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ABSTRACT

US Senate is the venue of political debates where the federal bills are formed and

voted. Senators show their support/opposition along the bills with their votes. This

information makes it possible to extract the polarity of the senators. Similarly, blo-

gosphere plays an increasingly important role as a forum for public debate. Authors

display sentiment toward issues, organizations or people using a natural language.

In this research, given a mixed set of senators/blogs debating on a set of political

issues from opposing camps, I use signed bipartite graphs for modeling debates, and

I propose an algorithm for partitioning both the opinion holders (senators or blogs)

and the issues (bills or topics) comprising the debate into binary opposing camps. Si-

multaneously, my algorithm scales the entities on a univariate scale. Using this scale,

a researcher can identify moderate and extreme senators/blogs within each camp, and

polarizing versus unifying issues. Through performance evaluations I show that my

proposed algorithm provides an effective solution to the problem, and performs much

better than existing baseline algorithms adapted to solve this new problem. In my ex-

periments, I used both real data from political blogosphere and US Congress records,

as well as synthetic data which were obtained by varying polarization and degree

distribution of the vertices of the graph to show the robustness of my algorithm.

I also applied my algorithm on all the terms of the US Senate to the date for

longitudinal analysis and developed a web based interactive user interface

www.PartisanScale.com to visualize the analysis.

US politics is most often polarized with respect to the left/right alignment of

the entities. However, certain issues do not reflect the polarization due to political

parties, but observe a split correlating to the demographics of the senators, or simply

receive consensus. I propose a hierarchical clustering algorithm that identifies groups

of bills that share the same polarization characteristics. I developed a web based
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interactive user interface www.ControversyAnalysis.com to visualize the clusters

while providing a synopsis through distribution charts, word clouds, and heat maps.
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Chapter 1

INTRODUCTION

1.1 Research Overview

Blogosphere plays an increasingly important role (Drezner and Farrell, 2008) as

a forum of public debate, with knock-on consequences for the media, politics, and

policy. Hotly debated issues span all spheres of human activity; from liberal vs.

conservative politics, to extremist vs. counter-extremist religious debate, to climate

change debate in scientific community, to globalization debate in economics, and to

nuclear disarmament debate in security. There are many applications (Mullen and

Malouf, 2006; Malouf and Mullen, 2007; Thomas et al., 2006; Bansal et al., 2008;

Lin and Hauptmann, 2006) for recognizing politically-oriented sentiment in texts.

Adamic and Glance (2005) studied linking patterns and discussion topics of political

bloggers by measuring the degree of interaction between liberal and conservative

blogs, and to uncover their differences. In this research, given a mixed set of blogs

debating a set of related issues from two opposing camps, I propose an algorithm to

determine (i) which blog lies in which camp, (ii) what are the contested issues, and,

(iii) who are mentioned as the key individuals within each camp.

Bipartite graphs have been widely used (Deng et al., 2009; Rege et al., 2006; Zha

et al., 2001) to represent relationships between two sets of entities. I use bipartite

graphs to model the relationships between blogs and issues (i.e. topics, individu-

als, etc.) mentioned within blogs. I use signed weighted edges to represent opinion

strengths, where positive edges denote support, and negative edges denote opposition

between a blog and an issue.
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I develop algorithms to solve the following problems on signed bipartite graphs

modeling blog debates:

1. Partitioning of both the blogs, and the underlying issues mentioned in blogs,

into two opposing camps;

2. Scaling of both the blogs and the underlying issues on a univariate scale such

that the position of a vertex is closer to the positions of the vertices it is con-

nected with positive edges, and further away from the positions of the vertices

it is connected with negative edges.

Using this scale, a researcher can identify both the moderate and extreme blogs

within each camp, and the polarizing vs. unifying issues. Partitioning and scaling

help a researcher to better understand the structure of a social, political or economic

debate, or even the details of an emerging geopolitical conflict in the world. While

extremist ends of a scale, may represent blogs with irreconcilable viewpoints, in some

cases, moderate blogs may represent viewpoints that are more amenable to engage

in a constructive dialog through a set of unifying issues. Moderates may sympathize

with some of the claims and grievances of the other side. Longitudinal analysis using

my proposed algorithms could reveal interesting dynamics, such as, moderates from

opposing camps could be in the process of forming a coalition by making the neces-

sary compromises to reach a consensus. All the while, moderates may be alienating

extremists in their own camps who may choose to focus on polarizing issues only,

and lash out violent or demonizing rhetoric on everyone else who do not share their

exclusivist viewpoints.

Similarly, the current political party system in the United States is a two-party

system, which suggests a bipolar nature for both the senators and the bills; such that,

there exists two polarized camps of senators that oppose each others views, and two
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sets of bills that polarize the senators. It can be presumed that these camps would

purely split according to the political parties of the senators, or the political parties

of the sponsors of the bills. Although this is true to a certain extent, my analysis

show that the actual behaviors can be different for a minority.

Senators show their support/opposition along the bills with their votes. This

information makes it possible to extract the polarity of the senators. I use signed

bipartite graphs for modeling the opposition, and I used my previous work ANCO-

HITS algorithm for partitioning both the senators, and the bills into two polarized

camps. Simultaneously, my algorithm scales both the senators and the bills on a

univariate scale. Using this scale, a researcher can identify moderate and partisan 1

senators within each camp, and polarizing vs. unifying bills.

Partitioning and scaling help a researcher to better understand the structure of

political debates in the Senate. While partisan ends of a scale may represent senators

with irreconcilable viewpoints, moderate senators may represent viewpoints that are

more amenable to engage in a constructive dialog through a set of unifying issues.

Moderates may sympathize with some of the claims and grievances of the other side.

Longitudinal analysis using my proposed algorithms could reveal interesting dynam-

ics, such as, moderates from opposing camps could be in the process of forming a

coalition by making the necessary compromises to reach a consensus.

1.2 Contributions

To the best of my knowledge, simultaneous scaling on signed weighted bipartite

graphs has not been studied in the literature, and this research is the first attempt

to introduce the problem and provide an effective solution and evaluation strate-

1Partisanship can be defined as being devoted to or biased in support of a party.
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gies. Similarly, hierarchical clustering of signed bipartite graphs preserving structural

equilibrium is first attempted in this research.

Major contributions of this research are:

1. an iterative algorithm, named ANCO-HITS (Alternatingly Normalized CO-

HITS), to propagate the scores on a signed bipartite graph to solve the parti-

tioning and scaling problems described above;

2. a convergence proof for the proposed ANCO-HITS algorithm;

3. definition of a new coefficient to measure structural equilibrium for signed bipar-

tite graphs using the multiplicative transitivity property presented by Kunegis

et al. (2009) exemplified by the phrase the enemy of my enemy is my friend ;

4. executing the ANCO-HITS algorithm on two real-world and one synthetic data

sets:

(a) scaling analysis of a total of 112 US Congress voting records having Re-

publicans/Democrats and their roll call votes 2

(b) scaling analysis of top 22 liberal and conservative blogs, and the most

influential individuals mentioned in these blogs.

