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ABSTRACT

Analysis of social networks has the potential to provide insights into wide range of

applications. As datasets continue to grow, a key challenge is the lack of a widely

applicable algorithmic framework for detection of statistically anomalous networks

and network properties. Unlike traditional signal processing, where models of truth

or empirical verification and background data exist and are often well defined, these

features are commonly lacking in social and other networks. Here, a novel algorithmic

framework for statistical signal processing for graphs is presented. The framework is

based on the analysis of spectral properties of the residuals matrix. The framework

is applied to the detection of innovation patterns in publication networks, leveraging

well-studied empirical knowledge from the history of science. Both the framework

itself and the application constitute novel contributions, while advancing algorithmic

and mathematical techniques for graph-based data and understanding of the patterns

of emergence of novel scientific research. Results indicate the efficacy of the approach

and highlight a number of fruitful future directions.
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Chapter 1

INTRODUCTION

More than ever, the scales of datasets available for analysis present unprecedented

opportunities for discovery as discussed, for example, in the National Research Coun-

cil (2013) report. This prevalence and scales of data create an environment enabling

fundamental transformation of academic disciplines not previously possible, lever-

aging mathematical and computational approaches, specifically, in humanities and

social sciences. Combining data analysis techniques at scale with domain expertise

in diversity of disciplines establishes a path towards elucidating the fundamental un-

derstanding of knowledge and innovation. Specifically, analysis of networks at scale

- from collaboration networks in publications to protein networks in biology - has

enabled new avenues for and has potential to transform discovery. Networks, through

the representation of both entities and relationships between those entities, allow for

significantly more rich analysis than analysis of entities alone as discussed in Newman

(2003).

However, this amazing opportunity also comes with significant challenges. Net-

works are indeed prevalent in diversity of domains. In biology, they have been used

to represent interactions between proteins Bu et al. (2003); Batada et al. (2006) and

reproduction within a population in an evolutionary model Lieberman et al. (2005).

Social network analysis, where the data of interest are people and the relationships

among them, is another very natural setting for network analysis. Significant work has

been done on the topic of detection of communities as in Newman (2006); Du et al.

(2007) and influential figures as in Kleinberg (1999) in social networks, frequently

using a graph as the primary mathematical data structure. Elements of social net-

1



work analysis have also been combined with compartmental models to study the

spread of disease as described, for example, in Chowell and Castillo-Chavez (2003)

and Herrera-Valdez et al. (2011).

Increasing dataset scales motivate the need for a framework analogous to classical

statistical detection - allowing for identification of patterns, anomalies, and events.

The formulation of the subgraph detection problem in context of classical detection

along with the associated techniques constitute a novel approach. As formulated,

detection of small, connectivity-based (topological) anomalies in both static and dy-

namic networks (the subgraph detection problem at the core of the methodology

presented here) is distinct from community detection as it focuses explicitly on the

notions of foreground (signal) and background (noise) and assumes that the anomaly

to be detected is small in comparison to the size of the entire network. Unlike in

traditional signal processing, the models of signal and noise are at best complex and

at worst not know - for example, there is no formal general graph theoretic definition

of how innovation happens in networks of scientific collaboration, though the topic of

scientific innovation has been consistently of significant interest as discussed in Bet-

tencourt et al. (2008) and Bettencourt et al. (2006) and graph theoretic innovation

metrics have been empirically studied in Bettencourt et al. (2009).

In literature, the terms “network” and “graph” are often used interchangeably. In

context of this dissertation, a network is a (physical) instantiation; while a graph is

the mathematical abstraction used to represent that instantiation. Formally, a graph

is a pair of sets: a set of vertices, V , representing the entities and a set of edges,

E, representing the relationships between those entities or G = (V,E). Consider the

example of studying emergence of innovation in scientific literature. A collaboration

network is the network of authors publishing scientific works together. The graph

representing this network would consist of a set V , representing the authors, and a
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set E, representing the co-authorship relationship. Additional definitions are provided

in Chapter 2.

Graphs, and correspondingly, the field of graph theory and techniques for analysis

of graphs, are not novel - the first documented graph problem was defined in 1736

by Euler as described in Biggs et al. (1986). However, starting in the early 2000s as

discussed in Faloutsos et al. (1999), the datasets of interest have become difficult to

handle with traditional, traversal based algorithms such as those discussed in Cormen

et al. (1990). For example, a common dataset studied to analyze community structure

by graph theorists in 1970s and 1980s is Zachary’s Karate Club which included 34

vertices and 78 edges (Zachary (1977)). By comparison, recent datasets of interest

include hundreds of thousands to millions and billions of vertices as in Miller et al.

(2013a). This explosion in data size of graphs along with a prevalence of applications

has motivated a new interest in this topic as illustrated by Newman (2003), Easley

and Kleinberg (2010), and many others.

While graphs have been used and studied extensively, since graphs are discrete

and combinatorial structures, there is no straightforward way to transition the tech-

niques of signal processing in the Euclidean space to the graph theoretic domain.

Many traditional combinatorial problems (such as subgraph isomorphism) result in

computational complexity not amiable to dataset scales of interest, often leading to

requiring a solution to an NP-complete (hardest computational class - no polynomial-

time algorithm is known) problem.

Detection of small, emerging patterns has significant value to wide range of appli-

cations - from detection of malicious traffic on the internet to identification of protein

interactions for early drug testing and development. These applications can be for-

mulated as a problem of subgraph detection - a detection of an anomolous subgraph

(subset of vertices in edges) in large-scale, noisy, and potentially temporally evolving
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background network. The contribution of the research described here is a general

novel algorithmic framework to enable subgraph detection while managing computa-

tional complexity; allowing for quantitative evaluation of detection performance; and

supporting analysis of both static and dynamic (temporally evolving similar to but

different in formulation from Chowell et al. (2003)) graphs. To create this framework,

we build upon techniques in spectral graph theory, the notion of graph residuals, and

take inspiration from traditional detection theory. The framework consists of a set

of algorithmic blocks, allowing for development and evaluation of combinations of

mathematical techniques. This modular formulation, in addition to being easily gen-

eralizable to diverse set of domains, allows us to also clearly identify many potential

future research directions.

The application-agnostic algorithmic framework is the first novel contribution of

this research. The second is the application of the framework in context of the specific

problem of detection of innovation in publication networks. A key challenge devel-

oping this framework, is that, unlike in traditional signal processing, there is a lack

of well-defined models for both noise and signal. For example, the notion of anoma-

lous group in a social network is not trivial to define and is likely highly variable

across application domains. This makes the problem of signal detection in graphs

particularly challenging. In the case study chosen in this research, the emergence and

scientific significance of innovation (specifically, the role of gene-regulatory networks

in evolution) is well studied. Leveraging this well-studied truth (truth that can be

derived from empirical knowledge from the history of science, in our case) has the

potential to both elucidate the mathematical properties of graph-based signatures of

innovation within a domain and to demonstrate efficacy of transdisciplinary research,

through iterative co-design of the mathematical techniques with the domain knowl-

edge. This research, leveraging the statistical signal processing for graphs framework
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together with well-studied periods of innovation, can potentially lead to both a bet-

ter understanding of innovation as a mathematical process in context of collaboration

and other relevant networks and illuminate early stages of innovation leading to the

ability to accelerate emerging scientific discoveries.

The dissertation is organized as follows. In Chapter 2, we present basic definitions

and related work. In particular, we discuss both how our novel algorithmic framework

draws upon both computer science and signal processing and how it relates to graph

anomaly detection research as it has been emerging over the last decade. In Chapter

3, we present the Signal Processing for Graphs (SPG) algorithmic framework. In

Chapter 4, we discuss how the framework can be extended to analyze dynamic graphs

and present the associated mathematical techniques. In Chapter 5, we describe the

domain specific datasets and the well studied period of innovation. In Chapter 6,

we present results of applying the techniques to the case study dataset. Finally we

present conclusions and highlight future directions in Chapter 7.
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Chapter 2

BACKGROUND

The contributions of the research described in this dissertation include the de-

velopment of a novel algorithmic framework for analysis of and anomalous subgraph

detection in large graph datasets and the application of this framework to a case study

of detecting innovation in collaboration networks as defined by publication data. The

notion of subgraph detection in context of signal processing for graphs is distinct from

community detection as it presumes and requires definition of signal (a subgraph or

subgraphs of interest) and noise (background data). The algorithmic framework con-

sists of mathematical techniques leveraging concepts from computer science and signal

processing. Both the techniques within the framework itself and the application in

context of a rigorously studied historical period of innovation are highly interdis-

ciplinary, leading to advances in both algorithms and understanding of knowledge

and innovation. The resulting framework and the approach have the potential to

transform graph analysis by establishing statistical signal processing methodology for

subgraph detection, particularly, as it is applied to analyzing and understanding wide

range of domain-specific networks.

This chapter presents an overview of the key concepts and the terminology that

are used throughout the dissertation. The definitions are followed by an overview of

the related work in detection in graph based data. It is worthwhile to mention that

the research area of signal processing for graphs along with detection bounds in graph

based data has been gaining significant attention over the last six years as discussed

in Section 2.2.
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An extensive tutorial on the topic was presented at the IEEE International Con-

ference on Acoustics, Speech, and Signal Processing in May, 2014 by Bliss et al.

(2014a).

2.1 Basic Definitions

The terminology and definitions are provided in two sections. In Section 2.1.1, we

formally define a graph and introduce adjacency and other matrix representations of

a graph. In Section 2.1.2, we provide definitions necessary to formulate the subgraph

detection problem mathematically.

2.1.1 Graphs and Their Matrix Representations

The core novel contribution of this research is an algorithmic framework for graph-

based data and, more specifically, an algorithmic framework for detection of topolog-

ical anomalies in context of statistical signal processing in graph-based data. Here,

the term “topology” is used consistent with computer science graph theory definition

and refers to the connectivity of the graph. Therefore, a topological anomaly is a

connectivity-based anomaly. A graph is a mathematical structure that allows for

encoding of pairwise relationships between entities. Formally, a graph G = (V,E) is

defined by a set of vertices, V , representing entities and a set of edges, E representing

relationships between those vertices. Each edge can be defined by a vertex pair, for

example edge (vi, vj) defines an edge between vertex i and vertex j. Graphs can be

weighted or unweighted. In an unweighted graph, edges do not have values associated

with them. In a weighted graph, an edge is typically defined by a triple (vi, vj, w)

where vi and vj are vertices and the w is a weight associated with an edge. Graphs

can be undirected or directed. In an undirected graph, if an edge (vi, vj) exists, so

does the edge (vj, vi). In a directed graph, that is not necessarily true. A graph that
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is both unweighted and undirected is referred to as a simple graph. The details of

the algorithmic framework and its application presented here focus on simple graphs,

however techniques are extensible to weighted and directed graphs as is highlighted

throughout the dissertation.

A graph G can also be represented by its adjacency matrix A. The adjacency

matrix A is defined as follows:
aij = 1 : if an edge (vi, vj) exists between vertex i and vertex j

aij = 0 : otherwise

(2.1)

Note that an adjacency matrix representation of a simple graph is symmetric

and real, where each aij is either a 0 or a 1. An adjacency matrix of this form

permits eigendecomposition. Figure 2.1 graphically depicts both a vertex-edge and

an adjacency matrix representation of a simple graph.

Our techniques are applicable to both static and dynamic graphs. We represent

a dynamic graph as a sequence of static graphs where each Gt is defined by a set

of vertices Vt and a set of edges Et, at time period t. Similarly, each Gt can be

represented by the t-th adjacency matrix At where a non-zero entry aij,t in At implies

that there exists an edge between vertex vi and vertex vj at time t. Chapter 4 provides

details on mathematical techniques for dynamic graphs in context of the statistical

signal processing for graphs framework.

Two quantities are commonly used in context of attributes of a graph: a degree

of a vertex (or a degree vector for the entire graph) and volume of the graph. The

degree of a vertex is the number of edges incident to a vertex. Vertices in directed

graphs have both in (to the vertex) and out (from a vertex) degrees. Note that the

degree can be observed or defined by some probability distribution of the expected

degrees. The degree of vertex vi is denoted ki, and its expected degree is denoted di.

Note that ki =
∑N

j=1 aij and di =
∑N

j=1 pij, where pij is the probability of an edge

8
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Figure 2.1: Simple Graph. On the left, a graphical depiction of a simple graph is

presented. The graph has 8 vertices and unweighted, undirected edges connecting

those vertices. On the right, the same graph is represented with its adjacency matrix.

The matrix has 8 rows and 8 columns (equal to the number of vertices). Since this is

a simple graph, the matrix is symmetric (if aij is non-zero, so is aji) and each non-zero

entry is equal to 1.

occurring between vertex i and vertex j. The vector of the observed and expected

degrees will be denoted k and d, respectively. The volume of the graph, Vol(G), is

the sum of the degrees over all vertices.

Note that the observed degree vector k can be computed as follows from the

adjacency matrix, A:

k = A1,

where 1 is a column vector of 1’s.

