussion of robustness above). If the “design goal” of that lake system was to be turbid 

(which they would vehemently deny) then it could be suggested that the lake was robust 

in its ability to maintain that state (for a while), but this is not resilience unless the valued 

function of the lake was turbidity. 

 Even if, in a backhanded sort of way, a turbid lake system is valued because of the 

way it anchors the opposite end of the spectrum from “clear” in someone’s notional 

conceptualization, it is the “clear” system toward which all management activity is 

focused. Not only does this clarify the human values, but it clarifies how we stand in 

proxy for Nature with those values—and this is important to the goal of operationalizing 

resilience. The functions we (and, presumably, Nature) value from a lake system can be 

delivered when the lake is clear, not when it is turbid. We would (most likely) never 

purposefully manage a lake system into turbidity because we simply do not value that 

condition—but we absolutely could do it (if we valued it). So, while herein I will not 
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refer to systems in undesirable states as being resilient, it must be understood that such 

terminology is casual and accommodating and is not in conflict with the principles of 

quantum resilience. For example, similar comments were made about a “resilient” 

dictatorship as being “undesirable” (p. 766). But again, this ignores the fact that all such 

value assignments are observer dependent and that, at the very least, the dictator desires 

and values his dictatorship. 

 Using the same dictator example which, despite near-universal repudiation, very 

definitely remains in the realm of observer dependent valuation, Anderies et al. (2013, p. 

11) suggest resilience is “not normative” and makes no “specific choices” about what is 

right. Technically this is correct. That is, if we can truly “measure” resilience, it can 

become one among many empirical measurements used in decision-making processes. 

But it must be acknowledged that the intent of most of the resilience literature is focused 

on enabling management toward what humans have determined is a better state. This is 

highly normative. So, while Anderies et al. might never make the choice to manage 

toward a more enduring dictatorship, they certainly understand that others might make 

that choice, and that dictatorships can therefore be resilient. 

 Quantum resilience holds that resilience is not about a system until it is first about 

a valued function. This may seem a clever feint, or it might be suggested that a focus on 

“function” instead of “system” belies a sort of “wave-particle duality” for resilience, but 

this is not the case. In fact, to a great extent it is complex systems which garner our 

interest, and these are generally beyond our ken to completely understand and fully 

characterize (cf. Flood, 1988). Conversely, functions we care about and value are 

generally well understood. While most talk about “resilient systems,” (see, for example, 
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Walker & Salt, 2006, p. 11) it is usually a very soft idea of the particular system of 

interest; unbounded, ill-defined, and amorphous (this, despite pretense that such 

ambiguities must be resolved). But it is important that while we acknowledge complexity, 

we do not hide behind it. In the absence of specifically identified valued functions, it is 

too easy to develop a romanticized idea of the system of interest that results in unhelpful 

generalizations. In many cases, this leads to a failure to see that the functions we value 

are delivered by systems other than we are envisioning. Starting with identification of 

valued functions is not just another way to approach resilience analysis; it is the only way 

to appropriately address system scale and identity on the way to characterizing resilience. 

 It can help to consider “valued function” as a way to elucidate Aristotle’s “final 

cause” for a system. For example, it is perfectly valid to value “wind resistance” for an 

office building or “immune response” in a human, but it is not valid to suggest these are 

the reason buildings and humans exist. That is, they are not “final” causes. We do not, for 

example, build office buildings in order to resist wind and humans do not exist in order to 

have immune responses. Both of these are examples of protections against the 

environment in which the systems operate. Instead, for example, buildings exist to 

provide climate-controlled workplaces for humans. Thus, the idea of final cause can help 

in distinguishing and defining valued function. This can also assist in determining scale. 

That is, it is valid to “decompose” the human system into a variety of subsystems that 

include an immune system. So while at the human scale it would be incorrect to model 

immune response as a valued function, in the case of an immune system, immune 

response might indeed qualify as a valued function. Similarly, if there was a “wind 

resistance system” for a building, its valued functions would necessarily be different than 
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those of the building itself. Note that while it is possible to model any function at any 

level, it is vital that consensus be established among analysts to ensure rational results. 

 Note as well that the “system” of interest must provide the function over a time 

scale in which it can be usefully valued (whether by humans or by those for whom we 

stand in proxy). For example, a chair that transforms into a table and back into a chair 

over a one minute period is an interesting novelty, but it cannot provide a function that 

could be valued in any sense that relates to the way we think of a chair or a table. In fact, 

in this case, such system behavior would be considered only a novelty (or perhaps “flaky” 

or “broken”). If for some reason the valued function was specifically “to provide 

novelty,” then the analysis of resilience can proceed on that basis and quanta can be 

identified for that valued function. If, however, the valued function was to “reliably 

provide seating for one” (or some such), then the described chimeric system would be 

inadequate and its resilience characterized accordingly (e.g., as “zero” or a similarly low 

number). 

 With this in mind, Holling’s proposed adaptive cycle (cf. Gunderson & Holling, 

2002, p. 25ff.) might be viewed as an important analogy and model for some biotic 

systems, but the concepts of collapse and reconfiguration for a system (phases Ω to α to 

r) must be applied with care to socio-ecological systems. Recall that, according to 

Holling, resilience waxes and wanes during the cycle—it is not that going through the 

cycle demonstrates resilience. Especially for systems on which humans rely, functions 

provided in the productive and conservative K phase are those which are most likely to be 

valued. Hence, humans would appear to demand “high resilience” for such systems while 

they operate in the K phase where Holling suggests resilience is waning. For this reason 
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(and contra Walker & Salt, 2006) assumption of the inevitability of the cycle must be 

carefully considered, and application of the adaptive cycle as an explanatory tool must be 

moderated. The section above provides more complete coverage of this topic. 

 Part of the problem addressed by quantum resilience is that resilience is defined 

with words like “absorb disturbance and maintain function” (Walker & Salt, 2006, cover) 

but then immediately the focus is diverted by considerations of adaptive cycles and other 

metaphors. Specific functions are largely forgotten or given only passing attention. This 

has resulted in an inability to characterize and operationalize resilience as researchers 

become distracted with important but ultimately unresolved discussions about complex 

systems, adaptive behaviors, and basins of attraction. Once resilience has been conflated 

and confused with ideas like adaptation and transformation, the very reasons for caring 

about system resilience are forgotten. Adaptation, evolution, and learning, are powerful 

concepts worthy of exploration, but these concepts must remain distinct from resilience. 

The section above provides more complete coverage of this topic. 

 The literature has metaphorically described resilience as a domain or basin 

surrounding an attractor (Holling, 1973). For this analogy to be successfully employed, 

the size of the basin must somehow become a measurement of resilience for that system. 

If this is the case, then it is important that there be a way to characterize the basin. 

Unfortunately, most literature neglects this requirement. Quantum resilience fills this gap 

by reminding us that the functions the system provides while it operates “within” that 

desired basin are what are important in characterizing that system’s resilience. Obviously, 

any and all “basins of attraction” into which a system can “flip” can be characterized by 

their respective valued functions. That basins with lower social utility can also be 
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characterized simply reinforces the point that quantum resilience properly addresses 

complex systems by first identifying the valued functions they provide. Obviously, the 

“basin” metaphor must also be reified by the specific system structure out of which the 

valued functions are provided. This is discussed in the section on system identity. 

 It might be wondered if parts of a system that actively detract from valued 

function delivery should also be considered and included in the resilience 

characterization formulation. In short, the answer is no. Recall first that detractors from 

valued function are specifically not valued. Second, remember that if the detractors are a 

bona fide part of the system, they must be considered in the analysis and the valued 

function output will be attenuated by whatever extent the detractors are successful. Third, 

again remembering that the detractors must be considered part of the system, it becomes 

clear that they contribute to the complexity calculation in the denominator. Fourth, if 

“detractors” are determined to be outside the system, the system probably contains 

robustness features that protect against such detraction. These robustness features may or 

may not contribute to valued function, but they will certainly be included in the system 

complexity calculation (if they are found to be within the system). So, “detractors” are 

already taken into consideration in a thorough system analysis. 

 A specific example of “detractors” might be hard to find, but consider the 

possibility that fiery debate or filibuster might be thought to “detract” from a productive 

legislative progress. In this instance, valued function might be progress as measured in 

bills passed per year (or whatever) and disagreement will clearly impact that throughput. 

Recall, however, that debate is an integral part of the parliamentary procedure and is built 

into the system to allow for all perspectives to be represented. An accurate model of the 
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system will include this relational complexity and its (negative) contribution will be 

expressed in the denominator of the resilience characterization. 

 

Scale – Systems “To a Certain Extent” 

 

 Since the quantum of resilience is a unitized output of a valued function and not a 

system, it leads to a very clear definition of how resilience can be operationalized. 

Further, it necessarily identifies the actual extent of the system that is required to deliver 

the valued function. Though a system provides the function, the system cannot be the 

starting point for the analysis because that would a priori bound the system. Instead, 

quantum resilience recognizes that resilience is not about a system until it is first about a 

valued function. Discovering the system that provides the valued function is part of the 

analysis effort. 

 Many scholars address the need to properly scope a system for analysis. The 

system boundary selection process is often driven by the particular question you are 

asking and the assumptions you are making (Allenby, 2012, p. 183). Holling (1995, p. 8) 

outlines the potential for failure by reminding us that as managers of SESs we sometimes 

pretend to be outside the system, and hence forget that we are changing along with the 

system as we manage it. This implies that frequently we must consider the system at a 

larger scale that includes its managers. Allenby makes this a specific principle of Earth 

Systems Engineering and Management (ESEM) by insisting that we remember we are 

“part of the system” (Allenby, 2005, p. 187). Quantum resilience takes this into 

consideration by specifically acknowledging that delivery of valued functions is what 

ultimately defines boundaries for a particular system. Quantum resilience does not require 
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(or suggest) that any system be a priori bounded or understandable. In fact, it makes a 

step toward acknowledging complexity by focusing first on the valued function and only 

then on the system that delivers it. Identifying the valued function frequently leads to a 

discovery of system scale that is unexpected or even surprising. 

 In forcing the issue of system scale, quantum resilience analysis does not over-

focus on thinking physically. Thinking functionally permits appropriate scoping of 

system size. If a particular system, subsystem, component, etc. is implicated in delivery 

of the valued function, it must necessarily be included in system scope—whether or not it 

initially came to mind. For example, it is tempting to think we want a power generation 

plant to be resilient when the actual function we care about is provision of electrical 

power to the grid. This forces specific notice of the boundary at the grid and results in a 

quantum of resilience that is perhaps some incremental delivery of electricity. If the 

valued function is properly specified, quantum resilience demonstrates that instead of 

designing robust and resilient power plants, the incremental provision of electricity 

comes from a turbine and generator combination and suggests a different place to focus 

effort at “design for resilience”. Depending on the ultimate scale under consideration, this 

might imply that there is little point in suggesting a power plant be resilient. Obviously, if 

the goal is a resilient grid, the valued functions might include “available energy to homes 

and businesses”. This leads to a different system scale and a different analysis. 

 Note that the same approach applies even if someone insists that the system really 

is a specific power plant. We still must, however, be honest about the valued function that 

is important to us. Since no plant exists for its own purposes it would be disingenuous to 

suggest “electricity output” is the valued function for a standalone, unconnected power 
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plant. Eventually someone might suggest we value the employment offered by a specific 

plant. Now that a valued function has been honestly specified, we are free to notice that a 

power plant is just one more redundant means to provide jobs for people. That is, the 

“employment system” is more extensive than the power plant alone (likewise for the auto 

industry, or computer manufacturing, etc.). Addressing the valued function is what 

ensures proper system scale is analyzed. Obviously, we can value both electrical output 

and jobs and quanta can be specified for each of these during a more complete analysis. 

 Most agree that complex systems emerge from both purposeful and accidental 

networking of other systems, both complex and simple. If this is the case, then it is a 

mistake to think we can characterize the resilience of a whole complex system. As the 

discussion of urban resilience revealed, however, nothing is lost because it would not 

likely be useful in any sense. In fact, completely defining and characterizing the complex 

system would seem to remove the system’s complex standing. Instead, focus must be 

placed on the system as it is revealed through the analysis (that is, the scale determined 

by valued function identification) as opposed to the system as it was envisioned or 

romanticized. By thinking first of valued function (certainly, all of them), the system 

scale can be formally defined. Once the scale at which important operations occur has 

been defined, it is less important that the identified system exists within a system of 

greater complexity. Solid systems engineering practice allows focus to be placed on the 

parts that impact delivery of valued function. Resilience must be pragmatic enough to not 

allow us to hide behind complexity. 
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Identity – Systems “As They Really Are” 

 

 Holling’s seminal discussion of resilience suffices to clarify the need to speak of 

system identity: 

Resilience determines the persistence of relationships within a system and 

is a measure of the ability of these systems to absorb changes of state 

variables, driving variables, and parameters, and still persist (Holling, 

1973, p. 17, emphasis added). 

 

 Though Holling did not take the necessary step and include valued functions in 

his definition, he makes it abundantly clear that the persistence of a system and its 

relationships is vital if systems are to be considered resilient. Failure to acknowledge the 

requirement for continuity in system identity is where much discussion of resilience 

enters non-productive territory. When a system is allowed to become anything and be 

termed resilient, it neglects the important requirement of persistence. 

 Rapoport discusses system identity from two angles: preservation and recognition 

(Rapoport, 1986, p. 79). The implication, to which I will return later, is that system-ness 

is captured in both internal structures and external interfaces. Even when considering 

systems as black boxes (i.e., where external interfaces alone are important), there must be 

something inside the box that is creating a recognizable output. Though preservation of 

identity is vital as Rapoport suggests, this need not imply that all systems must be active 

homeostats or living. In fact, at the timeframes for which the functions of a system are 

valued, the black box may be considered static or unchanging. Certainly for resilience 

considerations, the idea of preservation need not be active. For example, bridges and 

buildings can be resilient without active homeostasis, but their identity is clearly 

preserved over the periods they deliver their valued function. 
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 This is important in discussions of resilience because (if it is thought of at all) 

analysts might think preservation refers to how a system reacts to protect itself in the face 

of perturbation. Recall from above, however, that system functions that permit the system 

to operate in its intended environment are part of a robustness analysis. Certainly such 

protectionist features serve to preserve system identity and are also part of its identity 

since they are part of the system. Further, it could be thought that identity preservation 

involves how a system adapts over time, but care must be taken in employing the word 

“adaptation” since that might mean a new system has emerged. This is vital in discussing 

resilience because there is a cavalier inclusion of the word “identity” in popularized 

“adaptationist” definitions of resilience where adaptation clearly means different systems 

(cf. Folke et al., 2010; Walker & Salt, 2006, p. 113). The inclusion of the word identity 

seems to serve only as a preemptive defense against those who find system identity 

important. The inclusion is, however, disingenuous given the phrases employed, i.e., 

“capacity to change in order to maintain the same identity” (Folke et al., 2010, Table 1). 

If restraints are placed on what change is allowed, this definition might work, but it is 

forced and unnecessary. Inserting a non-specific “capacity to change” in a definition 

requires further definitional work which is never done. There is, however, no reason to 

include “capacity to change” in a definition of resilience. As discussed above, significant 

care must be used in applying the idea of adaptation to resilience. 

 Cumming et al. (2005) highlight system identity in their definition of resilience. 

They suggest resilience is “the ability of the system to maintain its identity in the face of 

internal change and external shocks and disturbances” (p. 976). Despite a squirrelly 

allowance for some undefined degree of “internal change,” this is a step in the right 
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direction because identity is vital to resilience. Later, they even suggest that if a system 

has “no scope for the maintenance of system identity, the system clearly lacks resilience” 

(p. 982). However, the definition falls short because they fail to highlight that a large part 

of maintaining identity is remaining recognizable to other systems. Fortunately, this may 

simply be an oversight because Cumming et al.’s characterization of identity involves 

what they refer to as “four essential system attributes (structural components, functional 

relationships, innovation, and continuity)” (p. 980, emphasis added). Again, it is difficult 

to understand why they list “innovation” among the essential system attributes. The 

requirement that all systems be innovative is unrealistic and unnecessarily limiting for a 

definition of system. Still, acknowledging “functional relationships” as a part of identity 

is a vital step toward understanding that resilient systems must continue to provide their 

valued functions. 

 How then is identity best defined? Varela (1979) suggests identity consists of 

structure and organization. To him, system structure is a current configuration of system 

parts and the connections that represent relationships between those parts. Organization 

consists of the rules that define and maintain the parts and their relationships. This is 

roughly equivalent to Rapoport’s ideas of recognition (structure) and preservation 

(organization), though there is no specific need to press that equivalence. Varela’s 

conceptualization of identity clearly maps to phenotype and genotype as might be 

expected of a biologist. In a nearly identical approach, Simon (1962) suggests that “state 

descriptions” and “process descriptions” constitute system identity. State descriptions 

describe what is, and process descriptions describe how to create and maintain it. Ahl and 

Allen (1996) poetically refer to the identity of the system as “context” (i.e., configuration, 
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p. 101ff) and stress the need to identify system “surfaces” (i.e., interfaces, p. 139ff). 

While Ahl and Allen may deemphasize how a system arrives at its configuration, 

importantly they highlight the external “shape” of a system as critical to its identity. 

 Quantum resilience adopts Varela’s notion of identity (though emphasizing 

“structure” over “organization”) but clarifies and extends it by including the idea of 

function as a way to acknowledge Rapoport’s recognition idea. That is, identity is not 

simply what the system is, but includes what it does. Importantly, quantum resilience 

always stresses that identity is as much about structure as it is about function, since it is in 

the delivery of functions and services that a system remains recognizable to other 

systems. Vitally, this makes resilience phenotypic and not genotypic. This important 

contrast will be elucidated later because it serves to further distinguish resilience from 

adaptation and fitness which clearly involve ideas related to system genotype (see also 

discussion above). 

 Importantly, the identity principle also reinforces redundancy concepts (see next 

section). In a system of many parts, there may indeed be different parts that provide the 

same valued function. These parts need not be structured similarly or even operate the 

same way (see discussion of redundancy below). For example, in mammalian cells, 

adenosine triphosphate (ATP) is the primary energy currency used as fuel for biotic 

processes (and, incidentally, this molecule is an exemplary “quantum of resilience”). 

Oxidative phosphorylation, glycolysis, and the Krebs (or, citric acid) cycle provide most 

of the ATP production in the cell (Champe & Harvey, 1994; Campbell & Farrell, 2003). 

These structures and processes are wildly different, interdependent, and show tremendous 

diversity, but for the valued function of extracting energy from sugars and turning it into 
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usable fuel, they are ultimately redundant. Further, in delivering the function, they 

provide a unified interface in the form of ATP molecules. 

 Quantum resilience supports the idea that system structure and function can be 

changed, but stresses the requirement that the new system have its resilience re-

characterized. This is because the altered system is a new phenotype. This allows a 

manager or engineer to identify targets of opportunity for system maintenance, 

augmentation, or abandonment and experiment with alternative deployments. Note that a 

proposed alternative deployment might be configured to provide incrementally more 

delivery of the valued function. Superficially it is tempting to conclude that such a change 

confers higher resilience, but this conclusion would be premature. Since identity also 

involves structure, the altered system’s resilience must be re-characterized, because the 

change may have introduced significantly different structure (higher complexity) that 

results in decreased resilience. In either case, however, system identity must be 

maintained. Bridges that morph into coffee makers and salt marshes that morph into coral 

reefs cannot be termed resilient, notwithstanding the importance and utility of the 

outcomes. If a system’s identity has changed dramatically, the resilience of the “before 

configuration” and the “after configuration” may not even be comparable. 

 Carpenter et al. (2001) suggest “resistance” is important in assessing long-term 

system persistence. Resistance, they suggest, is both a “complementary aspect of 

persistence” and “the complementary attribute of resilience” (p. 766). Though the 

conflation of terms makes it difficult to understand their goal, it is certainly reasonable to 

assume these could be viewed as contributing to identity maintenance. As described 

above, this is just another term for robustness. Learning how a system defends itself 
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against its environment is an important pursuit, but it should be remembered that such 

defenses contribute to the system structure and only in that way do they impact resilience 

characterization (in the denominator). If there are functions performed by the system that 

render it “resistant” to certain perturbations (like an immune system), then it might be 

thought that these functions can be valued and serve to augment the resilience of the 

system. This is certainly possible, but in most cases defensive features should be 

acknowledged as elements of good design that allow the system to do what it was 

designed to do in its intended environment. For the most part they should not be 

considered as separately valued functions. 

 The identity of the system, its organization and structure is vital. This is the key 

contributor to the complexity of the system. Demonstrating or witnessing resilience is a 

simple matter of observing function delivery, but characterizing resilience (so systems 

can be compared) requires some insight into the structure. This will be made clear in the 

characterization formulation discussed below. 

 

Redundancy – Systems “Pure and Degenerate” 

 

 Quantum resilience specifically employs the term “redundancy” instead of 

“diversity” since diversity does not necessarily always imply duplicated function. 

Because function is paramount, this selection of terminology is vital. Redundancy is 

sometimes disparaged as simplistic, wasteful, or reductionist, but it is actually a rich 

concept. Quantum resilience recognizes several deployment options for redundancy that 

are sometimes confused and misunderstood. The first is pure redundancy where both 

structure and function are replicated. This kind of redundancy—sometimes mislabeled 
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“engineering redundancy”—is the easiest to track when characterizing resilience. It is 

certainly an approach employed by engineers, but is actually something learned from 

nature (e.g., humans have two carotid arteries). The second is degeneracy where structure 

may differ but function is duplicated (Tononi, Sporns & Edelman, 1999; Edelman & 

Gally, 2001). This kind of redundancy is ubiquitous in nature and is also frequently seen 

in human-engineered systems from surveillance to telecommunications to healthcare. A 

third kind of redundancy has been termed imbricated redundancy but is simply an 

umbrella term for the preceding two options. It has been suggested that imbricated 

redundancy of function is provided at different system “scales” (Holling, Gunderson & 

Peterson, 2002, p. 84ff). This is certainly possible, but is not specifically required. 

 Since quantum resilience supports an array of redundancy options, diversity can 

be viewed as just another way of saying redundancy when the focus is on the outcome: 

the delivered function or service. If diversity is doing something a different way, then 

redundancy simply reminds us that it is not the “different way” that is really important. It 

is the “something” being done that is important. The vital requirement is that the valued 

function be delivered. It can certainly be provided in a diverse and variety-filled manner. 

For example, if the valued function is electricity to a residential outlet, then assuming all 

the proper mechanisms are in place, it can be provided from the grid, directly from solar 

panels on the roof, from a gasoline-powered generator, or even by someone pumping 

pedals on a bicycle. This is marvelous diversity, but the output is identical. 

 Peterson, Allen and Holling (2010[1998]) suggest that ecological resilience 

“derives from overlapping function within scales and reinforcement of function across 

scales” (p. 182). They further clarify that “when a functional group consists of species 
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that operate at different scales, that group provides cross-scale functional reinforcement 

that greatly increases the resilience of its function” (p. 185). And finally they summarize 

with “ecological resilience is generated by diverse, but overlapping function within a 

scale and by apparently redundant species that operate at different scales” (p. 189). Later, 

Gunderson and Holling (2002) refer to this concept as “imbricated redundancy” (Holling, 

Gunderson & Peterson, 2002, p. 84ff). They discuss the idea of imbricated redundancy 

with the analogy of a theater where actors are “waiting in the wings” ready to go on stage 

when “change is required.” Their theory is that extra actors (spares) can be used to 

“change the pace” or add variety to the plot. Though obviously Nature would not 

“orchestrate” such a change (it cannot detect that “change is required” and insert new 

actors to “change the pace”), it is clear that—if there was a plot—such extras might 

contribute unexpected twists. Still, their example is insufficient since the proposed spare 

parts “waiting in the wings” are actors, which means all redundancy is pure and occurs at 

the same system scale (e.g., the play or production). This illustration can be improved. 

 Consider instead a theater where an actor falls ill and is replaced by an 

understudy. This demonstrates how pure redundancy perfectly (and expensively) allows 

the show to go on (some may refer to this as “engineering resilience”). Now consider, 

given the diversity of jobs at a theater, that instead of the actor, a ticket salesperson, 

usher, or concessions attendant gets sick and fails to report for duty. These roles could 

also be filled by the understudy, though less perfectly (and likely with a great deal of 

whining). This is degeneracy since it emphasizes that while identical function is 

ultimately delivered (ushering or selling) the structure is different (i.e., it is an actor not 

an usher). Note as well that this is closer to imbricated redundancy since the function 
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replacement is occurring at a theater scale instead of the production scale. To push the 

example a bit farther, assume there is no understudy. Now, if an actor falls ill, the actor 

could be replaced by a ticket salesperson that has seen the play a few times. This is an 

interesting example of degeneracy and imbricated redundancy because it illustrates high 

variation role-filling given that the ticket salesperson has not rehearsed the role. Since 

this is not complete functional redundancy, this vignette could result in a tragedy 

evolving into a comedy (or vice-versa) or larger system impacts like production failure 

leading to bad reviews, refunds, unemployment, and other social implications. Obviously 

a ticket salesperson confers little resilience to the production, while the redundant actor 

leads to increased theater resilience at some cost. 

 Figure 2 illustrates this idea but with a very important addition: functions have 

been identified to demonstrate how this can be operationalized by quantum resilience. 

Following Holling, multiple scales are shown (S1-S4), though the number of scales in the 

figure is only illustrative and will be system-specific. Whether or not the scales shown 

become larger or smaller as the identifying numbers increase is also merely illustrative 

and (eco)system specific (that is, even “scales” can overlap and need not be construed as 

implying strict containment). At each scale, a certain number of species (subsystems) are 

found. Each performs certain functions and it can be seen that there is overlap in the 

functions provided by species (subsystems) within and across scales. As depicted here, 

each species (subsystem) at scale S1 performs fewer (eco)system functions than those at 

S2 and this trend is consistent in this figure, though it need not be in a real (eco)system 

where distribution of function and degree of overlap are unplanned (and, in fact, may be 

disputed by different experts). At the right, it is notionally shown that overall (eco)system 
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function is the sum of all the functions performed within the (eco)system. The choice of 

“sum,” though logical, is also a simplifying feature. In reality, quantifying overall 

function is likely more complicated, but importantly may not be necessary. 

 

 
Figure 2. System-of-Systems Providing Functional Redundancy Across Scales 

 

 While Holling et al. (2002) allow for “imbricated redundancy” in natural 

ecosystems, it must be recognized that such a concept applies to—and is evidenced in—

most socio-ecological systems and large-scale systems of human design. Of course, 

superimposing such functions on nature is a completely human activity which reflects 

human values and is usually derived ex post facto simply because “it is there” (as 

opposed to because “it is required” for achieving some “better” state). Humans will tend 

to preserve the functions they “observe” (or superimpose) and “value” these because 

“nature made it that way.” This is not necessarily wrong, but it must be admitted to be a 
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progressing toward an even “better” future state and that, by preserving that function and 

its attendant species, humankind is risking a qualitatively diminished end game. 

 Despite the fact that human values determine the functions, it is clear from Figure 

2 that resilience is simply a matter of redundancy (pure and degenerate). Resilience is 

redundancy writ large—reflecting the portfolio approach adopted by nature as its 

mechanism of endurance. In fact, pure redundancy and degeneracy are exactly the kinds 

of redundancy that system engineers use to ensure robust systems in many domains from 

law enforcement to surveillance to telecommunications to health claims processing. If 

cost and schedule were not an issue, such resilience could easily be exhibited in many 

more human-engineered systems. Engineers, however, are taught to deliver verifiable 

function, reduce costs, and balance the benefit of redundancy with careful scoping of 

system requirements as they are held in delicate tension by cost/benefit trades. 

 Importantly, among the reasons natural ecosystems have settled on redundancy as 

an approach to resilience is because it was accidental and Nature had no intention (or 

driving reason) to be frugal. Among the reasons researchers have (until recently) 

denigrated redundancy is because humans are interested in being wise with resource use 

(usually driven by economic considerations) and redundancy just seems extravagant and 

wasteful. Even the concept of “diversified financial portfolio” demonstrates and 

reinforces that redundancy (in this case, through degeneracy) leads to resilience. If the 

valued function we seek from an investment strategy is income, growth, or preservation 

of capital in a capricious market, then a diversified portfolio is what provides this (it is, 

after all, a probability game). However, if our goal is growth and we have insider trading 

information that guarantees a significant return on investment, it is counter-productive to 
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diversify. In this case, it makes sense to focus our strategy on what we know will be a 

high payoff investment. In general, since neither we nor Nature has such insider trading 

information, we find degeneracy to be the winning ticket. 

