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ABSTRACT 

 Blind and visually impaired individuals have historically demonstrated a 

low participation in the fields of science, engineering, mathematics, and 

technology (STEM). This low participation is reflected in both their education and 

career choices. Despite the establishment of the Americans with Disabilities Act 

(ADA) and the Individuals with Disabilities Education Act (IDEA), blind and 

visually impaired (BVI) students continue to academically fall below the level of 

their sighted peers in the areas of science and math. Although this deficit is 

created by many factors, this study focuses on the lack of adequate accessible 

image based instructional materials. Traditional methods for creating accessible 

image materials for the vision impaired have included detailed verbal descriptions 

accompanying an image or conversion into a simplified tactile graphic. It is very 

common that no substitute materials will be provided to students within STEM 

courses because they are image rich disciplines and often include a large number 

images, diagrams and charts. Additionally, images that are translated into text or 

simplified into basic line drawings are frequently inadequate because they rely on 

the interpretations of resource personnel who do not have expertise in STEM. 

Within this study, a method to create a new type of tactile 3D image was 

developed using High Density Polyethylene (HDPE) and Computer Numeric 

Control (CNC) milling. These tactile image boards preserve high levels of detail 

when compared to the original print image. To determine the discernibility and 

effectiveness of tactile images, these customizable boards were tested in various  
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university classrooms as well as in participation studies which included BVI and 

sighted students.  Results from these studies indicate that tactile images are 

discernable and were found to improve performance in lab exercises as much as 

60% for those with visual impairment.  Incorporating tactile HDPE 3D images 

into a classroom setting was shown to increase the interest, participation and 

performance of BVI students suggesting that this type of 3D tactile image should 

be incorporated into STEM classes to increase the participation of these students 

and improve the level of training they receive in science and math. 
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Chapter 1. Laws Protecting Individuals with Disabilities 

Studying and working in the fields of Science, Technology, Engineering, and 

Mathematics (STEM) typically requires that one have access to a variety of images, 

diagrams, figures, and other visual elements.  This reliance on graphic components makes 

STEM subjects difficult for blind and visually impaired (VI) individuals to pursue.  There 

is an average of 21.5 million blind or VI people in the United States (American 

Foundation for the Blind, 2014).  Studies have shown that by the age of 16, most blind or 

VI individuals are an average of three years behind their peers in STEM subjects 

(Wagner, et al., 2003).  This data supports the fact that less than five percent of people 

that work in STEM careers have a visual impairment.  It is not clear why these students 

are so far behind in STEM subjects so early in their academic careers.  However, it seems 

highly likely that a high dependence on visual elements in various STEM fields coupled 

with the lack of accessible images is partially responsible for this deficit. 

Creating an Accessible Classroom 

The research that follows demonstrates several possible issues that may be 

contributing to the low number of blind and VI STEM participants.  As mentioned 

previously, a heavy emphasis on visual components in the majority of STEM subjects is 

one of the largest explanations to why there is reduced participation by the blind and VI.  

Access to effective tactile graphics, tools, and models is scarce and even non-existent in 

some academic institutions.  According to Beck-Winchatz and Riccobono (2008), many 

blind students in science classes are often left without crucial classroom resources, 

including accessible graphics.  Several research studies have been performed to identify 
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useful methods of conveying graphical information to blind and VI students.  These 

studies involve the use of audio and computer resources to provide translation of the 

visual information (Levy & Lahav, 2012).  However, it is frequently noted that the use of 

tactile and hands-on-materials is crucial to create a strong academic setting for these 

students (Janssen, et al., 2010).  Many studies have provided suggestions to meet this 

need for tactile resources in STEM classrooms.  These resources include braille labeling, 

tactile labeling, providing hands-on models, and providing tactile images (Kumar, et al., 

2001; Supalo, 2005; Winograd & Rankel, 2007).  Similarly, the research described in this 

report also described the development of a new type of tactile graphic.  Despite these 

ideas, resources, and suggestions, blind and VI students continue to demonstrate low 

participation in STEM suggesting that the problem is more complex and should be 

investigated further. 

There appears to be larger issues to consider when trying to determine why there 

is such a lack of blind and VI participation in STEM.  One of the problems encountered is 

the lack of motivation on the part of schools and educators to spend extra time and 

resources on students with disabilities.  According to Kumar et al. (2001), 38% of special 

education students receive little to no science instruction, most science instructors have 

no experience educating students with special needs, and schools often view additional 

resources for students with disabilities as too expensive.  Furthermore, many 

accommodations that can make science accessible to blind and VI students are seen as 

too complex and overpriced (Beck-Winchatz & Riccobono, 2008).  In addition to the 

generally assumed high cost of accessible education, there is a distinct lack of awareness 

on the part of schools and educators. That is to say, they are simply unaware of the types 
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of resources available to educate students with visual impairments.  According to Supalo 

(2005), some of the difficult aspects of learning science for a blind or VI student are often 

neglected by their instructors.  This means that although several resources already exist to 

assist visually impaired students, most educators do not take the time to look for them.  

This is quite a striking conclusion since there are current laws in place that are meant to 

prevent such situations. 

ADA and IDEA 

The American’s with Disabilities Act (ADA) is a lengthy and descriptive set of 

laws that represents several years of hard work.  The ADA consists of a detailed outline 

of the rights of people with disabilities living in the United States.  According to the 

ADA law, the term “disability” means “a physical or mental impairment that 

substantially limits one or more major life activities of such individual; a record of such 

an impairment; or being regarded as having such an impairment” (ADA, 2008).  The 

document also defines the rights of people who meet the definition of having a disability 

in several important venues including public transportation, employment, and of course 

education. 

A Brief History 

The ADA law represents nearly 20 years of hard work following its predecessor 

the Rehabilitation Act (Concannon, 2012).  The Rehabilitation Act was a set of laws that 

went into effect in 1973 and was the first set of laws granting significant federal rights to 

persons with disabilities (Zink, 2004).  The laws covered basic rights of people with 

disabilities, included plans for funding programs, and research plans to evaluate the 
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overall goals of the act (Buttons & Applequist, 2007).  Government funding was 

allocated to different programs that would benefit people with disabilities.  These 

programs included services to assist people with disabilities in areas such as finding 

employment, providing tools to help people with disabilities gain independence, and 

other similar services (Buttons & Applequist, 2007).  The Rehabilitation Act also had 

sections which cover; 1) the employment of disabled people in federal government 

positions, 2) he removal of physical and architectural barriers to the disabled in federally 

funded buildings, 3) the protection of disabled people’s rights when employed by any 

federal government contractor, and 4) protects the rights of disabled people receiving 

services from any group that receives federal financial assistance (Zink, 2004). 

 Since the scope of the Rehabilitation Act mainly covered the Federal government, 

a larger movement began to work towards a more comprehensive set of laws.  The ADA 

was finally signed into law in 1990 (Figure 1), after much debate and discussion (Essex-

Sorlie, 1994).  Congress felt that the range of the Rehabilitation Act was not sufficient 

enough to fully protect the rights of those with disabilities.  Thus the main differences 

between the Rehabilitation Act and the ADA, is that the ADA laws included protection 

for a much broader population (Leuchovius, et al., 2014).  The ADA is essentially a 

reformatted and expanded version of its predecessor that includes provisions for the state 

and local governments as well as more detailed definitions and specificities than the 

Rehabilitation Act. 