Various types of graphs exist and some are discussed in Cormen et al. (1990)

and in Chakrabarti and Faloutsos (2006). Commonly, graphs are defined by edge

distributions as was alluded to above in context of expected degree defintion. For the
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research presented here, it is important to define the following graph types: cliques;

Chung-lu graphs as described in Chung and Lu (2002a) and Chung and Lu (2002b);

and power law graphs as discussed in Chakrabarti and Faloutsos (2006).

An n-vertex clique is a graph where each vertex is connected to every other vertex

in the graph and is also referred to an n-vertex complete graph Kn. In context of a

matrix definition, a clique is a fully dense (connected) graph, so every entry in the

adjacency matrix has a value.

A Chung-lu graph model as described and generalized in Chung and Lu (2002a),

Chung and Lu (2002b) assumes that the probability of an edge occurring between

any two vertices is proportional to the degree of each vertex.

Finally, a powerlaw graph is one where the distribution of degrees of vertices in a

graph follows a power law. Much has been published on the fact that real-wold graph

degree distributions such as the graph of the World Wide Web follow a power law as

is discussed in Chakrabarti and Faloutsos (2006). In a powerlaw graph, few vertices

have high degree while most vertices have low degree. In the simulations discussed

throughout this dissertations, we generate the powerlaw background graphs using the

RMAT (recursive matrix) Kronecker graph generator as defined in Chakrabarti et al.

(2004). This creates a rich background graph that still has controllable simulation

parameters allowing for repeatable for Monte Carlo experiments. Note that the basic

random graph of Erdős and Rényi as discussed in Erdős and Rényi (1959) where a

probability of an edge occurring between two vertices is the same for all vertex pairs

can be generated as a special case of the RMAT (recursive matrix) model.

As our novel algorithmic framework is based on the notion of detecting small

topological anomalies within large graphs, it is also important to formally define a

subgraph, or a subset of vertices and edges of a larger graph G. A subgraph of a
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graph G = (V,E) is a graph GS = (VS, ES), where VS is a subset of V and ES is a

subset of E. If GS is an induced subgraph, then ES = E ∩ (VS × VS).

As highlighted in the introduction, the scales of datasets of interest, ranging from

hundreds of thousands to billions and beyond vertices, present both an opportunity

and a challenge. When working with graph problems, not only are the data scales

challenging, but so is the computational complexity of many graph algorithms. Many

graph problems fall into the class of NP-complete problems or problems that are

considered the hardest computational class of problems. The NP-complete problems

have no known polynomial time solution as discussed, for example, in Cormen et al.

(1990). Another interesting aspect of NP-complete problems is that if a polynomial-

time solution is found for one of the problems in the class of NP-complete problems,

then every problem in that computational class can be solved in polynomial time.

Whether a polynomial time solution for NP-complete problems exists is considered

to be one of the most important problems in the field of theoretical computer science.

A particular problem of interest, the subgraph isomorphism problem, is one such

problem. The subgraph isomorphism problem asks the question of whether given two

graphs, G1 and G2, G1 contains a subgraph that is isomorphic (has the same topology

or connectivity) to G2. While the subgraph isomorphism is not exactly identical to

subgraph detection, it is closely related and highlights the computational complexity

of the problem of interest. Furthermore, some of the applications of interest explicitly

require solving the subgraph isomorphism problem. For example, if it is possible to

define innovation in collaboration networks topologically based on empirical analysis

of case studies, identifying those innovation patterns in publication networks would

require solving the subgraph isomorphism problem. It is, therefore, of particular

importance to note that all algorithmic techniques, while not solving the detection
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or isomorphism problem optimally, have polynomial complexity. Additional future

directions as related to computational complexity are discussed in Chapter 7.

To conclude the graph-related definitions section, it is helpful to briefly men-

tion the field of spectral graph theory along with common matrix representations of

graphs (in addition to the adjacency matrix representation). Spectral graph theory

as discussed in Chung (1997) is a sub-discipline of graph theory focused on matrix

representations of graphs and their eigenvalues and eigenvectors. For random graphs,

in particular the random graph model of Erdős and Rényi), the eigenvalue distri-

bution can be characterized. For graphs with entries having a zero mean and equal

variance, the eigenvalues follow a semi-circle distribution with radius 2
√
Nm where N

is the number of vertices and m is the variance of the matrix entries (edges) according

to Wigner’s Semicirle Law. While similar properties are observed for other random

graphs, the theoretical details are an open and active area of research.

Matrix representations of graphs enable a framework for relaxing discrete objects

(graphs) into reals and provides a basis for a number of approximation algorithms to

problems that often are NP-complete as discussed above. Table 2.1 highlights a few

commonly studied matrix representations of graphs.

The graph Laplacian tends to have garnered the most attention from the spectral

graph theory perspective, due to the fact that it can be used to compute various

properties of the underlying graph including, for example, the number of spanning

trees. In our research and, in particular, the research discussed here, we leverage the

modularity matrix, B. The modularity matrix was defined in Newman (2006) and has

been traditionally used to evaluate how well a graph partitions into communities. The

quantity modularity (as opposed to the modularity matrix), as defined in Newman

and Girvan (2004), is, given a graph partition, simply the comparison of edges within

the partition and between partitions. Maximizing modularity allows for identification

12



Table 2.1: Commonly Studied Matrices Associated with Graphs

Matrix Formulation Description

A Adjacency Matrix

An Powers of Adjacency Matrix

L = D − A Graph Laplacian

L = D
1
2 (D − A)D

1
2 Normalized Graph Laplacian

B = A− ddT

Vol(G)
Modularity Matrix

B = A− γwwT Generalized Modularity Matrix

of communities in a graph. In our work, we use the modularity matrix as the residuals

matrix in context of subgraph detection. A more detailed discussion of modularity is

presented later in this chapter.

2.1.2 Detection in Graphs

Our novel algorithmic framework is developed with the purpose of subgraph de-

tection in large graphs. The general signal detection problem as discussed in Kay

(1998) is: given an observation x, determine whether H0 or H1 is true, where:


H0 : x was drawn from the noise distribution

H1 : x also includes a signal.

(2.2)

In the case of subgraph detection, our formal hypothesis test is:


H0 : G = GN

H1 : G = GN ∪GS,

(2.3)

13



Gaussian 
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NonGaussian 
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Known 
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Random 
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Random 
Unknown PDF 

Noise 
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Topics covered in Fundamentals of Statistical Signal 
Processing, Detection Theory, Volume II, Kay, 1998 

Figure 2.2: Detection Taxonomy. The topics covered in the classical detection text:

Kay (1998) are indicated with green checkmarks. The topics not covered are indi-

cated with red X’s. The elements of the taxonomy that are relevant to the subgraph

detection problem are highlighted with a red box and grey cells - specifically, non-

Gaussian known and unknown probability density functions for the noise and random

known and unknown probability density functions for the signal. As can be seen from

the taxonomy, the topics of interest in context of the subgraph detection problem are

outside of the scope of classical detection and present many challenges.

where GN is background or noise only graph and GS is the signal subgraph. Fig-

ure 2.2 presents detection and estimation taxonomy and highlights the topics that are

typically covered in traditional detection theory as discussed in Kay (1998). Addition-

ally, where the subgraph detection problem fits into that taxonomy is also highlighted.

For the problem of interest in context of graph detection, we are working within non-

Gaussian noise, that is often unknown and random known or unknown signals. While

the formulation of the general graph detection problem and the associated framework

are novel, even within the traditional detection taxonomy working in the space of real

matrices, the problem presents many challenges and traditional techniques cannot be

applied and require development of new techniques.
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It is worthwhile to note how the special graph definitions described above are

relevant in context of the subgraph detection problem. As formulated, the problem

requires definitions and ability to simulate noise and signal graphs. For noise, we lever-

age the powerlaw graphs as generated using the RMAT model. This provides us with

a simulated dataset that is realistic and has sufficient complexity (non-Gaussian),

yet allows for controlled experiments. When testing our algorithmic techniques in

simulation, we use the clique subgraph induced on a subset of vertices in the back-

ground as signal. While it may appear that a clique is a strong signal, finding a

clique still falls into the subgraph isomorphism problem, making even this apparently

simple problem significantly challenging. Furthermore, in simulation, we often vary

subgraph connectivity density starting with 100% dense clique subgraph and then

considering detection and identification performance as the density decreases. As our

signal processing for graphs framework is based on analysis of residuals from a known

graph model, we use the Chung-Lu graph model for all of the algorithms and results

discussed in this dissertation. Note that the Chung-Lu model is consistent with the

modularity formulation and assumes no community structure.

Finally, we would like to define the notion of Receiver Operating Characteristic

in context of graph analysis. A key motivation for developing a signal processing

for graphs framework is to allow for quantitative performance evaluation of various

algorithmic techniques in context of subgraph detection. In traditional signal process-

ing, detection performance is often characterized by plotting probability of detection

(correctly detecting an anomaly when there is one present), PD, on the y-axis versus

probability of false alarm (detecting an anomaly when no anomaly is present), PFA

on the x-axis. PD and PFA are related to Type I and Type II errors. PFA is the

probability of Type I error and (1-PD) is the probability of Type II error. Typi-

cally, for good detection performance, we would like our probability of detection to
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be high and probability of false alarm to be low. We use the same type of plot for

our simulated experiments as discussed in Section 3.4, allowing us to evaluate various

detection techniques.

2.2 Related Work

The previous section, Section 2.1, defined basic concepts leveraged throughout the

dissertation along with how the research presented here builds on existing foundations

in spectral graph theory and traditional detection. The notion of anomaly detection

in graphs, along with bounds associated with detectability of certain subgraphs has

recently become and active area of research as is discussed in this section and in Miller

et al. (2014).

As we consider the related work, it is important to keep in mind the motivation

for this research. Our goal here is to develop a general signal processing for graphs

framework. With that goal in mind, we are interested in techniques that can han-

dle diversity of graph signals, diversity of graph background and noise models and

instantiations, including being able to handle both static and dynamic graphs for

both signal and noise formulations. Additionally, we would like to develop a frame-

work where no cue as to which vertices should be considered is necessary - where

the input into the analysis is the entire graph with no indication as to regions of

potential interest within that graph. More explicitly, we see that our framework can

be complimentary to cue-based techniques - for example, we may return a subgraph

that is statistically anomalous and then use the cued techniques to further investi-

gate the neighborhoods of identified vertices. It is also desirable to be able to test

various detection algorithms and test statistics in context of this framework or more

specifically, be amenable to ROC analysis. Finally, we would like the techniques to
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be readably applicable to datasets from various applications and not be limited to

purely theoretical or simulated scenarios.

It is also important to note that in our research we treat graphs or sequences of

graphs as observations, as opposed to data structures that are either induced on other

data to enable various analyses as, for example, in Chen et al. (2008) and Krivanek

and Sonka (1998) or distributed signal processing on graphs as in Sandryhaila and

Moura (2013) and Shuman et al. (2013).

Various research has addressed the subgraph detection problem or anomaly de-

tection problem in specific, as compared to general, formulations. For example, the

notion of anomaly detection has, in recent years, expanded to graph-based data as

in Sun et al. (2005, 2007). The work described in Noble and Cook (2003) focuses on

finding a subgraph that is dissimilar to a common substructure in the network. In

Eberle and Holder (2007) and Skillicorn (2007) this work is extended using the min-

imum description length heuristic to determine a “normative pattern” in the graph

from which the anomalous subgraph deviates, basing three detection algorithms on

this property. This work, however, does not address the diversity of anomalies of

interest in our research; also, our background graphs may not have such a “normative

pattern” that occurs over a significant amount of the graph. Though it is worthwhile

to mention that Le and Hadjicostis (2008); Chang et al. (2006); Eberle and Holder

(2007) present detection problems using graphical data and evaluate their techniques

with metrics common in signal processing, such as receiver operating characteristic

(ROC) analysis. Other work focusing on identifying specific subgraphs in a larger

graph such as Gelbord (2001) and detecting a very dense subgraph Asahiro et al.

(2002), a frequently-occurring subgraph Deshpande et al. (2005) or a certain behav-

ioral pattern Coffman and Marcus (2004) has also been done.
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Analysis of dynamic graphs has also gained significant attention, including as de-

scribed in Hirose et al. (2009). For example, in Idé and Kashima (2004) the principal

eigenvector of a matrix based on the graph is tracked over time, and an anomaly is

declared to be present if its direction changes by more than some threshold. The

method of Priebe et al. (2005) uses scan statistics to determine typical behavior

within a vertex’s neighborhood and looks for large deviations. In fact, in Priebe et al.