(c) performance evaluations of scaling algorithms using synthetic data sets

which were obtained by varying polarization and degree distribution of

signed bipartite graphs

5. a hierarchical clustering algorithm for signed bipartite graphs to identify subsets

of entities preserving structural equilibrium

6. two web based interactive user interfaces

2http://thomas.loc.gov/home/rollcallvotes.html
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(a) www.PartisanScale.com visualizes the output of the ANCO-HITS algo-

rithm for the US Senate with year-over-year displacement analysis

(b) www.ControversyAnalysis.com visualizes the hierarchical clusters of US

Senate, US House of Representatives, and the United Nations General

Assembly, providing cluster synopsis through various visualizations.

In my experiments, variance in polarization relates to the distributions of the ratio

of vertices corresponding to extremes vs. moderates.

Alongside my proposed ANCO-HITS, I also evaluated two baseline algorithms,

namely CO-HITS (Deng et al., 2009) and spectral clustering (Luxburg, 2007). Al-

though Co-HITS was designed for scaling unsigned bipartite graphs, it can be directly

applied for scaling signed bipartite graphs, and partitioning by considering the signs of

vertex values. Spectral clustering algorithm was designed for partitioning of graphs,

and it can also produce a scale by using the component values of the eigenvector

associated with the second smallest positive eigenvalue of the graph Laplacian (Ng

et al., 2001; Shi and Malik, 2000).

My experiments showed that the ANCO-HITS algorithm is the only robust algo-

rithm in the presence of variance in polarization and vertex degrees.

1.3 Problem Formulation

There are many applications (Mullen and Malouf, 2006; Malouf and Mullen, 2007;

Thomas et al., 2006; Bansal et al., 2008; Lin and Hauptmann, 2006) for recognizing

political orientation, and bipartite graphs (Deng et al., 2009; Rege et al., 2006; Zha

et al., 2001) have been widely used to represent relationships between two sets of

entities. I use bipartite graphs to model the relationships between the senators and

5
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the bills. I use signed edges to represent the votes, where positive edges denote

support, and negative edges denote opposition on a bill by a senator.

Definition 1 (Co-Scaling problem for signed bipartite graphs). Given

• G = (U ∪ V,A) is a bipartite graph consisting of two disjoint sets of vertices U

and V , and a signed adjacency matrix A

• U = {u1, u2, . . . , um}, a set of m vertices

• V = {v1, v2, . . . , vn}, a set of n vertices

• A ∈ Rm×n, where aij represents the signed edge between ui and vj

Find

• X = (x1, x2, . . . , xm), where xi ∈ R is the assigned value of the vertex ui

• Y = (y1, y2, . . . , yn), where yi ∈ R is the assigned value of the vertex vi

such that

• sgn(xi) and sgn(yi) shall determine the polarity of the vertices i.e. −1 and +1

as the opposing polarities

• xi value for a vertex ui should be closer to the yj values of the vertices that

it supports (connects positively), and further away from the yk values of the

vertices that it opposes (connects negatively). The magnitudes of xi and yj

denote the extremity of the nodes ui and vj. i.e. magnitudes closer to 0 meaning

more moderate and larger magnitudes meaning more extreme.

Figure 1.1 depicts a perfectly polarized bipartite graph. The two axes X and Y

represent the univariate scale for the nodes in U and V . The vertices to the right

6



 

u1 u2 u3 um-2 um-1 um 

v1 v2 v3 vn-2 vn-1 vn 

X 

Y 

0 

Figure 1.1: Perfectly Polarized Bipartite Graph

  

u1 
X 

Y 

0 

 

u2 
X 

Y 

0 

Figure 1.2: Extreme vs. Moderate Vertices

of zero have positive values, and the vertices to the left have negative values on the

scale. A green solid line between the nodes ui and vj represents support, and a red

dashed line represents opposition.

Figure 1.2 shows an example of two vertices; u1 being extreme and u2 being more

moderate. u1 supports the vertices of same polarity, and opposes the vertices of the

opposite polarity. However, u2 has mixed support and opposition.

Although partitioning algorithms can be utilized to detect the polarity of vertices,

it is not possible to distinguish extremes from moderates. Scaling overcomes this

problem and makes it possible to compare two vertices of same polarity. In this

research, I am not only able to compare pairs of vertices, but also provide the exact

locations on the scale, therefore providing valuable information about the shape of

the distribution as well.
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On the other hand, direct relations between the vertices may not be available, but

indirect relations can be induced through intermediate vertices of different type. For

example, signed relations between blogs may not be available, however through their

polarized views towards people, one can identify the polarization between individual

blogs.

To solve this co-scaling problem, I present two baseline methods. The first one is

a common modification (Zha et al., 2001; Fern and Brodley, 2004) of the well-known

Spectral Clustering approach to work on graphs with signed edges. The second one is

the CO-HITS (Deng et al., 2009) algorithm, that is a modification of the well-known

HITS algorithm, designed for bipartite graphs.

Finally, I compare these baseline methods with a novel algorithm I developed for

co-scaling problem, named Alternatingly Normalized CO-HITS (ANCO-HITS).

8



Chapter 2

LITERATURE REVIEW

Scaling vertices of a graph based on the network structure rather than individual

properties has been of great interest for more than a decade. Two most well-known

algorithms are the PageRank (Page et al., 1999) and the HITS (Kleinberg, 1999)

algorithms. They were designed to rank the vertices of graphs with positive weighted

edges. Spectral analysis show that both PageRank and HITS algorithms converge.

An important distinction between the two algorithms is that; the HITS algorithm pro-

vides two different types of rankings corresponding to hubs and authorities, whereas

PageRank provides only a single ranking.

Many data types from data mining applications can be modeled as bipartite

graphs, examples include terms and documents in a text corpus, customers and items

purchased in market basket analysis and bloggers writing about current issues.

Based on variations of HITS and PageRank, many researchers have proposed

algorithms. Deng et al. (2009) propose a modification of the HITS algorithm to work

on bipartite graphs called CO-HITS. The main difference between HITS and CO-

HITS is that; HITS provides two scores for each vertex, whereas CO-HITS provides

one score for each type of vertex. In this research, I use CO-HITS as one of the baseline

algorithms, and in order to overcome its deficiencies, I extend it with normalization

steps.

Data mining methods such as clustering have been used quite extensively for

exploratory data mining applications (Dhillon et al., 2001; Slonim and Tishby, 2000).