 Gunderson (2000) is one of only a few scholars who will go on record with 

specific recommendations on how to improve resilience. Despite later offering some 

highly conflicting conclusions (cf. p. 435), he suggests “In order to add resilience to 

managed systems, at least three strategies are employed: increasing the buffering capacity 

of the system, managing for processes at multiple scales, and nurturing sources of 

renewal” (p.434). Each of these emphasizes redundancy. Buffering capacity is increased 

through redundant structures (p. 434), processes are duplicated at a variety of scales, and 

multiple sources of capital and skills (p. 436) are employed in nurturing renewal.
2
 

 As shown, the idea that redundancy is a primary mechanism for operationalizing 

resilience has not been missed in the literature, but to date, it has not generally been 

exploited by practitioners. Lately, there is a cautious change in the scholarship though it 

has still not reached a level that allows resilience to be operationalized. With a goal of 

elucidating specific principles for enhancing the resilience of ecosystem services, Biggs 

et al. (2012) have unsurprisingly suggested that redundancy must head the list. Setting 

redundancy as principle #1 is a nod toward finally understanding the power of 

redundancy. 

                                                     
2
 Gunderson’s conclusions are repeated in Gunderson, Pritchard, Holling, et al. (2002) with equally 

problematic surrounding discussion in which resilience is said to be “generated by destroying and renewing 

systems at smaller, faster scales” (p. 264). In this conclusion alone, language like “resilience is defined 

as...”, “resilience is reestablished by…”, “resilience is maintained by…”, “resilience is generated by…”, 

and “strategies… contribute to resilience” is employed with a significant amount of euphemism. While it is 

beyond the scope of this work to address this in full, it must be pointed out that such casual language—

even when presented in summary conclusions—is not helpful to the discourse. Much more precision is 

required if resilience is to be operationalized. 
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 Low et al. (2002) call for the development of a “grounded theoretical approach to 

the study of redundancy, for efficient and responsive management depends on matching 

optimal levels of redundancy to the appropriate conditions” (p. 108). Quantum resilience 

provides this grounded theoretical approach and through its focus on valued function and 

incremental delivery of quanta of resilience demonstrates that value of redundancy in 

designing for resilience. 

 

Defining Resilience 

 

 The quantum resilience approach stems from pragmatism. Resilience is only a 

useful idea if it can be characterized and operationalized. My focus is pragmatic because 

I am endeavoring to operationalize a concept so that management can occur. Ultimately, 

we care about resilience because we want systems that are useful and enduring. Hence, 

resilience is not an end in itself. Unfortunately it is treated as such in much of the 

literature. Resilience is frequently the goal. Resilience has become the Holy Grail du 

jour; elevated and idolized as if we forget there is a reason we pursue it. Instead, 

resilience must be viewed as an idea which, when properly operationalized, defines the 

character of systems that can deliver what we really want: functions we value. After 

reviewing some alternative definitions, this section defines what resilience is and 

operationalizes it for effective use across all disciplines. 

 Scholars argue resilience is a well-defined mathematical concept (Holling, 1973; 

Fiering & Holling, 1974), but there has been little progress in calculating resilience. 

Using the language of dynamical systems theory, Holling (1973) suggests it is like a 

domain or basin of attraction around an attractor. Carpenter et al. (2001) suggest 
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resilience is the size of that domain or basin of attraction. To date, however, little has 

been done to make inroads into the difficult effort of characterizing or quantifying the 

idea for specific systems. Hence, while resilience is acknowledged as a desirable notion, 

it has little operational value and the definitions remain broad and soft—perpetuating this 

dilemma. 

 Being able to compare such deployment options is vital since for decades Holling 

(1986, 1995, 2002, 2010) has been reminding us that when we try to “manage” 

ecosystems we tend to make them more fragile and less resilient: 

Because of the initial success in reducing the variability of the target 

variable, features of the biophysical environment which were implicitly 

viewed as constants began to change to produce a system that was 

structurally different and more fragile…. The biophysical environment 

became more fragile and more dependent on vigilance and error-free 

management.... the ecosystems simplified into less resilient ones as a 

consequent of man’s success in reducing variability (Holling, 2010[1986], 

p. 102). 

 

More recently Holling refers to it as a “puzzle” of success and reminds us: 

 

Any attempt to manage ecological variables (e.g. fish, trees, water, cattle) 

inexorably led to less resilient ecosystems, more rigid management 

institutions, and more dependent societies (Holling, 1995, p.6). 

 

 Even if such assessments are notional and supported by scant empirical data, it is 

not my intent to argue the conclusions. Instead, I want to suggest that these failures might 

have led us to more fruitful ways of looking at resilience. Unfortunately, a huge literature 

has evolved that defines resilience with analogies and examples that have led to its 

dilution and conflation with adaptation, transformation, reliability, robustness, etc. (see 

extended discussion above). At best, we know we want resilience, but seem only barely 

to “know it when we see it.” At worst, operationalizing resilience leads to 
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recommendations to decrease human involvement because by reducing human impacts 

we can “increase” or “restore” resilience. “All natural” seems to be the recipe for “highly 

resilient” systems. In many cases “resilience thinking” has become the face of a new 

conservationism. Despite many good intentions, there are no definitive marching orders 

on operationalizing resilience. Quantum resilience is intended to provide some clarity in 

this expansive discourse and to operationalize resilience for use in system study. 

 Sometimes resilience is simply used as a euphemism for “environmental quality” 

where such quality was assumed to be maximized in pristine Nature that is untouched by 

humans. As such it stands as a new science behind conservationism and the normative 

values espoused therein. For example, by suggesting that “resilience has declined since 

colonization,” Walker et al. (2009, p. 17) assume that prior to colonization, the Goulburn-

Broken catchment in Victoria Australia had “higher” resilience. This, however, is 

impossible to assert since the catchment today is an entirely different system than it was 

in pre-colonial times. This tendency to assume untouched nature is the exemplar of high 

resilience is evident throughout the literature (see also, Walker & Salt, 2006) and it is 

usually stated as a matter of acknowledged fact with no supporting quantification. In light 

of the fact that scholars have not produced a characterization of resilience that can be 

used to compare across (or even within) systems, this can only be recognized as an 

assumption that what Nature had done was somehow “best” and that if we want high 

resilience we must restore it. Quantum resilience provides a mechanism whereby such 

assumptions can be avoided and real comparisons can be made. 

 Especially in the ecological literature, resilience sometimes becomes a proxy for 

“fitness” of a system. So, a push for resilience in socio-ecological systems becomes a 
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push for optimum fitness of these systems. We want certain systems in perpetuity, so they 

must be resilient in order to survive through “thick and thin” (or however it is 

euphemized). This seems like a simple observation but usually the ramifications are not 

considered. Resilience may contribute to fitness, but fitness can only be observed after 

the fact, for a given system (phenotype), on a given landscape. Fitness is an after the fact 

measure of adaptation (or, adapted-ness). The trouble with this casual equation of fitness 

and resilience is that we have limited knowledge of how the landscape might change in 

the future and cannot wait that long to determine if our important systems are actually 

resilient. Resilience, however, must actually mean something here and now. By forcing 

focus on delivery of valued function, quantum resilience ensures this. Perhaps the best 

way to navigate the issue of resilience conflation with the idea of fitness is to think of 

resilience as phenotypic “fitness” while “real fitness” is genotypic. When it comes to 

valued functions and resilience, it is a phenotype (a particular system) that is implicated. 

As described at length above, adaptation and fitness are best left as research areas distinct 

from resilience. 

 Recall as well that a system’s resilience must be able to be characterized in the 

absence of perturbations and disturbances. Most authors do this tacitly by suggesting that 

resilience is degraded after a disturbance of some sort (e.g., a reef’s resilience is 

degraded by years of pollution, or a catchment’s resilience is degraded by years of 

industrial agriculture, etc.). This casual language implies that resilience stood at some 

higher value prior to the disturbance. Obviously this implies that resilience can be 

characterized without reference to specific perturbations so it is very odd that most 

definitions of resilience have perturbations or disturbances in them. Thinking specifically 
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of resilience “to what” as suggested by Carpenter et al. (2001) is not a mechanism by 

which we can extend resilience theory—it is not a way forward. 

 Fiksel (2003) defines resilience as the capacity of a system to tolerate 

disturbances while retaining its structure and function. This is very close to being a useful 

definition, as long as “tolerating” and “retaining” are given operational value. 

Unfortunately, Fiksel does not provide an operational way forward. Worse, he teases: 

Traditional systems-engineering practices have tried to anticipate and 

resist disruptions, but may be vulnerable to unforeseen factors. An 

alternative is to design systems with inherent resilience by taking 

advantage of fundamental properties such as diversity, efficiency, 

adaptability, and cohesion (Fiksel, 2003, p. 5330; Fiksel, 2006, p. 16). 

 

 While it is easy to casually state the need to design “inherent resilience” it is 

unhelpful to actual working engineers and SES managers. Comments like these clearly 

exemplify the manner in which resilience has become diluted and ill-defined. The trouble 

with his comment is that it is impossible to operationalize. For example, both diversity (if 

he means functional redundancy) and efficiency are what engineers already do and are 

frequently reminded how it will not work for the more complex systems of today (cf. 

Walker & Salt, 2006, pp. 7-8). To recommend engineers take advantage of “adaptability” 

after accosting them for trying to anticipate disruptions and leaving their systems 

vulnerable is contradictory. Further, since adaptability can only be observed after the fact, 

Fiksel is likely talking about designed-in system features that allow responses to known 

or projected environment changes, which are again, what engineers already do. Finally, 

proposing that “cohesion” (however defined) be employed just seems uninformed since 

(1) no system engineer wants his system to fall apart, (2) too much cohesion increases 

vulnerability, and (3) it flies in the face of the requested efficiency. Instead, engineers 
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must be taught to target something else: a quantum of resilience that is meaningful, 

measurable, and productive. 

 Zolli (2012) aggressively proposes that resilience requires a system’s “core 

purpose and integrity” to be maintained “in the face of dramatically changed 

circumstances” (p. 7). He stresses two essential aspects: continuity and recovery in the 

face of dramatic change. Unfortunately, great concepts like “purpose” and “integrity” are 

left for the reader to define and operationalize. Importantly, quantum resilience provides 

the solution in both cases. When identity is specifically codified, and purpose is defined 

according to valued function, operationalizing resilience becomes an accomplishable 

task. 

 Walker et al. (2004, p. 4) define resilience as “the capacity of a system to absorb 

disturbance and reorganize while undergoing change so as to still retain essentially the 

same function, structure, identity, and feedbacks.” But if a system is to retain its 

“function, structure, identity and feedbacks” it is very difficult to understand what it 

means that it can also “reorganize while undergoing change.” This definition contains an 

assortment of interesting sounding words with enough equivocation to allow them to 

mean just about anything. This is problematic and indicative of the expanding softness of 

the concept in the literature. Adding a word like “essentially” does not eliminate the fact 

that words have meanings and that meanings are important. Obviously more must be said 

for this kind of definition to be operationalized. 

 As if recognizing this, Walker tightens the previous definition and suggests 

resilience is “the ability of a system to absorb disturbance and still retain its basic 

function and structure” (Walker & Salt, 2006, p. 1). With the exception of the part about 
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absorbing disturbance, this is much better. Unfortunately it is difficult to know which 

definition is real since Walker and Salt define resilience in at least four different ways in 

their little book (cf. pp. xiii, 1, 12, 32, 37, 62, 63, etc.). One of the definitions (p. 32) very 

nearly reverts to the originally problematic Walker et al. (2004) definition. Additionally, 

resilience is still defined in terms of an “ability” which is never characterized. 

Surprisingly, toward the end of the book (p. 113) they employ the word “identity” and 

offer their best definition. Unfortunately, this solid definition is immediately diluted with 

the requirement that many largely metaphorical concepts like thresholds, forces, regimes, 

basins, and adaptive cycles, be used to analyze resilience. The valued functions a system 

may provide are ignored. This is not a step toward operationalizing resilience. 

 Carpenter et al. (2001) propose that 

In any study of resilience, we are concerned with the magnitude of 

disturbance that can be tolerated before a system moves into a different 

region of state space and a different set of controls (p. 766). 

 

 But they neither offer a way to characterize the magnitude of disturbance nor 

provide insight into the list of disturbances that might be implicated. Quantum resilience 

suggests that the magnitude of a disturbance can only be characterized by observing the 

decrease in delivery of the valued function as quantified by the established quantum of 

resilience. Note how little it has to do with the disturbance: no matter what strikes, the 

question is “how much less function is being delivered?” In fact, without some notion of 

the valued function, there is no way to define what it means to “tolerate” or move “into a 

different region of state space.” 

 The resilience literature is failing to converge because nobody has identified 

mechanisms to operationalize the concept. To be a useful system concept, resilience must 
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be characterized for each system. This is a specific word choice that defines resilience as 

a system “character”. That is, resilience is not an ability, capacity, function, or feature 

(that is, it is not something a system does). Further, resilience is not a property or 

attribute (that is, it is not something a system has). Instead, “resilient” is something a 

system is. Quantum resilience provides the mechanism for characterizing the extent to 

which a system is resilient. 

 With this in mind, I suggest there are two angles from which the idea of resilience 

must be defined. The first is oriented toward the fact that resilience is a “character” of 

systems: Systems that persist in their identifiable form (structure and function) are 

generally termed resilient, so resilience is the idea that a system’s identity persists. 

The second definition is operational and measurement-oriented: Resilience is the extent 

to which a system delivers its valued function. A longer form of the operationalized 

definition is: When properly characterized in accordance with its identity, resilience 

quantifies (or, “is a measure of”) the extent to which a system delivers its valued 

function. 

 As discussed at length above, there is a lot implied in the word “system” and 

those hidden parts of the definition are important. As a quick review, recall: 

 System identity is defined in terms of structure and function. For a system to be 

resilient it must persist and be recognizable in some meaningful way—usually by 

continuing to provide its function as facilitated by its structure. 

 In order to properly establish appropriate scale and to characterize the resilience 

of the system, structure is defined in terms of system-of-systems nearly 
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decomposable hierarchies (Simon, 1962) and their relationships (interfaces and 

dependencies between systems). This is discussed at length below. 

 Function is defined as that valued behavior that a system performs or output that 

it generates (usually within some acceptable tolerances according to a service 

level agreement) and is generally observed at a system interface (e.g., an output or 

influence, etc.). 

 Perturbation is specifically not involved in either the definition or 

characterization of resilience. 

 With the foregoing in mind, resilience can be characterized on a per-system basis. 

Such characterization should permit comparison of similar (homologous) systems or 

alternative system configurations, but confirms that resilience cannot be reduced to a 

universally absolute value. Neither would it make sense to do this. Consider, for example, 

what it would mean to say that a lake-agriculture socio-ecological system is more (or 

less) resilient than the Internet. Such comparisons are nonsensical. What this 

characterization does illustrate is that resilience can be bolstered in systems only in 

increments. That is, resilience grows as each quantum of a valued function is 

incrementally delivered by redundancies in the system. In this way, resilience is a 

quantum concept. 

 

Characterizing Resilience 

 

 Characterizing the resilience of a system is done following a thorough system 

analysis. System analysis is an iterative process that coalesces as knowledge about the 
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system grows. The resilience characterization process has the following major 

components: 

1. Enumeration of valued functions/services and identification of the quanta of 

resilience. As indicated, valued functions drive the analysis and must be 

elucidated first. 

2. Enumeration of systems implicated in the function delivery. Here, the functions 

determine the scale of the system as the real system emerges. 

3. Explication of the structure, the connectivity, and ultimately the identity of the 

system. This analysis phase completely characterizes the system to a level 

acceptable to participating domain experts. 

4. Assignment of valued functions and quanta of resilience to implicated systems. 

5. Calculation of apparent complexity and connectedness of the value delivery 

system. With the previously specified function quanta these values can be used in 

characterization of resilience. 

6. Once characterized, resilience of alternative system configurations can be 

compared and contrasted in decision frameworks. 

 Systems engineers have long employed Simon’s idea of nearly decomposable 

systems in their analysis work. In general, it is suggested that analysis start with that 

idea: 

The fact, then, that many complex systems have a nearly decomposable, 

hierarchic structure is a major facilitating factor enabling us to understand, 

to describe, and even to “see” such systems and their parts. Or perhaps the 

proposition should be put the other way round. If there are important 

systems in the world that are complex without being hierarchic, they may 

to a considerable extent escape our observation and our understanding 

(Simon, 1962, p. 477). 
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 Simon allows for complex systems to be incomprehensible, but he stands fairly 

firmly in the hierarchy camp: 

I have already given some reasons for supposing that the former is at least 

half the truth—that evolving complexity would tend to be hierarchic—but 

it may not be the whole truth (Simon, 1962, p. 478). 

 

 Systems should be decomposed as necessary for the given context/domain of 

discourse. System decomposition can proceed along lines of system engineering best 

practices with consensus-building among domain-cognizant engineers. While consensus 

can be construed as a low bar for success, it does not free engineers to be less rigorous in 

the approach taken. Since definitional rigor is missing from the literature, quantum 

resilience demands “accurate” models, but this does not mean that a given complex 

system does not admit to multiple unique “correct” models. As with any boundary 

decision or modeling choice, consistency is required, and if experts disagree, 

transparency is enforced by tools so there are no murky system definitions. For example, 

when you step on the scale to check your weight, few will care what you are wearing or 

carrying since that is a matter of personal taste or convenience. No matter what your 

choice is, the scale will provide the actual weight of whatever is on it. If, however, you 

want to compare your body weight from day to day, the experts will demand consistency. 

They will come to some consensus that if you choose to carry your cat and computer onto 

the scale (as a matter of taste), that you must do so every day. This illustrates the need to 

understand that, though system definition is a matter of choice and consensus, the system 

being characterized is very real and must be treated with consistency. 
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 To ensure proper identification of relationships, it is important to be fair and 

realistic in representation of where variables are available (i.e., for measurement) and 

where they are controlled. The resulting decomposition should garner general agreement 

among experts. If disagreement on system decomposition occurs, systems can be 

represented as black boxes as long as consensus can be gained on the decomposition 

depth at which the analysis is to proceed. Such system summarization will likely add a 

measure of uncertainty to the analysis (discussed below), but it will be completely 

transparent since it is captured in the tools. The degree of connectedness of the systems 

involved in valued function delivery will lead to some idea of the level of independence 

of the implicated systems. 

 There is much that goes into any measure of complexity (cf. Gell-Mann & Lloyd, 

1996; McShea, 2001; Erdi, 2008, pp. 201ff; Farnsworth, Lyashevska & Fung, 2012; 

Tamaskar, Neema & DeLaurentis, 2014; see also Parrott, 2010 for a serviceable overview 

of measuring ecological complexity). Such measures generally include the number of 

system parts and how they are connected. Frequently, important system traits are ignored 

like the number moving parts, their cost, their provenance and pedigree (i.e., lineage or 

depth of supply chain), the nature of the connections (information, matter), etc. Generally 

such omissions can be shown to not greatly impact the value of the resulting metric, but 

each can be important in specific applications. The complexity measures used in 

characterization of resilience can be adjusted to garner approval by collaborators in the 

analysis, but it must be consistently applied. Herein, I recommend an approach that is 

both tractable and generalized. It not only recognizes hierarchical and relational 

complexity, but it enforces its use with transparency and consistency. 
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 Kolmogorov (1963) complexity is generally defined as the minimum length of a 

program written in a description language required to produce a desired system (cf. Page, 

2011, p. 29). For system analysis of the kind required for characterizing quantum 

resilience, any formal specification language would suffice. For example, this can be 

demonstrated to be a computable outcome of systems described according to the ITU-T 

SDL Z.100 specification (itu.int/en/publications), IDEF (NIST, 1993), or UML/SysML 

(uml.org), and many complexity metrics have been proposed and demonstrated. Gell-

Mann and Lloyd (1996) coin the term “effective complexity” because 

The meaning of the term ‘complexity’ that corresponds most closely to its 

use in ordinary conversation and in scientific discourse corresponds to 

effective complexity, the length of a concise description not of the entity 

but of its identified regularities…. Effective complexity measures 

knowledge, in the sense that it quantifies the extent to which an entity is 

taken to be regular, nonrandom, and hence predictable (p. 49, emphasis 

added). 

 

 Extending Simon, and following Gell-Mann and Lloyd in focusing on regularities, 

I define a system’s apparent complexity (Ca) as that complexity that we can actually 

manage and that impacts the function of our system. It is a function of system 

hierarchical structure, relational inter-connectedness, and dependence on other systems: 

Ca = f(s,c,d) 

 

 For use in resilience characterization, apparent complexity consists of the total 

number of decomposed systems (s) implicated in delivery of valued functions, the total 

number of connections (internal and external) among those systems (c), and the in-degree 

of those systems. In-degree of a system (a.k.a. network node “fan-in”) is a well-known 

network science concept (cf. Borner et al., 2007) that is the total number of inputs to a 

particular system (“node”). It is used herein to represent the level of dependence systems 
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have on other systems. Note that the size of the state/phase space, i.e., the number of 

system states and supported transitions (which are obviously less apparent), may be 

added to this metric if it is determined to be an important driver of complexity. Generally, 

and as Simon would likely argue, deeper hierarchical complexity will subsume phase 

space complexity and permits black box treatment of systems. The formulation for 

apparent complexity is recursively calculated through the system hierarchy as follows: 

𝐶𝑎  =  𝑠 +  ∑(𝑐𝑖 + 𝑑𝑖)

𝑠

𝑖=1

 

 

 Note that the number of decomposed systems will be driven by the specific 

requirements of the analysis and may differ between experts (cf. Simon, 1962). What is 

required is that the decomposition is sufficient to adequately model the function and this 

will require consensus (thus enters the balance of structure and function). Note that 

connections are formed from known flows (both material and immaterial) between 

systems as well as shared measurable variables. For example, a local environment 

temperature that is employed in state definitions by two otherwise isolated systems 

contained within that environment constitutes a connection. 

 System productivity (Ps) vis-à-vis the valued functions is a function of the number 

of redundant systems (n) providing each unique valued function and the overall number 

of quanta of each valued function provided (q): 

Ps = f(n,q) 

 

 Each system’s contribution to delivery of the valued function is measured in the 

specified quanta and contributes to the quanta delivered by the overall system. For 

quantum resilience, overall system productivity is given by summing the product of the 
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total number of systems that provide each unique function and the total number of quanta 

of each function provided: 

𝑃 =  ∑ (𝑛𝑖 × ∑ 𝑞𝑗

𝑛

𝑗=1

)

𝑓

𝑖=1

 

 

 Resilience (R) is characterized as a function of overall system productivity and 

apparent complexity: R = f(Ps,Ca) as shown in the following equation: 

𝑅 =  
𝑃𝑠

𝐶𝑎
 =  

∑(𝑛𝑖 × ∑ 𝑞𝑗)

∑ 𝐶𝑎𝑖

 

 

 Note that resulting resilience characterizations are not comparable across 

dissimilar systems—as described above, such comparisons are not meaningful—but can 

be used to compare similar systems or multiple deployment options for the same kind of 

system (one that delivers similar valued functions). 

 This characterization suggests that resilience is improved by increasing the 

redundancy of systems (n) that deliver the valued function (q), but it also supports the 

intuition that the complexity of the systems and their interdependence might diminish the 

resilience of the overall system. 

 As an example, Figure 3 depicts a hypothetical system of systems (S0) that has 

been deduced from a hypothetical analysis process. This is known as the canonical 

example and can be used as a test case for future implementations in other tools. Note 

that S0 is neither required to be a “real” system nor must it be a “complete” system. 

Instead, it is the boundary chosen by analysts to best assess the list of agreed-to valued 

functions. As a simplifying assumption for the example, one valued function (f) has been 

identified (Ps is simplified to n x q). As shown, the valued function is redundantly 
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delivered by three systems (SA, SB, and SC). For purposes of this example assume each 

provides a different quanta of that function: SA provides 2 quanta of f, while SB delivers 3 

quanta and SC offers 1. Note that while SD does not directly provide the valued function, 

it is indirectly implicated in the delivery of the valued function because it provides inputs 

to SA and SB. Note as well that SC relies on inputs from SA and SB. 

 

 
Figure 3. Canonical Example: System-of-Systems with One Valued Function 

 

 By hypothetical analysis, SA was determined to be decomposed into systems S1 

and S2 which work together to deliver 2 quanta of the valued function f. Hence (since the 

“parent” system is always counted in the decomposition), the number of decomposed 

systems s for SA is 3. As shown, S1 and S2 are similar, each having a decomposition of 

one with one input connection and one output connection. In addition to its internal 

structure, SA also has two output connections and one input connection for a total c of 13. 

f (2 quanta)

SA

f (1 quanta)

f (3 quanta)

S1

S2

SD

SB

S3

S5

S6

SC

S4

S0 (the system resulting from analysis)
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Hence, apparent complexity (Ca = s + c + d) for SA is 13. The remaining systems are 

similarly characterized. 

 Table 7 shows pertinent values and system resilience as characterized using the 

method discussed above. 

 

Table 7 

R-characterization: Canonical S0 

 SA SB SC SD S0 

Delivered quanta (q) 2 3 1 0 n=3, ∑ 𝑞 = 6 

In-degree (d) 3 5 2 0 ∑ 𝑑 = 10 

Systems (s) 3 5 1 1 ∑ 𝑠 = 10 

Connections (c) 7 11 3 2 ∑ 𝑐 = 23 

Resilience (R)     R = (3x6)/(23+10+10) = 0.4186 

 

 The example of Figure 3 shows that SD provides inputs to both SA and SB. Hence, 

despite the redundant delivery of f by three separate systems, two of these (SA and SB) are 

directly dependent on input from SD. Depending on the importance of its contribution in 

the overall delivery of f, this might suggest SD is highly critical to system performance 

and function delivery. Intuitively, this should decrease resilience. Its criticality to the 

overall system can be demonstrated by removing it from the system and re-characterizing 

resilience as if it were not involved. Table 8 demonstrates the difference in resilience if 

SD is not part of S0 and hence not involved in delivering the valued function. 
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Table 8 

R-characterization: S0 without SD 

 SA SB SC S0 

Delivered quanta (q) 2 3 1 n=3, ∑ 𝑞 = 6 

In-degree (d) 2 4 2 ∑ 𝑑 = 8 

Systems (s) 3 5 1 ∑ 𝑠 = 9 

Connections (c) 6 10 3 ∑ 𝑐 = 19 

Resilience (R)    R = (3x6)/(19+9+8) = 0.5 

 

 Note the significant increase in resilience (+19%) when delivery of f is less highly 

dependent on one system (SD). 

 Similarly, it also seems intuitive that high complexity in a specific subsystem 

might contribute to lower resilience values. Obviously, SB is the most complex system in 

S0 so it would be instructive to see the impact if that system were uninvolved. Note that 

removing SB also removes 3 quanta of delivered valued function and one redundant 

provider of the function, reducing q to 3 and n to 2. Table 9 shows resilience 

characterization assuming SB was not part of the overall system. 

 

Table 9 

R-characterization: S0 without SB 

 SA SC SD S0 

Delivered quanta (q) 2 1 0 n=2, ∑ 𝑞 = 3 

In-degree (d) 3 1 0 ∑ 𝑑 = 4 

Systems (s) 3 1 1 ∑ 𝑠 = 5 

Connections (c) 7 2 1 ∑ 𝑐 = 10 

Resilience (R)    R = (2x3)/(10+5+4) = 0.3158 

 

 Here, comparing the result with that of Table 7, it is shown that the reduction in 

complexity does not fully compensate (~25% lower) for the reduction in functional 

redundancy and quanta in delivery of the valued function. 
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 Alternatively, it would be interesting to perform a direct comparison by 

decreasing the complexity of SB while leaving it in the system. Table 10 shows the 

outcome when SB is hypothetically given the same decomposition and complexity as SA. 

 

Table 10 

R-characterization: S0 with Reduced Complexity SB 

 SA SB SC SD S0 

Delivered quanta (q) 2 3 1 0 n=3, ∑ 𝑞 = 6 

In-degree (d) 3 3 2 0 ∑ 𝑑 = 8 

Systems (s) 3 3 (as in SA) 1 1 ∑ 𝑠 = 8 

Connections (c) 7 7 (as in SA) 3 2 ∑ 𝑐 = 19 

Resilience (R)     R = (3x6)/(19+8+8) = 0.5143 

 

 Comparing the resilience characterization of Table 10 (0.5143) with that of Table 

7 (0.4186, where SB was included with its full complexity) demonstrates a trade between 

complexity and resilience (lower complexity results in a resilience increase of 

approximately ~23%). Of course, this hypothetical example assumes SB could still 

deliver 3 quanta of the valued function without its additional complexity and this is likely 

to be impossible in a real system. If the reduction in complexity of SB resulted in a 

reduction of valued function delivery (for example, to 2 quanta, like SA), the same 

comparison can be made with q=5, resulting in R=0.4286 which is very close (~2%) to 

the original resilience characterization shown in Table 7. This demonstrates the trade 

space of complexity, function, and resilience. 

 As earlier alluded, the decomposition of the system must be fair and accurate. 

Even if system modeling compromises are required in order to gain consensus among 

experts, this should not ultimately be deleterious to the characterization of resilience (that 

is, system models will not necessarily be decomposed to a level that is acceptable to all, 
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but should still render useful values). Table 11, Table 12, and Table 13 demonstrate 

resilience characterization given the assumption that none of the systems in Figure 3 had 

any decomposition (that is, imagine SA and SB are “simple” systems like SC and SD). 