(2005) the subject of matched filtering for graphs is broached, but from a different

perspective than in our framework as discussed in Chapter 4. Research into anomaly

detection in dynamic graphs by Priebe et al. Priebe et al. (2005) uses the history of

a node’s neighborhood to detect anomalous behavior, but this approach can only be

applied in the case of dynamic graphs (not static and dynamic) and lacks the desired

generality. Also, as our interest is in uncued techniques, we operate in a different

context from the work in Smith et al. (2012, 2013); Coppersmith and Priebe (2012)

that requires a cue into the larger graph as an input to the analysis. These methods

are complementary to the techniques outlined in this paper, as a set of outlier vertices

could be used to seed a cued algorithm and do further exploration.

As discussed above, while the area of anomaly and subgraph detection has been

and is an active area of research, most of the techniques demonstrated have been

developed for specific scenarios. Our signal processing for graphs framework, to the

best of our knowledge, is the only approach that is general with respect to signal and

noise models and static and dynamic graphs. As our framework leverages the notion

of modularity as defined in Newman (2006), Section 2.2.1 discusses related work in

context of this notion. Finally, while optimal detection for general graph signal and

noise models is an open area of research, Section 2.2.2 highlights some recent results

on optimal detection for specific signal/noise combinations.

18



2.2.1 Modularity

Our subgraph detection framework is based on graph residuals analysis. The

residuals of a random graph are the difference between the observed graph and its

expected value. 1 For a random graph G, we analyze its residuals matrix

B := A− E [A] . (2.4)

In the area of community detection, as alluded to in Section 2.1.1, a widely used quan-

tity to evaluate the quality of separation of a graph into communities is modularity, de-

fined in Newman and Girvan (2004). The modularity of a partition C = {C1, · · · , Cn}

is defined as

Q =
n∑
i=1

(eii − a2i ), (2.5)

where Ci are disjoint subsets of V covering the entire set, eii is the proportion of edges

entirely within Ci, and ai is the proportion of edge connections in Ci, i.e.,

ai =
n∑
j=1

eij, (2.6)

with eij denoting half the number of edges between Ci and Cj for i 6= j (half to

prevent from counting the edge in both eij and eji). Note that a2i is the expected

proportion of edges within Ci if the edges were randomly rewired (i.e., the degree of

each vertex is preserved, but edges are cut and reconnected at random). Indeed, if the

edge proportions are the only thing maintained in the rewiring, the fraction of edges

from any community that connect to a vertex in Ci will be ai. Thus, the proportion

of the total edges from Ci to Cj will be aiaj. Taken as an analysis of deviations from

an expected topology, modularity is a residuals-based quantity.

In the community detection literature, numerous algorithms exist to maximize Q

for a given number of communities. In Newman (2006), an algorithm is proposed by

1This is distinct, it should be noted, from the notion of residual networks when computing network
flow as inCormen et al. (1990).
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casting modularity maximization as optimization of a vector with respect to a matrix.

The modularity matrix B is given as the observed minus the expected adjacency

matrix, i.e., a matrix of the form in Table 2.1. To divide the graph into two partitions

in which modularity is maximized, we can solve

ŝ = arg max
s∈{−1,1}N

sT
(
A− 1

Vol(G)
kkT

)
s, (2.7)

and declare the vertices corresponding to the positive entries of ŝ to be in one com-

munity, with the negative entries indicating the other. This technique will optimize

Q for a partition into two communities. Since this is a hard problem, it is suggested

that the principal eigenvector of

B = A− 1

Vol(G)
kkT (2.8)

is computed—thereby relaxing the problem into the real numbers—with the same

strategy of discriminating based on the sign of eigenvector components used to divide

the graph into communities.

This is an example of a community detection algorithm based on spectral prop-

erties of a graph, which has inspired a significant amount of work in the detection

of communities as in Newman (2006); Ruan and Zhang (2007); White and Smyth

(2005); Fasino and Tudisco (2013) and global anomalies Idé and Kashima (2004);

Ding and Kolaczyk (2013); Hirose et al. (2009).

2.2.2 A Note on Optimal Detection in Graphs

While the notion of general optimal detection for graph based data remains an

open research question, previous work has considered optimal detection in the same

context as we consider in our framework, though in a restricted setting. In Mifflin

et al. (2004), the authors consider the detection of a specific foreground embedded (via
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union) into a large graph in which each possible edge occurs with equal probability

(i.e., the random graph model of Erdős and Rényi). In this setting, the likelihood

ratio can be written in closed form, as demonstrated by the following theorem.

Theorem 1 (Mifflin et al. (2004)). Let G denote the random graph where each possible

edge occurs with equal probability p, and let H denote the target graph. The likelihood

ratio of an observed graph J is

ΛH(J) =
XH(J)

E [XH(G)]
. (2.9)

Here XH(·) denotes the number of occurrences of H in the graph. The applicability of

this result, therefore, requires a tractable way to count all subgraphs of the observation

J that are isomorphic with the target. This is NP-hard in general as discussed in

Cormen et al. (1990), although there may be feasible methods to accomplish this for

certain targets within sparse backgrounds.

While the previous example requires a complicated procedure, detection of ran-

dom subgraphs embedded into random backgrounds is an even harder problem and

is the motivating problem for the subgraph detection framework discussed in this

dissertation. Take, for example, the detection problem where the background and

foreground are both Erdős–Rényi, i.e., when the null and alternative hypotheses are

given by 

H0 : each pair of vertices shares an edge with

probability p

H1 : an NS-vertex subgraph was embedded whose

edges were generated with probability pS.

(2.10)

In this situation, we can derive an optimal detection statistic.
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Theorem 2 (Miller et al. (2014)). For an observed graph G = (V,E), let X be a

subset of V of size NS, and EX ⊂ E be the set of all edges existing between the

vertices in X. The likelihood ratio for resolving the hypothesis test in (2.10) is given

by (
N

NS

)−1(
1− p̂
1− p

)(NS
2 ) ∑

X⊂V
|X|=NS

[
p̂(1− p)
p(1− p̂)

]|EX |

, (2.11)

where p̂ = p+ pS − ppS.

A proof of Theorem 2 is provided in Miller et al. (2014). Even in this relatively

simple scenario, computing the likelihood ratio in (2.11) requires, at least, knowing

how many NS-vertex induced subgraphs contain each possible number of edges. In

Arias-Castro and Verzelen (2013), it is shown that some computable tests asymp-

totically achieve the information-theoretic bound for dense backgrounds, but there

are no known polynomial-time algorithms that achieve the bound in a sparse graph

as discussed in Verzelen and Arias-Castro (2013). For more complicated models,

calculating the optimal detection statistic is likely to be even more difficult.

Recent work has also been emerging on detectability bounds as tied to spectra of

random graphs as has been discussed in Nadakuditi and Newman (2012, 2013), in

particular in context of the planted clique problem Nadakuditi (2012). In general,

these results have been very promising and more broadly results from random matrix

theory are likely to continue to contribute significantly to detection theory for graphs.
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Chapter 3

ALGORITHMIC FRAMEWORK

In wide range of applications, spanning domains as diverse as understanding the

fundamentals of knowledge and innovation, biomedicine, security, and urban dynam-

ics and sustainability, there exists a clear need for computationally tractable detection

of small anomalies in large background networks. Furthermore, no such framework

currently exists, though the notion of detection in context of graph-based data has

been gaining attention in recent years as discussed in the previous chapter. Pursuit of

such a framework requires bringing together concepts from computer science, signal

processing, and mathematics. The rest of this chapter revisits the subgraph detection

problem and steps through the elements of the signal processing for graphs (SPG)

framework as discussed in Miller et al. (2010b), Miller et al. (2013b), and Miller et al.

(2014).

The framework block diagram is presented in Figure 3.1. Note that this chapter

focuses on the analysis of static graphs. Chapter 4 addresses the extension of the

framework to dynamic graphs. The input into the algorithmic framework is an adja-

cency matrix representation, A, of a graph, G. We focus our analysis here on simple

graphs (unweighted, undirected), but the algorithmic blocks are extensible to both

weighted and directed graphs, as discussed in, for example, Miller et al. (2013a).

The first step is the model fitting step. In this step, we compare how close the

observed graph is to an expected graph. This is followed by a matrix decomposition

step and selection of components (eigenvectors) of the matrix for further analysis.

Together, these two steps reduce the dimensionality of the problem. The next step is

the anomaly detection step - here, we don’t identify the vertices that are anomalous,

23
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DETECTION IDENTIFICATION MODEL FITTING 

DIMENSIONALITY REDUCTION 

Figure 3.1: Signal Processing for Graphs (SPG) Framework Block Diagram. The

input into the SPG framework is an adjacency matrix A representation of graph G.

No cues are provided as to which vertices in the graph may be of interest. The al-

gorithmic steps include: model fitting (or computation of graph residuals), matrix

decomposition, component selection, anomaly detection, and anomalous vertex iden-

tification. Matrix decomposition and component selection together constitute the

dimensionality reduction step, reducing the problem dimension from order of |V | to

typically two. Anomaly detection step allows for determination whether or not the

observed graph contains an anomalous subgraph. The identification step specifies

which vertices make up the anomalous subgraph.

but instead, identify whether an anomaly is present. In practice, we often skip this

step, in particular if we have truth data as to the presence of an anomaly as discussed

in context of the case study in Chapter 5 and Chapter 6. The final step is the

identification step, where we identify which vertices are anomalous and return those

as the output of the algorithmic processing chain. Figure 3.2 illustrates example

inputs and outputs of the various algorithmic blocks within the SPG framework.

SPG framework described here is based on analysis of residuals - or deviations

from an expected model. Furthermore, to manage the dimensionality, the framework

considers the graph’s spectral properties, as illustrated by the matrix decomposition

step. The detection and identification analysis is performed in the linear subspace in

which residuals are the largest, defined by the principal components (or other selected

components) of the residuals matrix as constructed during the model fitting step.
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(a) (b)

(c) (d)

Figure 3.2: Inputs and Outputs of the SPG Algorithmic Blocks. 3.2a is the input

into the analysis - a graph with an embedded subgraph highlighted. 3.2b is the two-

dimensional projection of the graph. In the plot, every dot represents a vertex. 3.2c

presents the signal and noise distributions computed based on rotational symmetry

of the two-dimensional projection. Finally, 3.2d highlights the identified anomalous

vertices corresponding to the signal subgraph highlighted in 3.2a.
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The notion of residuals in traditional statistics is well understood. Consider Figure

3.3 for a pictorial representation. Given that we have have a set of data, we fit a line

to the data. Some variation in the data can be explained by the statistical variance,

while other cannot. When a point falls outside of the expected variance, we declare

a detection. In developing the signal processing for graphs algorithmic framework,

we develop our techniques building on the same intuition in context of graph-based

data, where many elements of detection determination and associated identification

are open research questions. With the SPG approach as discussed here and in later

chapters, we provide an algorithmic structure and a set of associated mathematical

techniques making significant progress in defining the detection problem for graph-

based data, demonstrating applicability and utility of the framework, and identifying

key future research directions.

3.1 Subgraph Detection

The algorithmic framework is focused on subgraph detection, or more specifically,

detecting small, topologically anomalous (or anomalous based on connectivity), sub-

graphs in large background graphs. We previously defined the subgraph detection

problem in Chapter 2 and expand on it here. Subgraph detection is distinct from

community detection as it focuses explicitly on the notions of foreground (signal)

and background (noise) and assumes that the subgraph to be detected is small in

comparison to the size of the entire graph. Additionally, a key goal of the research

described here is to develop a broadly applicable framework that is extensible and is

agnostic to both the data, the models, and the application domain.

In the subgraph detection problem, the observation is a graph G = (V,E). We

will denote the sizes of the vertex and edge sets as N = |V | and M = |E|, respectively.

A subgraph GS = (VS, ES) of G is a graph in which VS ⊂ V and ES ⊂ E ∩ (VS ×
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Linear Regression Graph Regression 

Figure 3.3: Regression Analysis. The SPG framework is based on the notion of

analysis of graph residuals. The figure on the left illustrates an example of linear

regression and analysis of residuals in context of data being fit to a line. In this case,

we declare a detection (red points circled in red) if the variation in the data cannot be

explained by statistical variance. The figure on the right presents a similar pictorial

depiction in context of graph based data. A subgraph is identified as anomalous when

variability in the data cannot be explained by statistical variance.

VS), where the Cartesian product V × V is the set of all possible edges in a graph

with vertex set V . For the scope of this dissertation, we consider graphs whose

edges are unweighted and undirected (formally defined as simple graphs), though in

applications of techniques some graphs will have directionality and edge weights (and

the techniques discussed here are extensible to weighted and directed graphs). We

will allow the possibility of self-loops, meaning an edge may connect a vertex to itself.

Since edges have no weights, two graphs can be combined via their union. The union of

two graphs, G1 = (V1, E1) and G2 = (V2, E2), is defined as G1∪G2 = (V1∪V2, E1∪E2).