Contents of the ADA: Americans with Disabilities Act 
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 The main body of the ADA law includes three titles. Each title covers laws and 

rights of people with disabilities with Title I dealing with employment of people with 

disabilities, Title II covering public services, and Title III discussing public 

accommodations and services provided by private entities (2008).  There are a few other 

titles, however these three titles form the bulk of the laws (Americans with Disabilities 

Act, 2008).  Title I, similar to the majority of the Rehabilitation Act, protects qualified 

individuals with disabilities from discrimination in terms of employment (Essex-Sorlie, 

1994).  It provides guidelines for employers to follow including the requirement to 

provide “reasonable accommodations” for employees with disabilities (The Americans 

with Disabilities Act, 2008).  Title II of the ADA discusses rights for people with 

disabilities in regards to most forms of public services and public transportation including 

city busses and rails (ADA, 2008; Essex-Sorlie, 1994). Title III discusses laws for private 

entities that happen to provide public services such as stores and hotels (ADA, 2008). 

The other titles (not discussed here) cover telecommunications laws and a variety of other 

miscellaneous topics. The titles most relevant to the research involving accessible STEM 

education are Titles II and III. 

 Title II of the ADA discusses the laws that apply to public services, including 

public education.  The general purpose of Title II is to state that people with disabilities 

must not be prevented from participating in or receiving any benefits from a public 

service (ADA, 2008).  Title III of the ADA outlines important laws regarding public 

accommodations and services which are provided by private entities (ADA, 2008). The 

term “private entities” includes (among others): restaurants, hotels, theaters, museums, 

stores, and schools (ADA, 2008).  Under this title, nursery, elementary, secondary, post-
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secondary, and other schools are required to meet ADA standards by providing 

accommodations for students with disabilities (Essex-Sorlie, 1994).  Together, Title II 

and III of the ADA provide basic rights and laws for people with disabilities in regards to 

education.  Although these portions of the ADA represent a vital component of protecting 

the rights of students with disabilities, there is yet another set of important laws that apply 

to education. 

IDEA: Individuals with Disabilities Education Act 

 Although the Rehabilitation Act and the ADA both provided laws and guidelines 

for ensuring an equal education for students with disabilities, they did not necessarily 

provide the resources to do so.  In 1975, not long after the Rehabilitation Act went into 

effect, congress signed the Education for All Handicapped Children Act into law, 

introducing the concept of a “Free Appropriate Public Education” for all students with 

disabilities (“Education for All,” 2011).  Among other provisions, the Education for All 

Handicapped Children Act requires parents and educators of children with disabilities to 

create and follow an individualized education program (IEP) to meet educational goals 

(2011). 

 In 1990, The Education for All Handicapped Children Act was amended and 

given a new title, The Individuals with Disabilities Education Act (IDEA, 2011).  IDEA 

included several components of its predecessor as well as provisions for infants and 

toddlers with disabilities (IDEA, 2011). It also includes four separate parts that 

effectively provide support for educating students with disabilities.  Part A is “General 

Provisions” and gives a general summary of the purpose of IDEA in addition to listing 
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several important definitions (Jones, 2002).  Parts B and C, “Assistance for Education of 

All Children with Disabilities” and “Early Intervention Program for Infants and Toddlers 

with Disabilities”, each provide details about federal assistance and support for the 

groups being served (Jones, 2002).  Part D is called “National Activities to Improve 

Education of Children with Disabilities” and explains the support provided by the federal 

government to assist with the implementation of Parts B and C (Jones, 2002).  The act 

outlines sources of funding, including federal grants that can assist schools and 

communities so they can provide a free and appropriate public education to students with 

disabilities.  In essence, the Rehabilitation and ADA provide the laws and requirements 

for providing equal education to students with disabilities, whereas IDEA provides the 

resources and funding to meet these requirements. 

 By the year 2000, the effects of IDEA and its predecessor were very apparent.  

The majority of students with disabilities were receiving equal and inclusive public 

education, the graduation rates of students with disabilities had increased by 14% in a 10 

year span, and enrollment of students with disabilities in college tripled in a 20 year span 

(“History Twenty-Five Years,” 2000).  IDEA was last amended in 2004, with most 

requirements going into effect by 2006.  The major changes dealt mainly with provisions 

to the IEP and processes related to the IEP (“Individuals with Disabilities,” 2004). The 

amendments also required a new and higher standard for special education instructors 

(“Individuals with Disabilities,” 2004) however, the main goals and purpose of the 

original IDEA remained the same. 

Difficulty Enforcing the ADA and IDEA 
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Despite the existence of a solid set of laws to protect people with disabilities in 

the United States and the added support of an education act to protect students with 

disabilities, there is still a long road ahead. Students are not always receiving the 

accommodations they need and have a right to. Others are not receiving the additional or 

specialized instruction they should be. Furthermore, students are often left out of 

activities their classmates are participating in due to a lack of accessible materials or an 

understanding of how to make an activity accessible. These issues have spawned a series 

of interesting and controversial lawsuits. 

 One of the very first lawsuits dealing with the ADA was filed by a college 

student. Nadelle Grantham was a deaf student in the elementary education program at 

Southeastern Louisiana University (SLU).  In August of 1993, Grantham received a letter 

from the SLU expelling her from the elementary education program because they were 

concerned about her abilities to complete her courses and teach (“Deaf Student Wins,” 

1996).  After a series of court battles and appeals, Grantham was finally awarded 

$180,000 for her case against SLU by the United States Court of Appeals for the Fifth 

Circuit in New Orleans (“Deaf Student Wins,” 1996).  It was greatly due to the ADA 

laws that Grantham was able to successfully sue the University for discrimination.  

However, this case demonstrated that people with disabilities were facing an uphill battle 

in gaining compliance with the newly instated ADA laws. 

 A provision in the IDEA laws states that schools are obligated to identify and 

evaluate students they suspect have a disability.  This is important because if a child with 

special needs is not identified, they will not receive the services they need to be 
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successful students.  In 2002 a class action lawsuit began with Jamie S. v. Milwaukee 

Public Schools, for violations of the IDEA (Wright & Wright, 2012).  A judge decided 

that the school district had violated IDEA laws by not accurately identifying and 

servicing students with special needs between 2000 and 2005.  The court found that 

rather than properly evaluating students with behavioral and social problems, school 

employees often chose to simply suspend the students with no follow up (Wright & 

Wright, 2012).  Milwaukee Public Schools tried to defend themselves by pointing out 

that the section of IDEA they had violated was only a small component, however the 

judge felt that identifying students with special needs was perhaps the most vital part of 

IDEA because it distinguishes which students are entitled to services (Wright & Wright, 

2012).  The school district was ordered to compensate the legal fees students and families 

acquired as a result of the lawsuit.  Furthermore, a third party was brought in to evaluate 

the methods the schools used to identify and classify students who have special needs 

(Wright & Wright, 2012).  It is clear that mandating compliance with ADA and IDEA 

requires vigilance and motivation of people with disabilities and those who face legal 

battles on their behalf. 