Clustering analysis (Berkhin, 2006) provides a partitioning of the data into subsets,

called clusters such that the objects in a cluster are more similar than those in distinct

9



clusters. Spectral clustering (Dhillon et al., 2004; Luxburg, 2007; Ng et al., 2001) is a

powerful clustering method that is able to outperform K-means clustering (Hartigan

and Wong, 1979) in many cases, especially when the clusters are non convex. The

method is based on computing the eigenvalues of the normalized version of the graph

Laplacian, and has theoretical connections with the normalized cut of the graph. In

particular when clustering a bipartite graph into two balanced clusters, the second

smallest positive eigenvalue (Ng et al., 2001) is the solution to the normalized cut of

the graph. In recent years, several authors have used spectral clustering to analyze

bipartite graphs (Zha et al., 2001). Furthermore, some work has been done to take into

account a signed adjacency matrix by using an augmented adjacency matrix (Kunegis

et al., 2010). In this research, spectral clustering was also used as one of my baseline

methods for partitioning and scaling signed bipartite graphs.

The clustering coefficient was first introduced by Watts and Strogatz (1998) to

measure how much multiplicative transitivity property the graph exhibits, which re-

flects the tendency of the vertices to form small groups. Kunegis et al. (2009) define

a new coefficient using the multiplicative transitivity for signed graphs to measure

structural equilibrium. In this research, I define another coefficient through multi-

plicative transitivity for signed bipartite graphs.

SocialAction project (Perer and Shneiderman, 2006) integrates visualization for

social network analysis. Modularity (Newman and Girvan, 2004), on the other hand,

defines a measure for community detection purposes. Gómez et al. (2009) and Traag

and Bruggeman (2009) further extend it to be used for signed graphs based on the

assumption of structural balance. These approaches identify opposing communities.

However, they lack scaling the individuals within the communities.

10



2.1 Spectral Clustering

Spectral clustering (Ng et al., 2001) uses linear algebra methods for clustering

purposes. The eigenvectors of the normalized Laplacian of the adjacency matrix are

used to partition the graph into clusters. Spectral clustering is able to outperform K-

means clustering in many situations, especially in the presence of non-convex groups of

data. This method has close connections with the normalized cut (Luxburg, 2007) of

the graph. In particular when clustering a bipartite graph into two balanced clusters,

the second smallest positive eigenvalue of the Laplacian matrix (Dhillon et al., 2004)

is the solution to the problem of minimizing the normalized cut of the graph.

Spectral clustering uses an adjacency matrix with all positive entries. However,

my problem assumes a signed adjacency matrix. One of the common techniques to

circumvent this problem is to augment the matrix into a bigger matrix (Zha et al.,

2001; Fern and Brodley, 2004; Dhillon, 2001), such that all entries are positive. The

first half of the augmented matrix is reserved for the entries with positive values, and

the second half is reserved for the entries with negative values.

Define Ã ∈ Rm×2n such that Ã = [A+, A−] where

a+
ij =


aij, if aij > 0

0, otherwise

a−ij =


−aij, if aij < 0

0, otherwise

In order to partition and scale the nodes ui ∈ U and vi ∈ V , I define the following

matrix:

B =


0m×m Ã

ÃT 02n×2n
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I define the Laplacian of B as L = D−B where D is the diagonal degree matrix and

dii =
m+2n∑
j=1

bij. I further compute the normalized Laplacian Lsym = D−1/2LD−1/2. It

should be noted here that both L and Lsym are positive semi-definite.

Let the eigenvalues of Lsym have the values 0 = λ1 ≤ λ2 ≤ . . . ≤ λm+2n with

associated eigenvectors v1, v2, . . . , vm+2n, my univariate scale being the eigenvector

v2.

The first m components of v2 are set to be the X vector, and the following n

components are set to be the Y vector, solutions of the co-scaling problem.

2.2 CO-HITS

Deng et al. (2009) modify the well-known HITS (Kleinberg, 1999) algorithm and

propose the CO-HITS algorithm which is used to rank vertices of a bipartite graph.

Even though the adjacency matrix has only positive values in the original HITS paper,

the theory still holds for adjacency matrices with signed entries.

Algorithm 1 describes the steps of the CO-HITS algorithm for the co-scaling

problem.

The update functions for x and y are defined as follows:

x<k>
i =

n∑
j=1

aijy
<k−1>
j , y<k>

j =
m∑
i=1

aijx
<k>
i (2.1)

and convergence is achieved when

∥∥x<k> − x<k−1>
∥∥

2
< ε (2.2)

with ε a small positive value. In my experiments, I used ε = 10−20.

The intuition behind having such update rules is that each vertex should have

positive edges towards the vertices with the same sign, and negative edges towards

the vertices with the opposite sign.
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Algorithm 1 Iterative update procedure for CO-HITS

1: procedure CO-HITS(A)

2: y<0> ← (1, 1, . . . , 1)

3: k ← 0

4: repeat

5: k ← k + 1

6: Update x<k>

7: Update y<k>

8: until x vector converges

9: return x<k>, y<k>

10: end procedure

  

u1 
X 

Y 

0 

 

u2 
X 

Y 

0 

Figure 2.1: Extremity vs Degree

The drawback of this method is its sensitivity to the degree of each vertex, in the

sense that the higher degree the vertex has, the higher score it will be assigned on

the scale.

For example, let us consider two vertices u1 and u2 with u1 having a smaller

degree than u2. However, let u1 be more polarized than u2 as shown in Figure 2.1. In

this scenario, the corresponding scale values for u1 and u2 should satisfy |x1| > |x2|.

But, this will not be the case with the CO-HITS. This suggests a better algorithm

that accounts for the negative impact of degree variation through some normalization

mechanism.

13



One can consider normalizing the adjacency matrix A only by its rows, such that

the sum of each row adds up to 1. However, this will not take into account normalizing

the other dimension.
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Chapter 3

ANCO-HITS

3.1 Co-Scaling using ANCO-HITS

According to my problem formulation, the values of the vertices on the scale shall

not be sensitive to their degrees, but rather be sensitive to what kind of relations

they have with the other set of vertices.

For this purpose, I propose ANCO-HITS (Alternatingly Normalized CO-HITS )

algorithm, which introduces a normalization mechanism to address the issue of degree

sensitivity of CO-HITS. The proposed method uses the same iteration procedure

described in Algorithm 1. The update functions for x and y vectors are modified such

that they are normalized as follows:

x<k>
i =

n∑
j=1

aijy
<k−1>
j

n∑
j=1

|aij|
, y<k>

j =

m∑
i=1

aijx
<k>
i

m∑
i=1

|aij|
(3.1)

Section 3.2 covers the proof that ANCO-HITS algorithm will have x and y vectors

converge to the principal eigenvectors of M and N matrices which are derived from

the original A matrix.

This research uses a modified normalization scheme than the original ANCO-HITS

algorithm.

x<k>
i =

n∑
j=1

aijy
<k−1>
j

n∑
j=1

|aijy<k−1>
j |

y<k>
j =

m∑
i=1

aijx
<k>
i

m∑
i=1

|aijx<k>
i |

(3.2)

The update functions for x and y vectors are modified such that the vectors x

and y would converge not only in direction, but also in value. Furthermore, the

15



convergence values will satisfy −1 ≤ xi, yj ≤ +1. The results of all the datasets

satisfied these conditions.