If graphs are weighted and the weights are numerical, the resulting set of edges is the

edge union and the weights are summed.
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As described above, the SPG framework leverages the matrix representation of

the graph. The adjacency matrix A of G is a binary N × N matrix. Each row and

column is associated with a vertex in V . This implies an arbitrary ordering of the

vertices with integers from 1 to N , and we will denote the ith vertex vi. Then, aij

is 1 if there is an edge connecting vi and vj, and is 0 otherwise. Similarly, let AS be

the adjacency matrix for the signal subgraph. For undirected graphs, A and AS are

symmetric.

Another important notion when dealing with graphs is degree. A vertex’s degree

is the number of edges adjacent to a vertex. The degree of vertex vi will be denoted

ki, and its expected degree is denoted di. Note that ki =
∑N

j=1 aij and di =
∑N

j=1 pij,

where pij is the probability of an edge occurring between vertex i and vertex j.

The vector of the observed and expected degrees will be denoted k and d, respec-

tively. The volume of the graph, Vol(G), is the sum of the degrees over all vertices.

In some cases, the observed graph G will consist of only typical background ac-

tivity. This is the “noise only” scenario. In other cases, most of G exhibits typical

behavior, but a small subgraph has an anomalous topology. This is the “signal-plus-

noise” scenario. In this case, the noise graph, denoted GN = (VN , EN), and the signal

subgraph, GS = (VS, ES) are combined via union.

The objective, given the observation G, is to discriminate between the two sce-

narios. Formally, we want to resolve the following binary hypothesis test:


H0 : G = GN

H1 : G = GN ∪GS.

(3.1)

Thus, we have the classical signal detection problem: under the null hypothesis

H0, the observation is purely noise, while under the alternative hypothesis H1, a
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signal is also present. Here GN and GS are both random graphs, with GN drawn

from the noise distribution and GS drawn from the signal distribution. We will only

consider cases in which the vertex set of the signal subgraph is a subset of the vertices

in the background, i.e., VS ⊂ VN = V .

For dynamic graphs, the observations are a sequence of graphs, where G(n) rep-

resents the graph at n-th time interval. Under the null hypothesis G(n) = GB(n)

and under alternative hypothesis G(n) = GB(n)∪GS(n). The extensions of the SPG

framework to dynamic graphs are discussed in the next chapter.

As described above, the input into the framework is the adjacency matrix rep-

resentation, A, of a graph G and, formally, the output is both a binary detection

determination (H0 or H1) and, in the case that H1 is determined, the localization of

statistically anomalous sets of vertices (GS). Often, in practice, as discussed in the

Chapter 6, we skip the detection step and focus on the identification. The rest of the

Chapter describes each of the algorithmic steps.

3.2 Model Fitting

The first step in the algorithmic framework is the model fitting step. As our

approach can be intuitively described as “graph regression”, the goal of model fitting

is to compute the residuals from the expected topology. We define a graph model

by indicating the probability of an edge occurring between any two vertices. Figure

3.4 graphically depicts this concept for a toy example graph under the null H0 and

alternative H1 hypotheses.

In the graphical depiction, the depth of the color indicates the probability of an

edge occurring in the model E[G] with the lighter color indicating lower probabil-

ity and the darker color indicating higher probability. The graph model, E[G], is

subtracted from the observed graph. What results from that subtraction is a resid-
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Observed Graph 
G 

Graph Model 
E[G] 

Residuals Graph 
R[G] 

!" ="H0 

!" ="H1 

Figure 3.4: Graphical Depiction of Graph Residuals. For both the H0 and H1 in-

stantiations, the observation, G, is a graph. The graph model, E[G], is defined by

defining the probability of an edge occurring between any two vertices. The depth of

the color represents the magnitude of the probability with darker indicating a larger

value. Observe that the E[G] is a dense graph - a probability is defined for each vertex

pair. The graph model is subtracted from the observed graph. In the residual graph

R[G], the colors also represent the magnitude of the residual (red is positive and blue

is negative). In the H0 case, no coordinated deviation from the expected topology is

observed. In the H1 case, a coordinated deviation from expected topology is observed

resulting in detection and identification of the vertices highlighted in red.
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ual graph, with depth of color again indicating the magnitude of the deviation from

the model (with red representing positive deviation and blue representing negative

deviation). In the case where no subgraph is detected, there are no coordinated de-

viations from expected topology (connectivity). On the other hand, if the subgraph

is detected, there are strong (magnitude), coordinated deviations from the expected

topology. The vertex-edge representation in the depiction is meant to provide intu-

ition into the notion of graph residuals. In practice, all operations are performed on

adjacency matrices and manipulations of the adjacency matrices.

An adjacency matrix A of the observed graph G is the input into the algorithmic

framework. For the scope of the work presented here, all graphs under analysis are

simple graphs - unweighted and undirected, thus each entry in the resulting adjacency

matrix aij is either a 0 or a 1 and the matrix is symmetric. Note that no cue or

information is expected as to localization of the anomaly within the vertex set. This

is an important attribute of this approach, allowing for initial holistic analysis of very

large datasets. Once a subgraph(s) of interest is(are) identified, this approach can be

applied in conjunction with other techniques, such as traversal-based techniques, to

allow for in-depth investigation of neighborhood graphs of identified vertices.

Another attribute of this approach that is of note is that the graph model and the

corresponding adjacency matrix model can be and, in practice often are, defined from

the observed data, thus not requiring a training step or a priory knowledge. While

not required, the model can be defined a priory - that is one of the future directions

identified in conclusions and future work.

Formally, we may be given the expected adjacency matrix E[A], or it may be

estimated from the observed data. The residuals matrix R is defined in 3.2.

R = A− E [A] . (3.2)
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For the case study of collaboration networks in publications as described in Chap-

ter 5 and all of the experiments in Chapter 6, we use the modularity matrix as defined

in Newman (2006) as the residuals matrix and the Chung-Lu model as the expected

degree model. The modularity matrix, B, is defined as follows:

B = A− kkT

M
, (3.3)

where A is the adjacency matrix corresponding to graph G, k is the observed

degree vector, and M is the total number of edges in G. The residuals matrix R is then

R = B. As described Chapter 2, the modularity quantity and the modularity matrix

have been extensively used for community detection. An intuitive interpretation of

the modularity matrix is that communities are “residuals” when the overall popularity

of vertices is accounted for based on the Chun-Lu graph model.

While the modularity matrix works well in many practical scenarios, including

the case study described in this dissertation, the algorithmic framework presented

here is general (as desired) and can be used with other residual models as has been

demonstrated in Miller et al. (2013a) and Miller and Bliss (2012a).

3.3 Dimensionality Reduction

The residual graph, as represented by the residuals matrix R is the input into the

dimensionality reduction step of the the algorithmic framework. This step includes

both the matrix decomposition and the component selection algorithmic blocks as

illustrated in Figure 3.1.

The dimensionality of a graph is proportional to the number of vertices in the

graph. For example, a 100,000 vertex graph is a 100,000-dimensional object (each

vertex is defined by a 100,000-dimensional vector representing its relationship to all of

the vertices in the graph). Analysis of data that is high-dimensional is challenging and
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it is therefore desirable to reduce the dimensionality of the space. In order to perform

detection and identification as described in later sections, we limit ourselves to work-

ing in a two dimensional space, however it is possible and the framework is extensible

to working in larger number of dimensions. To achieve the goal of dimensionality re-

duction, we perform a matrix decomposition, focusing on eigendecomposition for the

experiments described here, followed by selection of relevant components, focusing on

principal components here.

Formally, we first perform an eigendecomposition of the residuals matrix R as

defined by:

R = UΛUT , (3.4)

where U ∈ R|V |×|V | is a matrix where each column is an eigenvector of R, and Λ

is a diagonal matrix of eigenvalues. We denote by λi, 1 ≤ i ≤ |V |, the eigenvalues of

R, where λi ≥ λi+1 for all i, and by ui the unit-magnitude eigenvector corresponding

to λi.

Note, that since R is both real and symmetric, due to the fact that the adjacency

matrix A is both real and symmetric and the modularity computation is a rank-1

update to A, and therefore admits the eigendecomposion. While outside the scope

of this dissertation, it is worthwhile to mention that this step is easily generalized

to non-symmetric matrices (and therefore, directed graphs) by substituting singular

value decomposition for eigendecomposition as discussed in Miller et al. (2013a).

Following the matrix decomposition, we then select the components of the resid-

uals matrix that yield good separation between noise and signal. In many cases,

as is illustrated in Chapter 6, projection onto the principal components u1 and u2

associated with λ1 and λ2 yields good results (separation between background and

foreground). Once ui and uj components are selected, this allows for projection of
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the graph into the spaces spanned by the two eigenvectors. In the scatter plot figures

presented throughout this document, the axes are defined by the selected eigenvec-

tors (typically u1 and u2) and each point or dot represents an individual vertex in the

graph, as illustrated by Figure 3.5a. In the figure, an R-MAT (recursive matrix) Kro-

necker graph as defined in Chakrabarti et al. (2004) is generated with 1024 vertices

and then projected into the two principal components of its residual matrix computed

using the modularity matrix formulation.

While in many applications, principal components of the residuals matrices specify

the linear subspace where residuals are largest, Miller et al. (2010a) highlights work

inspired by and leverages techniques from compressive sensing that optimizes the

component selection step allowing detection of weaker anomalies (weaker as compared

to either number of vertices in the signal subgraph or density/connectivity of the

signal subgraph). In Figure 3.5b, an 8-vertex clique (or fully connected graph, where

all vertices connect to all other vertices) is embedded into the background graph of

Figure 3.5a. The top two principal component projection does not provide a good (or

any) separation between the background vertices and the foreground or signal vertices

indicated in red. However, when projected into the space spanned by eigenvector 18

and 21, the embedded clique clearly stands out as can be seen in Figure 3.5c.

The model selection step and the dimensionality reduction steps can be co-designed

and co-optimized. For example, if the model is well-suited to the problem, it is likely

that the principal components will provide good separation of noise and signal. On

the other hand, if the model is not well-suited, more sophisticated techniques may be

necessary such as the ones described in Miller et al. (2010a).
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(a) (b)

(c)

Figure 3.5: Residual Matrix Projections into Spaces Spanned by Various Eigenvectors

as Discussed in Miller et al. (2010a). Figure 3.5a is the two dimensional projection,

leveraging the top principal components of the residuals matrix, of the background-

only graph. The background graph was generated using the RMAT graph generator

model. Figure 3.5b is the graph with an embedded 8-vertex clique projection into

the space of the top two principal components. Dues to the size and therefore the

weakness of the signal’s signature, the subgraph does not at all separate from the back-

ground. Figure 3.5c projects the graph with the embedding into the space spanned

by eigenvectors 18 and 21. Here, clear separation between background and the signal

subgraph can be observed.
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3.3.1 A Note on Computational Complexity

In applications of interest, as highlighted in the introduction, the graphs observed

and therefore the resulting adjacency matrices are typically very sparse (how low

connectivity). However, both the expected value and the residual matrices are dense.

The scales of the problems of interest benefit from performing analysis leveraging the

sparsity of the adjacency matrices. Since in our analysis we use the modularity matrix

for residual computation, we can leverage the fact that the modularity matrix is a

rank-1 update of the adjacency matrix and therefore never compute the full residuals

matrix in practice. Instead, we can use dot product and scalar-vector product, re-

ducing the computational complexity of the operation. The resulting computational

complexity to compute k eigenvectors is O((|E|k + |V |k2 + k3)h), where h is the

number of iterations in the iterative decomposition of the residuals matrix.

Another observation is that increasingly computationally complex techniques al-

low for detection of increasingly subtle or weak anomalies. Ranging from principal

eigenvector projection requiring computational complexity of O((|V | + |E|)h) to L1

norms of k eigenvectors as in Miller et al. (2010a) to L1 norms of sparse principal com-

ponents with computational complexity of O(|V |4log|V |/ε) as in Singh et al. (2011),

the framework is flexible in terms of wide range of problems and consistent with the

generality requirements.

3.4 Anomaly Detection and Identification

Following the algorithmic steps defined in Sections 3.2 and 3.3, we now are pre-

sented with a two-dimensional projection of the graph under study. It is now desirable

to decide whether or not there exists the presence of an anomaly and identify which
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vertices constitute that anomaly. These two steps are Anomaly Detection and Iden-

tification in Figure 3.1.

While we have developed a number of various test statistics as described in Miller

et al. (2014), we will focus here on the one based on the symmetry of the two dimen-

sional projection, specifically, projection of R into its two principal components. We

have empirically observed for several random graph models, including RMAT, that

the two dimensional projection (top two eigenvectors) exhibits significant radial sym-

metry, as is illustrated in Figure 3.5a. On the other hand, when an anomaly is embed-

ded within the graph, the subgraph vertices will stand apart from the background,

especially in the case where the anomaly is strong, changing the radial symmetry

of the projection drastically. Therefore, we developed a test statistic that is based

on two-dimensional symmetry to detect the presence of an anomaly. The detection

statistic is a chi-squared statistic based on a 2× 2 contingency table, where the table

contains the number of vertices projected into the two-dimensional space. (That is,

the number of rows of [u1, u2], where u1 and u2 are (column) eigenvectors of R, that

fall into each quadrant.) This yields a 2×2 matrix O = {oij} of the observed numbers

of points in each section. From the observation, we compute the expected number of

points under the assumption of independence, M = {mij}, where

mij = (oi1 + oi2)(o1j + o2j)/N.