 Despite 24 years of ADA and IDEA implementation, lawsuits for violations of 

these acts have been filed as recently as 2011.  A lawsuit was filed by two students at 

Florida State University for violations involving the use of inaccessible software and 

course materials.  The students, both blind, stated that their math courses required the use 

of software for homework, tests, and studying, that was not accessible with screen 

reading software (“Blind Students Sue,” 2011).  The students also sued the university 

because of its inefficiency in providing braille textbooks in a timely manner.  The lawsuit 
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was settled out of court the following year with Florida State University agreeing to pay 

each student $75,000 and to make a better effort to provide accessible materials to future 

students (“Florida State University,” 2012). 

 These cases, and many others, demonstrate that there is still something lacking in 

terms of proper implementation of the ADA and IDEA laws.  Despite more than two 

decades of these acts being in place, there continues to be examples of difficulties faced 

by students with disabilities.  If the barriers to these students aren’t fully addressed, there 

is the risk that they are not gaining the access to an equal education that they are entitled 

to. It is difficult to say where the prominent difficulties with enforcement of these laws 

come from; however, it is apparent that more inquiry and research into this problem is 

necessary. 

High Density Polyethylene Tactile Images 

This project was highly focused on the development, implementation, and 

improvement of a new type of tactile graphic.  Current materials used for the presentation 

of visual materials for blind and VI students include the use of embossed or raised 

drawings. These drawings, though useful, are often simplified from the original image.  

This simplification can mislead students or place them at a disadvantage when compared 

to the original level of image detail their peers are receiving. The new process of creating 

a high density polyethylene (HDPE) tactile image is simple to implement and has been 

found to be discernable to those with and without visual impairment.   

Research in developing these tactile graphics began in 2012. The 3D tactile image 

is unique because it preserves the majority of detail found in the visual image.  
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Furthermore, it includes the different levels of intensity found within the original image 

that will give it additional contrasting detail.  For example, the image will appear taller 

and more defined in correlation to the brighter regions of the visual image, and shorter 

and duller in correlation to the dimmer regions. 

The tactile images are created using a Computer Numeric Code (CNC) machine 

and High Density Polyethylene (HDPE) plastic. The CNC machine is able to take a 

computerized image and mill it into the plastic material.  The high quality and durability 

of the boards makes them ideal for long term use in educational settings.  The process for 

creating the boards will be discussed in great depth in future sections. 

Current Research 

 The research presented here is focused on the search for methods to improve 

STEM education for blind and VI students as well as the brief inquiry into current 

problems with its implementation.  This research aims to determine whether the use of a 

newly developed form of tactile graphic could serve as a tool to increase participation and 

understanding of STEM materials for blind and VI students.  A detailed description of the 

methods used to produce these HDPE tactile boards will also be discussed.  Furthermore, 

the usefulness of adapted materials, accessible technologies, and the use of accessible 

teaching materials are also evaluated. These evaluations were based on observations, 

interviews, and scores on various activities. 

 The information presented in this research summary will include discussion and 

comparison of previous studies as well as the introduction of new study results. The new 

material will include results obtained through interviews and evaluations.  Many of the 
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interviews are focused on the experiences of blind and VI students regarding STEM 

education.  The evaluations are primarily focused on the assessment of tactile image 

usefulness, material types, and accessible teaching materials used to improve 

understanding upon completion of a science task by blind and VI children and adults. 
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Fig. 1. President George Bush Signing the ADA into Law. (Image courtesy of 
Wikipedia Creative Commons.) 
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Chapter 2. 3D IMAGINE at Arizona State University 

 Images, figures, and graphics used in STEM education are vital to the complete 

understanding of the material being taught. Biology students are shown a picture 

depicting the organelles of a cell, while they are studying them.  Astronomy students 

must learn to identify specific constellations, while viewing a star strewn image of the 

sky.  However, it appears that blind and VI students are not being provided with adequate 

access to these materials.  According to Lederman, et al. (1990), the majority of VI 

students are provided with simple embossed braille labeled images or even basic text 

image descriptions.  These embossed images are often simplified versions of the image 

they aim to represent, leaving out crucial information.  They are often compared to using 

a stick figure drawing to illustrate what a person looks like.  Furthermore, the images are 

often based on an interpreter’s understanding of the image, which may not always be 

adequate.  For instance, the purpose of a figure may be to demonstrate how chromosomes 

are split during cell division, but the interpreter creating the embossed image may not 

know which part of the image contains chromosomes.  Verbal and written descriptions 

also present the problem of bias on the part of the describer.  This prevents blind and VI 

students from interpreting and gaining an understanding of the graphics in the same way 

their peers are.  This inferior method of providing graphic information to blind and VI 

students appears to be an issue preventing increased participation in STEM fields. 

A study of blind and VI students ages 7-12 recently concluded that these students 

were an average of one and a half years behind their peers in STEM subjects (Wagner, et 

al, 2003).  This divergence appears only to increase over time.  Another study found that 
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students ages 13-16 were an average of 3 years behind their peers in STEM subjects.  The 

majority of these students are provided with text materials in a reasonable format (braille, 

large print, etc.).  Therefore, it is very likely that these results are due to a lack of 

accessible graphic materials for these students.  By ending high school with far less 

foundation in STEM subjects, blind and VI students face a significant disadvantage when 

entering college. 

The enrollment of blind and VI students in STEM courses at the university level 

has been historically low.  In fact, the majority of universities allow blind and VI students 

a waiver to avoid these courses altogether, while still being able to complete their degree.  

Arizona State University does not allow this option.  Since completing one science course 

(with a lab component) is a requirement for every bachelor’s degree at ASU, blind and VI 

students face a challenge.  They often fight through these courses with the help of the 

Disability Resource Center.  They are provided with accessible text materials, a note 

taker, and basic tactile graphics as described previously.  All of these accommodations 

appear to be helpful and beneficial to the students using them.  However, very few of 

these students take on the science courses with enthusiasm and even fewer choose to 

pursue this area of study further.  

In 2012, an interdisciplinary team of staff and students at Arizona State 

University came together to form 3D IMAGINE.  3D IMAGINE, or “3D Image Arrays to 

Graphically Implement New Education,” sought to create potential solutions in order to 

increase the participation of blind and VI students in university science courses.  A large 

component of the project was the goal of creating a new type of tactile graphic.  The aim 
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of the new tactile graphics was to provide detailed tactile information to the blind user 

with a focus on STEM subjects.  Other goals of the project were to analyze the need for 

improved tactile images and determine other methods of maximizing the accessibility of 

science courses. 

In order to meet project goals, the 3D IMAGINE team implemented two fully 

accessible lab courses.  Accessible materials were implemented in introductory 

astronomy (AST 113) and introductory biology (BIO 100) during the 2012 fall semester.  

Both lab sections were taught by teaching assistants who were also assigned to teach 

conventional lab sections for the same course.  Most blind and VI individuals will not 

pursue science degrees, but they are still required to take at least one science course. 

These courses were chosen because they represented popular choices for non-major 

science credits.  