 

Table 11 

R-characterization: Full S0 (No Decomposition) 

 SA SB SC SD S0 

Delivered quanta (q) 2 3 1 0 n=3, ∑ 𝑞 = 6 

In-degree (d) 1 1 2 0 ∑ 𝑑 = 4 

Systems (s) 1 1 1 1 ∑ 𝑠 = 4 

Connections (c) 3 3 3 2 ∑ 𝑐 = 11 

Resilience (R)     R = (3x6)/(11+4+4) = 0.9474 

 

 If this result is compared to the result of Table 7, it can be seen that the relative 

simplicity of the systems increases the resilience of the overall system. 

 

Table 12 

R-characterization: S0 without SD (No Decomposition) 

 SA SB SC S0 

Delivered quanta (q) 2 3 1 n=3, ∑ 𝑞 = 6 

In-degree (d) 0 0 2 ∑ 𝑑 = 2 

Systems (s) 1 1 1 ∑ 𝑠 = 3 

Connections (c) 2 2 3 ∑ 𝑐 = 7 

Resilience (R)    R = (3x6)/(7+3+2) = 1.5 

 

 

Table 13 

R-characterization: S0 without SB (No Decomposition) 

 SA SC SD S0 

Delivered quanta (q) 2 1 0 n=2, ∑ 𝑞 = 3 

In-degree (d) 1 1 0 ∑ 𝑑 = 2 

Systems (s) 1 1 1 ∑ 𝑠 = 3 

Connections (c) 3 2 1 ∑ 𝑐 = 6 

Resilience (R)    R = (2x3)/(6+3+2) = 0.5455 
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 Obviously, when all subsystems share similar complexity, any resilience gain 

expected from eliminating SB (formerly of high complexity) is further attenuated because 

the impact from losing the quanta of valued function is far greater. This can be observed 

by comparing the difference in characterized resilience from Table 7 and Table 9 (where 

removing SB reduces resilience by approximately 25%) with the difference in Table 11 

and Table 13 (where removing SB reduces resilience by approximately 42%). 

 

Quantum Resilience, Reductionism, and Complexity 

 

 There do seem to be many “systems” that seem to fit the cliché phrase: “the whole 

is more than the sum of its parts.” For example, it is obvious that somehow “intelligence” 

emerges from the interaction of 100 billion (or so) neurons in a human brain. As a valued 

function, intelligence will prove notoriously difficult to quantify, but if quantifying such 

an idea becomes important, ultimately consensus (or at least grudging concession) will 

materialize. What is not debated is the connectionist structure of the underlying 

“intelligence delivery system” and its interfaces to the “real world” via sensory stimulus. 

What is also clear is that unless a particular “critical mass” of neuron count and 

connectedness is achieved, intelligence will not emerge. This is where the worlds of 

complexity and reductionism collide. That there is a physical system, with an actual 

structure, and with actual connectedness, is unquestioned. That intelligence is a valued 

function that emerges from it is unquestioned. How such a function emerges from such a 

system may continue to be an open question, but if we wish such a function to persist, the 

specific structure and organization that provides it must be codified in any 

characterization of that system’s resilience. 
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 Quantum resilience could be considered reductionist since it starts with a 

hierarchical approach to quantifying system complexity. The “reductionist” epithet is 

sometimes intended as a stinging blow, but recall that reductionism is not a dirty word to 

engineers and they are to a great extent immune to the indictment. Engineers are required 

to make things work and they have an excellent track record of doing so within the 

paradigm of reductionism. Plus, while complexity theories are still brewing, reductionism 

is the only available paradigm. In this regard, if quantum resilience is reductionist, it is 

unapologetically so. 

 Nevertheless, any assertion that quantum resilience is merely reductionist is also 

easily deflected. Note first that quantum resilience specifically recognizes complexity in 

the denominator of the resilience characterization formulation. This is no accident. 

Quantum resilience amalgamates a number of approaches to calculating complexity in its 

formulation. Recognizing Kolmogorov, Gell-Mann, and Simon, as well as understanding 

systems as having a “fractal” dimension makes quantum resilience the most obviously 

complexity-oriented resilience theory available. In measuring hierarchical decomposition 

and intersystem relationships, quantum resilience has the best opportunity to correctly 

represent system complexity. Quantum resilience specifically acknowledges the “limits” 

of reductionism (though, note well, these limits rarely impact the ability to offer practical 

solutions to common problems) and specifically includes system relationships and 

dependencies in the formulation. Further, quantum resilience absolutely forces 

transparency and consistency in system modeling and permits it to be done with 

commercially available tools to ensure repeatable results. This ensures that engineers are 

not hiding behind complexity. 
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 In addition to its firm grounding in general systems theory, development of 

quantum resilience purposefully considered complexity ideas. In fact, not only does 

quantum resilience take a large step to actually measuring complexity, it is architected to 

employ “true” complexity measures should any ever be invented (and assuming they are 

demonstrably better than the current approach). Further, if complexity is ever shown to 

impact the definition or quantification of valued functions it can be easily retrofitted in 

the numerator. While a future theory of complexity may contribute to “better” values for 

resilience characterization, is unlikely to further clarify the idea of resilience. 

 Again, note that most engineers happily and successfully solve problems using the 

reductionist paradigm, while a few have the luxury of indulging their interests and 

participating in the development of a complexity paradigm. Only a few researchers can 

afford to explore deeply esoteric notions that are only somewhat related to solving actual 

problems. Such exploration is vital and ensures continued progress as new ideas are 

brought to light, but for the rest of us, complexity is an aggregation of assorted and only 

somewhat related ideas that are not quite ready for application. To the extent they are, I 

have included them in the characterization formulated above. 

 Importantly, quantum resilience reminds us that we must not hide behind 

complexity. We must focus on the system discovered through analysis (where the scale is 

determined by the valued functions) as opposed to the system as we envision or 

romanticize it. Once we determine the scale at which we must operate, it becomes clear 

what can be accomplished whether or not the system is complex. The system is what it is 

and we need to focus on the parts that impact valued function. For resilience to be a 

meaningful concept, it must also be at some level pragmatic and operationalized. 
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Quantum resilience offers such a theory for now, and provides a way forward that allows 

future extension of its complexity measures. 

 

Resilience and the Time Domain 

 

 As the backdrop against which all systems operate, interest in the concept of time 

is counterintuitively intensified by the fact that humans need stability from systems that 

are frequently very dynamic. In general, humans want systems that deliver their valued 

function(s) over long periods of time. For example, systems of government should be 

“stable.” A revolution every hundred years or so is about all humans can tolerate while 

expecting to remain productive (observation of current events is enough to demonstrate 

this). At a different, but still “long” time scale, telecommunications systems should be 

stable enough for frequent users to continue to exploit regular features even while new 

features are added. It is no secret that 4G LTE (fourth generation long-term evolution) is 

an attempt to provide such stability in the face of migration of significant underlying 

technologies. For ongoing maintenance of structures that evolve (like the law, or ethics, 

etc.) these “state changes” can be accommodated while stability is maintained (e.g., think 

of the impact of the anti-slavery or women’s suffrage movements which resulted in the 

13
th

 and 19
th

 amendments to the US constitution). These systems can be viewed as stable 

but that doesn’t mean they are static. 

 Still, the need to consider time implies there might be important changes-over-

time that must enter the analysis. Importantly, there are three separate ideas of such 

“movement” in a system: 
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1. System dynamics “happen” while a system is delivering its function. Such 

dynamics can be quite complicated depending on the function. For example, think 

of the dynamics that occur when you turn on a radio, or a printing press. As 

described below, the system analysis approach encapsulates (and sometimes 

hides) the dynamics in human-superimposed definitions of system states. For 

example, it is superficially easy to argue that all the dynamics of the system occur 

while it is delivering its function in a “working” or “operational” state. On the 

other hand, the dynamics would not be occurring when the system is in a 

“broken” or “off” state. Obviously, meaningful analysis involves deeper 

decomposition and greater granularity. As discussed below, required granularity 

of state definition can be determined on a system-by-system basis. 

2. System evolution is part of the “adaptation” argument that I suggest should be 

beyond the scope of resilience theory and research. It is an important research 

area, but it must not be conflated with resilience. Note again that for quantum 

resilience it is the valued function that drives the analysis. The terminology is 

important here. Consider that if “values” surrounding a system change over time, 

these can lead to new functional demands on the system (as in the 

telecommunications example where what is valued now is far different than what 

was valued 20 years ago). This may compel an important and desirable system 

“evolution,” (whether internally or externally facilitated—with appropriate 

cautions about the teleology in the anticipated new system structure or function) 

but where resilience is concerned it is vital that system identity is considered. This 

is because if the valued functions change (in keeping with new “values”), the 
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resilience characterization must also change. In this way, resilience must be 

characterized for instances of system design (i.e., phenotypes). Evolved systems 

are generally new phenotypes and it is an important engineering challenge to 

determine whether or not they are homologous to the extent they can be compared 

to prior systems. Obviously, as artifacts, “designs” themselves can be considered 

as evolving systems, but this is a very different thing than the systems those 

designs represent. 

3. System decay occurs for all systems over time. This sort of movement might be 

noticed as system changes result in diminishing functional delivery. Whether 

system decay is real or anticipated, quantum resilience is not ignorant of such 

movement. Though there are likely more efficient measures of such decay, if real 

trajectories are deemed desirable and useful, quantum resilience allows such 

decay to be tracked by changes in resilience characterization over time. That is, at 

periodic intervals the current system phenotype can be assessed for its current 

resilience characterization. If decay can be projected (e.g., in an anticipatory 

model), quantum resilience can serve in the same manner based on projected 

phenotypes. System decay is implicated in most discussions of thresholds found 

in the literature. In general, the literature takes an anticipatory position and warns 

of tipping points after which a system might fail. Sometimes the literature warns 

of cascading threshold effects. Because the importance of the system is 

understood, realistic approaches to such decay typically involve bolstering 

whatever part of the system is decaying. This places most discussion of thresholds 

and decay in the robustness space—protecting the system against anticipated 
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perturbations or projected future environments. Those scholars who anticipate 

unavoidable tipping points, or understand they can only be avoided at prohibitive 

cost, will fall back on planning for “transformation.” Of course, transformation 

results in a new system—which can be analyzed for its resilience as needed. 

 

 To fix the differences in the reader’s mind, consider that with, for example, the 

human slavery issue in the US, “the Law” (as a system; its identity; the system’s 

structure, relationships, etc.) did not change, but “laws” (operating parameters, possible 

configurations, etc.) changed. In this regard, one could argue there were significant 

“dynamics” but limited “evolution” in the formal sense. That “the law” was organized to 

support such revision was a matter of good design. Obviously casual use of phrases, e.g., 

“the law evolved,” is acceptable, but must be recognized as casual and colloquial. These 

are important distinctions when considering the time domain. The law did not decay and 

face a tipping point. Instead, society as the larger containing system forced changes. That 

is, societal values surrounding certain aspects of the system changed until eventually 

society directed system updates. After such updates, proper characterization of the 

resilience of the “law” as a system may or may not reflect improvements in resilience. 

Importantly, depending upon how societal productivity is quantified, a real increment in 

societal resilience might have occurred with these minor changes in the law. For 

example, if human capital was measured as part of the productivity numerator, it 

certainly can be shown to increase, or if “equity” can be somehow construed as a valued 

function, one could argue it was “increased” at a fairly minor cost in system complexity. 

Note well, however, that the changes in law (a “subsystem” of US society) contributed to 
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the complexity (even if minimally). Looking back on the transition, we can acknowledge 

that low complexity changes that result in high productivity outcomes and hence higher 

resilience are certainly adaptive, but it must be stressed that this is retrospective. 

 The “issue” of proper management of the time domain (or, more specifically, 

“system dynamics”) is dispelled by understanding that a system can be defined as having 

a (potentially large) collection of discrete configurations or states. Obviously, the 

granularity of state definitions will generally be an artifact of the fidelity chosen for a 

given system model. More will be said later but again, consider the extensive dynamics in 

play when a radio is turned on. While the dynamics are evident to engineers and can 

certainly be modeled as needed, most users would agree that a radio provides its valued 

function in the “on” state. The parameters and variables used to define states will usually 

have some tolerance (due to measurement accuracy and error), but these fluctuations can 

also generally be ignored once a given state is reached. 

 Assume a hypothetical system is in state #1 at some discrete time. As time 

elapses, “things change” and (depending on the granularity of the states and measured 

variables) eventually the system might enter state #2, and then, state #3 (or, it might 

revert back to state #1), and so on. Such analysis and modeling continues until the analyst 

is satisfied all the states are adequately codified for the level of fidelity agreed upon by 

the experts. This sequence of state transitions obviously shows a progression of time, but 

it is in discrete steps that reflect the discrete states of the system. In each of these discrete 

states, there may be a significant level of activity (system dynamics) by which the system 

will perform its valued function or functions (with whatever fidelity has been determined 

to be interesting or important). In many cases, however, such micro-dynamics are 
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unimportant to the overall character of the system (see example below). Resilience 

characterization requires that “system dynamics” be modeled only at the level it impacts 

delivery of valued function—only at the level the function can be valued. 

 It could be argued that this makes the chosen granularity an aspect of analyst 

“choice” or “art” and, hence, arbitrary and “not very scientific.” If “arbitrary” means a 

hard-won decision achieved through scientific and engineering consensus among experts, 

then this is true. But this is always so in any system analysis. For example, if in a 

particular system analysis we concern ourselves with dynamics at a period of one day, 

why did we not select one hour? And, had we chosen one hour, why not two minutes, or 

two milliseconds? In general, the level of granularity is selected at the lowest level 

humans can feasibly care about the system state, not at the lowest level they can assess 

and codify system state (this is somewhat akin to what control systems engineers 

consider the difference between knowledge and control). Some might argue that there is a 

“real” granularity, but it is easy to dispel that myth. If, for example, temperature is being 

measured and used in a control system, it is likely to be accomplished with a thermistor 

and an analog-to-digital converter that is sampled at some (humanly speaking) very fast 

rate. Can we track the temperature at 5 minute intervals, or must we model the system at 

the granularity of that very fast A/D conversion rate? If so, how does our decision change 

when the engineer reminds us that the A/D converter actually oversamples and averages 

its output before reporting it? And if we decide to consider that and alter our period to 

include some kind of averaging, what happens when the engineer reminds us that the 

transistors involved in the A/D conversion have their own dynamics which are faster 

still? Must we consider our system dynamics at that level? And what if the engineer 
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reminds us that the thermistor material itself is undergoing physical stresses that are 

impacting its own internal dynamics at the molecular and atomic levels? Or, that the 

silicon of the transistors has electron flow at yet a different rate? Must we consider that? 

The obvious answer is no. The idea of system dynamics has always been and will always 

be a matter of analyst choice. The choice made should certainly be defensible and agreed-

to by the team of experts that are performing the analysis, but it will always be a choice. 

 The important point about the time domain is that we must realize we cannot 

glibly speak of resilience without any idea of why we care about a system’s resilience. So 

it is not so much that resilience is static or dynamic, it is more that resilience is quantum. 

Analysts must be able to characterize system resilience no matter what state a system is 

in, or what activity it is performing. Resilience is increased or decreased based on how 

we tweak the subsystems that provide valued function. Note that this is logical given the 

emphasis on “structure” when resilience is characterized. Following Varela (see above), 

if structure is the “snapshot” of the system at a given time, then the resilience applies to 

the structure at that time (an instance of a design, or a phenotype). Systems can morph 

and change (with careful attention to identity maintenance), but resilience must mean 

something at a given time, so it must be defined over time scales for which it matters to 

those who value system functions. 

 Note well that discussions of system decay are actually discussions of 

perturbations and hence fall into the robustness space. But it is fair to consider this in 

light of a generalized theory of resilience. Here, “time” (or, if you will, “the whips and 

scorns of time”) serves as the perturbation. In a “three little pigs” example, an analysis 

might show that a straw house is less resilient than a brick house if “huff and puff 
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resistance” is the only valued function. In this analysis perhaps it can be shown that the 

extra complexity of a brick house is easily overcome by its extraordinary wind resistance. 

Intuitively, it is also apparent that a straw house built 20 years ago and subjected to 20 

years of wet and dry seasons might be far easier for the wolf to blow down than it was 

when originally erected. Recall that while as onlookers we might know that corrosion and 

decay has resulted in reduced function, to a resilience analysis, it is merely an instance of 

a new phenotype that delivers less function. Resilience might be measurably decreasing, 

but the only way to know that is to re-characterize the resilience in light of the decreased 

output of the valued function. In this case the complexity remains the same while the 

productivity decreases. 

 Also note that resilience is not about predicting precipitous failures at some future 

time. That is what the probabilistic risk analyses do. Monitoring trends is obviously 

important when we admit to human interest in maintaining (or improving) the status quo, 

but projections of tipping points will typically result in three human responses: (1) fix it, 

ensure enduring stability, and avoid the decay, (2) milk it for all its worth, and (3) cut and 

run. Given individual agency, purview, and hopefulness, these approaches are not 

mutually exclusive and all may be found on a given landscape at a variety of scales. No 

matter how a system phenotype is deployed (on purpose, by changes in state, or by partial 

or total failure of some previously productive system) resilience analysis must proceed by 

honestly assessing the productivity vis-à-vis valued function and by accurately 

documenting system complexity. 
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Management of Units in the Numerator 

 

 Quantum resilience is formulated to characterize resilience at any and all system 

scales. It is also formulated to permit multiple valued functions at any given scale. 

Because individual valued functions are usually expressed in different units, there is 

likely to be some concern over the management of units in the numerator of the quantum 

resilience characterization. That is, in calculating system productivity (the numerator) it 

is valid to sum numbers that have different units. This section demonstrates that, while 

this is true, it is not problematic, but if philosophical issues remain, it can be easily 

avoided by normalizing productivity values to percentages of total function, or rethinking 

the analysis to isolate functions at more appropriate levels. 

 Note first that resilience is a notion invented by humans. It is an idea we 

superimpose on systems. That is, you cannot locate resilience in a system and weigh it or 

measure its length. A system cannot be squeezed until its resilience drains into a 

graduated cylinder. This does not, however, make resilience a useless idea. Instead, 

resilience has become an important way humans talk about a specific character of a 

system. This is true for many calculated metrics that attempt to describe a character of a 

system. Since it is a human-defined concept, quantum resilience asserts that as a system 

character, resilience can be represented with scale free and unit free values that are 

comparable only among consistently modeled homologous systems. Since quantum 

resilience enforces transparency and demands consistency in its modeling approach, the 

characterization does not specifically require units. Units are used for their explanatory 

value to humans and to ensure consistency and consensus. 
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 Quantum resilience characterization involves quantification of system 

productivity in the numerator. Note that system productivity is also a notion contrived to 

allow us to quantify the valued function of a system. Hence, even though quantum 

resilience requires units for quanta of valued functions, the valued functions are really 

just “productivity indicators” that are supplied for transparency so engineers can agree 

and come to consensus about how to measure the valued function of a system. It is 

perhaps obvious that units are used only when they are available so that consistency can 

be achieved both within and across models. Note well that sometimes units are 

unavailable (e.g., when indicating psycho-social elements of human resilience on a Likert 

scale). To be sure, use of quantities with definite units facilitates more rapid consensus 

and more accurate comparisons, but they are not specifically required. 

 It is best to think of the numerator as sums of quanta of functional productivity 

instead of sums of materials or other physical entities. In this way, a power plant that has 

two disparate valued functions (e.g., energy to the grid and employees in the job market) 

is quantized first by identifying the units (e.g., MW and head count) and second by 

identifying the quanta of each valued function provided by the power plant (e.g., 300 and 

30). Both are important for transparency and consistency because, for example, it will 

prevent another engineer from assuming the units for energy are kW. The specific units, 

however, are unimportant once consistency is ensured because the results will only be 

comparable to a similarly modeled homologous system. 

 It is therefore somewhat important to understand that as long as consistency is 

employed, the units do not actually matter though, as mentioned, they provide important 

transparency which is vital in gaining consensus. It is not, therefore, illegitimate to 
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suggest that a power plant can offer 300 MW of energy to the grid and 30 employees to 

the job market and sum these for a “productivity” of 330. Engineers, however, are likely 

to be uncomfortable with such a sum for several reasons: (1) adding MW to employee 

count seems like bad engineering practice, and (2) it seems odd to glibly combine 

numbers of different orders of magnitude. The “skew” that results is sometimes difficult 

to swallow (i.e., does 30 employees really only constitute 9% of the overall valued 

function of 330?). Again, what must be stressed is that consistency matters. No numbers 

are lost in the calculations, and the resulting characterizations are only useful in 

comparison to other values that are similarly calculated. 

 If, however, engineering purity is required there are three approaches that can be 

taken. Two are simple changes to the algorithms and software, while one actually forces 

deeper understanding of the system. First, the software algorithms and tools can be 

configured to normalize all valued function contributions to percentages so that units 

disappear. Second, resilience characterization can be reported on a per-valued-function 

basis. That is, it is easy to report, for example, the resilience of the power plant in terms 

of only the energy provided to the grid, or only in terms of employees in the job market. 

Such an individual reporting makes sense in light of the (probable) fact that it is unlikely 

any team of engineers will ever fully exhaust a list of valued functions to the satisfaction 

of another team (that is, if we keep adding to our list, the numbers keep changing 

anyway). Both of these options are available in current versions of the software. 

 Third, sometimes such a dilemma is an indicator that the assignment of function 

to a specific system must be rethought. That is, it could be argued that employment is not 

a function of the power plant, but is instead a valued function of a larger employer that 
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operates multiple power plants. In this case, the engineers characterizing resilience might 

elect to remove employment from the list of valued functions offered by the plant, 

resolving the “units” dilemma. Note however that this decision must be consistently 

applied if comparisons are to be made between power plants. 

 Note that weighting certain functions as more important than others is certainly 

possible (e.g., using an analytical hierarchy process, cf. Saaty, 1980), but as long as 

consistency is used in comparisons, relative weights among valued functions do not 

matter. In fact, such weighting is not recommended because management of weights 

introduces yet another complication that must be tracked to ensure consistent treatment 

across system models. 

 Importantly, it should also be noted that the denominator makes some simplifying 

assumptions as well. For example, when the apparent complexity calculation adds 

number of subsystems in the decomposed hierarchy to number of dependencies between 

those systems, it can seem like adding apples and oranges. While specifically true, it must 

be observed that these are simple counts that are being added and no units are involved. 
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Resilient Design 

 

 Is there an archetypically “resilient” system—a system “shape” that regularly 

proves to be resilient? At this point it is certainly fair to propose that resilient systems are 

comprised of subsystems which follow three well-defined protocols: belonging (to the 

“parent”), contribution (toward the function of the overall system), and connection (with 

other sibling systems). Further, since connection between subsystems increases system 

complexity, each subsystem in an archetypically “resilient” system would be expected to 

exhibit low per-member contribution (and loss) to the valued function(s) of the system. 

 “Belonging” involves determining how and why a certain system fits into an 

overall system. In general, a “well-defined belonging protocol” simply “makes sense” 

and does not leave the observer wondering why a particular system should be a part of 

another. For example, it “makes sense” that a fuel supply chain like that employed by 

Phoenix has a West line and an East line, each of which provides about half of the fuel 

required by Phoenix (this example is discussed below). These are clearly redundant 

subsystems that comprise the larger system. It does not make sense, however, to suggest 

someone’s residence or the Phoenix Zoo be added to the Phoenix fuel supply chain. Any 

such inclusion would only lead to contrived arguments to defend such a system structure. 

Further, addition of a particular residence to the fuel supply chain can be met with the 

question “why not other (or all) residences?” or “is the contribution meaningful?” So the 

belonging question can be approached from both angles: why and why not. This is a vital 

step in system analysis as it permits scope and scale to be transparently selected. 

 “Contribution” usually makes it clear why a system belongs in another. A 

system’s membership in the overall system will be defined to some extent by what it 
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contributes to overall system function(s), but it might also be defined by the protections it 

brings, or the way it enables a system to survive in a given environment. Such 

contribution should be uncontrived, obvious, and measureable. For example, it is obvious 

that both the East and West lines of the Phoenix fuel supply chain make contributions to 

the overall system. This is obvious, uncontrived, and measurable. If a particular residence 

makes a contribution, then it can be included as well, if the engineers determine it is 

important to the overall system. 

 “Connection” between sibling systems is generally observed through direct 

interfaces, though in rare occasions can also occur indirectly or through feedback. 

Sometimes connections result from material exchanges and sometimes simply from 

sharing an environment variable (e.g., an environment temperature is an indirect 

connection). Other times coordinated parallelisms in sibling systems can be observed. For 

example, if the East line of the Phoenix fuel supply chain fails, operators can get on the 

phone (direct connection) to their counterparts in the West line and request increased 

delivery rates. Alternatively, a supervisory control system (indirect connection through 

another sibling system) can determine that the West line must increase delivery rates. 

Connections obviously contribute to the complexity of the system and are (in keeping 

with Simon’s nearly decomposable hierarchies) expected to diminish as the system is 

decomposed down to the level at which valued function is delivered. 

 Low per-member contribution (and loss) simply shows that the less a system 

contributes to the overall system function, the less it will be missed if it fails, and the 

more likely it is to be easily replaceable. With two “subsystems,” the percentage 

contribution of each line in the Phoenix fuel supply chain is fairly significant (e.g., 60-
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40). It might seem intuitively obvious that adding more supply pipelines (hypothetically 

an additional East and West line or even a North and South line) would make the system 

more resilient (even if rather expensive). However, since this would also increase the 

complexity of the system in both number of subsystems and their interconnectivity, care 

must be taken before making a deployment decision based on intuition. 

 This important point can now be formalized. As described above, resilience is 

characterized as system productivity divided by system complexity: 

𝑅 =  
𝑃

𝐶
 

 

As above, overall complexity is calculated as follows: 

 

𝐶 =  𝑠 +  ∑(𝑐𝑖 + 𝑑𝑖)

𝑠

𝑖=1

 

 

and overall productivity is calculated as follows: 

 

𝑃 =  ∑ (𝑛𝑖 × ∑ 𝑞𝑗

𝑛

𝑗=1

)

𝑓

𝑖=1

 

 

where n (as before) is the number of systems providing a specific valued function. 

 Assuming system S is comprised of function-contributing subsystems s such that 

the complexity of each function-contributing subsystem is the same (or nearly so): 

𝐶𝑠𝑖
≅ 𝐶𝑠𝑗

 

 

And assuming that each of these subsystems contributes similar incremental quanta of 

valued function to the overall productivity measure such that: 

𝑞𝑠𝑖
≅ 𝑞𝑠𝑗
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Then, it is clear that each similar constituent subsystem contributes to resilience in equal 

ratios, that is, with similar numerators and denominators. Hence (noting that the second 

productivity sum below stops at n-1), for large n the following near equivalence holds 

true: 

𝑅 =  
𝑃

𝐶
 =  

∑ (𝑚𝑖 × ∑ 𝑞𝑖)𝑛
𝑖=1

∑ 𝐶𝑠𝑖
𝑛
𝑖=1

 ≅  
∑ (𝑚𝑖 × ∑ 𝑞𝑖)𝑛−1

𝑖=1

∑ 𝐶𝑠𝑖
𝑛−1
𝑖=1

 

 

This demonstrates that when there are many systems which incrementally contribute 

similar quanta of the valued function, loss of a single system is not significantly 

deleterious to overall system resilience. This is illustrated in many of the examples that 

will follow. 

 This leads to the conclusion that the only practical design principle that comes 

from resilience analysis is that highest resilience results when small increments of valued 

function are provided by each of many redundant systems which are isolated in nearly 

decomposable hierarchies. If these findings are obvious and intuitive, it stems from two 

reasons. First, engineers learn from Nature which accomplishes its resilience in exactly 

that manner, and second, disapproving remarks about untoward focus on functional 

redundancy as the mechanism for resilience are unfounded.  
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INSTRUMENTING QUANTUM RESILIENCE 

 

 I invested a significant portion of my industry career developing, integrating, and 

using commercial model-based system engineering (MBSE) tools. For this reason, I 

thought it important to point out that commercial tools are already available and can 

easily be configured to perform the quantum resilience characterization I have proposed. 

This section demonstrates the ease with which two very complete and extremely capable 

commercially available system modeling tools were configured to perform quantum 

resilience characterization. Systems engineers who are familiar with tools will find these 

sections familiar and intuitive. Those who are not can easily skip these sections without 

missing anything that is particular to quantum resilience. 

 There are two overarching principles guiding this approach: 

1. As much as possible, the default (as-shipped) data model (schema) of the 

commercial tool is used. This makes it easily understood by both new and 

experienced users of the tool. 

2. As much as possible, the interface is kept simple and intuitive. There should be 

nothing contrived about the implementation. Any additions to data model 

elements should be “obvious” and use of default elements should not be forced. 