3.2 Proof of Convergence

Theorem 1. ANCO-HITS algorithm will converge for any matrix A ∈ Rm×n, with

|A| having non-zero row-sums and column-sums.

Proof. Let B ∈ Rm×m and C ∈ Rn×n diagonal matrices with positive entries, where

Bij =


1

n∑
j=1

|aij|
, if i = j

0, otherwise

(3.3)

similarly,

Cij =


1

m∑
i=1

|aij|
, if i = j

0, otherwise

(3.4)

I should note here that both B and C matrices are symmetric and positive definite.

The update rules for x and y vectors can be written in matrix notation as follows:

x<k> = BAy<k−1> (3.5)

y<k> = CATx<k> (3.6)

Therefore,

x<k> = (BACAT )x<k−1> (3.7)

If there exists a vector x∗ that the x<t> will converge in direction, it has to satisfy

the equation:

cx∗ = (BACAT )x∗ (3.8)

16



Even though this is an eigenvalue equation, the eigenvalues may not be real, because

the matrix (BACAT ) is not symmetric. But if I multiply each side of the equation

with B−1/2, which exists since B is positive definite, I will get:

cB−
1/2x∗ = B

1/2ACATB
1/2B−

1/2x∗ (3.9)

Define M ∈ Rm×m to be M = B1/2ACATB1/2 and z ∈ Rm×1 to be z = B−1/2x∗, I will

get

cz = Mz (3.10)

which is again an eigenvalue equation. However, in this case M is a symmetric

matrix, and can be shown to be positive semi-definite with z as an eigenvector c as

an eigenvalue. The M matrix has a set of m eigenvectors that are all unit vectors

and all mutually orthogonal; that is, they form a basis for the space Rm.

Let us denote the eigenvalues of the M matrix by c1, c2, . . . , cm sorted in such a

way that c1 ≥ c2 ≥ . . . ≥ cm ≥ 0, with the eigenvectors z1, z2, . . . , zm respectively.

Using Equation (3.7), we can write a compact form for the kth update iteration

of x as follows:

x<k> = (BACAT )kx<0> (3.11)

We can rewrite the above equation in terms of M matrix

x<k> = B
1/2MkB−

1/2x<0> (3.12)

Any vector v ∈ Rm can be written as a linear combination of the eigenvectors

z1, z2, . . . , zm. Therefore,

B−
1/2x<0> = (a1z1 + a2z2 + . . .+ amzm) (3.13)

17



which will lead to

x<k> = B
1/2Mk(a1z1 + a2z2 + . . .+ amzm)

= B
1/2(a1M

kz1 + a2M
kz2 + . . .+ amM

kzm)

= B
1/2(a1c

k
1z1 + a2c

k
2z2 + . . .+ amc

k
mzm)

As k goes to infinity, the x<k> vector will converge to a multiple of the B1/2z1 vector.

lim
k→∞

x<k>

ck1
= a1B

1/2z1 (3.14)

Similarly, the convergence for the y<k> can be proved in the same fashion:

y<k> = C
1/2NkC−

1/2y<0> (3.15)

whereN ∈ Rn×n isN = C1/2ATBAC1/2 and the y<k> vector will converge to a multiple

of the C1/2q1 vector, with q1 being the principal eigenvector of the N matrix.

3.3 Experiments & Evaluations

To validate my algorithm, I have used two different datasets that are US Congress

and political blogosphere. In addition to real data, I introduced a model to generate

synthetic data to analyze the performance of the algorithms for various parameters.

Table 3.1 provides descriptive summarizes of the real-world data sets, as well as

the partitioning accuracies of the algorithms. I cannot provide scaling accuracies due

to the lack of quantitative information about how partisan/moderate each senator are.

However, qualitative information regarding the partisanship of the senators can be

obtained through a variety of resources. I will report this analysis in the corresponding

section.
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Table 3.1: Real-World Datasets Descriptive Summaries and Partitioning Accuracies

111th US Senate 111th US House Political Blogs

Vertices in U
64 Democrat 268 Democrat 13 Liberal

42 Republican 183 Republican 9 Conservative

Senators Representatives Blogs

Vertices in V 696 Bills 1655 Bills 34 People

Graph Density 88.36% 91.23% 39.04%

Str. Equilibrium 39.47% 39.37% 87.21%

Spectral Clustering 100.00% 99.11% 75.39%

CO-HITS 100.00% 99.56% 98.21%

ANCO-HITS 100.00% 99.56% 98.21%

3.3.1 US Congress

The United States has a bicameral legislature that comprises the US Senate as

the upper house, and the US House of Representatives. The terms of the US Senate

last for two years, and the senators serve three terms (six years) each. The terms are

staggered in such a way that approximately one-third of the seats are up for election

every two years.

The Senate meets in the United States Capitol in Washington, D.C. to form and

debate on motions, or bills. When debates conclude, the bill in question is put to

a vote, where senators respond either ’Yea’ (in favor of the bill) or ’Nay’ (against

the bill). For most of the bills, only the total number of ’Yea’ and ’Nay’ votes are

recorded, except for the roll call votes. According to The Library of Congress 1 ,

1http://thomas.loc.gov/home/rollcallvotes.html
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A roll call vote guarantees that every Member’s vote is recorded, but only

a minority of bills receive a roll call vote.

The US Congress has been collecting data since the very first congress of the US

history. This data has been encoded as XML files and publicly shared through the

govtrack.us project 2 .

To illustrate my results, I use the roll call votes for the 111th US Congress which

includes The Senate and The House of Representatives and covers the years 2009-

2010. The 111th Senate has 108 3 senators and the data contains their votes on 696

bills, and The 111th House has 451 representatives and the data contains their votes

on 1655 bills.

I extracted the adjacency matrix A ∈ {−1, 0, 1}|U |×|V |, with U vertices represent-

ing the congressmen, and the V vertices representing the bills. The values aij are 1 if

the congressman ui votes ‘Yea’ for the bill vj, -1 if the congressman votes ‘Nay’, and

0 if he did not attend the session.

The aforementioned scaling algorithms will scale both the congressmen and the

bills. In presence of partisanship 4 in the Congress, the sign of the scale values for

the congressmen should correspond to the Democrat and Republican parties, and the

magnitude of the scale values should represent the amount of partisanship.

The first two columns of Table 3.1 provide information about this data and the

partitioning accuracies of the algorithms.

Figure 3.1 depicts the vote matrices of the 111th US Senate data, where rows

representing the senators and the columns representing the bills. Also, the light

green color represents ’Yea’ votes, and dark red represents ’Nay’ votes. Scaling these

2http://www.govtrack.us/data

3Normally, each congress has 100 senators (2 from each state), however in many of the congresses,
there are unexpected changes on the seats caused by displacements or deaths.