Making the Graphics 

The initial task of the 3D IMAGINE team was to determine an improved method 

of providing tactile graphics.  The team, which included scientists, artists, and engineers, 

sought to test multiple strategies in order to determine the best material and method of 

production.  This required careful analysis and feedback on a wide variety of physical 

materials.  Other considerations included cost, availability of resources, and analysis of 

detailed tactile features. 

Although increasingly popular, 3D printing was quickly rejected as an option for 

the purpose of the project. The high cost of 3D printers and materials, coupled with the 

size and durability disadvantages of 3D printing, made it a poor option.  An acrylic 
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polymer called Corian was tested, but found to be too sharp for tactile interpretation.  

Another material, medium density fiber board, was originally thought to be a good 

choice.  However, upon further research it was excluded since it contained traces of 

chemicals including formaldehyde (Figure 2). 

After multiple trials and test graphics, the team settled on the use of High Density 

Polyethylene (HDPE) as the material to use and computer numeric code (CNC) milling 

as the method of production.  The HDPE boards proved to be a cost effective and durable 

material for the production of tactile images.  The material is often compared to the 

plastic used to make kitchen cutting boards, and is readily available for purchase.  CNC is 

already a common method of producing tactile braille signage for public venues.  It 

provides a low-cost method of producing reasonably sized and durable tactile graphics.  

By using a CNC machine, the artists could use computer software to design the tactile 

image, while maintaining crucial points of the actual image.  The detailed methodology 

used to produce these 3D images will be discussed in later sections. 

Once the method and material were decided, the team needed to analyze the best 

dimensions and tactile elements to produce. Since most images were going to be labeled 

in braille, the boards needed to be a large enough size to include the image and the braille 

labels. Furthermore, the tactile image itself needed to meet generalized height standards. 

It would be problematic to have images that were too tall or images that were too flat. 

The 3D IMAGINE team decided to use the American National Standard: 2003 

Accessible and Usable Buildings and Facilities measurements for the production of the 

HDPE tactile graphics. These standards appear in Table 1. 
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One of the many benefits of producing the HDPE boards, was the ability to use an 

intensity based tactile array.  This means the computer software could be used to 

transform images into a grey scale image, then produce a tactile graphic that conveyed 

this information through a height field.  For instance, a bright star on a constellation map 

would appear very tall on a tactile image, while a dull star would appear short and flat.  

This benefit also proved useful when trying to convey 3 dimensionality from an original 

2D image.  For example, a 2D image of a skull could be conveyed tactilely with rounded 

edges depicting the curvature of the skull.  By providing a tactile version of the original 

image, while using intensity to convey further information, the 3D HDPE boards already 

far surpass conventional tactile graphics. 

Improving the labs 

Once the method of production was decided, the team took steps to redesign the 

lab activities for the astronomy and biology pilot courses.  Labs were enhanced with 

tactile materials, including the HDPE boards, and made accessible.  The goal was to 

provide accessibility to blind and VI students, while evaluating the usefulness of the 

materials in completing the course work.  For example, the astronomy labs included 

tactile images of constellations that could be used by blind students to help them “see” 

the stars.  There were also tactile tools used in a crater lab that allowed all the students to 

use touch and hands on approaches to the activity.  In the biology lab, conventional lab 

activities, such as the predator and prey lab were adapted to tactile formats.  In the 

original predator prey lab, colored dots are sprinkled onto a multi colored piece of fabric.  

Students are then asked to pick up dots at random, the idea being that dots that are able to 
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hide in the colored fabric are surviving prey.  This lab was adapted to enhance the 

activity for all students.  The students were provided with tactile objects such as beads, 

paper clips, cotton balls, and other items.  They were asked to sprinkle these items onto a 

small square of carpet.  When they were then asked to pick up items at random with the 

lights turned off, many students were excited to find the activity taught them something.  

Small items were able to hide in the carpet, much the way small animals hide in the tall 

grass or greenery. 

Some of the standard lab activities, including the predator prey lab mentioned 

above, appeared  to be outdated and in need of some improvement.  The incorporation of 

tactile materials provided a method of re-creating these labs while providing accessibility. 

For instance, a taxonomy lab taught in the BIO 100 course was redesigned with the 

HDPE series of monkeys based on the images provided in the handout. The images 

provided were in different scales, illustrated monkeys in a variety of poses, and some 

made it difficult to clearly see all the animal features due to furry faces. An example 

image from the original lab can be seen in Figure 3. 

Due to the great variety in the images provided, it was difficult to accurately 

categorize these monkeys into taxonomic groups. In this case, the 3D IMAGINE team 

was able to obtain 2D images of skulls for each of the monkeys depicted in the original 

lab.  The use of skull images (which were also of an accurate scale) provided a more 

realistic and consistent comparison of the features of the monkeys.  The skull images 

were also made into 3D images on the HDPE boards. Figure 3 illustrates the 

transformation from an original 2D image into a 3D tactile HDPE image. By creating 
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tactile versions of the skull images, students were able to touch and interact with the 

images. This allowed for more descriptive taxonomic categories such as “size of eye 

sockets” and “size of teeth.” The features students were able to identify from the HDPE 

boards would have been more difficult to distinguish in the original images provided. 

Pilot Course Results 

The quiz and lab report scores from the accessible lab sections were compared to 

the other lab sections being taught in the conventional way. Comparison of these grades 

showed that scores in the accessible sections were higher than those of regular sections. 

An interesting finding revealed that the sighted students in the accessible courses were 

also benefiting from the use of the tactile materials. In each lab section that offered tactile 

enhancements, sighted students were also invited to use the materials. Many of these 

students stated that use of the tactile images (and other materials) made the labs more 

interesting and fun. These statements, coupled with high scores, suggest that the tactile 

materials could possibly enhance lab courses for all students. The results of sighted and 

blind student’s surveys from the accessible section of BIO 100 can be seen in Table 2. 

Participation Study 

Although the results gleaned from the pilot astronomy and biology courses 

demonstrated the potential benefits of the tactile materials, the participation of blind and 

VI students in the courses was still low.  This makes the data difficult to use in 

demonstrating solid evidence of the need for the tactile boards.  With this problem in 

mind, the 3D IMAGINE team decided to arrange a participation study in order to gather 

more data. The study consisted of two lab activities over the course of two days.  Each 
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activity was presented and taught in the same way as a normal lab session in an ASU 

course.  The activities in the study were led by trained teaching assistants. 

Blind and VI adults in the community were invited to participate in the study and 

received a gift card as compensation for their participation.  Participants were given 

HDPE boards or standard embossed images at random, with half the group receiving 

HDPE and half the group receiving standard embossed images.  Each participant was also 

given lab directions in the medium of their choosing (i.e. braille, large print, read aloud).  

The participants were allowed to work in groups, in the same way a standard lab course 

would allow, and asked to complete the lab activity.  Each activity, one astronomy and 

one biology, included a set of questions testing the understanding of the materials. 

Although allowed to discuss and work in groups, participants were required to 

answer the activity questions individually. The results of the questions were later 

compared between participants using the HDPE boards and those using standard 

embossed images.  The results of the scores from the participation study were promising.  