 Once minor schema updates were completed, all that remained was 

implementation of the characterization algorithm discussed above. This was done with 

under 500 lines of code in Java or C# (as needed) to exploit the vendor-published 

application programming interfaces (API) of the commercial tools. Both vendors expose 

a complete and powerful API that permitted the code to be nearly identical with only 

minor modifications. 
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 Finally, this section demonstrates how my own FractalSys MBSE was easily 

adapted to support quantum resilience characterization. Importantly, it must be stressed 

that tools exist and can be easily adapted to implement quantum resilience. No custom 

tools are required. 

 

Genesys
TM

 for Quantum Resilience 

 

 The Genesys™ MBSE is offered by Vitech Corporation of Blacksburg, VA. This 

section outlines the approach taken for implementing quantum resilience in the Genesys 

tool and can serve as an appendix to most systems engineering specification practices 

guides. 

 

 Elements 

 

 Component 

 

 Components represent the physical “systems” being modeled. A component is 

“built from” other components (which are “built in” parent components). This is how the 

system hierarchy is modeled (see Figure 4). Genesys allows these hierarchies to be 

created easily in the user interface. 

 Special accommodations: 

 Component has an optional “multiplicity” parameter added that allows for system 

boundary modeling (see Figure 5). A component with a multiplicity of zero is not 

included in the decomposition and complexity calculations. Instead, it is 

considered to be only an organizational entity. Components with multiplicity 

greater than one are counted as many times as indicated in the parameter value. 

 Component also has its “resilience” parameter exposed. 
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Figure 4. Genesys Representation of Canonical S0 Decomposition 

 

 
Figure 5. Parameters Added to "Component" 

 

 Function 

 

 Functions provide transformations and do the work of the components. Functions 

are “allocated to” components, and components “perform” functions. Also, a function 

“outputs” and “inputs” an Item and “services” a Link (see below). 

 Special accommodations: 
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 Function has been augmented in the schema to have a “quanta” parameter (visible 

to the user as “Quanta of Valued Function”, see Figure 6) which must be updated 

to contain the number of quanta of the valued function provided by the function. 

Though all functions are valued, not all functions are considered “valued 

functions” in the quantum resilience sense. Only those with values assigned to the 

parameters will be used in resilience characterization calculations. Additionally, a 

parameter called “valuedFunction” (visible to the user as “Name of Valued 

Function”) has been added where the “valued function” identifier (in the quantum 

resilience sense) is specified. 

 

 
Figure 6. Parameters Added to "Function" 

 

 Item 

 

 Items represent data or material that traverses an interface between two systems. 

As long as good system engineering practices are used, it is not necessary to model 

specific interfaces or links (see Figure 7 and Figure 8) for full characterization of 

resilience (though it is perfectly fine to model them). An item is “input to” or “output 

from” a function. An Item’s input and output functions are adequate to serve as source 

and destination of interfaces. 

 It is possible that only “item” needs to be augmented by creating a new subclass 

called “Valued Function Output” (or similar). Then, any function can be used and 
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instances of that new class could have particular “valued function names” and “quanta” 

associated with them. For now, however, it seems simpler to merely augment the extant 

data model entities with parameters. 

 

 
Figure 7. Block Diagram Showing Links between S0 Subsystems 
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Figure 8. Decomposition of SB (into S3 and S4) and of S4 (into S5 and S6) 

 

 Interface (optional) 

 

 Interfaces are logical connections between components. Note that an Interface is 

“comprised of” Links (see below) which are more typically the physical instantiation of 

an interface. 

 

 Link (optional) 

 

 Links are physical interfaces between two components. A link “connects to” a 

component and a link “transfers” an item. Complete system engineering approaches will 

require Links to be created (see Figure 7 and Figure 8). 
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 Outputs 

 

 The calculations for quantum resilience characterization were implemented in C# 

for the GENESYS data model. The canonical hypothetical example discussed above 

results in the following outcomes: 

 
--------------------------- 

R-characterization: <S0> 

--------------------------- 

<SB> in-degree: <SB rcv from SD> inputs <sd -> sb> 

<S3> in-degree: <S3 rcv from S4> inputs <s4 -> s3> 

<S4> in-degree: <S4 rcv from S3> inputs <s3 -> s4> 

<S5> in-degree: <S5 rcv from S6> inputs <s6 -> s5> 

<S6> in-degree: <S6 rcv from S5> inputs <s5 -> s6> 

<S3> connection: <S3 rcv from S4> inputs <s4 -> s3> 

<S3> connection: <S3 snd to S4> outputs <s3 -> s4> 

<S5> connection: <S5 snd to S6> outputs <s5 -> s6> 

<S5> connection: <S5 rcv from S6> inputs <s6 -> s5> 

<S6> connection: <S6 rcv from S5> inputs <s5 -> s6> 

<S6> connection: <S6 snd to S5> outputs <s6 -> s5> 

<S4> connection: <S4 snd to S3> outputs <s4 -> s3> 

<S4> connection: <S4 rcv from S3> inputs <s3 -> s4> 

<SB> connection (from valued function): <f(SB)> quanta: <3> 

<SB> connection: <SB rcv from SD> inputs <sd -> sb> 

<SB> connection: <SB snd to SC> outputs <sb -> sc> 

SB indegree: 5, decomp: 5, connec: 11, complexity: 21 

 

<SD> connection: <SD snd to SA> outputs <sd -> sa> 

<SD> connection: <SD snd to SB> outputs <sd -> sb> 

SD indegree: 0, decomp: 1, connec: 2, complexity: 3 

 

<SA> in-degree: <SA rcv from SD> inputs <sd -> sa> 

<S2> in-degree: <S2 rcv from S1> inputs <s1 -> s2> 

<S1> in-degree: <S1 rcv from S2> inputs <s2 -> s1> 

<S2> connection: <S2 snd to S1> outputs <s2 -> s1> 

<S2> connection: <S2 rcv from S1> inputs <s1 -> s2> 

<S1> connection: <S1 rcv from S2> inputs <s2 -> s1> 

<S1> connection: <S1 snd to S2> outputs <s1 -> s2> 

<SA> connection (from valued function): <f(SA)> quanta: <2> 

<SA> connection: <SA snd to SC> outputs <sa -> sc> 

<SA> connection: <SA rcv from SD> inputs <sd -> sa> 

SA indegree: 3, decomp: 3, connec: 7, complexity: 13 

 

<SC> in-degree: <SC rcv from SB> inputs <sb -> sc> 

<SC> in-degree: <SC rcv from SA> inputs <sa -> sc> 

<SC> connection (from valued function): <f(SC)> quanta: <1> 

<SC> connection: <SC rcv from SB> inputs <sb -> sc> 

<SC> connection: <SC rcv from SA> inputs <sa -> sc> 

SC indegree: 2, decomp: 1, connec: 3, complexity: 6 

 

System: <SB>, Function: <f>, quanta: 3 

System: <SA>, Function: <f>, quanta: 2 

System: <SC>, Function: <f>, quanta: 1 

 

S0 R-characterization: 0.4186, quanta: 6, numsys: 3, complexity: 43 
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System complexity contribution: 

 SB: 48.8372% 

 SD: 6.9767% 

 SA: 30.2326% 

 SC: 13.9535% 

System productivity contribution: 

 SB: 50.0000% 

 SA: 33.3333% 

 SC: 16.6667% 

Function productivity contribution: 

 f: 100.0000% 

 

 Though the canonical example is quite simple—the intent was to allow the 

illustrative calculations to be accomplished mentally—it is clear that it establishes a 

baseline for resilience characterization. Larger systems quickly become impossible to 

manage, thus requiring a modeling tool. Once modeled, system engineers interested in 

changing parts of the system, adding interfaces, decomposing systems, etc., would very 

quickly understand how such changes impact the overall resilience of their system. 

 

Innoslate
TM

 for Quantum Resilience 

 

 The Innoslate™ MBSE is offered by SPEC Innovations of Manassas, VA. This 

section outlines the approach taken for implementing quantum resilience in Innoslate and 

can serve as an appendix to most systems engineering specification practices guides.  

 

 Elements 

 

 Asset 

 

 Assets represent the physical “systems” being modeled. An asset is “decomposed 

by” other assets. This is how the system hierarchy is modeled (see Figure 9). Innoslate 

allows these hierarchies to be created easily in the user interface. 

 Special accommodations: 
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 Asset has an optional “multiplicity” property/attribute added that allows for 

system boundary modeling (see Figure 10). An asset with a multiplicity of zero is 

not included in the decomposition and complexity calculations. Instead, it is 

considered to be only an organizational entity. Assets with multiplicity greater 

than one are counted as many times as indicated in the parameter value. 

 Asset also has a “resilience” attribute added to store the characterization value 

(see Figure 10). 

 

 
Figure 9. Innoslate Representation of Canonical S0 Decomposition 
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Figure 10. Attributes Added to "Asset" 

 

 Action 

 

 Actions provide transformations and do the work of the assets. Actions are 

“performed by” assets, and assets “perform” actions. Also, an action “generates” and 

“receives” an Input/Output item. 

 Special accommodations: 

 Action has been augmented in the schema to have a “quanta” attribute (visible to 

the user as “Quanta of Valued Function”, see Figure 11) which must be updated 

to contain the number of quanta of the valued function provided by the action. 

Though all actions are valued, not all actions necessarily deliver “valued 

functions” in the quantum resilience sense. Only those with values assigned to the 

attributes will be used in resilience characterization calculations. Additionally, an 

attribute called “Valued Function Name” has been added where a string 

identifying the “valued function” (in the quantum resilience sense) is specified. 
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Figure 11. Attributes Added to "Action" 

 

 Input/Output 

 

 I/O items represent data or material that traverses an interface between two 

systems. As long as good system engineering practices are used, it is not necessary to 

model specific interfaces or links (see below) for full characterization of resilience. An 

action “generates” and “receives” I/O items. Since actions are performed by assets, an 

input/output item’s source and destination serve to anchor both sides of the interface. 

Figure 12 shows an I
2
 chart of the interfaces and the I/O items in the canonical example. 

 

 Logical Connection (optional) 

 

 Interfaces are logical connections between components. Note that a Logical 

connection “connects to” Assets. 
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 Conduit Connection (optional) 

 

 Conduits are physical interfaces between two components. A conduit “connects 

to” an asset and “transfers” Input/Output items. Complete system engineering approaches 

will require Conduits to be created. 

 

 
Figure 12. I

2
 Chart of Input/Output Items 

 

 Outputs 

 

 The calculations for quantum resilience characterization were implemented in 

Java for the Innoslate data model. The canonical hypothetical example results in the 

following outcomes: 

<SC> in-degree: <SC rcv from SB> inputs <sb->sc> 

<SC> in-degree: <SC rcv from SA> inputs <sa->sc> 

<SC> connection (from valued function): <f(SC)> quanta: <1.0> 

<SC> connection: <SC rcv from SB> inputs <sb->sc> 

<SC> connection: <SC rcv from SA> inputs <sa->sc> 

SC indegree: 2, decomp: 1, connec: 3, complexity: 6 
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<SD> connection: <SD snd to SA> outputs <sd->sa> 

<SD> connection: <SD snd to SB> outputs <sd->sb> 

SD indegree: 0, decomp: 1, connec: 2, complexity: 3 

 

<SA> in-degree: <SA rcv from SD> inputs <sd->sa> 

<S1> in-degree: <S1 rcv from S2> inputs <s2->s1> 

<S2> in-degree: <S2 rcv from S1> inputs <s1->s2> 

<S1> connection: <S1 snd to S2> outputs <s1->s2> 

<S1> connection: <S1 rcv from S2> inputs <s2->s1> 

<S2> connection: <S2 snd to S1> outputs <s2->s1> 

<S2> connection: <S2 rcv from S1> inputs <s1->s2> 

<SA> connection (from valued function): <f(SA)> quanta: <2.0> 

<SA> connection: <SA rcv from SD> inputs <sd->sa> 

<SA> connection: <SA snd to SC> outputs <sa->sc> 

SA indegree: 3, decomp: 3, connec: 7, complexity: 13 

 

<SB> in-degree: <SB rcv from SD> inputs <sd->sb> 

<S3> in-degree: <S3 rcv from S4> inputs <s4->s3> 

<S4> in-degree: <S4 rcv from S3> inputs <s3->s4> 

<S5> in-degree: <S5 rcv from S6> inputs <s6->s5> 

<S6> in-degree: <S6 rcv from S5> inputs <s5->s6> 

<S3> connection: <S3 rcv from S4> inputs <s4->s3> 

<S3> connection: <S3 snd to S4> outputs <s3->s4> 

<S5> connection: <S5 rcv from S6> inputs <s6->s5> 

<S5> connection: <S5 snd to S6> outputs <s5->s6> 

<S6> connection: <S6 snd to S5> outputs <s6->s5> 

<S6> connection: <S6 rcv from S5> inputs <s5->s6> 

<S4> connection: <S4 snd to S3> outputs <s4->s3> 

<S4> connection: <S4 rcv from S3> inputs <s3->s4> 

<SB> connection (from valued function): <f(SB)> quanta: <3.0> 

<SB> connection: <SB rcv from SD> inputs <sd->sb> 

<SB> connection: <SB snd to SC> outputs <sb->sc> 

SB indegree: 5, decomp: 5, connec: 11, complexity: 21 

 

System: <SC>, Function: <f>, quanta: 1.0 

System: <SA>, Function: <f>, quanta: 2.0 

System: <SB>, Function: <f>, quanta: 3.0 

 

R-characterization: 0.4186, quanta: 6.0, numsys: 3, complexity: 43 

System complexity contribution: 

 SC: 13.9535% 

 SD: 6.9767% 

 SA: 30.2326% 

 SB: 48.8372% 

System productivity contribution: 

 SC: 16.6667% 

 SA: 33.3333% 

 SB: 50.0% 

Function productivity contribution: 

 f: 100.0% 

 

FractalSys for Quantum Resilience 

 

 FractalSys is the author’s model-based system engineering tool, a brief overview 

of which is contained in Appendix A. This section outlines the augmentation of 
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FractalSys to support quantum resilience characterization. It not only lists the changes 

made to instrument the calculation of system complexity (in-degree, connections, and 

decomposition) and tracking of system productivity vis-à-vis valued function and output 

quanta, but also demonstrates its use. With a few simple adjustments and methodological 

constraints, FractalSys can be used to characterize and compare resilience of modeled 

systems. Impact to FractalSys is discussed below as it pertains to Systems, States, 

Transitions, and Variables. Though not strictly required, Functions have been added to 

FractalSys to support quantum resilience more clearly. This is discussed below. The 

FractalSys overview (see Appendix A) should be consulted to clarify assumptions made 

herein. 

 It is important to remember that resilience is characterized as a function of system 

complexity and productivity as described by quantum resilience. System complexity is a 

function of system decomposition into subsystems, in-degree as a measure of dependence 

on other systems, and connectivity (in-degree and out-degree) with other systems. 

Measured this way, quantum resilience acknowledges both hierarchical and relational 

complexity. System productivity is calculated based on the valued function and the total 

output of the system as measured in quanta of the valued function. This document 

outlines how these key concepts (italicized) are managed in FractalSys. 

 

 Systems 

 

 The way systems are managed directly impacts the calculation of decomposition 

which contributes to system complexity. System hierarchies are adequately managed by 

FractalSys, but the overall containing system for which resilience characterization will be 
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done should be thought of as an “analysis boundary” (instead of—strictly speaking—a 

real “parent” system) though the distinction is somewhat moot. As shown in the 

canonical example above, the analysis boundary (S0) is drawn with a dotted-line to 

indicate it is an analysis choice instead of a “real” system. S0 effectively contains all 

systems the analyst deemed important to providing the valued function(s). Note that since 

quantum resilience expects “real” parent systems to be included in complexity measures, 

such a choice allows the artificial system boundary to not be implicated in the 

“decomposition” part of the complexity calculation. This can be accomplished by 

assigning the purely “organizational” systems a multiplicity of 0 in FractalSys. 

 

 
Figure 13. FractalSys Representation of Canonical S0 Decomposition 

 Figure 13 illustrates how the hypothetical system in the canonical example would 

be represented in FractalSys. Note that S0 appears as a typical system in a typical 

hierarchy. By counting the number of systems in the hierarchy, its decomposition (self-

included) is easily seen to be 11. Since S0 is an artificial analysis boundary, however, it 

should not be counted in the analysis. FractalSys supports this as shown in Figure 14. 
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Figure 14. Clarification of “System Boundary” and “Parent System” 

 

 Note that FractalSys accurately reflects the decomposition of S0 (in Figure 14) 

and only the decomposition of the systems implicated in the delivery of the valued 

function is counted in the complexity metric which is the sum of the in-degree, 

decomposition, and connectivity values (10+10+23=43). 

 

 States 

 

 Recognizing that system “state” can be an adequate proxy for “function” is 

important (see FractalSys overview). This is a fairly logical assumption considering that 

when a system is in a certain state (as indicated by the values of state variables selected 

and defined by human observers) it is likely to be undergoing certain dynamics in 

performing a certain function or functions. Since quantum resilience emphasizes valued 

function, FractalSys will allow identification of a particular system state as the one in 

which the system delivers its valued function. This does not mean a “state” can be 

resilient and, in fact, it is incorrect to refer to a “state” as resilient. This terminology has 

been casually employed in the literature, but it is vital to remember the “system” is what 

will be characterized for resilience, not a state. 

Systems marked with a 
multiplicity of 0 are assumed 
to be for organizational 
purposes (e.g., for a 
functional decomposition) 
and hence not “real.” Such 
systems do not impact the 
resilience characterization.
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 Functions have been added to FractalSys to support the “valued function” concept 

(see Figure 15). Each system can support an arbitrary number of functions, but in 

practice, these are generally short lists. When a system state is defined, the user specifies 

the number of quanta provided for each function. These can remain zero as necessary. As 

shown in Figure 15, system SB, provides 3 quanta of function f while operating in a state 

that has been arbitrarily named “providing f.” 

 

 
Figure 15. FractalSys State Panel Showing Provision of Valued Function 

 

 Note also that provision of a valued function is considered to be one external 

connection that contributes to the complexity measure. This is because, in general, the 

valued function will be consumed by some external system and does, in that way, 

introduce another connection to the system. 
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 Variables 

 

 FractalSys assumes the extent to which variables are shared by systems defines 

the connectedness of those systems. Setting a variable that is used by another system 

increases connections for both systems. Using a variable which is set or controlled by 

another system increases in-degree for the using system. FractalSys also recognizes 

indirect connectivity. That is, if two otherwise independent systems use a variable set by 

a third system, they are indirectly connected through that variable. Such indirect 

connectivity is not currently exploited in resilience characterization though it is certainly 

within reach of FractalSys to measure this if it is deemed important. At this stage, since it 

creates no real connection or dependency, it is ignored.  

 FractalSys variables are used to ensure proper allocation of in-degree and 

connections in system complexity calculations. Obviously, any variable sharing between 

systems constitutes a connection (and recall that data sharing in FractalSys can represent 

material or non-material exchanges). Such connections will be counted based on unique 

variable names and multiple uses of the same variable between the same systems do not 

increase the overall count (though obviously this can be adjusted as necessary). 

 As discussed in the FractalSys overview, any state or transition that uses a 

variable defined in an external scope (that is, inherited, see FractalSys overview) 

indicates a system dependency. This serves to increment in-degree for that system. 

Similar to connection counting, variables incrementing in-degree will count only once per 

unique variable. The FractalSys overview also suggests that FractalSys does not care 

about directionality of interfaces since there was no driving reason to support such ideas 
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at its design. Since this is the case, an “incoming” data item would also serve to 

artificially inflate “out-degree” for the receiving system. This would result in situation in 

which in-degree and overall connections were always equivalent. To avoid this, a specific 

mechanism will be used to properly manage in-degree for resilience characterization. 

This is discussed in the next section. 

 Since resilience characterization requires the idea of “in-degree” to identify 

system dependencies, it may be easier on the user if they could specify interface 

directionality in FractalSys. This update can be considered as more experience is gained. 

 

 Transitions 

 

 To properly manage in-degree, a specific transition (and transition entry) must be 

created that “sets” the variable in the system which “owns” the variable within its scope. 

In a properly modeled system, such a mechanism will generally emerge as a matter of 

course (that is, there is nothing forced about it), but since it is specifically implicated in 

calculation of in-degree, it merits an example. The canonical example provides an 

adequate demonstration. 

 Figure 16 shows the S0 decomposition and the specific implementation of the SA-

SC interface. For ease of discussion, the data (or material) sent from SA to SC is referred to 

by the variable sa-sc. The hypothetical system proposed in the example shows this to be a 

unidirectional output from SA that is presumably required by SC in generating a valued 

function (otherwise it would not be modeled). The interface implied by the sa-sc 

exchange constitutes a connection for both SA and SC. As expected, this exchange will 

increment the total number of connections for these systems. 
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 Since SC uses a variable that comes from an external scope (see bottom center of 

Figure 16 where the SA variables are listed and variable sa-sc is shown to be within the S0 

scope), it also constitutes an input connection that increments in-degree for SC. Hence, 

from this exchange (and as expected), SC has a connection, and an additional in-degree. 

Note that since FractalSys interfaces are bidirectional, the same would be true for SA. 

This would clearly go against the intent of the system engineer who (based on the 

directional arrow) specifically intended a unidirectional interface from SA to SC. To 

resolve this confusion, SA can assert the direction of the interface by explicitly using the 

FractalSys “SET” keyword. 

 

 
Figure 16. Example of Interface Modeling 

 

Note the scope of 
sa-sc is S0 since it 
is shared between 
SA and SC.

Since SA provides input to SC, SA “sets” the sa-sc
variable in a transition. This allows FractalSys to 
properly treat this interface as unidirectional, from 
SA to SC (assuming, of course, there is no similar 
but opposite entry in the SC system).

S0 is shown here in 
its decomposition 
as depicted in the 
canonical example.
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 “SET” is a reserved keyword in FractalSys that facilitates system simulation when 

FractalSys is not integrated with real systems that externally control variable value 

updates. To use SET to update a variable, it must be placed in a transition entry (and 

therefore, within a transition). As shown in the upper right panel of Figure 16, a transition 

and entry have been created for SA in which the sa-sc variable is specifically “SET” to a 

value in the transition vector. For this example, though “1” is used, the actual value is 

inconsequential, but will likely make more sense for a real modeled system. Since SA 

asserts control over this variable update with a SET keyword, FractalSys does not include 

this in its counting of in-degree for SA. Hence, for SC, both overall connection count and 

in-degree are incremented, while for SA, only the overall connection count is 

incremented. 

 In this hypothetical example, such an approach may appear to be an onerous 

burden on the system modeler, but in practice, such interfaces are managed as a matter of 

course during a complete system analysis. Variables are set and used as needed and 

FractalSys manages the bookkeeping. Further, as indicated above, future modifications to 

FractalSys can be considered that specifically allow the specification of unidirectional 

interfaces. 

 

 Other Notes 

 

 System identity can be rigorously controlled (modeled and enforced) in 

FractalSys. Significant nuance can be shown since an arbitrarily large number of states 

and relationships are supported. Note that when multiple states are defined, a system is 

required to be in one of the states. If no defined state matches current variable values or 
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subsystem configurations, resolution of the unknown state is required. A model wherein a 

system can be in an unknown state is considered incomplete or underspecified and must 

be more fully defined. This also includes the enforcement of managing transitions 

between states based on changes in variables (i.e., “measurables” or telemetry). While 

transitions are not an adequate proxy for “function”, it can readily be seen that regular or 

periodic transitions between states can be a way to model (or even simulate) larger 

“functions.” The engineer is warned, however, that the need for such contrivances may 

actually be suggesting that a more “firm” state be specified for a parent system. 

 FractalSys variables can represent what Holling (and others) would suggest are 

the handful of fast- and slow-moving variables that drive most system states. Importantly, 

however, contrary to the literature, we need not be forced to limit them to a handful, or 

classify them as “fast” or “slow” a priori. Instead, if such a classification is deemed 

important, variables should be observed over timeframes of interest and then can be 

determined to be fast or slow-moving. It is important to moderate the tendency to too 

quickly assume what is fast and what is slow and to avoid making decisions based on 

such assumptions. Further, when tools like FractalSys are available to manage system 

models of significant size and complexity, it is unnecessary to be frugal in assignment or 

tracking of variables. Only when the system has been adequately codified can assessment 

of major driving variables and consolidation for simplicity be done. 

 Note that it is unlikely to be important that FractalSys is a tool for development of 

Anticipatory Systems (sensu Rosen, 1985). This might become interesting or useful in the 

future, but as currently envisioned, these features are not intended for use in quantum 

resilience characterization work. 
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 An argument could be made that quantum resilience only characterizes resilience 

with respect to specifically identified valued functions/services and does not fully 

characterize a system. This is only true to the extent that the analysis (1) has not fully 

documented the system, and (2) has not fully identified all of the functions of value. If a 

system analysis is incomplete, the resilience characterization may be incomplete (but 

likely will still be very useful). This is not, however, an argument against quantum 

resilience. Instead it is an argument that suggests analyses must be completed and 

properly vetted. If a variety of valued functions are not identified, then yes, the 

characterization of the system will be more directly tied to those that are identified and it 

may discount those functions that are underrepresented. Again, an incomplete model can 

still be useful, but the applicability might be limited by the failure to acknowledge other 

valued functions or other contributing systems. Tools like FractalSys make it very easy to 

incrementally embellish models as needed and ensure transparency throughout the entire 

process. System modeling has a long history of balancing fidelity with cost/benefit trades. 

A similar “sweet-spot” is likely to be found with resilience characterization modeling. 
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ILLUSTRATING QUANTUM RESILIENCE 

 

 As a generalized theory, quantum resilience can be applied to all system regimes 

and all disciplines. Obviously, some systems are more physical than others, and gaining 

consensus among experts over the methods of modeling and measurement is more easily 

achieved. Some systems (especially psycho-social systems that are predominately about 

human resilience) will require more work to gain consensus. Importantly, quantum 

resilience ensures transparency and consistency in managing these systems. System 

regimes remain loosely defined, but involve the following rough delineations: 

1. Mostly-human-engineered systems (e.g., the Internet, intelligence surveillance, 

infrastructure), 

2. Mostly-natural systems (e.g., ecosystems like salt marshes, boreal forests), 

3. Mixed socio-ecological systems (e.g., catchments and basins with economies 

based on mixed grazing and agriculture), and, 

4. Mostly-human systems (e.g., organizations, governments). 

 The brief examples below serve to not only introduce a variety of system classes 

and illustrations on approach but also will instruct and sometimes correct intuition about 

resilience. In general, these examples are too simplistic to provide usable data, but they 

can facilitate discussion and provide fodder for future work. These examples are intended 

to build confidence in the method and tools and do not necessarily offer solutions. 

 Though they could easily be replicated in any of the aforementioned model-based 

systems engineering tools, all the examples documented herein have been modeled and 

characterized using the author’s FractalSys tool. 
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Lake-Agriculture System 

 

 The history outlined by Carpenter et al. (2001) for a representative lake-

agriculture system is a litany of protecting a natural lake from an onslaught of events it 

was not “designed” to withstand. In fact, from the analysis, the only conclusion that can 

be drawn is that the lake is not resilient and hence needs human-designed protection. 

Throughout, the degradation of the lake system away from its pristine condition is 

conflated with a degradation of resilience. This positions a former “state of nature” as the 

ideal high mark for resilience, which Carpenter et al. suggest was available in 1840. It is 

fairly typical for the eco-resilience literature to make this tenuous equation, so it must be 

made clear that they are speaking of ecological health and not resilience. 

 Instead of a notional analysis based on the adaptive cycle, the lake-agriculture 

system proposed by Carpenter et al. (2001) can be more completely assessed by quantum 

resilience. First, quantum resilience requires us to recognize that based on their 

discussion there are (at least) two valued functions: (1) incremental economic gain from 

agricultural production near the lake, and (2) some presumably measurable social utility 

of the lake based on (perhaps) recreational and aesthetic value (and perhaps a few 

vacation rentals). Note that for this particular example, management efforts were focused 

on restoring the clarity of the water by controlling the Phosphorous content. After 

redirecting sewage effluent away from the lake, the principle contributor to the nutrient 

increase in the lake was agricultural runoff. Note that while the lake must remain 

“environmentally healthy” to support aesthetic and recreational goals, its value is 

ultimately derived from functions that can be reduced to economic values as indicated in 

the proposed list of valued functions: 
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1. Agricultural production 

2. Fishing licenses 

3. Cabin rentals 

4. Boat rentals 

5. Boat launch fees 

 Obviously, the list can be argued and extended as necessary—including, if 

desired, specific valuation of low Phosphorous. Recall, however, that high P will be 

reflected in low economic return from recreation. Valuation of biophysical aspects is 

exemplified in the extended example of the Goulburn-Broken Catchment. 

 Note that “agricultural production” is forced here. If the real interest is to earn 

money from the real estate surrounding the lake, other options for land use are available 

(e.g., a housing development) and the valued function can be adjusted accordingly. 