4Partisanship can be defined as being devoted to or biased in support of a party.
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111th US Senate 111th US House of Representatives

Figure 3.1: Vote Matrix After ANCO-HITS

111th US Senate 111th US House

Figure 3.2: Bipartite Graph After ANCO-HITS

graphs leads to a re-ordering of the rows and columns such that senators and bills

are co-clustered together.

I analyzed the congressmen that have been assigned to be moderate by each

algorithm. I observed that the baseline algorithms tend to have the congressmen

with less number of votes (i.e. lesser degree) to be moderate regardless of their

partisanship. On the other hand, when I queried the names assigned to be most

moderates by the ANCO-HITS, for both Democrats and Republicans, I was able to

identify a number of supporting articles matching the ANCO-HITS scaling (Dennis,

2011; Newton-Small, 2009; Wikipedia, 2012; Coalition, 2012).
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Figure 3.2 represents the bipartite graph of the 111th US Congress data after

scaling both the congressmen and the bills with ANCO-HITS. The light green col-

ored edges represent ’Yea’ votes, and dark red represents ’Nay’ votes. Similar to

my motivating Figure 1.1, this figure also shows partisan behavior in the 111th US

Congress.

In order to have a more extensive evaluation of the algorithms on real data sets,

I executed the algorithms for each of the 111 terms in the US Senate. The anal-

ysis for the two major parties of each term show that ANCO-HITS algorithm par-

titions the senators with a higher accuracy than the baseline algorithms 5 : Spec-

tral Clustering(µ = 83.9%, σ = 13.9%), CO-HITS(µ = 85.9%, σ = 13.7%), ANCO-

HITS(µ = 86.1%, σ = 13.7%).

3.3.2 Political Blogosphere

As Web 2.0 platforms gained popularity, it became easy for web users to be a part

of the web and express their opinions, mostly through blogs. In this study, I focus

on a set of popular political liberal or conservative blogs that have a clearly declared

positions. These blogs contain discussions about social, political, economic issues and

related key individuals. They express positive sentiment towards individuals whom

they share ideologies with, and negative sentiment towards the others. In these blogs,

it is common to see criticism of people within the same camp, and also support for

people from the other camp.

In this experiment, I collected a list of 22 most popular liberal and conservative

blogs from the Technorati 6 rankings. For each blog, I fetched the posts for the 6

months before the 2008 US presidential elections (May - October, 2008) due to the

5µ: Mean accuracy, σ: Standard deviation

6http://technorati.com/
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intensity of the debates and discussions. Table 3.2 shows the list of blogs with their

URLs, political camps and the number of posts for the given period.

I use AlchemyAPI 7 to run a named entity tagger to extract the people names

mentioned in the posts, and an entity-level sentiment analysis which provided us

with weighted and signed sentiment (positive values indicating support, and negative

indicating opposition) for each person. This information was used to synthesize a

signed bipartite graph, where the blogs and people correspond to the two sets of

vertices U and V . The aij values of the adjacency matrix A are the cumulative sum

of sentiment values for each mention of the person vj by the blog ui.

To get a gold standard list of the most influential liberal and conservative people,

I used The Telegraph List 8 for 2007. The third column of Table 3.1 provides

information about this data and the partitioning accuracies.

3.3.3 Synthetic Data

The actual partitioning information for the real datasets were available, which

made it possible to check the partitioning accuracy of the algorithms. However, to

thoroughly check the scaling accuracy of the algorithms, I developed a method to

generate random bipartite graphs with the following property:

• The degrees and the scores for the vertices in U and V follow independent

probability distribution with varying parameters and shapes.

Algorithm 2 describes the method to generate random graphs.

I picked a normal probability distribution N (µ, σ) for Ddegree with values µ =

50 and σ = 5, 10, 15. Similarly, for the probability distribution Dscale, I selected

7http://www.alchemyapi.com/

8http://www.telegraph.co.uk/news/uknews/1435447/The-top-US-conservatives-and-liberals.
html
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Table 3.2: List of Political Blogs

Blog name URL Political Camp Posts

Huffington Post www.huffingtonpost.com Liberal 3959

Daily Kos www.dailykos.com Liberal 1957

Boing Boing www.boingboing.net Liberal 1576

Crooks and Liars www.crooksandliars.com Liberal 1497

Firedoglake www.firedoglake.com Liberal 1354

AMERICABlog americablog.com Liberal 1297

Think Progress thinkprogress.org Liberal 1197

Talking Points Memo www.talkingpointsmemo.com Liberal 1081

Wonkette wonkette.com Liberal 1064

Balloon Juice www.balloon-juice.com Liberal 923

Digby’s Hullabaloo digbysblog.blogspot.com Liberal 553

Informed Comment www.juancole.com Liberal 179

Truthdig www.truthdig.com Liberal 159

Hot Air hotair.com Conservative 1579

Reason - Hit and Run reason.com/blog Conservative 1563

Little green footballs littlegreenfootballs.com Conservative 787

Atlas shrugs atlasshrugs2000.typepad.com Conservative 773

Stop the ACLU www.stoptheaclu.com Conservative 741

Wizbangblog wizbangblog.com Conservative 621

Michelle Malkin michellemalkin.com Conservative 532

Red State www.redstate.com Conservative 311

Pajamas media pajamasmedia.com Conservative 97
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Algorithm 2 Procedure to generate random graphs

1: procedure RandomGraph(m, n, Ddegree, Dscale)

2: U = {u1, u2, . . . , um} . set of m vertices

3: V = {v1, v2, . . . , vn} . set of n vertices

4: Dui
← Random(Ddegree), with 1 ≤ Dui

≤ m . random node degrees

5: Dvj ← Random(Ddegree), with 1 ≤ Dvj ≤ n . random node degrees

6: repeat

7: i← RandBetween(1,m)) . random node pair

8: j ← RandBetween(1, n)) . random node pair

9: if Dui
> 0 and Dvj > 0 then

10: Dui
← Dui

− 1

11: Dvj ← Dvj − 1

12: if RandBetween(0, 1) > (1− |xi|)(1− |yj|) then

13: aij ← sgn(xi)× sgn(yj) . consistent edge

14: else

15: aij ← −sgn(xi)× sgn(yj) . inconsistent edge

16: end if

17: end if

18: until D = 0

19: end procedure
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Beta distribution (Rohatgi and Saleh, 2008) Be(α, β) with the parameters α = β =

0.1, 0.2, 0.5.

The difference between the scale obtained for a vertex by executing the scaling

algorithm and its scale assigned by the random graph generator algorithm defines the

error for that vertex. Table 3.3 shows the mean error vs vertex degrees plots for each

algorithm applied to 12 different synthetic data sets.