The chi-squared statistic is then calculated as

χ2([u1u2]) =
∑
i

∑
j

(oij −mij)
2/mij,

and, to favor radial symmetry, we maximize the statistic over rotation in the plane,

computing

χ2
max = max

θ
χ2


 cos θ − sin θ

sin θ cos θ


T

[u1 u2]

.
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The computation of this statistic χ2
max allows creation of distributions of the test

statistic for both background (H0, noise only) and background and foreground (H1,

signal plus noise) scenarios. Consider the following example from Miller et al. (2010b)

as shown in Figure 3.6a. The data was generated using Monte Carlo simulations for

H0 and H1 scenarios. The background graph, GB was generated using RMAT and

had 1024 vertices. The foreground graph, GS was a 12-vertex clique (fully connected

component). To generate the data in the figure, 10,000 instances were created. For

each instance, the background graph was created, the test statistic for background

graph only was computed. Then, 12 vertices in the background were chosen at random

to create the embedding and then the test statistic for H1 scenario was computed.

As can be observed, the distributions are highly separable and exhibit drastically

different shapes, allowing for excellent detection performance and determination of

whether H0 or H1 is true. Additionally, considering the ROC curve (black line in

Figure 3.6b, the detection algorithm produces effectively no false alarms. Figure 3.6b

presents ROC (receiver operating characteristic) curves for both the clique embedding

and embeddings with increasingly lower subgraph density (connectivity). As can be

seen, detection performance degrades as the subgraph density decreases leading to an

undetectable subgraph at 70% density (connectivity) under χ2
max computed using the

two dimensional projections of modularity-based residuals into the space of the top

two eigenvectors of residuals matrix R.

A key motivation behind developing a signal processing framework for graphs is

ability to compare performance both for various detection algorithms and in context

of various noise and signal combinations. Therefore, ability to perform ROC analysis

is a key desirable attribute of the framework. Figure 3.7 presents ROC curves for

increasingly computationally complex algorithms (as referenced in Section 3.3.1) for

increasingly weak signature subgraphs. These experiments highlight the broad appli-
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Figure 3.6: Test Statistic Distributions for Null and Embedded 12-Vertex Clique Al-

ternative Hypothesis and ROC Curves for Decreasing Density (Connectivity) Embed-

dings as in Miller et al. (2010b). Figure 3.6a presents the test statistic distributions

for null,H0, (dark blue) and alternative,H1, (light blue) hypotheses. Clear separation

between the distributions can be observed leading to excellent detection performance

as illustrated by the black line in Figure 3.6b. The performance degrades as the

connectivity of the subgraph is reduced deteriorating completely at 70% density.
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cability of the approach presented here, while providing the means to systematically

evaluate algorithmic performance.

Once we have determined that an anomaly exists, the question of interest becomes

what vertices (or entities) are contributing to the presence of an anomaly or what

vertices are part of the anomalous subgraph. We leverage traditional techniques

based on k-means clustering to identify anomalous subgraph vertices. Within the

two-dimensional space, we compute k clusters and declare the smallest cluster to be

the signal subgraph. Note that the clustering procedure is generalizable to more than

two dimensions and allows for detection of multiple signal subgraphs. In practice, the

identification step can also be performed visually, considering the separation of the

data in the scatterplot. Furthermore, in cases where the signal is strong (for example,

12-vertex clique as described above), the identification step can be performed by

thresholding the data in a single dimension. Note that the detection and identification

steps may be combined, depending on the algorithmic formulation of the detection

statistic. Furthermore, in practice, as discussed in Chapter 6, the detection step may

be skipped all together, as there exists a priori knowledge that an anomaly is, indeed,

present.
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(a) (b)

(c)

Figure 3.7: ROC Analysis for Increasingly Weak Subgraph Signature Detection as

Described in Miller et al. (2010b) for Figure 3.7a, Miller et al. (2010a) for Figure

3.7b, and Singh et al. (2011) for Figure 3.7c. Figure 3.7a is identical to Figure 3.6b

and illustrates performance of the most computationally efficient detection approach

on subgraphs of decreasing density. Figure 3.7b presents the results of applying a set

of techniques to optimize the component selection process that are computationally

more intensive, but allow detection of sparser and smaller subgraphs. Finally, Figure

3.7c demonstrates detectability of a 6 vertex subgraph which would be undetectable by

either of the other two techniques, but requiring significant computational complexity.
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Chapter 4

DYNAMIC GRAPHS

In Chapter 3, we presented a novel framework for detection of small topological

anomalies in large graphs. The framework, as presented, allowed for analysis of static

graphs, or graphs that do not vary in time. In many applications, the relationships

between entities are constantly evolving. For example, as discussed in Chapter 5,

collaborations between individuals change over time where researchers that may have

worked together in the past, may no longer work together and, analogously, individu-

als that previously have not crossed paths may forge new collaborations. Furthermore,

allowing for exploitation of the temporal dimensions has the potential to enable de-

tection of weaker emerging signals - increasingly small subgraphs or subgraphs with

connectivity that deviates only slightly from the background. This attribute is also

highly beneficial in various application domains, enabling early detection of emerging

collaborations, or, more generally, emerging patters of interactions in diversity of net-

work data. Therefore, it would be highly beneficial to extend the SPG framework as

defined in Figure 3.1 to allow for analysis of dynamic or temporally evolving graphs.

It turns out that that extension is natural in context of a signal processing frame-

work. Just as with traditional signal processing where a temporal pattern of a signal

can be leveraged to support detection, in our SPG framework, we build on the same

intuition. Figure 4.1 presents the updated framework. Note that the input into the

framework is now a dynamic graph as defined in Section 4.1 and the addition of the

integration step following the model fitting step. The rest of the framework remains

the same and leverages the mathematical techniques described in Chapter 3. The rest
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Figure 4.1: Extending SPG Framework for Dynamic Graphs. The input into the SPG

framework is now a set of adjacency matrices A, where each matrix At represents the

dynamic graph at time interval t, Gt. A new algorithmic step is added following

the model fitting step to allow for temporal integration. The rest of the framework

remains the same. The output of the algorithmic steps, as in the static case, is the

vertices identified as part of the anomalous subgraph.

of this chapter defines dynamic graphs in context of the SPG framework and defines

techniques for dynamic integration.

4.1 Representing Dynamic Graphs

Here, we review the definition of dynamic graphs in context of the SPG framework

and the subgraph detection problem. As before, a graph G is defined by a set of

vertices V and a set of edges E. Working with dynamic graphs, we extend this

notion to a sequence of discrete realizations of the graph over time. Thus, a dynamic

graph G is a sequence of graphs where Gt is defined by a set of vertices Vt and a

set of edges Et, where time period between t and t + 1 can be a year, a month, a

day or another frequency that is appropriate for a given application. We also assume

that the set of vertices does not change over time without loss of generality as we

can maintain the largest vertex set for the entire temporal period under study, thus

allowing us to define Gt = (V,Et).

Our binary hypothesis remains the same as before:
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
H0 : G = GN

H1 : G = GN ∪GS.

(4.1)

Working with dynamic graphs where our observation is a sequence of Gt’s, under

the null hypothesis Gt = GN,t and under the alternative hypothesis Gt = GN,t ∪GS,t.

As before, we work with the matrix representation of the graph. In the dynamic

case, each Gt can be represented by the t-th adjacency matrix At where a non-zero

entry aij,t in At implies that there exists an edge between vertex vi and vertex vj

at time t. Also, as before, we assume that all graphs in the sequence are simple

graphs (unweighted, undirected) though techniques are extensible to both weighted

and directed graphs.

Note that the integration step is performed after the model fitting step. For the

work presented here, we again compute residuals matrix based on the modularity

formulation for each At. Formally, the residuals matrix at time t, Rt is defined as

follows:

Rt = Bt = At −
ktk

T
t

|Et|
, (4.2)

where Bt is the modularity matrix at time t, At is the adjacency matrix at time

t, kt is the degree vector at time t, and |Et| is the total number of edges at time t. In

the rest of the chapter, we present a set of integration techniques as applied to the

sequence of residual matrices.

4.2 Temporal Integration and the SPG Framework

We develop our temporal integration techniques inspired by the notion of “matched

filtering” in traditional signal processing. Our goal is to develop a set of filter coef-
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ficients that would amplify the strength of the signal subgraph. We apply this set

of coefficients to a time series of residual matrices as defined in Equation 4.2. This

allows us to demonstrate a novel methodology for analysis of dynamic graphs, specif-

ically, filtering for network sequences. This approach not only allows for analysis

of dynamic graphs, but also provides a significant improvement in detection perfor-

mance over the same statistical test used in the static case, enabling the detection of

significantly weaker signal subgraphs.

Working with a sequence of residual matrices where Rt represents the residuals at

time t, we integrate the residuals over a time window. Letting ` be the length of the

time window, we use a finite impulse response filter h to integrate the residuals over

time, obtaining

R̃t =
`−1∑
i=0

Rt−ihi.

The matrix R̃t is then an aggregated residuals matrix for the graph at time t. Since

our goal is detection with no cue to the subgraph vertices, we filter the modularity

matrices in their entirety, without biasing toward or requiring any a priori knowledge

with regards to any part of the graph. (Ordering of the vertices may be arbitrary, but

must be consistent within the time window.) As a result, R̃t is a matrix in which each

entry is the result of a pair of vertices having its modularity filtered by h. Following

the construction of R̃, the rest of the algorithmic steps are applied as in the static

case as described in Chapter 3.

The challenge is to choose filter coefficients that emphasize the subgraph and

de-emphasize the background. Consider a case where a subgraph connectivity gets

increasingly denser with time. This could, for example, occur if a group of individuals

that is loosely connected started increasing its connectivity through a joint activity. In

that case, it would make sense to define a filter that is consistent with a densification
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pattern, specifically, a filter with coefficients that increase linearly over time. Let

us consider a simulated example where a 1024 vertex background graph is generated

using the RMAT Kronecker graph generator with an average degree of each vertex

of approximately 12. In this example, the same generator is used to generate a

background graph with the same RMAT parameters for 32 time samples. For the

embedding, we create a 12 vertex subgraph with no edges at the beginning of the

time period and linearly increasing density with each time period. To detect this

subgraph, we define the following filter, h:

ĥt = 1− t/31, 0 ≤ t < 32

ht = ĥt − 1/2, (4.3)

where the subtraction of the mean intuitively de-emphasizes the background, since

the background is generated independently at each time step.

The ROC performance of applying this filter to detect a densifying subgraph is

presented in Figure 4.2. The test statistic applied here was the same chi-squared

test maximized over rotation in the plane on R̃t performed on R in Section 3.4 to

determine whether H0 or H1 is true. The various lines in the figure represent varying

final density of the embedded signal subgraph. As can be observed, the detection

performance is radically improved by adding a temporal integration step leading

to near perfect detection performance for a 45% dense subgraph as compared to

effectively no better than chance performance for a 70% dense subgraph using the

static techniques as demonstrated in Figure 3.6b in Chapter 3.
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Figure 4.2: Ramp Filter Performance as Discussed in Miller et al. (2011). Different

lines represent different final subgraph densities - the density of the embedded signal

subgraph at the last time step. The detection performance is near perfect for a

subgraph with a final density of 45%. This is significant performance improvement

over static detection algorithm where even a subgraph with 70% density was virtually

undetectable as shown in Figure 3.6b
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4.3 Filter Optimization

In the previous section, we formulated the temporal integration for dynamic graphs

as applied to the residuals matrices. We also demonstrated the application of a ramp

filter applied to detection of a densifying subgraph. Here, we present more generally a

set of techniques to optimize the filter coefficients as described in Miller et al. (2011)

and Miller and Bliss (2012b) and applied in context of collaboration networks case

study in Chapter 6.

The goal of filter optimization is to emphasize the signal subgraph strength while

minimizing the power of the background or noise graph. As a measure of signal

strength, we use the spectral norm of the principal submatrix of R̃t associated with

the subgraph, denoted by R̃S,t. Likewise for noise power, we can use the norm of

the modularity matrix of the background alone, denoted by R̃N,t. Our objective is to

maximize the former quantity while restricting the latter, which can be formulated

as

arg maxh

∥∥∥∑`−1
i=0 RS(t− i)h(i)

∥∥∥
subject to

∥∥∥∑`−1
i=0 RN(t− i)h(i)

∥∥∥ ≤ p,
(4.4)

where p is the threshold for power of the background that is set to an arbitrary

positive value. The intuition behind this is that maximizing the “power” of the

submatrix associated with the signal will help to separate it in the space of the

principal eigenvectors, which will increase the test statistic. We assume, however,

that we do not know the signal graph exactly; we only have some high-level notion of

how it evolves over time. Rather than truly solving (4.4), therefore, we use a heuristic

based on this assumption. We let h track the maximum eigenvalue of the adjacency

matrix of the subgraph alone (i.e., h(i) is the maximum eigenvalue of the subgraph’s
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adjacency matrix at time n − i). In an ideal case where the principal eigenvector of

R̃S,t is constant, this will maximize the integrated signal power. Note that in the ramp

filter construction example as defined in Section 4.2, the ramp filter approximately

tracks the maximum eigenvalue of a randomly densifying graph.