Obviously, this might reveal other social dimensions that lead to other valued functions, 

but these can be formulated in a set of scenarios as needed. Once these valued functions 

have been elucidated to an extent satisfactory to the analysis team, quanta of resilience 

can be established and assigned (e.g., how much economic gain from agriculture over 

what periods and how much enjoyment of the clear water, etc.). Even with these first 

steps driven by quantum resilience analysis, it is clear that an actual system is being 

addressed and not simply a romanticized idea of a healthy lake. Certainly, subsystems 

can receive focused attention if desirable, but first the whole system must be properly 

acknowledged. 

 Second, observation of the scale of the system that delivers these functions can 

now occur. Just because, for example, economics is implicated in the valued function, 
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does not imply it is necessary to expand the system to include the entire global economy. 

If the quantum of resilience is something like net revenue per growing season from the 

land in the lake’s vicinity, it can remain scoped fairly tightly. As suggested above, 

however, it must be admitted that this opens the doors to many alternative mechanisms 

for generating revenue, some of which do not even require that agriculture be the 

technology of choice. Still, if the valued function includes agriculture, alternative crops 

or alternative approaches to agriculture might be considered and might expand or contract 

the system scope (e.g., an orchard has different impact than an industrial wheat field). 

Further, since system structure is an important consideration, alternative protections for 

the lake could be envisioned that might expand the scale of the system at costs that must 

be acknowledged (e.g., if all runoff were captured by retaining walls and routed to a 

wastewater treatment plant this would change the scope to include the municipal water 

and sewer system). In that case, retaining walls and additional plumbing must be 

acknowledged to be protection-oriented and contributing to the robustness of the system 

in a way that may not be specifically measurable as valued function. Instead, it is a 

contributor to system complexity that is specifically required in order to gain the other 

valued functions that are closely related to the clarity of the water in the lake. Such 

protections do not necessarily increase resilience as much as they allow the system to do 

what it was designed to do. 

 Third, clear identification of systems and subsystems that are implicated in the 

valued function delivery can be accomplished. Once the systems that provide the function 

are identified it is easy to see how they can be required to maintain their identity. It is 

also easy to see how much they can change without impacting reliable delivery of the 
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function. Recall that it is disingenuous to suggest that the system can show its resilience 

by delivering different functions. A lake-agriculture system cannot reasonably be 

changed into a parking lot if recreational use of the water is one of the valued functions. 

For example, if agricultural production on surrounding land is non-negotiable, the 

aforementioned retaining walls could deflect or control dangerous runoff events, or a 

higher rate of lake water replacement could be established, but you cannot simply tell 

farmers to not use fertilizer. Obviously costs must be carefully considered and sometimes 

management costs will serve to moderate just how much value there is placed on specific 

valued functions. Note “maintaining a pristine natural environment” is a valid valued 

function, but it greatly limits what can be done if economic return remains a valued 

function. Balance must be sought through traditional cost-benefit analysis. 

 Fourth and finally, it can be determined how the valued functions are (or can be) 

redundantly supplied. Carpenter et al. (2001) recognize a few redundant approaches and 

this is a step in the right direction. For example, they recognize how bio-manipulation of 

the lake’s food web could improve water quality. Or, as previously stated, management 

may involve a more delicate balance of agriculture. After considering important warnings 

about focusing solely on technological fixes (cf. Allenby, 2012, p. 357), managers should 

certainly not preclude the possibility of employing elaborate and expensive technological 

remediation. Though costly, there is no reason technology could not be put in place to 

prevent all agriculture run-off from entering the lake. Sometimes SES managers are 

hesitant to include expensive technological fixes in their solution spaces, however, it is 

unfair to assume that their lamented socio-political “tumult of confusion” (Carpenter et 

al., 2001, p. 770) is without significant cost. 
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 A simplified lake-agriculture system is depicted in Figure 17. It is understood that 

a real system is far more complex than this, but this will provide several talking points. 

For the simple example one farm is assumed to own and operate all surrounding land. 

They have installed an attractive stone wall to prevent erosion and protect the lake from 

runoff from a part of the farm, but runoff continues to happen in other areas. A local real 

estate manager rents two cabins on one corner of the lake. There is an access road, a dock 

with rental boats and a launching ramp. Fishing licenses are sold and catch fees collected. 

A small economy is generated in managing recreational use of the lake. 

 

 
Figure 17. Simple Lake-Agriculture System 

 

 Based on the list of valued functions above, Table 14 summarizes the resilience of 

the system. Note that this is effectively an economic system and that its resilience is 
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based on the ability to generate economic value in a variety of ways. Obviously, if the 

lake becomes turbid, the economic value from recreation is diminished. 

 

Table 14 

R-characterization: Lake-Agriculture System 

System (Function) $K/year 

Agriculture (Economic Output) 200 

Cabin 1 (Economic Output) 20 

Cabin 2 (Economic Output) 20 

Licensing Bureau (Economic Output) 1.5 

Launch Management (Economic Output) 2.5 

Boat Rental (Economic Output) 5 

  

Productivity 1494.00 

Complexity 19 

R-characterization 78.6316 

 

 This provides a baseline resilience characterization for the simple system. Now 

assume that for some reason, the non-agricultural economic production ceased. Note 

well, this can be caused by any number of disturbances including eutrophication after the 

farmers carelessly dumped 100 tons of fertilizer into the lake, ten consecutive years of 

uncontrolled flooding and unrestrained runoff, a labor union strike in the recreation 

sector, or a bomb scare at the dock. The particular disturbance does not matter, but 

assume that eventually, all non-agriculture economic production disappears. This 

constitutes an alternative system deployment and the resilience can be reassessed with the 

results depicted in Table 15. 
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Table 15 

R-characterization: Lake-Agriculture System (Ag Only) 

System (Function) $K/year 

Agriculture (Economic Output) 200 

  

Productivity 200.00 

Complexity 14 

R-characterization 14.2857 

 

 Despite the marginal contribution (~20%) of the non-agricultural economic 

production in the original assessment, the resilience is dramatically reduced by the loss of 

the recreation sector. Though in this case, it is clearly an artifact of the way the system is 

modeled, it is a good example of how incremental delivery of valued function contributes 

to resilience. In a more thoroughly modeled system, the negative impact of the non-

agricultural productivity loss might not have been so dramatic, or it might have been 

worse. This reiterates the importance of gaining consensus on the system modeling but 

also demonstrates the power of the approach in instructing engineers about resilience and 

intuition. 

 Importantly, this example also demonstrates how quantum resilience reverses the 

equation on disturbances. As discussed at length above, the resilience of a system cannot 

be based on disturbances, but once the resilience is characterized, it can be used to 

“measure” the size of a disturbance. With this simple lake-agriculture system, no matter 

how the new system configuration came about, the difference in the pre- and post- 

resilience characterizations can be used to measure the impact in terms of resilience. 

 Hence, the magnitude of a “lake eutrophication event” or a “labor union strike” 

can be measured in diminished resilience. As always, caution must be used to ensure that 

homologous systems are being compared. 
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Simple Desk 

 

 A trivial “desk system” with a top, four drawers, one file drawer and four legs 

might offer valued functions of work surface (sq. ft.), locked storage in drawers (cu. ft.), 

and filing space (feet of standard file width). Table 16 depicts the resilience 

characterization for the simple desk. 

 

Table 16 

R-characterization: Desk 

System (Function) Productivity Multiplicity 

Top (Level Work Surface) 20 1 

Drawer (Storage) 1 4 

File Drawer (Filing) 2 1 

Productivity 39.00  

Complexity 16  

R-characterization 2.4375  

 

 As alluded above, a desk is manufactured to operate in a given environment (e.g., 

the level floor of a climate-controlled office building), so it would be ludicrous to expect 

it to function properly when positioned on the stairs in a stairwell. It therefore makes no 

sense to suggest it is not resilient to that particular disturbance. Recall that resilience 

characterization is unconcerned with specific perturbations, so it cannot matter why the 

desk is deployed in an unleveled environment. It matters only that its valued function is 

impacted. Once the desk’s resilience has been properly characterized, positioning the 

desk precariously on the stairs can be visualized as an alternative system deployment and 

then resilience can be re-characterized. In this case, the contents of the drawers might be 

a bit jumbled, but only the 20 sq. ft. of “Level Work Surface” would be lost, resulting in a 

new resilience characterization of 1.267. The same kind of re-characterization can be 
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done if, say, somebody attacked the desk with a chain saw and removed a corner, 

destroying two sq. ft. of work surface and one of the drawers. In this case, the new 

resilience characterization is: 2.143. 

 The important thing to understand about this is that quantum resilience changes 

the equation on perturbations. Instead of attempting to define resilience by corralling an 

infinite number of perturbations, specific perturbation impacts can be “measured” by 

changes in resilience characterization. This properly focuses resilience analysis on the 

system instead of its environment. 

 

Imbricated Theater 

 

 When the show must go on, it might be important that a theater is resilient. 

Imagine a simple theater with some physical offices, dressing rooms, entry foyer for 

concessions sales, and a stage. This theater will obviously have some management, 

concessions staff, production staff, and a troupe of actors. Hierarchically, the theater 

system might be arranged as depicted in Figure 18. The concessions staff and the 

production staff report to the manager but form separate organizations within the theater. 

 Note that for this example the concessions staff contains three normal “sellers” 

and one “special” seller. This is because, in a pinch, this sales attendant can also act. The 

theater demonstrates redundancy in its degenerate form because even though the sales 

staff are differently trained and have different “structure” than the actors, one can 

apparently substitute and provide the acting function if the need arises. This also 

demonstrates the way degeneracy can lead to imbricated redundancy since the sales 

attendant reports to a different organization than the actors. In this illustration, the larger 
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“containing” system (the entire theater organization) is getting involved in providing the 

function when the specific sub-organization (the acting troupe) cannot deliver it. Such 

functional redundancy may seem inconsequential until the resilience of the system is 

characterized. 

 

 
Figure 18. Simple Theater System 

 

 For this simple system, assume each actor produces one unit of performing, while 

each concessions attendant produces one unit of selling. Additionally, the special sales 

person also contributes her capacity to act. While we may not understand the “magic” 

behind a person who can sell concessions and perform, Table 17 shows that it confers 

added resilience on the system. 
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Table 17 

R-characterization: Simple Theater 

System (Function) Special Salesperson 

can Act 

Productivity 

(Multiplicity) 

Salesperson 

cannot Act 

Productivity 

(Multiplicity) 

Generic Sales Persons (Sell) 1 (3) 1 (3) 

Special Sales Persons (Perform) 1 (1)  

Special Sales Persons (Sell) 1 (1) 1 (1) 

Support Staff (Support) 1 (3) 1 (3) 

Actors (Perform) 1 (5) 1 (5) 

   

Productivity 61.00 50 

Complexity 40 39 

R-characterization 1.5250 1.2821 

 

 This example also presents a way to think of human and social capital. Here, if 

human capital is measured by training (perhaps she is attending acting school), exposure 

(has seen the play several times), experience (has been called on to fill in before), and 

daring (no fears about being on stage), the special sales person clearly demonstrates 

higher human capital than a typical seller who has no interest in expanding her horizons 

and stepping on stage. It is clearly the human capital of the theater that contributes to its 

higher resilience in this case. 

 

Electric Power Plant/Grid 

 

 After I heard it suggested that the Fukushima Daiichi nuclear power plant “should 

have been resilient” in the face of the 2012 earthquake and tsunami I realized that 

resilience is apparently a tricky concept. Though quantum resilience takes a different 

tack, some scholars argue that resilience might imply the ability of a system to bounce 

back to typical function after it is perturbed in some manner. Since there is a huge 

literature supporting that idea, this is most likely what was intended in that casual remark, 
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though it is anybody’s guess what they might have envisioned. Other scholars imply 

resilience instills the ability to do even more than bounce back, perhaps even allowing for 

adaptation to be an important aspect of the response (cf. Holling, 1973). Typically, 

desirable adaptations are not elucidated and, in the context of a submerged and 

earthquake-toppled nuclear power plant, could scarcely be envisioned. Recently, 

however, scholars seem to be standardizing on the concept that adaptation is either 

requisite for resilience or a close cousin (Folke et al., 2010). Quantum resilience proposes 

a different and more practical approach and the specific industrial example of Fukushima 

will help to make this clear. 

 The earthquake and tsunami that destroyed the Fukushima nuclear power plant 

and forced Japan out of the nuclear power industry provides an excellent example to 

which the tenets of quantum resilience can be applied. Many would argue that the power 

plant is the system that should be resilient. But what might “resilience” have looked like 

in the Fukushima nuclear power plant? Recall that back when Fukushima was designed 

and built, “fault tolerant” and “ultra-dependable” were the precursors to “resilience” that 

implied there were designed-in problem management features that included something 

more sophisticated than simple redundancy. Engineering teams spent significant time in 

failure modes effects analysis and the FMEAs done for Fukushima (though obviously 

done over 40 years ago), were very likely as sound as anything going at the time. This 

resulted in a highly robust system that was augmented with some redundancy and some 

assorted system performance degradation options. The plant was built to withstand 

magnitude 9 earthquakes and be failsafe, which it managed to do (Braun, 2011). It was 

designed to lose power and shutdown gracefully, which it was in the process of doing, 
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when the over 7 meter tsunami struck (it was designed to withstand 6.5 meter tsunamis). 

Does this qualify as resilient? It would certainly qualify given the current literature about 

projecting and planning for disturbances. If so, why did Fukushima fail to survive the 

tsunami? And if Fukushima’s many defenses did not qualify it as resilient, could it have 

been done better? This provides a hint that resilience is being misinterpreted. 

 There are two reasons to consider this in the context of quantum resilience. The 

first is to point out that what is typically considered resilient is really more about 

robustness (see above). Obviously, making a system robust can only go so far in ensuring 

its survivability. But in this case, not only did Fukushima operate well in its designed-for 

environment it also resisted an extreme environment for a time. Second, we must ask if 

we are thinking about “resilience” at the right scale. Can a standalone power plant really 

be expected to be resilient? What would the valued functions be in that case? Consider 

that Japan’s energy infrastructure was very resilient to the disaster (in fact, so resilient 

that they quickly phased-out nuclear power generation entirely and are consequently less 

resilient now because of the removal of this functional redundancy). Consider that it was 

only the areas that were hit by the disaster at Fukushima that were impacted by power 

outages—and even in that region portable generators were available fairly quickly to 

provide necessary power. Even if a few weeks or months were required to restore power 

where infrastructure was damaged, that is an impressive “bounce-back” capability 

considering the many years required to do the initial configuration. So perhaps resilience 

must be considered at a larger system level. For Japan, their energy infrastructure 

resilience was instrumented by significant levels of redundancy and broad distribution of 

generating capability, so it exhibited significant resilience. 
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 While a given power plant cannot be effectively “resilient against” a tsunami 

(recalling that quantum resilience suggests that phraseology is meaningless), each plant 

contributes to the resilience of the larger energy production system because of the 

redundant incremental contributions each makes. In this particular example (and in the 

energy industry at large), the valued function is electrical power generation, and an 

ability to provide incremental power to the grid is the quantum of resilience. For this 

reason, while we may be interested (because of cost) in hardening each plant against a 

long list of disturbances, it makes no sense to design them for resilience beyond their own 

local redundancy. Can more be done to make the plants robust? Sure. For example, 

backup power systems (for pumps and supervisory control systems) can be wired from 

distant generating plants, ensuring that only physical severance of power cables could 

dissociate the power from the need—but such solutions are costly and subject to their 

own failure modes. Further, increasing robustness in this manner greatly increases the 

complexity of the grid while only marginally contributing to its resilience. 

 Assume an electric power grid is supported by several power plants offering two 

valued functions: energy to the grid (MW) and employees to the job market. Table 18 

provides a summary resilience characterization of a grid with six power plants with 

varying outputs and employment. Note that these numbers are notional and resilience 

characterization is high because none of the real complexity is modeled. Obviously, if 

one plant is removed (e.g., for maintenance or because of a tsunami, see 5-Plant column), 

resilience characterization will be lower because of less overall productivity. Table 18 

shows a ~15% decrease in resilience for this alternative system deployment. This might 

be expected given that Plant 1-1 was one of 6 and was one of the smaller ones. 
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Table 18 

R-characterization: Multi-operator Grid 

System (Function) 6-Plant Productivity 5-Plant Productivity 

Plant 1-1 (Energy) 200 - 

Plant 1-1 (Employment) 20 - 

Plant 1-2 (Energy) 150 150 

Plant 1-2 (Employment) 15 15 

Plant 1-3 (Energy) 350 350 

Plant 1-3 (Employment) 30 30 

Plant 1-4 (Energy) 250 250 

Plant 1-4 (Employment) 20 20 

Plant 2-1 (Energy) 400 400 

Plant 2-1 (Employment) 30 30 

Plant 2-2 (Energy) 400 400 

Plant 2-2 (Employment) 25 25 

   

Productivity 11340.00 8350.00 

Complexity 20 17 

R-characterization 567.0000 491.1765 

 

 Clearly, removing one plant from the grid shows obvious impact but the 

redundant plants allow it to not be crippling. Table 19 shows that if the system were 

further (if trivially) decomposed to have multiple turbine/generators providing the energy 

for each plant, the same impact (loss of plant 1-1) would only impact resilience by 12%. 

Such simple examples reinforce the intuition that incremental delivery of valued function 

from redundant systems contributes to resilience. 

 

Table 19 

R-characterization: Multi-operator/Multi-turbine Grid 

System (Function) 6-Plant Productivity 5-Plant Productivity 

Turbine/Generator 1-1-1 (Energy) 100 - 

Turbine/Generator 1-1-2 (Energy) 100 - 

Plant 1-1 (Employment) 20 - 

Turbine/Generator 1-2-1 (Energy) 50 50 

Turbine/Generator 1-2-2 (Energy) 50 50 

Turbine/Generator 1-2-3 (Energy) 50 50 
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System (Function) 6-Plant Productivity 5-Plant Productivity 

Plant 1-2 (Employment) 15 15 

Turbine/Generator 1-3-1 (Energy) 100 100 

Turbine/Generator 1-3-2 (Energy) 100 100 

Turbine/Generator 1-3-3 (Energy) 150 150 

Plant 1-3 (Employment) 30 30 

Turbine/Generator 1-4-1 (Energy) 100 100 

Turbine/Generator 1-4-2 (Energy) 150 150 

Plant 1-4 (Employment) 20 20 

Turbine/Generator 2-1-1 (Energy) 100 100 

Turbine/Generator 2-1-2 (Energy) 100 100 

Turbine/Generator 2-1-3 (Energy) 100 100 

Turbine/Generator 2-1-4 (Energy) 100 100 

Plant 2-1 (Employment) 30 30 

Turbine/Generator 2-2-1 (Energy) 100 100 

Turbine/Generator 2-2-2 (Energy) 100 100 

Turbine/Generator 2-2-3 (Energy) 100 100 

Turbine/Generator 2-2-4 (Energy) 100 100 

Plant 2-2 (Employment) 25 25 

   

Productivity 32340.00 25400.00 

Complexity 50 44 

R-characterization 646.8000 577.2727 

 

 This illustration also demonstrates that a specific power plant’s resilience is 

attributable to its redundant energy supply capacity (i.e., more turbines and generators), 

and that it is difficult to otherwise increment the resilience of a specific power plant. In 

general, it makes sense to increase the robustness of an individual power plant (as was 

done with Fukushima) but to understand energy resilience at a broader system level. 

 

Pipe System 

 

 Intuition can be tested by considering a simplistic pipe system where the valued 

function of the system is delivery of some fluid. In this simple case assume one pipe 

delivers 100 units of liquid from one place to another (pressure, pipe size, and flow rate 

are all ignored). Table 20 depicts the resilience characterization results (Single Pipe 
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column). It seems intuitive that adding a redundant pipe will increase the resilience of the 

delivery system. Note, however, that unless the volume of fluid delivered is also 

increased, adding another pipe simply increases the system complexity (and cost). 

 

Table 20 

R-characterization: Simple Pipe System 

System (Function) Single Pipe Dual Pipe Shared Dual Pipe 

Pipe 1 (Fluid Flow) 100 100 50 

Pipe 2 (Fluid Flow) - 0 50 

    

Productivity 100.00 100.00 200.00 

Complexity 2 3 4 

R-characterization 50.0 33.33 50.0 

 

 Consider two alternative configurations with a redundant pipe, and note that 

neither increases resilience. First, if the backup pipe is added and left empty (see Dual 

Pipe column), it is merely a backup, and provides no function—only complexity and cost. 

This actually reduces resilience. Second, if the “backup” pipe is used to provide half the 

valued function (i.e., 50 units flowing through each pipe, see Shared Dual Pipe column), 

the redundancy can be thought of as a “wet” backup. Still, this only matches the 

resilience of the original configuration because now two systems (with their attendant 

complexity) are used to perform the same overall function (delivering 100 units) that one 

system previously provided. 

 In the two latter cases, the redundant pipe might only be added if it is considered 

critical infrastructure where limited downtime is permitted. In the “dry” backup case, 

there may be a delay while the empty pipe takes over for the first (depending on pressure 

and distance), but it might be deemed a reasonable delay when repair times are 

considered. Importantly, however, it must not be glibly assumed that resilience from 
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redundancy will always be cost effective. If the mean time to repair (MTTR) for the 

failed pipe warrants the additional cost for a hot backup, clearly the third configuration 

provides the best choice in spite of the fact that its resilience is identical to the single pipe 

configuration. 

 Note, however, that multiple valued functions could be considered. If function is 

distinguished and modeled separately as “fluid flow” and “backup”, the resilience 

characterization is the same as the original characterization because now there are two 

valued functions (see Table 21). Alternatively, engineers may decide that modeling flow 

capacity (the capacity to have flow) makes more sense. This allows for both pipes to 

contribute the same valued function even if not being used (results shown in Table 22). 

 

Table 21 

R-characterization: Simple Pipe System (Differentiated Functions) 

System (Function) Dual Pipe 

Pipe 1 (Fluid Flow) 100 

Pipe 2 (Backup) 100 

  

Productivity 200 

Complexity 4 

R-characterization 50 

 

 

Table 22 

R-characterization: Simple Pipe System (Combined Function) 

System (Function) Dual Pipe 

Pipe 1 (Flow Capacity) 100 

Pipe 2 (Flow Capacity) 100 

  

Productivity 400 

Complexity 4 

R-characterization 100 
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 Importantly, quantum resilience does not force a specific approach, and leaves the 

domain-specific modeling decisions to the experts involved. Quantum resilience does, 

however, enforce transparency and calls attention to the consensus required while at the 

same time enforcing consistency for any models that might be compared among 

homologous systems. Any of these approaches could be appropriate and each reinforces 

the intuition of the engineer. 

 

Referent Organizations 

 

 Trist (1983) suggests referent organizations provide vital connective tissue that 

allows organizations in specific domains (e.g., energy or water delivery and regulation) to 

better perform their functions as the problems they face become increasingly complex. 

Trist refers to these as “meta-problems” while Rittel and Webber (1973) would call them 

“wicked.” Referent organizations contribute not by providing delivery of domain-related 

functions (e.g., they do not produce energy or pump water), but by filling the inter-

organizational space by clarifying values and rules, facilitating communication and 

information flow, tracking emerging trends, and identifying alternative futures. 

 In terms of resilience, the “value” of referent organizations is buried in the 

complexity they add to the structure of the system. This makes the trade between 

complexity and productivity obvious while pointing out that it is sometimes difficult to 

observe, putting significant pressure on the analysis team to thoroughly understand and 

document the systems for which they are characterizing resilience. More specifically, in 

terms of quantum resilience, the referent organization makes the system more complex 

without providing a specific increment to productivity by exporting a valued function. 
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Instead, referent organizations are a piece in the background that increases the 

productivity of other organizations that are actually producing the valued function. While 

their overall effect is multiplicative, this can only be through productivity that is 

increased in another organization. 

 Figure 19a imagines two isolated organizations generating their valued functions 

(f) while Figure 19b imagines the insertion of a referent organization which connects the 

two organizations in such a way that they can both be more productive (f + ϵ). As shown, 

it is questionable whether or not the overall industry represented in Figure 19a will be 

more or less resilient than the one indicated in Figure 19b. This depends on the 

incremental value of the productivity represented by ϵ. 

 

 
Figure 19. Referent Organization as Productivity Enhancer 

f f
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 For this simple example, assume two identical organizations each with a 

supervisor, an assistant, and two departments with 10 workers. Both organizations have 

the same output in terms of valued function (e.g., 100 units of something). Their baseline 

complexity allows resilience for the overall “industry” (consisting of two organizations) 

to be characterized as shown in Table 23 (“Two Orgs” column). Adding a referent 

organization with five workers that connects the two organizations together (similar to 

what is shown in Figure 19b) without increasing the functional output of the industry 

results in a lower resilience due to the increased complexity of the industry (“Two Orgs 

with Ref” column). As discussed however, referent organizations are supposed to 

increase output of the organizations with whom they interface. In the last column of 

Table 23, productivity has been increased to demonstrate the restoration of the original 

resilience of the simple system. Note that for this particular referent organization to be an 

effective addition to the landscape, it must make each of the other organizations more 

than 50% more productive in delivering their valued function. 

 

Table 23 

R-characterization: Two Organizations with Referent Organization 

System (Function) Two Orgs Two Orgs 

with Ref 

Two Orgs with Ref and 

Increased Productivity 

Organization 1 (Industry Output) 100 100 155 

Organization 2 (Industry Output) 100 100 155 

    

Productivity 400.00 400.00 620.00 

Complexity 52 79 79 

R-characterization 7.6923 5.0633 7.8481 

 

 Optionally, a referent organization can be modeled as providing unique valued 

functions which would contribute to the overall productivity of the system. This would 
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serve to counteract their complexity in the overall resilience characterization. While not 

wrong, such an approach would not be recommended since it assumes the value of the 

referent organization instead of forcing that it be proven through actual productivity 

increases in other organizations. Once again, this stresses the need for consensus to be 

established among the experts modeling the systems. 

 Importantly, though it is not done in this simple example, there is significant 

human capital that can be modeled for organizations (such valuation is demonstrated in 

the extended example of the Goulburn-Broken catchment below). In this simple example, 

if human capital were modeled as a valued function, this would allow referent 

organizations to contribute to overall system productivity without contributing 

specifically to the “Industry Output” valued function. The point of this specific example 

is not to be exhaustive but to isolate the important idea that sometimes hidden complexity 

indirectly contributes to system productivity. 

 

Urban Foraging 

 

 Though scholars differ on the degree to which they are willing to acknowledge 

cultural differences between foraging and agro-urban societies, there is at least one 

consistent observation: agrarian societies store things; foraging societies (because of their 

nomadic and transitory existence) do not. Ultimately, it must be acknowledged that agro-

urban societies “stock” their local environments and make them target rich for “urban 

foraging” while foraging societies depend on nature to stock the environment and 

sometimes must migrate in order to best exploit the much slower processes of nature. 

Clearly, hunter-gatherers follow the food, but less obviously, urban foragers also follow 
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the food. For them, however, food is regularly replenished in their cupboards and on their 

market shelves. 

 Though the systems are not perfectly homologous, in general, urban food systems 

are more resilient than hunter-gatherer approaches because of their adoption of storing. 

Storing operationalizes resilience through redundancy. This is especially true if food 

accessibility, availability, and variety are considered among the valued functions of a 

food system. From a natural landscape you can harvest what is in season, when storage is 

brought to bear, seasonal supply is less controlling. The availability of multiple stocks of 

goods has allowed significant food resilience in urban populations. Cities provide means 

for storage of large and redundant quantities of food and goods. Foraging in a 

supermarket is easier than in the forest due to the density and variety of the goods in a 

small space (not to mention the ease). Further, because of the redundancy, there is 

enough food in a supermarket for many people, and should one market be exhausted, 

others are readily available until resupply happens. 

 Kelly (1995) makes it clear that foraging as a lifeway is a spectrum and that there 

can be no generalized hunter-gatherer society which eventually gave way to a generalized 

agrarian society. He also speaks of the way tribal intermarriage provided a mechanism for 

access to a larger quantity of foraging and hunting grounds (Kelly, 1995, p. 274). 

Intermarriage permitted bi-locality to emerge as an effective response to fluctuating 

environments since safe and uncontested migration becomes a simple solution when there 

are inadequate food resources in the current locale. Kelly’s summary is that such cultural 

evolutions “decrease long-term variance in returns and reduce risk.” In fact, bi-locality 
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effectively increases the redundancy of available food sources and enhances the 

resilience of the foraging food system. 

 It may have started on the savanna with intermarriage and exploitative family 

relationships, but exploitation of redundant food sources was mastered in the city. Urban 

humans still participate in a foraging lifeway. Cities are a depot of goods that provide a 

target-rich environment for foraging. In the developed world, it has been a very long time 

since humankind has been predominately involved in food production. Even those who 

work in agro-business seldom “live off the land.” Instead, humans forage in markets that 

have been stocked by other humans who focus on growing or husbanding. The trade and 

supply networks that have evolved over time have contributed greatly to the resilience of 

the human food system. 