The data showed that participants using the HDPE materials scored as much as 60% 

higher than those not using the boards.  Furthermore, all participants were also surveyed 

and all had positive feedback on the enhanced tactile materials.  These results 

demonstrate the benefits of including the improved HDPE tactile graphics in science 

courses. 

Summary 

Inclusion of adequate accessible tactile materials in STEM courses, particularly 

on the university level, continues to be an issue.  This is likely a large contributing factor 
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in the steadily low participation of blind and VI individuals in these courses.  The 3D 

IMAGINE team at ASU has demonstrated a potential solution to this issue.  The careful 

creation of enhanced 3D tactile graphics on HDPE boards, has illustrated the impressive 

potential to improve accessibility to the blind.  This potential was demonstrated by the 

inclusion of the HDPE boards and other tactile materials in two pilot courses at ASU.  In 

these courses, both sighted and blind students showed increased scores in addition to 

increased enthusiasm for course material. 

A further study of the benefits of the HDPE boards was conducted with blind and 

VI adults in the community.  This study verified and increased the data supporting the 

usefulness of the tactile HDPE boards in the completion of science activities. By 

including more detailed and accurate tactile images, created using HDPE and CNC 

milling, blind students may have better experiences in the sciences. 
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Table 1: American National Standards for Braille Signage (2003) 

The following table outlines the braille standards followed by the 3D IMAGINE team in 

the production of HDPE tactile graphics (Hasper, et al., 2014). 

  
 

Minimum in Inches  
Maximum in Inches 

Dot Base Diameter 0.059 (1.5mm) to  
0.063 (1.6mm)  

Distance between two dots in the same cell 0.090 (2.3mm) to  
0.100 (2.5mm) 

Distance between corresponding dots in adjacent cells 0.241 (6.1mm) to  
0.300 (7.6mm)  

Dot height  
 

0.025 (0.6mm) to  
0.037 (0.9mm) 

Distance between corresponding dots from one cell 
directly below 

0.395 (10.0mm) to  
0.400 (10.2mm) 
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Table 2: Survey Results in a BIO 100 Lab Section 

All students in the accessible section of BIO 100 were asked to rate the following 

statements on a scale of 1-5 (n = 25). 

Statement: Score: 

3D materials helped understanding of concepts. 3.75 

Made assignment more interesting. 4.43 

Helped answer questions. 3.64 
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Fig. 2. Comparison of different substrates and resolution to create tactile images. 
The Hubble Space Telescope Butterfly Nebula image was tested in various formats 
including raised print (A), HDP (B), low resolution (C) and high resolution (D) print as 
well as using Corian (E, F)and the  medium density fiberboard (G, H) in low and high 
resolution (E,G: F,H). The higher resolution images were better able to highlight smaller 
stars found within the image. (Butterfly Nebula Image source: Mechtley et al., 2012). 
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Fig. 3. Chimpanzee 2D Images Compared with a 3D Tactile Image Format. An 
original chimpanzee 2D image (A) is compared to the 2D print (B) and 3D tactile (C) 
chimpanzee skull image used in a revised BIO100 taxonomy lab. (Image A courtesy of 
Wikipedia Creative Commons.) 
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Chapter 3. Testing New Methods and Materials 

There were significant results following the pilot courses and participation study.  

Two conclusions in particular necessitated further exploration. There was still a clear 

issue of low participation.  Although a few blind students did sign up for the courses at 

the university level, it was very difficult to persuade others.  Furthermore, the completion 

of one science course is not likely to convince students to change majors or be willing to 

pursue a science degree.  This information lead to the idea of working towards building a 

pipeline of VI youth starting at a K-12 level.  

Another finding gathered from the pilot study, was the benefit of tactile materials 

for sighted students.  The concept of using tactile modes of instruction is not a new one. 

In fact, several studies indicate the high potential benefits of incorporation of tactile 

materials.  A study of an introductory biochemistry course conducted at DePauw 

University strongly supported this theory.  The study results indicated that student’s 

scores on a pretest and subsequent posttest improved from 8% of fully correct answers to 

67% of fully correct answers, following the inclusion of tactile models (Roberts, et al., 

2005).  Furthermore, results from a student survey showed that tactile models received 

the highest ranking for valued learning tool out of seven other course materials.  Such 

studies, coupled with the findings from the pilot courses, prompted further research to 

determine the feasibility of using HDPE boards as a tactile supplement to current course 

materials.  However, since the HDPE boards were originally made for blind students, it 

was important to first determine the possibility of creating a K-12 pipeline of students.  
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Perhaps working with younger blind and VI students, who have not yet convinced 

themselves that science is out of reach, could create a larger impact in the years to come. 

The Foundation for Blind Children 

There are several nonprofit organizations dedicated to providing services to the 

blind and VI community.  Phoenix Arizona has an organization called “The Foundation 

for Blind Children,” or FBC.  FBC provides preschool and kindergarten classes to 

students that are blind, visually impaired, or have multiple disabilities.  The long term 

goal for many of these students is to transition them to public schools.  FBC works with 

parents and schools to supplement the services provided by school districts in order to 

make these transitions smooth.  In addition to these services, FBC also has several 

programs that assist the blind and VI population.  These programs include a college 

preparation program, a work preparation program, and an adult services program.  These 

programs assist blind individuals at various stages of life to successfully achieve their 

goals. 

One of FBC’s most utilized programs is “Sports, Habilitation, Arts and 

Recreation Program,” or “SHARP.”  This program provides fun and accessible activities 

to K-12 students every Saturday.  In addition, SHARP also provides camping and field 

trip opportunities.  Students get a chance to participate in beep ball games (beeping 

baseball), create tactile art, and even cook elaborate meals with accessible tools.  This 

program was a great platform to begin the incorporation of accessible science for the K-

12 age group. 
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Members of the 3D IMAGINE team and other volunteers began conducting 

monthly activities at the FBC SHARP program in fall 2013.  The workshops would 

consist of a science lesson, taught by the volunteers and incorporating accessibility.  The 

activities usually consisted of tactile images, accessible reading materials, and a hands-on 

project to reiterate the lesson.   Each activity was also delivered in an age appropriate 

task, with the students often being divided into elementary, middle, and high school 

groups.   All of these activities were completely accessible and helped the students build 

on science concepts they were being taught in school.  

An example of one of these activities was a neuron lab. Students were given 

tactile images of neurons, made on HDPE boards (Figure 4).  They were also given 

supplemental reading materials that explained what a neuron was and the basics of how 

neurons work.  A lesson was then taught in which students were asked to touch and 

explore the tactile graphics while listening. They learned about axons and dendrites, 

while getting an opportunity to touch a tactile picture of them.  Students were then given 

pipe cleaners of differing textures, colors (for those with low vision) and sizes.  They 

were asked to build their own neurons using the pipe cleaners. Many students were able 

to successfully construct a complete neuron, including a cell body, axons, and dendrites.  

This activity demonstrated that the students understood the material being taught in the 

lesson.  It is likely that supplementing the lesson with tactile images of neurons helped to 

bolster student understanding. 