The optimization discussion above assumes that we only have a notion of how

the signal evolves over time as opposed to having a known signal. If our signal is

known, we can further optimize our filter construction. In particular, here we focus

on detection of a known signal in independent, identically distributed (i.i.d.) noise.

The noise consists of i.i.d. Bernoulli graphs, meaning graphs where edges occur based

on the outcome of independent Bernoulli trials. The probabilities are not identical

across all pairs of vertices—as in Erdős–Rényi random graphs—but at each individual

time step the probability of an edge between vertex i and vertex j is the same, denoted

pij = pji. Thus, under H0, the expected value of the adjacency matrix of the graph

at any time instance, E [At], is given by P = {pij}, a |V | × |V | matrix of edge

probabilities.

Under H1, a dynamic subgraph that is unlikely to appear under H0 is embedded

into the background on a randomly selected subset of the vertices, VS ⊂ V . In this

formulation, we know the subgraph’s temporal evolution pattern, but do not know its

location in the background. While this could potentially be solved by a brute-force

search, such an approach would be a form of the subgraph isomorphism problem,

which is known to be NP-hard, or the hardest computational class of problems.

As a metric of signal and noise power, we use the spectral norm, i.e., the absolute

value of the largest eigenvalue, denoted by ‖ · ‖. To best detect the presence of the

anomalous subgraph, our goal is to maximize signal power while restricting noise

power, that is, to use coefficients
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h∗ = arg max
h

∥∥∥∥∥
L−1∑
i=0

AS,t−ihi

∥∥∥∥∥ (4.5)

subject to

∥∥∥∥∥
L−1∑
i=0

(AN,t − E[AN,t)])hi

∥∥∥∥∥ = η.

Here AS,t is the |VS| × |VS| adjacency matrix of the dynamic foreground only, and

AN,t is the adjacency matrix of the background or noise alone. We now focus on

coefficient optimization in this problem setting.

To restrict the noise power after integration, we use the property that

‖R̃t‖ = max
‖u‖2=1

∣∣∣uT B̃tu
∣∣∣ . (4.6)

Rather than truly limit the maximum eigenvalue, we will restrict the variance of R̃t in

any 1-dimensional subspace of R|V |. The analysis in this section assumes knowledge

of the probability matrix P . We will analyze the moments of the quantity uT B̃tu,

and assume an arbitrary, fixed u of unit magnitude. The first, simple observation is

that, since R̃t is a random variable minus its expected value, E
[
uT R̃tu

]
= 0, i.e.,

the distribution of uT R̃tu is centered at the origin. The second-order moment of this

quantity is given by (as in Miller and Bliss (2012b))
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E

[(
uT R̃tu

)2]
= E

(L−1∑
i=0

uT (AN,t−i − P )uhi

)2


= E

[
L−1∑
i=0

uTRt−iuhi

L−1∑
j=0

uTRt−juhj

]

=
L−1∑
i=0

h2iE
[(
uTRt−iu

)2]

=
L−1∑
i=0

h2iE

 |V |∑
j=1

|V |∑
k=1

ujuk(ajk,t−i − pjk)

2
=

L−1∑
i=0

h2i

[∑
j,k

2u2ju
2
kE
[
(ajk − pjk)2

]
−
∑
j

u4jE
[
(ajj − pjj)2

]]

=
L−1∑
i=0

h2i

[∑
j,k

2u2ju
2
k(pjk − p2jk)−

∑
j

u4j(pjj − p2jj)

]
. (4.7)

Regardless of the direction of u, the variance of uT R̃tu scales linearly with the

sum of the squares of the filter coefficients. To restrict the expected noise power,

therefore, we will fix the `2 norm of the vector of filter coefficients to be 1.

Next, we determine coefficients that solve the optimization problem as stated in

equation (4.6), and consider two other formulations. As discussed above, we restrict

the noise by setting
∑L−1

i=0 h
2
i = 1, so the focus is on finding

h∗ = arg max
h:‖h‖2=1

∥∥∥∥∥
L−1∑
i=0

AS,t−ihi

∥∥∥∥∥ . (4.8)

This can be rewritten as

h∗ = arg max
h:‖h‖2=1

max
‖u‖=1

L−1∑
i=0

hiu
TAS,t−iu. (4.9)

Let A be a 3-way tensor in which A(i, j, k) contains the value from the jth row

and kth column of AS,t−i. For symmetric (undirected) subgraphs, (4.9) is equivalent
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to maximizing
L−1∑
i=0

|V |∑
j=1

|V |∑
k=1

A(i, j, k)hiujwk,

with the `2 norms of h, u and w all constrained to be 1. This can be solved by

finding the rank-1 approximation of A, i.e., to compute h, u and w, and a scalar λ,

such that

A ≈ λ(h ◦ u ◦ w),

where ◦ denotes the 3-way tensor outer product, with the (i, j, k)th entry of h◦u◦w

equal to hiujwk. This is analogous to approximating a matrix M by the scaled outer

product of its principal left and right singular vectors u and w, which also maximizes

the quantity uTMw =
∑

i

∑
jmijuiwj. We can, thus, solve (4.8) by computing

the rank-1 tensor approximation of A and use the resulting vector h as the filter

coefficients.

In Miller et al. (2011) and as described above, the filter coefficients used were

proportional to the largest eigenvalues (in magnitude) of the associated adjacency

matrices, i.e., the instantaneous signal power. While this provided adequate integra-

tion gain in the simulations, it is only the optimal solution for (4.8) when the principal

eigenvector of AS,t is constant across t.

Finally, if the task requires not only detection of anomalous activity but also iden-

tification and localization, i.e., determining which vertices are exhibiting the activity

of interest, then maximizing the largest eigenvalue may not be optimal. In this case,

it may be ideal to emphasize the cross section of the integrated residuals space that

points equally in the direction of all subgraph vertices. To do this, we maximize the

quantity
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L−1∑
i=0

hi
1T|VS |√
|VS|

AS,t−i
1|VS |√
|VS|

=
1

|VS|

L−1∑
i=0

hi Vol(GS,t−i), (4.10)

where 1N is a column vector of N ones and Vol(·) is the volume of the graph (the

sum of the vertex degrees). Thus, a filter based on the subgraph’s average degree will

most emphasize the portion of the residuals space aligned with the subgraph.

Application of the above is illustrated by the scatter plots in Figure 4.3 as dis-

cussed in Miller and Bliss (2012b). In the figure, the background was constructed

using the RMAT Kronecker graph generator with 1024 vertices and average degree of

approximately 10. The foreground (red dots in the scatter plot) in these simulations

consists of a 20-vertex subgraph, divided into 2 portions. The behavior of the sub-

graph involves one subset of the vertices densifying over the first half of the window,

with edges then shifting to the other portion over the second half, e.g., a community

forming, then bringing in new members as others leave. Two subsets V1, V2 ⊂ VS both

have 12 vertices, with 4 of them overlapping. The subgraph starts with no edges and,

over the first half of the time window, adds edges within V1 until it reaches a density

d. In the second half of the window, edges are removed from V1 and added to V2,

while maintaining the total number of edges, until edges only exist within V2.

While the tensor decomposition maximizes signal power, average degree filter, as

described above, has the potential to lead to better performance and noise and signal

separation allowing for identification. The figure shows the principal two-dimensional

subspace of R̃ when the highest density is set to 60%. The tensor decomposition

method achieves a larger maximum eigenvalue, but, as shown in the figure, about

8 of the vertices are buried within the background noise. These vertices comprise

V2 \ V1, the vertices that have no edges until the second half of the window. Using

the average degree filter, on the other hand, allows near-perfect separation in the
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(a)

(b)

Figure 4.3: Scatterplots of the Top Two Eigenvectors of R̃ as Discussed in Miller

and Bliss (2012b). The tensor decomposition as illustrated in Figure 4.3a technique

used to optimize filter coefficients produces the largest signal power in context of the

detection problem. However, a number of there vertices associated with the signal

subgraph are not separated from the background vertices (signal vertices are red,

background vertices are blue). The separation on the scatter plot is improved by

applying the average degree filter as is illustrated in Figure 4.3b.

first eigenvector. Since empirical detection performance between these methods is

extremely similar, it is possible that an average degree filter would be preferable in

some situations.
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The temporal integration and filter optimization techniques described here are ap-

plied to the case study of detecting innovation in collaboration networks as described

in Chapter 5 and results are presented in Chapter 6.
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Chapter 5

CASE STUDY: DETECTING INNOVATION IN COLLABORATION

NETWORKS

A key element of the research is the application of the mathematical techniques

within the signal processing for graphs framework in context of a truly inter-disciplinary

approach to detection of innovation in scientific publications. Understanding scientific

innovation and how it emerges has significant implications for academic, government,

and private organizations. Unlocking the mathematical formula for innovation talks

to the fundamental understanding of knowledge. An important observation is that

the use of mathematical techniques described here does not eliminate the need to

study innovation from a historical perspective. Instead, it compliments the tradi-

tional history of science approach and allows for leveraging of the domain expertise

in a novel and potentially transformative computational environment.

Furthermore, a fundamental challenge in developing a signal processing for graphs

framework is the lack of known truth as to both noise and signal formalisms in context

of wide range of graph-based data and, in particular, in context of social networks.

Unlike traditional signal processing, where well defined physics principles guide the

fundamentals, those formalisms are absent from study of interactions of humans at

scale. While many open ended questions and future research directions remain, the

interdisciplinary approach described here allows us to make progress along these lines

and further elucidates additional directions of study.

The mathematical techniques were applied to the field of developmental and evo-

lutionary biology, specifically, to the collaboration networks of co-authors. This par-

ticular field of study was chosen as the application due to the fact that it has been
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extensively studied and has gone through significant transformation with emergence

of the topic of gene regulatory networks. This allows for baseline validation of the

techniques and provides insight into patterns of innovation from historical perspec-

tive. The rest of the chapter describes the specific period of innovation, the analysis

that was used to generate the truth to allow for validation, and describes the dataset

under analysis, along with the networks that were constructed from the dataset.

5.1 Innovation in the Field of Evolutionary Biology

In current scientific discourse, gene regulatory networks are considered the main

explanatory concepts in evolutionary and developmental biology. This, however, was

not the case as recently as the the 1960s. Over the last five decades, evolutionary

biology has undergone several transformations including integration of systems biol-

ogy and developmental biology into evolutionary theory. In comparison, traditional

evolutionary biology is a population based theory, focusing on adaptive dynamics

of populations as primary explanation for phenotypic evolution with developmental

mechanisms playing a secondary role. In contrast, the scientific shift and an alterna-

tive trajectory builds on the fact that organisms are complex systems of genes and

gene networks and these interactions between genes have great significance in how we

evolve as a species - focusing on mechanistic explanation of development of evolution

as primary. The distinct transformation of the research field can be tied to a 1969

paper by Britten and Davidson (BD paper). Up until that paper, while the concept

of a gene and genes themselves were considered a significant actor in evolution by

Darwin, Boveri, Kuhn, and others, the notion of complex gene regulatory networks

and their influence was not considered fundamental to the concept of evolution.
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In 1969, the BD paper introduced the notion of a regulatory network controlling

gene expression. This paper is considered to be a known innovation and disruption

in evolutionary and developmental biology leading to the fact that gene regulatory

networks are now widely considered one of the main explanatory concepts in today’s

evolutionary and developmental biology as discussed in Davidson (2010), Krakauer

et al. (2011), Laubichler et al. (2013). Furthermore, the history of this idea is also

understood, at least in its broad patterns according to Laubichler and Maienschein

(2013). This includes early conceptual ideas, dating back to the beginning of the

20th century, as well as more recent developments that derive from a clear conceptual

formulation by Roy Britten and Eric Davidson published in Science in 1969 Britten

and Davidson (1969). The Britten-Davidson (BD) model for gene regulation in higher

cells is, by all possible metrics, a case of a scientific innovation.

Detailed historical analysis of the BD paper and the model described therein has

been analyzed to reveal several interesting patterns. One of the observed patterns

in this case study is that scientific innovation leads to restructuring or rewiring of

collaborations within areas of science. This re-structuring can be directly studied

in context of co-authorship networks and thus presents a well-suited case study for

application of the signal processing for graphs techniques.

In addition to historical analysis, the impact can be shown quantitatively through

citation data. Figures 5.1 and 5.2 shows the direct and second order citations to the

BD paper. Second order citations are citations to papers that cite the BD paper and

are a good approximation for broader impacts of a scientific idea, especially when

considered together with direct citations.