 

 
Figure 20. Simplistic Foraging Supply Chains 

 

 Figure 20 depicts highly simplified foraging supply networks. Figure 20a 

represents hunter-gatherer foraging from one or several natural locales while Figure 20b 

shows a more modern supply chain for food provisioning. In each case a valued function 

of food provisioning is proposed (as suggested above, a more complete list might include 

accessibility, availability, variety, nutritional value, reliability, etc.). In each case assume 
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Sellers FoodGrowers Processors
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that 100 units of food are provided. Note that for this simple example only supply is 

being addressed since demand (or, need) is more properly thought of as a perturbation on 

the system. Table 24 shows a comparison of some simple functional allocations based on 

Figure 20a. These include a minimalist environment of one locale (Single Locale), a 

situation where two locales are accessible, and a situation where two locales are 

available, each providing 50 units of food. 

 

Table 24 

R-characterization: Urban Foraging 

System (Function) Single Locale Split-Multi-Locale Multi-Locale 

Foraging Locale 1 (Food) 100 50 100 

Foraging Locale 2 (Food) - 50 100 

    

Productivity 100.0 200.0 400.0 

Complexity 2 4 4 

R-characterization 50.0 50.0 100.0 

 

 As shown above with the trivial pipe system example, it can be observed that 

redundant access to a food supply increases resilience. 

 Figure 20b depicts a simplified food supply network. Since each of the nodes can 

be multiplied, care must be taken in reviewing the following tables. Note as well that I 

am not specifically arguing that modern food supply networks are comparable and 

homologous with natural foraging locales, but the numbers provided are intended to 

demonstrate the higher resilience of the urban foraging approach since these simple 

examples are about intuition. 

 Table 25 shows a simple progression of complexity increases in urban food 

supply chains. Column I shows resilience with one grower, one processor, and one seller. 

Column II assumes a single grower and processor but expands to 10 sellers. This 
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demonstrates how, with the same food volume and some supply chain complexity 

increases, the resilience is still greater because of the redundancy in sellers who provide 

access to the food consumers. Column III expands the network to 10 individual supply 

chains (10 of each; growers, processors, sellers) but maintains the original volume of 

food. Note how in this case the complexity “catches up” with the constant productivity 

values and effectively cancels the gains in resilience. Finally, column IV recognizes that 

it is not realistic to assume the volume of food will remain the same if the network is 

expanded like that, so restoring each seller’s volume to 100 (and assuming the growers 

and processors can support that volume), the dramatic increase in resilience can be seen. 

 Supporting intuition, this simple example demonstrates increasing resilience with 

increasing supply redundancy. 

 

Table 25 

R-Characterization: Urban Foraging Simple Progression 

System (Function) I 

Function 

(Multiplicity) 

II 

Function 

(Multiplicity) 

III 

Function 

(Multiplicity) 

IV 

Function 

(Multiplicity) 

Seller (Food) 100 (1) 10 (10) 10 (10) 100 (10) 

     

Productivity 100.00 1000.00 1000.00 10000.00 

Complexity 10 46 100 100 

R-characterization 10.0000 21.7391 10.0000 100.0000 
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RESILIENCE IN THE GOULBURN-BROKEN CATCHMENT 

 

Introduction 

 

 It has recently become fashionable to be concerned about the resilience of cities 

and large socio-ecological systems (SESs). Such concern seems warranted since cities 

and SESs provide livelihoods for most people, and we are interested in understanding 

how enduring they might be. Further, current approaches to resilience tend to lead us to 

believe that such assessments are doable, meaningful, and actionable. While quantum 

resilience enables such assessments, it is unclear that resilience characterization at such 

scales is actually meaningful—especially if performed from the top-down. This is, in 

part, due to the broad (and sometimes conflicting) list of perceived valued functions 

associated with such scales. It is also in part due to the tendency to want to compare the 

outcomes of specific resilience characterizations and suggest why, say, one city is more 

resilient than another. Quantum resilience asserts that such comparisons are meaningless 

since resilience characterizations are only comparable between homologous systems. The 

section on urban resilience above provides an alternative view and explains why analysis 

at such scales may not be as meaningful as hoped. 

 The Goulburn-Broken Catchment (GBC) in Victoria, Australia is a region that 

provides a suitable example of the power of quantum resilience to characterize the 

resilience of a socio-ecological system (SES), though it makes no statements as to the 

value of such assessments beyond their ability to compare alternative deployments of the 

same system. The GBC has significant complexity including important economic 

productivity through agriculture production at the expense of ecological deterioration. 

This, of course, makes it difficult to address with anything less than an interdisciplinary 
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staff of scientists, but since this venue precludes that approach, the analysis will be 

representative and remain high-level where required. Still, it will provide a very complete 

demonstration of quantum resilience and illustrate its dramatically different approach to 

resilience characterization. 

 This example is facilitated by a regional assessment performed by the Resilience 

Alliance. Walker et al. (2009) provides a package that is among the more hopeful 

“resilience” reports, but not because it is about resilience, per se. To be fair, the paper 

mentions resilience, but it is more of a regional status report that recommends a particular 

way forward based on particular normative values. Specifically, they have developed an 

“approach for assessing sustainability” (p. 1) and after prominently featuring the triple 

bottom line throughout, the authors conclude the region is unsustainable and argue for 

transformation. The value of the report is found in the small step they take toward a 

“systems” approach that provides a solid segue for the introduction of quantum 

resilience. Importantly, the paper provides enough hints to serve as a springboard into a 

quantitative resilience analysis and it will provide the basis of this example. Where the 

data is incomplete or notional, it will be estimated and left for future, more rigorous 

quantification. In all cases, the simplifications made for this illustration remain 

completely transparent since quantum resilience enforces that in the system modeling 

approach. 

 The Resilience Alliance defines resilience very broadly as “a measure of a 

system’s capacity to cope with shocks and undergo change while retaining essentially the 

same structure and function” (Walker et al., 2009, p. 1). Obviously, in arguing for 

transformation, the authors have concluded the system is neither sustainable nor resilient. 
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As discussed above, “coping with shocks” is a matter for robustness analysis and would 

introduce infinities into a resilience analysis. Throughout the paper, resilience is 

conflated with robustness and it is also suggested at one point that “insurance” is “one 

aspect of resilience” (p. 13). I will return to that topic in the discussion below. 

“Undergoing change,” which is presumably a euphemism for adaptation, is simply too 

soft to consider in any definition which purports to “measure” something. Further, while 

“retaining structure and function” is appropriate, it is unclear what “essentially” might 

mean, so that word is similarly unhelpful when measures are intended. Such a broad and 

malleable definition for resilience leaves them with the ability to recommend 

“transformation” (which in this case is an externally induced change resulting in a new 

system) as a possible next step, but as described above, this clearly steps outside the idea 

of resilience. While their open-ended idea of resilience cannot provide a true 

characterization of resilience in the GBC, there are worthwhile contributions that can be 

used in a system analysis that leads to a real resilience characterization. 

 To highlight differences between quantum resilience and their approach, it is 

important to observe their plan which they outline as follows: 

First we characterize the region as a system by defining the key 

subsystems, identifying the main issues, drivers, and potential shocks 

(including changes in drivers). We then assess the capacity of the system 

to deal with these shocks based on the major benefits currently generated 

by the region and the biophysical, economic, and social sub-systems that 

underpin their continued supply. Next, we assess the resilience of the 

region… (Walker et al., 2009, p. 2). 

 

Their plan includes the following details: 

 

1. characterize the system, 

2. identify issues, drivers, and shocks, 
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3. assess capacity to manage shocks, 

4. acknowledge current benefits provided by the region, and  

5. assess the resilience. 

 As mentioned, their emphasis on “shocks” can become an important part of a 

robustness analysis and can be revisited once the resilience analysis is complete. Only 

after the system has been characterized can it be determined if robustness features that 

protect against shocks contribute to, or detract from, resilience. The promising part of the 

plan is their interest in characterizing the system as it currently is, and acknowledging its 

benefits (steps 1 and 4). This is an important step toward finally achieving a real 

resilience analysis. This is where quantum resilience proposes resilience analysis should 

start: first by identifying the valued functions (“benefits”), and then by codifying the 

system that delivers them. This will properly scope the analysis and ensure transparency 

of scope and scale. 

 Their plan, however, is only a thin veneer on their philosophical position which 

becomes clear nearly immediately as they list the “issues” that negatively impact the 

region (cf. Resilience Alliance, 2010, p. 10 for their definition of “issue”). In fact, every 

“issue” is directly related to the economic productivity of the region which comes at the 

expense of the pristine environment (Walker et al., 2009, p. 3). Land was cleared and 

fertilizers were applied so it could be productively farmed. Water is stored to manage 

seasonal fluctuations in supply and energy is generated and consumed accordingly. While 

it is not wrong to argue for the negative environmental impacts of each of these, it is not 

helpful to neglect the fact that the “issues” actually serve to define the very productivity 

of the current system. Fixing any or all of these “issues” would radically change the 
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system and have deleterious impacts on the economy. If a true triple bottom line 

approach is desired, it cannot start with overemphasis on the need to restore nature to 

what they might estimate to be closer to a pristine reference condition. 

 Further, in speaking of the GBC (and implicating agriculture development 

worldwide), Walker et al. (2009) suggest “its resilience has declined since colonization” 

(p. 6). Unfortunately, they offer no “before” and “after” characterizations of resilience to 

support their claim, so the claim remains notional. This assessment is clearly based on 

conservationist values since it is declared that resilience started to decline at the start of 

colonization in 1830. Their intent is to demonstrate the loss of pristine nature, but in 

establishing pristine nature as the ideal high mark for resilience, they have already 

assumed their conclusion. Further, they have skipped over important science that is, 

ironically, wrapped up in bullets 1 and 4 of their plan (as summarized above). Hence, 

their idea of resilience is nearly equal to environmental quality. Their equation is simple 

but not proven and reflects strong normative bias. Further, it makes resilience about what 

we dream it might have been, or even about what it could be once again (if nature were 

left to itself), but it completely misses the point that resilience must be about what is. 

When properly characterized, resilience represents the extent to which a system delivers 

its valued functions. If a triple bottom line is assumed, all three aspects must be included 

in the resilience characterization. Casual assertions that resilience has declined must be 

supported. Assuming only the ecological aspects, however, makes it obvious that their 

only conclusion can be “transformation” that shuts down all productive industry and 

allows the landscape to revert to pristine nature. 
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 Importantly, while these scholars want to assess the resilience of the entire 

catchment (to help with future policy initiatives, etc.), their analysis never actually 

happens at that scale. Instead, it is stated that “human capital” has “high” resilience, that 

the irrigation sector is “leaky” and has “low resilience,” that the rivers have “increased 

resilience”, etc. This is an important hint that while scholars suggest they want resilience 

characterized at the scale of entire basins or catchments they still can only manage to 

comprehend specifics at smaller scales. This hint should drive us to better analysis at 

appropriate scales. Again, just because quantum resilience can characterize resilience at 

any scale does not mean it should. 

 

System Analysis 

 

 Figure 21 shows a notional workup of an analysis of the GBC system that arises 

from reading Walker et al. (2009). In general, the authors segregate the system in 

accordance with the triple bottom line into biophysical, social, and economic sectors. 

Note that though properly contained within the “economic” system, the agricultural 

system straddles the biophysical and the economic systems and is the specific “problem” 

that forces the analysis. That is, if the catchment had not been developed for agriculture, 

the authors would agree it would have remained (closer to) pristine and (to them) 

demonstrated high resilience. Unsurprisingly, the problem devolves into a balance of 

economic production and environmental protection. Further, by reminding us of the 

values that allowed for private property rights to evolve and which ultimately led to the 

current dilemma, Walker et al. illustrate the near identity of the social dimensions with 

the economic dimensions of the sustainability discourse. That is, at least in the Western 
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mind, we might agree that “money isn’t everything” and that it “can’t buy happiness”, but 

we are also willing to agree that having a productive economy is better than not having 

one. A strong economy has significant social value. 

 

 
Figure 21. Notional Overview of Actors and Forces in the GBC 

 

 The primary concern of Walker et al. (2009) is the significant ecological impact 

of the agricultural sector on the biophysical system. A complex combination of land 

clearing, irrigation, and fertilization has resulted in a rising water table that is 

increasingly saline. Since trees and crops do not grow well in oversaturated soil, 

groundwater pumping serves to lower the water table, but also results in nutrient rich 

water discharge into the river systems. Water chemistry alterations have resulted in algal 

blooms and fish death. As the land deteriorates, it becomes a vicious cycle of fertilizing, 

irrigating, and ground water pumping in order to keep it productive. Further, water 

procurement and management has non-negligible cost and requires expensive 
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infrastructure that must also be maintained. This causes an expected spillover into the 

economic sector. As crop yields drop due to deteriorating land conditions, farms must 

borrow money in order to maintain their viability. Of course, financing becomes more 

difficult to procure with the erosion of projected future crop values. Further, since farms 

are less financially secure, market fluctuations due to recession can initiate a downward 

spiral that drives farm owners into receivership. 

 In the social sector, it is easy to understand the ensuing values conflict between 

conservationists and agriculturalists. Walker et al. (2009) applies what they call 

“resilience thinking” to the problem in order to determine and elucidate a way forward. 

After rehearsing the dilemma in which the catchment finds itself, and providing some 

notional assessments of the resilience of the systems involved, they determine the only 

way forward is transformation, effectively stating that the only winner can be the 

conservationists. As the quantum resilience analysis demonstrates, such a conclusion 

might be premature. 

 This current analysis remains high-level but is formalized, hoping to lead to 

further fidelity improvements over time. It accepts Walker et al.’s general decomposition 

of the system into agro-economic, biophysical, and social sectors, though such 

segregation is not strictly required and analysis might better proceed on a more physical 

basis that starts with a bottom-up approach. Their proposed decomposition can be 

managed in the model and it allows for reporting on what seems to be the accepted triple 

bottom line axes. For this example, there is very little system decomposition done. Figure 

22 shows the decomposition of the agro-economic sector into three sub-sectors that 

permit establishment of specific inter-sector relationships. For example, dairy farms 
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(Figure 22a) produce milk which is processed by dairy processing plants (Figure 22b). 

The infrastructure systems (Figure 22c) also maintain interfaces with many other systems 

as dictated by their role in the production system. 

 

 
Figure 22. Simple Decomposition of Agro-Economic Sector 

 

 Where systems in Figure 22 are not expanded (+ signs), this is intended to hide 

the identical duplicate systems that represent farms, orchards, ranches, processing plants, 

businesses, and other organizations that are used in the model. For this analysis, no 

specific physical decomposition of the infrastructure sectors (energy, water, irrigation, 

etc.) was performed. Ideally, the full system should be codified down to the conduits, 

pipes, and pumps to ensure an accurate complexity measure, but for this analysis simple 

connections were made between the providers and the consumers. This is tantamount to 

suggesting that, for example, the power provider has a direct connection to each farm. 

Obviously, this is a simplifying assumption that future fidelity expansions can resolve. 

 Figure 23 shows the decomposition of the biophysical and social systems. For this 

simple analysis, the biophysical sector contains only the two primary river catchments 

and the surrounding dryland acreage (which seemed particularly important to Walker et 

al.). A more complete analysis might decompose the region into specific farms in order to 

(a) (b) (c)
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emphasize the peculiarities of sub-catchment land uses. This would certainly serve to 

focus the entry of farmland runoff into the waterways and to emphasize the specific areas 

that are damaged by acidity and salinization. Since the MDBA assessments of the river 

valleys is used in the quantification of valued function (more below), this high-level 

decomposition will suffice for this example. Decomposition of social systems is similarly 

abridged and representative. Several classes of worker are employed to simulate the 

differences in human and social capital and only a few organizations are represented.  

 

 
Figure 23. Simple Decomposition of Biophysical and Social Sectors 

 

 Though the model is representative only, it can be easily expanded as needed. 

Even with the simplifications, the model contains hundreds of thousands of relationships. 

Figure 24 shows a notional idea of the interfaces added to the model. Note the 

introduction of the “biophysical” to represent impacts and externalities to rivers, etc. For 

clarity not all the individual interfaces and organizations are shown. 

 

 

(a) (b)
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Figure 24. Typical Farm Relationships 

 

 As the analyses below will show, the additional interfaces and relationships will 

dramatically increase the complexity measures and will tend to decrease the resilience 

characterization since they are implicated in the denominator of the resilience 

characterization. However, the incredible increase in social and human capital 

(represented by the many workers) will tend to counter this effect. 

 

Valued Function 

 

 As indicated above, Walker et al. approach the GBC value through a fairly 

common sustainability sieve and focus on the triple bottom line. They specifically refer to 

the ecological (biophysical), the economic, and the social aspects. From these three 

“subsystems” (p. 20) they derive GBC value, though as is fairly typical in the literature 

only the economic aspects are quantified, the rest are indicated only in the sense of 

possible thresholds that increase risk. A resilience analysis must quantify all valued 

function and quantum resilience enforces this and makes the outcomes transparent. 
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 Economic value, as always, is easy to measure and is featured prominently in 

Walker et al., so limited discussion of these measures is required. The economic 

production figures used in the simple model presented here are merely transcribed as 

estimated from Walker et al. (p. 7, figure 3). Higher fidelity or granularity can certainly 

be added to the model, but for an example analysis these will suffice. Walker et al. 

express interest in farm debt, but this does not seem to be a serious issue in that Victorian 

debt compares well to other regions. According to the Australian Bureau of Agricultural 

and Resource Economics and Sciences (ABARES) (Dharma & Dahl, 2013), Victorian 

dairy farms have average annual income of ~$150,000 whereas average farm debt is 

~$700,000. Approximately half of farm debt is for land purchase, and, in general, land 

values increased between 2000 and 2010. Another 10% of debt is working capital to 

manage cash flow as is expected for low margin concerns. With average equity ratios of 

greater than 70%, farm debt seemed well in line with expectations. If such diary-specific 

figures can be safely extrapolated to general farm debt, it seems reasonable to not 

consider debt in this analysis, but it can easily be added as necessary. 

 Walker et al. frequently conflate “resilience” with “environmental quality” (e.g., 

p. 6, 19-20) without any specific calculation of value. In general, pristine nature (c. 1830) 

seems to be valued as the reference condition, and this becomes clear with their 

recommendations for “transformation” away from agricultural production and toward 

conservation and (perhaps) ecotourism as a way to limit the damage done but still exploit 

nature for financial gain. They acknowledge that people “will lose from the 

transformation” (p. 21) and that “strategic new investments in social and human capital” 

(p. 21) will be required, but they offer no plan as to how such investments will be 
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financed. Instead, they “propose there is a possible tipping point between market values 

vs. preferences for non-market, intrinsic, and option values” (p. 20). The assumption 

seems to be that people will eventually be willing to give up their way of life and 

standard of living once they realize the environment is in danger. This is difficult to 

accept and is certainly not something that is actionable from a policy standpoint (i.e., you 

cannot simply recommend that people close their businesses and relocate). 

 Despite “clear evidence that transformation is needed” (p. 21), it remains unlikely 

that the economic and social goals can be met if transformation is achieved. Since the 

ecological values are in direct conflict with the economic values (as well as most 

currently held social values despite a possible “greening” of the Australian mind), three 

alternatives can be envisioned: (1) maintain a “current” (exploitative) regime that may 

result in a future crash, (2) implement a “multiple values” (balanced) regime where a 

crash might be avoided or put off for an extended period, or (3) revert to an “intact” 

(pristine) regime where the crash is effectively self-inflicted but with foreknowledge and 

hopefully some mitigation planning. Walker et al. (p. 9) outline these three regimes 

specifically for the river channels, but the ideas can easily be extrapolated and applied to 

the entire catchment. While there are no specifics offered, a “multiple values” regime 

seems to assume some moderate economic return can be gained while some specific 

conservationist goals are achieved. Again, the authors do not specifically state this 

(favoring instead the radical transformation recommendation), but it appears that an 

interim approach could be managed between now and the radical transformation. For 

example, perhaps economic output could be reduced by 10% per year over the next 20 

years while relocating people to other regions that have alternative means of production 
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and that are either less environmentally fragile or where the environment is already 

irrevocably damaged. No matter what the plans are (radical transformation or adaptive 

management in hopes of restoring pristine nature while removing the humans), an honest 

assessment of the social impact would be required. 

 In an attempt to take a rational step forward, the catchment’s ecological valuation 

could be modeled in each of the three regimes and its resilience characterized 

accordingly. Such a valuation would employ the variables of high concern including 

water table depth, salinity, soil acidity, vegetative coverage, river condition (Walker et 

al., 2009, figure 6) and project their values accordingly. In an attempt to make the 

measures as directly usable as possible, the inverse of certain measures may be used, but 

such decisions would usually be determined by consensus of the analysis team. In any 

case, the quantum resilience model makes the decisions clear and transparent. 

 Importantly, the river system’s value is obviously extremely high to the 

agriculture sector. But ecological values are measured differently (conservationist instead 

of exploitative). Because it is being exploited for agriculture development, the valuation 

of the catchment’s river systems is reflected in the economic production figures. When it 

comes to the natural values (i.e., those that would exist prior to agricultural production) 

these are codified in the biophysical sector of the model. They are separated for clarity 

and to enable them to be demonstrated in isolation. Table 26 lists values recently assessed 

by the Murray-Darling Basin Authority (MDBA) in the second Sustainable Rivers 

Assessment (SRA-2) (MDBA, 2012). The numbers shown are scores provided by a team 

of experts out of a “pristine” reference condition of 100. Assessments for the Broken and 

Goulburn river valleys are shown with the surrounding catchments. Since these items are 
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deemed important by Walker et al., valuation for fish, vegetation, and overall hydrology 

will be used in the biophysical portion of the sample GBC model. Use of the MDBA 

assessment values allows the simplifying assumption that other experts have already 

considered the important variables mentioned above (water table, salinity, acidity). 

Ideally, these values would be assigned to smaller parcels, but this will suffice for an 

example. 

 

Table 26 

Partial List of SRA-2 GBC River Valley Assessments 

MDB River Valley SRA-2 overall rating Fish Vegetation Hydrology 

Broken very poor 7 21 97 

Goulburn very poor 15 46 43 

Campaspe 

(West of GBC) 

very poor 20 18 64 

Murray Central 

(North of GBC) 

poor 20 100 56 

Ovens 

(East of GBC) 

poor 40 48 99 

 

 Walker et al. speak of human and social capital (and once, political capital) 

without clarifying or distinguishing the terms. This allows the terms to be defined for use 

herein following widely accepted scholarship. Human capital is individual knowledge, 

skills, and experience combined with a willingness to employ such attributes in 

contributing value to society (cf. Baron, 2011). A more complete and formal analysis 

might use a numerical method to measure aggregate human capital (e.g., as proposed by 

Mulligan & Sala-I-Martin, 2000). For this example, human capital will be modeled based 

on education level and skill sets of employees in given sectors. For example, assume 

human capital is one point each for being employed, being in management, graduating 

high school, graduating college, being an entrepreneur or business owner, etc. Obviously, 
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the list can be expanded as necessary to achieve consensus. Some representative values 

are used in the sample model. 

 Social capital is distinguished from human capital since it is not individualistic, 

but relational. Putnam (2000) suggests it emerges from repeated interactions among 

individuals engaged in purposeful activity. Walker et al. specifically refer to “equity” so 

it seems this should figure prominently, though it is difficult to understand what equity 

might mean in this context. Very likely it is undifferentiated and included as required by 

the “social” aspects of the sustainability discourse. In a liberal democracy like Australia, 

equity might mean equal access to the rule of law, police protection, healthcare, etc.—all 

of which are “standard” in Australia. Though there are likely exceptions and failings 

(e.g., displacement of aboriginals), social equity must be assumed and hence would be 

difficult to model. Walker et al. also mention “participation” (presumably in governance) 

which is easily measured by statistics like membership in political parties and voter 

turnout. There are likely far more nuanced means if higher fidelity is required. For use 

herein, and following Fukuyama (2001), social capital is derived from a network of 

relationships among those with shared values, and the consequent positive participation it 

engenders in society. Specific items like safety, trust, and voting can be measured and 

tracked but, as Fukuyama points out, are derivative of the actual relationships which are 

the important thing. For this example analysis, assume social capital is comprised of one 

point each for membership in various groups: family, school, political party, business, 

religious organization, etc. 

 Note that one could persuasively argue there are many more valued functions of a 

society. This simple model summarizes all that value in the social capital function. Future 
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expansion with a team of experts is encouraged if higher fidelity resilience 

characterization is required. Table 27 lists a summary of the valued functions in each 

interest area. 

 

Table 27 

Valued Functions of the GBC 

Ecological 

(Biophysical) 
 Water table depth by hectare (meters: 0 m is bad for 

agriculture whereas 2 m is acceptable) 

 Dry land vegetative cover by hectare (percent: 20% is bad, 
50% is acceptable, 80% is best) 

 Vegetation (as assessed in MDBA 2012) 

 Native fish (as assessed in MDBA 2012) 

 River basin health (as assessed in MDBA 2012) 

 Wetland health (percent of 113 total deemed healthy per 
Walker et al.) 

Economic  Economic productivity (dollars) 

Social  Social capital (points for relationships, participation, etc.) 

 Human capital (points for education, employment level, etc.) 

 

 For this sample analysis no claim about completeness or correctness is made. In 

the absence of collaborators (and data) I can only be representative and model in broad 

trends. My only claim is that such modeling is absolutely necessary. Scholars can argue, 

persuade, and come to consensus on what is permissible and what best reflects real value, 

but they cannot ignore this important step. 

Resilience 

 

 This analysis will demonstrate the quantum resilience approach with discussion of 

a several GBC resilience models. First, a simple illustration of only the economic value 

of the agricultural output of the region is demonstrated (Simple Economy). This is done 

with a fairly flat decomposition of the economic sectors. No interfaces have been created 

between sectors, so no relational complexity is involved. This demonstrates the manner in 
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which incremental delivery of valued function by many systems enhances resilience. 

Second, representative sector interfaces are created (as in Figure 24) to add relational 

complexity to the system (Complex Economy). Obviously, considerable interaction 

among sectors is required to generate the economic productivity of the GBC. While this 

remains representative and high level its impacts on resilience are obvious. The complex 

economy also includes estimated valuation of the social and biophysical aspects 

discussed above. This analysis results in what can be considered a baseline resilience 

characterization of the GBC. Third, in an attempt to demonstrate use of quantum 

resilience in comparing alternative system deployments, the analysis moderates the 

economic output and shows restoration of the ecological aspects in accordance with the 

aforementioned “shared values” regime (Moderated Economy). Since this necessarily 

results in a smaller economy and lower population, it clarifies how valuation of the 

ecological aspects contributes to the resilience characterization. Finally, and with limited 

discussion, the pristine reference condition model is shown to illustrate the contribution 

of the economic and social sectors to overall resilience. After these models are presented 

some concluding remarks summarize the outcomes and suggest whether or not it is 

appropriate to consider resilience at such scales. 

 

 Simple Economy 

 

 A simple illustration of only the economic value of the agricultural output of the 

region serves as a baseline for comparison. Note that this is done with only the (nearly 

flat) hierarchical decomposition of Figure 22 (i.e., hierarchical complexity is represented, 

but no interfaces have been created between sectors, so no relational complexity is 
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involved). This example demonstrates the manner in which incremental delivery of 

valued function by many systems enhances resilience. 

 Walker et al. (2009) suggest the top 16 economic sectors shown in Table 28 

contribute nearly $8B to the economy. For the quantum resilience analysis, each pair of 

columns in Table 21 illustrates a progressively larger number of subsystems delivering 

the same quantity of valued function (economic production in dollars). For example, 

Walker et al. suggest dairy farms provide $0.45B to the GBC economy. In the first pair of 

columns the sector is not decomposed, so one system (e.g., one dairy farm) delivers all 

the economic value. In the second pair of columns the sector is decomposed into 45 

systems or representative dairy farms with each providing $0.01B. Finally the third pair 

of columns suggests there are 450 dairy farms each contributing $0.001B. In all cases the 

same total economic value is provided. The same is done for all 16 sectors. Note that 

none of these decompositions is likely to approach the actual decomposition of the 

region. The Australian Bureau of Statistics (ABS, 2013) suggests there are over 30,000 

businesses involved in agriculture in Victoria, but it has proven difficult to determine the 

exact number in the GBC. Further, vetting Walker et al.’s estimates has proven difficult. 

ABS (2013) suggests Victoria had a total agricultural production of over $11B in 2007-8, 

and Walker et al. suggest the number for the GBC alone at over $3B in 2003 (counting 

farms and processing), though other sources put that as low as $1.2B), so it is difficult to 

ascertain the actual values. Still, the numbers can be considered representative and 

certainly have utility in demonstrating quantum resilience. If an actual resilience analysis 

were to be done, fully vetted numbers would be used. 
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 Resilience is characterized for each configuration and shown at the bottom of 

Table 28. Notice particularly how the resilience increases as the more distributed 

functional deployment is implemented. This satisfies the intuition that more systems that 

deliver the valued function are better for the resilience of the overall system. This also 

provides at least a preliminary answer to Walker et al.’s assertion that they must “cope 

with shocks”. Assuming shocks are individualized to the decomposed subsystems (e.g., 

specific farms, or specific land areas) the important take away is that since there are many 

farms, if the “shocks” are regionally focused, this will only marginally impact overall 

productivity performance of the system. 