In my experiments, the number of vertices of the graph is m = n = 100. I used four

different distributions for varying polarization. These were perfectly polarized, Beta,

bimodal and uniform distributions (Rohatgi and Saleh, 2008). Perfectly polarized

distribution was obtained by mapping all vertices to the extremes of both sides with

equal probability. I used three different normal distributions for varying the degree

distributions of vertices. Degree distributions were obtained by N (µ = 30, σ = 2),

N (µ = 30, σ = 5) and N (µ = 30, σ = 10) in order to evaluate the effect of degree

variance on the performance of the algorithms. I also experimented with different

µ values of 10, 30, and 50 in order to measure the effect of density variations of

the graph on the performance of the algorithms, which did not show any significant

impact.

For each polarization and degree distribution I tested the performance of two

baseline algorithms and my proposed algorithm. Table 3.3 presents these experimen-

tal results corresponding to 12 scenarios. In this table, columns correspond to the

variance in degrees, and rows correspond to the polarization distributions.

In order to better visualize the effect of the degree of the vertex in determining

its scaling position I used the mean error as an aggregate score. In the scatter plots,

x-axis corresponds to the degree of vertices of a graph, and y-axis corresponds to

mean scaling error. There are some error peaks at the boundary degree values due to

their low frequencies.
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Table 3.3: Synthetic Data Performances
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From the table, we can make the following observations:

• Across all polarizations, as the vertex degree variance increases, overall errors

for baseline algorithms increase due to their sensitivity to vertex degrees.

• Between the baseline algorithms, spectral clustering consistently outperforms

CO-HITS.

• Even though spectral clustering performs almost as good as my proposed ANCO-

HITS for bimodal and uniform polarization distributions, when the polarization

is high, as in the other two distributions, its performance degrades.

• As polarization increases, from U-shaped to perfect polarization, ANCO-HITS

performance increases. In case of perfect polarization, ANCO-HITS has almost

no error.

Overall, in every single case my proposed ANCO-HITS algorithm outperforms the

baselines.

3.4 Structural Equilibrium

The relation phrased as the enemy of my enemy is my friend is observed on various

networks. This relation in general can be formalized for graphs by constraining any

cycle of arbitrary length to have even number of negative edges (Hage and Harary,

1984). (Kunegis et al., 2009) relate this constraint with the multiplicative transitivity

property of an adjacency matrix, which can be measured using a modification of the

clustering coefficient introduced by Watts and Strogatz (1998).

The structural equilibrium(SE) can be measured by checking the consistency of

the edges forming cycles of length three. The relative signed clustering coefficient
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calculates the ratio of balanced cycles among all possible cycles of length three.

SE(A) =
‖A ◦ A2‖+∥∥Ā ◦ Ā2

∥∥
+

where

• Ā is the absolute adjacency matrix such that āij = |aij|

• C = A ◦B is defined as the Hadamard product (element-wise product) for two

matrices, such that cij = aij ∗ bij

• ‖A‖+ is defined as the sum of all matrix elements, such that ‖A‖+ =
∑
i

∑
j

aij

Bipartite graphs do not have cycles of odd length. Therefore, the structural

equilibrium cannot be measured as formalized before. But it can be extended to

calculate the ratio of balanced cycles of length four. For this purpose, I define the

multiplicative transitivity for bipartite graphs as follows.

A signed bipartite graph exhibits multiplicative transitivity when a path of three

edges tend to be completed by a fourth edge having a sign equal to the product of

the three edges’ signs.

This can be rephrased as the enemy of my enemy of my enemy is my enemy, or

the enemy of my friend of my enemy is my friend, etc. Figure 3.3 depicts two cycles

with odd number of edges (a and c), and two cycles with even number of edges (b

and d). By definition, the cycles with odd number of negative edges do not satisfy

multiplicative transitivity.

Hence, the corresponding relative signed clustering coefficient can be reformulated

for bipartite graphs as follows:

SE(A) =

∥∥A ◦ AATA
∥∥

+∥∥Ā ◦ ĀĀT Ā
∥∥

+

For my experimental datasets, I report the corresponding SE values.
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Figure 3.3: Cycles of Four with Negative Edges

3.5 Clustering Bills to Reveal Polarizing Issues

The behavior in US politics mostly correlates with the political party that the

legislative is affiliated with. A senator from the democratic party will often support

the bills proposed by other members of the democratic party, while often opposing to

the bills proposed by the members of the republican party.

Although this is the most prominent behavior in US politics, it is still possible

that a senator votes against the majority in his party. This breaks the structural

equilibrium as defined in section 3.4, resulting in an imperfect bi-polarization. Polit-

ical systems where there are multiple parties observe this more than US which has

a two-party system. Even more so where there are no parties and each entity is

independent from each other, such as in United Nations.

Each bill promoted for voting relate to one or more of the topics that the chamber

is responsible with. Health care, foreign relations, budget and immigration are some

of the topics covered in US Senate. Similarly, nuclear disarmament, human rights

and environment are some of the topics covered in United Nations.
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The overall voting behavior in a chamber usually doesn’t present a perfect struc-

tural equilibrium. Nevertheless, it is possible to identify clusters of bills that has

near-perfect bipolar nature. The bills in each cluster share the same characteristics

not only in the way entities vote them, but also with the topics that they relate to.

Identification of bill clusters that polarize the legislators in different ways would

help better analyze the political behavior in each chamber. Selection of an appropriate

clustering algorithm plays an important role in achieving meaningful results. The data

carries equivalent gravity as it can be assembled from various aspects.

One way to cluster bills could be through their descriptions. Content analysis

could reveal clusters of bills based on their topics. However, it is possible that bills

in one larger topic may not observe structural equilibrium, and it needs to be split

into smaller clusters. Similarly, bills relating to two or more different topics may

be polarizing the chamber in the same way, and should be contained in one cluster.

Therefore, the content of the bills is not best aspect of data to use in clustering.

A better approach to clustering the bills is through analyzing the voting behavior.

Collaborative filtering can unfold more interesting clusters than content filtering as it

will expose the relation between the voters and the bills. Clusters with high structural

equilibrium will have more descriptive power.

The bipartite graph described in Section 1.3 can be clustered to achieve high

inter-cluster structural equilibrium using a range of algorithms. The classical k-

means (MacQueen, 1967) algorithm can be modified with the following assignment

and update steps.

Assignment: Assign each bill to the cluster which preserves highest structural

equilibrium. Each cluster of bills U i ⊂ U with i ∈ {1, 2, ..., k} is assigned as:

U i = {ut : SE([Ai ut]) ≥ SE([Aj ut]),∀j ∈ {1, 2, ..., k}}
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Update: Derive voting matrix Ai ∈ Rm×n from the original voting matrix A for

each cluster i ∈ {1, 2, ..., k} as:

aitk =


atk, if ut ∈ U i

0, otherwise

The algorithm assigns each bill to the cluster where other bills polarize the leg-

islators in the same fashion, resulting with very informative clusters. Although very

powerful, k-means is known to have various drawbacks such as sensitivity to noise, a

priori knowledge of k, constraint on fixed density, etc.