As illustrated in Figures 5.1 and 5.2, direct citations to the BD paper can be

seen starting in 1969, the year of publication. From then, until 1975 the citations

continually increase reaching almost 90 per year (Figure 5.1). There is a decrease of
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citations in the 1990s with a resurgence in citations starting in 2000s. The resurgence

in citation rates indicates a lasting impact of the paper on the scientific field as can

be observed even more prominently in the second order citations (or papers that cite

papers that cited the BD paper directly). Figure 5.2 shows the secondary citations.

Both the magnitude of the citations (reaching beyond 3000 per year) and the clear

second increase in citations in 2000s further illustrates the significance of the paper.

In the next section, we describe how we leverage the citation data as truth in context

of graph analysis.

5.2 Dataset and Collaboration Networks

In the previous section, we have described a well-known case study of scientific

innovation in the fields of evolutionary and developmental biology. Here, we dis-

cuss the specific dataset under study and the process of graph construction both of

the field collaboration networks and the “truth” networks that were used to define

the signature properties of innovation in context of the signal processing for graphs

framework described in Chapter 3 and the algorithms for analysis of dynamic graphs

in Chapter 4. As discussed earlier, at the core of the SPG framework is the notion

of signal detection within graphs - to that end, the dataset under study contains

both the background/noise data and a signal (in this case, the collaboration networks

created around the BD paper).

Large scale publication datasets, such as the ones of interest here, are well suited

to graph-theoretic analysis. As previously described, a graph is simply a mathe-

matical construct that allows us to capture both entities (vertices) and relationships

(edges) between those entities. Figure 5.3 presents two possible graphs that could be

constructed from publication data - a co-authorship graph (on the left) and a citation

graph (on the right). In a co-authorship graph, the vertices are authors and the edges
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Figure 5.1: Britten-Davidson Citation Data - Direct Citations. The paper published

in 1969 by Roy J. Britten and Eric H. Davidson (BD) titled “Gene regulation for

higher cells: a theory” is widely considered transformative and a case study of scien-

tific innovation in the fields of evolutionary and developmental biology. This figure

and Figure 5.2 present quantitative data on citations to the BD paper illustrating

the scientific impact. This figure presents direct citations to the paper. Together,

both figures support the scientific impact of the paper in terms of number of citations

and lasting impact of citations, with a resurgence of paper’s popularity in 2000s as

illustrated by direct and second order citations.

60



Britten and Davidson 1969 
Secondary Citation History  

Figure 5.2: Britten-Davidson Citation Data - Secondary Citations. This figure

presents the secondary citations - citations to the papers that cite the BD paper

directly.

represent a “co-author” relationship as indicated by a particular publication (authors

appearing formally on the same publication. Note that the co-author relationship

is undirected. These graphs could be weighted with weights representing number of

times two authors have published together. In a citation graph, traditionally, the

vertices are papers (though they could also be authors of those papers) and the edges

represent a “cited” relationship - an edge between paper i and paper j indicates that

paper i cited paper j. Note that unlike co-authorship networks, citation networks are

unweighted (a paper is only going to cite another paper once) and directed (the cita-

tion relationship has directionality). Other graphs are possible as well, such graphs

based on keywords in the papers - for example, vertices could represent papers and

edges represent a “sharing of keywords” relationship.
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Figure 5.3: Illustration of Co-Authorship and Citation Graphs.

As the goal of the analysis is to detect emerging collaborations, we focus here

on co-authorship graphs. Additionally, co-authorship graphs do indeed provide good

representation of collaboration relationship.

Formally, the co-authorship graph, G = (V,E), represents a set of authors, V that

are connected by an edge E if vi and vj have published together. These graphs are

naturally dynamic, as publications have dates, and thus, a sequence of graphs can

be used to represent co-authorship relationships over time, with G(n) representing

authors that publish together at time n, where each G(n) represents a publication

year.

5.2.1 Background Graph

We construct the background graph from the publication data of the entire field

of developmental biology as constructed by the Laubichler Lab at ASU. The source of
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the publication data is the Thompson Reuters Web of Science database. Web of Sci-

ence (WoS) is a commercially available research database of papers in the sciences,

social sciences, arts, and humanities. The full database has more than 42 million

records from 1900 to the present and includes articles from over 12,000 journals and

148,000 conference proceedings. Records in WoS typically include author(s), title,

publication date, type, document IDs for works cited, and may also include subject

area, institution, keywords, and abstract as provided by the publication. Some addi-

tional work on this dataset is covered in B. A. Miller et al. (2012), B. A. Miller et al.

(2013), and Miller et al. (2013a) technical report.

The developmental biology portion of the WoS data covers the top 12 journals in

developmental biology, Science, Nature, and the Proceedings of the National Academy

of Sciences (PNAS). The years covered by our analyses are 1969 (publication of the

BD paper) to 2000. In constructing the background graph, the number of unique

authors was held consistently to 294,700 as that was the total number of authors under

consideration during the period of interest. The ordering of the authors in the graph,

while arbitrary, was preserved as is necessary for each year. As described above, G(n)

represents the co-authorship graph from a given year, n in the period of 1969-2000.

For each year, the graphs constructed were both unweighted and undirected. The

scale of this graph is significant where traditional traversal-based analysis techniques

encounter computational challenges, but is well suited to the SPG framework and

the tractability of techniques within it. A sample of raw data is provided in Table

5.1. Each line represents a co-authorship relationship - the first two entries in a given

line identify the vertex end points of each edge. The last entry is the weight of an

edge. Note that while two authors may have published together multiple times, thus

resulting in a edge weight greater than 1, for analysis purposes all edge weights were

converted to 1.
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Table 5.1: Sample of Raw Data - 1969 Co-Authors

Index of Vertex (Author) 1 Index of Vertex (Author) 2 Edge Weight

... ... ...

8 287732 1

18 149619 1

18 157955 1

18 229956 1

108 102728 1

108 241053 1

141 3141 1

... ... ...

5.2.2 Signal Graph

The signal graph was constructed using the citation data (also extracted from the

Web of Science database), specifically direct citations to the BD paper as illustrated

in Figure 5.1 to identify the authors that are part of the signal graph. For each year

n, GS(n) contained authors that cited the BD paper as vertices with an existence

of an edge between two vertices indicating that two authors co-authored a paper

together. While the nature of a citation could vary, given the scale of this analysis,

this approach is relevant to allow for tracking of trends in re-wiring of collaboration

networks.

The signal graph was constructed for the period of 1969-1980, focusing on the

period of emergence of the BD model and its influence. Figure 5.4 presents an ex-
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ample signal subgraph for the year 1975. Results of the application of techniques are

presented in the next chapter.

65



Figure 5.4: Signal Truth Subgraph for 1975. The figure presents the truth subgraph.

Each blue block is an author and both the author name and the index for the author

as it appears in the raw data is indicated in the figure. Note that the subgraph is

both low degree and has connected components with very few vertices (no more than

6 in this year). This makes this type of subgraph difficult to detect thus requiring

temporal integration techniques.
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Chapter 6

RESULTS

In this chapter we present results of applying the techniques described in Chapter

3 and Chapter 4 to the known case study of scientific innovation in developmental

biology discussed in Chapter 5 and as described in Bliss et al. (2014b), Miller et al.

(2015). We predominantly focus on analysis of dynamic networks to gain insight

into the structure of transformative events in science and impact of innovation on

collaboration networks. Bettencourt et al. (2009) discusses alternative approaches to

analysis of innovation in context of collaboration networks leveraging graph theoretic

measures such as density, diameter, and connected component analysis as opposed to

detection of signals.

As described in Chapter 5, our data is well-suited to graph-theoretic analysis.

The input into the SPG framework is a graph G or a time series of graphs, with no

vertex cue, as represented by the adjacency matrix where aij is non-zero if an edge

exists between vertex vi and vj in G. All graphs analyzed here are unweighted and

undirected and have 294,700 vertices as that is the number of unique authors in the

primary time period under analysis, spanning 1969-2000.

For each of the results discussed below, we also highlight the relevant algorithmic

blocks in the SPG block diagram to indicate which mathematical techniques were

applied.

6.1 Evolution of the Scientific Field

Before focusing on detection of the signature of innovation, we are first inter-

ested in understanding whether our mathematical techniques can provide insight into
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Figure 6.1: SPG Block Diagram - Evolution of the Scientific Field Relevant Blocks. To

consider the impact on the overall scientific field, we applied to model fitting/residual

computation step and the dimensionality reduction step to an ensemble of years in

the period under study.

general evolution of the scientific field. Given that the BD paper is a well-accepted

disruptor in evolutionary and developmental biology, our first application was to con-

sider the two dimensional projections of an ensemble of years throughout the period

under study. Figure 6.1 highlights the relevant algorithmic blocks.

To perform this analysis, we analyzed static co-authorship graphs for a number of

years, performing the residual computation on each, followed by an eigendecomposi-

tion and projection of the data into the space of the top two eigenvectors as described

in Chapter 3. The modularity matrix B = A−kkT/M was used for the residual com-

putation. A set of projections for representative years is shown in Figure 6.2. We

expanded our analyses to years prior to the publication of the BD paper (1959) to

further study the impact. The years were chosen to highlight the field before the BD

paper (1959), publication year of the BD paper (1969), near to mid term impact of

the BD paper (1989), and long term impact of the BD paper (1999).

In each of the subplots in the figure, individual dots represent vertices in the

graph or individual authors. The axes are the values corresponding to each vertex in

eigenvectors 1 and 2 (the eigenvectors associated with the two largest eigenvalues).

The shape of the projection is clearly evolving over the course of the decades under

study and is consistent with the historical data, providing initial validation of the
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Figure 6.2: SPG Analysis of the Field of Developmental Biology. For each year, we

performed the residual computation (model fitting) and the dimensionality reduction

step. This analysis does not perform any temporal integration. The figure presents

a two-dimensional projection of the co-author network with each point on the plot

representing a single vertex (author).
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suitability and sensitivity of the techniques for the topic of interest - detection of

innovation in collaboration networks.

The historical study of the scientific field validates the results achieved via the

graph-theoretic analysis. During the 1960s and 1970s the field was still relatively

diverse. In 1979 the majority of genetic work in developmental biology focused on

single genes. What we see in the progression of graphs is the (1) the constancy

of genetic approaches (2) the emergence of some (short-lived) fashions and (3) the

subsequent expansion and diversification of genetic and genomic approaches. By the

1980s and 1990s, the field coheres around a single theme.

6.2 Author Detection

In this section, we describe a number of experiments leveraging the techniques for

dynamic graphs as presented in Chapter 4. First, we present results of applying two

different types of filters to a known period of innovation. We then present techniques

for additional filter optimization, highlighting some of the relevant results as described

in Miller et al. (2015). Finally, we demonstrate the application of one of the filters to a

different time period, indicating that innovation may have generalizable collaboration

network patterns. The block diagram highlighting the relevant blocks of the SPG

framework is presented in Figure 6.3. Since the focus of the research is the temporal

integration in collaboration networks, that block is further highlighted. Note that we

skip the anomaly detection step in these experiments as we have a priori knowledge

as to existence of innovation in scientific publications during the period under study.

6.2.1 Dynamic Integration of Collaboration Networks

Here we present an application of two dynamic integration techniques to temporally-

evolving collaboration networks. As previously described, the input into the SPG
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Figure 6.3: SPG Block Diagram - Author Detection Relevant Blocks. To identify key

author subgraphs, we applied the model fitting/residual computation step, temporal

integration step, dimensionality reduction step, and identification step to a dynamic,

temporally evolving collaboration network. Since the focus of the work presented is

the temporal integration, that algorithmic block is further highlighted.

framework is a time series of adjacency matrices, with each time slice representing

the collaboration network for a given year. For each adjacency matrix in the time

series, aij is non-zero if author i and author j have published together in a given

year. Our techniques here were applied to the years 1969-1980. Note also, that those

were the years for which we have constructed the signal subgraphs based on truth

citation history and associated collaborations. Furthermore, the truth subgraphs are,

as would be expected, part of the overall input graph - the collaborations identified

as relevant to the BD transformation naturally exist in the background of the entire

field.

We first applied a ramp filter, or filter of linearly increasing coefficients, to the

time series data as indicated by the equation:

R̃n =
T−1∑
t=0

R(n−t)ht. (6.1)

Where Rn is the residuals matrix at time n and h is a vector of filter coefficients,

and T is the length of the time series. A ramp filter (linearly increasing coefficients)

has the ability to increase the signal of a densifying connectivity pattern. A ramp
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filter is constructed by creating filter coefficients that increase over time, centered,

and normalized (T here is still the length of the time window of interest):

h′t = t− T/2 (6.2)

h = h′/ ‖ h′ ‖ (6.3)

A change in a scientific field potentially could exhibit such a pattern - for example,

increasing set of collaborations between groups of loosely connected researchers.