 Note well that this resilience characterization is incomplete since it has no 

relational complexity. It is intended only as a first step in demonstrating importance of 

distribution of valued function. It is clear that with the sectors partially decomposed into 

separate farms, processing plants, etc., redundancy of function contributes to higher 

resilience. With the addition of the interfaces and relational complexity, we should 

anticipate lower (and more accurate) resilience characterizations. 

 

Table 28 

R-characterization: GBC Agricultural Economic Production 

 

Sectors not 

decomposed 

Sectors partially 

decomposed 

Sectors further 

decomposed 

Sector $ B # $ B # $ B # 

Dairy Farm 0.45 1 0.01 45 0.001 450 

Orchard 0.19 1 0.01 19 0.001 190 

Horse Farm 0.13 1 0.01 13 0.001 130 

Ranch 0.18 1 0.01 18 0.001 180 

Dairy Plant 1.6 1 0.1 16 0.01 160 

Fruit Plant 0.5 1 0.1 5 0.01 50 

Vegetable Plant 0.22 1 0.01 22 0.001 220 

Wood and Paper 0.17 1 0.01 17 0.001 170 
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Sectors not 

decomposed 

Sectors partially 

decomposed 

Sectors further 

decomposed 

Plant 

Companies 0.35 1 0.01 35 0.001 350 

Water/Sewage 0.25 1 0.25 1 0.25 1 

Transport/ 

Communications 
0.9 1 0.9 1 0.9 1 

Community Services 0.95 1 0.95 1 0.95 1 

Bank 0.7 1 0.1 7 0.01 70 

Other 0.2 1 0.2 1 0.2 1 

Tourist Organizations 0.13 1 0.01 13 0.001 130 

Trade 0.9 1 0.9 1 0.9 1 

Overall Productivity 125.12 
 

1681.3 
 

16461.1 
 

Complexity 37 
 

434 
 

4214 
 

R-characterization 3.3816 
 

3.874 
 

3.9063 
 

 

 

 Complex Economy 

 

 Second, a more complete model of the system is provided. This includes creation 

of representative economic sector interfaces to add relational complexity to the system. 

Obviously, considerable interaction among sectors is required to generate the economic 

productivity of the GBC. While this remains representative and high level its impacts on 

resilience are obvious. Further, the biophysical system valuation is added as described 

above. Biophysical interactions are also created but probably well under represented. 

Finally, social capital and human capital are added with their representative relationships. 

Like computer networks, human social networks tend to be scale-free (i.e., high degree of 

interaction with relatively few and little interaction with many). While analysts of the 

SES should not trivialize the actual connections, for the purposes of this notional model, 

it is fair to model only a few of the most impactful relationships. The complex economy 

analysis represents the entire catchment and it is based on the “partially decomposed” 

system discussed above (i.e., 45 representative farms, etc.). 
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 Since economic productivity is based almost entirely on the ability to irrigate and 

manage land in the farms, it is vital to tie that somehow to the surface water systems. The 

Australian Bureau of Infrastructure, Transport and Regional Economics (BITRE) reports 

Victoria’s surface waters provide approximately 2 trillion liters of water per year. Of this, 

approximately 1.65 trillion liters are used for irrigation (BITRE, 2013, pp. 274, 283). In 

making our simplifying assumptions, assume that water is distributed equally to the 45 

farms we are using in the simplified study. For this we envision a valued function (water 

supply to farm connections) assigned to the irrigation sector and measured in billions of 

liters. Obviously, the infrastructure required for this is massive (as are the pumping 

energy costs and ripple effects on the power generation industry). It is outside the scope 

of this brief example to decompose the infrastructure to any great extent, but any 

complete resilience analysis should do so. Since the agriculture sector has been similarly 

simplified, this analysis will assume that the energy and water sectors each maintain 45 

connections, one to each of the farms. 

 

Table 29 

R-characterization: GBC Complex Economy 

System (Function) Productivity Multiplicity 

Dairy Farm (Economic output) 0.01 45 

Orchard (Economic output) 0.01 19 

Horse Farm (Economic output) 0.01 13 

Ranch (Economic output) 0.01 18 

Dairy Plant (Economic output) 0.1 16 

Fruit Plant (Economic output) 0.1 5 

Vegetable Plant (Economic output) 0.01 22 

Wood and Paper Plant (Economic output) 0.01 17 

Companies (Economic output) 0.01 35 

Water/Sewage (Economic output) 0.25 1 

Transport/Communications (Economic output) 0.9 1 

Community Services (Economic output) 0.95 1 
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System (Function) Productivity Multiplicity 

Bank (Economic output) 0.1 7 

Other (Economic output) 0.2 1 

Organizations (Economic output) 0.01 13 

Trade (Economic output) 0.9 1 

Water Connection (Water Supply) 35 45 

Power Connection (Energy Supply) 170 45 

   

Upper Catchment (Vegetative Cover) 0.5 900 

Mid Catchment (Vegetative Cover) 0.2 1000 

Lower Catchment (Vegetative Cover) 0.02 500 

Broken River Valley (Native Fish) 7 1 

Broken River Valley (River health) 97 1 

Broken River Valley (Vegetation) 21 1 

Goulburn River Valley (Native Fish) 15 1 

Goulburn River Valley (River health) 43 1 

Goulburn River Valley (Vegetation) 46 1 

   

Dairy Management (Human Capital) 2 135 

Dairy Management (Social Capital) 2 135 

Dairy Workers (Human Capital) 1 4500 

Dairy Workers (Social Capital) 1 4500 

Bank Workers (Human Capital) 2 200 

Bank Workers (Social Capital) 2 200 

Processing Management (Human Capital) 2 250 

Processing Management (Social Capital) 2 250 

Processing Workers (Human Capital) 1 20000 

Processing Workers (Social Capital) 1 20000 

Other Workers (Human Capital) 1 20000 

Other Workers (Social Capital) 1 20000 

Other Skilled Workers (Human Capital) 2 5000 

Other Skilled Workers (Social Capital) 2 5000 

Productivity 5578465164.30  

Complexity 721787  

R-characterization 7728.6861  

 

 Table 29 shows the dramatic increase in productivity (due to the additional valued 

function) and complexity (due to the additional system elements and relationships). It is 

clear that modeling the human and social capital of over 50,000 workers greatly increases 

the valued function output (despite the small numbers assigned). Though the complexity 
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contributed through their relationships (on average, each human modeled as three 

relationships) tends to decrease the overall resilience characterization it is clear that 

measuring human capital in the manner shown has a dramatic impact on the cumulative 

resilience characterization. This is most clearly evidenced when the valued functions are 

listed according to their individual contribution to the overall resilience as shown in 

Table 30. Shown like this, it is clear that human and social capital contribute over 99% of 

the resilience. 

 Based on the simplified “partially decomposed” approach, a resilience baseline 

for the full GBC system has been established. 

 

Table 30 

GBC Resilience by Valued Function 

Function R-Contribution 

Economic output 0.0023 

Water Supply 0.0982 

Energy Supply 0.4769 

Vegetative Cover 2.1946 

Native Fish 0.0001 

River health 0.0004 

Vegetation 0.0002 

Human Capital 3862.96 

Social Capital 3862.96 

 

 

 Moderated Economy 

 

 Moderating the economy of the GBC necessarily entails significantly decreasing 

the economic output. For this simple assessment, economic productivity will be roughly 

halved by removing half the farms and processing infrastructure (all fractions were 

rounded up). Though tourism was not changed (assuming that industry may even be 

helped by the changes), the total economy is reduced to $4.45B (57%) of the original 
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$7.82B. Obviously, with the decrease in the economy, human workers will be impacted 

and this will result in the loss of nearly half the human workers—reducing human and 

social capital. Given the limited production, it is assumed there will be lower impact on 

the environment allowing some recovery toward the pristine reference condition. The 

model increases the biophysical assessment by setting the assessments to half-way 

toward 80% of the pristine reference condition (it is unclear if this is realistic, but rapid 

recovery of the environment is assumed). For example, if “fish” was assessed at 15 by the 

SRA-2 (MDBA, 2012), then fish will be set to 15 + (80-15)/2 = 48 (again, rounding up as 

necessary). Table 31 lists the results of the moderated economy configuration. 

 

Table 31 

R-characterization: GBC Moderated Economy 

System (Function) Productivity Multiplicity 

Dairy Farm (Economic output) 0.01 23 

Orchard (Economic output) 0.01 10 

Horse Farm (Economic output) 0.01 7 

Ranch (Economic output) 0.01 9 

Dairy Plant (Economic output) 0.1 8 

Fruit Plant (Economic output) 0.1 3 

Vegetable Plant (Economic output) 0.01 11 

Wood and Paper Plant (Economic output) 0.01 9 

Companies (Economic output) 0.01 18 

Water Connection (Water Supply) 35 23 

Water/Sewage (Economic output) 0.25 1 

Transport/Communications (Economic output) 0.5 1 

Community Services (Economic output) 0.5 1 

Bank (Economic output) 0.1 4 

Power Connection (Energy Supply) 170 23 

Other (Economic output) 0.2 1 

Organizations (Economic output) 0.01 13 

Trade (Economic output) 0.5 1 

Upper Catchment (Vegetative Cover) 0.65 900 

Mid Catchment (Vegetative Cover) 0.5 1000 

Lower Catchment (Vegetative Cover) 0.42 500 

Broken River Valley (Native Fish) 43 1 
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System (Function) Productivity Multiplicity 

Broken River Valley (River health) 97 1 

Broken River Valley (Vegetation) 50 1 

Goulburn River Valley (Native Fish) 48 1 

Goulburn River Valley (River health) 60 1 

Goulburn River Valley (Vegetation) 63 1 

Dairy Management (Human Capital) 2 70 

Dairy Management (Social Capital) 2 70 

Dairy Workers (Human Capital) 1 2300 

Dairy Workers (Social Capital) 1 2300 

Bank Workers (Human Capital) 2 100 

Bank Workers (Social Capital) 2 100 

Processing Management (Human Capital) 2 125 

Processing Management (Social Capital) 2 125 

Processing Workers (Human Capital) 1 10000 

Processing Workers (Social Capital) 1 10000 

Other Workers (Human Capital) 1 10000 

Other Workers (Social Capital) 1 10000 

Other Skilled Workers (Human Capital) 2 2500 

Other Skilled Workers (Social Capital) 2 2500 

Productivity 1403016801.00  

Complexity 364056  

R-characterization 3853.8489  

 

 As expected, the result is dramatically lower than the baseline resilience of the 

complex economy. What is most interesting about the result is that though economic 

production remained at over half (57%) of the complex economy, and though the 

biophysical productivity was nearly doubled, the overall resilience assessment is less 

than half that of the complex economy (3854 compared to 7729). Whether or not the 

numbers are “real”, the formulation is consistently applied in both cases demonstrating 

two things: (1) the importance of the redundant and incremental delivery of valued 

function, and (2) the importance of the human capital contributions and the need to gain 

consensus among experts on how they are quantified. 
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 Pristine Reference Condition 

 

 As indicated in Table 27, the vegetative cover is calculated on a per-thousand-

hectares basis (hence, the upper catchment with 900,000 hectares, etc.). This may be 

thought to greatly skew the outcome, but recall that consistency is the only requirement 

in managing the values. In the pristine reference condition, it is assumed that 80% 

vegetative cover is regained in the catchment. Further, it is assumed that the MDBA 

assessment of the river valleys would achieve 100% of reference condition. Table 32 

demonstrates the resilience of the pristine catchment. It is clearly far lower than the 

catchment while under production. 

 Once again, whether or not the valuations are approved by a consensus among 

experts, consistency and transparency are maintained in the characterization process. 

With collaboration among experts, the numbers may be refined and granularity added as 

needed. 

 

Table 32 

R-characterization: GBC Pristine 

System (Function) Productivity Multiplicity 

Upper Catchment (Vegetative Cover) 0.8 900 

Mid Catchment (Vegetative Cover) 0.8 1000 

Lower Catchment (Vegetative Cover) 0.8 500 

Broken River Valley (Native Fish) 100 1 

Broken River Valley (River health) 100 1 

Broken River Valley (Vegetation) 100 1 

Goulburn River Valley (Native Fish) 100 1 

Goulburn River Valley (River health) 100 1 

Goulburn River Valley (Vegetation) 100 1 

Productivity 4609200.00  

Complexity 4808  

R-characterization 958.6522  
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 Discussion 

 

 As expressed in the introduction, it is unlikely that assessing the resilience of 

region so large has practical utility when done from the top down as illustrated here. 

Since the outcomes devolve into a conservationist v. agriculturalist argument, and any 

recommended changes will be only marginally helpful, it is probably more important to 

focus on the resilience of specific infrastructure (e.g., just the water distribution network 

or the electrical grid), or on the resilience of the individual farms themselves (e.g., 

exploring alternative deployments of crop portfolios, etc.). This obviously leads to a 

much more complete analysis several hierarchical levels down from the catchment itself. 

Tighter-scoped assessments could lead to actionable results since exploring “what-if” 

scenarios with alternative system deployments remains tractable at those levels. 

 As with most systems engineering efforts, smaller models can be merged to create 

larger (catchment-level) models if desired. If analysts have vetted the smaller models and 

ensure consistency in the approach, the tools and methods of quantum resilience are 

clearly able to provide the insights required at all levels. Even in the simplified form 

presented here, assessments like this simply cannot proceed without the instrumentation 

offered by model-based system engineering tools. In order to properly execute such an 

analysis, an entire team would need to be assembled, not because the modeling is hard, 

but because almost every decision is debatable. As consensus is achieved, the models, the 

methods of valuation, and the consequent resilience characterizations can be trusted. 

 Importantly, it is clear that valuation of human and social capital will dominate 

any resilience characterization in which it is included. Especially at the size of a 

catchment, the large populations and cumulative impact of the human and social capital 
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very quickly results in extremely large numbers. Due to this, it is tempting to think this is 

artificially inflating the human side of the characterization at the expense of the other 

sectors. Obviously, since consistency is enforced by the quantum resilience approach, 

whether they are aggregated (with economic and ecological aspects) or segregated to be 

published separately, the numbers are useful when it is remembered they are all relative. 

There is no theoretical maximum for resilience and the resilience characterizations are 

not absolute in any sense. That is, they can only be compared with similarly modeled 

homologous systems. What this means is that if experts agree on the approach and the 

valuation methods, it matters very little if the social dimension contributes 99% of the 

total outcome (as it does here). None of the numbers are lost, they all remain transparent, 

and resilience is properly characterized. Still, if communicating specific differences or 

nuances is important, reporting the social and human capital numbers separately might 

lead to better understanding of results. 

 Similarly, it is tempting to think resilience of ecosystems would better proceed on 

an individual basis and not be included with human and economic systems. It is 

dangerous, however, to separate the outcomes since it might tempt some to argue that 

pristine nature is indeed the ideal high mark for resilience. This is only so in normative 

senses and can lead to discounting the economic productivity gained from an ecosystem 

simply because such gain “uses up” (or, damages) the ecosystem. Still, it might be 

important to consider each regime in its own right. For example in the analyses above, 

three different biophysical regimes were modeled, but until the pristine nature regime is 

shown alone at the end, it is easy to miss the differences in the wash of numbers. Since 
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the tools of quantum resilience allow the characterizations to be isolated, it is easy to 

present them together as shown in Table 33. 

 

Table 33 

Biophysical Resilience in all three regimes 

System (Function) Multiplicity Complex 

Economy 

Productivity 

Moderated 

Economy 

Productivity 

Pristine 

Productivity 

Upper Catchment 

(Vegetative Cover) 

900 0.5 0.65 0.8 

Mid Catchment 

(Vegetative Cover) 

1000 0.2 0.5 0.8 

Lower Catchment 

(Vegetative Cover) 

500 0.02 0.42 0.8 

Broken River Valley 

(Native Fish) 

1 7 43 100 

Broken River Valley 

(River Health) 

1 97 97 100 

Broken River Valley 

(Vegetation) 

1 21 50 100 

Goulburn River 

Valley (Native Fish) 

1 15 48 100 

Goulburn River 

Valley (River Health) 

1 43 60 100 

Goulburn River 

Valley (Vegetation) 

1 46 63 100 

Productivity  1584458 3108722 4609200 

Complexity  4808 4808 4808 

R-characterization  329.55 646.57 958.65 

 

 

 Given the presentation in Table 33, it is easy to see how some would assume 

pristine nature represents the idealized goal of maximum resilience. The numbers are 

clearly growing as nature returns to its pristine reference condition. Obviously this is due 

to the normative approach taken in its valuation (which introduces the systemic trend). As 

mentioned above, however, it is vital to see that overall resilience of the catchment is 

much higher when the agricultural production is added. This is because all the valued 
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functions are taken into consideration in a proper characterization of resilience. Though it 

could be provocatively suggested that based on these outcomes (and contra Walker et al.) 

resilience has improved since pre-colonial times, it must be remembered that such 

comparisons are unscientific since they constitute entirely different systems. Only when 

consensus is achieved about how to balance the normative valuations with the actual 

measured values can a true resilience characterization be accomplished. Quantum 

resilience provides this way forward since it ensures that transparency and consistency is 

maintained in all assessments. 

 Finally, it was noted earlier that Walker et al. suggest insurance is an aspect of 

resilience. This is far too casual a remark and demands further comment. If insurance is 

an aspect of resilience, it is because it can be construed as a “backup plan,” i.e., a form of 

redundancy. Since redundancy drives resilience this is a tempting equation, but care must 

be taken in any effort to equate insurance with resilience. First, on the positive side, since 

insurance is generally a financial arrangement, it provides a uniform medium of 

conversion between “everything” and money. If insured infrastructure fails, money is 

paid. If someone dies, money is paid. If a crop fails, money is paid. Such object-to-cash 

conversions (and the institutions which perform them) may be important in 

determinations of valued function quantification. As has been exemplified, economic 

valuation is by far the easiest way to gain consensus on value. So if the tools of the 

insurance industry can assist, this is a potentially positive approach. Second, since 

Walker et al. define resilience in terms of disturbances, and since insurance is generally 

paid after a particular disturbance removes the ability of a system to provide its valued 

function, insurance payouts suggest the valued function might ultimately be restored as 
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the money is reinvested. This assumption requires important caveats: (a) the process of 

insurance payout and rebuilding temporarily leave a system with less function and only 

restore the provision of function at a future time, and (b) it allows for the creation of new 

(different) systems which provide different functions. Obviously in the latter case, this is 

not resilience. In both cases, loss of function implies a change in the system so the 

system’s resilience must be re-characterized. Once the rebuilding (or whatever) is 

accomplished, a similar re-characterization must occur. Third, insurance is generally 

sourced from outside the system scope (the same is true for bank loans, but, in general, 

loans are paid back, whereas insurance payouts are always losses for the insurance 

company). What this means is that either the system scale has accidentally been 

broadened leaving the resilience assessment in question, or analysts are expressly 

allowing for “resilience” to be bolstered by external or containing systems. This is 

important. When resilience is defined with “recovery” or “restoration” in mind, the latter 

is generally the case, and this calls into question the validity of the assessment. When this 

happens the only appropriate thing to do is admit to the system expansion and admit that 

the analysis is really not about the specific system but includes external contributors. 

 In summary, when performing resilience analysis, especially in a normative 

sustainability framework as attempted by Walker et al., it is vital to consider all aspects 

of the triple bottom line together, but it might be more effective to do it in smaller 

chunks. If an overall catchment assessment is required, a bottom up approach can be used 

to assemble larger analyses once they have been vetted. In all cases, teams of experts 

must achieve consensus on valuation and decomposition of the systems and their 

relationships. 
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 Future Experiments 

 

 While Walker et al. have suggested that the region is a likely candidate for 

“transformation”, they leave the plan undeveloped. The intent seems to be to allow the 

region to revert to Nature and become a tourist mecca. This is, of course, completely in 

accordance with their conservationist hopes, but does not deal honestly with the 

significant economic and human impact that would result. Sure, values are changing and 

even those living there are willing to admit to the damage done, but certainly they would 

rather continue their livelihood than be forced to relocate and learn a new trade 

(euphemistically referred to as “development of human capital”). Further, expecting that 

the region can be turned into a tourist haven is legitimate, but to expect the economic 

value of that particular sector to equal the agriculture production is a false hope. 

 Interestingly, there may be an opportunity to experiment with the idea of 

opportunistic exploitation of redundancy. It has been reported that Eastern Australia will 

have a surplus of electrical power generation capacity in the next decade to 2025 

(AEMO, 2014). Most are responding to this situation by applauding their ability to lower 

carbon emissions by shutting down power plants. However, since the impact of that is so 

small (consider the Chinese directly to the North installing over 30 coal-burning power 

plants per year), it might be better to explore alternative uses of the power. Instead of 

idling the power plants and the operations staff, perhaps this would be a good time for 

Australia to consider subsidizing some level of power generation that could be used for 

pumping the increasingly saline groundwater from the Murray-Darling basin into the 

Pacific Ocean (or perhaps something a bit less radical but equally productive). This 
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would serve the dual purpose of preserving jobs in the power industry as well as 

preserving the economy of an agriculture producing region that is failing due to rising 

water tables. Southeastern Australia might benefit from a national contribution to its 

power needs during a period when they need to do additional groundwater pumping. 

Making the scale of the system a national one makes it possible to sustain that $20B 

annual economy in grazing, fruit production and processing that the basin provides. 

 The implication of the report is that AEMO future demand projections are being 

attenuated by rooftop PV uptake. Unfortunately, this is not well documented, and a 24% 

growth in that industry may not say much if the numbers are small. It also seems their 

demand model would be much more sophisticated than what is shown in their data files 

(given the intermittencies of solar power, seasonal change in demand, etc.). That they 

allude to future developments in storage technology is good, but they freely admit the 

technology is not yet available. If, however, the reduction in demand comes from closing 

of a high demand industry (to which they allude) we are free to assume it has something 

to do with agriculture processing in that area. If closing a high demand industry is a 

leading indicator of a highly depressed economy, it is important to understand. If it is 

caused by crop failures due to water table and salinity issues it may be something that can 

be rectified. 

 Such a change in approach demonstrates the human ability to plan and alter 

futures, but still, is not an example of adaptation until after the proposal is implemented 

and proven to be a positive step. Otherwise, from a resilience perspective, all we can say 

is there remains some extra generation capacity that can be redundantly applied as 

needed.  
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RESILIENCE IN THE PHOENIX FUEL SUPPLY CHAIN 

 Introduction 

 

 Resilience analysis of water distribution networks (WDN) has not been distracted 

by the metaphors and analogies proposed by thought leaders in the resilience literature. 

Instead, engineers have focused on developing specific resilience indices that can be 

applied to real networks (Todini, 2000; Prasad & Park, 2004; Jayaram & Srinivasan, 

2008). While this is a hopeful step, unfortunately resilience is conflated with efficiency as 

these so-called resilience metrics are generally measured as surplus internal power in the 

network divided by the maximum power that could be dissipated internally after 

satisfying the delivery constraints. While understandable and perhaps an effective metric 

for this discipline, it is not specifically resilience. 

 Fortunately, and for several reasons, it is still a largely productive path. First, they 

are focusing on the performance of the network (i.e., as measured in pressure head) 

which is akin to finding the valued function and calculating productivity for the system. 

Second, they are (inadvertently) introducing structural complexity ideas into the 

calculations by considering pipe dimensions, number of connections, performance of 

pumps, etc. This is important because it shows that these engineers recognize that the 

structure of the system is an important contributor to resilience characterization. Third, 

though this tends to conflate resilience with performance during failure, extensive Monte 

Carlos or Genetic Algorithm approaches introduce failure modes, and then with each 

failure mode, the index is recalculated for the system. This is effectively an exploration of 

alternative system deployments (e.g., with this or that pipe missing). Usually, cost 

estimates are developed for non-inferior solutions and multi-criteria analysis is done to 
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provide recommendations that target a “sweet spot” which balances cost and “resilience” 

for proposed WDNs. Again, while this might be exactly what is needed for their 

discipline, it is not specifically resilience that is being assessed. 

 In a review of three available WDN “resilience” indices, Baños et al. (2011) 

suggest: 

It can be concluded that, as none of the resilience indexes consider where 

over-demand is applied, but rather the global excess of pressure in the 

network, they do not accurately determine the capability of the network to 

provide adequate supply under demand uncertainty. Therefore, it is 

suggested that resilience indexes consider the topology of the network in 

order to determine its critical points, where over-demand could make 

solutions unfeasible, i.e. where the head pressure is lower than the required 

pressure (p. 2365). 

 

 Importantly, they recommend consideration of the topology of the network and a 

focus on critical points. This suggests several important amplifications are required. First, 

as quantum resilience asserts, these scholars are beginning to understand that modeling 

the structure and connectedness (topology) of the system is vital for any resilience 

characterization. Second, they allude to an important evolution of thought that suggests 

pressure head might not be the only valued function they must track. The suggestion that 

“over-demand” may impact the “capability of the network to provide adequate supply” 

suggests that an additional service level agreement might be emerging (i.e., volume or 

flow at terminals, rather than just pressure in pipes). This observation leads to, third, the 

realization that for WDNs, resilience may not be so important a concept. Instead, while 

resilience can certainly be characterized, for water distribution it could well be that 

robustness is a far more vital concept. If “critical points” and “over-demand” can make 

solutions “unfeasible”, the implication is that there is more work to do on ensuring 
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appropriate supply. In essence, it may well be that WDNs should be considered more like 

appliances where mean time between failures (MTBF) and mean time to repair (MTTR) 

drive deployment decisions far more than resilience. If MTBF is long, and MTTR is 

short, it is likely more cost effective to have a repair staff on hand than it is to design for 

resilience. While these are not yet factored into the current WDN “resilience” metrics, 

they should be. 

 System Analysis 

 

 This is significant for this example because a large part of the Phoenix petroleum 

supply chain is a special case of a water (fluid) distribution network. Interestingly, though 

it is very long, from the standpoint of a fluid distribution engineer, the system is very 

simple because it has effectively no looping and very low complexity. Since the ultimate 

goal is fuel availability to consumers, however, the system involves more than pipes. Fuel 

availability can be modeled in the final delivery of fuel to the filling stations and 

consequent availability to consumers. This involves long-haul pipelines from Los 

Angeles and El Paso as shown in Figure 25 and Figure 26 (KinderMorgan, 2015). Once 

the fuel has arrived in the Phoenix terminal it is shipped via truck to nearly 1000 filling 

stations in the Phoenix metropolitan area. 

 Note that capricious consumer demand constitutes a perturbation on the system, 

not part of the supply system. This demand can be projected with stochastic demand 

models if necessary (the telecommunications industry calls these “traffic models”), but 

they will not play a role in this resilience analysis. In fact, such demand is quite stable 

when considered over the period of time for which consumers value the function of the 

Phoenix fuel supply chain. Importantly (and as presaged by the Baños discussion above), 
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we have only passing interest in the pressure head of the fluid supply system. While this 

is a vitally important engineering design aspect, at the system level, where the valued 

function can be appreciated, it can be ignored. Focus here will be on available volume. 

 

 
Figure 25. Phoenix Fuel Supply - West Line 

 

 
Figure 26. Phoenix Fuel Supply - East Line 

 

 Selection of the “headwaters” of the Phoenix fuel supply network sets the scope 

of the system, but is essentially an arbitrary decision. Selecting the source as back under 

the sands of Saudi Arabia (and Canada, and Mexico, etc.) would implicate a significant 

number of infrastructure systems, dramatically increasing analysis time and model 

complexity. Selecting the crude deliveries at refineries in California and Texas as the 

source implicates a smaller number of systems, but is still quite involved. Note that crude 

harvested in Saudi Arabia can be sent anywhere and crude arriving in Los Angeles or El 
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Paso can be refined and sent (nearly) anywhere as well, so these are not specifically 

appropriate choices for this system. For this analysis, the pumping stations in Los 

Angeles and El Paso have been selected as the source since these stations are ultimately 

what start the fuel on the path to Phoenix. This selection has the benefit of focusing the 

problem on the specific fuel and transport infrastructure that impacts the final goal of 

delivery to filling stations and availability to consumers. Refined petroleum sent from 

Los Angeles to Phoenix (via Yuma) over a specific 20-inch pipe can only arrive in 

Phoenix, so this is the best definition of the Phoenix fuel supply network source. Similar 

statements can be made about the El Paso source. 

 Note, however, that it is not wrong to select a wider scope. The Watson pumping 

station’s resilience is likely very important to someone, and it is certainly enhanced by a 

variety of supply lines that could easily be modeled. Similarly, the Colton terminal can 

have its resilience characterized and this would likely be very interesting to the operators 

of the California-Nevada petroleum network. These could certainly be separately 

analyzed and then included in a broader system model once vetted and understood. As 

will be shown here, however, the Phoenix fuel supply network is itself comprised of 

several other important subsystems which can be seen to contribute to the resilience of 

the overall system, but should also be considered in isolation. These details will be 

highlighted in this simple example. 