Other science activities for SHARP students demonstrated similar success. For 

instance, the students got an opportunity to learn about forensic science and the use of 
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fingerprints at crime scenes.  In this activity, students had the opportunity to learn about 

very detailed fingerprint patterns and to touch them on tactile HDPE boards.  In addition, 

students own fingerprints were taken, enlarged, and made into tactile images for each 

student (Figure 5).  This was done with the use of special swell paper which contains 

microbeads that expand when heated.  Heat will be concentrated on areas where ink is 

printed and generates a tactile image.  This activity greatly impressed the FBC CEO, 

Mark Ashton.  “Ashleigh used a student's own fingerprints to make science fun, 

important and personal.  More importantly, Ashleigh proves to our kids that STEM 

careers are attainable without sight.”  Having learned about the different fingerprint 

patterns through tactile graphics, students were able to identify the patterns on their own 

fingerprints.  This use of tactile information greatly increased the student’s understanding 

of the material and made the lesson more engaging. 

Special sessions were created in a tactile format to teach lessons in chemistry, 

forensic science, and cell biology.  All activities were found to be very enjoyable and 

beneficial to the students.  The SHARP program director, Cody Franklin, said:  “From 

my observations the students have been incredibly engaged in the activities and learned a 

lot.  They enjoy the activities and really seem to have a better understanding of the 

concepts that are being taught due to the hands on activities.”  Franklin also commented 

that students seemed excited when they were informed they would be doing science 

activities.   She expressed how important these activities were to the students.  Explaining 

that STEM careers are going to continue to be important in the future and that giving 

these students a chance to participate in STEM was vital.  “Without giving these kids a 
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chance to experience STEM, the world is missing out on a whole population of 

potentially great scientists and mathematicians,” Franklin stated. 

The students also greatly appreciated the chance to participate in these activities.  

There were about 25-50 students per workshop and three of these students showed 

particular interest every time the research team conducted a workshop.  These students 

will be identified as Student A, Student B, and Student C.  The students were interviewed 

and observed throughout the research process to gage their excitement and interest.  

Student A attended the SHARP program regularly and was eager to answer questions 

directed at the students during the lessons.  He stated that science was his favorite subject 

in school, but that he often felt “left out.”   Student B expressed her increased interest 

participating in science classes in college and perhaps pursuing a science career.  “I really 

liked the fingerprints; I think I want to be a forensic scientist.”   She explained that 

getting a chance to do science with accessible tools showed her that it might be possible 

for her to become a scientist.   Student C did not wish to be interviewed, but often 

showed great enthusiasm for learning science concepts.  She was quick to answer 

questions about the material that was taught in each lesson.  As a group, the students 

sometimes appeared disinterested in doing what was perceived as school work.  

However, as the activities progressed, becoming increasingly hands on, the student’s 

engagement and interest greatly improved. 

Conclusions and Future Plans with FBC 

Although no numerical data was collected, the observations gleaned from the 

workshops done with the Foundation for Blind Children’s SHARP program were helpful 
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to this research.  The students appeared engaged and excited about the STEM activities 

when they were presented in an accessible format.  The students that were interviewed 

showed increased enthusiasm over time and the possible interest in pursuing science 

further.  According to the SHARP program director, the students she observed were 

engaged and excited about the activities and even inquired about future science activities.  

All of this observational information demonstrates the benefits of increasing accessible 

materials for K-12 science lessons.  This study demonstrated the need to research these 

observations in a k-12 classroom setting, where standardized academic measurements 

and comparisons can be made. 

Future plans with the FBC SHARP program include the possibility of creating a 

fully accessible science camp.  This camp would be available to SHARP students 

interested in pursuing further science education and careers.  It will include several 

science lessons and workshops (similar to those conducted previously at the FBC).  In 

addition, students will be given the opportunity to create and present their own scientific 

research.  This program will include accessible materials for all participants, allowing 

them the freedom to explore and learn with no concern about accessibility.  Ideally, each 

student will also have a college mentor studying a STEM subject.  This mentor would be 

there to guide the student’s project, give advice about college, and assist students with 

questions about pursuing science education and careers.  As a whole, the goal of the 

camp will be to provide interested blind and VI students a glimpse of their possible future 

in STEM.  It will demonstrate (on a smaller scale) the structure of conducting research 

and studying science.  Most importantly, it will demonstrate that implementing accessible 

materials will have a great impact on blind students’ potential to excel in STEM. 
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Other Studies Conducted With Tactile Graphics 

The implementation of the 3D HDPE boards in the two pilot courses at ASU 

demonstrated the usefulness of these materials for all students.  Since the boards have the 

potential to benefit sighted students in addition to blind students, further research with 

sighted individuals was conducted.  A study was conducted with participants visiting the 

Phoenix Zoo for a family event.  Participants were asked to close their eyes and use their 

hands to interpret a tactile image.  The tactile HDPE board was placed into a box, 

covering the image from view (Figure 6).  The participants were then asked to explain 

what the image was, using only touch. The first task involved identifying a simple shape 

such as a triangle, circle, or square.  The second task involved identifying a more 

complex image such as a fish, a brain, or sea shell.  The results of the study can be 

viewed in Table 3A and 3B. 

Some general trends appeared from the results of the study at the Phoenix Zoo.  It 

seems that the ability to tactilely discern an image increased with age.  Participants in 

younger groups had a lower average of correct answers, while older participants had a 

higher average of correct answers. It also appears that a learning curve exists when trying 

to interpret tactile images.  The first task, identifying shapes, had a lower average of 

correct answers than the second task, identifying images.  In fact, the second task had no 

incorrect answers from all participants. The later trend suggests that the ability to 

interpret images by touch will simply take some practice.  However, the result that all 

participants correctly identified the tactile image they were asked to interpret in the 

second task, demonstrates that sighted individuals do have the ability to tactilely discern 
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complex graphics.  With this in mind, there is also reason to believe that introducing 

tactile images into a standardized classroom, as a supplement to visual materials, may 

benefit all students. 

Although the most common formats for educating are visual and auditory, there 

may be many students that could benefit from tactile based learning.  Common methods 

of teaching include lecturing, playing a video, or asking students to read text materials.  

All of which are informative and important.  However, some students may need a more 

active method of learning difficult material.  Allowing students a hands-on approach to 

STEM subjects gives them a physical link to the material they are learning.  These 

methods have already been applied and used in the form of lab exercises.  Science 

courses often include lab activities that help reinforce complex topics being taught in 

other formats (text, lecture, etc.).  These lab components allow students to physically 

engage with the material and further strengthen their understanding of the topic.  In a 

sense, these activities are tactile versions of the course material.  There is strong evidence 

that providing students with these physical and tactile connections to the material they are 

learning, can lead to an increase in comprehension.  A study of a chemistry class tested 

this theory.  The study found that students that were taught using a hands-on approach 

and tactile enhancements (molecular models in this case) received an average score of 

95% and students taught the same concepts in the traditional methods (text/lecture) 

received an average score of 80% (Pashler, et al., 2008).  Studies such as this one 

demonstrate the potential benefits of introducing more tactile learning into the average 

classroom. 
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The 3D HDPE boards created by the 3D IMAGINE team at ASU may be a simple 

means of introducing more tactile materials.  The boards can be customized for any 

lesson, topic, or activity.  This customization will allow educators to introduce tactile 

learning where and when they feel it will benefit their students.  Since the boards are 

fairly inexpensive and durable, they will survive years in a classroom.  These boards have 

already demonstrated success for sighted and blind students in the two pilot courses 

discussed previously.  The subsequent Phoenix Zoo study also supports the feasibility of 

using the boards for sighted individuals.  These results, coupled with studies like that of 

Prashler et al., demonstrate the need to further explore the possibility of using HDPE 

boards, and other tactile materials, in more classrooms. 