Density-based spatial clustering of applications with noise (DBSCAN) (Ester

et al., 1996) addresses many of these issues, except for flexibility to varying densities.

DBSCAN is a widely accepted clustering algorithm with various modifications avail-

able. Ordering points to identify the clustering structure (OPTICS) (Ankerst et al.,

1999) algorithm can be viewed as a generalization of DBSCAN in the sense that it

can capture meaningful clusters when the data is of varying density in nature.

I modified the OPTICS algorithm in such a way that the notion of density is

replaced by structural equilibrium. Legislatures are initially linearly ordered and than

hierarchically clustered based on the agreement of polarizations which is measured

by structural equilibrium. Finally, the hierarchy is represented in a dendrogram to

visualize the clusters.
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Chapter 4

APPLICATIONS

4.1 www.PartisanScale.com

I collected the roll call votes of the US Senate for the terms 1 through 112, covering

the years 1789-2011. I ran the ANCO-HITS algorithm for each individual term. The

sign of the ANCO-HITS values are arbitrary; therefore, I aligned consecutive terms by

mirroring the scale if necessary. By analyzing more than 3,000,000 votes, I produced

the web based interactive user interface www.PartisanScale.com that allows the

users to navigate through the history of the US Senate.

Figure 4.1 shows a screenshot of the user interface. Each term of the senate is

shown as a column in the figure. The top row shows the terms and the years for each

senate with the incumbent US president shown below. The senators are represented

by boxes which are colored according to their political parties.

Figure 4.1: A Screenshot from PartisanScale.com
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The vertical axis of the scale represents the bipolar nature of the US Senate. The

polarity of each senator is represented by the location of each box. The dashed line

shows the zero point. Senators around this point are calculated to be moderate,

and the senators away from the dashed line are calculated to be more polarized.

Hovering along these boxes will show the picture, the political party, and the amount

of partisanship for the senator in focus. Clicking on the scale will further filter the

figure to show the partisanship history. This filtering can also be done with the quick

search tool on the top right corner. The auto-completion feature will help the users

easily select the senator.

For example, Figure 4.1 shows a senator that is calculated to be moderate for the

110th term. It can be seen that this senator was first elected in 1981 and served for

15 terms until the year 2010. It also shows us that after 12 terms of service as a

republican, he switches membership to the Democratic Party for the last 3 terms of

his service.

The ANCO-HITS algorithm calculates the polarities for both the senators as well

as the bills. However, based on feedback from area experts, I chose to display only

the senators’ partisanship along time and omit the bills. The decision is finalized

after several iterations of design choices to give the visualization the strongest inter-

pretability power.

The visualization can focus on individual senators through two different meth-

ods. Users can hover with the mouse over the region which corresponds to the years

of interest, and partisanship of interest. By clicking on any block on the UI, the

corresponding senator will be focused, and his/her partisanship history will be dis-

played. Similarly, users can use the search box to find senators by their name. The

auto-complete feature will further help find the names faster.
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Figure 4.2: Longevity of Service

An introductory screen cast video that shows the usage of the system can be found

at http://www.youtube.com/watch?v=zCTiScyaPuw.

4.1.1 Longevity of Service

Elected senators in United States serve staggered six-years, and they can race for

re-election as many times as they want. In case of deaths, expulsions, or other reasons

for early termination, mid-term vacancies are filled by special elections.

Figure 4.2 shows the histogram for the number of terms each senator served. Most

senators are elected only once, and they complete their service by the end of the sixth

year, hence the peak in the histogram at point 3. The average number of terms the

senators served is 4.68, and the longest run is 26 terms.

4.1.2 Partisanship Displacement Distribution

Figure 4.3 shows the partisanship displacement distribution for three ∆T values

on a semi-log scale. Partisanship displacement is defined as the absolute distance of

partisan scale values for a senator between two terms T1 and T2. C∆T (d) is the number

of displacements ≥ d between any two terms T1 and T2 satisfying ∆T = T1 − T2.

This figure shows three plots of C∆T values for ∆T = 1, ∆T = 2 and ∆T = 3.

It can be clearly seen that the plots on the semi-log scale form a linear function,

which suggests an exponential distribution. This implies that most senators have
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Figure 4.3: Partisanship Displacement Distribution

Figure 4.4: Aggregated Party Partisanship

a strong tendency to display consistent partisanship through their careers whereas

fewer senators have experienced a complete turnaround.

4.1.3 Aggregated Party Partisanship

Figure 4.4 aggregates the party polarities. The mean partisanship values of the

senators from each party is shown as a solid line. The shaded areas show 1 standard

deviation along the mean for each term. This figure is helpful to identify the times

of partisan politics within the US Senate.
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4.2 www.ControversyAnalysis.com

The first application www.PartisanScale.com calculates the partisanship of

each senator along with their polarities. However, it lacks the explanatory power

needed to have better understanding of the analysis.

I conducted usability tests with political scientists and other area experts to pin-

point the second application www.ControversyAnalysis.com as shown in Fig-

ure 4.5. This work addresses the users’ requests by

• identifying the groups of bills which polarize the legislatives in different fashions

• providing a synopsis of the polarization for each cluster of bills, and

• providing a synopsis of each cluster of bills by identifying the subjects covered

Below are few of the most common ways US legislatives are polarized in the

congress:

• Consensus bills, or bipartisan bills, receive approval from the majority of the

congress

• Partisan bills split the votes in the congress such that Democrats oppose Re-

publicans

• Semi-partisan bills that receive opposition from a minority group of members

of the sponsor party. These bills reveal factions within the large parties.

• Bills that split the congress in a different fashion than the political parties.

These splits can be regional (i.e. south vs. north), religious (i.e. Catholics vs

others), gender oriented (i.e. male vs. female), etc.
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Figure 4.5: Web User Interface for www.ControversyAnalysis.com
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4.2.1 Data

This application contains data from three chambers: US Senate, US House of

Representatives, and the United Nations General Assembly. Details of the data from

the first two chambers are explained in detail in Section 3.3.1. Only the last chamber

will be spelled out in this section.

The United Nations General Assembly (UNGA) is a chamber where each member

of United Nations have equal representation. UNGA meets in regular yearly sessions

since 1946. Starting with 51 member nations, UNGA had a varying list of member

states over the years.

UN states bring forth resolutions that they sponsor, which may cover issues from

peace and security to industrialization, from diplomacy to UN administration and

budget. These resolutions are generally non-binding on member states, but carry

considerable political weight.

UNGA does not have a party system, therefore each member has an independent

voice in voting resolutions. Although UN states do not explicitly have left or right

wing alignment as in national politics, it is still possible to see the world nations form

bi-polar camps in various issues.