 Figure 27 provides a simple overview of the system as modeled for this analysis. 

Five terminals (Watson, Colton, El Paso, Tucson, and Phoenix) are modeled with their 

storage (though the storage is probably not entirely for Phoenix). For this analysis, no 

further decomposition has been done though it can certainly be added if details become 
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available. Each segment of pipe is also modeled with the specifics of fuel flow as 

allocated to Phoenix. Note that ethanol is received from regional as well as Midwest 

suppliers for use in the clean-burning gasoline blending, but this is not modeled for this 

simple example. There are many considerations that would result in higher fidelity. 

 

 
Figure 27. Phoenix Fuel Supply System Overview 

 

 Valued Function 

 

 For this model three valued functions were selected: pipeline transport and 

commercial distribution (both in thousands of gallons per day), and tank storage (in 

thousands of gallons). Applying what was learned in the trivial pipe example discussed 

above, pipeline transport “capacity” is modeled. The single 20” West line has a capacity 

of 100,000 barrels (4.2M gallons) per day. After the August 2003 failure that hobbled the 

Phoenix fuel supply for two weeks, the 60,000 barrels-per-day East line was expanded to 

support a capacity of 200,000 barrels per day in two redundant pipes, commencing 
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operations in 2007. Each of the pipes in the redundant East line has 100,000 barrel per 

day capacity for a total of 8.4M gpd. Note that it is apparent that not all the capacity is 

used. Though likely out of date, azenergy.gov (2004) suggests that approximately 2.8M 

gpd (60%) arrive from the West line, while 1.8M gpd (40%) arrive from the East line. 

 Commercial distribution is modeled with a minimally sized fleet (100) of 8,700 

gallon trucks that are filled at the Phoenix terminal loading rack (21 truck bays) and 

deliver fuel to the approximately 1000 filling stations in the Phoenix area. Further, this 

fuel is modeled as gallons per day available to Phoenix fuel users whose consumption is 

approximately 4.6M gpd. Given this consumption, 100 trucks can supply the filling 

stations with 5 trips on a given work day. Because of some of the distances involved, this 

is very likely an oversimplification that should be revisited for fidelity enhancements. 

 Since there must remain a mass-flow balance, storage tanks are used to manage 

fluctuations in demand that might occur over periods over which scheduled inbound fuel 

flow from the long haul pipelines cannot be responsive. Since it takes approximately a 

week for fuel to arrive from Watson and El Paso, demand fluctuations on the scale of 

days can be managed by the 3-5 day storage capacity provided at the Phoenix terminal. 

This makes storage another important valued function. 

 

 Resilience 

 

 Based on the system analysis discussed above (with the caveat that complexity 

has not been fully modeled) and the quantification of valued function, the resilience of 

the Phoenix fuel supply network is depicted in Table 34. 
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Table 34 

R-characterization: Phoenix Fuel Supply 

System (Function) Productivity Multiplicity 

Long-haul Transport   

Watson Tank (fuel storage) 2333 18 

Watson to Colton (fuel transport) 4200 1 

Colton Tank (fuel storage) 1575 32 

Colton to Phoenix (fuel transport) 4200 1 

El Paso Tank (fuel storage) 2333 9 

EP-Tucson Line 1 (fuel transport) 4200 1 

EP-Tucson Line 2 (fuel transport) 4200 1 

Tucson Tank (fuel storage) 1000 33 

Tucson-Phx Line 1 (fuel transport) 4200 1 

Tucson-Phx Line 2 (fuel transport) 4200 1 

Phx Tank (fuel storage) 1350 61 

   

Local Distribution   

Filling Station Tank (fuel storage) 10 1000 

Filling Station (fuel distribution) 5 1000 

Truck (fuel distribution) 43.5 100 

Productivity 285704573.00  

Complexity 4005018  

R-characterization 71.3367  

 

 

 Though this provides a resilience baseline for the overall system, because of the 

number of subsystems (multiplicity) involved, it should be immediately obvious that 

there are really two systems here. That is, even at this simplified modeling level, long-

haul transport requires roughly two orders of magnitude fewer systems than local 

distribution. While higher fidelity modeling would alter this somewhat, it is unlikely to 

result in dramatically different ratios in outcomes. There are simply many more systems 

involved in the local distribution network due to the many trucks and filling stations. For 

this reason, in order to glean the most information from the resilience characterization, it 

is probably more appropriate to model these as separate and non-comparable systems, 

than it is to include them together. 
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 This is illustrated in  

Table 35 and Table 36 which highlight the dramatic differences in complexity even when 

no real complexity has been emphasized (for example, no attempt has been made to 

consider any of the human dimensions or the variety of organizations and contracts that 

are involved in Phoenix fuel distribution). 

 

Table 35 

R-characterization: Phoenix Local Distribution 

System (Function) Productivity Multiplicity 

Filling Station Tank (fuel storage) 10 1000 

Filling Station (fuel distribution) 5 1000 

Truck (fuel distribution) 43.5 100 

Productivity 20285000.00  

Complexity 4004403  

R-characterization 5.0657  

 

 

Table 36 

R-characterization: Phoenix Long-haul Transport 

System (Function) Productivity Multiplicity 

Watson Tank (fuel storage) 2333 18 

Watson to Colton (fuel transport) 4200 1 

Colton Tank (fuel storage) 1575 32 

Colton to Phoenix (fuel transport) 4200 1 

El Paso Tank (fuel storage) 2333 9 

EP-Tucson Line 1 (fuel transport) 4200 1 

EP-Tucson Line 2 (fuel transport) 4200 1 

Tucson Tank (fuel storage) 1000 33 

Tucson-Phx Line 1 (fuel transport) 4200 1 

Tucson-Phx Line 2 (fuel transport) 4200 1 

Productivity 13619172.00  

Complexity 339  

R-characterization 40174.5487  

 

 

 



233 

 Discussion 

 

 Obviously, if a more complete model of the long haul pipeline were developed the 

resilience characterization would have higher fidelity and become more accurate. The 

same can be said about the model of the local distribution network. Even simplistic 

models, however, allow some important observations to be made. As shown above, the 

dramatic differences in the decomposed system count points to a need to segregate these 

models and suggests that the Phoenix fuel supply network is probably better thought of as 

(at least) two separate systems. The first system—worthy of analysis but not particularly 

interesting from a resilience standpoint—would follow fuel delivery from Los Angeles 

and El Paso to the Phoenix terminal where it would end with fuel storage. The second 

system, local distribution of fuel within Phoenix, should be understood to constitute its 

own system and is far more interesting from a resilience standpoint. 

 For the long haul pipelines, it is obvious that additional redundancy could 

contribute to resilience, but only at significant cost. This was adequately demonstrated in 

the 2007 upgrades to the East line which were precipitated by the 2003 pipeline rupture 

that impacted fuel availability in Phoenix for several weeks (Evans, 2003). Though 

redundancy was added, the important upgrades consisted of new pipe and weld 

technologies which did more to increase the robustness of the system than add additional 

capacity. Further redundancy is unlikely to be cost effective and focus is better placed on 

maintenance and responsiveness in the event of failures. 

 Note well that the local distribution system (from Phoenix terminal to filling 

stations) is already highly redundant (and hence, resilient). In fact, it is this redundancy 
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which supplied adaptive capacity allowing trucks to be routed on roundtrips to Tucson in 

order to fill-in the gaps left by the failed East line during the 2003 crisis. 

 It is tempting to consider what additional redundant capacity in the West line 

might contribute to the Phoenix fuel supply. Obviously this could easily be modeled and 

resilience characterization performed, but it is perhaps more interesting to consider such 

redundancy as adaptive capacity. That is, an additional (redundant) pipeline between 

Phoenix and West Coast could certainly provide petroleum to Phoenix, but since it is not 

specifically required at this time, it could be exploited for other purposes. For example, 

Intel’s Phoenix area manufacturing plants generate two million gallons per day of 

wastewater that is treated in a local reverse osmosis desalination plant (Hackley, 2013). 

While 60% of the treated water is returned to the underground aquifer, there remains a 

large quantity of brine that is pumped to evaporation ponds in South Chandler where 

there is significant fly infestation. Though a complete analysis would be required, there is 

no specific reason the brine could not be pumped from Phoenix to Los Angeles using the 

redundant pipeline. With some additional infrastructure, the brine could then be 

distributed into the Pacific Ocean. This approach (or some other) allows the redundant 

pipeline to be exploited for alternative uses and opens the door to further experimentation 

with adaptive capacity. 
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CONCLUSION 

 

 Quantum resilience pragmatically focuses on operationalizing resilience. To this 

end, a rigorous and enforceable definition has been provided which clarifies and positions 

resilience in the literature. Further, a system analysis approach has been demonstrated to 

permit characterization of resilience in accordance with valued function delivery and the 

complexity of the delivery system. This frees resilience analysis from ambiguous 

analogies and metaphors and permits even normative values to be acknowledged and 

quantified while enforcing transparency and consistency. Importantly, this demonstrates 

that resilience is not an end in itself, but simply one contributor to a more complete 

understanding of a system. 

 Quantum resilience analysis both reinforces and challenges human intuition. It 

highlights the specific mechanisms whereby resilience can be incrementally increased in 

important systems and makes it clear that protectionist features frequently do not increase 

resilience but instead contribute to robustness. Formal characterization permits designers 

and managers to compare alternative or extant system deployments and develop trade 

spaces that contribute to decision-making processes. Since it works at all scales, quantum 

resilience is helpful in determining exactly where resilience can be bolstered and where it 

makes no sense to consider it. This permits understanding of the trade between system 

productivity and complexity, and reminds designers that increasing system robustness is 

frequently vital, but will not necessarily augment system resilience. 

 Since quantum resilience frees analysts from the crippling infinities of 

perturbation-oriented definitions of resilience, it removes the mystery from the concept 

and clarifies its utility in forward engineering and management initiatives. Quantification 
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of function forces analysts to define exactly what they value about their systems instead 

of permitting a generalized sense that reflects their hope that the system persist. Focus on 

actual system structures that deliver valued function forces rigor in system definition and 

transparency in definition of actual system scope. Further, quantum resilience reverses 

the equation on perturbations by first removing them from the definition and then by 

providing a mechanism by which the magnitude of specific perturbations can be 

measured. That is, once system resilience is properly characterized, the impacts of 

alternative system deployments can be quantified whether such alternatives are designed, 

evolved, or occur as the outcome of a disturbance. 

 In addition to making it clear that resilience is not measured on an absolute scale 

and cannot be quantified as an absolute number, quantum resilience demonstrates that 

even the relative resilience characterizations can only be compared between homologous 

systems. It is perhaps obvious that it makes no sense to compare the resilience of a bridge 

to the resilience of the Internet, but it is now also clear that comparable systems will offer 

the same valued functions and be modeled at fidelities for which it makes sense to 

compare them to other similar systems. 

 As a novel and complete theory, quantum resilience provides many advantages 

beyond clarifying the discourse and providing a way to characterize resilience for all 

systems. It can make predictions about how to increase resilience in given systems and 

guide research that leads to discovery of alternative deployment options for systems. It 

can also project approaches by which adaptive capacity can be incorporated through 

redundancy. Further, by specifically addressing system complexity it demonstrates how a 

more complete theory of complexity can be incorporated if one is ever created. Defining 
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apparent complexity in the denominator leaves the door open to characterizations that 

might include complexity that is not apparent. 

 Quantum resilience not only provides the required characterizations that permit 

resilience to be operationalized, but also stages problems in a way that forces 

acknowledgement of what is actually valued, how it must be measured, what its true scale 

and extent are, and what the actual contributors to the valued functions are. This serves to 

clarify the scales at which resilience can be successfully pursued and demonstrates that 

frequently the analysis scope must be tightened to provide meaningful results. 

 Finally, quantum resilience is deployed openly and transparently so it can be 

easily integrated into commercially available model-based system engineering tools. This 

is a reminder that resilience is not a mysterious idea that must be addressed in vague 

terminology with custom tools and partial solutions. Instead, resilience characterization 

flows out of solid systems engineering practice and is a concept that is available and 

useful to all. 
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APPENDIX A 

 

FRACTALSYS OVERVIEW 
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FractalSys is a system modeling tool (and model-based reasoning engine) that represents 

any system as a collection of an arbitrary number of other systems. FractalSys can be 

used in off-line system modeling applications for analysis, design, or trade space 

characterization, or it can be directly embedded in operational control systems. The 

model-based approach allows engineers to develop their systems in an incremental 

manner which better supports the common merging of top-down and bottom-up design 

approaches observed in a given project life cycle.  

 

The “big picture” is quickly and easily captured in the model and details and fidelity can 

be added as they become important or necessary. Since the model-based approach to 

design and development is incremental, there is no problem defining operations and 

progressively augmenting them to increase their fidelity. Details can be added whenever 

they are required and can be simulated (or simply not referenced) until it is appropriate to 

augment the model for higher fidelity. System demonstrations do not require all the 

subsystems to be functioning and interim progress is easily assessed by taking an overall 

view of the model. Internal consistency is enforced and transparency is facilitated. 

 

Systems can be treated as black boxes, placed in a library and used as necessary in other 

efforts. They can be included in larger systems or isolated for individual test and 

simulation. When verified and tested, they can be used as necessary without concern for 

what is on the inside. They manage messages as designed and affect no external data. 

Their low level details can be invisible to the casual user when necessary or exposed to 

the critical eye if required. The built-in simulation capability is useful to verify all the 

required parts are defined. Function of one system is easily borrowed for inclusion in 

another system. 

 

The system hierarchies represented by FractalSys are nested containment hierarchies, 

though “containment” should not be construed as restricting such hierarchies to physical 

or spatial ones. Hierarchies can be purely conceptual as necessary, for example, as 

employees in a corporation. Such system decompositions can be considered hierarchies 

of “nearly decomposable” systems (Simon, 1962) in which intra-component linkages are 

generally stronger than inter-component linkages. Modularization of this sort is common 

practice in systems engineering. Note as well that Simon’s near decomposability is a 

convenient way to allow for future expansion and to support incomplete or bounded 

human expertise in the sense that less-understood or not-yet-finalized systems can remain 

as “black boxes” while their interfaces solidify. Ultimately, deployed systems must 

deliver their functions rationally, so solid systems engineering practice must ensure 

system completeness to the extent required to meet valid requirements. Note, however, 

that while some “models” used in simulation or analysis can remain incomplete and 

allow for future expansion, operational systems must be decomposed to the extent 

required to meet functional specifications. This may seem to be a trivial observation, but 

it is important in light of the manner in which FractalSys can be used for off-line 

modeling and analysis, or embedded in an actual operational system. 
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As shown in Figure 28, each system is composed of other systems and can be defined to 

assume any of an arbitrary number of states. Further, an arbitrary number of transitions 

can serve to move the system between its states. Systems at every level are identified by 

(1) their function as represented by their behavior when operating in specific states 

(which are frequently a useful proxy for function) and (2) their interfaces—especially 

those that “actuate” other (external) systems. Hence, system identity is an important 

concept represented by inter-system arrangement, interfaces, and state. System identity 

can be defined in (typically) equal parts structure and function. Where experts debate 

how a system should be structured, function can take the lion’s share in providing system 

identity until consensus is achieved. Where system function is debated, structure is 

usually better understood. Function and structure find themselves in a sort of Heisenberg 

balance. 

 

 
Figure 28. “Fractal” Nature of Systems Modeled by FractalSys 

Ashby (1956, p. 25) suggests the state of a system is “any well-defined condition that can 

be recognized if it occurs again.” More precisely, states are a summarized aggregation of 

the values of an arbitrary (though generally consensus-based) number of system variables 

(sometimes referred to as “observables”, “measurables”, or “sensors”) and configuration 

parameters. Variables and parameters are similar concepts, but are typically differentiated 

by how fast they change and who (or what) controls them. In general, variables are faster 

changing and are generally implicated in the fast microdynamics of dynamic system 

theory. Parameters are usually “settings” that broadly control how the system operates 

and hence are slower to change. They fit better into the slow macrodynamics of systems 

theory and are frequently static over certain system-specific time frames (for a discussion 

of “comparative statics” see Rapoport, 1986, p. 66ff). In general, states are “named 
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concepts” superimposed by humans on certain configurations and behaviors of a system. 

Variables can be external sensor readings or the states of other contained systems. 

 

Transitions are the mechanisms by which a system is moved among its states in either a 

reactive or anticipatory manner (cf. Rosen, 1985). In fact, the concept of nearly 

decomposable systems is important in this context since in anticipatory modes, 

FractalSys can identify missing transitions if it is compelled to do something that is 

currently undefined. The reactive/anticipatory distinction is important since FractalSys 

can be used in both control and simulation environments. This is accomplished by 

manipulating external system actuators or the surrounding environment (which, recall, is 

just a larger “containing” system). Transitions can be triggered by external data shared 

among systems or by other transitions within the parent (or containing) system. 

 

As implied by the name, FractalSys supports this hierarchical system-state-transition 

structure to an arbitrary depth as needed to completely model the system of interest to the 

level of fidelity required for a specific analysis or control application. FractalSys does not 

enforce arbitrary rules concerning depth of modeling, and assumes domain experts are 

employed to ensure appropriate fidelity for particular analysis, simulation, or control 

tasks. 

 

FractalSys offers a black-box view of systems that ultimately proves to be all that is 

needed for adequate modeling fidelity. Though a system’s identity is defined by both 

structure and function, from the outside, a system is understood by what it presents via its 

interfaces (measurable inputs and outputs). Where internal structure is important to 

external systems, it can be “presented” as an interface and queried as necessary. Output 

parameters and variable values serve to define the state of the system as it might be 

observed by a containing or sibling system. Inputs allow a system to be internally 

impacted by parent or sibling systems. Changes to the surrounding environment (that is, 

the containing system) can be modeled as changes in system configuration parameters 

and variables. Specifically directed impacts (e.g., commands, or forced transitions) are 

managed through exposed (and controlled) interfaces.  

 

FractalSys considers all activity as a series of system events (driven by data update cycles 

or a regular update “polling” period). FractalSys monitors all system events and induces 

state transitions as a function of the changes in variables and parameters (including state 

variables) in a depth-first manner (which is appropriate for Simonesque “nearly 

decomposable” systems). The state transition mechanism is extremely important to 

FractalSys. Sequencing is initiated by, and continued on, the occurrence of events. Each 

of these events can have one or more transitions associated with it. Once the transition 

engine has completed the cascade of transitions, the system waits until it needs to act on 

new incoming data. Note that while the controlling model might be quiescent, controlled 

models and attached “real” systems usually continue to be very active performing their 

simulated or real functions. 
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When effecting system transitions, FractalSys traverses a recursively defined hierarchy of 

transition objects using a depth-first search algorithm. This object hierarchy is depicted in 

Figure 29. 

 

Transition

Vector
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Entry 2

Entry N

Command

 
Figure 29. Recursive Definition of Transition Objects 

As shown in Figure 29, a transition is comprised of a number of transition entries. 

Among other things described below, each entry contains a transition vector which is to 

be executed. This vector can be another transition or a terminal command object that can 

be used to interface FractalSys to external systems or simulators. In the case of a 

command, data is transmitted via the command interface to an external system or 

simulator. When the transition vector is another transition, the transition hierarchy must 

be recursively traversed to perform the command and/or transition sequences which must 

be executed in order to satisfy the highest level transition. Since the transition entry is the 

most important atom of processing (for control or simulation), a brief overview of the 

standard processing which occurs for each entry is provided. The transition entry object 

contains the following items: 

 

1. transition vector (another transition or a terminal command), 

2. verification vector (a state, comprised of a specified list of system variables and 

values), 

3. timeout (nominally a number of seconds), 

4. failure vector (a transition, which could be comprised of other entries), and 

5. pause (nominally a number of seconds). 

 

When a transition entry is executed, the transition vector is the primary item of actuation. 

As previously mentioned, in the case of a simple command (which must be defined and 

instrumented in the command interface database), the command is transmitted via the 

external commanding interface which will be unique for specific implementations. 

Thereafter, the transition manager will wait for the verification vector to be satisfied. It 

will do this by checking the system state until either the requirement is satisfied, or the 

timeout is exceeded. If the requirement is satisfied prior to a timeout condition, the 

transition manager will pause for the number of seconds specified before proceeding to 

the next transition entry (if any). If the timeout condition occurs prior to satisfaction of 

the verification vector, the failure vector is executed. This failure vector is itself a 

transition which is managed in the same way. Typically, the failure vector will display 

error messages and/or execute a safing sequence if FractalSys is connected to hardware. 
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For safety-critical systems, constraints and restriction processing is effectively built into 

the transition management routines in two ways. First, many transitions will contain 

multiple entries, the first of which will verify proper system configuration before the 

remainder of the entries are executed to change system state. Second, all state transition 

requests will be “validated” prior to their execution. For example, given a request to 

transition a system from state A to state B, there will be an internal check to ensure it is a 

legal (i.e., defined) transition from the current state. Obviously, if no transition is defined, 

the desired state is unreachable. A violation of such a defined constraint or restriction will 

generate an alert message. 

 

The transition engine operates from the functional model of the system which defines the 

systems, states and transitions necessary to successfully simulate or control the system. 

The system model (function and structure) is developed in the FractalSys software 

package (Figure 30) and is saved in a database. 

 

 
Figure 30. FractalSys User Interface 

 

System “function” occurs while a system resides in a particular state (in general, the 

model orchestrates the operation of other models). For example, think superficially of a 

two-state system where it is either “on” or “off”. Clearly, such a system would not be 

performing its function while in the “off” state. Arguably, function also occurs during 

transitions, though the best models will limit this to simple “notifications of change.” In 

this regard, transitions should be viewed as “catastrophic” in the mathematical sense of 

catastrophe theory (see Rapoport, 1986, p. 67ff).  Further, function occurs while a system 
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is “maintaining” its state—though for most homeostats this is generally invisible to the 

surrounding or containing systems. Hence, “state” becomes a viable proxy for “function” 

assuming the granularity of the system definition has been managed well by the experts 

who define it. 

 

Obviously systems maintain interfaces with other systems. This can be implemented by 

shared variables or by modeling interfaces as systems themselves. For example, shared 

variables like “temperature” can be used in state determination by two proximate 

systems. Such variables allow any data, information, influence, material, etc. that 

traverses an interface to be modeled as raw data items that are modified by one system 

and used by another system in determining state. So-called “interface systems,” on the 

other hand, can be helpful if interfaces are more complicated. For example, to model an 

RF interface, a “system” can be employed so delays (due to distance) and disturbances 

(like rainfall) can be specifically modeled. This also allows “interface” systems to have 

states and transitions. Thus, interfaces are not ontologically “other” and require no special 

considerations. They are simply systems themselves. 

 

Variables represent measurable items or user-definable items that contribute to definition 

of system states. Unlike the states they help define (which are fabrications superimposed 

on systems by human observers), the idea behind variables is that they are more “real” 

and tethered in the physical world. This is not always the case, but (avoiding the 

epistemological discussion) the intent is that system states which are based on measurable 

variables are more grounded in physical reality. For this reason, each “measurable” has a 

scope or a system to which it is most accurately associated. For example, since an 

environment temperature might be measurable by many systems, its scope is clearly 

beyond any one of the systems that measure it, and might properly be best associated 

with a parent system (like, the environment). 

 

As expected, a variable may contribute to defining many states. For example, 

“temperature is 100F and humidity is 90% so the weather is muggy”, and, “temperature is 

70F and humidity is 30% so the weather is nice” are both valid state definitions which 

share variables like temperature and humidity. Variables can be employed in state 

definitions for any system for which they are within scope. 

 

As shown in Figure 31, it is the extent to which variables are shared by systems that 

defines the connectedness of those systems. Consider a variable that is “controlled” (or 

“set”) by a certain system X (e.g., a temperature is “set” by an external weather or 

climate system). If that variable is used to define the state of another system (e.g., Y 

employs it to determine if it is “hot” outside), there is a “direct connectivity” between X 

and Y that constitutes a connection. Setting a variable that is used by another system 

increases connectedness between systems. Using a variable which is set or controlled by 

another system specifically creates a dependency for the using system. Note that if 

another system (Z) uses the same measurable variable from X in defining one of its 

states, this constitutes “indirect connectivity” between systems Y and Z (see Figure 31). 
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Figure 31. Direct and Indirect Connections Between Systems 

 

FractalSys observes fairly typical scoping and accessibility rules for variable data. As 

indicated above, any state or transition that uses a variable defined in an external scope 

(that is, inherited, see Figure 32) creates a dependency. FractalSys does not acknowledge 

directionality of interfaces since there was no driving reason to support such ideas (i.e., 

all interfaces are bi-directional, though some may only be employed in one direction).  

 

 
Figure 32. FractalSys Variable Scoping Protocol 

x

“measurable”

y z

Direct connectivity exists 
between systems that 
consume “measurables” 
generated by other systems

Indirect connectivity exists 
between systems that share 
“measurables”

System: Main
Defined Variables: x
Inherited Variables: none
Accessible Variables: x

System: A, child of Main
Defined Variables: y
Inherited Variables: x
Accessible Variables: x, y

System: C, child of A
Defined Variables: z
Inherited Variables: x, y
Accessible Variables: x, y, z

System: D, child of A
Defined Variables: none
Inherited Variables: x, y
Accessible Variables: x, y

System: B, child of Main
Defined Variables: none
Inherited Variables: x
Accessible Variables: x
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Data Model 

 

The FractalSys data model is highly recursive and very dense (see Figure 33). 

 

 
Figure 33. FractalSys Data Model 

 

In general, FractalSys supports an object-oriented physical model of whatever system it 

models. This physical model of the system is positioned within some reasonable 

“environment,” then starts at the highest containing level and adds detail as it progresses 

down the decomposition hierarchy. For example: 

 

 A rocket launch vehicle might have four stages 

      Stage 1 might have four SRB Castors, Stage 2 has two SRB Castors, etc. 

           An SRB Castor might have a TVC system 

                TVC systems have Electrical Control Systems (ECS) 

                     ECS's have.... etc. 

 

Eventually, the hierarchy decomposes to the level of detail where sensors are available to 

attach real values to these items. For example: 

 

 A launch vehicle has a Stage 3. 

      Stage 3 has a Fairing. 

           The Fairing has a temperature sensor. 

                The temperature sensor provides an analog value in degrees. 
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Thus, the physical model of the system completely defines what can be known (e.g., 

measured or dictated) about the system. 

 

On this physical model of the system, a topical model can be superimposed if desired. 

Where the physical model addresses completeness, the topical model addresses clarity 

and context. For instance, in the example above, the temperature sensor may indeed be 

physically located on the stage 3 fairing of the rocket system, but from the perspective of 

a hypothetical thermal engineer, it may be considered part of the thermal subsystem 

which is a hypothetical subsystem distributed throughout the actual physical 

configuration. Likewise, while for example there may be an ignition safety device 

physically located in every rocket castor, from the perspective of an ordnance engineer 

they all belong to the ordnance subsystem. These parallel models support both 

approaches to the system design and allow a very flexible approach to status monitoring 

and state determination. Further, the alternative model views add negligible overhead to 

the system model. 

 

A database containing the latest model values (“measurables” and states) is maintained. 

This database is accessed by the physical and any topical models of the system. 

Generally, system state determination is handled by the two (or more) separate models of 

the system. The physical model (as the most complete representation of the 

“measurables”) processes data and develops a physical status of the system. For example, 

system equipment can be in any of a number of states: on, off, standby, etc. While 

specific details of the physical system will be available, it may be largely ignored in lieu 

of reviewing the more human-oriented topical model states. These states can be generated 

by the topical model of the system. Hence, the physical model provides a complete 

skeleton to which the more “interpreted” topical models can add flesh. However, in 

practice, system engineers will opt to model the system according to personal or team 

preference. 

 

Typically, in hardware-in-the-loop systems, state determination is done at predefined 

intervals during which data is read from the various input data sources and is placed in 

the database (the “polling” approach). Thereafter, the state models are updated to reflect 

the current system state based on the physical data sources. 

 

FractalSys forces both the physical and topical models (if developed) of the system to 

update their states on a regular basis. This is done by messaging the highest level object 

and telling it to update its state. This message will propagate down the hierarchy (with a 

depth-first algorithm) until the lowest level object updates its state. As this is done the 

state propagates up the hierarchy causing all components and subsystems to derive their 

current states. Finally the top level system state will be derived and in the process all the 

database variables will be updated. 

 

Absolute tolerances for each individual data item will be established as required. 

However, each tolerance will have a context (or, multiple contexts) associated with it by 

a cognizant engineer. For example, if a power supply is ON, then perhaps the voltage 
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should register 32  6 Volts, however, in a different context, if it is turned OFF for 

example, then appropriate values for its voltage may be 0  50 mV. These tolerances, 
defined in the system definition database, will be used to clarify system states. Anomalies 

will be flagged if the required values are unknown or if they are out of tolerance for a 

particular context. 

 

 