Conclusions 

The workshops at FBC and the studies at Phoenix Zoo added more supporting 

information to the work done by the project team.  It appears that implementing more 

accessible materials in STEM classes of young blind and VI children (K-12), could 

increase comprehension and interest in STEM areas.  The students that participated in the 

STEM workshops at the SHARP program seemed to gain knowledge and excitement for 

science when they had access to tactile materials. The idea to implement more tactile 

materials in a general classroom setting was supported by the studies conducted at the 

Phoenix Zoo.  These studies indicate that sighted individuals are also capable of using 

and interpreting tactile images.  Since studies suggest that the use of hands-on materials 

in a classroom enhances comprehension, it is likely that use of tactile materials will 

benefit all students.  Further research to verify these theories needs to be continued.  This 
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research should involve implementing the 3D HDPE boards and other tactile materials 

into standard K-12 classrooms in order to determine their benefits for sighted and blind 

students. 
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Table 3: Phoenix Zoo Study Results 

A. Participants were asked to identify a shape through touch. Simple shapes were 

presented on 3D tactile HDPE boards. There was a total of 33 participants. 

Number of 
Participants  

Male/Female Age Percentage Correct 

4 Female 4-5 50% 

5 Male 4-5 60% 

11 Female 6-12 81.8% 

7 Male 6-12 57.1% 

5 Female 20+ 100% 

1 Male 20+ 100% 

 

B. Participants were asked to identify a tactile image only by touch. Tactile images 

were presented on 3D HDPE boards. There was a total of 33 participants. 

Number of 
Participants  

Male/Female Age Percentage Correct 

4 Female 4-5 100% 

5 Male 4-5 100% 

11 Female 6-12 100% 

7 Male 6-12 100% 

5 Female 20+ 100% 

1 Male 20+ 100% 
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Fig. 4. 3D HDPE Neuron Board. Braille labeled images of neurons were produced as 
3D tactile graphics on HDPE boards. These images were used to teach a neuron 
workshop at Foundation for Blind Children’s SHARP Program. 
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Whorl Fingerprint Pattern 

Whorl fingerprint pattern 

 

Fig. 5. Tactile Fingerprints. Student’s fingerprints were enlarged and printed on special 
swell paper. This paper is heated in order to create a simple tactile image. Students were 
each given tactile prints of their own fingerprints. 
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Fig. 6. Covered Box Used to Test Tactile Images on Sighted Individuals. Tactile 
images were placed into this covered box, preventing any visual interpretation of the 
images. Participants were then asked to use their hands to discern the tactile image. 
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Chapter 4. Methods Used to Produce High Density Polyethylene 3D Tactile Images 

The 3D tactile graphics used in this research were produced using a computer 

numeric control machine (CNC).  There are several types of CNC machines including 

CNC lathes and CNC milling machines (“CNC Machine,” 2014).  A CNC machine is 

able to take image data that has been converted into a computer code and precisely mill a 

3D relief into hard yet pliable material such as wood, metal or plastics.  This technique 

has been frequently used to produce small components and parts for industry prototypes.  

CNC is also a technology commonly used to create braille signs for public venues, 

making it ideal for the production of tactile images.  

A CNC milling machine was used with high density polyethylene (HDPE) plastic 

to produce tactile graphics for this research study.  The CNC milling machine is a viable 

option because of its capability to produce a tactile image that has three dimensions.  

CNC milling machines are commonly found in college campus workshops, making them 

a convenient equipment resource for the production of these educational materials.  

Additionally, the software needed to desaturate and invert images is available through 

popular programs such as Photoshop that are frequently provided through institutional 

licenses at many universities. 

How a CNC Machine Works 

 The proper use of a CNC machine requires specialized software and experienced 

users.  The CNC operator must be familiar with the particular interface for the CNC 

machine being used or be familiar with G-code, the language computers use to “talk” to 

the milling instrument (Larry, 2012). The operator will have to set up the material being 
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tooled, including proper alignment and mounting.  Next, the operator will need to select 

the correct size tool bit for the correct stage of milling based on the desired precision of 

the cut.  Finally, the operator must use the CNC program interface or a computer with 

accompanying software to program the desired job.  Once the CNC machine has been 

programed with instructions, a drill bit tool will move across the surface of the material 

being milled.  The drill bit will remove material in layers as it rasters across the surface. 

Typically a large tool bit is initially used to produce a rough rendering of the image and 

remove the bulk of excess material then it is replaced by finer tool bits to establish a 

smoother and detailed image.  

Although the knowledge needed to properly operate a CNC machine appears 

complex, training is easy obtained within a few hours. Many universities offer courses on 

machining which will include proper use of CNC.  Most CNC machine manufacturers 

will also offer onsite training to machine purchasers (Larry, 2012). There are also new 

centers opening up around the country called tech centers which provide instruments and 

training to hobbyists and entrepreneurs. With proper training and some experience, it is 

possible to become a skilled CNC operator. 

Production of 3D Graphics for this Research 

Experienced CNC machine operators who had advanced training produced all of 

the 3D tactile images used in this research project. The operators were art and design 

students at Arizona State University with previous experience and training in the use of 

CNC machinery and many of whom owned their own machines.  Materials were 

purchased with research funds provided by the College of Liberal Arts and Sciences, the 
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School of Life Sciences, School of Earth and Space Exploration, NASA, TactilEyes and 

local foundation funding. Recently the Chandler Tech Shop opened and provides free 

membership to ASU students. The Tech Shop is where the tactiles are currently being 

produced. Those interested in using instrumentation at the tech shop can obtain training 

for a nominal fee which includes safety instruction.  More information about The Tech 

Shop can be found at: http://techshop.ws/ts_chandler.html. 

The images used to produce the 3D tactile graphics were either obtained from free 

creative commons online resources or created by art students.  These graphics were used 

to produce the educational materials used in the pilot courses and participation studies 

mentioned in prior sections.  All images were edited by a member of the research team or 

by a CNC operator for proper rendering onto the HDPE boards. 

Methods and Explanations 

Digital pictures are needed in order to create 3D tactile images. The images must 

be desaturated into a gray scale image.  This means any colors on the original image had 

to be converted into a corresponding shade of gray (Figure 7).  The image information 

must be simplified into gray scale to enhance the tactile features during CNC milling. 

This will make the brighter (white) regions of the image appear taller (distinctive) on the 

boards.  Occasionally it is necessary to invert the black and white color distribution for 

proper image production.  For example, if a diagram image is used where the outline is 

black the resulting milled image would be depressed into the board instead of projected 

outwards. The fingerprint is a good example because it is a line drawing that has line 

patterns that must be inverted in order for the lines to be make tactically discernable.   
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The inversion process makes all lines white and the background black (Figure 8).  