I collected UNGA roll call votes for the dates 1946 through 2000. I grouped the

data for every 5 years to enable temporal analysis. Similar to the US Senate data,

I extracted the adjacency matrix A ∈ {−1, 0, 1}|U |×|V |, with U vertices representing

the UN states, and the V vertices representing the resolutions. The values aij are 1 if

the member nation ui votes ‘Yea’ for the resolution vj, -1 if the member nation votes

‘Nay’, and 0 if they did not attend the session, or was not a member of UN at the

time.
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Figure 4.6: Two Clusters of Bills with High Structural Equilibrium Within and Low
Structural Equilibrium Across

I did my analysis for the US Senate and the US House of Representatives covering

112 terms starting with the very first term (1789-1790) up to the 112th term (2011-

2012). My analysis for UNGA contains 11 5-year time slots for years 1946-2000. The

Chamber Selection section of the user interface allows users to select from the three

chambers, and further narrow down to the particular time range of interest.

4.2.2 Hierarchical Clustering

Legislative chambers have bipolarity in their nature as the possible votes are either

positive or negative. If we consider bills individually, they polarize the legislatives

into two camps being supporters and opposers. It is very common that multiple bills

polarize the legislature in the same fashion. These bills can be clustered together

in such a way that clusters would have high structural equilibrium within, and low

structural equilibrium across.

I used the hierarchical clustering approach explained in Section 3.5 to cluster the

bills in each chamber within each time range. The cluster structure is visualized as
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Figure 4.7: Word Cloud of Subjects Covered in a Cluster

a dendrogram in the Hierarchy of controversial clusters section of the user interface.

Each block represents a cluster, and each main branch of the cluster tree is shown in a

different color. The saturation of each block corresponds to the structural equilibrium

value within the clusters.

Figure 4.6 shows an example dendrogram as well as the voting matrices corre-

sponding to two different clusters. The vote matrices look similar in structure, how-

ever the order of the members in columns are different, i.e. legislators are polarized in

a very different fashion. For example, one legislator identified to be moderate in the

first cluster shows a polarized behavior in the second cluster. Detailed analysis reveals

that the first cluster contains bills regarding internal affairs, wheres the second one is

on foreign relations. The overall difference in polarization between the two clusters

is so high that they are laid out on different main branches in the cluster tree.

4.2.3 Cluster Synopsis

The clustering algorithm in this analysis clusters only one side of the bipartite

graph, i.e. each cluster contains different sets of bills, but all of the legislators. I run

the ANCO-HITS algorithm as described in Section 3.1 on each cluster to derive a

polarization value for the entities ranging between -1.0 and +1.0.
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Figure 4.8: Distribution of Legislative Demographics Along the Bipolar Scale

There are two types of entities in this analysis, the bills and the legislatives. And

I provide cluster synopsis from the two perspectives, the summary of bills and the

polarity map of the legislatives.

The subset of bills covered in each cluster polarize the chamber in a consistent way.

And the legislatives take side on each topic. The combination of the sides taken by

each legislator is often consistent across the bills that are on similar topics. Although

not so often, it is also possible to observe consistent polarization across the bills that

are on different topics.

The user interface section Frequent subjects covered in the bills provides a synopsis

of the bills with a word cloud of the topics prominent in the bills. The topic sizes

are weighed by the frequency observed in the cluster. Figure 4.7 shows an example

cluster synopsis where the most prominent topic is finance and taxation in various

industries.

Every single UNGA bill is marked with the prominent topics, however the US

Senate and the House of Representatives data provide the topic information only for

the dates after 1973. Therefore, this module is not available predating that.

The polarity map of the legislatives are visualized differently for US and UNGA.

The entities in the US Senate and House of Representatives are persons, and their
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Figure 4.9: Polarity Maps and Prominent Topics in Various Clusters in UNGA

distribution along the bipolar scale will be represented in terms of their demographics.

Whereas the entities in UNGA are countries, and they will be laid out on a world

map showing the polarization on a color scale.

The 5 demographics contained in the data are elected political party, religion,

gender, region of elected state, and age group. Figure 4.8 shows an example distri-

bution for a cluster that highly polarizes the US Senate. In the first glance, it can

be thought that the entities are mostly polarized according to their political parties,

i.e. most democrats are on the positive polarity, whereas most republicans are on

the negative polarity. When paid further attention, the region demographic reveals

that entities from south and west states position against the northeast states in this

cluster of bills.

43



Figure 4.10: Vote Matrix with the Microscope Feature

Figure 4.9 depicts 4 clusters from UNGA with the corresponding polarity maps

and word clouds. The top-left cluster is an example to a consensus case where all the

UNGA members are on the same page. Prominent topics for the bills in this cluster

are disarmament and African countries. The top-right cluster is about colonialism

and few countries separate from the rest of the world. The bottom-left cluster about

nuclear weapons displays another example of strong polarization whereas the bottom-

right cluster observes lower structural equilibrium with a mixed set of topics.

Various synopsis modules provide high-level information regarding the clusters.

However, the devil is in the detail. At this point, the Vote matrix module provides

a visualization of the raw data to enable researchers to do low-level analysis. Rows

and columns correspond to bills and members respectively. The cell colors represent

the vote, i.e. green for ’Yea’, red for ’Nay, and white when no vote was cast.

Both rows and columns are ordered by the ANCO-HITS score of the entity. And

each cluster is generated to have high structural equilibrium. Therefore, the vote

matrices always have a quadrant shape where top-left and bottom-right quadrants
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are always green, and the top-right and bottom-left quadrants are always red. This

is the picture of a well polarized chamber. Consensus clusters fit the quadrant shape

as well, with the right half having length zero.

The microscope feature enables users to zoom-in and see which vote was cast on

which bill by which member. Figure 4.10 shows this feature at work.
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Chapter 5

CONCLUSIONS

In this research, I introduced a new problem for scaling and partitioning signed

weighted bipartite graphs. I adapted two existing algorithms, and proposed a new

algorithm to solve this problem. I used both real data from political blogosphere

and US Congress records, as well as synthetic data to evaluate these algorithms. My

experiments showed that my proposed algorithm is very effective and outperforms

the two other baselines.

I see diverse applications of this not only on social network analysis, but also on

survey analysis, with the respondents and the questions being the vertices, and their

responses (agree/disagree) being the signed edges of the bipartite graph.

I developed an interactive visualization accessible at www.PartisanScale.com

for longitudinal analysis of the US Congress. The system shows ANCO-HITS scales

covering all voting records since the 1st US Senate.

The algorithms in source code and the test data is available online at

www.PartisanScale.com/paperdata

I further designed and implemented a hierarchical clustering algorithm to identify

various polarizations within each chamber. The interactive visualization accessible at

www.ControversyAnalysis.com displays the cluster structure and synopsis.

The evaluations of the algorithm using officially maintained structured data shows

superior performance. In the future, this algorithm can be used as part of a social

network analysis pipeline to reveal disagreements within entities, and how it leads

them to polarize. These analysis can be correlated with census or survey data for

evaluation. Furthermore, it can even be utilized as a predictor for elections.
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