Recall, that the signal subgraph for each of the years spanning 1969-1980 was

constructed based on collaborations between authors that have sighted the BD paper.

For each of the years, we computed the eigenvalues of the truth subgraph and have

constructed our normalized coefficient vector h based on the maximum eigenvalue,

λmax, of that subgraph for each year.

Results for both the ramp filter and filter tracking the maximum eigenvalue of the

signal (the truth data) are presented in Figure 6.4. As with the results in the previous

section, we present the two-dimensional projections of the temporally integrated dy-

namic collaboration network. As we have the truth data of the subgraphs of interest

(as identified by the citations), we can highlight those vertices in red. Each point, as

before, represents a vertex in the graph or an author.

A few observations can be readily made from these results. It is apparent from

the analysis that the ramp filter does not lead to any separation of the signal vertices

- as can be seen in the left-hand plot in Figure 6.4, they are entirely hidden within the

center of the background. On the other hand, the maximum eigenvalue filter clearly

identified the author Monroy, A. Alberto Monroy was a leading figure in Italian and

European developmental biology. Monroy was one of the first prominent developmen-

tal biologist, who applied the new concept of gene regulatory networks in the context
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Figure 6.4: Temporal Integration Leveraging Truth. Two filters were applied: a

ramp filter and a maximum eigenvalue of the truth subgraph filter. The red colored

points indicated the known truth data (based on the GS subgraph). As in Figure

6.2, each point represents an author in the co-author network. The ramp filter does

not separate the truth from the background. The maximum eigenvalue filter does

identify a key individual, Monroy A.

of molecular explanations of developmental processes in the mid-1970s. These results

are also consistent with the historical observations that innovation causes a re-wiring

of the collaboration networks (as opposed to densification).

6.2.2 Filter Optimization

While the results obtained using the λmax-optimized filter are highly promising,

here we present some possible optimizations to the temporal integration approach as

discussed in Miller et al. (2015).

Within the SPG framework, the spectral norm is a good power metric for signal

and noise power as discussed in Miller et al. (2014). When an embedded subgraph’s

spectral norm is large, its vertices are more likely to stand out in the eigenspace.
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When working with the temporal integration technique described in Chapter 4, this

means that it is desirable to choose filter coefficients that maximize the spectral norm

of the principal submatrix of the adjacency matrix associated with the signal subgraph

vertices.

As originally discussed in Miller and Bliss (2012b), the subgraph’s spectral norm

can be maximized by forming a 3-way tensor from the subgraph adjacency matrix,

and computing a low-rank approximation for this tensor. Let AS be an NS ×NS × `

tensor for the subgraph vertices, where NS = |VS|. The first two dimensions represent

vertices and the third dimension represents time. Much like approximating a matrix

with its singular value decomposition, a low-rank tensor decomposition can be used

to approximate AS. For a rank-1 approximation, this is achieved by solving

arg maxλ,x,y,z

NS∑
i=1

NS∑
j=1

∑̀
t=1

(AS(i, j, t)− λxiyjzt)2 (6.4)

subject to ‖x‖2 = 1, ‖y‖2 = 1, ‖z‖2 = 1.

Here x, y ∈ RNS and z ∈ R` are vectors, and λ ∈ R is a scalar. Our objective is to

maximize the spectral norm of the integrated adjacency matrix whose ijth entry is

given by

ahij =
∑̀
t=1

AS(i, j, `+ 1− t)h(t).

It turns out that this quantity is optimized—under the constraint that the squares

of the filter weights sum to 1—by setting the filter weights h(t) equal to the time-

reversed temporal factor z`+1−t from (6.4). This computation can be done in Matlab

using the PARAFAC decomposition as described in Acar et al. (2011) in the Tensor

Toolbox by Bader et al. (2012).

The effect of tuning the filter with respect to the vertices of interest has been

demonstrated in simulation Miller and Bliss (2012b), but here we demonstrate ap-

plication to the well-studied period of scientific innovation described in the previous
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chapter: we optimize the filter applied to the coauthorship graph from 1969 to 1980.

As demonstrated in Fig. 6.5, the impact is extremely significant.

Within each plot, there is one curve for each vertex in the subgraph of interest. In

each case, the eigenvectors associated with the largest 20 (non-negative) eigenvalues

were computed. The values of the plots are the components of the (unit-normalized)

eigenvectors that are associated with the subgraph vertices. Without any knowledge

of truth, one may assume that simply averaging over time would be a reasonable

approach, or that integrating using a ramp filter as described above would detect

interesting subgraphs, given that this would emphasize emerging densifying behavior.

Using these strategies, as shown in the figure, there is only one vertex that is partic-

ularly strong within the eigenvectors with the largest eigenvalues. Using a method

that considers the spectral norm of the subgraph at each point in time (i.e., using

weights corresponding to the instantaneous power of the foreground) provides some

additional benefit, as a few additional vertices stand out more prominently in eigen-

vector 14. Using a filter that is optimized via the tensor decomposition, on the other

hand, brings out several more vertices. When this filter is applied, nine vertices from

the subgraph stand out significantly in eigenvector four. Looking back at the data

used to optimize the graph (i.e., the authors citing the seminal BD paper), these nine

vertices comprise the largest connected component in any given year, and in fact form

a clique (a graph with all possible edges) in 1977. Two of the authors in this cluster

are also part of a larger clique with nine other authors in the background, who also

stand out in the same eigenvector. This is a significant finding: the most intercon-

nected that authors citing the BD paper ever become in a given year, as well as other

close collaborators. Without this temporal integration technique, the subgraph would

not stand out from the background within this low-dimensional space.
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Figure 6.5: Projections of Subgraph Vertices onto Principal Eigenvectors with Various

Temporal Integration Techniques. Within the space of the principal eigenvectors,

only one vertex is particularly prominent when using equal weights (top left), linearly

increasing weights (top right), or weights determined by eigenvalues (bottom left).

Only when an optimized filter is applied (bottom right) do a substantial number of

subgraph vertices become prominent in the eigenspace.
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6.2.3 Generalizing to a Later Time Period

The results presented in the two subsections above all focus on the same period

of time where the signal subgraph is known to be present and is used for both filter

construction and filter optimization. A key question of interest to the broad scien-

tific and policy community is whether there is a consistent observable or detectable

structure of innovation - effectively a mathematical formula for innovation that can

be detected in early, emergent stages, potentially encouraged, and possibly even am-

plified through investment of resources. To provide initial investigation towards that

question, we apply the λmax-optimized filter to a later time period in the developmen-

tal biology dataset. Specifically, we are interested in the question as to whether a filter

constructed over a period of time from 1969-1980, leveraging known truth based on

co-authorship networks constructed around citations to the BD paper can be applied

to a different time period (1990-2000) and identify interesting individuals. Given that

this is still considering the developmental biology discipline and a well-studied period

from a historical perspective, we can perform this experiment and validate our results.

The results of the two dimensional projection are shown in Figure 6.6. A simple

thresholding procedure (analogous to a one dimensional clustering) produces 4 names:

(1)Voet, M, (2) Sprincl, L, (3) Mewes, HW, and (4) Murphy, L. From a history of

science perspective, Hans-Werner Mewes is a significant figure in this context. Mewes

has been an early proponent of Systems Biology. One of the conceptual consequences

of the notion of gene regulatory networks is a shift away from a single gene to a

genomic network paradigm, so it is not at all surprising that we detect proponents of

Systems Biology within the innovation trajectory of the Britten-Davidson paper.

The results are highly promising illustrating both the efficacy of the approach and

the need for interdisciplinary techniques - in this case bringing together the graph
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Figure 6.6: Temporal Integration on a New Time Period. As in Figure 6.2, each

point represents an author in the co-author network. The maximum eigenvalue filter

constructed leveraging truth data covering the 1969-1980 time period is applied to

a new time window: 1980-2000. The SPG approach with a truth-based filter and a

simple thresholding procedure identifies 4 individuals, one of which is considered a

significant figure in scientific innovation in developmental biology, Mewes, HW.

78



theoretic and history of science domains. Furthermore, the scalability of the tech-

niques makes this approach highly applicable to wide range of scientific collaboration

datasets, allowing us to detect and potentially formulate general attributes of inno-

vation.
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Chapter 7

CONCLUSION

In this dissertation, we presented a novel algorithmic framework for detection of

small, topologically anomalous subgraphs in large graph datasets and applied the

framework to a case study of detection of innovation in collaboration networks lever-

aging rigorously studied periods in history of science. Both the framework formulation

(including the notion of signal processing for graphs) and its application constitute

novel contributions to the field of applied mathematics, particularly in the context

of life and social sciences and humanities. These techniques have significant poten-

tial to greatly improve understanding and detecting of emergence of new concepts in

science. Both simulated results and application results presented here demonstrate

the potential of the approach to transform our understanding of complex systems

created by social networks in context of scientific research. The SPG framework

facilitates specialization of subgraph detection algorithms for diverse, specific appli-

cation requirements, as well as various data sources, types, and scales. Furthermore,

the contributions of this work demonstrate a truly interdisciplinary approach by ad-

vancing the mathematical techniques while also advancing our understanding of the

fundamentals of knowledge.

Applying our method of signal detection to study patterns of innovation within

science leveraging rigorous historical knowledge of a transformative period in develop-

mental and evolutionary biology allowed us to (1) identify these events within graphs

of scientific collaboration and (2) validate our findings with concrete historical analy-

sis of the detected signatures. A key finding of interest is confirmation that innovation

leads to re-wiring of networks of collaboration connections and not necessarily den-
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sification. This is directly supported by results presented in Section 6.2.1 and in

Figure 6.4. The ramp filter, tracking a densifying pattern, produced no noise/signal

separation, while the filter tracking the maximum eigenvalue of the signal subgraph

did. This result mathematically supports historical analysis of this period and is a

step towards formulating the topology or connectivity signature of innovation. This

is further confirmed by the fact that applying this same filter to a later time period

leads to similar discovery as illustrated in Figure 6.6.

The formulation of the signal processing for graphs framework as it has been

defined and instantiated in this research provides a means for identifying potential

research directions both from the perspective of development of models and techniques

and from the perspective of the application of interest - detection of emergence of

innovation. Here, we outline these future directions.

Throughout this dissertation, we leveraged the modularity matrix as our residuals

matrix. This residuals computation is based on the Chung-Lu graph model. While we

have been able to demonstrate great results both in simulation and in our case study,

it is likely that the underlying model of publication data is not in fact Chung-Lu.

Specifically, the Chung-Lu model assumes that there is no community structure in the

graph, which is explicitly not the case in context of scientific collaborations. Scientific

collaborations are defined by their community structure and it is the deviation from

existing community structure that is of interest in context of detection of scientific

innovation. Developing an expected model building on the one described in Miller and

Bliss (2012a) is likely to improve the detection performance in identifying emerging

research trends.

In Section 6.2.2, we presented a filter optimization technique to increase the power

of our signal subgraph based on a known case study. This optimization leveraged the

fact that the subgraph was exactly known and the signal strength was optimized
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by maximizing the spectral norm of the subgraph. One potential research direction

is continued development of filter optimization techniques with varying knowledge

of the subgraph. Also, as discussed above, a better formulation of the expected

model is likely to allow for more effective noise suppression thus providing another

means to amplify the signal. Another potential area of exploration in context of

temporally evolving graphs is to consider formulation for continuos as opposed to

discrete representations presented here.

In our case study, we focused predominantly on principal component analysis of

the residuals matrix. Many additional techniques for component selection can be

considered, such as ones that were developed in Miller et al. (2010a). It would also

be interesting to consider applying the component selection techniques in context

of dynamic subgraph detection. Another potential direction is to explore higher di-

mensional representations of the graph - in all of our research, we have focused on

two-dimensional projections. It is possible that addition of extra dimensions could in-

crease detection performance, while still operating in a significantly lower dimensional

space than the original input graph.

As discussed in Section 2.1.1, the problem of subgraph isomorphism is NP-complete.

All of the SPG techniques have polynomial time complexity. It would, therefore,

be of interest to investigate theoretical performance bounds of these approximation

algorithms and explore the cases where optimal performance can be achieved in poly-

nomial time. Also, as mentioned in Chapter 2, new results from random matrix

theory are likely to be relevant in context of deriving optimal performance bounds

for subgraph detection - that would be another interesting future direction.

Finally, as we have demonstrated in both Chapter 5 and Chapter 6, applying

the mathematical techniques from the SPG framework to real data produces both

interesting mathematical results and highlights new areas to consider in context of
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the study of innovation. We have focused our research on the case study of the

transformative nature of the Britten-Davison paper on gene regulatory networks as

it is a well-studied period of scientific innovation. A clear future direction is applying

the techniques to datasets from other disciplines both in the presence of known case

studies and in absence of those. This approach, specifically given its computational

tractability, enables studying scientific innovation at scale. Another future application

of a refined method is to observe the innovation dynamics of science closer to real

time, which would have implications for science policy, by allowing identification of

emerging scientific areas.
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