Alternatively, images such as skulls were not inverted because the white skulls were the 

desired prominent feature of the final tactile image.  Because this process is customizable 

braille labeling was also applied to many of the images. 

Once images were converted into the desired gray scale image and labeled, they 

were saved as JPEG digital image files.  The JPEG files were then imported into a 

computer aided design software (CAD), such as Rhino.  Within the CAD software, 

operators can edit settings that instruct the CNC on the desired outcome of the tactile 

image.  Users can edit clarity and finish settings, in addition to selecting a “height field” 

option to produce the intensity-based image used in this study.  The files were then 

exported as an STL file type used by 3D programs. 

The final process requires that the STL files are imported into a CNC cutting 

program called Cut 3D where the operator will determine the final cut settings.  It is at 

this point that the operator must also select the proper tool bit size.  As described earlier, 

the bit size will determine the coarseness of the tactile image cut. Another feature 

available on the milling instrument is the ability to determine the range of clarity by 

defining the spacing of the raster lines. This will affect the amount of time needed for 

cutting. Rough initial cuts are used initially to remove excess material and can be 

performed quickly but for a more smooth and detailed surface additional time will be 

required with the use of a finer tool. Unfortunately, speeding up the cutting process will 

result in a lower quality tactile image board with less clarity, and generally rougher to the 

touch.  In order to produce the highest quality tactile graphics, they had to be cut in three 
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stages. The first being a rough cut with a large tool bit and the subsequent two runs being 

clearer cuts with finer tools.  An image board can take anywhere from two to five hours 

to produce, depending on the details of the original printed image and size. 
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Fig. 7. Gray Scale Conversion of a Color Spectrum. Digital images (A) are converted 
into gray scale (B) by desaturation so that areas with the highest intensity of color will 
become the lightest shade of gray. This is represented in the milled HDPE tactile image 
such that the brightest areas will project out higher than the dim regions (C). 
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Fig. 8. Image of a Canine Paw Print before and after Inversion. The image of 
a canine paw print, originally printed as black on white, is inverted so that the 
new image will represent the most intense regions as white and the dim regions 
black. This conversion will result in the most prominent features being projected 
highest in the final tactile image board.  
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Chapter 5. Project Outcomes and Conclusions 

 Despite the implementation of laws such as the American’s with Disabilities Act 

(ADA) and the Individuals with Disabilities Education Act (IDEA), there are still issues 

regarding education for students with disabilities.  These difficulties are partially due to a 

lack of adequate accommodations.  Blind and visually impaired individuals are 

consistently behind their peers in STEM subjects such as math and science.  This deficit 

can likely be attributed to the lack of accessible images provided to blind and VI students. 

 Science, Technology, Engineering, and Mathematics (STEM) tend to be heavily 

reliant on image based information.  Without adequately descriptive and informative 

tactile images, blind and VI students are not being provided with the materials they need 

to succeed.  The creation and subsequent improvement of 3D images made on HDPE 

boards could serve as a solution to this issue.  The HDPE boards are unique in 

comparison to current tactile materials because they provide advanced levels of detail.  

These details include the ability to use intensity based information in a tactile format. 

 The research conducted for this project sought to determine if the use of HDPE 

boards had the potential to increase the participation and success of blind and VI 

individuals in STEM fields.  The two pilot courses at ASU demonstrated that the boards 

were beneficial to blind students as well as potentially beneficial to sighted students in an 

academic setting.  Data collected through the participation study with blind adults from 

the community, demonstrated that the use of the HDPE images significantly improved 

the performance of these individuals upon completion of various science activities.  The 

research study conducted at the Phoenix Zoo provided evidence that tactile manipulatives 

48 



can also help sighted individuals as a supplement to visual images.  Furthermore, the 

student observations at the Foundation for Blind Children demonstrated an increased 

interest and excitement for STEM, when blind students are consistently provided with 

accessible tactile materials. 

 The conclusions drawn from this project support the theory that the inclusion of 

tactile HDPE images has high potential for the improvement of STEM education for 

blind and visually impaired students.   Future research should seek to determine to what 

degree these new 3D images are useful for blind and visually impaired students taking 

STEM subjects.  The research should also evaluate the degree of usefulness the 3D 

images has for sighted students in an academic setting.  Because few college age students 

who are blind or visually impaired will seek a STEM degree because of negative 

experiences, additional studies should be conducted at the K-12 level to regain the 

interest of these students and hopefully increase the number of students who will seek a 

college education or career in STEM.   
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APPENDIX A 

IRB DISCLOSURE STATEMENT 
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The research conducted in this study was approved under the Arizona State 
University Internal Review Board (IRB) protocol # 1207007997 for the project titled 
STEM Course Enhancement for the Visually Impaired [3D IMAGINE]. 
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APPENDIX B 

SURVEY QUESTIONNAIRE 
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During these lab exercises we introduced 3D tactile materials that supplemented the 
existing vision enriched materials which are typically provided in the lab. These efforts 
are part of a study that is investigating ways to improve the accessibility of STEM 
(science, technology, engineering and mathematics) courses for the visually impaired. 
We are requesting your feedback in regards to how these new materials assisted you in 
completing the assigned tasks.  

1. Please select from the following list which statement best describes your level of 
vision: 
 ____ normal vision  
            ____ low vision 
 ____ legally blind 
 ____ totally blind  

2. When did you lose your vision? 

 ____ N/A  
            ____ 0-3yrs old 
 ____ 3-6yrs old 
 ____ 6-12yrs old 
 ____ 12-14yrs old 
 ____ 14-18yrs old 
 ____ during adulthood 

3. From the list below select your current level of education: 

 ____ high school education 
 ____ some college 
 ____ college degree (including either associates or bachelors) 
 ____ some graduate education 
 ____ graduate or medical degree 

4. Check which classes have you taken at the college level?  

 ____ Science   ____ Technology (i.e. computer science) 
 ____ Math   ____ Engineering 

5. Please rate your experience on a scale of 1-5 (5 being the best) on how well the 3D 
materials helped you. 
 
 1 2 3 4 5  The 3D materials helped me better understand the lab’s concepts. 
 1 2 3 4 5  The 3D materials made the assignment more interesting. 
 1 2 3 4 5  The 3D materials helped me answer the assigned questions. 
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6.  After using the tactile boards and from your experience and understanding of printed 
pictures, do you feel the boards represent an accurate representation of a 2D image? 

7. After using the 3D tactiles do you have any recommendations on how these could be 
improved for these or similar lab exercises? 

8.  Are there any other suggestions or comments that you would like to provide in regards 
to making STEM based labs more accessible to the visually impaired? 

9. In general, if STEM information were converted into a tactile 3D format, similar to 
what you used today, would this increase your interest to learn more about these 
disciplines?  

10. If this 3D formatted material were available when you were younger (for example 
elementary, middle or high school level) do you think you would have had an increase 
your interest to learn more about science, technology, engineering or mathematics? 

11. What is your gender [OPTIONAL]?     ________Male or _______ Female 

12. What is your race/ethnicity [OPTIONAL]:  

_____ White (non-Hispanic)  _____ African American   _____ Native American, 
_____ Hispanic/Latino,  _____ Asian/Pacific Islander   _____ Other (please 
specify). 
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